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Abstract
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Project Title : High Order Schemes for Heat Conduction Problem with Neumann
Boundary Conditions
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In this research, the idea of deferred correction is utilized to construct a set of
high-order (fourth-order) deferred correction scheme for the solution of one-dimensional
heat conducting problems with Neumann boundaries. Crank-Nikolson scheme for the
temporal discretization and high-order deferred correction approach for the spatial
discretization are used. Numerical examples are given to demonstrate the performance
of the method proposed and to compare mostly with the spatial higher-order compact

scheme.

Keywords : Heat Conducting Problem; High-order Compact Finite Difference Scheme;

High-order Deferred Correction Scheme



Executive Summary

1. Introduction to the research problem and its significance

Finite difference methods are among the commonest approximation schemes
used for numerical solution of ordinary and partial differential equations, mainly,
because of their simplicity of use and the fact that they lend themselves quite easily to
the Taylor series analysis of any incurred errors. While there are a number of problems
which can be solved with low-order approximation methods (second or lower) with
reasonable accuracies, there is also a large class of problems including those of
acoustics and fluid dynamics, the solutions of which typically require higher order
approximation solution schemes for higher levels of accuracy.

Low order approximations generally require compact stencils which utilize three
nodal points in any direction. Any approximation method which involves grid nodes
outside those of a compact stencil is said to be non-compact. Higher order (greater than
2) finite difference approximations are possible but these methods typically require non-
compact stencils. Also the application of non-compact stencils at or near boundaries of
the problem domain usually requires inclusion of fictitious nodes. Thus complicating the
resulting numerical formulations and the usual consequences of those complications
include increases in the overall number of grid points as well as increases in the
bandwidths of the resulting system matrices. High-order compact schemes (HOCs) are
frequently used now-day because they can provide accurate results on compact
stencils. A compact method must have about the same accuracy at the boundary and
near boundary points as that of the interior points. Most existing HCSs are constructed
for problem with Dirichlet boundary condition. The Neumann (insulated or exchange)
boundary condition is often encountered in engineering application. However, fewer
HCSs have been constructed for problem with Neumann (insulated or exchange)
boundary condition, which are much more difficult to handle than that of Dirichlet
condition. Even for those less popular compact difference schemes involving Neumann
boundary condition, very often, the schemes are fourth-order or sixth-order at the
interior points, but less at the boundary. Another way of constructing compact stencil
and obtaining accurate results for all derivative terms is using deferred correction
approach which is easier development in the case of Neumann boundary conditions.
Deferred correction takes a low order scheme and promotes it to a high order scheme

by calculating the residual and solving for the error. The objective of research proposal



is to construct high-order (fourth) accurate spatial differencing scheme by using deferred
correction technique, demonstrate the performance of the method proposed and to
compare mostly with the spatial high order compact scheme in the case of Neumann
boundary conditions. Additional to high-order of accuracy the stability and convergence

of proposed scheme will be proved in this paper.

2. Objectives
To construct high order scheme for solving heat conducting problem and related
problem when the Neumann boundary conditions are specified which are proved to

stability and convergence.

3. Methodology

3.1 Study concept of high order schemes.

3.2 Study papers, books and documents in the topic of high order schemes when

Neumann boundary conditions are specified.

3.3 Using previous knowledge from 10.1 and 10.2 to construct high order schemes
which are proved stability and convergence.

3.3.1 Analyze and implement high order compact scheme and high order
deferred correction scheme for heat conducting problem with Neumann
boundary conditions.

3.3.2 Develop computer codes for high order compact scheme and high order
deferred correction scheme with Neumann conditions.

3.3.3 Compare the efficiency of high order compact scheme and high order
deferred correction scheme by using several tests problems.

3.3.4 Continue developing a new set of high order scheme which is proved
stability, convergence provide much more accurate numerical solution.

3.4 Writing and submitting the researches for publication.
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Chapter 1
Introduction

The desired properties of finite difference schemes are stability, accuracy and effi-
ciency. These requirements are in conflict with each other. In many applications a
high-order accuracy is required in the spatial discretization. To reach better stability,
implicit approximation is desired. For a high-order method of traditional type (not a
High-order compact schemes (HCS)), the stencil becomes wider with increasing order of
accuracy. For a standard centered discretization of order p, the stencil is p + 1 points
wide. This inflicts problems at the fictional boundaries, and using an implicit method
results in the solution of an algebraic system of equations with large bandwidth. In light
of conflict requirements of stability, accuracy and computational efficiency, it is desired
to develop schemes that have a wide range of stability, high-order of accuracy and lead
to the solution of a systems of linear equations with a tridiagonal matrix.

High-order compact schemes (HCS) are frequently used because they can provide
accurate results on compact stencils [2-20]. The high-order compact schemes obtain all
the numerical derivative along grid lines using smaller stencils solving a linear system of
equations. Since the size of computational molecule affects both the storage requirements
and effort needed to solve the linear equation system, we would like to keep it as small as
possible. Another way of constructing compact stencil and obtaining accurate results for
all derivative terms is using deferred-correction approach [7] . The high-order deferred
correction scheme (HDS) is constructed and compared with HCS for the heat conducting
problem with the Dirichlet boundary condition.

Most existing HCSs are constructed for problem with Dirichlet boundary con-
dition [2-20 ]. The Neumann (insulated or exchange) boundary condition is often en-
countered in engineering application, such as ultra-heat transfer and reaction-diffusion.
The conventional finite difference scheme for the Neumann boundary condition are either

first-order accurate or second-order accurate but needs a ghost points outside the domain



[1, 4, 7]. However, fewer HCSs have been constructed for problem with Neumann (in-
sulated or exchange) boundary condition, which are much more difficult to handle than
dirichlet condition. Even for those less popular compact difference schemes involving
neumann boundary condition, very often, the schemes are fourth-order or sixth-order at
the interior points, but less at the boundary [2,21,22].

In this report a new set of fourth-order deferred correction schemes (HDS4) for
one-dimensional heat conducting problem with Dirichlet and Neumann boundary condi-
tions are presented.

A set of scheme is constructed for the heat conducting problem with initial data

and Dirichlet and Neumann boundary conditions

up = Bug, + f(x,t), 0<z<l, t>0, (1.1)

u(z,0) =up(z), 0<z<lI, (1.2)

Dirichlet BC: w(0,t) = ay(t), wu(l,t) = as(t), t>0, (1.3)
Neumann BC: u,(0,t) = 1 (t), wu.(l,t) =1(t), t>0, (1.4)

Here u(x,t) represents the temperature at point (z,t), § is the diffusion constant, and
f(z,t), ar(t), aalt), 11(t), 12(t) are sufficiently smooth functions. Problems (1.1)- (1.3)
and (1.1), (1.2),(1.4) are model of transient heat conduction in a slab of material with
thickness [.

The organization of the paper is as follow. In chapter 2, for self completeness we
present a list of second-order Crank-Nicolson schemes for one-dimensional heat conduct-
ing problems with Dirichlet boundary conditions (DCNS2) [19], a list of Crank-Nicolson
schemes with first-order Neumann boundary conditions (NCNS1) [19], a list of fourth-
order compact schemes with Dirichlet boundary boundary conditions (DHCS4) [11, 14,
15], and a list of a fourth-order compact schemes with Neumann boundary (NHCS4)
[21, 22], a set of second-order Crank-Nicolson schemes for one-dimensional heat conduct-
ing problems with the second-order deferred correction Neumann boundary conditions
(DHDS2). A new set of fourth-order deferred correction with Dirichlet (DHDS4), and
a new set of fourth-order deferred correction scheme with Neumann boundary are con-
structed and presented in the following. In chapter 3, we present numerical examples to
compare the efficiency of standard schemes and high-order deferred correction schemes
(DHDS4, NHDS2, and NHDS4) for problems with Dirichlet and Neumann boundary con-
ditions. Results developed in this paper compared with the previous study [11, 14, 21]

demonstrate the superior performance of the high-order deferred correction schemes .



Chapter 2

The Sets of Schemes

Let At denotes the spatial mesh size. For simplicity, we consider a uniform 1 — D mesh,
consisting of N points: x1,Zs,...,zx where z; = (i — 1) * Az, and the mesh size Az =
[/(N—1). Below we use notations ul, (u,,)?"" to represent the numerical approximations
of u(z;, t") and uz,(z;,t") where t" = nAt and i =1,2,..., N.

2.1 A Set of Deferred Correction Scheme

A new set of high-order deferred correction schemes is based on an iterative method.

"
S

Using second upper index to denote the number of iteration, one writes

u;H—l,s—i—l . U:L _ ﬁ(ugm);l-i-l,s—&-l + (uxx);l
At 2

4z (2.1)

7

where )
f»n+1/2= I+
A 2 )

s:O,...,Sandizl,...,N.

The high-order finite difference approximation is utilized to approximate the sec-

ond derivatives (ugz,)?, i = 1,...,N. The deferred correction technique [7] is utilized to
approximate the second derivatives (um)?ﬂ’sﬂ, 1 =1,..., N by iterative method
(taa)i 0 = () T [l ) = () 7] (2.3)

where
(ul )T‘-H,s’i:17_“7]\7’3:0’.“75’\

xxr/

is high-order approximation and

(W ) k=5 s+1,i=1,...,N

rxr
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is the lower-order approximation. The expression in the square brackets of (2.3) are

evaluated by using values known from the previous iteration. When s = 0 we use solution

n+1,0 _

from level n (so u u™). Once the iterations converge, the lower-order approximation

terms drop out and the obtained solution corresponds to the high-order approximation
h

h )yntls approximate u,,. For example, to

of u,,, the same order of approximation as (u

get second order we do not need any iterations. If we denote

1,5+1
U;H_ s+ :u?—&-l

and

I )n+1,s+1 _ (ul )n+1,s _ (uh )p+1,s . U?—ﬁl - ZU?H + U?If

xzx /1 zx /1 xx /1 - A:L_Q

as result we get standard Crank-Nickolson scheme for interior points.

(u

u?—’—l —uy _ 6(umm)n+1 + (U )}
At 2

4 fin+1/27 i = 2’37 Cy N — 1, (24)

where

e SR
7 2 :

This scheme has a truncation error of O(At#?) in time. Order of spatial truncation error

depends on order of approximation of (u,)¥, k = n,n + 1 and order of approximation of

boundary conditions as well.

Let us consider a set of fourth-order deferred correction scheme on the interior

points by using equation (2.3). For the lower-order approximation of (u m)|§”r1 ko=
s,s+1,1=2,..., N—11in equation (2.3), we use the central second-order finite difference
approximation

(i = g (2l g ). (25)

1 .
n+,s7222

For the high-order approximation of (u”,)|: ., N —1 (case s = 0 corresponds

to (ul,)|") we use the fourth-order finite difference approximation

1
n+1,s n+1,s n+1,s n+1,s n+1,s n+1,s n+1,s
(ul )othe = A (10uy™* — 1500 — 4™ + Tduy ™" — 6ul ™ +ug %), (2.6)
1
h \n+1l,s n+1,s n+1 s n+1 s n+1,s n+1,s
T = 16 — 30u 16 -y
(u:c;r)z 12A2§2 ( U;—o + Ui + U’z—i—l uz+2 ) ) (27)

i=3,...,N—2,

1
n+1,s n+1,s nls n+1,s n+1,s n+1,s n+1,s
wgm;::mAﬂ(m e 15l - uE 14 — 6wl ). (2.8)
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Substitute (2.6)—(2.8) into equation (2.3) the following version of fourth-order deferred

correction approximation of (ug, )|t i =2,..., N — 1 are
1
(um)nﬂ s+l =5 <un+1 st _ o ;H—l,s-i—l 4 un-i—l s+1>+ 29
1 .
12A2<_2 n+1s+9 n+1s_16 n+1s+14u2+1s 6n+1s+ g—Q—ls)7
x
n+1,s 1 n+1,s n+1,s n+1l,s
(Uxx) st A ) < ij_lL L 2U1 +letl + Uile +1>+ (2 10)
1 n+1,s n+1 s n+1,s n+1,s n+1,s . ’
12Ax2<_u’2 + 4u — 6uf T Al =l ), 1=3,...,N =2,
1
n+1,s+1 n+1,5+1 n+1,54+1 n+1,s+1
T i = -2 )
(Uga) N1 N 2< 2 uy_y  tuy + (2.11)

1
( _ 2un+17s + guxf-‘rl )8 16u7]"<7+1 )8 + 14un+1 S 6un+1 )8 + u7v+155>

Substitution (2.9)-(2.11) into equation (2.1) where i = 2,..., N —1, results a fourth-order

deferred correction scheme on the interior domain.

2.1.1 A Set of Fourth-Order Deferred Correction Scheme with Dirich-
let Boundary

Let us consider the heat conducting problem with initial data and Dirichlet boundary

conditions (1.1)-(1.3)
u':fll"v‘]. 1<tn+l)’ u?](f"rl — 2(tn+l)' (212)
The set of schemes, consisting of equations (2.1), (2.9)-(2.11) and (2.12) can be written

in the following form

n+1,s+1 n+1,s+1 n+1 s+1 . .
T 4 b + cugyy =d;; i=1,...,N, (2.13)

where the coefficients of tri-diagonal matrix are

a1:O, ai:—r;i:2,...,N—1, aN:—l,
b1 = 1, bz: 1-{—27“7 ’i:2,...7N—1, bN: 1, (214)

aa=—-1, ¢=-r;i=2,..,. N—1, cy=0,
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dl = (tn+1),

dg — %( 9 n+ls+9 n+l,s 16w n+ls+ 14un+ls — 6u n+ls+un+1s>
+ 17"—2 <10u’f — 15Ul — 4l + 140 — 6ul + ug) CALLTE
di _ %( . u?j—;,s + 4u?j—11,5 — 6u n+1 s + 4u;1+-|—11,5 _ U?J:-QLS)
, S (2.15)
+ ﬁ<—u;12 16U, — 30u! + 16uly, — ulty) + ALFT, =3, N =2,
r n S n S n S n S n S n S
dy_1 = 12(—2 U OuRT = 16y T - U )
+ 5 <1OuN — 15Ul — Ay + 14 — Guly_, + u’]‘v_5> AL
dN = Oég(tn+1).
where A "
t n " o
6 fi+1/2:fz +fz 222“.7]\/'_1.

2Az?’ 2 ’ ’
It can be seen that the truncation error of the heat conducting problem with initial
data and Dirichlet boundary condition (1.3) depends on order of approximation in in-
terior points, because Dirichlet BCs are approximated exactly. Crank-Nikolson scheme
(2.4), (2.5 and (2.12) has an order O(At?, Az?) over all grid points. Scheme (2.1), (2.9)-
(2.11) and (2.12) is the fourth-order deferred correction scheme with Dirichlet boundary
(DHDS4) and has the order of approximation O(A¢?, Az?) in uniform norm.

2.1.2 A Set of Fourth-Order Deferred Correction Scheme with Neu-

mann Boundary

We now develop the first, second and fourth order approximations of Neuman boundary
conditions (1.4) (based on principle of deferred corrections) for wu,, at the boundary
points = 0,1. The main idea is to use given Neumann BC (value of first derivative) to
approximate second derivative at boundary similar approach have been used in [20] to
construct high-order compact scheme.

For the lower order approximation of the second derivative terms

(ul )|n+1’k,i =1,Nk=s5+1

xx/ 1

we construct the first-order finite difference formula

(ul )711+1k —a U?Jrlk—l—a ug+1k+a3( )n+1 k’ (2.16)

rx

where the coefficients can be found by matching the Taylor series expansion of left-hand
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side up to the term O(Az?)u,, which gives us the following linear system

aq -+ a9 — 0,
asAx + az = 0,
2
ay = —.
T Ax?
The solution to the above system is
2 2 2
- __= = = ——. 2.17

Similarly at boundary point N, the first-order formula for the second derivative terms

(ul)IN" is
(ub )N " = b 4 Dot + by () W (2.18)
where
2 2 2
by = (2.19)

Ax?’ Ax?’ Ax

Substitute equation (2.17) into (2.16) and (2.19) into (2.18), the second derivatives

(ul )|7»L+1’k,i =1,Nk=s,5+1

xx/ 1

are approximated with the first-order approximation by the following formula

2 2
(ulmz>?+1’k = 2 <_u?+1’k + u;—i—l’k) - 4! (tn—H)?
A A (2.20)
(ul )t = e (—uﬁl’k + u%tll’k) + —AI’yg(t"“).

This approximation is used for Crank-Nicholson scheme in case u = 0, u"** = "1, To

. 1 . . . . .
approximate (u;‘gc)zhL 4 =1, N, with second-order we use finite-difference approxima-
tion in the form

h \n+1l,5 n+1,s n+1,s n+1,s n+1
(Uga)1 " =aiuy " asuy T Fagug” T+ aan (), (2.21)

where the coefficients can be found by matching the Taylor series expansion up to the

term O(Ax?)ug,, which gives us the following linear system

CL1+CL2+CL3:0

Gy
2 — =0
az + 2a3 + A2 )
220y = ——
a9 + as AJ}Q

as + 23a3 = 0.
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The solution to the above system is
7 4 B 1 B 3
g2 T Ay BT oAz MT T A

Similarly at boundary point zy, the second-order finite difference formula for the second

. . h \|n+1l,s :
derivative terms (u, )|y is

a; = — (2.22)

(uzm)%—kl,s _ blunN+ls + b2 n+ls + bgun—&— S Yo (tn+1> (2.23)
where . A
1 3
bh=———, bo=—, by=—"—, b=-—. 2.24
! 2Az2" 7T A2 2Az27 1 Ag? (2.24)
Substitute equation (2.22) into (2.21) and (2.24) into (2.23), the second derivatives
(ul )™, i = 1,N, are approximated with the second-order finite difference approxi-

mation by the following formula
3

1
(uzz)?ﬂ’s = AL ( 7u”+1 4 8u"Jrl * u§+1 s) — E%(twl), (2.25)
h \n+1l,s 1 7 n+1,s 8 n+1s n+1,s n+1 .
(Upe)y = OAL2 (— touN_| —Uun_3 ) + 5’72(75 ).
Substitute equations (2.20) and (2.25) into equation (2.3), the following second-order
deferred correction approximation of (um)|mrl St where i = 1, N are
2 3
n+1,s+1 n+1,s+1 n+1,s+1 n
(uxx)1+ = P( U1+ * Jru2+ - ) - A_a:%(t +1)

n+1§ n+1,s n+1,s

2% 72 (2.26)
n S n sS n yS 3 n '
(Um)NH’ o= UNJrl St N+1 +1) + A—%(t 1)

n+1,s n+ls n+1,s
(—3uN +4un T —un )

2A$2

Hn+Lk .

To approximate (u” )|} ,1 =1, N, with fourth order we use the following representation

h \n+1, +1, +1, +1 +, +h !
17 = a7 aguy T Fagug” T 4 aguy” 7+ asug Tagm (), (2.27)

where the coefficients are found by matching the Taylor series expansion up to the
termO (Ax°)Uyzz2. Which gives us the following linear system
a1 +as+az+ag+as5 =0

a2+2a3+3a4—|—4a5+£20,
Az

as + 2%a5 + Pay + 4205 = ——
as + 2%a5 + 3Pay + L3as = 0,
as + 2*as + 3*ay + 4%a5; =0,
as + 2°a5 + 3°ay + 4°a5; = 0.
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The solution to the above system is

415 8 3
= ——— Q= ——  Qa = ———
! 72A22° P Ag2 P Ax?’
(2.28)
8 1 25
ay =

9Az2’ 4 = " 8Az2’ 46 = " 6Ax

Similarly at boundary point /N, the fourth-order finite difference formula for the second

. . h \|n+1l,s :
derivative terms (u, )|y is

rx

(uh )7\{4—1 s blun—i—l )8 + b2un+1 ,8 + b3un+1 ,8 + b4un+1 + bN 4U5 1,s + b(j’}/g(tn+1), (2‘29)

, A1 8,3
VT A2 P 57 T A2’
(2.30)

8 1 25
b = 9Az?’ bs = 8Az? b = 6Az
Substitute equation (2.28) to (2.27) and (2.30) to (2.29), the second derivatives (u”,)[**"*

7

t =1, N are approximated with the fourth-order approximation by the following formula

1
(e i = s (= 15 5700 — 216u;
T
25
AT =90 ) 6as ) (2.31)
1 .
(Wl )N = s (= 415uy™ + 5T6u — 216uy Yy
T
25
64u n+15 —9u n+l 8> Ly
+ 6ag 2t )

Substitute equations (2.20) and (2.31) into equation (2.3), the following version of fourth-

order deferred correction approximation of (u)[*"*™ where i = 1, N are
n+l,s+1 2 o ntlis+1 n+l,s+1) i tn+1
(Usz)] = _A%‘Q ( Uy + Uy ) Az 7 ( )

—|—72A$2 < — 2710 4+ 43205t — 2160y
+ 64u S — gyt )
(e )5 = A2 (T e A_72(tn+l) (2.32)
+72ix2 < 2710 4 43207 — 2160

+ 64un+1 S 9 nN+14s )
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2.2 A Set of Fourth-order Compact Scheme

Most existing high-order compact schemes are constructed for problem with Dirichlet
boundary conditions. In paper by Zhao et. al [21] a set of fourth order compact finite-
difference schemes is developed to solve a heat conduction problem with Neumann bound-
ary conditions. Let us shortly represent main idea and final formulae of this set. Spatial

derivatives are evaluated by the fourth-order compact finite differences implicit scheme
(12, 14, 20, 21].

2.2.1 A Set of Fourth-Order Compact Scheme with Dirichlet Boundary

In [8, 15], the Dirichlet boundary conditions u(0, mAt) = a; (™) = u}*, and u(l, mAt) =
as(t™) = uR are used to derive the following four-order schemes at the boundary points
(x1,t™), (29, t™), (xn_1,t™) and (zx, ™)
()T + (Uugy)y = 1 (aru* + agub’ + asuy’ + aquy’ + asul’),
12pa* (2.33)

= W (&10&1 (tm) + GQU? + agugn + a4uT + (I5U75n) R

where the coefficients can be found by matching the Taylor series expansion up to order

O(AZ)Uypree Which gives us the following linear system [15]

ar+ay+as+as+as = 0,
as + 2a3 + 3a4 +4a; = 0,
as + 2%a3 + F*ay + 42a5 = 2(1+ )
as + 23as + 32aq + 4%a; = 3lo,

as + 24as + 3*ay + 4*a; = TR
as + 22a5 + 3Pay + 43a; = g—ia.
The solution to the above system is
a=10, a = 145 g = —7—6 az = 29 as = —% as L (2.34)

127 3’ 27 3 Y
Similarly at boundary point N, the fourth-order formula for the second derivative terms

() I s
1

(U )N+ (Uge) N = ToAL2 (blu% + bou'y_q + bauly_o + byuly_5 + b5u§(}74) ,

= ey (bra(t™) + by + by b+ by )
(2.35)
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where
ale, blz— b2:—— bgz—, b4:—— b5:—. (236)
The following fourth-order implicit relation at all interior points and any time

level, is derived in [12,14,21] to approximate ()"

1_0(sz)¢—1 + (Uga )i + E(um)iﬂ = m(ui—l — 2u; +“z‘+1)7 i=2,...,N—1. (2.37)

Let us introduce the following matrix-vector notations

u" = (al(tm)7 Uy UN O‘Z(tm)) ) (ﬁm)m = ((uwx)Ta ceey (um)%) )
T 145 38 29 2 1 7
T 110 1 24 3 4 3 24
6 12 -6
1 10 1
1 10 1
6 12 -6
i 017 . 1 2 29 38 145
I 24 3 4 3 24 | nun

With this notation, equation (2.33) and (2.35) can be combined and express in the fol-
lowing matrix form
2
D/~ m D —>m
By the Gerschgorin Theorem [6], it can prove that A is invertible. So, equation (2.38)

can be simplified to

2

—1 —m
Az (AP)" BPa@", m=nn+1 (2.39)

(tza)™ =

Substituting equation (2.39) into equations (2.4), a fourth-order accurate compact finite

difference scheme on the interior points is
(AP + rBP)i" ! = (AP — rBP)a" + AtAP frts, (2.40)

where r = i—jz and frtz = ( f%,...,f;?%) .

The truncation error of the heat conducting problem with initial data and Dirich-
let boundary condition (1.1)—(1.3) has an order of approximation O(A#?* Az?) over all
grid points which indicates a set of fourth order compact scheme with Dirichlet boundary

(DHCS4) and consistent with the differential equation.
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2.2.2 A Set of Fourth-Order Compact Scheme with Neumann Boundary

In [21], the Neumann boundary conditions wu, (0, mAt) = ~; (™), and u, (I, mAt) = yo(t™)
are used to derive the following four-order schemes at the boundary points (zs,t™),

(x3,t™), (xy_1,t™) and (zy,t™)

g(um)z - g(um)g =~ A; T @(Uz —uy'), (2.41)
E(um)N—l - g(um)N—2 =- Az @(UN—Q — uN_1)- (2.42)
Let us introduce the following matrix-vector notations
u" = (UTan e aurj\r;—l)  (Upe)™ = ((um)gl7 cee (Um)%—l) )
o m (™) (")
t") = — 0,...,0,—
7( ) < AJ} 7 ) Y 7 Al‘ b
[ 22 4 ] [ 6 -6 |
1 10 1 -6 12 -6
AV = BN =
1 10 1 -6 12 -6
L 4 22 (N—2)x(N—2) L 66 (N—2)x(N—2)

With these notations, the scheme (2.37), (2.41), and (2.42) can be expressed in the

following matrix-vector form

1 1 6
— AN ()" = — BNa™ + —3(t™). 2.43

Matrix AV is invertible. Equation (2.43) can be solved with respect (i)™

(ye)™ = —A%Q (AN) T BN 412 (AM) T ym). (2.44)

After substituting (2.44) into (2.4) we have the following vector equation
(AN + BNt = (AN — rBMYI 4 12B8A87(172) + AtAN [t (2.45)

where frts = <f§+%, . ,f;ﬁ) .

It can be seen that the truncation error of the heat conducting problem with
initial data and Neumann boundary condition (1.4) has an order O(At?, Az*) at interior
grid points i = 3,..., N — 2 [21], and an order of O(At?, Az3) at grid points z» and
zn—1 [23] which indicates a set of fourth order compact scheme with Neumann boundary
(NHCS4) and consistent with the differential equation.
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2.2.3 A Set of Update Fourth-Order Compact Scheme with Neumann
Boundary

Let us represent shortly main idea and final formulae of this set. Spatial derivatives are
evaluated by the fourth-order compact finite differences implicit scheme [12, 14, 20, 21] on
interior points and fourth-order deferred correction approach on the Neumann boundary.

The Neumann boundary conditions wu, (0, mAt) = ~(t™), and u,(l,mAt) =
Y2 (t™) are used to derive the following fourth-order deferred correction schemes at the

boundary points (x1,t™) and (zx,t™) by iterative methods

2
n+l,s+1 n+1,s+1 n+1,s+1 n+1
(Uga)] = A—%Q (—U1 + Uy ) - A_x%(t )
s (27 432 — 21605t
T
+ 64u T — 9yl ),
)n+1,8+1 _ 2 (_ n+1,5+1 + n+1,s+1) + (tn—i-l) (2'46)
(Uaa) v = A—%g Uy Un_1 E%
s (2T 42— 2160
x
64T — oty )
and
1
(Uea)? = W( — 41507 + 5T6u — 216u]
2
+64u” — 9ul ) ),
1 R A (2.47)

(taa)ly = W( — 4150 + 5T6ul_, — 216ul_,

2
64y — 9y ) + ()
N-3 N—4 Ax%( )
The following fourth-order implicit relation at all interior points and any time level, is

derived in [12,14,21] to approximate (uz,)!t"**! by iterative methods

1 n+1,s+1 n+1,s+1 1 n+1,s+1
E(U’Il")zjl 4 (um)z+ Ty l_O(um)’jl "
6 (2.48)
_ 5Ax2( ;Lj—ll,s—&-l . 2u?+1,s+1 + ;:l—ll,s-i-l)’
and
1_0(u9056)i—1 + (Uea)f + E(Um)iﬂ = m(ui—l — 2u; + U’i—i—l)? (2.49)
where ¢ = 2,..., N — 1. When s = 0, we use solution from level n so
un—i—l,O =u" .

Let us introduce the following matrix-vector notations

Ll — (u;;—f—l,s—i-l’ e ,quVH’SH) ) (2.50)
()" = ()T () Y
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at = (ul,...,ul),
() )
(tzz)" = ((Uzz)Vs -5 (Uaa) )
-n+1,s
) 07 ot 707 )
¢ = (o1 ©2) (2.52)
wn = (¢1707"'707¢2>7
where
b1 = — ot = ()
1= Ax% ) 2 = A:v% )
o 1 n+1,s n+l,s n+l,s
o1 = 72Ax2( 41507 4 576w} 2164
+64un+1 ] 9un+1,s > Ao — " (tn—i-l)
]' n ,S n S n S
oy = 72&2( 41505 4 576U — 216untY
n S n S 2 'rL
+ 640l +1 _ 9y N+14 >_A_ ot +1)
(1 0 ] (11 |
1 10 1 -6 12 -6
AZ/{ _ Bu =
1 10 1 -6 12 -6
1 1 -1
L 0 Jvyx @ L 4 (N)x(N)
- 271 3 3 4 1 7]
144 2 9 16
6 12 -6
CcY =
6 12 -6
1 4 3 5 271
L 16 9 2 144 4 nyxn
The scheme (2.46)-(2.48) can be expressed in the following matrix-vector form
2
Az,{ (l—[xx)nJrl,erl — _ BZ/{Z—L»n—i-l,s—i—l =+ @m—&—l,s
Az ) B (2.53)
Uu (- n __ —n n

After substituting (2.45) into (2.4) we have the following vector equation

(AY + rBY)™ ! = (AY — rCYU)@" + BALT™™ 1 4 ALAY frts, (2.54)

where

,—y'snn—&-l <—4P1‘;‘¢1 0,...,07()02_;7702)
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and

fn+% - (ff+%7 . 7f]r\bf+%) .
The truncation error of the heat conducting problem with initial data (1.1)—(1.2) and
Neumann boundary condition (1.4) has an order of approximation O(A#?, Ax?) over all

grid points which indicates a set of fourth order compact scheme with Neumann boundary
(UHCS4) and consistent with the differential equation.



Chapter 3
Stability analysis

A set of high order deferred correction schemes is based on the well-known Crank-

Nikolson type of scheme in the following form,

un+1,s+1 . u” 5
Zth — 5 [(ux$>;l+1,s+1 + (Uacac):b]
il . (3.1)
n fin+1/2’ finH/2 _ [T+ f
2
the second superscript “s” denotes the number of iterations s = 0,.. .,S and ¢ =
2,...,N—1.
The deferred correction technique is utilized to approximate the second-order
derivatives at higher time levels (ug, )/ t"**' i =2,... N — 1 by the iterative method
+1,5+1 I \ntls+1 h \n+l, I \n+l,
where

(WP ) i=2, . N—-1,s=0,...,8

xx /1

is high-order approximation on wide stencil, and

(W ) k=8 s+1,i=2,...,N—1

Tx/

is the lower order approximation on compact stencil (usually three point stencil). The
expression in the square brackets of (3.2) is evaluated explicitly using the values known
from the previous iteration. When s = 0 we use the solution from the time level n (so

w0 = 4 and (uge)! " = (uge)?). Once the iterations converge, the lower order
approximation terms drop out and the approximation of (i) "' obtained has the
h n+1,§

v ) . There are no difficulties to construct high-

same order of approximation as (u

order approximation for interior points.
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To preserve a compact using three wide stencil in the finite difference scheme at
higher time level (n + 1,5+ 1), we use the central second-order finite difference approxi-

mation to approximate the lower order term in (3.2)

I \n+1,k 1 n+1,k .
(uxm)z - A.TQ Alui I k - 87 S + 17 (33)
n+1,k n+1,k n+1k n+l,k .
A, =u;_," —2u +ug i =3,...,N =2,

For the high-order approximation term in (3.2), we use a symmetric five point wide stencil

for the inner points to reach the fourth-order of approximation

(uh )TL+1S . 1

" A N =3, N =2, (3.4)

n+ls _ -~
Ani ™ = 73

To study the stability of scheme (3.1)-(3.4), we use the Von-Neumann stability
n+1/2 __

n+1,s n+1 s n+1 s n+1,s n+1,s
—u;_y " + 16w, — 30u + 16w, 7 — u;, )

analysis. For simplicity, we assume that f; = 01in (3.1), and w is periodic in z. Let

us recast scheme (3.1)-(3.4) in the following form,
(E+ al)ulT™ T = o (A — Ap) w4+ (B — aA) u?, (3.5)
where o = SAt/(2Az?). If we define the following operators:
A=FE+alA,B=F —al,,C =FE+ al,,

where E is the identity operator, then (3.5) can be rewritten as follows

A TL+1 S+1 (A O) TL+1,S +Bu1zq, (36)

Assuming that the operators commute, (A — C)A = A(A — C) (for example in the case

of uniform grid), it is easy to demonstrate that if u”+1 S+ = u!"*! and u”Jr1 0 = = u] we get
o~ § o~ o~

ATt = [N ATRA - C)F | Bup + (A= C) (3.7)

Let u? = £e!® I = \/—1, be the solution of (3.1)-(3.4), where © = 2rAz/l is the phase
angle with wavelength {. From (3.7), we can derive an equation for the amplification

factor in the form

€] = 10(0, S, ), (3.8)

where S is the number of iterations, and

B ‘ [(ZE:O A§_k(A — C)k> B+ (A— C)§+1] Y |

’ A§+1616i|
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Figure 3.1: Variation of amplification factor with ©. (a)fé\ = 1, dashed line a = 2.0,

solid line o = 1.5 , dash-doted line a@ = 1.0, (b)—§ = 3, dashed line a = 10.0, solid line

a = 5.0 , dash-doted line o« = 1.0, (¢)-S = 5, dashed line a = 30.0, solid line o = 15 |
dash-doted line @ = 5.0, doted line o = 1.0

For stability of the method it is necessary that the absolute values of the amplification

factor is less than one, i.e.
§l < 1. (3.9)

Calculations are tedious and almost impossible to do by hand without mistake. We have
therefore automate all calculations in a computer algebra environment based on REDUCE
to obtain an explicit form of |¢(O, s, a)|. Figure 3.1 shows the values of |£]? in the polar
coordinate system (|¢2,©) for § = 1,3and5. If only one iteration executes in (3.1),
S =1, inequality (3.9) holds if o < 1.5, as can be seen from Figure 3.1 a). If 3 iterations
are done in (??) (Figure 3.1 b) , S = 3, the amplification factor remains bounded by one
at least for « < 10. In case of S = 5, the stability criteria hold up to a = 30 as can be
seen from Figure 3.1 ¢). It can be seen that increasing the number of internal iterations
results in increasing the range of o needed for stability. This tendency allows to assume
that as S — 00, our method becomes the unconditionally stable Crank-Nikolson method

for the heat equation.



Chapter 4
Numerical Examples

In this section, several numerical examples are carried to verify and compare the ac-
curacy for the schemes DCNS2, DHCS4, DHDS4, NCNS1, NHDS2, NHCS4, NHDS4, and
UNHDS4. For convenient information about abbreviations used for different approaches

as well as reference on original papers are summarized in Table 4.1

Abbreviation Method Equations refrence
DCNS2 Dirichlet BC, Crank-Nikolson, Second order 2.4,2.5, 212
DHCS4 Dirichlet BC, High-order compact, fourth order 2.40
DHDS4 Dirichlet BC,differed correction, fourth order 2.13-2.15
NCNS1 Neuman BC, Crank-Nikolson, first order 2.4, 2.5, [21]
NHDS2 Neuman BC, differed correction, second order | 2.1, 2.9-2.11, 2.26
NHDS4 Neuman BC, differed correction, fourth order | 2.1, 2.9-2.11, 2.32
NHCS4 Neuman BC, High-order compact,fourth order 2.45
UNHCS Neuman BC, High-order compact, fourth order, 2.54
Differed corrected BC

Table 4.1: Abreviation used for different approaches

Below, we denote At = Axz? the time step size, and the following stopping criterion is

applied:
n+l,s+1 urﬁ—Ls

max | u; ; |<e, s=0,...,5

1<i<N
where ”s"” denotes the number of iteration. It should be pointed out, although a small At
is chosen here, our set of scheme is unconditionally stable with no restriction on either
space mesh or time increment. For testing purpose only, all computations are performed

for0<t<1.
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In the first part of this section, the numerical examples are provided to verify
the accuracy for DCNS2, DHCS4, and DHDS4 with zero-Dirichlet and nonzero-Dirichlet
boundary conditions. The computation are performed using uniform grids of 11,21, 41, 81,
and 161 nodes.

In the second part of this section, the numerical example are provided to verify and
compare the accuracy for NCNS1, NHDS2, NHCS4, and NHDS4 with nonzero-Neumann
boundary. We apply a set of fourth-order deferred correction Neumann boundary for the
HCS4 and call it as UNHCS4 to update the accuracy of NHCS4. The computation are
performed using the uniform grids of 11, 21,41, 81, and 161 nodes.
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Example 1 ( Zero-Dirichlet boundary conditions and properly selected initial condition)

Up = Upe + (72 — Ve sin(rz), 0<z<1, >0,
(4.1)
u(z,0) = sin(mzx), w(0,t) =0, wu(l,t)=0.

The exact solution is u(x,t) = e 'sin(rz). The performance over the time domain
t € [0,1] for DCNS2 , DHCS4, and DHDS4 are compared. The maximum error, and

order of accuracy at t = 1 and € = 10~® are shown in Table 2.

Types of Number of Maximum Order of
scheme grids error convergence
11 3.39 x 1073 —
21 8.43 x 1074 2.00
DCNS2 41 2.10 x 107* 2.00
81 5.26 x 1075 2.00
161 1.32 x 107° 2.00
11 1.17 x 107° —
21 7.30 x 1077 4.01
DHCS4 41 4.56 x 1078 4.00
81 2.85 x 107 4.00
161 1.78 x 10710 4.00
11 1.30 x 107° —
21 2.24 x 107° 2.55
DHDS4 41 1.52 x 1077 3.88
81 9.59 x 107 3.98
161 6.00 x 10710 4.00

Table 4.2: Comparison of maximum error for equation (4.1) at t =1

The fourth-order differed correction scheme demonstrates a little bit larger error compare

with fourth-order compact scheme.
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Example 2 ( The non-homogeneous Dirichlet boundary conditions and properly selected
initial condition
U = Uy + (72 — Vet cos(mz) +40—2, 0<z <1, t>0,
(4.2)
u(x,0) = cos(mz) + 22, w(0,t) =€, w(l,t)=—et+4t+ 1.

The exact solution is u(x,t) = e cos(mx) + z% + 4xt. The performance over the time
domain ¢ € [0, 1] for DCNS2, DHCS4, and DHDS4 are compared. The maximum error,

and order of accuracy at t = 1 and € = 10~® are compared in Table 3.

Types of Number of Maximum Order of
scheme grids error convergence
11 6.51 x 1074 —
21 1.62 x 107 2.00
DCNS2 41 4.08 x 1075 1.99
81 1.02 x 107° 2.00
161 2.55 x 1076 2.00
11 3.20 x 1076 —
21 2.00 x 1077 4.00
DHCS4 41 1.26 x 1078 3.99
81 7.85 x 10710 4.00
161 5.11 x 10711 4.00
11 1.78 x 107° —
21 2.92 x 1077 5.92
DHDS4 41 2.44 x 1078 3.58
81 1.78 x 107° 3.78
161 1.15 x 10710 3.95

Table 4.3: Comparison of maximum error for equation (4.2) at ¢t = 1
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Example 3( The non-homogeneous Neumann boundary indicate that the boundary are

insulated and properly selected initial condition )

U = Ugy + (472 — Ve tcos(2mz) +2—2, 0<zx<1, t>0,
(4.3)
u(r,0) = cos(2mz) + 2%, u (0,t) =t, wu.(l,t)=2+t1.

The exact solution is u(z,t) = e~ cos(2rx) + 2> + xt. The performance over the time
domain ¢ € [0, 1] for NCNS1, NHDS2, NHCS4, UNHCS4, and NHDS4 are compared. The

maximum error, and order of accuracy at t = 1 and € = 10~® are compared in Table 4.

Types of Number of  Maximum Order of
scheme grids error convergence
21 1.26 x 10° —
NCNS1 41 6.15 x 1071 1.03
81 3.04 x 1071 1.02
161 1.51 x 107! 1.01
21 5.71 x 1072 —
NHDS2 41 7.74 x 1073 2.88
81 1.07 x 1073 2.85
161 1.58 x 10~ 2.76
21 8.97 x 1072 —
NHCS4 41 1.18 x 1072 2.92
81 1.50 x 1073 2.98
161 1.89 x 10~* 2.99
21 4.25 x 1073 —
UNHCS4 41 1.61 x 10~* 4.72
81 6.10 x 107° 4.72
161 2.30 x 1077 4.73
21 3.11 x 1073 —
NHDS4 41 1.19 x 10 4.71
81 4.77 x 1076 4.64
161 1.92 x 1077 4.63

Table 4.4: Comparison of maximum error for equation (4.3) at t =1
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The last table shows the maximum internal iteration(MI) of deferred correction scheme
(DHDS4, NHDS2, UNHCS4, NHDS4) depending on the stopping criterion (¢) and the

number of grid points.

Types of Stopping MI of MI of MI of MI of MI of

scheme criterion 11 grids 21 grids 41 grids 81 grids 161 grids
1074 2 2 2 2 1

DHDS4 1076 3 2 2 2 2
10-8 5 3 2 2 2
1010 7 5 3 2 2
1074 6 4 2 2 1

NHDS2 10°¢ 10 7 5 3 2
1078 13 11 9 7 4
10710 17 15 13 11 9
10~ 11 4 2 2 1

UNHCS4 10-¢ 24 17 11 5 2
1078 37 30 24 18 12
1010 50 43 37 31 25
10~ 10 4 2

NHDS4 1076 22 15 10 4 2
1078 33 27 21 16 11
10710 44 38 32 27 22

Table 4.5: Maximum of internal iteration of deferred correction scheme.



Chapter 5
Conclusion

In this Report, a new set of high-order deferred correction schemes is constructed
for a heat conduction problem with Dirichlet and Neumann boundary conditions. The
greatest significance of this set of schemes, comparing to other similar ones, is that it
is exactly fourth order accurate in space at all grid points, including both interior and
boundary point. HDS schemes have better accuracy in the case of Neumann boundary
conditions. Numerical examples are provided to confirm the accuracy. The construction
of HDS requires only a regular three-point stencil similar to that in standard second-order
Crank-Nicolson methods. Numerical examples are provided to confirm the accuracy. HDS

approach can be easily extend to multidimesional case.
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A deferred correction method is utilized to increase the order of spatial accuracy of the Crank-Nicolson scheme for the numerical
solution of the one-dimensional heat equation. The fourth-order methods proposed are the easier development and can be solved by
using Thomas algorithms. The stability analysis and numerical experiments have been limited to one-dimensional heat-conducting
problems with Dirichlet boundary conditions and initial data.

1. Introduction

The desired properties of finite difference schemes are sta-
bility, accuracy, and efficiency. These requirements are in
conflict with each other. In many applications a high-order
accuracy is required in the spatial discretization. To reach
better stability, implicit approximation is desired. For a high-
order method of traditional type (not a high-order compact
(HOQ)), the stencil becomes wider with increasing order
of accuracy. For a standard centered discretization of order
p, the stencil is p + 1 points wide. This inflicts problems
at the fictional boundaries, and using an implicit method
results in the solution of an algebraic system of equations
with large bandwidth. In light of conflict requirements of
stability, accuracy, and computational efficiency, it is desired
to develop schemes that have a wide range of stability and
highorder of accuracy and lead to the solution of a system
of linear equations with a tri-diagonal matrix, that is, the
system of linear equations arising from a standard second-
order discretization of heat equation.

The development of high-order compact (HOC) schemes
[1-18] is one approach to overcome the antagonism between
stability, accuracy, and computational cost. However, the
HOC becomes complicated when applie to multidimensional
problems or to non-Cartesian coordinate cases.

Another way of preserving a compact stencil at higher
time level and reaching high-order spatial accuracy is the
deferred correction approach [11]. A classical deferred correc-
tion procedure is developed in [19, 20].

In this paper we use the deferred correction technique
to obtain fourth-order accurate schemes in space for the
one-dimensional heat-conducting problem with Dirichlet
boundary conditions. The linear system that needs to be
solved at each time step is similar to the standard Crank-
Nikolson method of second order which is solved by using
Thomas algorithms. The fourth-order deferred (FOD) cor-
rection schemes are compared with the fourth-order semi-
implicit (FOS) schemes and fourth-order compact (FOC)
schemes for the Dirichlet boundary value problems.

A set of schemes are constructed for the one-dimensional
heat-conducting problem with Dirichlet boundary condi-
tions and initial data:

u, = Pu, + f (x,1),

u(x,0) =u, (x),

O0<x<lI t>0, (1)
0<x<l, (2)

Dirichlet BC: u(0,t) =y, (t), u(Lt)=vy,(),t>0,

3)



where the diffusion coefficient f3 is positive, u(x, t) represents
the temperature at point (x,t), and f(x,t), y,(t), p,(t) are
sufficiently smooth functions.

The rest of this paper is organized as follows. Section 2
presents an FOD scheme which we use to compare perfor-
mance of proposed scheme with FOS and FOC schemes.
Section 3 provides examples of comparisons. Although FOD
schemes have a higher computational cost than FOS and
FOC schemes, it is evident from these examples that the
FOD schemes have the advantage of accuracy in the uniform
norm, robustness, and the ability to be extended easily to the
multidimensional case. We conclude the paper in Section 4.

2. The Fourth-Order Schemes

Let At denote the temporal mesh size. For simplicity, we con-
sider a uniform mesh consisting of N points: xy, x,,..., Xy
where x; = (i — 1)Ax and the mesh size is Ax = [/(N - 1).
Below we use the notations " and (u,.)!" to represent the
numerical approximations of u(x;,t™) and u,, (x;,t™) where
t" = mAt and u'® is the value of the pth derivative of the
given function u.

2.1. Fourth-Order Semi-Implicit Scheme. The application to
the well-known Crank-Nikolson scheme to (1) results in the
following expression:

()™ + ()] + f2 @)

where fi"Jrl/2 = (fiwrl +f1"/2, i =2,...,N—1.The Dirichlet
boundary conditions

u(0,mAt) =y, (") = u}’,

©)
u(l,mAt) =y, (") = uy

are used to derive the following fourth-order approximation
of second derivative terms:

1

m
(uxx)z = 1222

(au]' + ayu' + asuy + agu)'

m m
+asus + aguy)

a,

= A )+

1
12Ax?

m m m m m
X (ayuy + asuy +aguy + asus + dgllg ),
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1

(uxx)i = 1272

m m m m m
X (—uly + 16u)" ) - 30u!" + 16y, —uly,),

)
i=3...,N-2,

1

—— (qu +auy
12Ax2

m —
(uxx)N_l -
m m
+azuy_, + ayuy_;
m m
+asuy g + agly_s)

[t

= a2 )+

1
12Ax2
m m
x (ayu)y | +asuiy

m m m
Ay 5 asty  + agly 5) s

(6)

where the coeflicients can be found by matching the Tay-
lor series expansion of left-hand-side terms up to order
O(Ax*)u'® which gives the following values of coefficients:

a, = 10,

(7)
a, = 14,

Schemes (6) can be combined and expressed in the following
matrix form:

1
U = ey (), (8)
where A j, is the corresponding triangular and sparse (N -2)x
(N - 2) matrix,

T
ul = (o) () o (e )

T
u” = (W), ) ©)

y (") = (1 (£7),0,..,0,, (7))

Substituting (6) into (4) gives us the following matrix form:
(E-ah,)u™" = (E+aA;,)u”
+At[y(E*)+y ()] (0)

+ Atfn+1/2

where a = BAt/(2Ax7), €712 = (£, R AT
and E denote the (N — 2) x (N — 2) identity matrix. The
scheme (10) is FOSs for the heat-conducting problem with
Dirichlet boundary condition. The order of approximation
is O(At*, Ax*) in the uniform norm. The triangular and
sparse (N — 2) x (N — 2) coefficient matrix in FOSs are
time independent; hence, we have to store the inverse of the
coefficient matrix E — «A;, before the time marching in the
implementation for computational efficiency.
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2.2. Fourth-Order Deferred Correction Schemes. A set of
fourth-order deferred correction schemes is based on the
well-known Crank-Nikolson type of scheme in the following
form:

un+1,s+1 —-u"

i i E n+1,s+1 n
T - ) [(uxx)i + (uxx)i] (1)

+ f‘in+1/2,

where f2 = (f*! + f™)/2 and the second superscript

« »

s” denotes the number of iterations s = 0,...,S and i =
2,...,N-1.

The deferred correction technique [11] is utilized to
approximate the second-order derivatives at higher time
levels (u,, )/, i = 2,..., N — 1 by the iterative method

] \ntLs+l
(o),
h n+l,s 1 n+l,s
+ [(uxx)i - (uxx)i ] >

where (uix)"ﬂ’s, i =2..,N-15 = 0,...,S, is high-

i

(l/l )Vl+1,$+1 _
xx/i -

(12)

order approximation on wide stencil and (uix):’“’k, k=s, s+
1,i = 2,...,N — 1, is the lower-order approximation on
compact stencil (usually three-point stencil). The expression
in the square brackets of (12) is evaluated explicitly using the
values known from the previous iteration. When s = 0 we
use the solution from the time level n (so «™° = " and
()"0 = (u,,)!). Once the iterations converge, the lower-
order approximation terms drop out and the approximation
of (u,,)!*"**! obtained has the same order of approximation
as (u )", There are no difficulties to construct high-order
approximation for interior points.

To preserve a compact three using wide stencil in the
finite difference scheme at higher time level (n + 1, s + 1), we
use the central second-order finite difference approximation

to approximate the lower-order term in (12):

n+l,k 1
(L = L, ket
X

i=3,...,N-2, (13)

n+lk _  n+lk n+1,k n+1,k

A7 =y = 20 Uy

For the high-order approximation term in (12), we use a
symmetric five-point wide stencil for the inner points to reach

the fourth order of approximation:

B o\ntLs 1 1, .
(uxx)i = FAhu:” S, 1= 3,...,N—2,
X
Al = = (—u'.le’s + 160 — 3001 (14)
12 i i i
n+1l,s n+1l,s
+16ui+1 ~ Ui )

Case s = 0 in (13) gives the fourth order of approximation to
approximate the second-order derivatives at the time level 7.

2.2.1. Stability Analysis. To study the stability of scheme
(11)-(14), we use the Von-Neumann stability analysis. For
simplicity, we assume that £/
in x.

Let us recast scheme (11) in the following form:

= 01in (11) and u is periodic

(E+ah)u™ " = a (A - Ay ul™

(15)
+(E-al))u},

where = BAt/(2Ax%). If we define the following operators
A=E+aA,B=E-alA,,and C = E + aA, where E is the
identity operator, then (15) can be rewritten as follows:

Au(l+1,s+1 — (A _ C) u:1+1,s + Bu?. (16)

1

Assuming that the operators commute, (A - C)A = A(A-C)
(e.g., in the case of uniform grid), it is easy to demonstrate

that if un+1,S+1 n+1,0

_ . ntl _.n
; =u;  andu! " = u; we get

ASH = ( ASFA - C)k> Bul + (A-C)*ul. (17)
k=0

Let u = &e!® T = v/=1, be the solution of (11)-(14), where
© = 2mAx/l is the phase angle with wavelength . From (17),
we can derive an equation for the amplification factor in the
form

&= |e(©.5.a)], (18)
where S is the number of iterations, and

H(ZE:O Agik(A - C)k) B+ (A- C)SH] e[®i|

' A§+lel®i|

lo(0.5.4)] -
19

For stability of the method it is necessary that the absolute
values of the amplification factor are less than one; that is,

€] < 1. (20)

Calculations are tedious and almost impossible to do by hand
without mistake. We have therefore automate all calculations
in a computer algebra environment based on REDUCE to
obtain an explicit form of |¢(®, S, ). Figurel shows the
values of |£]* in the polar coordinate system (|& [, @) for
S = 1,3,and 5. If only one iteration is executed in (11),
S=1, inequality (20) holds if &« < 1.5, as can be seen from
Figure 1(a)). If 3 iterations are done in (11) (Figure 1(b)), S=3,
the amplification factor remains bounded by one at least for
« < 10.In case of § = 5, the stability criteria hold up to & = 30
as can be seen from Figure 1(c)). It can be seen that increasing
the number of internal iterations results in increasing the
range of « needed for stability. This tendency allows to assume
that as S — 00, our method becomes the unconditionally
stable Crank-Nikolson method for the heat equation.



4 Mathematical Problems in Engineering

270 270
270
_———x= ——— a=10
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FIGURE 1: Variation of amplification factor with ©. (a) S=1, dashedline a = 2.0, solid line « = 1.5, dash-doted line & = 1.0, (b) S = 3, dashed
line « = 10.0, solid line & = 5.0, dash-dotted line « = 1.0, and (c) S = 5, dashed line & = 30.0, solid line & = 15, dash-doted line & = 5.0,
doted line a = 1.0.

2.2.2. Fourth-Order Deferred Correction Scheme. Let us first  following fourth-order deferred correction approximations
consider the one-dimensional heat conduction problem with of (uxx):’“’”l, i=2,...,N—1,are
initial data and Dirichlet boundary conditions (1)-(3):

(Hxx ;l+1,5+1 _ 5 " (tn+1)

6Ax?
n+lk _ n+l n+lk _ n+l
Wi =h (t )’ Un =N (t ) (D) N 1 (_2 nelsel n+1,s+1)
A u, u;
. . . . . 1 n+1,s n+l,s n+l,s
The finite difference approximations at x, and x,_;, which t— (9u2 —16u; " + l4uy,
. . . 12Ax
are the points next to the left and right boundaries, are
. n+1,s n+1l,s
straightforward: —6us "+ U ),
n+l,s+1 1 n+1,5+1 n+1l,s+1 n+1,s+1
(uxx)i = A2 (“i—l - 2u T Ui )
1 \ntLk _ 1 tn+1 2 n+1,k n+1,k
(uxx)z T Ax2 (Yl ( ) ) T )’ + 1 (_un+1,s + 4™ eyt
12Ax2 2 - i (23)
k=ss+1, nils  ntls
L LR TS )’
ho\ntLs _ 1 n+l n+l,s n+l,s .
(i), = T (10m (£77) = 1507 — 4l i=3,..,N-2
ntls+l 5 n+l
+1duy - eul ™+ upt), (edyt = grate ()
ho\ntLs 1 n+1 n+l,s n+l,s (22) + —1 (—Zu”“’”l + un+1,s+1)
(uxx)N—l T 12AR2 (107’2 (t )_ 15uy 1 —4uy Ax? N-1 N
1 n+l,s n+l,s n+1,s
+14unN+_1§s _ 6u"N+_1[f n unN+_1§s)) + AR (9”N71 —16uy_ ) + 1duy ;
n+l,s n+l,s
1 n+lk _ n+1,k n+1,k n+l _6uN—;1 + uN—é ) .
(”xx)N_l = A2 (”N—z —2un_p t Y (t )) >
k=ss+1 Schemes (23) can be combined and expressed in the following
’ ’ matrix form:
1 1
+1,5+1 +1,s+1 +1, +1
Cases s = 0 or k = 0 give formulae to approximate (i)  We = = A_szl“n Tt A2 (Ap=A)u™ 4y (" )’

and (”Zx)?' Substituting (13), (14), and (22) into (12) the (24)
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where A is a tridiagonal (N — 2) x (N — 2) matrix and A,
is the corresponding triangular and sparse (N — 2) x (N — 2)
matrix,

n+1,k n+l,k  n+lk n+1,k T
u =(u2 , Uy ,...,uNfl) , k=ss+1, (25
n+ls+l n+l,s+1 n+ls+1 n+l, s+1 T
uxx - ((uxx 2 ( xx) ( xx) )

(.26)

Substituting (6), (23) into (11), the formulae can be written
into matrix form

(E _ (XAI) un+1,s+1

=a(A,-A)u" + (E+ar,)u”  (27)

+At[y (£ +y ()] + A",

The above matrix form is called FODs for Dirichlet boundary
value problem (1)-(3). Thomas algorithms can be used to
compute the solutions of FODs. At each step of time ¢ and
the initial stage, the convergence of FODs requires more
iterations to converge to the solution of the FOSs. The order
of approximation of FODs is O(At*, Ax*) which is the same
as FOSs in the uniform norm.

2.3. Fourth-Order Compact Scheme. Let us briefly represent
the main idea and final formulae of compact schemes.
Spatial derivatives in the Crank-Nikolson scheme (4) are
evaluated by the fourth-order compact finite differences
implicit scheme [5, 7, 8, 13, 14, 17].

In [8, 14], the Dirichlet boundary conditions

u(0,mAt) =y, (") =", ul,mAt) =y, (") = ul;

(28)

are used to derive the following fourth-order schemes

(ten)y +0 (1)

1 m m m m
= Sind (] + ayuy' + asuy + agu

m m
+aguls + aguy' )

= 24szyl( )
1 m m m m
+ YRV (auy' + azul' +aguy + asus

+aguy ),

(t)imy + 1001 )" + ()i

2
=2 (6u)", —12u" + 6ul,,),

i=2,..,N-1,
() s + 0t )N,
1

_ m m m m
= JaAR? (@t + apuiyy  +asuiy_, +aguy

+asuy_y + agly_s)

a

24AX2 VZ ( m)
1

—— (auy_| + azuyy_, + aguyy 5 + asuy
T aAx \UN-1 N-2 N-3 N-4

+ a@tﬁ,s) >
(29)

where the coeflicients can be found by matching the Tay-
lor series expansion of left-hand-side terms up to order

O(Ax*)u'® which gives the following values of coefficients

[8]:

1
= a, =19, a, = —14, a; = =38,
2 (30)
a, = 44, as = —13, ag = 2.
Then all derivatives in (4) are approximated by the fourth-
order compact formula; we can write
1
Aul = A—szum +yY", m=nn+l, (31)
where A and B are the corresponding triangular and
sparse (N — 2) x (N - 2) matrices, u, = ((t)5,
()T () e )T u™ = @ u?, . ult )T and y™ =
(p, ™), 0,...,0, yz(tm))T, m = n,n+ 1. Schemes (4) and (29)
can be combined and expressed in the following matrix form:

(A-aB)u""' = (A+aB)u"

+ At [y (t"“) +y (t”)] (32)
+ A2,

This scheme is called FOCs for Dirichlet boundary value
problem (1)-(3). We like to mention that the above scheme
has truncation error O(At?, Ax*). Note that the triangular and
sparse (N — 2) x (N — 2) coefficient matrices in FOCs are
time independent; hence, we have to store the inverse of the
coefficient matrix A — aB before the time marching in the
implementation of computational efficiency.

3. Numerical Examples

In this section, three numerical examples are carried out. The
first two are linear heat-conducting problem, with Dirichlet



boundary conditions, which are used to confirm our theoreti-
cal analysis. Then we apply the FODS to the Burgers equation.
For simplicity, we fix our problem domain Q = {x | 0 < x <
1}. In all computations, we used At = Ax*/4and e = 10717
The following stopping criterion is used:

n+1,5+1
max ui -

1<isN

n+1,8
i

u <e, s=0,...,S, (33)

where “S” denotes the number of the last iteration.

The computations are performed using uniform grids
of 11, 21, 41, 81, and 161 nodes. The initial and boundary
conditions are obtained based on the exact solutions. For
the testing purpose only, all computations are performed for
0<t<l1.

Example 1 (the homogeneous heat equation with the homo-
geneous Dirichlet boundary conditions). One has

U =u,, 0<x<1,t>0,

(34)
u(x,0) =sin(nx), u(0,t)=0, wu(l,t)=0.
The exact solution is u(x,t) = et sin(7rx). The results
of performance over the time interval ¢+ € [0,1] for the
FOCs, FODs, and FOSs are represented in Table 1, where the
maximum error and the rate of convergence at time instant

t = 1 are shown.

Example 2 (the nonhomogeneous heat equation with non-ho-
mogeneous Dirichlet boundary conditions). One has
Up = Uy, + (712 - 1) e cos (mx)
+4x -2, 0<x<1,t>0,
(35)
u(x,0) = cos (7mx) + x>, u(0,t) =e ",
u(lt)=—e ' +4t+1.

The exact solution is u(x,t) = e’ cos(mx) + x> + 4xt. The
results of performance over the time domain ¢ € [0, 1] for
the FOC, FOD, and FOS schemes are represented in Table 2,
where the maximum error and the rate of convergence at time
instant ¢ = 1 are shown.

The last two columns of Tables 1 and 2 demonstrate the
average number of iterations in FODs at one time step and the
CPU time required to obtain the solution at time instant # = 1.
The average number of iterations means the total number of
iterations divided by the number of time steps. Asarule, at the
initial stage the convergence of deferred correction requires
more iterations. For larger instants of time, the convergence
occurs after 2~7 iterations as can be seen from Tables 1 and
2. All of schemes are seen to be the fourth order of accuracy,
as the error is reduced approximately by factor four when the
mesh is refined by half. The maximum error of the FODs and
FOCs is almost the same, since the iterative scheme FODs is
constructed by applying the deferred correction technique on
the FOSs. It can be stated that when the iterations converge,
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the solution of FODs, therefore, converges to the solution
of FOSs in each step of time. As shown in Tables 1 and 2,
there is hardly a difference in the computational efficiency
between FODs and FOSs. Both schemes are more efficient
than FODs. An explanation is due to the iteration needed for
the convergence of solutions on each step of time.

Although the FODs use more computational time as
compared with FOCs and FOSs, it is recommended that the
construction of FODs can be easily implemented. Moreover,
the scheme does not need to store the inverse of coeflicient
matrices as required in FOCs and FOSs. Therefore, the
method is easily extended to multidimensional cases.

It is suggested that the differed correction technique can
solve problems which need high accuracy of computational
methods. Also this technique can be easily implemented
and extended for solving problem with Neumann boundary
conditions. In addition, such technique can be easily used to
create standard code and applied in case of nonuniform grids.

Considering Burgers equation

u, = Pu, —uu,, 0<x<1,t>0, (36)

with the exact solution [21] is given by

—E)ef

u(x,t):£+’7+(}7 E)e’ (37)
1+ef

where p = &(x —#t —v)/f. The initial and Dirichlet boundary

conditions are considered to be in agreement with the exact

solution proposed here. For Burgers equation (36), we solve

it by the following fourth-order deferred correction scheme:

n+1,s+1 N

v § ()™ 4 )] + £, 38)

where f' = —[(u2/2)x]?. The nonlinear term f;" is approx-
imated with the fourth-order approximation and all the
second-derivative terms in (38) are approximated by the
fourth-order formula (6) and the fourth-order deferred
correction schemes (23). The scheme (38) can be combined
and expressed in the following matrix form:

(E—aA)u™ ™" = a (A, - A)u"™™ + (E+anr,)u”

+At[y (£7) +y ()] + Arf”,
(39)

where E is identity matrix, A is tridiagonal (N —2) x (N -2)
matrix, and A, is the corresponding triangular and sparse
(N —2) x (N - 2) matrix and can be solved by using Thomas
algorithm.

Example 3 (the Burgers equation (36) and the constant values
v = 0.125,& = 0.6, = 0.4, and § = 1 with appropriate
initial and Dirichlet boundary condition in agreement with
exact solution (37)). This problem was solved using different
time step and mesh sizes over the time interval 0 < t < 1. The
results of performance over the time interval ¢ € [0, 1] for the
FODs are represented in Tables 3 and 4, where the maximum
error and the rate of convergence at time instant t = 1 are
shown.
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TAaBLE 1: Maximum absolute error, order of convergence, and CPU time in seconds of the FOCs, FODs, and FOSs for test problem (34) at
time instant £ = 1.

Types of scheme Grid points Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
11 3.8687 x 107¢ — 1 0.006
21 6.0426 x 10717 6.0005 1 0.042
FOCs 41 22454 x 107" 4.7501 1 0.326
81 1.2821x 1072 4.1304 1 2.564
161 8.0164 x 107! 3.9994 1 20.437
11 9.9767 x 107° — 4 0.015
21 1.4996 x 10~° 2.7361 3 0.085
FODs 41 1.1193 x 107" 3.7438 2 0.438
81 7.1438 x 10712 3.9698 2 3.450
161 44797 x 107" 4.1875 2 27.495
11 9.9763 x 10~° — 1 0.006
21 1.4996 x 10~° 2.7361 1 0.043
FOSs 41 1.1193 x 107" 3.7438 1 0.334
81 7.1440 x 10712 3.9698 1 2.623
161 4.4854 x 107" 4.1875 1 20.907

TABLE 2: Absolute error, the rate of convergence, and CPU time in seconds of the FOCs, FODs, and FOSs for the test problem (35) at time
instant t = 1.

Types of scheme Grid points Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
11 1.8470 x 107 — 1 0.006
21 3.6901 x 1077 5.6454 1 0.046
FOCs 41 7.5595 x 10~° 5.6092 1 0.353
81 6.6458 x 1071° 3.5077 1 2.778
161 4.8841 x 107" 3.7663 1 22.141
11 1.7132x 107 — 7 0.016
21 2.6914 x 107”7 5.9922 7 0.128
FODs 41 2.7910 x 10°7® 3.2655 6 0.851
81 2.0112x107° 3.7941 5 5.568
161 1.3116 x 107" 3.9415 5 44375
11 1.2895%x 107 — 1 0.006
21 2.8544 x 1077 5.9922 1 0.046
FOSs 41 2.7306 x 10°% 3.2655 1 0.359
81 1.9590 x 10~° 3.7941 1 2.821
161 1.3130 x 107" 3.9415 1 22.484

TABLE 3: Maximum absolute error, order of convergence, and CPU time in seconds for Example 3 at time instant t = 1 with fixed mesh size
Ax = 0.05.

Types of scheme Time step sizes Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
107 8.0945 x 107° — 10 0.015
-3 -7
FODs 1074 8.0942 x 1073 1.0000 6 0.109
10 8.1144 x 10 0.9989 3 0.656
10° 8.2989 x 10~° 0.9902 3 6.281

TABLE 4: Maximum absolute error, order of convergence, and CPU time in seconds for Example 3 at time instant t = 1 with time step size
At = Ax*

Types of scheme Grid points Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
11 8.3375x 107 — 3 0.516
FODs 21 52632 % 107° 3.9812 2 8.594

41 3.3491 x 1071° 3.9774 2 200.015




In order to analyze the results found in application
to the Burgers equation (36), Table 3 demonstrates rate of
convergence, average number of iteration at each time step,
and CPU time required to obtain the solution of Example 3
by using FODs at time instant ¢ = 1 when Ax = 0.05 with
various time step sizes. Table 4 shows the rate of convergence,
average number of iteration at each time step, and CPU time
required to obtain the solution of Example 3 at time instant
t = 1 and using uniform grids of 11, 21, and 41 with time step
sizes At = Ax* and e = 107"°,

It can be seen from Tables 3 and 4 that numerical results
are in good agreement with the exact solution. We only
observe O(At) convergence rate and the error is dominated by
time error. An explanation for this phenomenon is due to the
nonlinear term, which is approximated at time level #, instead
of at time level n + 1/2 for the FODs (38).

4, Conclusion

In this paper, a new set of fourth-order schemes for the
one-dimensional heat conduction problem with Dirichlet
boundary conditions is constructed using a deferred cor-
rection technique. The construction of high-order deferred
correction schemes requires only a regular three-point stencil
at higher time level which is similar to the standard second-
order Crank-Nikolson method. The greatest significance of
FODs, compared with FOCs and FOSs, is the easier develop-
ment and that it can be solved by using Thomas algorithms.
Numerical examples confirm the order of accuracy. We also
implement our algorithms to nonlinear problems. However,
theoretical analysis for nonlinear problems needs further
investigation. Posterior idea for this project is to use another
way to make uu, term as follows [21, 22]:

u”“(ux):ﬁr1 ~ u"“(ux)? + u"(ux)zwrl - un(ux):', (40)

where better results are expected to be found. The first two
terms on the right-hand side of above equation make the
coefficient matrices of FOCs, FODs, and FOSs vary with time.
That is, the inverse coefficient matrices of FOCs and FOSs
have to be stored on each step of time while FODs have
no need. For this reason, the FODs is simple to implement
although FODs need more iterations for the convergence of
solution on each step of time.
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Program list for test Problems

Generated Grids and Test Problem Used

- Generated Grids

function[gx] = grid(nx,hx);
for i=1l:nx

gx(i,l) = hx + (i-1)*hx;
end

- Exact solution for test Problem

function[ex] = exact(ti,nx,vl);
kl=exp (-ti);
for i=1l:nx
ex(i,1)=(kl*cos(pi*vl(i,1))) + v1(i,1)"2 +(4*ti*vli(i,1));
end

function[ex] = exact (ti,nx,vl);
kl=exp (-pit2*ti);
for i=l:nx

ex(i,l)=kl*sin( pi*vl(i,1) );
end

function[ex] = exact (ti,nx,vl);
for i=l:nx
ex(1,1)=2*v1(i,1)/( 14+2*ti );

end
function[ex] = exact(ti,nx,cl,c2,c3,Re,vl);
for i=l:nx

cd = cl*Re*(vl(i,1l)-c2*ti-c3);

c5 = exp(c4);

ex(1i,1)=( (cl+c2)+(c2-cl)*c5 )/ (1+ch);
end

Main Program
DCNS2: Dirichlet Boundary Condition, Second-Order Finite Difference Scheme
DHCS4: Dirichlet Boundary Condition, Fourth-Order Compact Finite Difference Scheme
DHDS4: Dirichlet Boundary Condition, Fourth-Order Deferred correction

Finite Difference Scheme
NCNS2: Neuman Boundary Condition, Second-Order Finite Difference Scheme
NHDS4: Neuman Boundary Condition, Fourth-Order Deferred correction

Finite Difference Scheme

NHCS4: Neuman Boundary Condition, Fourth-Order Compact Finite Difference Scheme



DCNS2: Dirichlet Boundary Condition, Second-Order Finite Difference Scheme

- Main Program

clc,clear
format long

1 =1;
n = 11;
nx = n-2;
hx = 1./(n-1);
dt = hx.”2/10;
r = dt./(2.*hx."2);
time = 1.;
eps = 1.0e-10;
nit = round(time/dt);
A = zeros (nx,nx); C = zeros(nx,nx);
gx = zeros (nx,1l); u0 = zeros(nx,1); un = zeros(nx,1);
unpl=zeros(nx,1); fi = zeros(nx,1); di = zeros(nx,1);
gi = zeros(nx,1l); er = zeros(nit,l); t = zeros(nit,1);
al = zeros(nx,1); a2 = zeros (nx,1); a3 = zeros (nx,1);
1li = zeros(nx,1);
gx = grid(nx,hx); E = eye(nx,nx);
tic
for i=l:nx;
if i ==
A(i,1)= 2; A(i,i+1)=-1;
elseif 1 == nx
A(i,i-1)=-1; A(i,i)= 2;
else
A(i,i-1)=-1; A(i,i)= 2; A(i,i+1)=-1;
end
end
C = E+r*a;
nt = 0;
ti = 0.;
err = 0.;
k1l = (pi.”2)-1.;
u0 = exact(ti,nx,gx);
un = u0;
while ti < time
err = 1.;
nt = nt+l;
ti = nt*dt; ki = kl*exp(-ti);
th = ti-(dt/2); kh = kl*exp(-th);
tp = ti-dt; kp = kl*exp(-tp);
ex = exact (ti,nx,gx);
apl = exp(-ti);
ap2 = —exp(-ti)+(4*ti)+1;
for i=l:nx;
fi(i,1) = dt*( kh*cos(pi*gx (i, 1)) + 4*gx(i,1) - 2 );
if i ==

gi(i,1l) = un(l,1)+£fi(1,1)
+r*( apl-2*un(l,1)+un(2,1) );



a3(i,1)= C(i,i+1);
a3 (i,l)= 0;

a3(i,1)= C(i,1i+1);

elseif 1 == nx
gi(nx,1l)= un(nx,1l)+fi(nx,1)
+r* ( ap2-2*un(nx,1)+un(nx-1,1) );
else
gi(i,1l) = un(i,l)+£fi(i,1)
+r*( un(i-1,1)-2*un(i,1)+un(i+1,1) );
end
end
apl = exp(-tp);
ap2 = —exp(-tp)+(4*tp)+1;
for i=1l:nx;
if 1 ==
di(i,1l) = r*apl;
elseif i == nx
di(i,1l) = r*ap2;
else
di(i,1) = 0.0;
end
end
1i = gi + di;
% Using TDMA
for i=l:nx;
if 1 ==
al(i,1)= 0; a2(i,1)= C(i,1i);
elseif i == nx
al(i,1)=C(i,i-1); a2(i,1l)= C(i,1);
else
al(i,1)=C(i,1-1); a2(i,l)= C(i,1);
end
end
a3(1l,1) = a3(1,1)/a2(1,1);
1i(1,1) = 1i(1,1)/a2(1,1);
for 1 = 2:nx-1
temp = a2(i,1)-(al(i,1)*a3(i-1,1));
a3(i,1) = a3 (i, 1)/temp;
1i(i,1) = ( 1i(i,1)-(al(i,1)*1li(i-1,1)) )/temp;
end
li(nx,1) = ( 1li(nx,1) - (al(nx,1)*li(nx-1,1) ) )/
( a2(nx,1) - (al(nx,1)*a3(nx-1,1)) );
% Now back substitute.
unpl (nx, 1) = 1li(nx,1);
for 1 = nx-1:-1:1
unpl(i,1) = 1i(i,1) - (a3(i,1)*unpl (i+1,1));
end

% Check err

err = max (abs (unpl-un));
un = unpl;
er(nt,1l) = max(abs(ex-unpl));
t(nt,1) = nt*dt;

end

toc

er (nit, 1)

figure(l);

semilogy(t,er, 'r-.");

hold on

xlabel ('t")

ylabel ('"Maximum norm")
axis ([0 1 1.0E-12 1.0E-02])



DHCS4: Dirichlet Boundary Condition,

- Main Program
clc,clear
format short
1 =1;
n = 161;
nx = n-2;
hx = 1/(n-1);
dt = hx"2/4;
r = dt/hx"2;
time = 1;
nit = round(time/dt);
A = zeros(nx,nx); B = zeros(nx,nx); C = zeros(nx,nx);
D = zeros(nx,nx); IC= zeros (nx,nx);
gx = zeros (nx,1l); u0 = zeros(nx,1); un = zeros(nx,1l);
unpl=zeros(nx,1); fi = zeros(nx,1); di = zeros(nx,1);
gi = zeros(nx,1l); er = zeros(nit,l); t = zeros(nit,1);
1li = zeros(nx,1);
gx = grid(nx,hx); E = eye(nx,nx);
tic
for i=1:nx;
if i ==
A(i,i1) = 2; A(i,1+1)= 1;
B(i,i) = 7/12; B(i,i+1)= 19/12; B(i,1i+2)=-11/6;
B(i,1i+3)= 13/24; B(i,i+4)=-1/12;
elseif 1 == nx
A(i,1) = 2; A(i,i-1)= 1;
B(i,1) = 7/12; B(i,i-1)= 19/12; B(i,1i-2)=-11/6;
B(i,1i-3)= 13/24; B(i,1i-4)=-1/12;
else
A(i,i-1)= 1; A(i,1)=10; A(i,i+1)= 1;
B(i,i-1)=-6; B(i,i)=12; B(i,1i+1)=-6;
end
end
C = A+r*B; D = A-r*B; IC= inv (C);
nt 0;
ti = 0.;
err = 0.;
kl = (pi."2)-1.;
u0 = exact(ti,nx,gx);
un = u0;
while ti < time
err = 10.; nt = nt+l;
ti = nt*dt; ki = kl*exp(-ti);
th = ti-(dt/2); kh = kl*exp(-th);
tp = ti-dt; kp = kl*exp(-tp);
ex = exact (ti,nx,gx);
apl = exp(-th);
ap2 = —-exp(-th)+(4*th)+1;
for i=1l:nx;
fi(i,1) = dt*( kh*cos(pi*gx (i, 1)) + 4*gx(i,1) - 2 );

end

Fourth-Order Compact Finite Difference

Scheme



for i=l:nx;

if i ==
gi(l,1) = D(1,1)*un(1l,1) + D(1,2)*un(2,1)
+ D(1,3)*un(3,1) + D(1,4)*un(4,1)
+ D(1,5)*un(5,1) ...
+ A(1,1)*fi(1,1) + A(1,2)*fi(2,1)
+ A(1,3)*f1(3,1) + A(1l,4)*fi(4,1)
+ A(1,5)*fi(5,1);
di(1l,1) = 19*r*apl/12;
elseif i == nx
gi(nx,1l)= D(nx,nx)*un(nx,1) + D(nx,nx-1)*un(nx-1,1)
+ D(nx,nx-2)*un(nx-2,1) + D(nx,nx-3)*un(nx-3,1)
+ D(nx,nx-4)*un(nx-4,1)
+ A(nx,nx)*fi(nx,1) + A(nx,nx-1)*fi(nx-1,1)
+ A(nx,nx-2)*fi(nx-2,1) + A(nx,nx-3)*fi(nx-3,1)
+ A(nx,nx-4)*fi(nx-4,1);
di(nx,1l)= 19*r*ap2/12;
else
gi(i,1) = D(i,i-1)*un(i-1,1) + D(i,1i)*un(i,1)
+ D(i,i+1)*un(i+1,1)
+ A(i,i-1)*fi(i-1,1) + A(i,1)*fi(i,1)
+ A(i,i+1)*fi(i+1,1);
di(i,1) = 0.0;
end
end
1i = gi+di;
unpl = IC*1i;
un = unpl;
er(nt,l) = max(abs(ex-unpl));
t(nt,1) = nt*dt;
end
toc
er (nit, 1)
figure(l);
semilogy(t,er, "k-.");
hold on
xlabel ('t")

ylabel ("Maximum norm")

axis ([0 1 1.0E-12 1.0E-04])



DHDS4: Dirichlet Boundary Condition, Fourth-Order Deferred correction

Finite Difference Scheme

- Main Program 1

clc,clear
format short

1 =1;

n = 11;

nx = n-2;

hx = 1./(n-1);

dt = hx."2/4;
r = dt./(2.*hx."2);

time = 1;
eps = 1.0e-10;
nit = round(time/dt);
A = zeros (nx,nx); C = zeros(nx,nx);
gx = zeros (nx,1l); u0 = zeros(nx,1); un
unpl=zeros (nx,1); fi = zeros(nx,1); di
gi = zeros(nx,1); er = zeros(nit,1); t
al = zeros(nx,1); a2 = zeros(nx,1); a3
1li = zeros(nx,1);
gx = grid(nx,hx); E = eye(nx,nx);
tic
for i=1:nx;
if i ==
A(i,1)=2; A(i,1+1)=-1;
elseif 1 == nx
A(i,i-1)=-1; A(i,i)=2;
else
A(i,i-1)=-1; A(i,1)=2;
end
end
C = E+r*A;
np = 0;
nt = 0;
ti = 0.;
k1l = (pi.”2)-1.;
u0 = exact(ti,nx,gx);
un = u0;
it = 0;
itp = 0;
while ti < time
err = 1.;
nt = nt+l;
ti = nt*dt; ki = kl*exp(-ti);
th = ti-(dt/2); kh = kl*exp(-th);
tp = ti-dt; kp = kl*exp(-tp);
ex = exact (ti,nx,gx);
apl = exp(-tp);

ap2 -exp (-tp)+ (4*tp) +1;

= Zeros

(nx,1);
zeros (nx, 1) ;
zeros (nit, 1) ;

(

zeros (nx,1);

A(i,i+1)=-1;



for i=l:nx;
fi(i,1) = dt*( kh*cos(pi*gx (i, 1)) + 4*gx(i,1) - 2 );

if 1 ==
gi(i,1)

u0(1,1)+£fi(1,1) ..
+r*( 10*apl-15*ul0(1,1)-4*u0(2,1)...
+14*u0(3,1)-6*u0(4,1)+ul0(5,1) )/12;
elseif i == 2
gi(2,1) = u0(2,1)+fi(2,1)
+r*( —apl+16*u0(1,1)-30*ul0(2,1)...
+16*u0(3,1)-u0(4,1) )/12;

elseif i == nx-1
gi(nx-1,1) = ul0(nx-1,1)+fi(nx-1,1)
+r*( -—ap2+16*ul (nx,1)-30*ul (nx-1,1)...
+16*ul (nx-2,1)-ul(nx-3,1) )/12;
elseif 1 == nx
gi(nx,1l) = ul0(nx,1)+fi(nx,1) ..
+r*( 10*ap2-15*ul(nx,1)-4*ul(nx-1,1) ...
+14*ul (nx-2,1)-6*ul (nx-3,1)+ul(nx-4,1) )/12;
else

gi(i,1) = u0(i,1)+£1i(1i,1) ..
+r*( -u0(i-2,1)+16*ul0(i-1,1)-30*ul(i,1)...
+16*u0 (i+1,1)-u0(i+2,1) )/12;

end
end
apl = exp(-ti);
ap2 = -—exp(-ti)+(4*ti)+1;
while err > eps
itp = itp+l;
for i=1l:nx;
if 1 == 1
di(i,1) = r*( 10*apl+9*un(l,1l)-16*un(2,1)...
+14*un(3,1)-6*un(4,1)+un(5,1) )/12;
elseif i == 2
di(i,1) = r*( —apl+4*un(l,1)-6*un(2,1)...
+4*un(3,1)-un(4,1) )/12;
elseif i == nx-1
di(i,1l) = r*( —ap2+4*un(nx,1l)-6*un(nx-1,1)...
+4*un (nx-2,1)-un(nx-3,1) )/12;
elseif i == nx
di(i,1) = r*( 10*ap2+9*un(nx,1l)-16*un(nx-1,1)...
+14*un (nx-2,1)-6*un(nx-3,1)+un(nx-4,1) )/12;
else
di(i,1) = r*( -un(i-2,1)+4*un(i-1,1)-6*un(i,1) ...
+4*un (i+1,1)-un(i+2,1) )/12;
end
end
1i = gi + di;

Using TDMA
for i=l:nx;

if 1 == 1
al(i,1)= 0; a2(i,1)= C(i,1i); a3(i,1)= C(4i,1i+1);
elseif i == nx
al(i,1)=C(i,i-1); a2(i,1)= C(i,1i); a3(i,1)= 0;
else
al(i,1)=C(i,1-1); a2(i,l)= C(i,1); a3(i,1l)= C(i,1i+1);
end
end
a3(l,1) = a3(1,1)/a2(1,1);

1i(1,1) = 1i(1,1)/a2(1,1);



for 1 = 2:nx-1

temp = a2(i,1)-(al(i,1)*a3(i-1,1));

a3(i,1l) = a3(i,1)/temp;

li(i,1) = ( 1li(i,1)-(al(i,1)*1i(i-1,1)) )/temp;
end
li(nx,1) = ( 1li(nx,1) - (al(nx,1)*1li(nx-1,1) )

( a2(nx,1) - (al(nx,1)*a3(nx-1,1)) );
% Now back substitute.
unpl (nx, 1) = 1li(nx,1);
for 1 = nx-1:-1:1
unpl (i, 1) = 1i(i,1) - (a3 (i,1)*unpl(i+1,1));
end

% Check err
err = max (abs (unpl-un));
un unpl;
end
u0 = un;
er(nt,1l) = max(abs(ex-unpl));
t(nt, 1) nt*dt;
it it+1;
end
toc
itp/it
er (nit, 1)
figure (1) ;
semilogy(t,er, 'b-.");
hold on
xlabel ('t")
ylabel ("Maximum norm")
axis ([0 1 1.0E-12 1.0E-041])



- Main Program 2

clc,clear
format long

1 =1;

n = 11;

nx = n-2;

hx = 1./(n-1);

dt = hx.”2/10;

Re = 1.;

r = dt/ (2*Re*hx"2);
rr = dt/ (2*hx) ;
time = 1;

eps = 1.0e-10;

nit = round(time/dt):;

A = zeros (nx,nx); C = zeros(nx,nx); D = zeros (nx,nx);
gx = zeros(nx,1l); u0 = zeros(nx,1); un = zeros(nx,1l);
unpl=zeros(nx,1); fi = zeros(nx,1); di = zeros(nx,1);
gi = zeros(nx,1l); er = zeros(nit,l); t = zeros(nit,1);
al = zeros(nx,1); a2 = zeros(nx,1); a3 = zeros(nx,1);
gx = grid(nx,hx); E = eye(nx,nx);

tic

for i=1l:nx;

if 1 ==
A(i,1)=2/3;
al(i,1)= 0;

elseif 1 == nx

A(i,1-1)=-2/3;

al(i,1)=A(i,i-1);
else

A(i,i-1)=-1;

al(i,1)=A(i,i-1);

end
end
C = E+r*A;
np 0;
nt = 0;
ti = 0.;
err = 0.;
u0 = exact(ti,nx,gx);
un = ul;
it = 0;
itp = 0;
while ti < time
err = 10.;
nt = nt+l;
ti = nt*dt;
th = ti-(dt/2);
tp = ti-dt;
ex = exact(ti,nx,gx);
apl = 0.0;

ap2 2/ (1+42*tp) ;

A(i,1i+1)=-2/3;
a2(i,1)= A(i,1); a3(i,l)= A(i,1i+1);
A(i,i)=2/3;
a2(i,l)= A(i,1); a3d(i,1)= 0;
A(i,i)=2;

a2 (i,1)= A(i,1);

A(i,1+1)=-1;
a3 (i,1)= A(i,1i+1);



for i=l:nx;
if 1 ==
fi(1,1) =-rr*(-3*apl”2-10*ul0(1,1)"2+18*ul(2,1)"2
-6*ul(3,1)"2+ul0(4,1)"2 )/12;
elseif i ==
fi(2,1) =-rr*( apl”2-8*ul(l,1)"2 .
+8*ul(3,1)"2-ul0(4,1)"2 )/12;
elseif i == nx-1
fi(nx-1,1) =-rr*(-ap2”72+8*ul (nx,1)"2 ..
-8*ul (nx-2,1) "24+u0 (nx-3,1)"2 )/12;
elseif i == nx
fi(nx,1l) =-rr*( 3*ap272+10*ul (nx,1)"2-18*ul (nx-1,1)"2
+6*ul (nx-2,1)"2-ul (nx-3,1)"2 )/12;
else
fi(i,1) =-rr*( ul0(i-2,1)72-8*ul(i-1,1)"2 .
+8*ul (i+1,1)*2-ul(i+2,1)"2 )/12;

end
end
for i=l:nx;
if 1 == 1
gi(l,1) = u0(1,1)+£fi(1,1) ..
+r*( 10*apl-15*ul0(1,1)-4*ul0(2,1)...
+14*u0(3,1)-6*ul(4,1)+u0(5,1) )/12;
elseif 1 == 2
gi(2,1) = u0(2,1)+£fi(2,1)
+r*( —apl+16*u0(1,1)-30*u0(2,1)...
+16*u0(3,1)-u0(4,1) )/12;
elseif i == nx-1
gi(nx-1,1) = ul0(nx-1,1)+fi(nx-1,1)
+r*( —-ap2+16*ul(nx,1)-30*ul0 (nx-1,1) ...
+16*ul (nx-2,1)-u0 (nx-3,1) )/12;
elseif i == nx
gi(nx,1l) = ul0(nx,1)+£fi(nx,1) ..
+r*( 10*ap2-15*ul(nx,1)-4*ul(nx-1,1) ...
+14*ul (nx-2,1)-6*ul (nx-3,1)+ul(nx-4,1) )/12;
else
gi(i,1l) = u0(i,1)+£fi(i,1) ..
+r*( -u0(i-2,1)+16*ul0(i-1,1)-30*ul0(i, 1) ...
+16*ul (i+1,1)-ul0(i+2,1) )/12;
end
end
apl = 0.0;
ap2 = 2/ (1+2*ti);
gal = 2/(1+2*ti);
ga2 = 2/ (1+2*ti);
while err > eps
itp = itp+l;
for i=l:nx;
if 1 ==
di(l,1) = r*(-(50*gal*hx/137)+(2041*un(1,1)/1644)
-(387*un(2,1)/137)+(653*un(3,1)/274)
-(131*un(4,1)/137)+(257*un(5,1)/1644) );
elseif 1 == 2
di(2,1) = r*( —apl+4*un(l,1)-6*un(2,1)...
+4*un(3,1)-un(4,1) )/12;
elseif i == nx-1

di(nx-1,1) = r*( —-ap2+4*un(nx,1l)-6*un(nx-1,1)...
+4*un (nx-2,1)-un(nx-3,1) )/12;



elseif i == nx
di(nx,1l) = r*((50*ga2*hx/137)+(2041*un(nx,1)/1644) ...
-(387*un(nx-1,1)/137)+ (653*un (nx-2,1)/274)
-(131*un (nx-3,1)/137)+(257*un (nx-4,1)/1644) );

else
di(i,1) = r*( -un(i-2,1)+4*un(i-1,1)-6*un(i,1)...
+4*un (i+1,1)-un(i+2,1) )/12;
end
end
D = gi + di;

% Using TDMA
for i=1l:nx;

if 1 ==
al(i,1)= 0; az(i,l)= Cc(i,1); a3(i,l)= C(i,1i+1);
elseif i == nx
al(i,1)=C(i,1-1); a2(i,l)= C(i,1); a3(i,1l)= 0;
else
al(i,1)=C(i,i-1); a2(i,1)= C(i,1); a3(i,1)= C(4i,1i+1);
end
end
a3(1l,1) = a3(1,1)/a2(1,1);
D(1,1) = D(1,1)/a2(,1);
for 1 = 2:nx-1
temp = a2(i,1)-(al(i,1)*a3(i-1,1));
a3(i,1) = a3(i,1)/temp;
D(i,1) = ( D(i,1)-(al(i,1)*D(i-1,1)) )/temp;
end
D(nx,1) = ( D(nx,1) - (al(nx,1)*D(nx-1,1) ) )/
( a2(nx,1) - (al(nx,1)*a3(nx-1,1)) );

% Now back substitute.
unpl (nx,1) = D(nx,1);
for 1 = nx-1:-1:1
unpl(i,1) = D(i,1) - (a3(i,1)*unpl(i+l,1));
end

% Check err
err = max (abs (unpl-un));
un = unpl;
end
u0 = un;
er (nt,1) max (abs (ex-unpl)) ;
t(nt,1) nt*dt;
it = it+1;
end
toc
itp/it
er(nit, 1)
figure(l);
semilogy(t,er, 'b-.");
hold on
xlabel ('t")
ylabel ("Maximum norm'")
axis ([0 1 1.0E-07 1.0E-03])



NCNS2: Neuman Boundary Condition, Second-Order Finite Difference Scheme

- Main Program

clc,clear
format short

1 =1;

n = 11;

nx = n-2;

hx = 1/(n-1);

dt = hx”*2/10;

r = dt/(2*hx"2);

rr = dt/hx;

time = 1;

nit = round(time/dt);

A = zeros(nx,nx); B = zeros(nx,nx);

C = zeros(nx,nx); D = zeros(nx,nx);

gx = zeros(nx,1l); u0 = zeros(nx,1); un = zeros(nx,1l);
unpl=zeros(nx,1); fi = zeros(nx,1); di = zeros(nx,1);
gl = zeros(nx,1); er = zeros(nit,1); t = zeros(nit,1);
al = zeros(nx,1); a2 = zeros(nx,1); a3 = zeros(nx,1);
1li = zeros(nx,1);

gx = grid(nx,hx); E = eye(nx,nx);

tic

for i=1:nx;

if 1 ==
A(i,1) = 22; A(i,i+1)= -4;
B(i,i) = 12; B(i,i+1)= -12;
elseif 1 == nx
A(i,1) = 22; A(i,i-1)= -4;
B(i,1i) = 12; B(i,i-1)= -12;
else
A(i,1)=1;
B(i,i-1)=-1; B(i,1)=2; B(i,1i+1)=-1;
end

end

nt = 0;

ti = 0.;

err = 0.;

k1l = pin2/2;

u0 = exact(ti,nx,gx);
un = ul;

while ti < time

err = 10.;
nt = nt+l;
ti = nt*dt; ki = kl*exp (-k1*ti);
th = ti-(dt/2); kh = kl*exp(-kl*th);
tp = ti-dt; kp = kl*exp (-kl*tp);
ex = exact(ti,nx,gx);
for i=1:nx;
fi(i,1) = dt*( kh*cos(pi*gx (i, 1)) + gx(i,1) - 2 );

end



gal = th;
ga2 = th+2;
for i=l:nx;
if i ==
gi(l,1) = D(1,1)*un(1l,1) + D(1,2)*un(2,1)
+ A(1,1)*fi(1,1) + A(l,2)*fi(2,1);
di(1l,1) =-12*rr*gal;
elseif 1 == nx
gi(nx,1l) = D(nx,nx)*un(nx,1l) + D(nx,nx-1)*un(nx-1,1)
+ A(nx,nx)*fi(nx,1l) + A(nx,nx-1)*fi(nx-1,1);
di(nx,1l)= 1l2*rr*ga2;
else
gi(i,1l) = D(i,i-1)*un(i-1,1)+D(i,1i)*un(i,1)
+ D(i,i+1)*un(i+1,1)
+ A(i,i-1)*fi(i-1,1)+A(i,1)*fi(i,1)
+ A(i,i+1)*fi(i+1,1);
di(i,1) = 0.0;
end
end
1i = gi + di;
% Using TDMA
for i=l:nx;
if i ==
al(i,1)= 0; a2(i,1)= C(i,1i); a3(i,1)= C(i,i+1);
elseif i == nx
al(i,1)=C(i,i-1); a2(i,1l)= C(i,1); a3(i,1l)= 0;
else
al(i,1)=C(i,i-1); a2(i,1)= C(i,1); a3(i,1)= C(i,1+1);
end
end
a3(1l,1) = a3(1,1)/a2(1,1);
1i(1,1) = 1i(1,1)/a2(1,1);
for 1 = 2:nx-1
temp = a2(i,1)-(al(i,1)*a3(i-1,1));
a3(i,1) = a3 (i, 1)/temp;
1i(i,1) = ( 1i(i,1)-(al(i,1)*1li(i-1,1)) )/temp;
end
li(nx,1) = ( 1li(nx,1) - (al(nx,1)*li(nx-1,1) ) )/
( a2(nx,1) - (al(nx,1)*a3(nx-1,1)) );
% Now back substitute.
unpl (nx, 1) = 1li(nx,1);
for 1 = nx-1:-1:1
unpl(i,1) = 1i(i,1) - (a3(i,1)*unpl (i+1,1));
end

% Check err
err = max (abs (unpl-un));
un = unpl;
er (nt,1)
t(nt, 1)
end
toc
er (nit, 1)
figure(l);
semilogy(t,er, "k-.
hold on
xlabel ('t")
ylabel ('"Maximum norm")
axis ([0 1 1.0E-06 1.0E-021])

nt*dt;

")

= max (abs (ex-unpl)) ;



NHDS4: Neuman Boundary Condition, Fourth-Order Deferred correction

Finite Difference Scheme

- Main Program 1

clc,clear
format long

1 =1;
n = 11;
nx = n-2;
hx = 1./(n-1);
dt = hx."2/20;
r =dt./(2.*hx."2);
time = 1;
eps = 1.0e-12;
nit = round(time/dt);
A = zeros (nx,nx); C = zeros(nx,nx);
gx = zeros (nx,1l); u0 = zeros(nx,1);
unpl=zeros (nx,1); fi = zeros(nx,1);
gi = zeros(nx,1); er = zeros(nit,1);
al = zeros(nx,1); a2 = zeros(nx,1);
1li = zeros(nx,1);
gx = grid(nx,hx); E = eye(nx,nx);
tic
for i=1:nx;
if i ==
A(i,1)=2/3; A(i,1i+1)=-
elseif 1 == nx
A(i,1i-1)=-2/3; A(i,1)=2/3
else
A(i,i-1)=-1; A(i,1)=2;
end
end
C = E+r*A;
np 0;
nt = 0;
ti = 0.;
err = 0.;
k1l = pin2/2;
u0 = exact(ti,nx,gx);
un = u0;
it = 0;
itp = 0;
while ti < time
err = 10.;
nt = nt+l;
ti = nt*dt; ki =
th = ti-(dt/2); kh =
tp = ti-dt; kp =
ex = exact (ti,nx,gx);
apl = exp(-kl*tp):;

ap2 = -exp(-kl*tp)+tp+l;

di

a3

2/3;

’

= zeros(nx,1);

zeros (nit,1);

(

zeros (nx, 1) ;
(
(nx,1);

Zeros

A(i,i+l)=-1;

kl*exp (-kl*ti);
kl*exp (-kl*th);
kl*exp (-kl*tp);



for i=l:nx;
fi(i,1) = dt*( kh*cos(pi*gx (i, 1)) + gx(i,1) - 2 );

if i ==
gi(l,1) = u0(1l,1)+fi(1,1) ..
+r*( 10*apl-15*ul0(1,1)-4*u0(2,1)...
+14*u0(3,1)-6*ul(4,1)+u0(5,1) )/12;
elseif i == 2

gi(2,1) = u0(2,1)+£fi(2,1)
+r*( —-apl+16*u0(1,1)-30*u0(2,1)...
+16*ul(3,1)-u0(4,1) )/12;
elseif i == nx-1
gi(nx-1,1) = ul0(nx-1,1)+fi(nx-1,1)
+r*( -—ap2+16*ul (nx,1)-30*ul (nx-1,1)...
+16*ul (nx-2,1)-u0 (nx-3,1) )/12;

elseif 1 == nx
gi(nx,1l) = ul0(nx,1)+fi(nx,1) ..
+r*( 10*ap2-15*ul(nx,1)-4*ul(nx-1,1)...
+14*ul (nx-2,1)-6*ul (nx-3,1)+ul(nx-4,1) )/12;
else

gi(i,1) = u0(i,1)+£1i(1i,1) ..
+r*( -u0(i-2,1)+16*ul0(i-1,1)-30*ul(i,1)...
+16*u0(i+1,1)-u0(i+2,1) )/12;

end
end
apl = exp(-kl*ti);
ap2 = -exp(-kl*ti)+ti+l;
gal = ti;
ga2 = ti+2;
while err > eps
itp = itp+l;
for i=1l:nx;
if 1 ==1
di(l,1) = r*(-(50*gal*hx/137)+(2041*un(1,1)/1644)
-(387*un(2,1)/137)+(653*un(3,1)/274)
-(131*un(4,1)/137)+(257*un(5,1)/1644) );
elseif i == 2
di(2,1) = r*( -apl+4*un(l,1)-6*un(2,1)...
+4*un(3,1)-un(4,1) )/12;
elseif i == nx-1
di(nx-1,1) = r*( -ap2+4*un(nx,1l)-6*un(nx-1,1)...
+4*un (nx-2,1)-un(nx-3,1) )/12;
elseif i == nx
di(nx,1)=r* ((50*ga2*hx/137)+(2041*un(nx,1)/1644)
-(387*un (nx-1,1)/137)+(653*un (nx-2,1)/274)
-(131*un (nx-3,1)/137)+(257*un (nx-4,1)/1644) );
else
di(i,1) = r*( -un(i-2,1)+4*un(i-1,1)-6*un(i,1) ...
+4*un (i+1,1)-un(i+2,1) )/12;
end
end
1i = gi + di;

% Using TDMA
for i=1l:nx;

if i ==

al(i,1)= 0; a2(i,1)= C(i,1i); a3(i,l)= C(i,1i+1);
elseif i == nx

al(i,1)=C(i,i-1); a2(i,1)= C(i,1); a3(i,1)= 0;
else

al(i,1)=C(i,i-1); a2(i,1)= C(i,1); a3(i,1l)= C(i,1i+1);
end

end



a3(l,1) = a3(1,1)/a2(1,1);
1i(1,1) = 1i(1,1)/a2(1,1);
for 1 = 2:nx-1
temp = a2(i,1)-(al(i,1)*a3(i-1,1));
a3(i,1) = a3(i,1)/temp;
li(i,1) = ( 1i(i,1)-(al(i,1)*1i(i-1,1)) )/temp;
end
li(nx,1) = ( li(nx,1) - (al(nx,1)*li(nx-1,1) ) )/

( a2(nx,1) - (al(nx,1)*a3(nx-1,1)) );
% Now back substitute.
unpl (nx, 1) = 1li(nx,1);
for 1 = nx-1:-1:1
unpl(i,1) = 1i(i,1) - (a3(i,1)*unpl(i+1,1));
end

% Check err
err = max (abs (unpl-un));
un = unpl;
end
u0 = un;
er (nt,1) max (abs (ex-unpl)) ;
t(nt,1) nt*dt;
it = it+1;
end
toc
itp/it
er (nit, 1)
figure (1) ;
semilogy(t,er, 'b-.");
hold on
xlabel ('t")
ylabel ('"Maximum norm'")
axis ([0 1 1.0E-12 1.0E-031)



- Main Program 2

clc,clear
format long

1 = 1;

n = 11;

nx = n-2;

hx = 1./(n-1);

dt = hx.”2/10;

Re = 1.;

r = dt/ (2*Re*hx"2);
rr = dt/ (2*hx) ;
time = 1;

eps = 1.0e-10;

nit = round(time/dt):;

A = zeros (nx,nx); C

gx = zeros(nx,1); ul =
unpl=zeros(nx,1); fi
gi = zeros(nx,1l); er
al = zeros(nx,1); a2 =
1li = zeros(nx,1);

gx = grid(nx,hx); E

tic

for i=1:nx;

if 1 ==
A(i,1)=2/3;
elseif 1 == nx
A(i,1-1)=-2/3;
else
A(i,1i-1)=-1;
end
end
C = E+r*A;
np 0;
nt = 0;
ti = 0.;
err = 0.;
u0 = exact(ti,nx,gx);
un = ul;
it = 0;
itp = 0;

while ti < time

zeros (nx,nx) ;

zeros (nx, 1) ; un =

zeros (nx,1); di
zeros(nit,1); t

eye (nx, nx) ;

A(i,i+1)=-2/3;
A(i,1)=2/3;

A(i,i)=2;

err = 10.;

nt = nt+l;

ti = nt*dt;

th = ti-(dt/2);

tp = ti-dt;

ex = exact(ti,nx,gx);
apl = 0.0;

ap2 = 2/ (1+2*tp);

zeros (nx, 1) ;
zeros (nx, 1) ;

= zeros(nit,1);
zeros (nx,1); a3 =

zeros (nx, 1) ;

A(i,i+l)=-1;



for i=l:nx;
if 1 ==
fi(1,1) =-rr

elseif i ==
fi(2,1) =-rr

elseif i == nx-1
fi(nx-1,1) =-rr*(-ap2”72+8*ul (nx,1)"2 ...
-8*ul (nx-2,1) "24u0 (nx-3,1)"2 )/12;
elseif i == nx
fi(nx,1) =-rr*( 3*ap272+10*ul (nx,1)"2-18*ul (nx-1,1)"2
+6*u0 (nx-2,1)"2-ul (nx-3,1)"2 )/12;
else
fi(i,1) =-rr*( ul0(i-2,1)72-8*ul(i-1,1)"2 ...
+8*ul (i+1,1) "2-ul(i+2,1)"2 )/12;
end
end
for i=1l:nx;
if 1 ==1
gi(l,1) = u0(1,1)+£fi(1,1)
+r*( 10*apl-15*ul0(1,1)-4*ul0(2,1)...
+14*u0(3,1)-6*u0(4,1)+u0(5,1) )/12;
elseif i == 2
gi(2,1) = u0(2,1)+£fi(2,1) ..
+r*( —apl+16*u0(1,1)-30*u0(2,1)...
+16*u0(3,1)-u0(4,1) )/12;
elseif i == nx-1
gi(nx-1,1) = ul0(nx-1,1)+fi(nx-1,1)
+r*( —-ap2+16*ul(nx,1)-30*ul0 (nx-1,1) ...
+16*ul (nx-2,1)-u0 (nx-3,1) )/12;
elseif 1 == nx
gi(nx,1l) = ul0(nx,1)+£fi(nx,1)
+r*( 10*ap2-15*ul(nx,1)-4*ul(nx-1,1) ...
+14*u0 (nx-2,1)-6*ul0 (nx-3,1)+ul (nx-4,1)
else
gi(i,1) = u0(i,1)+£fi(i,1) ..
+r*( -u0(i-2,1)+16*ul0(i-1,1)-30*ul0(i, 1) ...
+16*ul (i+1,1)-ul0(i+2,1) )/12;
end
end
apl = 0.0;
ap2 = 2/ (1+2*ti);
gal = 2/ (1+2*ti);
ga2 = 2/ (1+2*ti);
while err > eps
itp = itp+l;
for i=1l:nx;
if 1 ==
di(1,1) = r*(-(50*gal*hx/137)+(2041*un(1,1)/1644)
-(387*un(2,1)/137)+(653*un(3,1)/274)
-(131*un(4,1)/137)+(257*un(5,1)/1644)
elseif 1 == 2
di(2,1) = r*( -apl+4*un(l,1)-6*un(2,1)...
+4*un(3,1)-un(4,1) )/12;
elseif i == nx-1
di(nx-1,1) = r*( -ap2+4*un(nx,1l)-6*un(nx-1,1)...

*(=3*apl”2-10*ul0(1,1)"2+18*ul(2,1)"2
-6*u0(3,1)"2+ul0(4,1)"2 )/12;

*( apl”2-8*u0(1,1)"2 .
+8*u0(3,1)"2-u0(4,1)"2 )/12;

+4*un (nx-2,1)-un(nx-3,1) )/12;

)/12;

) ;



elseif i == nx

di(nx,1)=r* ((50*ga2*hx/137)+(2041*un(nx,1)/1644)
-(387*un (nx-1,1)/137)+(653*un (nx-2,1)/274)
-(131*un (nx-3,1)/137)+(257*un (nx-4,1)/1644) );

else
di(i,1) = r*( -un(i-2,1)+4*un(i-1,1)-6*un(i,1)...
+4*un (i+1,1)-un(i+2,1) )/12;
end
end
11 = gi + di;

% Using TDMA
for i=l:nx

’

if 1 == 1
al(i,1)= 0; az(i,l)= Cc(i,1); a3(i,1l)= C(i,1i+1);
elseif i == nx
al(i,1)=C(i,1-1); a2(i,l)= C(i,1); a3(i,1l)= 0;
else
al(i,1)=C(i,i-1); a2(i,1)= C(i,1); a3(i,1)= C(4i,1i+1);
end
end
a3(1l,1) = a3(1,1)/a2(1,1);
1i(1,1) = 1i(1,1)/a2(1,1);
for 1 = 2:nx-1
temp = a2(i,1)-(al(i,1)*a3(i-1,1));
a3(i,1) = a3(i,1)/temp;
li(i,1) = ( 1li(i,1)-(al(i,1)*1i(i-1,1)) )/temp;
end
li(nx,1) = ( li(nx,1) - (al(nx,1)*1i(nx-1,1) ) )/

( a2(nx,1) - (al(nx,1)*a3(nx-1,1)) );

% Now back substitute.

unpl (nx, 1)

= li(nx,1);

for 1 = nx-1:-1:1
unpl(i,1) = 1i(i,1) - (a3(i,1)*unpl(i+1,1));

end

% Check err

err = max (abs (unpl-un));

un = unpl
end
u0 = un;
er(nt,1)
t(nt, 1)
it
end
toc
itp/it
er(nit, 1)
figure(l);

’

max (abs (ex-unpl)) ;
nt*dt;
it+1;

semilogy(t,er, 'b-.");

hold on
xlabel ('t")

ylabel ("Maximum norm'")
axis ([0 1 1.0E-07 1.0E-03])



NHCS4: Neuman Boundary Condition, Fourth-Order Compact Finite Difference Scheme

- Main Program

clc,clear
format short

1 =1;
n = 11;
nx = n-2;
hx = 1/(n-1);
dt = hx”*2/10;
r = dt/hx"2;
rr = dt/hx;
time = 1;
nit = round(time/dt);
A = zeros(nx,nx); B = zeros(nx,nx); C = zeros(nx,nx);
D = zeros (nx,nx); F = zeros (nx,nx); G = zeros (nx,nx);
IC = zeros(nx,nx);
gx = zeros(nx,1l); u0 = zeros(nx,1); un = zeros(nx,1l);
unpl=zeros (nx,1); fi = zeros(nx,1); di = zeros (nx,1);
gi = zeros(nx,1l); er = zeros(nit,l); t = zeros(nit,1);
gx = grid(nx,hx); E = eye(nx,nx);
tic
for i=1:nx;
if i ==
A(i,1) = 22; A(i,i+1)= -4;
B(i,i) = 6; B(i,i+l)= -6;
elseif 1 == nx
A(i,1) = 22; A(i,i-1)= -4;
B(i,i) = 6; B(i,i-1)= -6;
else
A(i,1i-1) 1; A(i,1)=10; A(i,i+1)= 1;
B(i,i-1)=-6; B(i,i)=12; B(i,i+1)=-6;
end

C = A+r*B; D = A-r*B; IC= inv(C); F = IC*D; G = IC*A;

nt = 0;

ti = 0.;

err = 0.;

k1l = pin2/2;

u0 = exact(ti,nx,gx);
un = ul;

while ti < time

err = 10.;

nt = nt+l;

ti = nt*dt; ki = kl*exp (-k1l*ti);
th = ti-(dt/2); kh = kl*exp (-kl*th);
tp = ti-dt; kp = kl*exp(-kl*tp);
ex = exact(ti,nx,gx);

gal = th;

ga?2 th+2;



end
toc

for

end

unpl

un

er(nt,l) = max(abs(ex-unpl));
t(nt, 1)

i=l:nx;
fi(i,1) = dt*( kh*cos(pi*gx (i, 1))
if 1 ==
di(1l,1) =-12*rr*gal;
elseif 1 == nx

di(nx,1l)= 12*rr*ga2;
else

di(i,1) = 0.0;
end

= F*un + IC*di + G*fi;
= unpl;

nt*dt;

er (nit, 1)

figure(l);
semilogy(t,er, "k-.");
hold on
xlabel ('t")

ylabel ('Maximum norm")

axis ([0 1 1.0E-12 1.0E-02])

+ gx(i,1)

-2
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A deferred correction method is utilized to increase the order of spatial accuracy of the Crank-Nicolson scheme for the numerical
solution of the one-dimensional heat equation. The fourth-order methods proposed are the easier development and can be solved by
using Thomas algorithms. The stability analysis and numerical experiments have been limited to one-dimensional heat-conducting
problems with Dirichlet boundary conditions and initial data.

1. Introduction

The desired properties of finite difference schemes are sta-
bility, accuracy, and efficiency. These requirements are in
conflict with each other. In many applications a high-order
accuracy is required in the spatial discretization. To reach
better stability, implicit approximation is desired. For a high-
order method of traditional type (not a high-order compact
(HOQ)), the stencil becomes wider with increasing order
of accuracy. For a standard centered discretization of order
p, the stencil is p + 1 points wide. This inflicts problems
at the fictional boundaries, and using an implicit method
results in the solution of an algebraic system of equations
with large bandwidth. In light of conflict requirements of
stability, accuracy, and computational efficiency, it is desired
to develop schemes that have a wide range of stability and
highorder of accuracy and lead to the solution of a system
of linear equations with a tri-diagonal matrix, that is, the
system of linear equations arising from a standard second-
order discretization of heat equation.

The development of high-order compact (HOC) schemes
[1-18] is one approach to overcome the antagonism between
stability, accuracy, and computational cost. However, the
HOC becomes complicated when applie to multidimensional
problems or to non-Cartesian coordinate cases.

Another way of preserving a compact stencil at higher
time level and reaching high-order spatial accuracy is the
deferred correction approach [11]. A classical deferred correc-
tion procedure is developed in [19, 20].

In this paper we use the deferred correction technique
to obtain fourth-order accurate schemes in space for the
one-dimensional heat-conducting problem with Dirichlet
boundary conditions. The linear system that needs to be
solved at each time step is similar to the standard Crank-
Nikolson method of second order which is solved by using
Thomas algorithms. The fourth-order deferred (FOD) cor-
rection schemes are compared with the fourth-order semi-
implicit (FOS) schemes and fourth-order compact (FOC)
schemes for the Dirichlet boundary value problems.

A set of schemes are constructed for the one-dimensional
heat-conducting problem with Dirichlet boundary condi-
tions and initial data:

u, = Pu, + f (x,1),

u(x,0) =u, (x),

O0<x<lI t>0, (1)
0<x<l, (2)

Dirichlet BC: u(0,t) =y, (t), u(Lt)=vy,(),t>0,

3)



where the diffusion coefficient f3 is positive, u(x, t) represents
the temperature at point (x,t), and f(x,t), y,(t), p,(t) are
sufficiently smooth functions.

The rest of this paper is organized as follows. Section 2
presents an FOD scheme which we use to compare perfor-
mance of proposed scheme with FOS and FOC schemes.
Section 3 provides examples of comparisons. Although FOD
schemes have a higher computational cost than FOS and
FOC schemes, it is evident from these examples that the
FOD schemes have the advantage of accuracy in the uniform
norm, robustness, and the ability to be extended easily to the
multidimensional case. We conclude the paper in Section 4.

2. The Fourth-Order Schemes

Let At denote the temporal mesh size. For simplicity, we con-
sider a uniform mesh consisting of N points: xy, x,,..., Xy
where x; = (i — 1)Ax and the mesh size is Ax = [/(N - 1).
Below we use the notations " and (u,.)!" to represent the
numerical approximations of u(x;,t™) and u,, (x;,t™) where
t" = mAt and u'® is the value of the pth derivative of the
given function u.

2.1. Fourth-Order Semi-Implicit Scheme. The application to
the well-known Crank-Nikolson scheme to (1) results in the
following expression:

()™ + ()] + f2 @)

where fi"Jrl/2 = (fiwrl +f1"/2, i =2,...,N—1.The Dirichlet
boundary conditions

u(0,mAt) =y, (") = u}’,

©)
u(l,mAt) =y, (") = uy

are used to derive the following fourth-order approximation
of second derivative terms:

1

m
(uxx)z = 1222

(au]' + ayu' + asuy + agu)'

m m
+asus + aguy)

a,

= A )+

1
12Ax?

m m m m m
X (ayuy + asuy +aguy + asus + dgllg ),
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1

(uxx)i = 1272

m m m m m
X (—uly + 16u)" ) - 30u!" + 16y, —uly,),

)
i=3...,N-2,

1

—— (qu +auy
12Ax2

m —
(uxx)N_l -
m m
+azuy_, + ayuy_;
m m
+asuy g + agly_s)

[t

= a2 )+

1
12Ax2
m m
x (ayu)y | +asuiy

m m m
Ay 5 asty  + agly 5) s

(6)

where the coeflicients can be found by matching the Tay-
lor series expansion of left-hand-side terms up to order
O(Ax*)u'® which gives the following values of coefficients:

a, = 10,

(7)
a, = 14,

Schemes (6) can be combined and expressed in the following
matrix form:

1
U = ey (), (8)
where A j, is the corresponding triangular and sparse (N -2)x
(N - 2) matrix,

T
ul = (o) () o (e )

T
u” = (W), ) ©)

y (") = (1 (£7),0,..,0,, (7))

Substituting (6) into (4) gives us the following matrix form:
(E-ah,)u™" = (E+aA;,)u”
+At[y(E*)+y ()] (0)

+ Atfn+1/2

where a = BAt/(2Ax7), €712 = (£, R AT
and E denote the (N — 2) x (N — 2) identity matrix. The
scheme (10) is FOSs for the heat-conducting problem with
Dirichlet boundary condition. The order of approximation
is O(At*, Ax*) in the uniform norm. The triangular and
sparse (N — 2) x (N — 2) coefficient matrix in FOSs are
time independent; hence, we have to store the inverse of the
coefficient matrix E — «A;, before the time marching in the
implementation for computational efficiency.



Mathematical Problems in Engineering

2.2. Fourth-Order Deferred Correction Schemes. A set of
fourth-order deferred correction schemes is based on the
well-known Crank-Nikolson type of scheme in the following
form:

un+1,s+1 —-u"

i i E n+1,s+1 n
T - ) [(uxx)i + (uxx)i] (1)

+ f‘in+1/2,

where f2 = (f*! + f™)/2 and the second superscript

« »

s” denotes the number of iterations s = 0,...,S and i =
2,...,N-1.

The deferred correction technique [11] is utilized to
approximate the second-order derivatives at higher time
levels (u,, )/, i = 2,..., N — 1 by the iterative method

] \ntLs+l
(o),
h n+l,s 1 n+l,s
+ [(uxx)i - (uxx)i ] >

where (uix)"ﬂ’s, i =2..,N-15 = 0,...,S, is high-

i

(l/l )Vl+1,$+1 _
xx/i -

(12)

order approximation on wide stencil and (uix):’“’k, k=s, s+
1,i = 2,...,N — 1, is the lower-order approximation on
compact stencil (usually three-point stencil). The expression
in the square brackets of (12) is evaluated explicitly using the
values known from the previous iteration. When s = 0 we
use the solution from the time level n (so «™° = " and
()"0 = (u,,)!). Once the iterations converge, the lower-
order approximation terms drop out and the approximation
of (u,,)!*"**! obtained has the same order of approximation
as (u )", There are no difficulties to construct high-order
approximation for interior points.

To preserve a compact three using wide stencil in the
finite difference scheme at higher time level (n + 1, s + 1), we
use the central second-order finite difference approximation

to approximate the lower-order term in (12):

n+l,k 1
(L = L, ket
X

i=3,...,N-2, (13)

n+lk _  n+lk n+1,k n+1,k

A7 =y = 20 Uy

For the high-order approximation term in (12), we use a
symmetric five-point wide stencil for the inner points to reach

the fourth order of approximation:

B o\ntLs 1 1, .
(uxx)i = FAhu:” S, 1= 3,...,N—2,
X
Al = = (—u'.le’s + 160 — 3001 (14)
12 i i i
n+1l,s n+1l,s
+16ui+1 ~ Ui )

Case s = 0 in (13) gives the fourth order of approximation to
approximate the second-order derivatives at the time level 7.

2.2.1. Stability Analysis. To study the stability of scheme
(11)-(14), we use the Von-Neumann stability analysis. For
simplicity, we assume that £/
in x.

Let us recast scheme (11) in the following form:

= 01in (11) and u is periodic

(E+ah)u™ " = a (A - Ay ul™

(15)
+(E-al))u},

where = BAt/(2Ax%). If we define the following operators
A=E+aA,B=E-alA,,and C = E + aA, where E is the
identity operator, then (15) can be rewritten as follows:

Au(l+1,s+1 — (A _ C) u:1+1,s + Bu?. (16)

1

Assuming that the operators commute, (A - C)A = A(A-C)
(e.g., in the case of uniform grid), it is easy to demonstrate

that if un+1,S+1 n+1,0

_ . ntl _.n
; =u;  andu! " = u; we get

ASH = ( ASFA - C)k> Bul + (A-C)*ul. (17)
k=0

Let u = &e!® T = v/=1, be the solution of (11)-(14), where
© = 2mAx/l is the phase angle with wavelength . From (17),
we can derive an equation for the amplification factor in the
form

&= |e(©.5.a)], (18)
where S is the number of iterations, and

H(ZE:O Agik(A - C)k) B+ (A- C)SH] e[®i|

' A§+lel®i|

lo(0.5.4)] -
19

For stability of the method it is necessary that the absolute
values of the amplification factor are less than one; that is,

€] < 1. (20)

Calculations are tedious and almost impossible to do by hand
without mistake. We have therefore automate all calculations
in a computer algebra environment based on REDUCE to
obtain an explicit form of |¢(®, S, ). Figurel shows the
values of |£]* in the polar coordinate system (|& [, @) for
S = 1,3,and 5. If only one iteration is executed in (11),
S=1, inequality (20) holds if &« < 1.5, as can be seen from
Figure 1(a)). If 3 iterations are done in (11) (Figure 1(b)), S=3,
the amplification factor remains bounded by one at least for
« < 10.In case of § = 5, the stability criteria hold up to & = 30
as can be seen from Figure 1(c)). It can be seen that increasing
the number of internal iterations results in increasing the
range of « needed for stability. This tendency allows to assume
that as S — 00, our method becomes the unconditionally
stable Crank-Nikolson method for the heat equation.
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270 270
270
_———x= ——— a=10
— a=15 - = ——— a=230 e x=5
———x = ——— K= —_a=15 o=

@ (b) ()

FIGURE 1: Variation of amplification factor with ©. (a) S=1, dashedline a = 2.0, solid line « = 1.5, dash-doted line & = 1.0, (b) S = 3, dashed
line « = 10.0, solid line & = 5.0, dash-dotted line « = 1.0, and (c) S = 5, dashed line & = 30.0, solid line & = 15, dash-doted line & = 5.0,
doted line a = 1.0.

2.2.2. Fourth-Order Deferred Correction Scheme. Let us first  following fourth-order deferred correction approximations
consider the one-dimensional heat conduction problem with of (uxx):’“’”l, i=2,...,N—1,are
initial data and Dirichlet boundary conditions (1)-(3):

(Hxx ;l+1,5+1 _ 5 " (tn+1)

6Ax?
n+lk _ n+l n+lk _ n+l
Wi =h (t )’ Un =N (t ) (D) N 1 (_2 nelsel n+1,s+1)
A u, u;
. . . . . 1 n+1,s n+l,s n+l,s
The finite difference approximations at x, and x,_;, which t— (9u2 —16u; " + l4uy,
. . . 12Ax
are the points next to the left and right boundaries, are
. n+1,s n+1l,s
straightforward: —6us "+ U ),
n+l,s+1 1 n+1,5+1 n+1l,s+1 n+1,s+1
(uxx)i = A2 (“i—l - 2u T Ui )
1 \ntLk _ 1 tn+1 2 n+1,k n+1,k
(uxx)z T Ax2 (Yl ( ) ) T )’ + 1 (_un+1,s + 4™ eyt
12Ax2 2 - i (23)
k=ss+1, nils  ntls
L LR TS )’
ho\ntLs _ 1 n+l n+l,s n+l,s .
(i), = T (10m (£77) = 1507 — 4l i=3,..,N-2
ntls+l 5 n+l
+1duy - eul ™+ upt), (edyt = grate ()
ho\ntLs 1 n+1 n+l,s n+l,s (22) + —1 (—Zu”“’”l + un+1,s+1)
(uxx)N—l T 12AR2 (107’2 (t )_ 15uy 1 —4uy Ax? N-1 N
1 n+l,s n+l,s n+1,s
+14unN+_1§s _ 6u"N+_1[f n unN+_1§s)) + AR (9”N71 —16uy_ ) + 1duy ;
n+l,s n+l,s
1 n+lk _ n+1,k n+1,k n+l _6uN—;1 + uN—é ) .
(”xx)N_l = A2 (”N—z —2un_p t Y (t )) >
k=ss+1 Schemes (23) can be combined and expressed in the following
’ ’ matrix form:
1 1
+1,5+1 +1,s+1 +1, +1
Cases s = 0 or k = 0 give formulae to approximate (i)  We = = A_szl“n Tt A2 (Ap=A)u™ 4y (" )’

and (”Zx)?' Substituting (13), (14), and (22) into (12) the (24)
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where A is a tridiagonal (N — 2) x (N — 2) matrix and A,
is the corresponding triangular and sparse (N — 2) x (N — 2)
matrix,

n+1,k n+l,k  n+lk n+1,k T
u =(u2 , Uy ,...,uNfl) , k=ss+1, (25
n+ls+l n+l,s+1 n+ls+1 n+l, s+1 T
uxx - ((uxx 2 ( xx) ( xx) )

(.26)

Substituting (6), (23) into (11), the formulae can be written
into matrix form

(E _ (XAI) un+1,s+1

=a(A,-A)u" + (E+ar,)u”  (27)

+At[y (£ +y ()] + A",

The above matrix form is called FODs for Dirichlet boundary
value problem (1)-(3). Thomas algorithms can be used to
compute the solutions of FODs. At each step of time ¢ and
the initial stage, the convergence of FODs requires more
iterations to converge to the solution of the FOSs. The order
of approximation of FODs is O(At*, Ax*) which is the same
as FOSs in the uniform norm.

2.3. Fourth-Order Compact Scheme. Let us briefly represent
the main idea and final formulae of compact schemes.
Spatial derivatives in the Crank-Nikolson scheme (4) are
evaluated by the fourth-order compact finite differences
implicit scheme [5, 7, 8, 13, 14, 17].

In [8, 14], the Dirichlet boundary conditions

u(0,mAt) =y, (") =", ul,mAt) =y, (") = ul;

(28)

are used to derive the following fourth-order schemes

(ten)y +0 (1)

1 m m m m
= Sind (] + ayuy' + asuy + agu

m m
+aguls + aguy' )

= 24szyl( )
1 m m m m
+ YRV (auy' + azul' +aguy + asus

+aguy ),

(t)imy + 1001 )" + ()i

2
=2 (6u)", —12u" + 6ul,,),

i=2,..,N-1,
() s + 0t )N,
1

_ m m m m
= JaAR? (@t + apuiyy  +asuiy_, +aguy

+asuy_y + agly_s)

a

24AX2 VZ ( m)
1

—— (auy_| + azuyy_, + aguyy 5 + asuy
T aAx \UN-1 N-2 N-3 N-4

+ a@tﬁ,s) >
(29)

where the coeflicients can be found by matching the Tay-
lor series expansion of left-hand-side terms up to order

O(Ax*)u'® which gives the following values of coefficients

[8]:

1
= a, =19, a, = —14, a; = =38,
2 (30)
a, = 44, as = —13, ag = 2.
Then all derivatives in (4) are approximated by the fourth-
order compact formula; we can write
1
Aul = A—szum +yY", m=nn+l, (31)
where A and B are the corresponding triangular and
sparse (N — 2) x (N - 2) matrices, u, = ((t)5,
()T () e )T u™ = @ u?, . ult )T and y™ =
(p, ™), 0,...,0, yz(tm))T, m = n,n+ 1. Schemes (4) and (29)
can be combined and expressed in the following matrix form:

(A-aB)u""' = (A+aB)u"

+ At [y (t"“) +y (t”)] (32)
+ A2,

This scheme is called FOCs for Dirichlet boundary value
problem (1)-(3). We like to mention that the above scheme
has truncation error O(At?, Ax*). Note that the triangular and
sparse (N — 2) x (N — 2) coefficient matrices in FOCs are
time independent; hence, we have to store the inverse of the
coefficient matrix A — aB before the time marching in the
implementation of computational efficiency.

3. Numerical Examples

In this section, three numerical examples are carried out. The
first two are linear heat-conducting problem, with Dirichlet



boundary conditions, which are used to confirm our theoreti-
cal analysis. Then we apply the FODS to the Burgers equation.
For simplicity, we fix our problem domain Q = {x | 0 < x <
1}. In all computations, we used At = Ax*/4and e = 10717
The following stopping criterion is used:

n+1,5+1
max ui -

1<isN

n+1,8
i

u <e, s=0,...,S, (33)

where “S” denotes the number of the last iteration.

The computations are performed using uniform grids
of 11, 21, 41, 81, and 161 nodes. The initial and boundary
conditions are obtained based on the exact solutions. For
the testing purpose only, all computations are performed for
0<t<l1.

Example 1 (the homogeneous heat equation with the homo-
geneous Dirichlet boundary conditions). One has

U =u,, 0<x<1,t>0,

(34)
u(x,0) =sin(nx), u(0,t)=0, wu(l,t)=0.
The exact solution is u(x,t) = et sin(7rx). The results
of performance over the time interval ¢+ € [0,1] for the
FOCs, FODs, and FOSs are represented in Table 1, where the
maximum error and the rate of convergence at time instant

t = 1 are shown.

Example 2 (the nonhomogeneous heat equation with non-ho-
mogeneous Dirichlet boundary conditions). One has
Up = Uy, + (712 - 1) e cos (mx)
+4x -2, 0<x<1,t>0,
(35)
u(x,0) = cos (7mx) + x>, u(0,t) =e ",
u(lt)=—e ' +4t+1.

The exact solution is u(x,t) = e’ cos(mx) + x> + 4xt. The
results of performance over the time domain ¢ € [0, 1] for
the FOC, FOD, and FOS schemes are represented in Table 2,
where the maximum error and the rate of convergence at time
instant ¢ = 1 are shown.

The last two columns of Tables 1 and 2 demonstrate the
average number of iterations in FODs at one time step and the
CPU time required to obtain the solution at time instant # = 1.
The average number of iterations means the total number of
iterations divided by the number of time steps. Asarule, at the
initial stage the convergence of deferred correction requires
more iterations. For larger instants of time, the convergence
occurs after 2~7 iterations as can be seen from Tables 1 and
2. All of schemes are seen to be the fourth order of accuracy,
as the error is reduced approximately by factor four when the
mesh is refined by half. The maximum error of the FODs and
FOCs is almost the same, since the iterative scheme FODs is
constructed by applying the deferred correction technique on
the FOSs. It can be stated that when the iterations converge,
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the solution of FODs, therefore, converges to the solution
of FOSs in each step of time. As shown in Tables 1 and 2,
there is hardly a difference in the computational efficiency
between FODs and FOSs. Both schemes are more efficient
than FODs. An explanation is due to the iteration needed for
the convergence of solutions on each step of time.

Although the FODs use more computational time as
compared with FOCs and FOSs, it is recommended that the
construction of FODs can be easily implemented. Moreover,
the scheme does not need to store the inverse of coeflicient
matrices as required in FOCs and FOSs. Therefore, the
method is easily extended to multidimensional cases.

It is suggested that the differed correction technique can
solve problems which need high accuracy of computational
methods. Also this technique can be easily implemented
and extended for solving problem with Neumann boundary
conditions. In addition, such technique can be easily used to
create standard code and applied in case of nonuniform grids.

Considering Burgers equation

u, = Pu, —uu,, 0<x<1,t>0, (36)

with the exact solution [21] is given by

—E)ef

u(x,t):£+’7+(}7 E)e’ (37)
1+ef

where p = &(x —#t —v)/f. The initial and Dirichlet boundary

conditions are considered to be in agreement with the exact

solution proposed here. For Burgers equation (36), we solve

it by the following fourth-order deferred correction scheme:

n+1,s+1 N

v § ()™ 4 )] + £, 38)

where f' = —[(u2/2)x]?. The nonlinear term f;" is approx-
imated with the fourth-order approximation and all the
second-derivative terms in (38) are approximated by the
fourth-order formula (6) and the fourth-order deferred
correction schemes (23). The scheme (38) can be combined
and expressed in the following matrix form:

(E—aA)u™ ™" = a (A, - A)u"™™ + (E+anr,)u”

+At[y (£7) +y ()] + Arf”,
(39)

where E is identity matrix, A is tridiagonal (N —2) x (N -2)
matrix, and A, is the corresponding triangular and sparse
(N —2) x (N - 2) matrix and can be solved by using Thomas
algorithm.

Example 3 (the Burgers equation (36) and the constant values
v = 0.125,& = 0.6, = 0.4, and § = 1 with appropriate
initial and Dirichlet boundary condition in agreement with
exact solution (37)). This problem was solved using different
time step and mesh sizes over the time interval 0 < t < 1. The
results of performance over the time interval ¢ € [0, 1] for the
FODs are represented in Tables 3 and 4, where the maximum
error and the rate of convergence at time instant t = 1 are
shown.



Mathematical Problems in Engineering 7

TAaBLE 1: Maximum absolute error, order of convergence, and CPU time in seconds of the FOCs, FODs, and FOSs for test problem (34) at
time instant £ = 1.

Types of scheme Grid points Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
11 3.8687 x 107¢ — 1 0.006
21 6.0426 x 10717 6.0005 1 0.042
FOCs 41 22454 x 107" 4.7501 1 0.326
81 1.2821x 1072 4.1304 1 2.564
161 8.0164 x 107! 3.9994 1 20.437
11 9.9767 x 107° — 4 0.015
21 1.4996 x 10~° 2.7361 3 0.085
FODs 41 1.1193 x 107" 3.7438 2 0.438
81 7.1438 x 10712 3.9698 2 3.450
161 44797 x 107" 4.1875 2 27.495
11 9.9763 x 10~° — 1 0.006
21 1.4996 x 10~° 2.7361 1 0.043
FOSs 41 1.1193 x 107" 3.7438 1 0.334
81 7.1440 x 10712 3.9698 1 2.623
161 4.4854 x 107" 4.1875 1 20.907

TABLE 2: Absolute error, the rate of convergence, and CPU time in seconds of the FOCs, FODs, and FOSs for the test problem (35) at time
instant t = 1.

Types of scheme Grid points Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
11 1.8470 x 107 — 1 0.006
21 3.6901 x 1077 5.6454 1 0.046
FOCs 41 7.5595 x 10~° 5.6092 1 0.353
81 6.6458 x 1071° 3.5077 1 2.778
161 4.8841 x 107" 3.7663 1 22.141
11 1.7132x 107 — 7 0.016
21 2.6914 x 107”7 5.9922 7 0.128
FODs 41 2.7910 x 10°7® 3.2655 6 0.851
81 2.0112x107° 3.7941 5 5.568
161 1.3116 x 107" 3.9415 5 44375
11 1.2895%x 107 — 1 0.006
21 2.8544 x 1077 5.9922 1 0.046
FOSs 41 2.7306 x 10°% 3.2655 1 0.359
81 1.9590 x 10~° 3.7941 1 2.821
161 1.3130 x 107" 3.9415 1 22.484

TABLE 3: Maximum absolute error, order of convergence, and CPU time in seconds for Example 3 at time instant t = 1 with fixed mesh size
Ax = 0.05.

Types of scheme Time step sizes Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
107 8.0945 x 107° — 10 0.015
-3 -7
FODs 1074 8.0942 x 1073 1.0000 6 0.109
10 8.1144 x 10 0.9989 3 0.656
10° 8.2989 x 10~° 0.9902 3 6.281

TABLE 4: Maximum absolute error, order of convergence, and CPU time in seconds for Example 3 at time instant t = 1 with time step size
At = Ax*

Types of scheme Grid points Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
11 8.3375x 107 — 3 0.516
FODs 21 52632 % 107° 3.9812 2 8.594

41 3.3491 x 1071° 3.9774 2 200.015




In order to analyze the results found in application
to the Burgers equation (36), Table 3 demonstrates rate of
convergence, average number of iteration at each time step,
and CPU time required to obtain the solution of Example 3
by using FODs at time instant ¢ = 1 when Ax = 0.05 with
various time step sizes. Table 4 shows the rate of convergence,
average number of iteration at each time step, and CPU time
required to obtain the solution of Example 3 at time instant
t = 1 and using uniform grids of 11, 21, and 41 with time step
sizes At = Ax* and e = 107"°,

It can be seen from Tables 3 and 4 that numerical results
are in good agreement with the exact solution. We only
observe O(At) convergence rate and the error is dominated by
time error. An explanation for this phenomenon is due to the
nonlinear term, which is approximated at time level #, instead
of at time level n + 1/2 for the FODs (38).

4, Conclusion

In this paper, a new set of fourth-order schemes for the
one-dimensional heat conduction problem with Dirichlet
boundary conditions is constructed using a deferred cor-
rection technique. The construction of high-order deferred
correction schemes requires only a regular three-point stencil
at higher time level which is similar to the standard second-
order Crank-Nikolson method. The greatest significance of
FODs, compared with FOCs and FOSs, is the easier develop-
ment and that it can be solved by using Thomas algorithms.
Numerical examples confirm the order of accuracy. We also
implement our algorithms to nonlinear problems. However,
theoretical analysis for nonlinear problems needs further
investigation. Posterior idea for this project is to use another
way to make uu, term as follows [21, 22]:

u”“(ux):ﬁr1 ~ u"“(ux)? + u"(ux)zwrl - un(ux):', (40)

where better results are expected to be found. The first two
terms on the right-hand side of above equation make the
coefficient matrices of FOCs, FODs, and FOSs vary with time.
That is, the inverse coefficient matrices of FOCs and FOSs
have to be stored on each step of time while FODs have
no need. For this reason, the FODs is simple to implement
although FODs need more iterations for the convergence of
solution on each step of time.
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