
 

 

 

 

 

 
 

 
 
 
 

รายงานวจิยัฉบบัสมบรูณ์ 
 
 

โครงการ ระเบยีบวธิอีนัดบัสงูสาํหรบัผลเฉลยของปญัหาการ
ถ่ายเทความรอ้นในกรณีเงื�อนไขขอบเป็นแบบนอยมนัน์ 

 
 
 

โดย ผศ.ดร.ดาํรงศกัดิ � แยม้บางหวาย 
 

 
 

มถุินายน ���� 
 
 
 



 

 
 

สญัญาเลขที� MRG5580014 
 

 
รายงานวจิยัฉบบัสมบรูณ์ 

 

 
โครงการ ระเบยีบวธิอีนัดบัสงูสาํหรบัผลเฉลยของปญัหาการ

ถ่ายเทความรอ้นในกรณีเงื�อนไขขอบเป็นแบบนอยมนัน์ 
 
 

 
ผศ.ดร.ดาํรงศกัดิ � แยม้บางหวาย 

มหาวทิยาลยัพะเยา 
 

 
 
 

      สนบัสนุนโดยสาํนกังานกองทุนสนบัสนุนการวจิยั 
 

(ความเหน็ในรายงานนี�เป็นของผูว้จิยั สกว.ไม่จาํเป็นตอ้งเหน็ดว้ยเสมอไป) 
 

 

 



 

 

บทคดัย่อ 

 

รหสัโครงการ : MRG5580014 

 

ชื�อโครงการ :  ระเบยีบวธิอีนัดบัสงูสาํหรบัผลเฉลยของปญัหาการถ่ายเทความรอ้นในกรณี 

                    เงื�อนไขขอบเป็นแบบนอยมนัน์ 

 

ชื�อนักวิจยั : ผศ.ดร.ดาํรงศกัดิ � แยม้บางหวาย มหาวทิยาลยัพะเยา 

 

E-mail Address : damrong.sut@gmail.com 

 

ระยะเวลาโครงการ:  � กรกฎาคม ����  ถงึ � กรกฎาคม ���� 

 

 ในงานวจิยัชิ�นนี� แนวคดิของระเบยีบวธิยีดืเวลาแกไ้ข (deferred correction technique) 

และระเบยีบวธิขีองแครงค-์นิโคลสนั (Crank-Nikolson scheme) จะถกูนํามาใชส้าํหรบัสรา้ง
ระเบยีบวธิเีชงิตวัเลข สาํหรบัหาผลเฉลยเชงิตวัเลขของปญัหาการถ่ายเทความรอ้นในกรณีที�

เงื�อนไขขอบเป็นแบบนอยมนัน์ ที�มคีวามแมน่ยาํอนัดบัสองเทยีบกบัเวลา  และมคีวามแม่นยาํ

อนัดบัที�สี�เทยีบกบัปรภิมู ิซึ�งระเบยีบวธิทีดีงักล่าวจะถกูเรยีกว่า ระเบยีบวธิอีนัดบัสงูแบบยดืเวลา

การแกไ้ข หลงัจากนั �นจะนําระเบยีบวธิอีนัดบัสงูแบบยดืเวลาการแกไ้ขที�ได ้ไปทดสอบกบัปญัหา

ทดสอบ และนําไปเปรยีบเทยีบกบั ระเบยีบวธิอีนัดบัสงูแบบกระชบั เพื�อแสดงใหเ้หน็
ประสทิธภิาพ และประสทิธผิลของระเบยีบวธิอีนัดบัสงูแบบยดืเวลาการแกไ้ขที�ไดท้าํการสรา้งขึ�น  

 

คาํหลกั : Heat Conducting Problem; High-order Compact Finite Difference Scheme; High-order 

Deferred Correction Scheme 

 

 

 

 

 

 

 

 

 



 

 Abstract 

 

Project Code : MRG5580014 

 

Project Title :  High Order Schemes for Heat Conduction Problem with Neumann  

                    Boundary Conditions 

Investigator : Dr.Damrongsak Yambangwai, University of Phayao 

 

E-mail Address : damrong.sut@gmail.com 

 

Project Period : 2 July 2012 to 1 July 2014 

 

 In this research, the idea of deferred correction is utilized to construct a set of 
high-order (fourth-order) deferred correction scheme  for the solution of one-dimensional 

heat conducting problems with Neumann boundaries. Crank-Nikolson scheme for the 

temporal discretization and high-order deferred correction approach for the spatial 

discretization are used.  Numerical examples are given to demonstrate the performance 

of the method proposed and to compare mostly with the spatial higher-order compact 

scheme. 
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Executive Summary 

 

1.  Introduction to the research problem and its significance 

 Finite difference methods are among the commonest approximation schemes 

used for numerical solution of ordinary and partial differential equations, mainly, 

because of their simplicity of use and the fact that they lend themselves quite easily to 
the Taylor series analysis of any incurred errors. While there are a number of problems 

which can be solved with low-order approximation methods (second or lower) with 

reasonable accuracies, there is also a large class of problems including those of 

acoustics and fluid dynamics, the solutions of which typically require higher order 

approximation solution schemes for higher levels of accuracy.  
Low order approximations generally require compact stencils which utilize three 

nodal points in any direction. Any approximation method which involves grid nodes 
outside those of a compact stencil is said to be non-compact. Higher order (greater than 

2) finite difference approximations are possible but these methods typically require non-

compact stencils. Also the application of non-compact stencils at or near boundaries of 

the problem domain usually requires inclusion of fictitious nodes. Thus complicating the 

resulting numerical formulations and the usual consequences of those complications 
include increases in the overall number of grid points as well as increases in the 

bandwidths of the resulting system matrices. High-order compact schemes (HOCs) are 

frequently used now-day because they can provide accurate results on compact 
stencils. A compact method must have about the same accuracy at the boundary and 

near boundary points as that of the interior points. Most existing HCSs are constructed 

for problem with Dirichlet boundary condition. The Neumann (insulated or exchange) 

boundary condition is often encountered in engineering application.  However, fewer 

HCSs have been constructed for problem with Neumann (insulated or exchange) 

boundary condition, which are much more difficult to handle than that of Dirichlet 

condition. Even for those less popular compact difference schemes involving Neumann 
boundary condition, very often, the schemes are fourth-order or sixth-order at the 

interior points, but less at the boundary. Another way of constructing compact stencil 

and obtaining accurate results for all derivative terms is using deferred correction 
approach which is easier development in the case of Neumann boundary conditions. 

Deferred correction takes a low order scheme and promotes it to a high order scheme 

by calculating the residual and solving for the error. The objective of research proposal 



 

is to construct high-order (fourth) accurate spatial differencing scheme by using deferred 

correction technique, demonstrate the performance of the method proposed and to 
compare mostly with the spatial high order compact scheme in the case of Neumann 

boundary conditions. Additional to high-order of accuracy the stability and convergence 
of proposed scheme will be proved in this paper. 

 

2. Objectives 

 To construct high order scheme for solving heat conducting problem and related 
problem when the Neumann boundary conditions are specified which are proved to 

stability and convergence. 

 

3. Methodology 

3.1 Study concept of high order schemes. 
3.2 Study papers, books and documents in the topic of high order schemes when 

Neumann boundary conditions are specified.  

3.3 Using previous knowledge from 10.1 and 10.2 to construct high order schemes 
     which are proved stability and convergence.  

3.3.1 Analyze and implement high order compact scheme and high order 
                   deferred correction scheme for heat conducting problem with Neumann 

                  boundary conditions.  

3.3.2 Develop computer codes for high order compact scheme and high order 
                  deferred correction scheme with Neumann conditions.    

3.3.3 Compare the efficiency of high order compact scheme and high order 

                   deferred correction scheme by using several tests problems.  
3.3.4 Continue developing a new set of high order scheme which is proved 

                   stability, convergence  provide much more accurate numerical solution. 

3.4 Writing and submitting the researches for publication. 
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Chapter 1

Introduction

The desired properties of finite difference schemes are stability, accuracy and effi-

ciency. These requirements are in conflict with each other. In many applications a

high-order accuracy is required in the spatial discretization. To reach better stability,

implicit approximation is desired. For a high-order method of traditional type (not a

High-order compact schemes (HCS)), the stencil becomes wider with increasing order of

accuracy. For a standard centered discretization of order p, the stencil is p + 1 points

wide. This inflicts problems at the fictional boundaries, and using an implicit method

results in the solution of an algebraic system of equations with large bandwidth. In light

of conflict requirements of stability, accuracy and computational efficiency, it is desired

to develop schemes that have a wide range of stability, high-order of accuracy and lead

to the solution of a systems of linear equations with a tridiagonal matrix.

High-order compact schemes (HCS) are frequently used because they can provide

accurate results on compact stencils [2-20]. The high-order compact schemes obtain all

the numerical derivative along grid lines using smaller stencils solving a linear system of

equations. Since the size of computational molecule affects both the storage requirements

and effort needed to solve the linear equation system, we would like to keep it as small as

possible. Another way of constructing compact stencil and obtaining accurate results for

all derivative terms is using deferred-correction approach [7] . The high-order deferred

correction scheme (HDS) is constructed and compared with HCS for the heat conducting

problem with the Dirichlet boundary condition.

Most existing HCSs are constructed for problem with Dirichlet boundary con-

dition [2-20 ]. The Neumann (insulated or exchange) boundary condition is often en-

countered in engineering application, such as ultra-heat transfer and reaction-diffusion.

The conventional finite difference scheme for the Neumann boundary condition are either

first-order accurate or second-order accurate but needs a ghost points outside the domain
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[1, 4, 7]. However, fewer HCSs have been constructed for problem with Neumann (in-

sulated or exchange) boundary condition, which are much more difficult to handle than

dirichlet condition. Even for those less popular compact difference schemes involving

neumann boundary condition, very often, the schemes are fourth-order or sixth-order at

the interior points, but less at the boundary [2,21,22].

In this report a new set of fourth-order deferred correction schemes (HDS4) for

one-dimensional heat conducting problem with Dirichlet and Neumann boundary condi-

tions are presented.

A set of scheme is constructed for the heat conducting problem with initial data

and Dirichlet and Neumann boundary conditions

ut = βuxx + f(x, t), 0 < x < l, t > 0, (1.1)

u(x, 0) = u0(x), 0 < x < l, (1.2)

Dirichlet BC: u(0, t) = α1(t), u(l, t) = α2(t), t > 0, (1.3)

Neumann BC: ux(0, t) = γ1(t), ux(l, t) = γ2(t), t > 0, (1.4)

Here u(x, t) represents the temperature at point (x, t), β is the diffusion constant, and

f(x, t), α1(t), α2(t), γ1(t), γ2(t) are sufficiently smooth functions. Problems (1.1)– (1.3)

and (1.1), (1.2),(1.4) are model of transient heat conduction in a slab of material with

thickness l.

The organization of the paper is as follow. In chapter 2, for self completeness we

present a list of second-order Crank-Nicolson schemes for one-dimensional heat conduct-

ing problems with Dirichlet boundary conditions (DCNS2) [19], a list of Crank-Nicolson

schemes with first-order Neumann boundary conditions (NCNS1) [19], a list of fourth-

order compact schemes with Dirichlet boundary boundary conditions (DHCS4) [11, 14,

15], and a list of a fourth-order compact schemes with Neumann boundary (NHCS4)

[21, 22], a set of second-order Crank-Nicolson schemes for one-dimensional heat conduct-

ing problems with the second-order deferred correction Neumann boundary conditions

(DHDS2). A new set of fourth-order deferred correction with Dirichlet (DHDS4), and

a new set of fourth-order deferred correction scheme with Neumann boundary are con-

structed and presented in the following. In chapter 3, we present numerical examples to

compare the efficiency of standard schemes and high-order deferred correction schemes

(DHDS4, NHDS2, and NHDS4) for problems with Dirichlet and Neumann boundary con-

ditions. Results developed in this paper compared with the previous study [11, 14, 21]

demonstrate the superior performance of the high-order deferred correction schemes .



Chapter 2

The Sets of Schemes

Let ∆t denotes the spatial mesh size. For simplicity, we consider a uniform 1−D mesh,

consisting of N points: x1, x2, . . . , xN where xi = (i − 1) ∗∆x, and the mesh size ∆x =

l/(N−1). Below we use notations uni , (uxx)
n+1
i to represent the numerical approximations

of u(xi, t
n) and uxx(xi, t

n) where tn = n∆t and i = 1, 2, . . . , N .

2.1 A Set of Deferred Correction Scheme

A new set of high-order deferred correction schemes is based on an iterative method.

Using second upper index ′′s′′ to denote the number of iteration, one writes

un+1,s+1
i − uni

∆t
= β

(uxx)
n+1,s+1
i + (uxx)

n
i

2
+ f

n+1/2
i , (2.1)

(2.2)

where

f
n+1/2
i =

fn+1
i + fn

i

2
,

s = 0, . . . , Ŝ and i = 1, . . . , N .

The high-order finite difference approximation is utilized to approximate the sec-

ond derivatives (uxx)
n
i , i = 1, . . . , N . The deferred correction technique [7] is utilized to

approximate the second derivatives (uxx)
n+1,s+1
i , i = 1, . . . , N by iterative method

(uxx)
n+1,s+1
i = (ulxx)|

n+1,s+1
i +

[
(uhxx)|

n+1,s
i − (ulxx)|

n+1,s
i

]
. (2.3)

where

(uhxx)
n+1,s
i , i = 1, . . . , N, s = 0, . . . , Ŝ

is high-order approximation and

(ulxx)
n+1,k
i , k = s, s+ 1, i = 1, . . . , N
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is the lower-order approximation. The expression in the square brackets of (2.3) are

evaluated by using values known from the previous iteration. When s = 0 we use solution

from level n (so un+1,0 = un). Once the iterations converge, the lower-order approximation

terms drop out and the obtained solution corresponds to the high-order approximation

of uxx, the same order of approximation as (uhxx)
n+1,s approximate uxx. For example, to

get second order we do not need any iterations. If we denote

un+1,s+1
i = un+1

i

and

(ulxx)
n+1,s+1
i = (ulxx)

n+1,s
i = (uhxx)

n+1,s
i =

un+1
i−1 − 2un+1

i + un+1
i+1

∆x2

as result we get standard Crank-Nickolson scheme for interior points.

un+1
i − uni
∆t

= β
(uxx)

n+1
i + (uxx)

n
i

2
+ f

n+1/2
i , i = 2, 3, . . . , N − 1, (2.4)

where

f
n+1/2
i =

fn+1
i + fn

i

2
.

This scheme has a truncation error of O(∆t2) in time. Order of spatial truncation error

depends on order of approximation of (uxx)
k
i , k = n, n+ 1 and order of approximation of

boundary conditions as well.

Let us consider a set of fourth-order deferred correction scheme on the interior

points by using equation (2.3). For the lower-order approximation of (ulxx)|
n+1,k
i , k =

s, s+1, i = 2, . . . , N−1 in equation (2.3), we use the central second-order finite difference

approximation

(ulxx)
n+1,k
i =

1

∆x2

(
un+1,k
i−1 − 2un+1,k

i + un+1,k
i+1

)
. (2.5)

For the high-order approximation of (uhxx)|
n+1,s
i , i = 2, . . . , N − 1 (case s = 0 corresponds

to (uhxx)|ni ) we use the fourth-order finite difference approximation

(uhxx)
n+1,s
2 =

1

12∆x2
(
10un+1,s

1 − 15un+1,s
2 − 4un+1,s

3 + 14un+1,s
4 − 6un+1,s

5 + un+1,s
6

)
, (2.6)

(uhxx)
n+1,s
i =

1

12∆x2
(
−un+1,s

i−2 + 16un+1,s
i−1 − 30un+1,s

i + 16un+1,s
i+1 − un+1,s

i+2

)
,

i = 3, . . . , N − 2,
(2.7)

(uhxx)
n+1,s
N−1 =

1

12∆x2

(
10un+1,s

N − 15un+1,s
N−1 − 4un+1,s

N−2 + 14un+1,s
N−3 − 6un+1,s

N−4 + un+1,s
N−5 ). (2.8)
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Substitute (2.6)–(2.8) into equation (2.3) the following version of fourth-order deferred

correction approximation of (uxx)|n+1,s+1
i , i = 2, . . . , N − 1 are

(uxx)
n+1,s+1
2 =

1

∆x2

(
un+1,s+1
1 − 2un+1,s+1

2 + un+1,s+1
3

)
+

1

12∆x2

(
− 2un+1,s

1 + 9un+1,s
2 − 16un+1,s

3 + 14un+1,s
4 − 6un+1,s

5 + un+1,s
6

)
,

(2.9)

(uxx)
n+1,s+1
i =

1

∆x2

(
un+1,s+1
i−1 − 2un+1,s+1

i + un+1,s+1
i+1

)
+

1

12∆x2

(
− un+1,s

i−2 + 4un+1,s
i−1 − 6un+1,s

i + 4un+1,s
i+1 − un+1,s

i+2

)
, i = 3, . . . , N − 2,

(2.10)

(uxx)
n+1,s+1
N−1 =

1

∆x2

(
un+1,s+1
N−2 − 2un+1,s+1

N−1 + un+1,s+1
N

)
+

1

12∆x2

(
− 2un+1,s

N + 9un+1,s
N−1 − 16un+1,s

N−2 + 14un+1,s
N−3 − 6un+1,s

N−4 + un+1,s
N−5

)
.

(2.11)

Substitution (2.9)-(2.11) into equation (2.1) where i = 2, . . . , N−1, results a fourth-order

deferred correction scheme on the interior domain.

2.1.1 A Set of Fourth-Order Deferred Correction Scheme with Dirich-

let Boundary

Let us consider the heat conducting problem with initial data and Dirichlet boundary

conditions (1.1)-(1.3)

un+1
1 = α1(t

n+1), un+1
N = α2(t

n+1). (2.12)

The set of schemes, consisting of equations (2.1), (2.9)-(2.11) and (2.12) can be written

in the following form

aiu
n+1,s+1
i−1 + biu

n+1,s+1
i + ciu

n+1,s+1
i+1 = di; i = 1, . . . , N, (2.13)

where the coefficients of tri-diagonal matrix are

a1 = 0, ai = −r ; i = 2, ..., N − 1, aN = −1,

b1 = 1, bi = 1 + 2r ; i = 2, ..., N − 1, bN = 1,

c1 = −1, ci = −r ; i = 2, ..., N − 1, cN = 0,

(2.14)



2.1. A SET OF DEFERRED CORRECTION SCHEME 6

d1 = α1(t
n+1),

d2 =
r

12

(
− 2un+1,s

1 + 9un+1,s
2 − 16un+1,s

3 + 14un+1,s
4 − 6un+1,s

5 + un+1,s
6

)
+

r

12

(
10un1 − 15un2 − 4un3 + 14un4 − 6un5 + un6

)
+∆tf

n+ 1
2

2 ,

di =
r

12

(
− un+1,s

i−2 + 4un+1,s
i−1 − 6un+1,s

i + 4un+1,s
i+1 − un+1,s

i+2

)
+

r

12

(
− uni−2 + 16uni−1 − 30uni + 16uni+1 − uni+2

)
+∆tf

n+ 1
2

i , i = 3, . . . , N − 2,

dN−1 =
r

12

(
− 2un+1,s

N + 9un+1,s
N−1 − 16un+1,s

N−2 + 14un+1,s
N−3 − 6un+1,s

N−4 + un+1,s
N−5

)
+

r

12

(
10unN − 15unN−1 − 4unN−2 + 14unN−3 − 6unN−4 + unN−5

)
+∆tf

n+ 1
2

N−1 .

dN = α2(t
n+1).

(2.15)

where

r =
β∆t

2∆x2
, f

n+1/2
i =

fn+1
i + fn

i

2
, i = 2, . . . , N − 1.

It can be seen that the truncation error of the heat conducting problem with initial

data and Dirichlet boundary condition (1.3) depends on order of approximation in in-

terior points, because Dirichlet BCs are approximated exactly. Crank-Nikolson scheme

(2.4), (2.5 and (2.12) has an order O(∆t2,∆x2) over all grid points. Scheme (2.1), (2.9)-

(2.11) and (2.12) is the fourth-order deferred correction scheme with Dirichlet boundary

(DHDS4) and has the order of approximation O(∆t2,∆x4) in uniform norm.

2.1.2 A Set of Fourth-Order Deferred Correction Scheme with Neu-

mann Boundary

We now develop the first, second and fourth order approximations of Neuman boundary

conditions (1.4) (based on principle of deferred corrections) for uxx at the boundary

points x = 0, l. The main idea is to use given Neumann BC (value of first derivative) to

approximate second derivative at boundary similar approach have been used in [20] to

construct high-order compact scheme.

For the lower order approximation of the second derivative terms

(ulxx)|
n+1,k
i , i = 1, N, k = s, s+ 1

we construct the first-order finite difference formula

(ulxx)
n+1,k
1 = a1u

n+1,k
1 + a2u

n+1,k
2 + a3(u

l
x)

n+1,k
1 , (2.16)

where the coefficients can be found by matching the Taylor series expansion of left-hand
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side up to the term O(∆x2)uxx which gives us the following linear system

a1 + a2 = 0,

a2∆x+ a3 = 0,

a2 =
2

∆x2
.

The solution to the above system is

a1 = − 2

∆x2
, a2 =

2

∆x2
, a3 = − 2

∆x
. (2.17)

Similarly at boundary point N , the first-order formula for the second derivative terms

(ulxx)|
m,k
N is

(ulxx)
n+1,k
N = b1u

n+1,k
N + b2u

n+1,k
N−1 + b3(u

l
x)

n+1,k
N (2.18)

where

b1 = − 2

∆x2
, b2 =

2

∆x2
, b3 =

2

∆x
. (2.19)

Substitute equation (2.17) into (2.16) and (2.19) into (2.18), the second derivatives

(ulxx)|
n+1,k
i , i = 1, N, k = s, s+ 1

are approximated with the first-order approximation by the following formula

(ulxx)
n+1,k
1 =

2

∆x2

(
−un+1,k

1 + un+1,k
2

)
− 2

∆x
γ1(t

n+1),

(ulxx)
n+1,k
N =

2

∆x2

(
−un+1,k

N + un+1,k
N−1

)
+

2

∆x
γ2(t

n+1).
(2.20)

This approximation is used for Crank-Nicholson scheme in case u = 0, un+1,k = un+1. To

approximate (uhxx)
n+1,s
i , i = 1, N , with second-order we use finite–difference approxima-

tion in the form

(uhxx)
n+1,s
1 = a1u

n+1,s
1 + a2u

n+1,s
2 + a3u

n+1,s
3 + a4γ1(t

n+1), (2.21)

where the coefficients can be found by matching the Taylor series expansion up to the

term O(∆x3)uxxx which gives us the following linear system

a1 + a2 + a3 = 0

a2 + 2a3 +
a4
∆x2

= 0,

a2 + 22a3 =
2

∆x2

a2 + 23a3 = 0.
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The solution to the above system is

a1 = − 7

2∆x2
, a2 =

4

∆x2
, a3 = − 1

2∆x2
, a4 = − 3

∆x2
. (2.22)

Similarly at boundary point xN , the second-order finite difference formula for the second

derivative terms (uhxx)|
n+1,s
N is

(uhxx)
n+1,s
N = b1u

n+1,s
N + b2u

n+1,s
N−1 + b3u

n+1,s
N−2 + b4γ2(t

n+1), (2.23)

where

b1 = − 7

2∆x2
, b2 =

4

∆x2
, b3 = − 1

2∆x2
, b4 =

3

∆x2
. (2.24)

Substitute equation (2.22) into (2.21) and (2.24) into (2.23), the second derivatives

(uhxx)|
m,k
i , i = 1, N , are approximated with the second-order finite difference approxi-

mation by the following formula

(uhxx)
n+1,s
1 =

1

2∆x2
(
−7un+1,s

1 + 8un+1,s
2 − un+1,s

3

)
− 3

∆x
γ1(t

n+1),

(uhxx)
n+1,s
N =

1

2∆x2
(
−7un+1,s

N + 8un+1,s
N−1 − un+1,s

N−2

)
+

3

∆x
γ2(t

n+1).
(2.25)

Substitute equations (2.20) and (2.25) into equation (2.3), the following second-order

deferred correction approximation of (uxx)|n+1,s+1
i where i = 1, N are

(uxx)
n+1,s+1
1 =

2

∆x2
(
−un+1,s+1

1 + un+1,s+1
2

)
− 3

∆x
γ1(t

n+1)

+
1

2∆x2
(
−3un+1,s

1 + 4un+1,s
2 − un+1,s

3

)
,

(uxx)
n+1,s+1
N =

2

∆x2
(
−un+1,s+1

N + un+1,s+1
N−1

)
+

3

∆x
γ2(t

n+1)

+
1

2∆x2
(
−3un+1,s

N + 4un+1,s
N−1 − un+1,s

N−2

)
,

(2.26)

To approximate (uhxx)|
n+1,k
i , i = 1, N , with fourth order we use the following representation

(uhxx)
n+1,s
1 = a1u

n+1,s
1 + a2u

n+1,s
2 + a3u

n+1,s
3 + a4u

n+1,s
4 + a5u

n+1,s
5 + a6γ1(t

n+1), (2.27)

where the coefficients are found by matching the Taylor series expansion up to the

termO(∆x5)uxxxxx which gives us the following linear system

a1 + a2 + a3 + a4 + a5 = 0

a2 + 2a3 + 3a4 + 4a5 +
a6
∆x

= 0,

a2 + 22a3 + 32a4 + 42a5 =
2

∆x2

a2 + 23a3 + 33a4 + 43a5 = 0,

a2 + 24a3 + 34a4 + 44a5 = 0,

a2 + 25a3 + 35a4 + 45a5 = 0.



2.1. A SET OF DEFERRED CORRECTION SCHEME 9

The solution to the above system is

a1 = − 415

72∆x2
, a2 =

8

∆x2
, a3 = − 3

∆x2
,

a4 =
8

9∆x2
, a5 = − 1

8∆x2
, a6 = − 25

6∆x

(2.28)

Similarly at boundary point N , the fourth-order finite difference formula for the second

derivative terms (uhxx)|
n+1,s
N is

(uhxx)
n+1,s
N = b1u

n+1,s
N + b2u

n+1,s
N−1 + b3u

n+1,s
N−2 + b4u

n+1,s
N−3 + bN−4u

n+1,s
5 + b6γ2(t

n+1), (2.29)

where

b1 = − 415

72∆x2
, b2 =

8

∆x2
, b3 = − 3

∆x2
,

b4 =
8

9∆x2
, b5 = − 1

8∆x2
, b6 =

25

6∆x
.

(2.30)

Substitute equation (2.28) to (2.27) and (2.30) to (2.29), the second derivatives (uhxx)|
n+1,s
i

i = 1, N are approximated with the fourth-order approximation by the following formula

(uhxx)
n+1,s
1 =

1

72∆x2

(
− 415un+1,s

1 + 576un+1,s
2 − 216un+1,s

3

+64un+1,s
4 − 9un+1,s

5

)
− 25

6∆x
γ1(t

n+1),

(uhxx)
n+1,s
N =

1

72∆x2

(
− 415un+1,s

N + 576un+1,s
N−1 − 216un+1,s

N−2

+64un+1,s
N−3 − 9un+1,s

N−4

)
+

25

6∆x
γ2(t

n+1).

(2.31)

Substitute equations (2.20) and (2.31) into equation (2.3), the following version of fourth-

order deferred correction approximation of (uxx)|n+1,s+1
i where i = 1, N are

(uxx)
n+1,s+1
1 =

2

∆x2
(
−un+1,s+1

1 + un+1,s+1
2

)
− 2

∆x
γ1(t

n+1)

+
1

72∆x2

(
− 271un+1,s

1 + 432un+1,s
2 − 216un+1,s

3

+64un+1,s
4 − 9un+1,s

5

)
,

(uxx)
n+1,s+1
N =

2

∆x2
(
−un+1,s+1

N + un+1,s+1
N−1

)
+

2

∆x
γ2(t

n+1)

+
1

72∆x2

(
− 271un+1,s

N + 432un+1,s
N−1 − 216un+1,s

N−2

+64un+1,s
N−3 − 9un+1,s

N−4

)
(2.32)
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2.2 A Set of Fourth-order Compact Scheme

Most existing high-order compact schemes are constructed for problem with Dirichlet

boundary conditions. In paper by Zhao et. al [21] a set of fourth order compact finite-

difference schemes is developed to solve a heat conduction problem with Neumann bound-

ary conditions. Let us shortly represent main idea and final formulae of this set. Spatial

derivatives are evaluated by the fourth-order compact finite differences implicit scheme

[12, 14, 20, 21].

2.2.1 A Set of Fourth-Order Compact Scheme with Dirichlet Boundary

In [8, 15], the Dirichlet boundary conditions u(0,m∆t) = α1(t
m) = um1 , and u(l,m∆t) =

α2(t
m) = umN are used to derive the following four-order schemes at the boundary points

(x1, t
m), (x2, t

m), (xN−1, t
m) and (xN , t

m)

(uxx)
m
1 + α(uxx)

m
2 =

1

12∆x2
(a1u

m
1 + a2u

m
2 + a3u

m
3 + a4u

m
4 + a5u

m
5 ) ,

=
1

12∆x2
(a1α1(t

m) + a2u
m
2 + a3u

m
3 + a4u

m
4 + a5u

m
5 ) ,

(2.33)

where the coefficients can be found by matching the Taylor series expansion up to order

O(∆x5)uxxxxx which gives us the following linear system [15]

a1 + a2 + a3 + a4 + a5 = 0,

a2 + 2a3 + 3a4 + 4a5 = 0,

a2 + 22a3 + 32a4 + 42a5 = 2!(1 + α)

a2 + 23a3 + 33a4 + 43a5 = 3!α,

a2 + 24a3 + 34a4 + 44a5 =
4!

2!
α,

a2 + 23a3 + 33a4 + 43a5 =
5!

3!
α.

The solution to the above system is

α = 10, a1 =
145

12
, a2 = −76

3
, a3 =

29

2
, a4 = −4

3
, a5 =

1

12
. (2.34)

Similarly at boundary point N , the fourth-order formula for the second derivative terms

(ulxx)|
m,k
N is

α(uxx)
m
N−1 + (uxx)

m
N =

1

12∆x2
(
b1u

m
N + b2u

m
N−1 + b3u

m
N−2 + b4u

m
N−3 + b5u

m
N−4

)
,

=
1

12∆x2
(
b1α2(t

m) + b2u
m
N−1 + b3u

m
N−2 + b4u

m
N−3 + b5u

m
N−4

)
,

(2.35)
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where

α = 10, b1 =
145

12
, b2 = −76

3
, b3 =

29

2
, b4 = −4

3
, b5 =

1

12
. (2.36)

The following fourth-order implicit relation at all interior points and any time

level, is derived in [12,14,21] to approximate (uxx)
m
i

1

10
(uxx)

m
i−1+(uxx)

m
i +

1

10
(uxx)

m
i+1 =

6

5∆x2
(umi−1−2umi +umi+1), i = 2, . . . , N −1. (2.37)

Let us introduce the following matrix-vector notations

u⃗m =
(
α1(t

m), um2 , . . . , u
m
N−1, α2(t

m)
)
, (u⃗xx)

m = ((uxx)
m
1 , . . . , (uxx)

m
N) ,

AD =



1 10

1 10 1
. . . . . . . . .

1 10 1

10 1


N×N

BD =



−145

24

38

3
−29

4

2

3
− 1

24
-6 12 -6

. . . . . . . . .
. . . . . . . . .

-6 12 -6

− 1

24

2

3
−29

4

38

3
−145

24


N×N

.

With this notation, equation (2.33) and (2.35) can be combined and express in the fol-

lowing matrix form

AD (u⃗xx)
m = − 2

∆x2
BDu⃗m. (2.38)

By the Gerschgorin Theorem [6], it can prove that A is invertible. So, equation (2.38)

can be simplified to

(u⃗xx)
m = − 2

∆x2
(
AD)−1

BDu⃗m, m = n, n+ 1. (2.39)

Substituting equation (2.39) into equations (2.4), a fourth-order accurate compact finite

difference scheme on the interior points is

(AD + rBD)u⃗n+1 = (AD − rBD)u⃗n +∆tADf⃗n+ 1
2 , (2.40)

where r =
β∆t

∆x2
and f⃗n+ 1

2 =
(
f
n+ 1

2
1 , . . . , f

n+ 1
2

N

)
.

The truncation error of the heat conducting problem with initial data and Dirich-

let boundary condition (1.1)–(1.3) has an order of approximation O(∆t2,∆x4) over all

grid points which indicates a set of fourth order compact scheme with Dirichlet boundary

(DHCS4) and consistent with the differential equation.
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2.2.2 A Set of Fourth-Order Compact Scheme with Neumann Boundary

In [21], the Neumann boundary conditions ux(0,m∆t) = γ1(t
m), and ux(l,m∆t) = γ2(t

m)

are used to derive the following four-order schemes at the boundary points (x2, t
m),

(x3, t
m), (xN−1, t

m) and (xN , t
m)

11

6
(uxx)

m
2 − 1

3
(uxx)

m
3 = −γ1(t

m)

∆x
+

1

∆x2
(um3 − um2 ), (2.41)

11

6
(uxx)

m
N−1 −

1

3
(uxx)

m
N−2 = −γ2(t

m)

∆x
+

1

∆x2
(umN−2 − umN−1). (2.42)

Let us introduce the following matrix-vector notations

u⃗m =
(
um2 , . . . , u

m
N−1

)
, (u⃗xx)

m =
(
(uxx)

m
2 , . . . , (uxx)

m
N−1

)
,

γ⃗(tm) =

(
−γ1(t

m)

∆x
, 0, . . . , 0,−γ2(t

m)

∆x

)
,

AN =



22 -4

1 10 1
. . . . . . . . .

1 10 1

-4 22


(N−2)×(N−2)

BN =



6 -6

-6 12 -6
. . . . . . . . .

-6 12 -6

-6 6


(N−2)×(N−2)

.

With these notations, the scheme (2.37), (2.41), and (2.42) can be expressed in the

following matrix-vector form

1

10
AN (u⃗xx)

m = − 1

5∆x2
BN u⃗m +

6

5
γ⃗(tm). (2.43)

Matrix AN is invertible. Equation (2.43) can be solved with respect (u⃗xx)
m

(u⃗xx)
m = − 2

∆x2
(
AN )−1

BN u⃗m + 12
(
AN )−1

γ⃗(tm). (2.44)

After substituting (2.44) into (2.4) we have the following vector equation

(AN + rBN )u⃗n+1 = (AN − rBN )u⃗n + 12β∆tγ⃗(tn+
1
2 ) + ∆tAN f⃗n+ 1

2 , (2.45)

where f⃗n+ 1
2 =

(
f
n+ 1

2
2 , . . . , f

n+ 1
2

N−1

)
.

It can be seen that the truncation error of the heat conducting problem with

initial data and Neumann boundary condition (1.4) has an order O(∆t2,∆x4) at interior

grid points i = 3, . . . , N − 2 [21], and an order of O(∆t2,∆x3) at grid points x2 and

xN−1 [23] which indicates a set of fourth order compact scheme with Neumann boundary

(NHCS4) and consistent with the differential equation.
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2.2.3 A Set of Update Fourth-Order Compact Scheme with Neumann

Boundary

Let us represent shortly main idea and final formulae of this set. Spatial derivatives are

evaluated by the fourth-order compact finite differences implicit scheme [12, 14, 20, 21] on

interior points and fourth-order deferred correction approach on the Neumann boundary.

The Neumann boundary conditions ux(0,m∆t) = γ1(t
m), and ux(l,m∆t) =

γ2(t
m) are used to derive the following fourth-order deferred correction schemes at the

boundary points (x1, t
m) and (xN , t

m) by iterative methods

(uxx)
n+1,s+1
1 =

2

∆x2
(
−un+1,s+1

1 + un+1,s+1
2

)
− 2

∆x
γ1(t

n+1)

+
1

72∆x2

(
− 271un+1,s

1 + 432un+1,s
2 − 216un+1,s

3

+64un+1,s
4 − 9un+1,s

5

)
,

(uxx)
n+1,s+1
N =

2

∆x2
(
−un+1,s+1

N + un+1,s+1
N−1

)
+

2

∆x
γ2(t

n+1)

+
1

72∆x2

(
− 271un+1,s

N + 432un+1,s
N−1 − 216un+1,s

N−2

+64un+1,s
N−3 − 9un+1,s

N−4

)
.

(2.46)

and

(uxx)
n
1 =

1

72∆x2

(
− 415un1 + 576un2 − 216un3

+64un4 − 9un5

)
− 2

∆x
γ1(t

n),

(uxx)
n
N =

1

72∆x2

(
− 415unN + 576unN−1 − 216unN−2

+64unN−3 − 9unN−4

)
+

2

∆x
γ2(t

n).

(2.47)

The following fourth-order implicit relation at all interior points and any time level, is

derived in [12,14,21] to approximate (uxx)
n+1,s+1
i by iterative methods

1

10
(uxx)

n+1,s+1
i−1 + (uxx)

n+1,s+1
i +

1

10
(uxx)

n+1,s+1
i+1

=
6

5∆x2
(un+1,s+1

i−1 − 2un+1,s+1
i + un+1,s+1

i+1 ),
(2.48)

and
1

10
(uxx)

n
i−1 + (uxx)

n
i +

1

10
(uxx)

n
i+1 =

6

5∆x2
(uni−1 − 2uni + uni+1), (2.49)

where i = 2, . . . , N − 1. When s = 0, we use solution from level n so

un+1,0
xx = unxx.

Let us introduce the following matrix-vector notations

u⃗n+1,s+1 =
(
un+1,s+1
1 , . . . , un+1,s+1

N

)
,

(u⃗xx)
n+1,s+1 =

(
(uxx)

n+1,s+1
1 , . . . , (uxx)

n+1,s+1
N

)
,

(2.50)
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u⃗n = (un1 , . . . , u
n
N) ,

(u⃗xx)
n = ((uxx)

n
1 , . . . , (uxx)

n
N) ,

(2.51)

φ⃗n+1,s = (φ1, 0, . . . , 0, φ2) ,

ψ⃗n = (ψ1, 0, . . . , 0, ψ2) ,
(2.52)

where

ψ1 = − 2

∆x
γ1(t

n), ψ2 = − 2

∆x
γ2(t

n),

φ1 =
1

72∆x2

(
− 415un+1,s

1 + 576un+1,s
2 − 216un+1,s

3

+64un+1,s
4 − 9un+1,s

5

)
− 2

∆x
γ1(t

n+1),

φ2 =
1

72∆x2

(
− 415un+1,s

N + 576un+1,s
N−1 − 216un+1,s

N−2

+64un+1,s
N−3 − 9un+1,s

N−4

)
− 2

∆x
γ2(t

n+1),

AU =



1 0

1 10 1
. . . . . . . . .

1 10 1

0 1


(N)×(N)

BU =



-1 1

-6 12 -6
. . . . . . . . .

-6 12 -6

1 -1


(N)×(N)

CU =



271

144
−3

3

2
−4

9

1

16
-6 12 -6

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .

-6 12 -6
1

16
−4

9

3

2
−3

271

144


N×N

.

The scheme (2.46)-(2.48) can be expressed in the following matrix-vector form

AU (u⃗xx)
n+1,s+1 = − 2

∆x2
BU u⃗n+1,s+1 + φ⃗n+1,s,

AU (u⃗xx)
n = − 2

∆x2
CU u⃗n + ψ⃗n,

(2.53)

After substituting (2.45) into (2.4) we have the following vector equation

(AU + rBU)u⃗n+1 = (AU − rCU)u⃗n + β∆tγ⃗s,n,n+1 +∆tAU f⃗n+ 1
2 , (2.54)

where

γ⃗s,n,n+1 =

(
φ1 + ψ1

2
, 0, . . . , 0,

φ2 + ψ2

2

)
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and

f⃗n+ 1
2 =

(
f
n+ 1

2
1 , . . . , f

n+ 1
2

N

)
.

The truncation error of the heat conducting problem with initial data (1.1)–(1.2) and

Neumann boundary condition (1.4) has an order of approximation O(∆t2,∆x4) over all

grid points which indicates a set of fourth order compact scheme with Neumann boundary

(UHCS4) and consistent with the differential equation.



Chapter 3

Stability analysis

A set of high order deferred correction schemes is based on the well-known Crank-

Nikolson type of scheme in the following form,

un+1,s+1
i − uni

∆t
=
β

2

[
(uxx)

n+1,s+1
i + (uxx)

n
i

]
+ f

n+1/2
i , f

n+1/2
i =

fn+1
i + fn

i

2

(3.1)

the second superscript “s” denotes the number of iterations s = 0, . . . , Ŝ and i =

2, . . . , N − 1.

The deferred correction technique is utilized to approximate the second-order

derivatives at higher time levels (uxx)
n+1,s+1
i , i = 2, . . . , N − 1 by the iterative method

(uxx)
n+1,s+1
i = (ulxx)

n+1,s+1
i +

[
(uhxx)

n+1,s
i − (ulxx)

n+1,s
i

]
, (3.2)

where

(uhxx)
n+1,s
i , i = 2, . . . , N − 1, s = 0, . . . , Ŝ

is high-order approximation on wide stencil, and

(ulxx)
n+1,k
i , k = s, s+ 1, i = 2, . . . , N − 1

is the lower order approximation on compact stencil (usually three point stencil). The

expression in the square brackets of (3.2) is evaluated explicitly using the values known

from the previous iteration. When s = 0 we use the solution from the time level n (so

un+1,0 = un and (uxx)
n+1,0
i = (uxx)

n
i ). Once the iterations converge, the lower order

approximation terms drop out and the approximation of (uxx)
n+1,s+1
i obtained has the

same order of approximation as (uhxx)
n+1,Ŝ
i . There are no difficulties to construct high-

order approximation for interior points.
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To preserve a compact using three wide stencil in the finite difference scheme at

higher time level (n+ 1, s+ 1), we use the central second-order finite difference approxi-

mation to approximate the lower order term in (3.2)

(ulxx)
n+1,k
i =

1

∆x2
Λlu

n+1,k
i , k = s, s+ 1, (3.3)

Λlu
n+1,k
i = un+1,k

i−1 − 2un+1,k
i + un+1,k

i+1 , i = 3, . . . , N − 2.

For the high-order approximation term in (3.2), we use a symmetric five point wide stencil

for the inner points to reach the fourth-order of approximation

(uhxx)
n+1,s
i =

1

∆x2
Λhu

n+1,s
i , i = 3, . . . , N − 2, (3.4)

Λhu
n+1,s
i =

1

12

(
− un+1,s

i−2 + 16un+1,s
i−1 − 30un+1,s

i + 16un+1,s
i+1 − un+1,s

i+2

)
.

To study the stability of scheme (3.1)-(3.4), we use the Von-Neumann stability

analysis. For simplicity, we assume that f
n+1/2
i ≡ 0 in (3.1), and u is periodic in x. Let

us recast scheme (3.1)-(3.4) in the following form,

(E + αΛl)u
n+1,s+1
i = α (Λl − Λh)u

n+1,s
i + (E − αΛl)u

n
i , (3.5)

where α = β∆t/(2∆x2). If we define the following operators:

A = E + αΛl, B = E − αΛh, C = E + αΛh,

where E is the identity operator, then (3.5) can be rewritten as follows

Aun+1,s+1
i = (A− C)un+1,s

i +Buni . (3.6)

Assuming that the operators commute, (A − C)A = A(A − C) (for example in the case

of uniform grid), it is easy to demonstrate that if un+1,Ŝ+1
i = un+1

i and un+1,0
i = uni we get

AŜ+1un+1
i =

 Ŝ∑
k=0

AŜ−k(A− C)k

Buni + (A− C)Ŝ+1uni . (3.7)

Let uni = ξneIΘi, I =
√
−1, be the solution of (3.1)-(3.4), where Θ = 2π△x/l is the phase

angle with wavelength l. From (3.7), we can derive an equation for the amplification

factor in the form

|ξ| = |φ(Θ, Ŝ, α)|, (3.8)

where Ŝ is the number of iterations, and

|φ(Θ, Ŝ, α)| =

∣∣∣[(∑Ŝ
k=0A

Ŝ−k(A− C)k
)
B + (A− C)Ŝ+1

]
eIΘi

∣∣∣
|AŜ+1eIΘi|

.
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Figure 3.1: Variation of amplification factor with Θ. (a)–Ŝ = 1, dashed line α = 2.0,

solid line α = 1.5 , dash-doted line α = 1.0, (b)–Ŝ = 3, dashed line α = 10.0, solid line

α = 5.0 , dash-doted line α = 1.0, (c)–Ŝ = 5, dashed line α = 30.0, solid line α = 15 ,

dash-doted line α = 5.0, doted line α = 1.0

For stability of the method it is necessary that the absolute values of the amplification

factor is less than one, i.e.

|ξ| < 1. (3.9)

Calculations are tedious and almost impossible to do by hand without mistake. We have

therefore automate all calculations in a computer algebra environment based on REDUCE

to obtain an explicit form of |φ(Θ, Ŝ, α)|. Figure 3.1 shows the values of |ξ|2 in the polar

coordinate system (|ξ|2,Θ) for Ŝ = 1, 3 and 5. If only one iteration executes in (3.1),

Ŝ = 1, inequality (3.9) holds if α < 1.5, as can be seen from Figure 3.1 a). If 3 iterations

are done in (??) (Figure 3.1 b) , Ŝ = 3, the amplification factor remains bounded by one

at least for α ≤ 10. In case of Ŝ = 5, the stability criteria hold up to α = 30 as can be

seen from Figure 3.1 c). It can be seen that increasing the number of internal iterations

results in increasing the range of α needed for stability. This tendency allows to assume

that as Ŝ → ∞, our method becomes the unconditionally stable Crank-Nikolson method

for the heat equation.



Chapter 4

Numerical Examples

In this section, several numerical examples are carried to verify and compare the ac-

curacy for the schemes DCNS2, DHCS4, DHDS4, NCNS1, NHDS2, NHCS4, NHDS4, and

UNHDS4. For convenient information about abbreviations used for different approaches

as well as reference on original papers are summarized in Table 4.1

Abbreviation Method Equations refrence

DCNS2 Dirichlet BC, Crank-Nikolson, Second order 2.4, 2.5, 2.12

DHCS4 Dirichlet BC, High-order compact, fourth order 2.40

DHDS4 Dirichlet BC,differed correction, fourth order 2.13-2.15

NCNS1 Neuman BC, Crank-Nikolson, first order 2.4, 2.5, [21]

NHDS2 Neuman BC, differed correction, second order 2.1, 2.9-2.11, 2.26

NHDS4 Neuman BC, differed correction, fourth order 2.1, 2.9-2.11, 2.32

NHCS4 Neuman BC, High-order compact,fourth order 2.45

UNHCS Neuman BC, High-order compact, fourth order, 2.54

Differed corrected BC

Table 4.1: Abreviation used for different approaches

Below, we denote ∆t = ∆x2 the time step size, and the following stopping criterion is

applied:

max
1≤i≤N

| un+1,s+1
i − un+1,s

i |< ϵ, s = 0, . . . , Ŝ

where ′′s′′ denotes the number of iteration. It should be pointed out, although a small ∆t

is chosen here, our set of scheme is unconditionally stable with no restriction on either

space mesh or time increment. For testing purpose only, all computations are performed

for 0 ≤ t ≤ 1.
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In the first part of this section, the numerical examples are provided to verify

the accuracy for DCNS2, DHCS4, and DHDS4 with zero-Dirichlet and nonzero-Dirichlet

boundary conditions. The computation are performed using uniform grids of 11, 21, 41, 81,

and 161 nodes.

In the second part of this section, the numerical example are provided to verify and

compare the accuracy for NCNS1, NHDS2, NHCS4, and NHDS4 with nonzero-Neumann

boundary. We apply a set of fourth-order deferred correction Neumann boundary for the

HCS4 and call it as UNHCS4 to update the accuracy of NHCS4. The computation are

performed using the uniform grids of 11, 21, 41, 81, and 161 nodes.
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Example 1 ( Zero-Dirichlet boundary conditions and properly selected initial condition)

ut = uxx + (π2 − 1)e−t sin(πx), 0 ≤ x ≤ 1, t > 0,

u(x, 0) = sin(πx), u(0, t) = 0, u(1, t) = 0.

(4.1)

The exact solution is u(x, t) = e−t sin(πx). The performance over the time domain

t ∈ [0, 1] for DCNS2 , DHCS4, and DHDS4 are compared. The maximum error, and

order of accuracy at t = 1 and ϵ = 10−8 are shown in Table 2.

Types of

scheme

Number of

grids

Maximum

error

Order of

convergence

11 3.39× 10−3 −
21 8.43× 10−4 2.00

DCNS2 41 2.10× 10−4 2.00

81 5.26× 10−5 2.00

161 1.32× 10−5 2.00

11 1.17× 10−5 −
21 7.30× 10−7 4.01

DHCS4 41 4.56× 10−8 4.00

81 2.85× 10−9 4.00

161 1.78× 10−10 4.00

11 1.30× 10−5 −
21 2.24× 10−6 2.55

DHDS4 41 1.52× 10−7 3.88

81 9.59× 10−9 3.98

161 6.00× 10−10 4.00

Table 4.2: Comparison of maximum error for equation (4.1) at t = 1

The fourth-order differed correction scheme demonstrates a little bit larger error compare

with fourth-order compact scheme.
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Example 2 ( The non-homogeneous Dirichlet boundary conditions and properly selected

initial condition

ut = uxx + (π2 − 1)e−t cos(πx) + 4x− 2, 0 ≤ x ≤ 1, t > 0,

u(x, 0) = cos(πx) + x2, u(0, t) = e−t, u(1, t) = −e−t + 4t+ 1.

(4.2)

The exact solution is u(x, t) = e−t cos(πx) + x2 + 4xt. The performance over the time

domain t ∈ [0, 1] for DCNS2, DHCS4, and DHDS4 are compared. The maximum error,

and order of accuracy at t = 1 and ϵ = 10−8 are compared in Table 3.

Types of

scheme

Number of

grids

Maximum

error

Order of

convergence

11 6.51× 10−4 −
21 1.62× 10−4 2.00

DCNS2 41 4.08× 10−5 1.99

81 1.02× 10−5 2.00

161 2.55× 10−6 2.00

11 3.20× 10−6 −
21 2.00× 10−7 4.00

DHCS4 41 1.26× 10−8 3.99

81 7.85× 10−10 4.00

161 5.11× 10−11 4.00

11 1.78× 10−5 −
21 2.92× 10−7 5.92

DHDS4 41 2.44× 10−8 3.58

81 1.78× 10−9 3.78

161 1.15× 10−10 3.95

Table 4.3: Comparison of maximum error for equation (4.2) at t = 1
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Example 3( The non-homogeneous Neumann boundary indicate that the boundary are

insulated and properly selected initial condition )

ut = uxx + (4π2 − 1)e−t cos(2πx) + x− 2, 0 ≤ x ≤ 1, t > 0,

u(x, 0) = cos(2πx) + x2, ux(0, t) = t, ux(1, t) = 2 + t.

(4.3)

The exact solution is u(x, t) = e−t cos(2πx) + x2 + xt. The performance over the time

domain t ∈ [0, 1] for NCNS1, NHDS2, NHCS4, UNHCS4, and NHDS4 are compared. The

maximum error, and order of accuracy at t = 1 and ϵ = 10−8 are compared in Table 4.

Types of

scheme

Number of

grids

Maximum

error

Order of

convergence

21 1.26× 100 −
NCNS1 41 6.15× 10−1 1.03

81 3.04× 10−1 1.02

161 1.51× 10−1 1.01

21 5.71× 10−2 −
NHDS2 41 7.74× 10−3 2.88

81 1.07× 10−3 2.85

161 1.58× 10−4 2.76

21 8.97× 10−2 −
NHCS4 41 1.18× 10−2 2.92

81 1.50× 10−3 2.98

161 1.89× 10−4 2.99

21 4.25× 10−3 −
UNHCS4 41 1.61× 10−4 4.72

81 6.10× 10−6 4.72

161 2.30× 10−7 4.73

21 3.11× 10−3 −
NHDS4 41 1.19× 10−4 4.71

81 4.77× 10−6 4.64

161 1.92× 10−7 4.63

Table 4.4: Comparison of maximum error for equation (4.3) at t = 1
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The last table shows the maximum internal iteration(MI) of deferred correction scheme

(DHDS4, NHDS2, UNHCS4, NHDS4) depending on the stopping criterion (ϵ) and the

number of grid points.

Types of

scheme

Stopping

criterion

MI of

11 grids

MI of

21 grids

MI of

41 grids

MI of

81 grids

MI of

161 grids

10−4 2 2 2 2 1

DHDS4 10−6 3 2 2 2 2

10−8 5 3 2 2 2

10−10 7 5 3 2 2

10−4 6 4 2 2 1

NHDS2 10−6 10 7 5 3 2

10−8 13 11 9 7 4

10−10 17 15 13 11 9

10−4 11 4 2 2 1

UNHCS4 10−6 24 17 11 5 2

10−8 37 30 24 18 12

10−10 50 43 37 31 25

10−4 10 4 2 2 1

NHDS4 10−6 22 15 10 4 2

10−8 33 27 21 16 11

10−10 44 38 32 27 22

Table 4.5: Maximum of internal iteration of deferred correction scheme.



Chapter 5

Conclusion

In this Report, a new set of high-order deferred correction schemes is constructed

for a heat conduction problem with Dirichlet and Neumann boundary conditions. The

greatest significance of this set of schemes, comparing to other similar ones, is that it

is exactly fourth order accurate in space at all grid points, including both interior and

boundary point. HDS schemes have better accuracy in the case of Neumann boundary

conditions. Numerical examples are provided to confirm the accuracy. The construction

of HDS requires only a regular three-point stencil similar to that in standard second-order

Crank-Nicolson methods. Numerical examples are provided to confirm the accuracy. HDS

approach can be easily extend to multidimesional case.
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A deferred correction method is utilized to increase the order of spatial accuracy of the Crank-Nicolson scheme for the numerical
solution of the one-dimensional heat equation.The fourth-ordermethods proposed are the easier development and can be solved by
usingThomas algorithms.The stability analysis and numerical experiments have been limited to one-dimensional heat-conducting
problems with Dirichlet boundary conditions and initial data.

1. Introduction

The desired properties of finite difference schemes are sta-
bility, accuracy, and efficiency. These requirements are in
conflict with each other. In many applications a high-order
accuracy is required in the spatial discretization. To reach
better stability, implicit approximation is desired. For a high-
order method of traditional type (not a high-order compact
(HOC)), the stencil becomes wider with increasing order
of accuracy. For a standard centered discretization of order
𝑝, the stencil is 𝑝 + 1 points wide. This inflicts problems
at the fictional boundaries, and using an implicit method
results in the solution of an algebraic system of equations
with large bandwidth. In light of conflict requirements of
stability, accuracy, and computational efficiency, it is desired
to develop schemes that have a wide range of stability and
highorder of accuracy and lead to the solution of a system
of linear equations with a tri-diagonal matrix, that is, the
system of linear equations arising from a standard second-
order discretization of heat equation.

The development of high-order compact (HOC) schemes
[1–18] is one approach to overcome the antagonism between
stability, accuracy, and computational cost. However, the
HOC becomes complicated when applie tomultidimensional
problems or to non-Cartesian coordinate cases.

Another way of preserving a compact stencil at higher
time level and reaching high-order spatial accuracy is the
deferred correction approach [11]. A classical deferred correc-
tion procedure is developed in [19, 20].

In this paper we use the deferred correction technique
to obtain fourth-order accurate schemes in space for the
one-dimensional heat-conducting problem with Dirichlet
boundary conditions. The linear system that needs to be
solved at each time step is similar to the standard Crank-
Nikolson method of second order which is solved by using
Thomas algorithms. The fourth-order deferred (FOD) cor-
rection schemes are compared with the fourth-order semi-
implicit (FOS) schemes and fourth-order compact (FOC)
schemes for the Dirichlet boundary value problems.

A set of schemes are constructed for the one-dimensional
heat-conducting problem with Dirichlet boundary condi-
tions and initial data:

𝑢
𝑡
= 𝛽𝑢
𝑥𝑥
+ 𝑓 (𝑥, 𝑡) , 0 < 𝑥 < 𝑙, 𝑡 > 0, (1)

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 0 < 𝑥 < 𝑙, (2)

Dirichlet BC : 𝑢 (0, 𝑡) = 𝛾
1
(𝑡) , 𝑢 (𝑙, 𝑡) = 𝛾

2
(𝑡) , 𝑡 > 0,

(3)
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where the diffusion coefficient 𝛽 is positive, 𝑢(𝑥, 𝑡) represents
the temperature at point (𝑥, 𝑡), and 𝑓(𝑥, 𝑡), 𝛾

1
(𝑡), 𝛾
2
(𝑡) are

sufficiently smooth functions.
The rest of this paper is organized as follows. Section 2

presents an FOD scheme which we use to compare perfor-
mance of proposed scheme with FOS and FOC schemes.
Section 3 provides examples of comparisons. Although FOD
schemes have a higher computational cost than FOS and
FOC schemes, it is evident from these examples that the
FOD schemes have the advantage of accuracy in the uniform
norm, robustness, and the ability to be extended easily to the
multidimensional case. We conclude the paper in Section 4.

2. The Fourth-Order Schemes

Let Δ𝑡 denote the temporal mesh size. For simplicity, we con-
sider a uniform mesh consisting of 𝑁 points: 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁

where 𝑥
𝑖
= (𝑖 − 1)Δ𝑥 and the mesh size is Δ𝑥 = 𝑙/(𝑁 − 1).

Below we use the notations 𝑢𝑚
𝑖
and (𝑢

𝑥𝑥
)
𝑚

𝑖
to represent the

numerical approximations of 𝑢(𝑥
𝑖
, 𝑡
𝑚
) and 𝑢

𝑥𝑥
(𝑥
𝑖
, 𝑡
𝑚
) where

𝑡
𝑚
= 𝑚Δ𝑡 and 𝑢(𝑝) is the value of the 𝑝th derivative of the

given function 𝑢.

2.1. Fourth-Order Semi-Implicit Scheme. The application to
the well-known Crank-Nikolson scheme to (1) results in the
following expression:

𝑢
𝑛+1

𝑖
− 𝑢
𝑛

𝑖

Δ𝑡
=
𝛽

2
[(𝑢
𝑥𝑥
)
𝑛+1

𝑖
+ (𝑢
𝑥𝑥
)
𝑛

𝑖
] + 𝑓
𝑛+1/2

𝑖
, (4)

where 𝑓𝑛+1/2
𝑖

= (𝑓
𝑛+1

𝑖
+𝑓
𝑛

𝑖
)/2, 𝑖 = 2, . . . , 𝑁−1. The Dirichlet

boundary conditions

𝑢 (0,𝑚Δ𝑡) = 𝛾
1
(𝑡
𝑚
) = 𝑢
𝑚

1
,

𝑢 (𝑙, 𝑚Δ𝑡) = 𝛾
2
(𝑡
𝑚
) = 𝑢
𝑚

𝑁

(5)

are used to derive the following fourth-order approximation
of second derivative terms:

(𝑢
𝑥𝑥
)
𝑚

2
=

1

12Δ𝑥2
(𝑎
1
𝑢
𝑚

1
+ 𝑎
2
𝑢
𝑚

2
+ 𝑎
3
𝑢
𝑚

3
+ 𝑎
4
𝑢
𝑚

4

+ 𝑎
5
𝑢
𝑚

5
+ 𝑎
6
𝑢
𝑚

6
)

=
𝑎
1

12Δ𝑥2
𝛾
1
(𝑡
𝑚
) +

1

12Δ𝑥2

× (𝑎
2
𝑢
𝑚

2
+ 𝑎
3
𝑢
𝑚

3
+ 𝑎
4
𝑢
𝑚

4
+ 𝑎
5
𝑢
𝑚

5
+ 𝑎
6
𝑢
𝑚

6
) ,

(𝑢
𝑥𝑥
)
𝑚

𝑖
=

1

12Δ𝑥2

× (−𝑢
𝑚

𝑖−2
+ 16𝑢

𝑚

𝑖−1
− 30𝑢

𝑚

𝑖
+ 16𝑢

𝑚

𝑖+1
− 𝑢
𝑚

𝑖+2
) ,

𝑖 = 3, . . . , 𝑁 − 2,

(𝑢
𝑥𝑥
)
𝑚

𝑁−1
=

1

12Δ𝑥2
(𝑎
1
𝑢
𝑚

𝑁
+ 𝑎
2
𝑢
𝑚

𝑁−1

+ 𝑎
3
𝑢
𝑚

𝑁−2
+ 𝑎
4
𝑢
𝑚

𝑁−3

+ 𝑎
5
𝑢
𝑚

𝑁−4
+ 𝑎
6
𝑢
𝑚

𝑁−5
)

=
𝑎
1

12Δ𝑥2
𝛾
2
(𝑡
𝑚
) +

1

12Δ𝑥2

× (𝑎
2
𝑢
𝑚

𝑁−1
+ 𝑎
3
𝑢
𝑚

𝑁−2

+ 𝑎
4
𝑢
𝑚

𝑁−3
+ 𝑎
5
𝑢
𝑚

𝑁−4
+ 𝑎
6
𝑢
𝑚

𝑁−5
) ,

(6)

where the coefficients can be found by matching the Tay-
lor series expansion of left-hand-side terms up to order
𝑂(Δ𝑥

4
)𝑢
(6) which gives the following values of coefficients:

𝑎
1
= 10, 𝑎

2
= −15, 𝑎

3
= −4,

𝑎
4
= 14, 𝑎

5
= −6, 𝑎

6
= 1.

(7)

Schemes (6) can be combined and expressed in the following
matrix form:

u𝑚
𝑥𝑥
=

1

Δ𝑥2
Λ
ℎ
u𝑚 + 𝛾 (𝑡𝑚) , (8)

whereΛ
ℎ
is the corresponding triangular and sparse (𝑁−2)×

(𝑁 − 2)matrix,

u𝑚
𝑥𝑥
= ((𝑢
𝑥𝑥
)
𝑚

2
, (𝑢
𝑥𝑥
)
𝑚

3
, . . . , (𝑢

𝑥𝑥
)
𝑚

𝑁−1
)
𝑇

,

u𝑚 = (𝑢𝑚
2
, 𝑢
𝑚

3
, . . . , 𝑢

𝑚

𝑁−1
)
𝑇

,

𝛾 (𝑡
𝑚
) = (𝛾

1
(𝑡
𝑚
) , 0, . . . , 0, 𝛾

2
(𝑡
𝑚
))
𝑇

.

(9)

Substituting (6) into (4) gives us the following matrix form:

(𝐸 − 𝛼Λ
ℎ
) u𝑛+1 = (𝐸 + 𝛼Λ

ℎ
) u𝑛

+ Δ𝑡 [𝛾 (𝑡
𝑛+1

) + 𝛾 (𝑡
𝑛
)]

+ Δ𝑡f𝑛+1/2,

(10)

where 𝛼 = 𝛽Δ𝑡/(2Δ𝑥2), f𝑛+1/2 = (𝑓𝑛+1/2
2

, 𝑓
𝑛+1/2

3
, . . . , 𝑓

𝑛+1/2

𝑁−1
)
𝑇,

and 𝐸 denote the (𝑁 − 2) × (𝑁 − 2) identity matrix. The
scheme (10) is FOSs for the heat-conducting problem with
Dirichlet boundary condition. The order of approximation
is 𝑂(Δ𝑡2, Δ𝑥4) in the uniform norm. The triangular and
sparse (𝑁 − 2) × (𝑁 − 2) coefficient matrix in FOSs are
time independent; hence, we have to store the inverse of the
coefficient matrix 𝐸 − 𝛼Λ

ℎ
before the time marching in the

implementation for computational efficiency.
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2.2. Fourth-Order Deferred Correction Schemes. A set of
fourth-order deferred correction schemes is based on the
well-known Crank-Nikolson type of scheme in the following
form:

𝑢
𝑛+1,𝑠+1

𝑖
− 𝑢
𝑛

𝑖

Δ𝑡
=
𝛽

2
[(𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
+ (𝑢
𝑥𝑥
)
𝑛

𝑖
]

+ 𝑓
𝑛+1/2

𝑖
,

(11)

where 𝑓𝑛+1/2
𝑖

= (𝑓
𝑛+1

𝑖
+ 𝑓
𝑛

𝑖
)/2 and the second superscript

“𝑠” denotes the number of iterations 𝑠 = 0, . . . , 𝑆̂ and 𝑖 =

2, . . . , 𝑁 − 1.
The deferred correction technique [11] is utilized to

approximate the second-order derivatives at higher time
levels (𝑢

𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
, 𝑖 = 2, . . . , 𝑁 − 1 by the iterative method

(𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
= (𝑢
𝑙

𝑥𝑥
)
𝑛+1,𝑠+1

𝑖

+ [(𝑢
ℎ

𝑥𝑥
)
𝑛+1,𝑠

𝑖
− (𝑢
𝑙

𝑥𝑥
)
𝑛+1,𝑠

𝑖
] ,

(12)

where (𝑢ℎ
𝑥𝑥
)
𝑛+1,𝑠

𝑖
, 𝑖 = 2, . . . , 𝑁 − 1, 𝑠 = 0, . . . , 𝑆̂, is high-

order approximation on wide stencil and (𝑢𝑙
𝑥𝑥
)
𝑛+1,𝑘

𝑖
, 𝑘 = 𝑠, 𝑠+

1, 𝑖 = 2, . . . , 𝑁 − 1, is the lower-order approximation on
compact stencil (usually three-point stencil). The expression
in the square brackets of (12) is evaluated explicitly using the
values known from the previous iteration. When 𝑠 = 0 we
use the solution from the time level 𝑛 (so 𝑢𝑛+1,0 = 𝑢

𝑛 and
(𝑢
𝑥𝑥
)
𝑛+1,0

𝑖
= (𝑢
𝑥𝑥
)
𝑛

𝑖
). Once the iterations converge, the lower-

order approximation terms drop out and the approximation
of (𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
obtained has the same order of approximation

as (𝑢ℎ
𝑥𝑥
)
𝑛+1,𝑆̂

𝑖
. There are no difficulties to construct high-order

approximation for interior points.
To preserve a compact three using wide stencil in the

finite difference scheme at higher time level (𝑛 + 1, 𝑠 + 1), we
use the central second-order finite difference approximation
to approximate the lower-order term in (12):

(𝑢
𝑙

𝑥𝑥
)
𝑛+1,𝑘

𝑖
=

1

Δ𝑥2
Λ
𝑙
𝑢
𝑛+1,𝑘

𝑖
, 𝑘 = 𝑠, 𝑠 + 1,

𝑖 = 3, . . . , 𝑁 − 2,

Λ
𝑙
𝑢
𝑛+1,𝑘

𝑖
= 𝑢
𝑛+1,𝑘

𝑖−1
− 2𝑢
𝑛+1,𝑘

𝑖
+ 𝑢
𝑛+1,𝑘

𝑖+1
.

(13)

For the high-order approximation term in (12), we use a
symmetric five-pointwide stencil for the inner points to reach
the fourth order of approximation:

(𝑢
ℎ

𝑥𝑥
)
𝑛+1,𝑠

𝑖
=

1

Δ𝑥2
Λ
ℎ
𝑢
𝑛+1,𝑠

𝑖
, 𝑖 = 3, . . . , 𝑁 − 2,

Λ
ℎ
𝑢
𝑛+1,𝑠

𝑖
=

1

12
(−𝑢
𝑛+1,𝑠

𝑖−2
+ 16𝑢

𝑛+1,𝑠

𝑖−1
− 30𝑢

𝑛+1,𝑠

𝑖

+16𝑢
𝑛+1,𝑠

𝑖+1
− 𝑢
𝑛+1,𝑠

𝑖+2
) .

(14)

Case 𝑠 = 0 in (13) gives the fourth order of approximation to
approximate the second-order derivatives at the time level 𝑛.

2.2.1. Stability Analysis. To study the stability of scheme
(11)–(14), we use the Von-Neumann stability analysis. For
simplicity, we assume that 𝑓𝑛+1/2

𝑖
≡ 0 in (11) and 𝑢 is periodic

in 𝑥.
Let us recast scheme (11) in the following form:

(𝐸 + 𝛼Λ
𝑙
) 𝑢
𝑛+1,𝑠+1

𝑖
= 𝛼 (Λ

𝑙
− Λ
ℎ
) 𝑢
𝑛+1,𝑠

𝑖

+ (𝐸 − 𝛼Λ
𝑙
) 𝑢
𝑛

𝑖
,

(15)

where 𝛼 = 𝛽Δ𝑡/(2Δ𝑥
2
). If we define the following operators

𝐴 = 𝐸 + 𝛼Λ
𝑙
, 𝐵 = 𝐸 − 𝛼Λ

ℎ
, and 𝐶 = 𝐸 + 𝛼Λ

ℎ
, where 𝐸 is the

identity operator, then (15) can be rewritten as follows:

𝐴𝑢
𝑛+1,𝑠+1

𝑖
= (𝐴 − 𝐶) 𝑢

𝑛+1,𝑠

𝑖
+ 𝐵𝑢
𝑛

𝑖
. (16)

Assuming that the operators commute, (𝐴−𝐶)𝐴 = 𝐴(𝐴−𝐶)

(e.g., in the case of uniform grid), it is easy to demonstrate
that if 𝑢𝑛+1,𝑆̂+1

𝑖
= 𝑢
𝑛+1

𝑖
and 𝑢𝑛+1,0

𝑖
= 𝑢
𝑛

𝑖
we get

𝐴
𝑆̂+1
𝑢
𝑛+1

𝑖
= (

𝑆̂

∑

𝑘=0

𝐴
𝑆̂−𝑘
(𝐴 − 𝐶)

𝑘
)𝐵𝑢
𝑛

𝑖
+ (𝐴 − 𝐶)

𝑆̂+1
𝑢
𝑛

𝑖
. (17)

Let 𝑢𝑛
𝑖
= 𝜉
𝑛
𝑒
𝐼Θ𝑖, 𝐼 = √−1, be the solution of (11)–(14), where

Θ = 2𝜋Δ𝑥/𝑙 is the phase angle with wavelength 𝑙. From (17),
we can derive an equation for the amplification factor in the
form

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
𝜑 (Θ, 𝑆̂, 𝛼)

󵄨󵄨󵄨󵄨󵄨
, (18)

where 𝑆̂ is the number of iterations, and

󵄨󵄨󵄨󵄨󵄨
𝜑 (Θ, 𝑆̂, 𝛼)

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨
[(∑
𝑆̂

𝑘=0
𝐴
𝑆̂−𝑘
(𝐴 − 𝐶)

𝑘
) 𝐵 + (𝐴 − 𝐶)

𝑆̂+1
] 𝑒
𝐼Θ𝑖
󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝐴𝑆̂+1𝑒𝐼Θ𝑖

󵄨󵄨󵄨󵄨󵄨

.

(19)

For stability of the method it is necessary that the absolute
values of the amplification factor are less than one; that is,

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 < 1. (20)

Calculations are tedious and almost impossible to do by hand
without mistake. We have therefore automate all calculations
in a computer algebra environment based on REDUCE to
obtain an explicit form of |𝜑(Θ, 𝑆̂, 𝛼)|. Figure 1 shows the
values of |𝜉|2 in the polar coordinate system (|𝜉|

2
, Θ) for

𝑆̂ = 1, 3, and 5. If only one iteration is executed in (11),
𝑆̂ = 1, inequality (20) holds if 𝛼 < 1.5, as can be seen from
Figure 1(a)). If 3 iterations are done in (11) (Figure 1(b)), 𝑆̂ = 3,
the amplification factor remains bounded by one at least for
𝛼 ≤ 10. In case of 𝑆̂ = 5, the stability criteria hold up to 𝛼 = 30
as can be seen from Figure 1(c)). It can be seen that increasing
the number of internal iterations results in increasing the
range of𝛼needed for stability.This tendency allows to assume
that as 𝑆̂ → ∞, our method becomes the unconditionally
stable Crank-Nikolson method for the heat equation.
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Figure 1: Variation of amplification factor withΘ. (a) 𝑆̂ = 1, dashed line 𝛼 = 2.0, solid line 𝛼 = 1.5, dash-doted line 𝛼 = 1.0, (b) 𝑆̂ = 3, dashed
line 𝛼 = 10.0, solid line 𝛼 = 5.0, dash-dotted line 𝛼 = 1.0, and (c) 𝑆̂ = 5, dashed line 𝛼 = 30.0, solid line 𝛼 = 15, dash-doted line 𝛼 = 5.0,
doted line 𝛼 = 1.0.

2.2.2. Fourth-Order Deferred Correction Scheme. Let us first
consider the one-dimensional heat conduction problem with
initial data and Dirichlet boundary conditions (1)–(3):

𝑢
𝑛+1,𝑘

1
= 𝛾
1
(𝑡
𝑛+1

) , 𝑢
𝑛+1,𝑘

𝑁
= 𝛾
2
(𝑡
𝑛+1

) . (21)

The finite difference approximations at 𝑥
2
and 𝑥

𝑁−1
, which

are the points next to the left and right boundaries, are
straightforward:

(𝑢
𝑙

𝑥𝑥
)
𝑛+1,𝑘

2
=

1

Δ𝑥2
(𝛾
1
(𝑡
𝑛+1

) − 2𝑢
𝑛+1,𝑘

2
+ 𝑢
𝑛+1,𝑘

3
) ,

𝑘 = 𝑠, 𝑠 + 1,

(𝑢
ℎ

𝑥𝑥
)
𝑛+1,𝑠

2
=

1

12Δ𝑥2
(10𝛾
1
(𝑡
𝑛+1

) − 15𝑢
𝑛+1,𝑠

2
− 4𝑢
𝑛+1,𝑠

3

+14𝑢
𝑛+1,𝑠

4
− 6𝑢
𝑛+1,𝑠

5
+ 𝑢
𝑛+1,𝑠

6
) ,

(𝑢
ℎ

𝑥𝑥
)
𝑛+1,𝑠

𝑁−1
=

1

12Δ𝑥2
(10𝛾
2
(𝑡
𝑛+1

) − 15𝑢
𝑛+1,𝑠

𝑁−1
− 4𝑢
𝑛+1,𝑠

𝑁−2

+14𝑢
𝑛+1,𝑠

𝑁−3
− 6𝑢
𝑛+1,𝑠

𝑁−4
+ 𝑢
𝑛+1,𝑠

𝑁−5
) ,

(𝑢
𝑙

𝑥𝑥
)
𝑛+1,𝑘

𝑁−1
=

1

Δ𝑥2
(𝑢
𝑛+1,𝑘

𝑁−2
− 2𝑢
𝑛+1,𝑘

𝑁−1
+ 𝛾
2
(𝑡
𝑛+1

)) ,

𝑘 = 𝑠, 𝑠 + 1.

(22)

Cases 𝑠 = 0 or 𝑘 = 0 give formulae to approximate (𝑢𝑙
𝑥𝑥
)
𝑛

𝑖

and (𝑢
ℎ

𝑥𝑥
)
𝑛

𝑖
. Substituting (13), (14), and (22) into (12) the

following fourth-order deferred correction approximations
of (𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
, 𝑖 = 2, . . . , 𝑁 − 1, are

(𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

2
=

5

6Δ𝑥2
𝛾
1
(𝑡
𝑛+1

)

+
1

Δ𝑥2
(−2𝑢
𝑛+1,𝑠+1

2
+ 𝑢
𝑛+1,𝑠+1

3
)

+
1

12Δ𝑥2
(9𝑢
𝑛+1,𝑠

2
− 16𝑢

𝑛+1,𝑠

3
+ 14𝑢

𝑛+1,𝑠

4

− 6𝑢
𝑛+1,𝑠

5
+ 𝑢
𝑛+1,𝑠

6
) ,

(𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
=

1

Δ𝑥2
(𝑢
𝑛+1,𝑠+1

𝑖−1
− 2𝑢
𝑛+1,𝑠+1

𝑖
+ 𝑢
𝑛+1,𝑠+1

𝑖+1
)

+
1

12Δ𝑥2
(−𝑢
𝑛+1,𝑠

𝑖−2
+ 4𝑢
𝑛+1,𝑠

𝑖−1
− 6𝑢
𝑛+1,𝑠

𝑖

+ 4𝑢
𝑛+1,𝑠

𝑖+1
− 𝑢
𝑛+1,𝑠

𝑖+2
) ,

𝑖 = 3, . . . , 𝑁 − 2,

(𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑁−1
=

5

6Δ𝑥2
𝛾
2
(𝑡
𝑛+1

)

+
1

Δ𝑥2
(−2𝑢
𝑛+1,𝑠+1

𝑁−1
+ 𝑢
𝑛+1,𝑠+1

𝑁
)

+
1

12Δ𝑥2
(9𝑢
𝑛+1,𝑠

𝑁−1
− 16𝑢

𝑛+1,𝑠

𝑁−2
+ 14𝑢

𝑛+1,𝑠

𝑁−3

−6𝑢
𝑛+1,𝑠

𝑁−4
+ 𝑢
𝑛+1,𝑠

𝑁−5
) .

(23)

Schemes (23) can be combined and expressed in the following
matrix form:

u𝑛+1,𝑠+1
𝑥𝑥

=
1

Δ𝑥2
Λ
𝑙
u𝑛+1,𝑠+1 + 1

Δ𝑥2
(Λ
ℎ
− Λ
𝑙
) u𝑛+1,𝑠 + 𝛾 (𝑡𝑛+1) ,

(24)
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where Λ
𝑙
is a tridiagonal (𝑁 − 2) × (𝑁 − 2) matrix and Λ

ℎ

is the corresponding triangular and sparse (𝑁 − 2) × (𝑁 − 2)

matrix,

u𝑛+1,𝑘 = (𝑢𝑛+1,𝑘
2

, 𝑢
𝑛+1,𝑘

3
, . . . , 𝑢

𝑛+1,𝑘

𝑁−1
)
𝑇

, 𝑘 = 𝑠, 𝑠 + 1, (25)

u𝑛+1,𝑠+1
𝑥𝑥

= ((𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

2
, (𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

3
, . . . , (𝑢

𝑥𝑥
)
𝑛+1,𝑠+1

𝑁−1
)
𝑇

.

(26)

Substituting (6), (23) into (11), the formulae can be written
into matrix form

(𝐸 − 𝛼Λ
𝑙
) u𝑛+1,𝑠+1

= 𝛼 (Λ
ℎ
− Λ
𝑙
) u𝑛+1,𝑠 + (𝐸 + 𝛼Λ

ℎ
) u𝑛

+ Δ𝑡 [𝛾 (𝑡
𝑛+1

) + 𝛾 (𝑡
𝑛
)] + Δ𝑡f 𝑛+1/2.

(27)

The abovematrix form is called FODs for Dirichlet boundary
value problem (1)–(3). Thomas algorithms can be used to
compute the solutions of FODs. At each step of time 𝑡𝑛 and
the initial stage, the convergence of FODs requires more
iterations to converge to the solution of the FOSs. The order
of approximation of FODs is 𝑂(Δ𝑡2, Δ𝑥4) which is the same
as FOSs in the uniform norm.

2.3. Fourth-Order Compact Scheme. Let us briefly represent
the main idea and final formulae of compact schemes.
Spatial derivatives in the Crank-Nikolson scheme (4) are
evaluated by the fourth-order compact finite differences
implicit scheme [5, 7, 8, 13, 14, 17].

In [8, 14], the Dirichlet boundary conditions

𝑢 (0,𝑚Δ𝑡) = 𝛾
1
(𝑡
𝑚
) = 𝑢
𝑚

1
, 𝑢 (𝑙, 𝑚Δ𝑡) = 𝛾

2
(𝑡
𝑚
) = 𝑢
𝑚

𝑁

(28)

are used to derive the following fourth-order schemes

(𝑢
𝑥𝑥
)
𝑚

2
+ 𝜎(𝑢

𝑥𝑥
)
𝑚

3

=
1

24Δ𝑥2
(𝑎
1
𝑢
𝑚

1
+ 𝑎
2
𝑢
𝑚

2
+ 𝑎
3
𝑢
𝑚

3
+ 𝑎
4
𝑢
𝑚

4

+ 𝑎
5
𝑢
𝑚

5
+ 𝑎
6
𝑢
𝑚

6
)

=
𝑎
1

24Δ𝑥2
𝛾
1
(𝑡
𝑚
)

+
1

24Δ𝑥2
(𝑎
2
𝑢
𝑚

2
+ 𝑎
3
𝑢
𝑚

3
+ 𝑎
4
𝑢
𝑚

4
+ 𝑎
5
𝑢
𝑚

5

+ 𝑎
6
𝑢
𝑚

6
) ,

(𝑢
𝑥𝑥
)
𝑚

𝑖−1
+ 10(𝑢

𝑥𝑥
)
𝑚

𝑖
+ (𝑢
𝑥𝑥
)
𝑚

𝑖+1

=
2

Δ𝑥2
(6𝑢
𝑚

𝑖−1
− 12𝑢

𝑚

𝑖
+ 6𝑢
𝑚

𝑖+1
) ,

𝑖 = 2, . . . , 𝑁 − 1,

(𝑢
𝑥𝑥
)
𝑚

𝑁−1
+ 𝜎(𝑢

𝑥𝑥
)
𝑚

𝑁−2

=
1

24Δ𝑥2
(𝑎
1
𝑢
𝑚

𝑁
+ 𝑎
2
𝑢
𝑚

𝑁−1
+ 𝑎
3
𝑢
𝑚

𝑁−2
+ 𝑎
4
𝑢
𝑚

𝑁−3

+ 𝑎
5
𝑢
𝑚

𝑁−4
+ 𝑎
6
𝑢
𝑚

𝑁−5
)

=
𝑎
1

24Δ𝑥2
𝛾
2
(𝑡
𝑚
)

+
1

24Δ𝑥2
(𝑎
2
𝑢
𝑚

𝑁−1
+ 𝑎
3
𝑢
𝑚

𝑁−2
+ 𝑎
4
𝑢
𝑚

𝑁−3
+ 𝑎
5
𝑢
𝑚

𝑁−4

+ 𝑎
6
𝑢
𝑚

𝑁−5
) ,

(29)

where the coefficients can be found by matching the Tay-
lor series expansion of left-hand-side terms up to order
𝑂(Δ𝑥

4
)𝑢
(6) which gives the following values of coefficients

[8]:

𝜎 =
1

2
, 𝑎

1
= 19, 𝑎

2
= −14, 𝑎

3
= −38,

𝑎
4
= 44, 𝑎

5
= −13, 𝑎

6
= 2.

(30)

Then all derivatives in (4) are approximated by the fourth-
order compact formula; we can write

𝐴u𝑚
𝑥𝑥
=

1

Δ𝑥2
𝐵u𝑚 + 𝛾𝑚, 𝑚 = 𝑛, 𝑛 + 1, (31)

where 𝐴 and 𝐵 are the corresponding triangular and
sparse (𝑁 − 2) × (𝑁 − 2) matrices, u𝑚

𝑥𝑥
= ((𝑢

𝑥𝑥
)
𝑚

2
,

(𝑢
𝑥𝑥
)
𝑚

3
, . . . , (𝑢

𝑥𝑥
)
𝑚

𝑁−1
)
𝑇, u𝑚 = (𝑢

𝑚

2
, 𝑢
𝑚

3
, . . . , 𝑢

𝑚

𝑁−1
)
𝑇 and 𝛾𝑚 =

(𝛾
1
(𝑡
𝑚
), 0, . . . , 0, 𝛾

2
(𝑡
𝑚
))
𝑇,𝑚 = 𝑛, 𝑛+1. Schemes (4) and (29)

can be combined and expressed in the followingmatrix form:

(𝐴 − 𝛼𝐵) u𝑛+1 = (𝐴 + 𝛼𝐵) u𝑛

+ Δ𝑡 [𝛾 (𝑡
𝑛+1

) + 𝛾 (𝑡
𝑛
)]

+ Δ𝑡f𝑛+1/2.

(32)

This scheme is called FOCs for Dirichlet boundary value
problem (1)–(3). We like to mention that the above scheme
has truncation error𝑂(Δ𝑡2, Δ𝑥4). Note that the triangular and
sparse (𝑁 − 2) × (𝑁 − 2) coefficient matrices in FOCs are
time independent; hence, we have to store the inverse of the
coefficient matrix 𝐴 − 𝛼𝐵 before the time marching in the
implementation of computational efficiency.

3. Numerical Examples

In this section, three numerical examples are carried out.The
first two are linear heat-conducting problem, with Dirichlet
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boundary conditions, which are used to confirmour theoreti-
cal analysis.Thenwe apply the FODS to the Burgers equation.
For simplicity, we fix our problem domain Ω = {𝑥 | 0 ≤ 𝑥 ≤

1}. In all computations, we used Δ𝑡 = Δ𝑥
2
/4 and 𝜖 = 10

−10.
The following stopping criterion is used:

max
1≤𝑖≤𝑁

󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛+1,𝑆̂+1

𝑖
− 𝑢
𝑛+1,𝑆̂

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
< 𝜖, 𝑠 = 0, . . . , 𝑆̂, (33)

where “𝑆̂” denotes the number of the last iteration.
The computations are performed using uniform grids

of 11, 21, 41, 81, and 161 nodes. The initial and boundary
conditions are obtained based on the exact solutions. For
the testing purpose only, all computations are performed for
0 ≤ t ≤ 1.

Example 1 (the homogeneous heat equation with the homo-
geneous Dirichlet boundary conditions). One has

𝑢
𝑡
= 𝑢
𝑥𝑥
, 0 ≤ 𝑥 ≤ 1, 𝑡 > 0,

𝑢 (𝑥, 0) = sin (𝜋𝑥) , 𝑢 (0, 𝑡) = 0, 𝑢 (1, 𝑡) = 0.
(34)

The exact solution is 𝑢(𝑥, 𝑡) = 𝑒
−𝜋
2
𝑡 sin(𝜋𝑥). The results

of performance over the time interval 𝑡 ∈ [0, 1] for the
FOCs, FODs, and FOSs are represented in Table 1, where the
maximum error and the rate of convergence at time instant
𝑡 = 1 are shown.

Example 2 (the nonhomogeneous heat equationwith non-ho-
mogeneous Dirichlet boundary conditions). One has

𝑢
𝑡
= 𝑢
𝑥𝑥
+ (𝜋
2
− 1) 𝑒

−𝑡 cos (𝜋𝑥)

+ 4𝑥 − 2, 0 ≤ 𝑥 ≤ 1, 𝑡 > 0,

𝑢 (𝑥, 0) = cos (𝜋𝑥) + 𝑥2, 𝑢 (0, 𝑡) = 𝑒
−𝑡
,

𝑢 (1, 𝑡) = −𝑒
−𝑡
+ 4𝑡 + 1.

(35)

The exact solution is 𝑢(𝑥, 𝑡) = 𝑒
−𝑡 cos(𝜋𝑥) + 𝑥

2
+ 4𝑥𝑡. The

results of performance over the time domain 𝑡 ∈ [0, 1] for
the FOC, FOD, and FOS schemes are represented in Table 2,
where themaximumerror and the rate of convergence at time
instant 𝑡 = 1 are shown.

The last two columns of Tables 1 and 2 demonstrate the
average number of iterations in FODs at one time step and the
CPU time required to obtain the solution at time instant 𝑡 = 1.
The average number of iterations means the total number of
iterations divided by the number of time steps. As a rule, at the
initial stage the convergence of deferred correction requires
more iterations. For larger instants of time, the convergence
occurs after 2∼7 iterations as can be seen from Tables 1 and
2. All of schemes are seen to be the fourth order of accuracy,
as the error is reduced approximately by factor four when the
mesh is refined by half.Themaximum error of the FODs and
FOCs is almost the same, since the iterative scheme FODs is
constructed by applying the deferred correction technique on
the FOSs. It can be stated that when the iterations converge,

the solution of FODs, therefore, converges to the solution
of FOSs in each step of time. As shown in Tables 1 and 2,
there is hardly a difference in the computational efficiency
between FODs and FOSs. Both schemes are more efficient
than FODs. An explanation is due to the iteration needed for
the convergence of solutions on each step of time.

Although the FODs use more computational time as
compared with FOCs and FOSs, it is recommended that the
construction of FODs can be easily implemented. Moreover,
the scheme does not need to store the inverse of coefficient
matrices as required in FOCs and FOSs. Therefore, the
method is easily extended to multidimensional cases.

It is suggested that the differed correction technique can
solve problems which need high accuracy of computational
methods. Also this technique can be easily implemented
and extended for solving problem with Neumann boundary
conditions. In addition, such technique can be easily used to
create standard code and applied in case of nonuniform grids.

Considering Burgers equation

𝑢
𝑡
= 𝛽𝑢
𝑥𝑥
− 𝑢𝑢
𝑥
, 0 ≤ 𝑥 ≤ 1, 𝑡 > 0, (36)

with the exact solution [21] is given by

𝑢 (𝑥, 𝑡) =
𝜉 + 𝜂 + (𝜂 − 𝜉) 𝑒

𝜌

1 + 𝑒𝜌
, (37)

where 𝜌 = 𝜉(𝑥−𝜂𝑡−𝜐)/𝛽. The initial and Dirichlet boundary
conditions are considered to be in agreement with the exact
solution proposed here. For Burgers equation (36), we solve
it by the following fourth-order deferred correction scheme:

𝑢
𝑛+1,𝑠+1

𝑖
− 𝑢
𝑛

𝑖

Δ𝑡
=
𝛽

2
[(𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
+ (𝑢
𝑥𝑥
)
𝑛

𝑖
] + 𝑓
𝑛

𝑖
, (38)

where 𝑓𝑛
𝑖
= −[(𝑢

2
/2)
𝑥
]
𝑛

𝑖
. The nonlinear term 𝑓

𝑛

𝑖
is approx-

imated with the fourth-order approximation and all the
second-derivative terms in (38) are approximated by the
fourth-order formula (6) and the fourth-order deferred
correction schemes (23). The scheme (38) can be combined
and expressed in the following matrix form:

(𝐸 − 𝛼Λ
𝑙
) u𝑛+1,𝑠+1 = 𝛼 (Λ

ℎ
− Λ
𝑙
) u𝑛+1,𝑠 + (𝐸 + 𝛼Λ

ℎ
) u𝑛

+ Δ𝑡 [𝛾 (𝑡
𝑛+1

) + 𝛾 (𝑡
𝑛
)] + Δ𝑡f 𝑛,

(39)

where 𝐸 is identity matrix,Λ
𝑙
is tridiagonal (𝑁−2) × (𝑁−2)

matrix, and Λ
ℎ
is the corresponding triangular and sparse

(𝑁 − 2) × (𝑁 − 2)matrix and can be solved by usingThomas
algorithm.

Example 3 (the Burgers equation (36) and the constant values
] = 0.125, 𝜉 = 0.6, 𝜂 = 0.4, and 𝛽 = 1 with appropriate
initial and Dirichlet boundary condition in agreement with
exact solution (37)). This problem was solved using different
time step andmesh sizes over the time interval 0 < 𝑡 ≤ 1. The
results of performance over the time interval 𝑡 ∈ [0, 1] for the
FODs are represented in Tables 3 and 4, where the maximum
error and the rate of convergence at time instant 𝑡 = 1 are
shown.
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Table 1: Maximum absolute error, order of convergence, and CPU time in seconds of the FOCs, FODs, and FOSs for test problem (34) at
time instant 𝑡 = 1.

Types of scheme Grid points Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
11 3.8687 × 10

−8 — 1 0.006

21 6.0426 × 10
−10

6.0005 1 0.042

FOCs 41 2.2454 × 10
−11

4.7501 1 0.326

81 1.2821 × 10
−12

4.1304 1 2.564

161 8.0164 × 10
−14

3.9994 1 20.437

11 9.9767 × 10
−9 — 4 0.015

21 1.4996 × 10
−9

2.7361 3 0.085

FODs 41 1.1193 × 10
−10

3.7438 2 0.438

81 7.1438 × 10
−12

3.9698 2 3.450

161 4.4797 × 10
−13

4.1875 2 27.495

11 9.9763 × 10
−9 — 1 0.006

21 1.4996 × 10
−9

2.7361 1 0.043

FOSs 41 1.1193 × 10
−10

3.7438 1 0.334

81 7.1440 × 10
−12

3.9698 1 2.623

161 4.4854 × 10
−13

4.1875 1 20.907

Table 2: Absolute error, the rate of convergence, and CPU time in seconds of the FOCs, FODs, and FOSs for the test problem (35) at time
instant 𝑡 = 1.

Types of scheme Grid points Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
11 1.8470 × 10

−5 — 1 0.006

21 3.6901 × 10
−7

5.6454 1 0.046

FOCs 41 7.5595 × 10
−9

5.6092 1 0.353

81 6.6458 × 10
−10

3.5077 1 2.778

161 4.8841 × 10
−11

3.7663 1 22.141

11 1.7132 × 10
−5 — 7 0.016

21 2.6914 × 10
−7

5.9922 7 0.128

FODs 41 2.7910 × 10
−8

3.2655 6 0.851

81 2.0112 × 10
−9

3.7941 5 5.568

161 1.3116 × 10
−10

3.9415 5 44.375

11 1.2895 × 10
−5 — 1 0.006

21 2.8544 × 10
−7

5.9922 1 0.046

FOSs 41 2.7306 × 10
−8

3.2655 1 0.359

81 1.9590 × 10
−9

3.7941 1 2.821

161 1.3130 × 10
−10

3.9415 1 22.484

Table 3: Maximum absolute error, order of convergence, and CPU time in seconds for Example 3 at time instant 𝑡 = 1 with fixed mesh size
Δ𝑥 = 0.05.

Types of scheme Time step sizes Maximum error Rate of convergence Aver. number of iteration CPU time in sec.

FODs

10
−2

8.0945 × 10
−6 — 10 0.015

10
−3

8.0942 × 10
−7

1.0000 6 0.109

10
−4

8.1144 × 10
−8

0.9989 3 0.656

10
−5

8.2989 × 10
−9

0.9902 3 6.281

Table 4: Maximum absolute error, order of convergence, and CPU time in seconds for Example 3 at time instant 𝑡 = 1 with time step size
Δ𝑡 = Δ𝑥

4.

Types of scheme Grid points Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
11 8.3375 × 10

−8 — 3 0.516

FODs 21 5.2632 × 10
−9

3.9812 2 8.594

41 3.3491 × 10
−10

3.9774 2 200.015
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In order to analyze the results found in application
to the Burgers equation (36), Table 3 demonstrates rate of
convergence, average number of iteration at each time step,
and CPU time required to obtain the solution of Example 3
by using FODs at time instant 𝑡 = 1 when Δ𝑥 = 0.05 with
various time step sizes. Table 4 shows the rate of convergence,
average number of iteration at each time step, and CPU time
required to obtain the solution of Example 3 at time instant
𝑡 = 1 and using uniform grids of 11, 21, and 41 with time step
sizes Δ𝑡 = Δ𝑥4 and 𝜖 = 10−10.

It can be seen from Tables 3 and 4 that numerical results
are in good agreement with the exact solution. We only
observe𝑂(Δ𝑡) convergence rate and the error is dominated by
time error. An explanation for this phenomenon is due to the
nonlinear term, which is approximated at time level 𝑛, instead
of at time level 𝑛 + 1/2 for the FODs (38).

4. Conclusion

In this paper, a new set of fourth-order schemes for the
one-dimensional heat conduction problem with Dirichlet
boundary conditions is constructed using a deferred cor-
rection technique. The construction of high-order deferred
correction schemes requires only a regular three-point stencil
at higher time level which is similar to the standard second-
order Crank-Nikolson method. The greatest significance of
FODs, compared with FOCs and FOSs, is the easier develop-
ment and that it can be solved by using Thomas algorithms.
Numerical examples confirm the order of accuracy. We also
implement our algorithms to nonlinear problems. However,
theoretical analysis for nonlinear problems needs further
investigation. Posterior idea for this project is to use another
way to make 𝑢𝑢

𝑥
term as follows [21, 22]:

𝑢
𝑛+1

(𝑢
𝑥
)
𝑛+1

𝑖
≈ 𝑢
𝑛+1

(𝑢
𝑥
)
𝑛

𝑖
+ 𝑢
𝑛
(𝑢
𝑥
)
𝑛+1

𝑖
− 𝑢
𝑛
(𝑢
𝑥
)
𝑛

𝑖
, (40)

where better results are expected to be found. The first two
terms on the right-hand side of above equation make the
coefficientmatrices of FOCs, FODs, and FOSs varywith time.
That is, the inverse coefficient matrices of FOCs and FOSs
have to be stored on each step of time while FODs have
no need. For this reason, the FODs is simple to implement
although FODs need more iterations for the convergence of
solution on each step of time.
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Program list for test Problems 
 

Generated Grids and Test Problem Used 
- Generated Grids 
function[gx] = grid(nx,hx); 
for i=1:nx 
    gx(i,1) = hx + (i-1)*hx; 
end 
 

- Exact solution for test Problem 
 
function[ex] = exact(ti,nx,v1); 
k1=exp(-ti); 
for i=1:nx 
    ex(i,1)=(k1*cos(pi*v1(i,1))) + v1(i,1)^2 +(4*ti*v1(i,1)); 
end 
 
function[ex] = exact(ti,nx,v1); 
k1=exp(-pi^2*ti); 
for i=1:nx 
    ex(i,1)=k1*sin( pi*v1(i,1) ); 
end 

 
function[ex] = exact(ti,nx,v1); 
for i=1:nx 
    ex(i,1)=2*v1(i,1)/( 1+2*ti ); 
end 

 
function[ex] = exact(ti,nx,c1,c2,c3,Re,v1); 
for i=1:nx 
    c4 = c1*Re*(v1(i,1)-c2*ti-c3); 
    c5 = exp(c4); 
    ex(i,1)=( (c1+c2)+(c2-c1)*c5 )/(1+c5); 
end 
 

Main Program 

DCNS2:  Dirichlet Boundary Condition, Second-Order Finite Difference Scheme 
DHCS4:  Dirichlet Boundary Condition, Fourth-Order Compact Finite Difference Scheme 

DHDS4:  Dirichlet Boundary Condition, Fourth-Order Deferred correction  

             Finite Difference Scheme 

NCNS2:  Neuman Boundary Condition, Second-Order Finite Difference Scheme 

NHDS4:  Neuman Boundary Condition, Fourth-Order Deferred correction  

             Finite Difference Scheme 

NHCS4:  Neuman Boundary Condition, Fourth-Order Compact Finite Difference Scheme 
 

 



 

DCNS2:  Dirichlet Boundary Condition, Second-Order Finite Difference Scheme 

- Main Program 
clc,clear 
format long 
l  = 1; 
n  = 11; 
nx = n-2; 
hx = 1./(n-1); 
dt = hx.^2/10; 
r = dt./(2.*hx.^2); 
time = 1.; 
eps  = 1.0e-10; 
nit = round(time/dt); 
  
A = zeros(nx,nx);   C  = zeros(nx,nx);   
  
gx = zeros(nx,1);   u0 = zeros(nx,1);   un = zeros(nx,1);    
unp1=zeros(nx,1);   fi = zeros(nx,1);   di = zeros(nx,1); 
gi = zeros(nx,1);   er = zeros(nit,1);  t  = zeros(nit,1);    
a1 = zeros(nx,1);   a2 = zeros(nx,1);   a3 = zeros(nx,1);  
li = zeros(nx,1); 
  
gx = grid(nx,hx);   E = eye(nx,nx); 
  
tic 
  
for i=1:nx;       
    if i == 1  
        A(i,i)= 2;        A(i,i+1)=-1;  
    elseif i == nx 
        A(i,i-1)=-1;     A(i,i)= 2; 
    else 
        A(i,i-1)=-1;     A(i,i)= 2;     A(i,i+1)=-1; 
    end 
end 
  
C  = E+r*A;      
nt  = 0; 
ti  = 0.; 
err = 0.; 
k1  = (pi.^2)-1.; 
u0  = exact(ti,nx,gx); 
un  = u0; 
  
while ti < time 
    err  = 1.; 
    nt   = nt+1; 
    ti   = nt*dt;       ki   = k1*exp(-ti);    
    th   = ti-(dt/2);   kh   = k1*exp(-th); 
    tp   = ti-dt;       kp   = k1*exp(-tp); 
    ex   = exact(ti,nx,gx); 
    ap1 =  exp(-ti); 
    ap2 = -exp(-ti)+(4*ti)+1; 
    for i=1:nx; 
        fi(i,1) = dt*( kh*cos(pi*gx(i,1)) + 4*gx(i,1) - 2 );  
        if i == 1  
            gi(i,1) = un(1,1)+fi(1,1) ... 
                     +r*( ap1-2*un(1,1)+un(2,1) ); 
 



 

        elseif i == nx 
            gi(nx,1)= un(nx,1)+fi(nx,1) ... 
                     +r*( ap2-2*un(nx,1)+un(nx-1,1) ); 
        else 
            gi(i,1) = un(i,1)+fi(i,1) ... 
                     +r*( un(i-1,1)-2*un(i,1)+un(i+1,1) ); 
        end  
    end  
  
    ap1 =  exp(-tp); 
    ap2 = -exp(-tp)+(4*tp)+1; 
    for i=1:nx; 
        if i == 1  
            di(i,1) = r*ap1; 
        elseif i == nx 
            di(i,1) = r*ap2; 
        else 
            di(i,1) = 0.0; 
        end  
    end  
    li   = gi + di; 
  
    % Using TDMA 
    for i=1:nx;       
        if i == 1  
            a1(i,1)= 0;        a2(i,1)= C(i,i);    a3(i,1)= C(i,i+1);     
        elseif i == nx 
            a1(i,1)=C(i,i-1);  a2(i,1)= C(i,i);    a3(i,1)= 0;  
        else 
            a1(i,1)=C(i,i-1);  a2(i,1)= C(i,i);    a3(i,1)= C(i,i+1);  
        end 
    end 
    a3(1,1) = a3(1,1)/a2(1,1); 
    li(1,1) = li(1,1)/a2(1,1);  
    for i = 2:nx-1 
        temp    = a2(i,1)-(a1(i,1)*a3(i-1,1)); 
        a3(i,1) = a3(i,1)/temp; 
        li(i,1) = ( li(i,1)-(a1(i,1)*li(i-1,1)) )/temp; 
    end 
    li(nx,1) = ( li(nx,1)  - (a1(nx,1)*li(nx-1,1) ) )/ ... 
               ( a2(nx,1) - (a1(nx,1)*a3(nx-1,1)) ); 
    % Now back substitute. 
    unp1(nx,1) = li(nx,1); 
    for i = nx-1:-1:1 
        unp1(i,1) = li(i,1) - (a3(i,1)*unp1(i+1,1)); 
    end     
     
% Check err 
    err = max(abs(unp1-un)); 
    un  = unp1; 
    er(nt,1)  = max(abs(ex-unp1)); 
    t(nt,1)   = nt*dt; 
end 
toc 
er(nit,1) 
figure(1); 
semilogy(t,er,'r-.'); 
hold on 
xlabel('t') 
ylabel('Maximum norm') 
axis([0 1 1.0E-12 1.0E-02]) 



 

DHCS4:  Dirichlet Boundary Condition, Fourth-Order Compact Finite Difference Scheme 

- Main Program 
clc,clear 
format short 
l  = 1; 
n  = 161; 
nx = n-2; 
hx = 1/(n-1); 
dt = hx^2/4; 
r  = dt/hx^2; 
time = 1; 
nit = round(time/dt); 
  
A  = zeros(nx,nx);  B = zeros(nx,nx);   C  = zeros(nx,nx);   
D  = zeros(nx,nx);  IC= zeros(nx,nx);   
  
gx = zeros(nx,1);   u0 = zeros(nx,1);   un = zeros(nx,1);    
unp1=zeros(nx,1);   fi = zeros(nx,1);   di = zeros(nx,1); 
gi = zeros(nx,1);   er = zeros(nit,1);  t  = zeros(nit,1); 
li = zeros(nx,1); 
  
gx = grid(nx,hx);   E = eye(nx,nx); 
  
tic 
  
for i=1:nx;       
    if i == 1  
        A(i,i)  =  2;    A(i,i+1)= 1; 
        B(i,i)  = 7/12;  B(i,i+1)= 19/12;   B(i,i+2)=-11/6; 
        B(i,i+3)= 13/24; B(i,i+4)=-1/12;    
    elseif i == nx 
        A(i,i)  =  2;    A(i,i-1)= 1; 
        B(i,i)  = 7/12;  B(i,i-1)= 19/12;   B(i,i-2)=-11/6; 
        B(i,i-3)= 13/24; B(i,i-4)=-1/12; 
    else 
        A(i,i-1)= 1;     A(i,i)=10;     A(i,i+1)= 1; 
        B(i,i-1)=-6;     B(i,i)=12;     B(i,i+1)=-6; 
    end 
end 
 C = A+r*B; D = A-r*B;  IC= inv(C);       
nt  = 0; 
ti  = 0.; 
err = 0.; 
k1  = (pi.^2)-1.; 
u0  = exact(ti,nx,gx); 
un  = u0; 
while ti < time 
    err  = 10.;   nt   = nt+1; 
    ti   = nt*dt;       ki   = k1*exp(-ti);    
    th   = ti-(dt/2);   kh   = k1*exp(-th); 
    tp   = ti-dt;       kp   = k1*exp(-tp); 
    ex   = exact(ti,nx,gx); 
    ap1 =  exp(-th); 
    ap2 = -exp(-th)+(4*th)+1; 
    for i=1:nx; 
        fi(i,1) = dt*( kh*cos(pi*gx(i,1)) + 4*gx(i,1) - 2 ); 
    end 
 
 



 

    for i=1:nx; 
        if i == 1  
            gi(1,1) = D(1,1)*un(1,1) + D(1,2)*un(2,1) ... 
                    + D(1,3)*un(3,1) + D(1,4)*un(4,1) ... 
                    + D(1,5)*un(5,1) ... 
                    + A(1,1)*fi(1,1) + A(1,2)*fi(2,1) ... 
                    + A(1,3)*fi(3,1) + A(1,4)*fi(4,1) ... 
                    + A(1,5)*fi(5,1); 
            di(1,1) = 19*r*ap1/12; 
        elseif i == nx 
            gi(nx,1)= D(nx,nx)*un(nx,1)   + D(nx,nx-1)*un(nx-1,1) ... 
                  + D(nx,nx-2)*un(nx-2,1) + D(nx,nx-3)*un(nx-3,1) ... 
                  + D(nx,nx-4)*un(nx-4,1) ... 
                  + A(nx,nx)*fi(nx,1)     + A(nx,nx-1)*fi(nx-1,1) ... 
                  + A(nx,nx-2)*fi(nx-2,1) + A(nx,nx-3)*fi(nx-3,1) ... 
                  + A(nx,nx-4)*fi(nx-4,1); 
            di(nx,1)= 19*r*ap2/12; 
        else 
            gi(i,1) = D(i,i-1)*un(i-1,1) + D(i,i)*un(i,1) ... 
                    + D(i,i+1)*un(i+1,1) ... 
                    + A(i,i-1)*fi(i-1,1) + A(i,i)*fi(i,1) ... 
                    + A(i,i+1)*fi(i+1,1); 
            di(i,1) = 0.0; 
        end  
    end  
    li   = gi+di; 
    unp1 = IC*li; 
    un   = unp1; 
    er(nt,1)  = max(abs(ex-unp1)); 
    t(nt,1)   = nt*dt; 
end 
toc 
er(nit,1) 
figure(1); 
semilogy(t,er,'k-.'); 
hold on 
xlabel('t') 
ylabel('Maximum norm') 
axis([0 1 1.0E-12 1.0E-04]) 
 

 

 

 

 

 
 

 

 
 

 

 



 

DHDS4:  Dirichlet Boundary Condition, Fourth-Order Deferred correction  

             Finite Difference Scheme 
- Main Program 1 
clc,clear 
format short 
l  = 1; 
n  = 11; 
nx = n-2; 
hx = 1./(n-1); 
dt = hx.^2/4; 
r = dt./(2.*hx.^2); 
time = 1; 
eps  = 1.0e-10; 
nit = round(time/dt); 
  
A = zeros(nx,nx);   C  = zeros(nx,nx);   
  
gx = zeros(nx,1);   u0 = zeros(nx,1);   un = zeros(nx,1);    
unp1=zeros(nx,1);   fi = zeros(nx,1);   di = zeros(nx,1); 
gi = zeros(nx,1);   er = zeros(nit,1);  t  = zeros(nit,1);    
a1 = zeros(nx,1);   a2 = zeros(nx,1);   a3 = zeros(nx,1); 
li = zeros(nx,1);  
  
gx = grid(nx,hx);   E = eye(nx,nx); 
  
tic 
  
for i=1:nx;       
    if i == 1  
        A(i,i)=2;           A(i,i+1)=-1;     
    elseif i == nx 
        A(i,i-1)=-1;        A(i,i)=2; 
    else 
        A(i,i-1)=-1;        A(i,i)=2;           A(i,i+1)=-1; 
    end 
end 
  
C  = E+r*A; 
  
np  = 0; 
nt  = 0; 
ti  = 0.; 
k1  = (pi.^2)-1.; 
u0  = exact(ti,nx,gx); 
un  = u0; 
it  = 0; 
itp = 0; 
  
while ti < time  
    err  = 1.; 
    nt   = nt+1; 
    ti   = nt*dt;       ki   = k1*exp(-ti);    
    th   = ti-(dt/2);   kh   = k1*exp(-th); 
    tp   = ti-dt;       kp   = k1*exp(-tp); 
    ex   = exact(ti,nx,gx); 
    ap1 =  exp(-tp); 
    ap2 =  -exp(-tp)+(4*tp)+1; 
 



 

    for i=1:nx; 
        fi(i,1) = dt*( kh*cos(pi*gx(i,1)) + 4*gx(i,1) - 2 );  
        if i == 1  
            gi(i,1) = u0(1,1)+fi(1,1) ... 
                         +r*( 10*ap1-15*u0(1,1)-4*u0(2,1)... 
                         +14*u0(3,1)-6*u0(4,1)+u0(5,1) )/12; 
        elseif i == 2  
            gi(2,1) = u0(2,1)+fi(2,1) ... 
                         +r*( -ap1+16*u0(1,1)-30*u0(2,1)... 
                         +16*u0(3,1)-u0(4,1) )/12; 
        elseif i == nx-1 
            gi(nx-1,1) = u0(nx-1,1)+fi(nx-1,1) ... 
                         +r*( -ap2+16*u0(nx,1)-30*u0(nx-1,1)... 
                         +16*u0(nx-2,1)-u0(nx-3,1) )/12; 
        elseif i == nx 
            gi(nx,1) = u0(nx,1)+fi(nx,1) ... 
                         +r*( 10*ap2-15*u0(nx,1)-4*u0(nx-1,1)... 
                         +14*u0(nx-2,1)-6*u0(nx-3,1)+u0(nx-4,1) )/12; 
        else 
            gi(i,1) = u0(i,1)+fi(i,1) ... 
                         +r*( -u0(i-2,1)+16*u0(i-1,1)-30*u0(i,1)... 
                         +16*u0(i+1,1)-u0(i+2,1) )/12; 
        end  
    end  
  
    ap1 =  exp(-ti); 
    ap2 =  -exp(-ti)+(4*ti)+1; 
    while err > eps 
    itp  = itp+1;  
        for i=1:nx; 
            if i == 1  
                di(i,1) = r*( 10*ap1+9*un(1,1)-16*un(2,1)... 
                             +14*un(3,1)-6*un(4,1)+un(5,1) )/12; 
            elseif i == 2  
                di(i,1) = r*( -ap1+4*un(1,1)-6*un(2,1)... 
                              +4*un(3,1)-un(4,1) )/12; 
            elseif i == nx-1 
                di(i,1) = r*( -ap2+4*un(nx,1)-6*un(nx-1,1)... 
                              +4*un(nx-2,1)-un(nx-3,1) )/12; 
            elseif i == nx 
                di(i,1) = r*( 10*ap2+9*un(nx,1)-16*un(nx-1,1)... 
                         +14*un(nx-2,1)-6*un(nx-3,1)+un(nx-4,1) )/12; 
            else 
                di(i,1) = r*( -un(i-2,1)+4*un(i-1,1)-6*un(i,1)... 
                              +4*un(i+1,1)-un(i+2,1) )/12; 
            end  
        end  
    li   = gi + di; 
  
% Using TDMA 
    for i=1:nx;       
        if i == 1  
            a1(i,1)= 0;        a2(i,1)= C(i,i);    a3(i,1)= C(i,i+1);     
        elseif i == nx 
            a1(i,1)=C(i,i-1);  a2(i,1)= C(i,i);    a3(i,1)= 0;  
        else 
            a1(i,1)=C(i,i-1);  a2(i,1)= C(i,i);    a3(i,1)= C(i,i+1);  
        end 
    end 
    a3(1,1) = a3(1,1)/a2(1,1); 
    li(1,1) = li(1,1)/a2(1,1);  
 



 

    for i = 2:nx-1 
        temp    = a2(i,1)-(a1(i,1)*a3(i-1,1)); 
        a3(i,1) = a3(i,1)/temp; 
        li(i,1) = ( li(i,1)-(a1(i,1)*li(i-1,1)) )/temp; 
    end 
    li(nx,1) = ( li(nx,1)  - (a1(nx,1)*li(nx-1,1) ) )/ ... 
               ( a2(nx,1) - (a1(nx,1)*a3(nx-1,1)) ); 
    % Now back substitute. 
    unp1(nx,1) = li(nx,1); 
    for i = nx-1:-1:1 
        unp1(i,1) = li(i,1) - (a3(i,1)*unp1(i+1,1)); 
    end 
     
% Check err 
    err = max(abs(unp1-un)); 
    un  = unp1; 
    end 
    u0  = un;  
    er(nt,1)  = max(abs(ex-unp1)); 
    t(nt,1)   = nt*dt; 
    it        = it+1; 
end 
toc 
itp/it 
er(nit,1) 
figure(1); 
semilogy(t,er,'b-.'); 
hold on 
xlabel('t') 
ylabel('Maximum norm') 
axis([0 1 1.0E-12 1.0E-04]) 

 

 

 
 

 
 

 

 

 

 
 

 

 
 

 

 

 



 

- Main Program 2 
clc,clear 
format long 
l  = 1; 
n  = 11; 
nx = n-2; 
hx = 1./(n-1); 
dt = hx.^2/10; 
Re = 1.; 
r = dt/(2*Re*hx^2); 
rr = dt/(2*hx); 
time = 1; 
eps  = 1.0e-10; 
nit = round(time/dt); 
  
A = zeros(nx,nx);   C  = zeros(nx,nx);  D = zeros(nx,nx);  
  
gx = zeros(nx,1);   u0 = zeros(nx,1);   un = zeros(nx,1);    
unp1=zeros(nx,1);   fi = zeros(nx,1);   di = zeros(nx,1); 
gi = zeros(nx,1);   er = zeros(nit,1);  t  = zeros(nit,1);    
a1 = zeros(nx,1);   a2 = zeros(nx,1);   a3 = zeros(nx,1);  
  
gx = grid(nx,hx);   E = eye(nx,nx);    
  
tic 
  
for i=1:nx;       
    if i == 1  
        A(i,i)=2/3;         A(i,i+1)=-2/3;  
        a1(i,1)= 0;         a2(i,1)= A(i,i);    a3(i,1)= A(i,i+1); 
    elseif i == nx 
        A(i,i-1)=-2/3;      A(i,i)=2/3; 
        a1(i,1)=A(i,i-1);   a2(i,1)= A(i,i);    a3(i,1)= 0;  
    else 
        A(i,i-1)=-1;        A(i,i)=2;        A(i,i+1)=-1; 
        a1(i,1)=A(i,i-1);   a2(i,1)= A(i,i);    a3(i,1)= A(i,i+1);  
    end 
end 
  
C  = E+r*A;  
  
  
np  = 0; 
nt  = 0; 
ti  = 0.; 
err = 0.; 
u0  = exact(ti,nx,gx); 
un  = u0; 
it  = 0; 
itp = 0; 
  
while ti < time 
    err = 10.; 
    nt  = nt+1; 
    ti  = nt*dt;          
    th  = ti-(dt/2);    
    tp  = ti-dt;        
    ex  = exact(ti,nx,gx); 
    ap1 =  0.0; 
    ap2 =  2/(1+2*tp); 



 

    for i=1:nx;  
        if i == 1 
            fi(1,1) =-rr*(-3*ap1^2-10*u0(1,1)^2+18*u0(2,1)^2 ... 
                          -6*u0(3,1)^2+u0(4,1)^2 )/12; 
        elseif i == 2 
            fi(2,1) =-rr*( ap1^2-8*u0(1,1)^2 ... 
                          +8*u0(3,1)^2-u0(4,1)^2 )/12;             
        elseif i == nx-1 
            fi(nx-1,1) =-rr*(-ap2^2+8*u0(nx,1)^2 ... 
                          -8*u0(nx-2,1)^2+u0(nx-3,1)^2 )/12; 
        elseif i == nx 
            fi(nx,1) =-rr*( 3*ap2^2+10*u0(nx,1)^2-18*u0(nx-1,1)^2 ... 
                          +6*u0(nx-2,1)^2-u0(nx-3,1)^2 )/12; 
        else 
            fi(i,1) =-rr*( u0(i-2,1)^2-8*u0(i-1,1)^2 ... 
                          +8*u0(i+1,1)^2-u0(i+2,1)^2 )/12; 
        end 
    end  
    for i=1:nx; 
        if i == 1  
            gi(1,1) = u0(1,1)+fi(1,1) ... 
                         +r*( 10*ap1-15*u0(1,1)-4*u0(2,1)... 
                             +14*u0(3,1)-6*u0(4,1)+u0(5,1) )/12; 
        elseif i == 2  
            gi(2,1) = u0(2,1)+fi(2,1) ... 
                         +r*( -ap1+16*u0(1,1)-30*u0(2,1)... 
                              +16*u0(3,1)-u0(4,1) )/12; 
        elseif i == nx-1 
            gi(nx-1,1) = u0(nx-1,1)+fi(nx-1,1) ... 
                         +r*( -ap2+16*u0(nx,1)-30*u0(nx-1,1)... 
                              +16*u0(nx-2,1)-u0(nx-3,1) )/12; 
        elseif i == nx 
            gi(nx,1) = u0(nx,1)+fi(nx,1) ... 
                         +r*( 10*ap2-15*u0(nx,1)-4*u0(nx-1,1)... 
                         +14*u0(nx-2,1)-6*u0(nx-3,1)+u0(nx-4,1) )/12; 
        else 
            gi(i,1) = u0(i,1)+fi(i,1) ... 
                         +r*( -u0(i-2,1)+16*u0(i-1,1)-30*u0(i,1)... 
                              +16*u0(i+1,1)-u0(i+2,1) )/12; 
        end  
    end  
  
    ap1 =  0.0; 
    ap2 =  2/(1+2*ti); 
    ga1 =  2/(1+2*ti); 
    ga2 =  2/(1+2*ti); 
    while err > eps 
    itp  = itp+1;  
        for i=1:nx; 
            if i == 1  
                di(1,1) = r*(-(50*ga1*hx/137)+(2041*un(1,1)/1644) ... 
                             -(387*un(2,1)/137)+(653*un(3,1)/274) ... 
                             -(131*un(4,1)/137)+(257*un(5,1)/1644) ); 
            elseif i == 2  
                di(2,1) = r*( -ap1+4*un(1,1)-6*un(2,1)... 
                              +4*un(3,1)-un(4,1) )/12; 
            elseif i == nx-1 
                di(nx-1,1) = r*( -ap2+4*un(nx,1)-6*un(nx-1,1)... 
                              +4*un(nx-2,1)-un(nx-3,1) )/12; 
 
 



 

 
            elseif i == nx 
                di(nx,1) = r*((50*ga2*hx/137)+(2041*un(nx,1)/1644)... 
                       -(387*un(nx-1,1)/137)+(653*un(nx-2,1)/274) ... 
                       -(131*un(nx-3,1)/137)+(257*un(nx-4,1)/1644) ); 
            else 
                di(i,1) = r*( -un(i-2,1)+4*un(i-1,1)-6*un(i,1)... 
                              +4*un(i+1,1)-un(i+2,1) )/12; 
            end  
        end  
    D   = gi + di; 
  
    % Using TDMA 
    for i=1:nx;       
        if i == 1  
            a1(i,1)= 0;        a2(i,1)= C(i,i);    a3(i,1)= C(i,i+1);     
        elseif i == nx 
            a1(i,1)=C(i,i-1);  a2(i,1)= C(i,i);    a3(i,1)= 0;  
        else 
            a1(i,1)=C(i,i-1);  a2(i,1)= C(i,i);    a3(i,1)= C(i,i+1);  
        end 
    end 
    a3(1,1) = a3(1,1)/a2(1,1); 
    D(1,1)  = D(1,1)/a2(1,1);  
    for i = 2:nx-1 
        temp    = a2(i,1)-(a1(i,1)*a3(i-1,1)); 
        a3(i,1) = a3(i,1)/temp; 
        D(i,1)  = ( D(i,1)-(a1(i,1)*D(i-1,1)) )/temp; 
    end 
    D(nx,1) = ( D(nx,1)  - (a1(nx,1)*D(nx-1,1) ) )/ ... 
              ( a2(nx,1) - (a1(nx,1)*a3(nx-1,1)) ); 
    % Now back substitute. 
    unp1(nx,1) = D(nx,1); 
    for i = nx-1:-1:1 
        unp1(i,1) = D(i,1) - (a3(i,1)*unp1(i+1,1)); 
    end 
     
% Check err 
    err = max(abs(unp1-un)); 
    un  = unp1; 
    end 
    u0  = un;  
    er(nt,1)  = max(abs(ex-unp1)); 
    t(nt,1)   = nt*dt; 
    it        = it+1; 
end 
toc 
itp/it 
er(nit,1) 
figure(1); 
semilogy(t,er,'b-.'); 
hold on 
xlabel('t') 
ylabel('Maximum norm') 
axis([0 1 1.0E-07 1.0E-03]) 

 
 

 

 



 

NCNS2:  Neuman Boundary Condition, Second-Order Finite Difference Scheme 

- Main Program 
clc,clear 
format short 
l  = 1; 
n  = 11; 
nx = n-2; 
hx = 1/(n-1); 
dt = hx^2/10; 
r  = dt/(2*hx^2); 
rr = dt/hx; 
time = 1; 
nit = round(time/dt); 
  
A  = zeros(nx,nx);  B = zeros(nx,nx);    
C  = zeros(nx,nx);  D  = zeros(nx,nx);   
  
gx = zeros(nx,1);   u0 = zeros(nx,1);   un = zeros(nx,1);    
unp1=zeros(nx,1);   fi = zeros(nx,1);   di = zeros(nx,1); 
gi = zeros(nx,1);   er = zeros(nit,1);  t  = zeros(nit,1);  
a1 = zeros(nx,1);   a2 = zeros(nx,1);   a3 = zeros(nx,1);  
li = zeros(nx,1); 
  
gx = grid(nx,hx);   E = eye(nx,nx); 
  
tic 
  
for i=1:nx;       
    if i == 1  
        A(i,i)  = 22;    A(i,i+1)= -4; 
        B(i,i)  = 12;    B(i,i+1)= -12;    
    elseif i == nx 
        A(i,i)  = 22;    A(i,i-1)= -4; 
        B(i,i)  = 12;    B(i,i-1)= -12;    
    else 
        A(i,i)=1;      
        B(i,i-1)=-1;     B(i,i)=2;      B(i,i+1)=-1; 
    end 
end 
  
C = A+r*B; D = A-r*B;    
  
nt  = 0; 
ti  = 0.; 
err = 0.; 
k1  = pi^2/2; 
u0  = exact(ti,nx,gx); 
un  = u0; 
  
while ti < time 
    err = 10.; 
    nt  = nt+1; 
    ti   = nt*dt;       ki   = k1*exp(-k1*ti);    
    th   = ti-(dt/2);   kh   = k1*exp(-k1*th); 
    tp   = ti-dt;       kp   = k1*exp(-k1*tp); 
    ex  = exact(ti,nx,gx); 
    for i=1:nx; 
        fi(i,1) = dt*( kh*cos(pi*gx(i,1)) + gx(i,1) - 2 ); 
    end 



 

     
    ga1 = th; 
    ga2 = th+2; 
    for i=1:nx; 
        if i == 1 
            gi(1,1) = D(1,1)*un(1,1) + D(1,2)*un(2,1) ... 
                    + A(1,1)*fi(1,1) + A(1,2)*fi(2,1); 
            di(1,1) =-12*rr*ga1; 
        elseif i == nx 
            gi(nx,1) = D(nx,nx)*un(nx,1) + D(nx,nx-1)*un(nx-1,1) ... 
                     + A(nx,nx)*fi(nx,1) + A(nx,nx-1)*fi(nx-1,1); 
            di(nx,1)= 12*rr*ga2;  
        else 
            gi(i,1) = D(i,i-1)*un(i-1,1)+D(i,i)*un(i,1) ... 
                    + D(i,i+1)*un(i+1,1) ... 
                    + A(i,i-1)*fi(i-1,1)+A(i,i)*fi(i,1) ... 
                    + A(i,i+1)*fi(i+1,1); 
            di(i,1) = 0.0; 
        end  
    end  
    li   = gi + di; 
     
    % Using TDMA 
    for i=1:nx;       
        if i == 1  
            a1(i,1)= 0;        a2(i,1)= C(i,i);    a3(i,1)= C(i,i+1);     
        elseif i == nx 
            a1(i,1)=C(i,i-1);  a2(i,1)= C(i,i);    a3(i,1)= 0;  
        else 
            a1(i,1)=C(i,i-1);  a2(i,1)= C(i,i);    a3(i,1)= C(i,i+1);  
        end 
    end 
    a3(1,1) = a3(1,1)/a2(1,1); 
    li(1,1) = li(1,1)/a2(1,1);  
    for i = 2:nx-1 
        temp    = a2(i,1)-(a1(i,1)*a3(i-1,1)); 
        a3(i,1) = a3(i,1)/temp; 
        li(i,1) = ( li(i,1)-(a1(i,1)*li(i-1,1)) )/temp; 
    end 
    li(nx,1) = ( li(nx,1)  - (a1(nx,1)*li(nx-1,1) ) )/ ... 
               ( a2(nx,1) - (a1(nx,1)*a3(nx-1,1)) ); 
    % Now back substitute. 
    unp1(nx,1) = li(nx,1); 
    for i = nx-1:-1:1 
        unp1(i,1) = li(i,1) - (a3(i,1)*unp1(i+1,1)); 
    end     
     
% Check err 
    err = max(abs(unp1-un)); 
    un  = unp1; 
    er(nt,1)  = max(abs(ex-unp1)); 
    t(nt,1)   = nt*dt; 
end 
toc 
er(nit,1) 
figure(1); 
semilogy(t,er,'k-.'); 
hold on 
xlabel('t') 
ylabel('Maximum norm') 
axis([0 1 1.0E-06 1.0E-02]) 



 

NHDS4:  Neuman Boundary Condition, Fourth-Order Deferred correction  

             Finite Difference Scheme 
- Main Program 1 
clc,clear 
format long 
l  = 1; 
n  = 11; 
nx = n-2; 
hx = 1./(n-1); 
dt = hx.^2/20; 
r = dt./(2.*hx.^2); 
time = 1; 
eps  = 1.0e-12; 
nit = round(time/dt); 
  
A = zeros(nx,nx);   C  = zeros(nx,nx);    
  
gx = zeros(nx,1);   u0 = zeros(nx,1);   un = zeros(nx,1);    
unp1=zeros(nx,1);   fi = zeros(nx,1);   di = zeros(nx,1); 
gi = zeros(nx,1);   er = zeros(nit,1);  t  = zeros(nit,1);    
a1 = zeros(nx,1);   a2 = zeros(nx,1);   a3 = zeros(nx,1);  
li = zeros(nx,1); 
  
gx = grid(nx,hx);   E = eye(nx,nx);    
  
tic 
  
for i=1:nx;       
    if i == 1  
        A(i,i)=2/3;         A(i,i+1)=-2/3;  
    elseif i == nx 
        A(i,i-1)=-2/3;      A(i,i)=2/3;  
    else 
        A(i,i-1)=-1;        A(i,i)=2;        A(i,i+1)=-1;  
    end 
end 
  
C  = E+r*A;  
  
np  = 0; 
nt  = 0; 
ti  = 0.; 
err = 0.; 
k1  = pi^2/2; 
u0  = exact(ti,nx,gx); 
un  = u0; 
it  = 0; 
itp = 0; 
  
while ti < time 
    err  = 10.; 
    nt   = nt+1; 
    ti   = nt*dt;       ki   = k1*exp(-k1*ti);    
    th   = ti-(dt/2);   kh   = k1*exp(-k1*th); 
    tp   = ti-dt;       kp   = k1*exp(-k1*tp); 
    ex   = exact(ti,nx,gx); 
    ap1 =  exp(-k1*tp); 
    ap2 = -exp(-k1*tp)+tp+1; 



 

    for i=1:nx; 
        fi(i,1) = dt*( kh*cos(pi*gx(i,1)) + gx(i,1) - 2 );  
        if i == 1  
            gi(1,1) = u0(1,1)+fi(1,1) ... 
                         +r*( 10*ap1-15*u0(1,1)-4*u0(2,1)... 
                             +14*u0(3,1)-6*u0(4,1)+u0(5,1) )/12; 
        elseif i == 2  
            gi(2,1) = u0(2,1)+fi(2,1) ... 
                         +r*( -ap1+16*u0(1,1)-30*u0(2,1)... 
                              +16*u0(3,1)-u0(4,1) )/12; 
        elseif i == nx-1 
            gi(nx-1,1) = u0(nx-1,1)+fi(nx-1,1) ... 
                         +r*( -ap2+16*u0(nx,1)-30*u0(nx-1,1)... 
                              +16*u0(nx-2,1)-u0(nx-3,1) )/12; 
        elseif i == nx 
            gi(nx,1) = u0(nx,1)+fi(nx,1) ... 
                         +r*( 10*ap2-15*u0(nx,1)-4*u0(nx-1,1)... 
                         +14*u0(nx-2,1)-6*u0(nx-3,1)+u0(nx-4,1) )/12; 
        else 
            gi(i,1) = u0(i,1)+fi(i,1) ... 
                         +r*( -u0(i-2,1)+16*u0(i-1,1)-30*u0(i,1)... 
                              +16*u0(i+1,1)-u0(i+2,1) )/12; 
        end  
    end  
  
    ap1 =  exp(-k1*ti); 
    ap2 = -exp(-k1*ti)+ti+1; 
    ga1 =  ti; 
    ga2 =  ti+2; 
    while err > eps 
    itp  = itp+1;  
        for i=1:nx; 
            if i == 1  
                di(1,1) = r*(-(50*ga1*hx/137)+(2041*un(1,1)/1644) ... 
                             -(387*un(2,1)/137)+(653*un(3,1)/274) ... 
                             -(131*un(4,1)/137)+(257*un(5,1)/1644) ); 
            elseif i == 2  
                di(2,1) = r*( -ap1+4*un(1,1)-6*un(2,1)... 
                              +4*un(3,1)-un(4,1) )/12; 
            elseif i == nx-1 
                di(nx-1,1) = r*( -ap2+4*un(nx,1)-6*un(nx-1,1)... 
                              +4*un(nx-2,1)-un(nx-3,1) )/12; 
            elseif i == nx 
                di(nx,1)=r*((50*ga2*hx/137)+(2041*un(nx,1)/1644) ... 
                       -(387*un(nx-1,1)/137)+(653*un(nx-2,1)/274) ... 
                       -(131*un(nx-3,1)/137)+(257*un(nx-4,1)/1644) ); 
            else 
                di(i,1) = r*( -un(i-2,1)+4*un(i-1,1)-6*un(i,1)... 
                              +4*un(i+1,1)-un(i+2,1) )/12; 
            end  
        end  
    li   = gi + di; 
 % Using TDMA 
    for i=1:nx;       
        if i == 1  
            a1(i,1)= 0;        a2(i,1)= C(i,i);    a3(i,1)= C(i,i+1);     
        elseif i == nx 
            a1(i,1)=C(i,i-1);  a2(i,1)= C(i,i);    a3(i,1)= 0;  
        else 
            a1(i,1)=C(i,i-1);  a2(i,1)= C(i,i);    a3(i,1)= C(i,i+1);  
        end 
    end 



 

    a3(1,1) = a3(1,1)/a2(1,1); 
    li(1,1) = li(1,1)/a2(1,1);  
    for i = 2:nx-1 
        temp    = a2(i,1)-(a1(i,1)*a3(i-1,1)); 
        a3(i,1) = a3(i,1)/temp; 
        li(i,1) = ( li(i,1)-(a1(i,1)*li(i-1,1)) )/temp; 
    end 
    li(nx,1) = ( li(nx,1)  - (a1(nx,1)*li(nx-1,1) ) )/ ... 
               ( a2(nx,1) - (a1(nx,1)*a3(nx-1,1)) ); 
    % Now back substitute. 
    unp1(nx,1) = li(nx,1); 
    for i = nx-1:-1:1 
        unp1(i,1) = li(i,1) - (a3(i,1)*unp1(i+1,1)); 
    end 
     
% Check err 
    err = max(abs(unp1-un)); 
    un  = unp1; 
    end 
    u0  = un;  
    er(nt,1)  = max(abs(ex-unp1)); 
    t(nt,1)   = nt*dt; 
    it        = it+1; 
end 
toc 
itp/it 
er(nit,1) 
figure(1); 
semilogy(t,er,'b-.'); 
hold on 
xlabel('t') 
ylabel('Maximum norm') 
axis([0 1 1.0E-12 1.0E-03]) 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 

 



 

- Main Program 2 
clc,clear 
format long 
l  = 1; 
n  = 11; 
nx = n-2; 
hx = 1./(n-1); 
dt = hx.^2/10; 
Re = 1.; 
r = dt/(2*Re*hx^2); 
rr = dt/(2*hx); 
time = 1; 
eps  = 1.0e-10; 
nit = round(time/dt); 
  
A = zeros(nx,nx);   C  = zeros(nx,nx);   
  
gx = zeros(nx,1);   u0 = zeros(nx,1);   un = zeros(nx,1);    
unp1=zeros(nx,1);   fi = zeros(nx,1);   di = zeros(nx,1); 
gi = zeros(nx,1);   er = zeros(nit,1);  t  = zeros(nit,1);    
a1 = zeros(nx,1);   a2 = zeros(nx,1);   a3 = zeros(nx,1);  
li = zeros(nx,1); 
  
gx = grid(nx,hx);   E = eye(nx,nx);    
  
tic 
  
for i=1:nx;       
    if i == 1  
        A(i,i)=2/3;         A(i,i+1)=-2/3;  
    elseif i == nx 
        A(i,i-1)=-2/3;      A(i,i)=2/3; 
    else 
        A(i,i-1)=-1;        A(i,i)=2;        A(i,i+1)=-1; 
    end 
end 
  
C  = E+r*A;  
  
np  = 0; 
nt  = 0; 
ti  = 0.; 
err = 0.; 
u0  = exact(ti,nx,gx); 
un  = u0; 
it  = 0; 
itp = 0; 
  
while ti < time 
    err = 10.; 
    nt  = nt+1; 
    ti  = nt*dt;          
    th  = ti-(dt/2);    
    tp  = ti-dt;        
    ex  = exact(ti,nx,gx); 
    ap1 =  0.0; 
    ap2 =  2/(1+2*tp); 
 
 



 

 
    for i=1:nx;  
        if i == 1 
            fi(1,1) =-rr*(-3*ap1^2-10*u0(1,1)^2+18*u0(2,1)^2 ... 
                          -6*u0(3,1)^2+u0(4,1)^2 )/12; 
        elseif i == 2 
            fi(2,1) =-rr*( ap1^2-8*u0(1,1)^2 ... 
                          +8*u0(3,1)^2-u0(4,1)^2 )/12;             
        elseif i == nx-1 
            fi(nx-1,1) =-rr*(-ap2^2+8*u0(nx,1)^2 ... 
                          -8*u0(nx-2,1)^2+u0(nx-3,1)^2 )/12; 
        elseif i == nx 
            fi(nx,1) =-rr*( 3*ap2^2+10*u0(nx,1)^2-18*u0(nx-1,1)^2 ... 
                          +6*u0(nx-2,1)^2-u0(nx-3,1)^2 )/12; 
        else 
            fi(i,1) =-rr*( u0(i-2,1)^2-8*u0(i-1,1)^2 ... 
                          +8*u0(i+1,1)^2-u0(i+2,1)^2 )/12; 
        end 
    end  
    for i=1:nx; 
        if i == 1  
            gi(1,1) = u0(1,1)+fi(1,1) ... 
                         +r*( 10*ap1-15*u0(1,1)-4*u0(2,1)... 
                             +14*u0(3,1)-6*u0(4,1)+u0(5,1) )/12; 
        elseif i == 2  
            gi(2,1) = u0(2,1)+fi(2,1) ... 
                         +r*( -ap1+16*u0(1,1)-30*u0(2,1)... 
                              +16*u0(3,1)-u0(4,1) )/12; 
        elseif i == nx-1 
            gi(nx-1,1) = u0(nx-1,1)+fi(nx-1,1) ... 
                         +r*( -ap2+16*u0(nx,1)-30*u0(nx-1,1)... 
                              +16*u0(nx-2,1)-u0(nx-3,1) )/12; 
        elseif i == nx 
            gi(nx,1) = u0(nx,1)+fi(nx,1) ... 
                         +r*( 10*ap2-15*u0(nx,1)-4*u0(nx-1,1)... 
                         +14*u0(nx-2,1)-6*u0(nx-3,1)+u0(nx-4,1) )/12; 
        else 
            gi(i,1) = u0(i,1)+fi(i,1) ... 
                         +r*( -u0(i-2,1)+16*u0(i-1,1)-30*u0(i,1)... 
                              +16*u0(i+1,1)-u0(i+2,1) )/12; 
        end  
    end  
  
    ap1 =  0.0; 
    ap2 =  2/(1+2*ti); 
    ga1 =  2/(1+2*ti); 
    ga2 =  2/(1+2*ti); 
    while err > eps 
    itp  = itp+1;  
        for i=1:nx; 
            if i == 1  
                di(1,1) = r*(-(50*ga1*hx/137)+(2041*un(1,1)/1644) ... 
                             -(387*un(2,1)/137)+(653*un(3,1)/274) ... 
                             -(131*un(4,1)/137)+(257*un(5,1)/1644) ); 
            elseif i == 2  
                di(2,1) = r*( -ap1+4*un(1,1)-6*un(2,1)... 
                              +4*un(3,1)-un(4,1) )/12; 
            elseif i == nx-1 
                di(nx-1,1) = r*( -ap2+4*un(nx,1)-6*un(nx-1,1)... 
                              +4*un(nx-2,1)-un(nx-3,1) )/12; 
 



 

 
            elseif i == nx 
                di(nx,1)=r*((50*ga2*hx/137)+(2041*un(nx,1)/1644) ... 
                       -(387*un(nx-1,1)/137)+(653*un(nx-2,1)/274) ... 
                       -(131*un(nx-3,1)/137)+(257*un(nx-4,1)/1644) ); 
            else 
                di(i,1) = r*( -un(i-2,1)+4*un(i-1,1)-6*un(i,1)... 
                              +4*un(i+1,1)-un(i+2,1) )/12; 
            end  
        end  
    li   = gi + di; 
  
% Using TDMA 
    for i=1:nx;       
        if i == 1  
            a1(i,1)= 0;        a2(i,1)= C(i,i);    a3(i,1)= C(i,i+1);     
        elseif i == nx 
            a1(i,1)=C(i,i-1);  a2(i,1)= C(i,i);    a3(i,1)= 0;  
        else 
            a1(i,1)=C(i,i-1);  a2(i,1)= C(i,i);    a3(i,1)= C(i,i+1);  
        end 
    end 
    a3(1,1) = a3(1,1)/a2(1,1); 
    li(1,1) = li(1,1)/a2(1,1);  
    for i = 2:nx-1 
        temp    = a2(i,1)-(a1(i,1)*a3(i-1,1)); 
        a3(i,1) = a3(i,1)/temp; 
        li(i,1) = ( li(i,1)-(a1(i,1)*li(i-1,1)) )/temp; 
    end 
    li(nx,1) = ( li(nx,1)  - (a1(nx,1)*li(nx-1,1) ) )/ ... 
               ( a2(nx,1) - (a1(nx,1)*a3(nx-1,1)) ); 
    % Now back substitute. 
    unp1(nx,1) = li(nx,1); 
    for i = nx-1:-1:1 
        unp1(i,1) = li(i,1) - (a3(i,1)*unp1(i+1,1)); 
    end 
     
% Check err 
    err = max(abs(unp1-un)); 
    un  = unp1; 
    end 
    u0  = un;  
    er(nt,1)  = max(abs(ex-unp1)); 
    t(nt,1)   = nt*dt; 
    it        = it+1; 
end 
toc 
itp/it 
er(nit,1) 
figure(1); 
semilogy(t,er,'b-.'); 
hold on 
xlabel('t') 
ylabel('Maximum norm') 
axis([0 1 1.0E-07 1.0E-03]) 

 
 

 

 



 

NHCS4:  Neuman Boundary Condition, Fourth-Order Compact Finite Difference Scheme 

- Main Program 
clc,clear 
format short 
l  = 1; 
n  = 11; 
nx = n-2; 
hx = 1/(n-1); 
dt = hx^2/10; 
r  = dt/hx^2; 
rr = dt/hx; 
time = 1; 
nit = round(time/dt); 
  
A  = zeros(nx,nx);  B = zeros(nx,nx);   C  = zeros(nx,nx);   
D  = zeros(nx,nx);  F = zeros(nx,nx);   G = zeros(nx,nx);    
IC = zeros(nx,nx);   
  
gx = zeros(nx,1);   u0 = zeros(nx,1);   un = zeros(nx,1);    
unp1=zeros(nx,1);   fi = zeros(nx,1);   di = zeros(nx,1); 
gi = zeros(nx,1);   er = zeros(nit,1);  t  = zeros(nit,1);    
gx = grid(nx,hx);   E = eye(nx,nx); 
  
tic 
  
for i=1:nx;       
    if i == 1  
        A(i,i)  = 22;    A(i,i+1)= -4; 
        B(i,i)  = 6;     B(i,i+1)= -6;    
    elseif i == nx 
        A(i,i)  = 22;    A(i,i-1)= -4; 
        B(i,i)  = 6;     B(i,i-1)= -6;    
    else 
        A(i,i-1)= 1;     A(i,i)=10;     A(i,i+1)= 1; 
        B(i,i-1)=-6;     B(i,i)=12;     B(i,i+1)=-6; 
    end 
end 
  
C = A+r*B; D = A-r*B;  IC= inv(C); F = IC*D; G = IC*A;    
  
nt  = 0; 
ti  = 0.; 
err = 0.; 
k1  = pi^2/2; 
u0  = exact(ti,nx,gx); 
un  = u0; 
  
while ti < time 
    err = 10.; 
    nt  = nt+1; 
    ti   = nt*dt;       ki   = k1*exp(-k1*ti);    
    th   = ti-(dt/2);   kh   = k1*exp(-k1*th); 
    tp   = ti-dt;       kp   = k1*exp(-k1*tp); 
    ex  = exact(ti,nx,gx); 
    ga1 = th; 
    ga2 = th+2; 
 
 
 



 

    for i=1:nx; 
        fi(i,1) = dt*( kh*cos(pi*gx(i,1)) + gx(i,1) - 2 ); 
        if i == 1  
            di(1,1) =-12*rr*ga1; 
        elseif i == nx 
            di(nx,1)= 12*rr*ga2;  
        else 
            di(i,1) = 0.0; 
        end  
    end  
    unp1 = F*un + IC*di + G*fi; 
    un   = unp1; 
    er(nt,1)  = max(abs(ex-unp1)); 
    t(nt,1)   = nt*dt; 
end 
toc 
er(nit,1) 
figure(1); 
semilogy(t,er,'k-.'); 
hold on 
xlabel('t') 
ylabel('Maximum norm') 
axis([0 1 1.0E-12 1.0E-02]) 
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A deferred correction method is utilized to increase the order of spatial accuracy of the Crank-Nicolson scheme for the numerical
solution of the one-dimensional heat equation.The fourth-ordermethods proposed are the easier development and can be solved by
usingThomas algorithms.The stability analysis and numerical experiments have been limited to one-dimensional heat-conducting
problems with Dirichlet boundary conditions and initial data.

1. Introduction

The desired properties of finite difference schemes are sta-
bility, accuracy, and efficiency. These requirements are in
conflict with each other. In many applications a high-order
accuracy is required in the spatial discretization. To reach
better stability, implicit approximation is desired. For a high-
order method of traditional type (not a high-order compact
(HOC)), the stencil becomes wider with increasing order
of accuracy. For a standard centered discretization of order
𝑝, the stencil is 𝑝 + 1 points wide. This inflicts problems
at the fictional boundaries, and using an implicit method
results in the solution of an algebraic system of equations
with large bandwidth. In light of conflict requirements of
stability, accuracy, and computational efficiency, it is desired
to develop schemes that have a wide range of stability and
highorder of accuracy and lead to the solution of a system
of linear equations with a tri-diagonal matrix, that is, the
system of linear equations arising from a standard second-
order discretization of heat equation.

The development of high-order compact (HOC) schemes
[1–18] is one approach to overcome the antagonism between
stability, accuracy, and computational cost. However, the
HOC becomes complicated when applie tomultidimensional
problems or to non-Cartesian coordinate cases.

Another way of preserving a compact stencil at higher
time level and reaching high-order spatial accuracy is the
deferred correction approach [11]. A classical deferred correc-
tion procedure is developed in [19, 20].

In this paper we use the deferred correction technique
to obtain fourth-order accurate schemes in space for the
one-dimensional heat-conducting problem with Dirichlet
boundary conditions. The linear system that needs to be
solved at each time step is similar to the standard Crank-
Nikolson method of second order which is solved by using
Thomas algorithms. The fourth-order deferred (FOD) cor-
rection schemes are compared with the fourth-order semi-
implicit (FOS) schemes and fourth-order compact (FOC)
schemes for the Dirichlet boundary value problems.

A set of schemes are constructed for the one-dimensional
heat-conducting problem with Dirichlet boundary condi-
tions and initial data:

𝑢
𝑡
= 𝛽𝑢
𝑥𝑥
+ 𝑓 (𝑥, 𝑡) , 0 < 𝑥 < 𝑙, 𝑡 > 0, (1)

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 0 < 𝑥 < 𝑙, (2)

Dirichlet BC : 𝑢 (0, 𝑡) = 𝛾
1
(𝑡) , 𝑢 (𝑙, 𝑡) = 𝛾

2
(𝑡) , 𝑡 > 0,

(3)
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where the diffusion coefficient 𝛽 is positive, 𝑢(𝑥, 𝑡) represents
the temperature at point (𝑥, 𝑡), and 𝑓(𝑥, 𝑡), 𝛾

1
(𝑡), 𝛾
2
(𝑡) are

sufficiently smooth functions.
The rest of this paper is organized as follows. Section 2

presents an FOD scheme which we use to compare perfor-
mance of proposed scheme with FOS and FOC schemes.
Section 3 provides examples of comparisons. Although FOD
schemes have a higher computational cost than FOS and
FOC schemes, it is evident from these examples that the
FOD schemes have the advantage of accuracy in the uniform
norm, robustness, and the ability to be extended easily to the
multidimensional case. We conclude the paper in Section 4.

2. The Fourth-Order Schemes

Let Δ𝑡 denote the temporal mesh size. For simplicity, we con-
sider a uniform mesh consisting of 𝑁 points: 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁

where 𝑥
𝑖
= (𝑖 − 1)Δ𝑥 and the mesh size is Δ𝑥 = 𝑙/(𝑁 − 1).

Below we use the notations 𝑢𝑚
𝑖
and (𝑢

𝑥𝑥
)
𝑚

𝑖
to represent the

numerical approximations of 𝑢(𝑥
𝑖
, 𝑡
𝑚
) and 𝑢

𝑥𝑥
(𝑥
𝑖
, 𝑡
𝑚
) where

𝑡
𝑚
= 𝑚Δ𝑡 and 𝑢(𝑝) is the value of the 𝑝th derivative of the

given function 𝑢.

2.1. Fourth-Order Semi-Implicit Scheme. The application to
the well-known Crank-Nikolson scheme to (1) results in the
following expression:

𝑢
𝑛+1

𝑖
− 𝑢
𝑛

𝑖

Δ𝑡
=
𝛽

2
[(𝑢
𝑥𝑥
)
𝑛+1

𝑖
+ (𝑢
𝑥𝑥
)
𝑛

𝑖
] + 𝑓
𝑛+1/2

𝑖
, (4)

where 𝑓𝑛+1/2
𝑖

= (𝑓
𝑛+1

𝑖
+𝑓
𝑛

𝑖
)/2, 𝑖 = 2, . . . , 𝑁−1. The Dirichlet

boundary conditions

𝑢 (0,𝑚Δ𝑡) = 𝛾
1
(𝑡
𝑚
) = 𝑢
𝑚

1
,

𝑢 (𝑙, 𝑚Δ𝑡) = 𝛾
2
(𝑡
𝑚
) = 𝑢
𝑚

𝑁

(5)

are used to derive the following fourth-order approximation
of second derivative terms:

(𝑢
𝑥𝑥
)
𝑚

2
=

1

12Δ𝑥2
(𝑎
1
𝑢
𝑚

1
+ 𝑎
2
𝑢
𝑚

2
+ 𝑎
3
𝑢
𝑚

3
+ 𝑎
4
𝑢
𝑚

4

+ 𝑎
5
𝑢
𝑚

5
+ 𝑎
6
𝑢
𝑚

6
)

=
𝑎
1

12Δ𝑥2
𝛾
1
(𝑡
𝑚
) +

1

12Δ𝑥2

× (𝑎
2
𝑢
𝑚

2
+ 𝑎
3
𝑢
𝑚

3
+ 𝑎
4
𝑢
𝑚

4
+ 𝑎
5
𝑢
𝑚

5
+ 𝑎
6
𝑢
𝑚

6
) ,

(𝑢
𝑥𝑥
)
𝑚

𝑖
=

1

12Δ𝑥2

× (−𝑢
𝑚

𝑖−2
+ 16𝑢

𝑚

𝑖−1
− 30𝑢

𝑚

𝑖
+ 16𝑢

𝑚

𝑖+1
− 𝑢
𝑚

𝑖+2
) ,

𝑖 = 3, . . . , 𝑁 − 2,

(𝑢
𝑥𝑥
)
𝑚

𝑁−1
=

1

12Δ𝑥2
(𝑎
1
𝑢
𝑚

𝑁
+ 𝑎
2
𝑢
𝑚

𝑁−1

+ 𝑎
3
𝑢
𝑚

𝑁−2
+ 𝑎
4
𝑢
𝑚

𝑁−3

+ 𝑎
5
𝑢
𝑚

𝑁−4
+ 𝑎
6
𝑢
𝑚

𝑁−5
)

=
𝑎
1

12Δ𝑥2
𝛾
2
(𝑡
𝑚
) +

1

12Δ𝑥2

× (𝑎
2
𝑢
𝑚

𝑁−1
+ 𝑎
3
𝑢
𝑚

𝑁−2

+ 𝑎
4
𝑢
𝑚

𝑁−3
+ 𝑎
5
𝑢
𝑚

𝑁−4
+ 𝑎
6
𝑢
𝑚

𝑁−5
) ,

(6)

where the coefficients can be found by matching the Tay-
lor series expansion of left-hand-side terms up to order
𝑂(Δ𝑥

4
)𝑢
(6) which gives the following values of coefficients:

𝑎
1
= 10, 𝑎

2
= −15, 𝑎

3
= −4,

𝑎
4
= 14, 𝑎

5
= −6, 𝑎

6
= 1.

(7)

Schemes (6) can be combined and expressed in the following
matrix form:

u𝑚
𝑥𝑥
=

1

Δ𝑥2
Λ
ℎ
u𝑚 + 𝛾 (𝑡𝑚) , (8)

whereΛ
ℎ
is the corresponding triangular and sparse (𝑁−2)×

(𝑁 − 2)matrix,

u𝑚
𝑥𝑥
= ((𝑢
𝑥𝑥
)
𝑚

2
, (𝑢
𝑥𝑥
)
𝑚

3
, . . . , (𝑢

𝑥𝑥
)
𝑚

𝑁−1
)
𝑇

,

u𝑚 = (𝑢𝑚
2
, 𝑢
𝑚

3
, . . . , 𝑢

𝑚

𝑁−1
)
𝑇

,

𝛾 (𝑡
𝑚
) = (𝛾

1
(𝑡
𝑚
) , 0, . . . , 0, 𝛾

2
(𝑡
𝑚
))
𝑇

.

(9)

Substituting (6) into (4) gives us the following matrix form:

(𝐸 − 𝛼Λ
ℎ
) u𝑛+1 = (𝐸 + 𝛼Λ

ℎ
) u𝑛

+ Δ𝑡 [𝛾 (𝑡
𝑛+1

) + 𝛾 (𝑡
𝑛
)]

+ Δ𝑡f𝑛+1/2,

(10)

where 𝛼 = 𝛽Δ𝑡/(2Δ𝑥2), f𝑛+1/2 = (𝑓𝑛+1/2
2

, 𝑓
𝑛+1/2

3
, . . . , 𝑓

𝑛+1/2

𝑁−1
)
𝑇,

and 𝐸 denote the (𝑁 − 2) × (𝑁 − 2) identity matrix. The
scheme (10) is FOSs for the heat-conducting problem with
Dirichlet boundary condition. The order of approximation
is 𝑂(Δ𝑡2, Δ𝑥4) in the uniform norm. The triangular and
sparse (𝑁 − 2) × (𝑁 − 2) coefficient matrix in FOSs are
time independent; hence, we have to store the inverse of the
coefficient matrix 𝐸 − 𝛼Λ

ℎ
before the time marching in the

implementation for computational efficiency.
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2.2. Fourth-Order Deferred Correction Schemes. A set of
fourth-order deferred correction schemes is based on the
well-known Crank-Nikolson type of scheme in the following
form:

𝑢
𝑛+1,𝑠+1

𝑖
− 𝑢
𝑛

𝑖

Δ𝑡
=
𝛽

2
[(𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
+ (𝑢
𝑥𝑥
)
𝑛

𝑖
]

+ 𝑓
𝑛+1/2

𝑖
,

(11)

where 𝑓𝑛+1/2
𝑖

= (𝑓
𝑛+1

𝑖
+ 𝑓
𝑛

𝑖
)/2 and the second superscript

“𝑠” denotes the number of iterations 𝑠 = 0, . . . , 𝑆̂ and 𝑖 =

2, . . . , 𝑁 − 1.
The deferred correction technique [11] is utilized to

approximate the second-order derivatives at higher time
levels (𝑢

𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
, 𝑖 = 2, . . . , 𝑁 − 1 by the iterative method

(𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
= (𝑢
𝑙

𝑥𝑥
)
𝑛+1,𝑠+1

𝑖

+ [(𝑢
ℎ

𝑥𝑥
)
𝑛+1,𝑠

𝑖
− (𝑢
𝑙

𝑥𝑥
)
𝑛+1,𝑠

𝑖
] ,

(12)

where (𝑢ℎ
𝑥𝑥
)
𝑛+1,𝑠

𝑖
, 𝑖 = 2, . . . , 𝑁 − 1, 𝑠 = 0, . . . , 𝑆̂, is high-

order approximation on wide stencil and (𝑢𝑙
𝑥𝑥
)
𝑛+1,𝑘

𝑖
, 𝑘 = 𝑠, 𝑠+

1, 𝑖 = 2, . . . , 𝑁 − 1, is the lower-order approximation on
compact stencil (usually three-point stencil). The expression
in the square brackets of (12) is evaluated explicitly using the
values known from the previous iteration. When 𝑠 = 0 we
use the solution from the time level 𝑛 (so 𝑢𝑛+1,0 = 𝑢

𝑛 and
(𝑢
𝑥𝑥
)
𝑛+1,0

𝑖
= (𝑢
𝑥𝑥
)
𝑛

𝑖
). Once the iterations converge, the lower-

order approximation terms drop out and the approximation
of (𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
obtained has the same order of approximation

as (𝑢ℎ
𝑥𝑥
)
𝑛+1,𝑆̂

𝑖
. There are no difficulties to construct high-order

approximation for interior points.
To preserve a compact three using wide stencil in the

finite difference scheme at higher time level (𝑛 + 1, 𝑠 + 1), we
use the central second-order finite difference approximation
to approximate the lower-order term in (12):

(𝑢
𝑙

𝑥𝑥
)
𝑛+1,𝑘

𝑖
=

1

Δ𝑥2
Λ
𝑙
𝑢
𝑛+1,𝑘

𝑖
, 𝑘 = 𝑠, 𝑠 + 1,

𝑖 = 3, . . . , 𝑁 − 2,

Λ
𝑙
𝑢
𝑛+1,𝑘

𝑖
= 𝑢
𝑛+1,𝑘

𝑖−1
− 2𝑢
𝑛+1,𝑘

𝑖
+ 𝑢
𝑛+1,𝑘

𝑖+1
.

(13)

For the high-order approximation term in (12), we use a
symmetric five-pointwide stencil for the inner points to reach
the fourth order of approximation:

(𝑢
ℎ

𝑥𝑥
)
𝑛+1,𝑠

𝑖
=

1

Δ𝑥2
Λ
ℎ
𝑢
𝑛+1,𝑠

𝑖
, 𝑖 = 3, . . . , 𝑁 − 2,

Λ
ℎ
𝑢
𝑛+1,𝑠

𝑖
=

1

12
(−𝑢
𝑛+1,𝑠

𝑖−2
+ 16𝑢

𝑛+1,𝑠

𝑖−1
− 30𝑢

𝑛+1,𝑠

𝑖

+16𝑢
𝑛+1,𝑠

𝑖+1
− 𝑢
𝑛+1,𝑠

𝑖+2
) .

(14)

Case 𝑠 = 0 in (13) gives the fourth order of approximation to
approximate the second-order derivatives at the time level 𝑛.

2.2.1. Stability Analysis. To study the stability of scheme
(11)–(14), we use the Von-Neumann stability analysis. For
simplicity, we assume that 𝑓𝑛+1/2

𝑖
≡ 0 in (11) and 𝑢 is periodic

in 𝑥.
Let us recast scheme (11) in the following form:

(𝐸 + 𝛼Λ
𝑙
) 𝑢
𝑛+1,𝑠+1

𝑖
= 𝛼 (Λ

𝑙
− Λ
ℎ
) 𝑢
𝑛+1,𝑠

𝑖

+ (𝐸 − 𝛼Λ
𝑙
) 𝑢
𝑛

𝑖
,

(15)

where 𝛼 = 𝛽Δ𝑡/(2Δ𝑥
2
). If we define the following operators

𝐴 = 𝐸 + 𝛼Λ
𝑙
, 𝐵 = 𝐸 − 𝛼Λ

ℎ
, and 𝐶 = 𝐸 + 𝛼Λ

ℎ
, where 𝐸 is the

identity operator, then (15) can be rewritten as follows:

𝐴𝑢
𝑛+1,𝑠+1

𝑖
= (𝐴 − 𝐶) 𝑢

𝑛+1,𝑠

𝑖
+ 𝐵𝑢
𝑛

𝑖
. (16)

Assuming that the operators commute, (𝐴−𝐶)𝐴 = 𝐴(𝐴−𝐶)

(e.g., in the case of uniform grid), it is easy to demonstrate
that if 𝑢𝑛+1,𝑆̂+1

𝑖
= 𝑢
𝑛+1

𝑖
and 𝑢𝑛+1,0

𝑖
= 𝑢
𝑛

𝑖
we get

𝐴
𝑆̂+1
𝑢
𝑛+1

𝑖
= (

𝑆̂

∑

𝑘=0

𝐴
𝑆̂−𝑘
(𝐴 − 𝐶)

𝑘
)𝐵𝑢
𝑛

𝑖
+ (𝐴 − 𝐶)

𝑆̂+1
𝑢
𝑛

𝑖
. (17)

Let 𝑢𝑛
𝑖
= 𝜉
𝑛
𝑒
𝐼Θ𝑖, 𝐼 = √−1, be the solution of (11)–(14), where

Θ = 2𝜋Δ𝑥/𝑙 is the phase angle with wavelength 𝑙. From (17),
we can derive an equation for the amplification factor in the
form

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
𝜑 (Θ, 𝑆̂, 𝛼)

󵄨󵄨󵄨󵄨󵄨
, (18)

where 𝑆̂ is the number of iterations, and

󵄨󵄨󵄨󵄨󵄨
𝜑 (Θ, 𝑆̂, 𝛼)

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨
[(∑
𝑆̂

𝑘=0
𝐴
𝑆̂−𝑘
(𝐴 − 𝐶)

𝑘
) 𝐵 + (𝐴 − 𝐶)

𝑆̂+1
] 𝑒
𝐼Θ𝑖
󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝐴𝑆̂+1𝑒𝐼Θ𝑖

󵄨󵄨󵄨󵄨󵄨

.

(19)

For stability of the method it is necessary that the absolute
values of the amplification factor are less than one; that is,

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 < 1. (20)

Calculations are tedious and almost impossible to do by hand
without mistake. We have therefore automate all calculations
in a computer algebra environment based on REDUCE to
obtain an explicit form of |𝜑(Θ, 𝑆̂, 𝛼)|. Figure 1 shows the
values of |𝜉|2 in the polar coordinate system (|𝜉|

2
, Θ) for

𝑆̂ = 1, 3, and 5. If only one iteration is executed in (11),
𝑆̂ = 1, inequality (20) holds if 𝛼 < 1.5, as can be seen from
Figure 1(a)). If 3 iterations are done in (11) (Figure 1(b)), 𝑆̂ = 3,
the amplification factor remains bounded by one at least for
𝛼 ≤ 10. In case of 𝑆̂ = 5, the stability criteria hold up to 𝛼 = 30
as can be seen from Figure 1(c)). It can be seen that increasing
the number of internal iterations results in increasing the
range of𝛼needed for stability.This tendency allows to assume
that as 𝑆̂ → ∞, our method becomes the unconditionally
stable Crank-Nikolson method for the heat equation.
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Figure 1: Variation of amplification factor withΘ. (a) 𝑆̂ = 1, dashed line 𝛼 = 2.0, solid line 𝛼 = 1.5, dash-doted line 𝛼 = 1.0, (b) 𝑆̂ = 3, dashed
line 𝛼 = 10.0, solid line 𝛼 = 5.0, dash-dotted line 𝛼 = 1.0, and (c) 𝑆̂ = 5, dashed line 𝛼 = 30.0, solid line 𝛼 = 15, dash-doted line 𝛼 = 5.0,
doted line 𝛼 = 1.0.

2.2.2. Fourth-Order Deferred Correction Scheme. Let us first
consider the one-dimensional heat conduction problem with
initial data and Dirichlet boundary conditions (1)–(3):

𝑢
𝑛+1,𝑘

1
= 𝛾
1
(𝑡
𝑛+1

) , 𝑢
𝑛+1,𝑘

𝑁
= 𝛾
2
(𝑡
𝑛+1

) . (21)

The finite difference approximations at 𝑥
2
and 𝑥

𝑁−1
, which

are the points next to the left and right boundaries, are
straightforward:

(𝑢
𝑙

𝑥𝑥
)
𝑛+1,𝑘

2
=

1

Δ𝑥2
(𝛾
1
(𝑡
𝑛+1

) − 2𝑢
𝑛+1,𝑘

2
+ 𝑢
𝑛+1,𝑘

3
) ,

𝑘 = 𝑠, 𝑠 + 1,

(𝑢
ℎ

𝑥𝑥
)
𝑛+1,𝑠

2
=

1

12Δ𝑥2
(10𝛾
1
(𝑡
𝑛+1

) − 15𝑢
𝑛+1,𝑠

2
− 4𝑢
𝑛+1,𝑠

3

+14𝑢
𝑛+1,𝑠

4
− 6𝑢
𝑛+1,𝑠

5
+ 𝑢
𝑛+1,𝑠

6
) ,

(𝑢
ℎ

𝑥𝑥
)
𝑛+1,𝑠

𝑁−1
=

1

12Δ𝑥2
(10𝛾
2
(𝑡
𝑛+1

) − 15𝑢
𝑛+1,𝑠

𝑁−1
− 4𝑢
𝑛+1,𝑠

𝑁−2

+14𝑢
𝑛+1,𝑠

𝑁−3
− 6𝑢
𝑛+1,𝑠

𝑁−4
+ 𝑢
𝑛+1,𝑠

𝑁−5
) ,

(𝑢
𝑙

𝑥𝑥
)
𝑛+1,𝑘

𝑁−1
=

1

Δ𝑥2
(𝑢
𝑛+1,𝑘

𝑁−2
− 2𝑢
𝑛+1,𝑘

𝑁−1
+ 𝛾
2
(𝑡
𝑛+1

)) ,

𝑘 = 𝑠, 𝑠 + 1.

(22)

Cases 𝑠 = 0 or 𝑘 = 0 give formulae to approximate (𝑢𝑙
𝑥𝑥
)
𝑛

𝑖

and (𝑢
ℎ

𝑥𝑥
)
𝑛

𝑖
. Substituting (13), (14), and (22) into (12) the

following fourth-order deferred correction approximations
of (𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
, 𝑖 = 2, . . . , 𝑁 − 1, are

(𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

2
=

5

6Δ𝑥2
𝛾
1
(𝑡
𝑛+1

)

+
1

Δ𝑥2
(−2𝑢
𝑛+1,𝑠+1

2
+ 𝑢
𝑛+1,𝑠+1

3
)

+
1

12Δ𝑥2
(9𝑢
𝑛+1,𝑠

2
− 16𝑢

𝑛+1,𝑠

3
+ 14𝑢

𝑛+1,𝑠

4

− 6𝑢
𝑛+1,𝑠

5
+ 𝑢
𝑛+1,𝑠

6
) ,

(𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
=

1

Δ𝑥2
(𝑢
𝑛+1,𝑠+1

𝑖−1
− 2𝑢
𝑛+1,𝑠+1

𝑖
+ 𝑢
𝑛+1,𝑠+1

𝑖+1
)

+
1

12Δ𝑥2
(−𝑢
𝑛+1,𝑠

𝑖−2
+ 4𝑢
𝑛+1,𝑠

𝑖−1
− 6𝑢
𝑛+1,𝑠

𝑖

+ 4𝑢
𝑛+1,𝑠

𝑖+1
− 𝑢
𝑛+1,𝑠

𝑖+2
) ,

𝑖 = 3, . . . , 𝑁 − 2,

(𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑁−1
=

5

6Δ𝑥2
𝛾
2
(𝑡
𝑛+1

)

+
1

Δ𝑥2
(−2𝑢
𝑛+1,𝑠+1

𝑁−1
+ 𝑢
𝑛+1,𝑠+1

𝑁
)

+
1

12Δ𝑥2
(9𝑢
𝑛+1,𝑠

𝑁−1
− 16𝑢

𝑛+1,𝑠

𝑁−2
+ 14𝑢

𝑛+1,𝑠

𝑁−3

−6𝑢
𝑛+1,𝑠

𝑁−4
+ 𝑢
𝑛+1,𝑠

𝑁−5
) .

(23)

Schemes (23) can be combined and expressed in the following
matrix form:

u𝑛+1,𝑠+1
𝑥𝑥

=
1

Δ𝑥2
Λ
𝑙
u𝑛+1,𝑠+1 + 1

Δ𝑥2
(Λ
ℎ
− Λ
𝑙
) u𝑛+1,𝑠 + 𝛾 (𝑡𝑛+1) ,

(24)
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where Λ
𝑙
is a tridiagonal (𝑁 − 2) × (𝑁 − 2) matrix and Λ

ℎ

is the corresponding triangular and sparse (𝑁 − 2) × (𝑁 − 2)

matrix,

u𝑛+1,𝑘 = (𝑢𝑛+1,𝑘
2

, 𝑢
𝑛+1,𝑘

3
, . . . , 𝑢

𝑛+1,𝑘

𝑁−1
)
𝑇

, 𝑘 = 𝑠, 𝑠 + 1, (25)

u𝑛+1,𝑠+1
𝑥𝑥

= ((𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

2
, (𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

3
, . . . , (𝑢

𝑥𝑥
)
𝑛+1,𝑠+1

𝑁−1
)
𝑇

.

(26)

Substituting (6), (23) into (11), the formulae can be written
into matrix form

(𝐸 − 𝛼Λ
𝑙
) u𝑛+1,𝑠+1

= 𝛼 (Λ
ℎ
− Λ
𝑙
) u𝑛+1,𝑠 + (𝐸 + 𝛼Λ

ℎ
) u𝑛

+ Δ𝑡 [𝛾 (𝑡
𝑛+1

) + 𝛾 (𝑡
𝑛
)] + Δ𝑡f 𝑛+1/2.

(27)

The abovematrix form is called FODs for Dirichlet boundary
value problem (1)–(3). Thomas algorithms can be used to
compute the solutions of FODs. At each step of time 𝑡𝑛 and
the initial stage, the convergence of FODs requires more
iterations to converge to the solution of the FOSs. The order
of approximation of FODs is 𝑂(Δ𝑡2, Δ𝑥4) which is the same
as FOSs in the uniform norm.

2.3. Fourth-Order Compact Scheme. Let us briefly represent
the main idea and final formulae of compact schemes.
Spatial derivatives in the Crank-Nikolson scheme (4) are
evaluated by the fourth-order compact finite differences
implicit scheme [5, 7, 8, 13, 14, 17].

In [8, 14], the Dirichlet boundary conditions

𝑢 (0,𝑚Δ𝑡) = 𝛾
1
(𝑡
𝑚
) = 𝑢
𝑚

1
, 𝑢 (𝑙, 𝑚Δ𝑡) = 𝛾

2
(𝑡
𝑚
) = 𝑢
𝑚

𝑁

(28)

are used to derive the following fourth-order schemes

(𝑢
𝑥𝑥
)
𝑚

2
+ 𝜎(𝑢

𝑥𝑥
)
𝑚

3

=
1

24Δ𝑥2
(𝑎
1
𝑢
𝑚

1
+ 𝑎
2
𝑢
𝑚

2
+ 𝑎
3
𝑢
𝑚

3
+ 𝑎
4
𝑢
𝑚

4

+ 𝑎
5
𝑢
𝑚

5
+ 𝑎
6
𝑢
𝑚

6
)

=
𝑎
1

24Δ𝑥2
𝛾
1
(𝑡
𝑚
)

+
1

24Δ𝑥2
(𝑎
2
𝑢
𝑚

2
+ 𝑎
3
𝑢
𝑚

3
+ 𝑎
4
𝑢
𝑚

4
+ 𝑎
5
𝑢
𝑚

5

+ 𝑎
6
𝑢
𝑚

6
) ,

(𝑢
𝑥𝑥
)
𝑚

𝑖−1
+ 10(𝑢

𝑥𝑥
)
𝑚

𝑖
+ (𝑢
𝑥𝑥
)
𝑚

𝑖+1

=
2

Δ𝑥2
(6𝑢
𝑚

𝑖−1
− 12𝑢

𝑚

𝑖
+ 6𝑢
𝑚

𝑖+1
) ,

𝑖 = 2, . . . , 𝑁 − 1,

(𝑢
𝑥𝑥
)
𝑚

𝑁−1
+ 𝜎(𝑢

𝑥𝑥
)
𝑚

𝑁−2

=
1

24Δ𝑥2
(𝑎
1
𝑢
𝑚

𝑁
+ 𝑎
2
𝑢
𝑚

𝑁−1
+ 𝑎
3
𝑢
𝑚

𝑁−2
+ 𝑎
4
𝑢
𝑚

𝑁−3

+ 𝑎
5
𝑢
𝑚

𝑁−4
+ 𝑎
6
𝑢
𝑚

𝑁−5
)

=
𝑎
1

24Δ𝑥2
𝛾
2
(𝑡
𝑚
)

+
1

24Δ𝑥2
(𝑎
2
𝑢
𝑚

𝑁−1
+ 𝑎
3
𝑢
𝑚

𝑁−2
+ 𝑎
4
𝑢
𝑚

𝑁−3
+ 𝑎
5
𝑢
𝑚

𝑁−4

+ 𝑎
6
𝑢
𝑚

𝑁−5
) ,

(29)

where the coefficients can be found by matching the Tay-
lor series expansion of left-hand-side terms up to order
𝑂(Δ𝑥

4
)𝑢
(6) which gives the following values of coefficients

[8]:

𝜎 =
1

2
, 𝑎

1
= 19, 𝑎

2
= −14, 𝑎

3
= −38,

𝑎
4
= 44, 𝑎

5
= −13, 𝑎

6
= 2.

(30)

Then all derivatives in (4) are approximated by the fourth-
order compact formula; we can write

𝐴u𝑚
𝑥𝑥
=

1

Δ𝑥2
𝐵u𝑚 + 𝛾𝑚, 𝑚 = 𝑛, 𝑛 + 1, (31)

where 𝐴 and 𝐵 are the corresponding triangular and
sparse (𝑁 − 2) × (𝑁 − 2) matrices, u𝑚

𝑥𝑥
= ((𝑢

𝑥𝑥
)
𝑚

2
,

(𝑢
𝑥𝑥
)
𝑚

3
, . . . , (𝑢

𝑥𝑥
)
𝑚

𝑁−1
)
𝑇, u𝑚 = (𝑢

𝑚

2
, 𝑢
𝑚

3
, . . . , 𝑢

𝑚

𝑁−1
)
𝑇 and 𝛾𝑚 =

(𝛾
1
(𝑡
𝑚
), 0, . . . , 0, 𝛾

2
(𝑡
𝑚
))
𝑇,𝑚 = 𝑛, 𝑛+1. Schemes (4) and (29)

can be combined and expressed in the followingmatrix form:

(𝐴 − 𝛼𝐵) u𝑛+1 = (𝐴 + 𝛼𝐵) u𝑛

+ Δ𝑡 [𝛾 (𝑡
𝑛+1

) + 𝛾 (𝑡
𝑛
)]

+ Δ𝑡f𝑛+1/2.

(32)

This scheme is called FOCs for Dirichlet boundary value
problem (1)–(3). We like to mention that the above scheme
has truncation error𝑂(Δ𝑡2, Δ𝑥4). Note that the triangular and
sparse (𝑁 − 2) × (𝑁 − 2) coefficient matrices in FOCs are
time independent; hence, we have to store the inverse of the
coefficient matrix 𝐴 − 𝛼𝐵 before the time marching in the
implementation of computational efficiency.

3. Numerical Examples

In this section, three numerical examples are carried out.The
first two are linear heat-conducting problem, with Dirichlet
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boundary conditions, which are used to confirmour theoreti-
cal analysis.Thenwe apply the FODS to the Burgers equation.
For simplicity, we fix our problem domain Ω = {𝑥 | 0 ≤ 𝑥 ≤

1}. In all computations, we used Δ𝑡 = Δ𝑥
2
/4 and 𝜖 = 10

−10.
The following stopping criterion is used:

max
1≤𝑖≤𝑁

󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛+1,𝑆̂+1

𝑖
− 𝑢
𝑛+1,𝑆̂

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
< 𝜖, 𝑠 = 0, . . . , 𝑆̂, (33)

where “𝑆̂” denotes the number of the last iteration.
The computations are performed using uniform grids

of 11, 21, 41, 81, and 161 nodes. The initial and boundary
conditions are obtained based on the exact solutions. For
the testing purpose only, all computations are performed for
0 ≤ t ≤ 1.

Example 1 (the homogeneous heat equation with the homo-
geneous Dirichlet boundary conditions). One has

𝑢
𝑡
= 𝑢
𝑥𝑥
, 0 ≤ 𝑥 ≤ 1, 𝑡 > 0,

𝑢 (𝑥, 0) = sin (𝜋𝑥) , 𝑢 (0, 𝑡) = 0, 𝑢 (1, 𝑡) = 0.
(34)

The exact solution is 𝑢(𝑥, 𝑡) = 𝑒
−𝜋
2
𝑡 sin(𝜋𝑥). The results

of performance over the time interval 𝑡 ∈ [0, 1] for the
FOCs, FODs, and FOSs are represented in Table 1, where the
maximum error and the rate of convergence at time instant
𝑡 = 1 are shown.

Example 2 (the nonhomogeneous heat equationwith non-ho-
mogeneous Dirichlet boundary conditions). One has

𝑢
𝑡
= 𝑢
𝑥𝑥
+ (𝜋
2
− 1) 𝑒

−𝑡 cos (𝜋𝑥)

+ 4𝑥 − 2, 0 ≤ 𝑥 ≤ 1, 𝑡 > 0,

𝑢 (𝑥, 0) = cos (𝜋𝑥) + 𝑥2, 𝑢 (0, 𝑡) = 𝑒
−𝑡
,

𝑢 (1, 𝑡) = −𝑒
−𝑡
+ 4𝑡 + 1.

(35)

The exact solution is 𝑢(𝑥, 𝑡) = 𝑒
−𝑡 cos(𝜋𝑥) + 𝑥

2
+ 4𝑥𝑡. The

results of performance over the time domain 𝑡 ∈ [0, 1] for
the FOC, FOD, and FOS schemes are represented in Table 2,
where themaximumerror and the rate of convergence at time
instant 𝑡 = 1 are shown.

The last two columns of Tables 1 and 2 demonstrate the
average number of iterations in FODs at one time step and the
CPU time required to obtain the solution at time instant 𝑡 = 1.
The average number of iterations means the total number of
iterations divided by the number of time steps. As a rule, at the
initial stage the convergence of deferred correction requires
more iterations. For larger instants of time, the convergence
occurs after 2∼7 iterations as can be seen from Tables 1 and
2. All of schemes are seen to be the fourth order of accuracy,
as the error is reduced approximately by factor four when the
mesh is refined by half.Themaximum error of the FODs and
FOCs is almost the same, since the iterative scheme FODs is
constructed by applying the deferred correction technique on
the FOSs. It can be stated that when the iterations converge,

the solution of FODs, therefore, converges to the solution
of FOSs in each step of time. As shown in Tables 1 and 2,
there is hardly a difference in the computational efficiency
between FODs and FOSs. Both schemes are more efficient
than FODs. An explanation is due to the iteration needed for
the convergence of solutions on each step of time.

Although the FODs use more computational time as
compared with FOCs and FOSs, it is recommended that the
construction of FODs can be easily implemented. Moreover,
the scheme does not need to store the inverse of coefficient
matrices as required in FOCs and FOSs. Therefore, the
method is easily extended to multidimensional cases.

It is suggested that the differed correction technique can
solve problems which need high accuracy of computational
methods. Also this technique can be easily implemented
and extended for solving problem with Neumann boundary
conditions. In addition, such technique can be easily used to
create standard code and applied in case of nonuniform grids.

Considering Burgers equation

𝑢
𝑡
= 𝛽𝑢
𝑥𝑥
− 𝑢𝑢
𝑥
, 0 ≤ 𝑥 ≤ 1, 𝑡 > 0, (36)

with the exact solution [21] is given by

𝑢 (𝑥, 𝑡) =
𝜉 + 𝜂 + (𝜂 − 𝜉) 𝑒

𝜌

1 + 𝑒𝜌
, (37)

where 𝜌 = 𝜉(𝑥−𝜂𝑡−𝜐)/𝛽. The initial and Dirichlet boundary
conditions are considered to be in agreement with the exact
solution proposed here. For Burgers equation (36), we solve
it by the following fourth-order deferred correction scheme:

𝑢
𝑛+1,𝑠+1

𝑖
− 𝑢
𝑛

𝑖

Δ𝑡
=
𝛽

2
[(𝑢
𝑥𝑥
)
𝑛+1,𝑠+1

𝑖
+ (𝑢
𝑥𝑥
)
𝑛

𝑖
] + 𝑓
𝑛

𝑖
, (38)

where 𝑓𝑛
𝑖
= −[(𝑢

2
/2)
𝑥
]
𝑛

𝑖
. The nonlinear term 𝑓

𝑛

𝑖
is approx-

imated with the fourth-order approximation and all the
second-derivative terms in (38) are approximated by the
fourth-order formula (6) and the fourth-order deferred
correction schemes (23). The scheme (38) can be combined
and expressed in the following matrix form:

(𝐸 − 𝛼Λ
𝑙
) u𝑛+1,𝑠+1 = 𝛼 (Λ

ℎ
− Λ
𝑙
) u𝑛+1,𝑠 + (𝐸 + 𝛼Λ

ℎ
) u𝑛

+ Δ𝑡 [𝛾 (𝑡
𝑛+1

) + 𝛾 (𝑡
𝑛
)] + Δ𝑡f 𝑛,

(39)

where 𝐸 is identity matrix,Λ
𝑙
is tridiagonal (𝑁−2) × (𝑁−2)

matrix, and Λ
ℎ
is the corresponding triangular and sparse

(𝑁 − 2) × (𝑁 − 2)matrix and can be solved by usingThomas
algorithm.

Example 3 (the Burgers equation (36) and the constant values
] = 0.125, 𝜉 = 0.6, 𝜂 = 0.4, and 𝛽 = 1 with appropriate
initial and Dirichlet boundary condition in agreement with
exact solution (37)). This problem was solved using different
time step andmesh sizes over the time interval 0 < 𝑡 ≤ 1. The
results of performance over the time interval 𝑡 ∈ [0, 1] for the
FODs are represented in Tables 3 and 4, where the maximum
error and the rate of convergence at time instant 𝑡 = 1 are
shown.
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Table 1: Maximum absolute error, order of convergence, and CPU time in seconds of the FOCs, FODs, and FOSs for test problem (34) at
time instant 𝑡 = 1.

Types of scheme Grid points Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
11 3.8687 × 10

−8 — 1 0.006

21 6.0426 × 10
−10

6.0005 1 0.042

FOCs 41 2.2454 × 10
−11

4.7501 1 0.326

81 1.2821 × 10
−12

4.1304 1 2.564

161 8.0164 × 10
−14

3.9994 1 20.437

11 9.9767 × 10
−9 — 4 0.015

21 1.4996 × 10
−9

2.7361 3 0.085

FODs 41 1.1193 × 10
−10

3.7438 2 0.438

81 7.1438 × 10
−12

3.9698 2 3.450

161 4.4797 × 10
−13

4.1875 2 27.495

11 9.9763 × 10
−9 — 1 0.006

21 1.4996 × 10
−9

2.7361 1 0.043

FOSs 41 1.1193 × 10
−10

3.7438 1 0.334

81 7.1440 × 10
−12

3.9698 1 2.623

161 4.4854 × 10
−13

4.1875 1 20.907

Table 2: Absolute error, the rate of convergence, and CPU time in seconds of the FOCs, FODs, and FOSs for the test problem (35) at time
instant 𝑡 = 1.

Types of scheme Grid points Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
11 1.8470 × 10

−5 — 1 0.006

21 3.6901 × 10
−7

5.6454 1 0.046

FOCs 41 7.5595 × 10
−9

5.6092 1 0.353

81 6.6458 × 10
−10

3.5077 1 2.778

161 4.8841 × 10
−11

3.7663 1 22.141

11 1.7132 × 10
−5 — 7 0.016

21 2.6914 × 10
−7

5.9922 7 0.128

FODs 41 2.7910 × 10
−8

3.2655 6 0.851

81 2.0112 × 10
−9

3.7941 5 5.568

161 1.3116 × 10
−10

3.9415 5 44.375

11 1.2895 × 10
−5 — 1 0.006

21 2.8544 × 10
−7

5.9922 1 0.046

FOSs 41 2.7306 × 10
−8

3.2655 1 0.359

81 1.9590 × 10
−9

3.7941 1 2.821

161 1.3130 × 10
−10

3.9415 1 22.484

Table 3: Maximum absolute error, order of convergence, and CPU time in seconds for Example 3 at time instant 𝑡 = 1 with fixed mesh size
Δ𝑥 = 0.05.

Types of scheme Time step sizes Maximum error Rate of convergence Aver. number of iteration CPU time in sec.

FODs

10
−2

8.0945 × 10
−6 — 10 0.015

10
−3

8.0942 × 10
−7

1.0000 6 0.109

10
−4

8.1144 × 10
−8

0.9989 3 0.656

10
−5

8.2989 × 10
−9

0.9902 3 6.281

Table 4: Maximum absolute error, order of convergence, and CPU time in seconds for Example 3 at time instant 𝑡 = 1 with time step size
Δ𝑡 = Δ𝑥

4.

Types of scheme Grid points Maximum error Rate of convergence Aver. number of iteration CPU time in sec.
11 8.3375 × 10

−8 — 3 0.516

FODs 21 5.2632 × 10
−9

3.9812 2 8.594

41 3.3491 × 10
−10

3.9774 2 200.015
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In order to analyze the results found in application
to the Burgers equation (36), Table 3 demonstrates rate of
convergence, average number of iteration at each time step,
and CPU time required to obtain the solution of Example 3
by using FODs at time instant 𝑡 = 1 when Δ𝑥 = 0.05 with
various time step sizes. Table 4 shows the rate of convergence,
average number of iteration at each time step, and CPU time
required to obtain the solution of Example 3 at time instant
𝑡 = 1 and using uniform grids of 11, 21, and 41 with time step
sizes Δ𝑡 = Δ𝑥4 and 𝜖 = 10−10.

It can be seen from Tables 3 and 4 that numerical results
are in good agreement with the exact solution. We only
observe𝑂(Δ𝑡) convergence rate and the error is dominated by
time error. An explanation for this phenomenon is due to the
nonlinear term, which is approximated at time level 𝑛, instead
of at time level 𝑛 + 1/2 for the FODs (38).

4. Conclusion

In this paper, a new set of fourth-order schemes for the
one-dimensional heat conduction problem with Dirichlet
boundary conditions is constructed using a deferred cor-
rection technique. The construction of high-order deferred
correction schemes requires only a regular three-point stencil
at higher time level which is similar to the standard second-
order Crank-Nikolson method. The greatest significance of
FODs, compared with FOCs and FOSs, is the easier develop-
ment and that it can be solved by using Thomas algorithms.
Numerical examples confirm the order of accuracy. We also
implement our algorithms to nonlinear problems. However,
theoretical analysis for nonlinear problems needs further
investigation. Posterior idea for this project is to use another
way to make 𝑢𝑢

𝑥
term as follows [21, 22]:

𝑢
𝑛+1

(𝑢
𝑥
)
𝑛+1

𝑖
≈ 𝑢
𝑛+1

(𝑢
𝑥
)
𝑛

𝑖
+ 𝑢
𝑛
(𝑢
𝑥
)
𝑛+1

𝑖
− 𝑢
𝑛
(𝑢
𝑥
)
𝑛

𝑖
, (40)

where better results are expected to be found. The first two
terms on the right-hand side of above equation make the
coefficientmatrices of FOCs, FODs, and FOSs varywith time.
That is, the inverse coefficient matrices of FOCs and FOSs
have to be stored on each step of time while FODs have
no need. For this reason, the FODs is simple to implement
although FODs need more iterations for the convergence of
solution on each step of time.
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