

บทคัดย่อ

รหัสโครงการ : MGRG5580028

ชื่อโครงการ : การป้องกันการเกิดโรค Salmonellosis ด้วยการยับยั้งโปรตีน InvC ATPase

ชื่อนักวิจัย : ดร.เริงวิทย์ บุญโยม

ภาควิชาเทคนิคการแพทย์ คณะสหเวชศาสตร์ มหาวิทยาลัยนเรศวร พิษณุโลก 65000

E-mail : rerngwitb@nu.ac.th

ระยะเวลาโครงการ : 2 ปี

เชื้อ *Salmonella enterica* serovar *Typhimurium* (*S. Typhimurium*) เป็นแบคทีเรียที่เป็นสาเหตุของโรคทางเดินอาหารอักเสบและโรคอุจจาระร่วงในมนุษย์และปศุสัตว์ ระบบการหลั่งโปรตีนแบบที่ 3 เป็นที่ทราบกันดีว่าเป็นกลไกสำคัญที่เกี่ยวข้องกับการเกิดโรคโดยทำหน้าที่ในการนำส่งโปรตีนก่อโรคเข้าสู่เซลล์เจ้าบ้าน เชื้อ *S. Typhimurium* มีระบบการหลั่งโปรตีนแบบที่ 3 สองประเภทโดยสร้างจากกลุ่มยืนก่อโรค *Salmonella Pathogenicity Islands* (SPI) 1 และ 2 การศึกษาที่ผ่านมาแสดงให้เห็นว่าระบบการหลั่งโปรตีนแบบที่ 3 สามารถพบได้ในแบคทีเรียแกรมลบหลากหลายสายพันธุ์และมีโครงสร้างไม่เลกุลที่คล้ายคลึงกัน ดังนั้นระบบการหลั่งโปรตีนแบบที่ 3 จึงเป็นเป้าหมายที่น่าสนใจในการพัฒนาวิธีการรักษาแบบใหม่ในการรักษาโรคติดเชื้อแบคทีเรีย การศึกษาเมื่อไม่นานมานี้รายงานว่าไมเลกุลขนาดเล็ก $C_{24}H_{17}ClN_4O_2S$ มีประสิทธิภาพในการยับยั้งโปรตีน *YscN* ซึ่งเป็นเอนไซม์ ATPase ของเชื้อ *Yersinia pestis* ส่งผลให้ยับยั้งการหลั่งของโปรตีนก่อโรคได้ การศึกษานี้ผู้วิจัยพบว่าสารดังกล่าวมีความสามารถในการยับยั้งการหลั่งของโปรตีนก่อโรคผ่านระบบหลั่งโปรตีนแบบที่ 3 ของเชื้อ *S. Typhimurium* ที่ความเข้มข้น $100 \mu M$ ได้ซึ่งส่งผลให้ความสามารถในการบุกรุกของเชื้อแบคทีเรียเข้าสู่เซลล์เพาลียงลดลง แต่พบว่าสารนี้ไม่สามารถลดการทำงานของโปรตีน *InvC* ซึ่งเป็นเอนไซม์ ATPase ของระบบการหลั่งโปรตีนแบบที่ 3 ได้ อย่างไรก็ตามจากการศึกษาการหลั่งโปรตีนภายในเซลล์แบคทีเรียโดยใช้เทคนิคโปรตีโอมิกเชิงปริมาณพบว่าในแบคทีเรียที่ได้รับสาร $C_{24}H_{17}ClN_4O_2S$ มีปริมาณโปรตีน *InvF* ที่ทำหน้าที่ในการควบคุมการแสดงออกของโปรตีนที่สร้างจาก SPI-1 และโปรตีนก่อโรคสองชนิดคือโปรตีน *SipA* และ โปรตีน *SipC* ลดลง ผลของงานวิจัยนี้อาจอธิบายได้ว่ากลไกของไมเลกุล $C_{24}H_{17}ClN_4O_2S$ ที่สามารถปิดกั้นการหลั่งของระบบหลั่งโปรตีนแบบที่ 3 ของเชื้อ *S. Typhimurium* เกิดจากความสามารถในการยับยั้งการสร้างโปรตีน *InvF*

คำสำคัญ ไมเลกุลขนาดเล็ก *Salmonella Pathogenicity Island 1 (SPI-1)* ระบบหลั่งโปรตีนแบบที่ 3 และ เอนไซม์ ATPase

Abstract

Project Code : MGRG5580028

Project Title : Prevention of *Salmonella* Typhimurium pathogenesis by inhibition of InvC, Type III Secretion ATPase.

Investigator : Rerngwit Boonyom, Ph.D.

Department of Medical Technology, Faculty of Allied Health Sciences,
Naresuan University, Phitsanulok 65000

E-mail : rerngwitb@nu.ac.th

Project Period : 2 years

Salmonella enterica serovar Typhimurium (*S. Typhimurium*) causes gastroenteritis and diarrhea in humans and food-producing animals. The Type III Secretion System (T3SS) has been known to be potent virulence mechanisms by injecting effector proteins into the cytosol of host cells. *S. Typhimurium* possesses two T3SSs located on *Salmonella* Pathogenicity Islands (SPI) 1 and 2. Previous studies showed that T3SS shared a potent virulence mechanism and molecular structure among several gram-negative bacteria. Therefore, T3SS has been identified as an attractive target to develop of novel therapeutics for treatment of bacterial infections. Recent study reported that small molecule, $C_{24}H_{17}ClN_4O_2S$ has been shown ability to inhibit *Yersinia pestis* T3SS ATPase, YscN resulting to block secretion of effector proteins. In this study, we illustrated that same compound prohibited secretion of effector proteins at 100 μ M. As this result, bacterial invasion ability into epithelial cell cultures were reduced. In contrast with previous study, $C_{24}H_{17}ClN_4O_2S$ molecule did not inactivate activity of SPI-1 T3SS ATPase, InvC. However, we studied global cellular effects of *S. Typhimurium* after treated with or without this compound using quantitative proteomic technique. These proteomic profile results showed that SPI-1 transcription regulator, InvF and two effector proteins, SipA and SipC were reduced in bacterial cells treated with compound. This may explain that action of $C_{24}H_{17}ClN_4O_2S$ molecule for blocking secretion of SPI-1 T3SS is through inhibition of InvF protein production.

Keywords : Small molecule inhibitor, *Salmonella* Pathogenicity Island 1 (SPI-1), Type III Secretion System (T3SS) and ATPase

List of Contents

	Page
Abstract in Thai	A
Abstract	B
List of Contents	C
List of Tables	D
List of Figures	D
Introduction	1
Objective	5
Materials and Methods	6
Material	6
Methods	7
Results	11
Discussion	18
Conclusion	20
References	21
Appendix	26

List of Tables

	Page
Table	
1. Cell line, Bacterial strains and plasmids used in this study.	6
2. Colony forming unit of intracellular bacteria in HT29 cells.	13
3. Absolute selected protein quantification from proteomic analysis comparison between cellular proteins of <i>S. Typhimurium</i> were grown in presence of DMSO and 100 μ M compound.	17

List of Figures

	Page
Figure	
1. Schematic model of the <i>S. Typhimurium</i> and categorization of SPI-1-encoded proteins.	3
2. Amino acid sequence comparison of Flil, YscN and InvC ATPases.	5
3. Structure of $C_{24}H_{17}ClN_4O_2S$ compound.	6
4. Effect of $C_{24}H_{17}ClN_4O_2S$ substance on growth curve of <i>S. Typhimurium</i> at various concentrations.	11
5. SDS-PAGE of bacterial supernatants.	12
6. Western blotting of bacterial supernatants.	12
7. Percentage of relative invasion of bacteria after treated with compound.	14
8. Analysis of purified GST-InvC fusion protein.	15
9. Graph illustrates relation between concentration of GST-InvC fusion protein and intensity of luminescence (RLU).	15
10. Intensity of luminescence after adding various concentration of compound in InvC ATPase reaction.	16
11. Inhibition pathways of $C_{24}H_{17}ClN_4O_2S$ molecule on secretion of SPI-1 effectors.	19

Introduction

Thailand is a developing nation dependent on agriculture. Productions from livestock such as pigs and chickens are commonly produced and consumed in Thailand. Chickens and pork products are the major exported food commodities apart from rice. In Thailand, there are approximately 7 million pigs and 250 million chickens on farms (Padungtod, Kadohira, & Hill, 2008). During five years, livestock farming in Thailand, particularly on swine and chicken farms, have been inspected by the department of livestock and certified to meet the standard of practice required by law. This criteria for certification includes microbial standard for feed and water used on farms (Department of Livestock Development, 2003). Despite efforts to improve standards of food hygiene in Thailand, from 1996 to 2004 the incidence of foodborne diseases increased from 137 to 248 cases/100,000 people then declined slightly to 217 cases/100,000 people in 2006. It shows that foodborne diseases affect many people. The most commonly isolated etiologic agents from patients with foodborne illness in Thailand are rotavirus, *Salmonella* and *Campylobacter* (Coker, Isokpehi, Thomas, Amisu, & Obi, 2002; Echeverria et al., 1989).

Foodborne infections from *Salmonella* spp. in developing countries are thought to be due to foodborne contaminations. Pre-slaughter pigs and chickens have been incriminated as the major sources of *Salmonella* contaminations of chickens and pork products at later stages in food processing chain (Rasrinaul et al., 1988). In 2006, Padungtod and Kaneene (Padungtod & Kaneene, 2006) reported that the prevalence of *Salmonella* isolation from pre-slaughter pigs (6%) and chickens (4%). However, serological testing of pigs yielded a much higher sero-prevalence (60%) (Patchanee et al., 2002). In addition, pork and chicken meat samples were collected from the same area during the same period of time, the prevalence of *Salmonella* contamination in both pork and chicken meat increased significantly. In Thailand, a survey of raw meat preparations showed up to 56% *Salmonella* contamination in Nham (raw pork sausage) and 19% contamination in Labbdib (raw minced meat salad). Moreover, a foodborne salmonellosis outbreak was associated with vegetable consumption (Padungtod & Kaneene, 2006).

The genus *Salmonella* is composed of motile bacteria that belong to the family Enterobacteriaceae: facultative anaerobic Gram-negative bacilli, 2 to 3 μm x 0.4 to 0.6 μm in size. There are two main clinical diseases associated with *Salmonella* infection: the systemic disease typhoid fever is caused by *Salmonella enterica* serovar Typhi (S. Typhi) and non-typhoidal salmonellosis—a gastrointestinal disease also known as enteritis. In this experiment, I focus in *Salmonella enterica* serovar Typhimurium (S. Typhimurium) which is common cause of enterocolitis and diarrhea disease in several mammalian species (Murray & Baron, 2007). S.

Typhimurium causes disease in animals and it can be generally transmitted to human *via* food derived from infected live stock. In humans, the infection manifests as intestinal disease ranging from gastroenteritis, usually lasting 3-5 days, to a more debilitating enteritis lasting 2-3 weeks (Ina, Kusugami, & Ohta, 2003). In animals, *S. Typhimurium* induced inflammation focuses on different parts of gut. For example, in calves, inflammation is observed in the terminal ileum and the proximal colon (enterocolitis) (R.M. Tsolis et al., 1999).

S. Typhimurium colonizes the apical epithelium of the intestine, induce invasion associated virulence machinery and elicit significant inflammatory changes including focal and diffuse PMN infiltrate, crypt abscesses, epithelial necrosis, edema and fluid secretion. *In vitro*, PMN recruitment to cultured epithelial monolayers occurs *via* the induction of interleukin-8 (IL-8) by *Salmonella* proximate to the apical epithelium. The ability of *Salmonella* to cause intestinal disease correlated to their ability to attract PMN across T84 cell monolayers. In the first 1-3 h of infection, *S. Typhimurium* enrolls neutrophils. After that, over the next 8-10 h there is extensive neutrophil migration which results and the secretion of protein-rich exudates into the intestinal lumen. The diarrheal symptoms occur approximately 8-72 h after bacterial colonization (Tsolis, Adams, Ficht, & Baumler, 1999).

For molecular pathogenesis of *S. Typhimurium*, bacteria contain two virulence-associated gene clusters for *Salmonella* pathogenesis, *Salmonella* Pathogenicity Island 1 and 2 (SPI-1 and SPI-2). Both of these SPIs encode type III secretion systems (T3SSs) (Galan, 2001). The functions of two T3SSs are the translocation of virulence factors or effector proteins from the bacterial cytoplasm into the host cell, thus functioning as “molecular syringes” (Cornelis, 2006). SPI-1 and SPI-2 express at different times during infection. Whereas the SPI-1 is required for the initial interaction of *Salmonella* with intestinal epithelial cells, the SPI-2 encoded system is required for systemic infection. The SPI-1 has been shown to be essential factor for invasion of non-phagocytic cells, induction of intestinal inflammatory responses and diarrhea, as well as colonization of the intestine (Wallis & Galyov, 2000). Contrasting, the SPI-2 has important role in bacterial survival in macrophages (Coburn, Li, Owen, Vallance, & Finlay, 2005).

At least 13 effector proteins are delivered by the SPI-1 type III secretion system. The translocated effectors alter key host-cell functions including signal transduction, cytoskeletal architecture, membrane trafficking and cytokine expression. These processes command the host cell to engulf bacteria into the host cell cytosol by bacterial-mediated endocytosis or macropinocytosis (Hayward & Koronakis, 1999). In the intracellular stages of the infection process, bacteria form the large *Salmonella*-containing vacuoles (SCVs). This process is modulated by the function of the SPI-2 T3SS, which expresses ~3 h after infection (Hensel, 2000).

A variety of gram-negative pathogens (*Yersinia*, *Salmonella*, *Erwinia* and *Pseudomonas*) use type III secretion systems (T3SS) as highly adapted virulence mechanism. Functions of T3SS of pathogenic bacteria are in the assembly of both flagella and virulence-associated organelles, secretion of proteins across both membranes independently of the sec-pathway and without the need for a periplasmic intermediate or proteolytic processing (Cornelis & Van, 2000). Because of their shape and their ability to directly translocate proteins to the cytoplasm of a host cell, they are also referred to as “injectisomes” or “molecular needle” (Cornelis, 2006). The T3SS consists of three types of proteins: (i) structural components of the injection apparatus (ii) effector (secreted) proteins and (iii) regulatory factors controlling expression of structural and effector proteins (Figure 1) (Galan & Collmer, 1999).

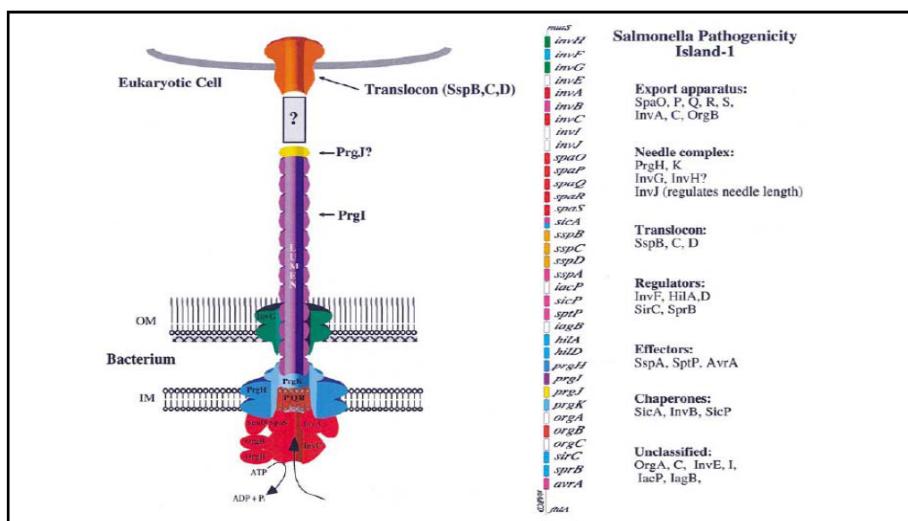


Figure 1. Schematic model of the *S. Typhimurium* and categorization of SPI-1-encoded proteins. Figure taken from (Kimbrough & Miller, 2002).

The T3S mechanism has been described Akeda *et al.* (Akeda & Galan, 2005). The size of the pore of T3SS is estimated to be $\sim 28 \text{ \AA}^\circ$, whereas the chaperone-effector complex is substantial, up to $6,200 \text{ \AA}^\circ$ in some cases. Therefore, the chaperone-effector complex must be stripped of the chaperone and the effector protein unfolded by T3SS ATPase located in basement of T3S machinery (Akeda & Galan, 2005; Gauthier & Finlay, 2003). In *S. Typhimurium*, T3SS ATPase, InvC is able to recognize both the chaperone and the complex with its substrate. Before effector secretion, the chaperone-effector complex binds with InvC ATPase. Then, InvC releases the chaperone from its cognate substrate and induces the global unfolding of effector protein. Finally, the unfolding effector is secreted through the central channel of T3SS-associated needle

complex (Akeda & Galan, 2005). Recently, the proton motive force (PMF) has been suggested to be involved in the secretion of proteins through T3SS (Galan, 2008).

An additional issue of concern in foodborne bacterial infections is antimicrobial resistance. One study in Vietnam and Thailand reported a higher proportion of *Salmonella* isolated in Thailand with resistance to antimicrobial agents used for treatment of gastrointestinal infection, with 28% and 59% of isolates resistant to ampicillin and tetracycline, respectively. Resistance to new agents such as ciprofloxacin (0.5%) and azithromycin (5%) has already found in Thailand (Isenbarger et al., 2002).

There is increasing of antibiotic-resistant *Salmonella* strains. It will be crucial to develop new antimicrobial agents. Strategies that rely on existing drugs and targets, which affect the viability of bacteria all face the same problem i.e., that bacteria quickly develop drug resistance under the huge selective pressure applied. The generation of drugs that specifically target pathogenic properties without killing bacteria is a strategy that might decrease the chance of bacterial resistance emerging against these drugs (Keyser, Elofsson, Rosell, & Wolf-Watz, 2008). As these reasons, T3SS is a attractive target for new anti-bacterial drugs. As described previously, T3SSs are conserved in a variety of gram-negative animal and plant pathogenic and symbiotic bacteria and deliver a set of effectors (unique for each bacterial pathogen) into host cells. Moreover, T3SSs are evolutionally and functionally related to the flagellar export apparatus (Gophna, Ron, & Graur, 2003). The type III secretion ATPase of *Salmonella*, InvC shares significant amino acid sequence similarly to the β subunit of FOF1 ATPase. This study showed that the result from mutagenesis and functional analysis demonstrating Lys-165 is required for the InvC ATPase activity (Akeda & Galan, 2004). In flagellar T3SS, Flil, an ATPase homologous to InvC has been crystallized and solved the structure in the presence of ADP. It reported that Lysine in amino acid position 188 involve in ATPase activity of Flil (Imada, Minamino, Tahara, & Namba, 2007). Recently, small molecules could inhibit of T3SS ATPase activity of *Yersinia pestis*, YscN below 40 μ M concentration. In addition, small molecules prevent secretion of the effector protein from *Y. pestis* into bacterial medium and mammalian cells. From docking conformational model indicated that these molecules tightly bind inside the hydrophobic clave of YscN result loss of ATPase function (Swietnicki et al., 2011). Additional, in this study showed that N-[2-[4-(benzimidazol-1-yl)anilino]-2-oxoethyl]-3-chloro-1-benzothiophene-2-carboxamide ($C_{24}H_{17}ClN_4O_2S$) compound was capable of inhibiting both effector protein secretion and ATPase activity in *Y. pestis*. Moreover, this compound was also non-toxic to the mammalian cells due to a low potential to target human enzyme (Swietnicki et al., 2011). I reasoned that if ATPases for T3SS among gram-negative bacteria are similarity, then I compared amino acid sequences of

FliI, YscN and InvC from *S. Typhimurium* or *Y. pestis*. The alignment result demonstrated that there are significant amino acid sequence similarities among three ATPases and also showed highly conserved in catalytic amino acid (Figure 2). Thus, in this experiments, I hypothesize that $C_{24}H_{17}ClN_4O_2S$ compound would also has inhibitory effects to InvC ATPase in *S. Typhimurium*. However, I found that $C_{24}H_{17}ClN_4O_2S$ compound did not show ATPase inhibitor activity, but this compound prohibited expression of main SPI-1 transcription regulator, InvF.

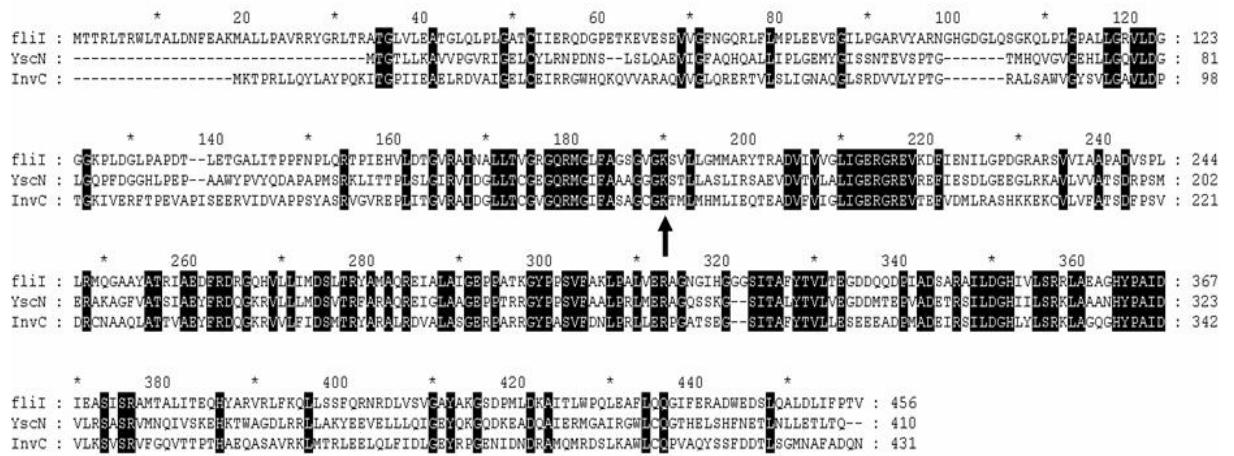


Figure 2. Amino acid sequence comparison of Flil, YscN and InvC ATPases. Black boxes denote identity. Arrow indicates amino acid identified as active site.

Objectives

To study the inhibitory effects of small molecule, $C_{24}H_{17}ClN_4O_2S$ to SPI-1 T3SS ATPase InvC including InvC ATPase inhibition, *salmonella* host cell invasion, and blocking effector proteins secretion.

Materials and Methods

Materials

1. The small molecule N-[2-[4-(benzimidazol-1-yl)anilino]-2-oxoethyl]-3-chloro-1-benzothiophene-2-carboxamide ($C_{24}H_{17}ClN_4O_2S$) (Figure 3) was purchased from commercial vendor Enamine and Life Chemicals (USA).

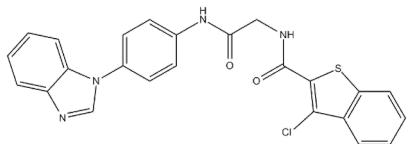


Figure 3. Structure of $C_{24}H_{17}ClN_4O_2S$ compound.

2. Bacterial strains and plasmids used in this study (Table 1)

Table 1. Cell line, bacterial strains and plasmids used in this study

Cell line, Bacterial strains and plasmids	Properties	Source or references
Cell line		
HT-29	Colon cancer cell line	Lab stock
S. Typhimurium strains		
SL1344	Wild-type	SGSC
SW002	<i>invC::Kan^R</i>	Lab stock
SL1344 <i>sipA</i> -strep tag	Wild-type containing <i>sipA::strep tag</i>	This study
E. coli strains		
BL21	F^- , <i>ompT</i> , <i>hsdS</i> β ($r_m\beta$), <i>dcm</i> , <i>gal</i> , <i>lon</i>	Novagen
Plasmids		
pGEX-2T	Expression vector with GST fusion, Amp ^R	GE Healthcare
pGWC	pGEX-2T derivative encoding full-length InvC	This study
pGEX-Ast	pGEX-2T derivative encoding full-length SipA tagging with Strep-tag	This study
PKD46	Lambda-red recombinase expression plasmid ; Amp ^R	(Datsenko & Wanner, 2000)
pCP20	FLP recombinase expression plasmid ; Amp ^R	(Datsenko & Wanner, 2000)

Methods

1. Inhibition of *salmonella* host cell invasion by C₂₄H₁₇CIN₄O₂S compound

The gentamicin protection assay was used for measuring bacterial invasion.

1.1 HT29 preparation

HT29 cells monolayers (2x10⁴cells/well) will be grown at 37°C in 5% CO₂ in DMEM medium supplemented with 10% heat-inactivated fetal bovine serum.

1.2 Bacterial cell preparation

S. Typhimurium strain SL1344 and strain SW002 were grown in Luria-Bertani for 12 h at 37°C, then diluted 1:100 into fresh LB medium supplement with or without inhibitor and grown for another 4 h with 200 rpm shaking. Approximately 3x10⁶ colony forming units (CFU) of bacterial culture were harvested by centrifugation, after that supernatant were removed and gently resuspended the bacterial pellet with DMEM medium.

1.3 Infection of mammalian cells

Bacterial resuspension treated with inhibitor were added directly to the cell-culture supernatant. After incubation of 15 minutes to allow bacterial entry into cells, monolayers were washed with PBS and DMEM containing gentamicin to each well for killing any remaining extracellular bacteria. After washing cells, cells were lysed with solubilization buffer. Finally, the number of intracellular bacteria was determined by plating onto LB agar plates.

2. Blocking of effector proteins secretion in a bacterial cell culture by C₂₄H₁₇CIN₄O₂S

2.1 Preparation of bacterial secretion and SDS-PAGE analysis

S. Typhimurium strain SL1344 and strain SW002 were grown in Luria-Bertani medium for 12 h at 37 °C, then diluted 1:100 into fresh LB. The inhibitor was added to the culture medium at various concentrations. A negative control is DMSO without inhibitor. Bacterial cultures were then allowed to grow for 4 h with 200 rpm shaking. Culture supernatants were separated by centrifugation at 6,000 rpm for 10 min and filter-sterilized (0.2 µm pore-size). Subsequently, proteins will be precipitated with 10% v/v, trichloroacetic acid (TCA). The precipitated sample was separated on SDS-PAGE. The gel was stained with Coomassie blue staining.

3. Confirmation of inhibition of SipA effector protein using *S. Typhimurium* containing *sipA* gene tagging with strep-tag strain

3.1 Construction of *S. Typhimurium* containing *sipA* gene tagging with strep-tag strain

S. Typhimurium containing *sipA* gene tagging with strep-tag strain was constructed by protocol of Datsenko *et al.* (Datsenko & Wanner, 2000). Firstly, a double-stranded DNA cassette containing *sipA* franked with homologous sequences and antibiotic resistance marker was amplified by PCR with standard procedure using previously constructed pGEX-Ast plasmid as a template. PCR product was treated with *DpnI* restriction enzyme at 37 °C for 2 hours following to purified by Hi Yield™ Gel/PCR DNA Fragment Extraction kit (RBC Bioscience, Taiwan). Cassette was introduced into *S. Typhimurium* SL3261 containing pKD46 plasmids electrocompetent cell. Electrocompetent cells were cultured on LB agar containing 50 µg/ml Kanamycin. Single colonies were picked into PCR tube for colony PCR in numerical order for detection of correct chromosomal integration in *Salmonella* strain. Kanamycin resistance (Kan^R) gene was deleted from bacterial chromosome using pCP20 plasmid containing FLP recombinase enzyme. DNA sequence was validated by DNA sequencing. Expression of SipA-Strep tag fusion protein was determined by western blotting with Strep-tag antibody.

3.2 Blocking of SipA effector proteins secretion in a bacterial cell culture by C₂₄H₁₇CIN₄O₂S

S. Typhimurium strain SipA-strep tag strain was grown in Luria-Bertani medium for 12 h at 37 °C, then diluted 1:100 into fresh LB. The inhibitor was added to the culture medium at various concentrations. A negative control is DMSO without inhibitor. Bacterial cultures were then allowed to grow for 4 h with 200 rpm shaking. Culture supernatants were separated by centrifugation at 6,000 rpm for 10 min and filter-sterilized (0.2 µm pore-size). Subsequently, proteins will be precipitated with 10% v/v, trichloroacetic acid (TCA). The precipitated sample was separated on SDS-PAGE and determined of SipA effector protein secretion using western blotting with Strep-tag antibody.

4. Bacterial cell effects analysis by GeLC-MS

Bacterial cells growing in LB medium with or without inhibitor were lysed and electrophoresed on 12% SDS-PAGE. After protein bands were excised, the gel plugs were dehydrated with 100% acetonitrile (ACN), reduced with 10mM DTT in 10mM ammonium bicarbonate at room temperature for 1 h and alkylated at room temperature for 1 h in the dark in the presence of 100mM iodoacetamide (IAA) in 10mM ammonium bicarbonate. After alkylation,

the gel pieces were dehydrated twice with 100% ACN for 5 min. To perform in-gel digestion of proteins, 10 μ l of trypsin solution (10 ng/ μ l trypsin in 50% ACN/10mM ammonium bicarbonate) was added to the gels followed by incubation at room temperature for 20 min, and then 20 μ l of 30% ACN was added to keep the gels immersed throughout digestion. The gels were incubated at 37°C for a few hours or overnight. To extract peptide digestion products, 30 μ l of 50% ACN in 0.1% formic acid (FA) was added into the gels, and then the gels were incubated at room temperature for 10 min in a shaker. Peptides extracted were collected and pooled together in the new tube. The pool extracted peptides were dried by vacuum centrifuge and kept at -80°C for further mass spectrometric analysis.

LC-MS/MS analysis of digested peptide mixtures was performed using a Waters SYNAPT™ HDMS™ system. The 1D-nanoLC was carried out with a Waters nanoACQUITY UPLC system. Four microlitre of tryptic digests was injected onto the RP analytical column (20 cm x 75 μ m) packed with a 1.7 μ m Bridged Ethyl Hybrid (BEH) C18 material (Waters). Peptides were eluted with a linear gradient from 2% to 40% acetonitrile developed over 60 minutes at a flow rate of 350 nl/min. This was followed by a 15 min period of 80% acetonitrile to clean the column before returning to 2% acetonitrile for the next sample. The effluent samples were electrosprayed into a mass spectrometer (Synapt HDMS) for MS/MS analysis of peptides and then generated the spectral data for further protein identification against database search.

Mass lists in the form of Mascot generic files were created and used as the input for Mascot MS/MS Ions searches of the National Center for Biotechnology Information nonredundant (NCBI nr) database (www.matrixscience.com). Default search parameters used were the following: Enzyme = trypsin, max. missed cleavages = 1; fixed modifications = carbamidomethyl (C); variable modifications = oxidation (M); peptide tolerance \pm 1.2 Da; MS/MS tolerance \pm 0.6 Da; peptide charge = 1+, 2+ and 3+; instrument = ESI-QUAD-TOF.

5. Inhibition of InvC ATPase by C₂₄H₁₇CIN₄O₂S compound

5.1 *invC* gene cloning

Synthetic primers corresponding to CDS of the *S. Typhimurium invC* gene were used in PCR reaction for amplification of *invC* gene. The PCR products were cloned into pGEX-2T between *BamH*1 and *EcoR*1 sites. The final construct is coded for N-terminal GST tag. The recombinant clone was transformed into *E. coli* BL21 expression strain. The bacterial containing recombinant plasmid was verified by SDS-PAGE to express the desired protein.

5.2 Protein expression and purification

To express the InvC protein, a single colony containing recombinant plasmid was inoculated in 3 mL of LB with ampicillin medium. The cell was grown overnight at 37°C with shaking at 200 rpm. The next day, the cell culture was diluted 1:100 into 2 L. of fresh medium and incubated at 37°C with shaking until the cell density reached OD₆₀₀ = 0.4. At this time, a solution of IPTG was added and the cell was incubated for an additional 2 hr. Cells were harvested by centrifugation.

To purify proteins, the cell paste was resuspended in chilled protein binding buffer supplemented with complete EDTA-free protease inhibitor cocktail. The bacterial suspension was homogenized using sonicator, the debris was removed by centrifugation, the supernatant was filtered through a sterile 0.45 µm filter and was purified on AKTA prime automated protein purification chromatography system using Glutathione column. Protein concentration was determined with Protein Assay kit with bovine serum albumin as a standard. The purified protein was distributed into aliquots and stored at -70°C.

5.3 ATPase enzyme activity assays

ATPase activity of InvC ATPase was determined using ADO-Glo™ MAX Assay (Promega, USA). The principle of this assay is to determine concentration of ADP after ATPase catalytic ATP. Reagent in this kit reconverts ADP to ATP and measuring by luciferase/luciferin reaction. The light generated correlates with the amount of ADP generated in the ATPase assay, which is indicative of ATPase activity. Inhibitor compound serially diluted 1:10 in DMSO and assayed with InvC ATPase. Only InvC ATPase was used as control.

6. Statistical Analysis

All statistical analyses were performed using GraphPad Prism 7 (GraphPad Software, San Diego, CA). The data are presented as mean and standard deviation (SD). Student t-test was used to consider the statistical significance at *P* value of <0.001.

Results

1. $C_{24}H_{17}ClN_4O_2S$ is concentration-dependent inhibition of SPI-1 T3S effector proteins but did not affect the growth of *S. Typhimurium*

I investigated this compound affected the growth of bacterium. The result showed there were no difference between various concentrations of compound and DMSO solvent control (Figure 4). For SPI-1 effector protein inhibition, $C_{24}H_{17}ClN_4O_2S$ inhibited the appearance of SPI-1 effector proteins, SipA and SipC in *S. Typhimurium* culture supernatant at concentration 100 μ M. Additionally, the amount of FliC protein secretion decreased at 100 μ M of compound (Figure 5). This result related with immunoblotting to detect SipA strep-tag protein in supernatant of *S. Typhimurium* containing *sipA* gene tagging with strep-tag strain (Figure 6). It indicated that inhibition effect on SPI-1 secretion proteins depending on concentration of $C_{24}H_{17}ClN_4O_2S$ molecule. However, $C_{24}H_{17}ClN_4O_2S$ was not due to affecting the growth of *S. Typhimurium*.

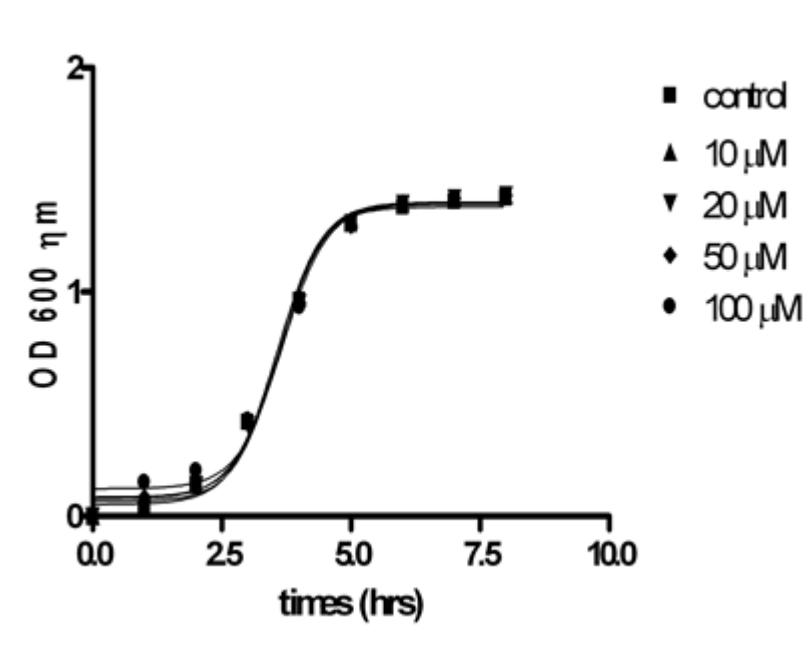


Figure 4. Effect of $C_{24}H_{17}ClN_4O_2S$ substance on growth curve of *S. Typhimurium* at various concentrations. Control was bacteria culturing in media with DMSO.

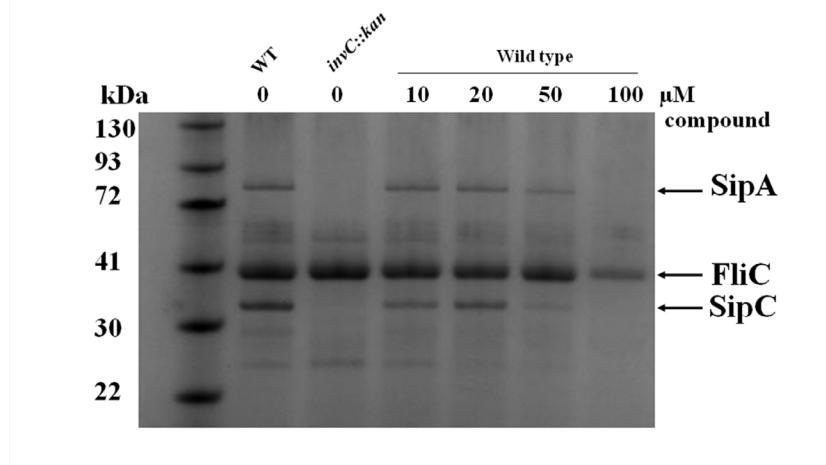


Figure 5. SDS-PAGE of bacterial supernatants. Wild-type *Salmonella* were grown in presence of DMSO or various concentration of compound, and then culture supernatants were isolated. Samples were separated by SDS-PAGE, and were stained with SimplyBlueTM SafeStain (Life technology, USA.) comparing with culture supernatants from SPI-1 deficiency strain, *invC::kan*.

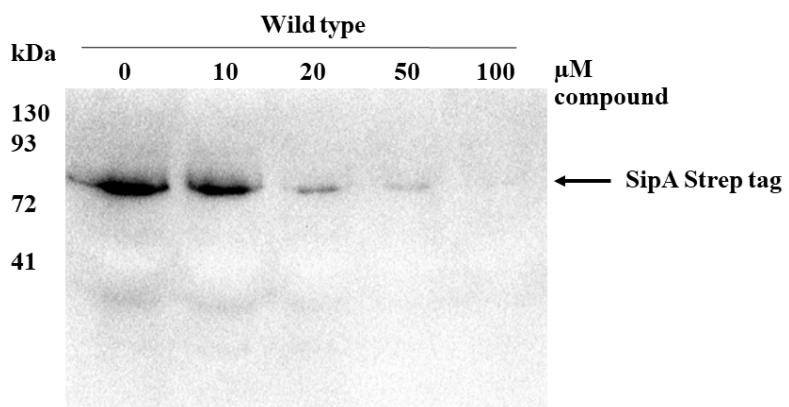


Figure 6. Western blotting of bacterial supernatants. *Salmonella* strains containing Strep-tag on C-terminus of SipA protein were grown in presence of DMSO or various concentration of compound, and then culture supernatants were isolated. SipA tag recombinant protein was detected with a monoclonal strep-tag antibody.

2. C₂₄H₁₇CIN₄O₂S markedly inhibited the invasion of S. Typhimurium into HT29 cells

As described previously, C₂₄H₁₇CIN₄O₂S has inhibited the secretion of SPI-1 effectors, we wished to test this compound had blocking effect on the invasion of *Salmonella* into host cells. Gentamicin protection assay was used to assess the invasion effect. In gentamicin assay, C₂₄H₁₇CIN₄O₂S compound at concentration 100 μ M significantly inhibited the invasion of *Salmonella* into HT29 cells ($P<0.001$) compared to solvent control (Table 2 and Figure 7). *Salmonella* with SPI-1 deficiency strain, *invC::kan* was used as control strain.

Table 2 Colony forming units of intracellular bacteria in HT29 cells

strains	CFU of intracellular bacteria
Untreated bacteria I	15600
Untreated bacteria II	12600
Untreated bacteria III	15800
Compound treated bacteria I	6000
Compound treated bacteria II	5740
Compound treated bacteria III	6800
SPI-1 deficiency strain I	100
SPI-1 deficiency strain II	134
SPI-1 deficiency strain III	156

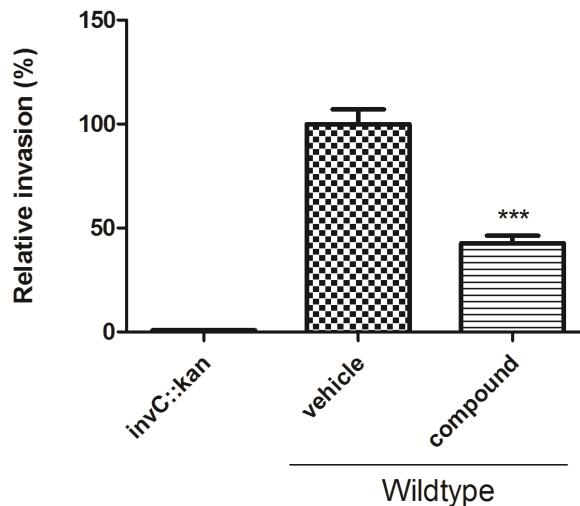


Figure 7. Percentage of relative invasion of bacteria after treated with compound. HT-29 cells were infected with wild-type *Salmonella* after treated with or without 100 μ M. of compound at MOI of 100. The SPI-1 negative strain, *invC::kan* was used as positive control. *** Statistical significant difference between DMSO vehicle control and compound group ($p<0.001$). Results presented at three independent experiments and error bars indicated standard deviations from the means.

4. Production of GST-InvC ATPase recombinant protein

Before ATPase enzyme activity assays, I constructed full-length of *invC* gene fusing with GST under control of tac promoter. Firstly, we amplified the full-length of *invC* gene from genomic DNA of *S. Typhimurium* strain SL1344 by standard PCR condition using CF primers set including BamHI and EcoRI restriction enzyme sites. After that PCR product was digested with BamHI/EcoRI and cloned into BamHI/EcoRI digested pGEX-2T expression vector, giving pGWC.

The recombinant plasmid pGWC express the full-length InvC fused with GST under control of IPTG inducible tac promoter. The *E.coli* containing plasmid pGWC was induced with 1 mM of IPTG for 3 h. Bacteria was harvested by centrifugation, then, bacterial cells were lysed by sonication. The bacterial lysate was mixed with glutathione agarose beads. After washing, the elution was analyzed by SDS-PAGE. The purification of GST-InvC fusion protein was shown approximately 72 kDa on SDS-PAGE (Figure 8). Finally, these purified proteins were concentrated using MWCO 30 kDa Vivaspin column (Merck, USA). The concentration of GST-InvC fusion protein was about 10 mg/mL.

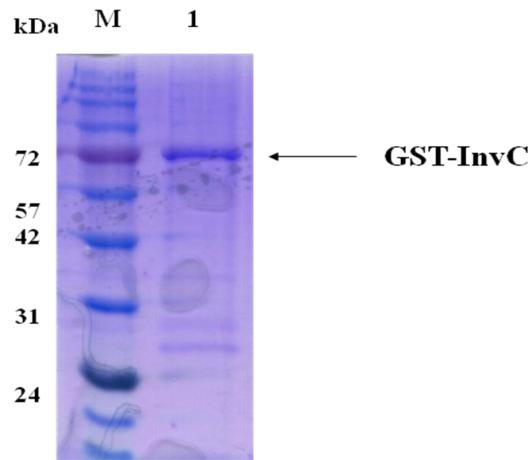


Figure 8. Analysis of purified GST-InvC fusion protein.

Lane M, molecular weight maker; lane 1, purification of GST-InvC recombinant protein

The GST-InvC fusion protein was determined the optimal concentration for degradation of ATP. The optimal concentration of GST-InvC recombinant protein to degrade ATP molecules is about 10 μ g/uL or about 140 μ M. (Figure 9) In further experiment, I used 10 μ g of InvC ATPase protein for each catalytic reaction.

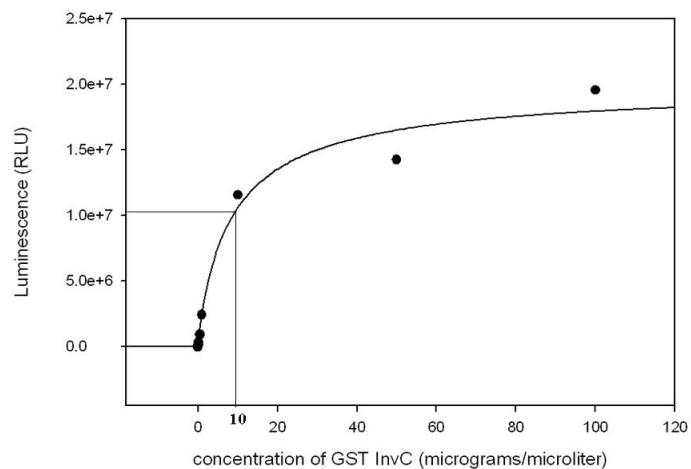


Figure 9. Graph illustrates relation between concentration of GST-InvC fusion protein and intensity of luminescence (RLU).

5. T3S inhibition effect of $C_{24}H_{17}ClN_4O_2S$ did not caused by inactivated InvC ATPase

From previous results showed that compound was able to block for SPI-1 T3S. The mechanism of action of $C_{24}H_{17}ClN_4O_2S$ on the secretion SPI-1 effectors was investigated. From literature has shown that this compound is able to inhibit both effector protein secretion and T3S ATPase, YscN activity in *Y. pestis*. From amino acid sequences, there show similarity between T3S ATPase from *Y. pestis* and *S. Typhimurium*. Thus, I hypothesized that this compound may have inhibitory activity to SPI-1 T3S ATPase, InvC in *Salmonella*. I determined the InvC ATPase inhibitor activity of various concentration compound using ADO-GloTM MAX Assay. The result showed that at concentration 10, 20, 50 and 100 μ M of compound did not reduce amount of luminescence intensity (RLU) producing with InvC ATPase catalytic reaction (Figure 10). It indicated that this compound had not inhibitive effect for *Salmonella* InvC ATPase enzyme.

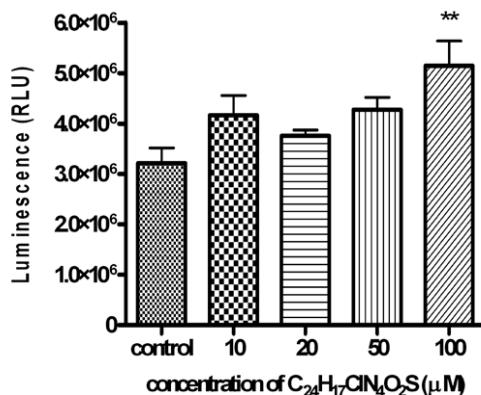


Figure 10. Intensity of luminescence after adding various concentration of compound in InvC ATPase reaction. Control was reaction containing only InvC ATPase enzyme. Results presented at three independent experiments and error bars indicated standard deviations from the means.

6. T3SS transcription regulator, InvF was disappeared in $C_{24}H_{17}ClN_4O_2S$ treated bacteria

To further explore the action of $C_{24}H_{17}ClN_4O_2S$ compound. We performed a proteomic analysis for identification the mechanism of compound inhibition on *S. Typhimurium* SPI-1 T3SS. As shown in table 3, results from proteomic profiles illustrated that bacterial cells treated with 100 μ M of compound showed significantly decreased quantification of *S. Typhimurium* AraC-family regulator of type III secretion system, InvF protein. Moreover, level of effector proteins, SipA and

SipC dramatically dropped in compound treated bacteria. These results provided evidence that this compound can affect the production of multiple SPI-1 effectors by inhibition of translation or increasing degradation of regulator of type III secretion system protein, InvF.

Table 3. Absolute selected protein quantification from proteomic analysis comparison between cellular proteins of *S. Typhimurium* were grown in presence of DMSO and 100 μ M compound.

Accession number	Protein name	DMSO	Compound treated
gi 52212981	AraC-family regulator of type III secretion system, InvF	5.39963	0
gi 618634010	Pathogenicity island 1 effector protein, SipA	4.821184	0
gi 975296	SipC	6.675706	0

Discussion

Infectious diseases are a major public health problem worldwide. The disease has a high rate of morbidity and mortality comparing with non-infectious. Treatment of bacterial infections is necessary to get antibiotics for killing bacteria and patients recovering. However, the frequent occurrence of pathogens that are resistant to traditional antibiotics becomes a great health problem. Therefore, development of new antimicrobial drug is required. Antibiotics replacement therapies target on bacterial pathogenesis. The Type 3 Secretion System (T3SS) is one of the most interesting targets for drug discovery. Because this system is main mechanism for bacterial virulent proteins transportation into host cells (Salmond & Reeves, 1993). Moreover, T3SS has found in gram-negative bacteria that causes disease in humans, such as *Salmonella* (Salmond & Reeves, 1993), *Shigella* (Cornelis & Van, 2000), *Pseudomonas* (Cornelis & Van, 2000), enteropathogenic *Escherichia coli* (EPEC) (Jarvis et al., 1995), *Vibrio* (Cornelis & Van, 2000), *Yersinia* (Schesser Bartra et al., 2019), and *Chlamydia* (Dai & Li, 2014). Several compounds from synthesis or natural product were discovered as T3SS inhibitors (Pendergrass & May, 2019; Swietnicki et al., 2011; Tao, Fan, et al., 2019; Tao, Tian, et al., 2019). Here, I demonstrated that the small molecule, $C_{24}H_{17}ClN_4O_2S$ had inhibitory effect on secretion of SPI-1 effector proteins and invasion of *Salmonella* into host cells without interfered against growth of bacteria. Thus, $C_{24}H_{17}ClN_4O_2S$ compound may be potential candidate for a novel T3SS inhibitor and be less likely to induce the resistance of *Salmonella* to this compound.

Previous study showed that the $C_{24}H_{17}ClN_4O_2S$ compound was capable of inhibiting both effector protein secretion and ATPase activity in *Y. pestis* (Swietnicki et al., 2011). Moreover, this compound was also non-toxic to the mammalian cells due to a low potential to target human enzyme (Swietnicki et al., 2011). In this study, this molecule had ability to inhibit only effector proteins secretion from *Salmonella* SPI-1. But activity of SPI-1 T3SS ATPase enzyme of *S. typhimurium*, InvC did not decreased. It assumed that this molecule affected T3S ability in *S. typhimurium* by different pathways. I identified mechanism of action of compound on SPI-1 TSS using proteomic analysis. Protein quantification from mass spectrophotometry indicated that untreated bacteria differed 3 SPI-1 T3SS related proteins from compound treated group. Two of them were SPI-1 T3SS effector proteins, SipA and SipC. Another protein was SPI-1 regulator protein, InvF protein. InvF is a transcriptional activator encoding by SPI-1. This protein is required for activation of the expression of SPI-1 T3SS effectors encoded both inside and outside of SPI-1 (Darwin & Miller, 1999; Eichelberg & Galan, 1999). The activity of InvF requires SicA, which also encodes within SPI-1 (Darwin & Miller, 2000, 2001). However, control of expression of InvF

is under control by central regulator of SPI-1, HilA (Dieye, Dyszel, Kader, & Ahmer, 2007; Ellermeier, Ellermeier, & Slauch, 2005). The expression of *hilA* is influenced by environmental changes, such as osmolarity, pH, and oxygen tension (Bajaj, Lucas, Hwang, & Lee, 1996). Moreover, expression of *invF* gene is improved by upregulating of FliZ and HilD (Aurass et al., 2018). The global regulatory system, ArcAB also promotes the expression of *invF* gene (Lim et al., 2013; Pardo-Este et al., 2018).

To date, many T3SS inhibitor from chemical synthesis (Swietnicki et al., 2011; Tao, Fan, et al., 2019; Tao, Tian, et al., 2019) or natural product (Pendergrass & May, 2019) have been screened for developing novel anti-virulence agents, such as salicylidene acylhydrazides (Dahlgren, Zetterstrom, Gylfe, Linusson, & Elofsson, 2010; Kauppi, Nordfelth, Hagglund, Wolf-Watz, & Elofsson, 2003; Nordfelth, Kauppi, Norberg, Wolf-Watz, & Elofsson, 2005), N-phenyl-benzamide (Dahlgren, Kauppi, Olsson, Linusson, & Elofsson, 2007), caminosides (Kimura et al., 2011; Linington et al., 2002), Aurodox (McHugh, O'Boyle, Connolly, Hoskisson, & Roe, 2019), Cytosporone B (Li et al., 2013) and so on. T3SS inhibitors changed in gene expression of T3SS regulator proteins, effector protein and/or needle apparatus to present their inhibition of T3SS. Interestingly, from my results suggested that $C_{24}H_{17}ClN_4O_2S$ compound may not affect protein for SPI-1 T3SS apparatuses and SPI-1 regulators protein level excepting InvF. Therefore, $C_{24}H_{17}ClN_4O_2S$ compound may influences only protein InvF resulting to inhibit the secretion of SPI-1 effectors (Figure 11). The mechanism of action of compound affecting InvF will be required to further investigate in future. The mechanism supposed to be reducing transcription of *invF* gene, increasing InvF protein degradation or inhibition of InvF binding to SPI-1 promotor.

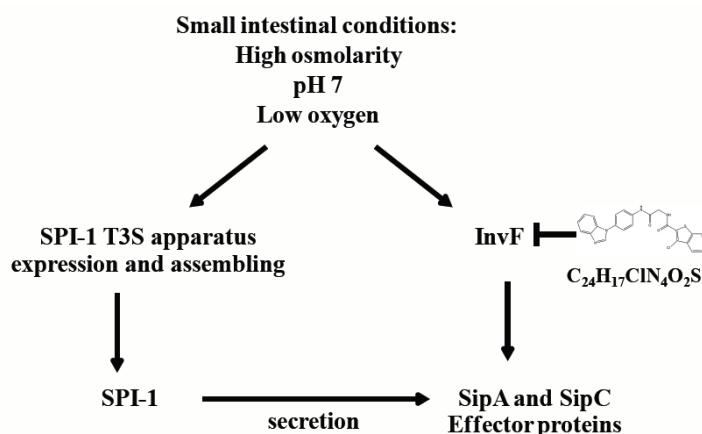


Figure 11. Inhibition pathways of $C_{24}H_{17}ClN_4O_2S$ molecule on secretion of SPI-1 effectors. Arrow lines indicated transcription activation. Blunt line indicated inhibition.

Conclusion

Anti-T3S ATPAse in *Yersinia*, C₂₄H₁₇CIN₄O₂S was identified as anti-T3SS in *Salmonella* in different mechanism. This compound affect protein level of SPI-1 regulator protein, InvF in bacterial cells. Lacking of intracellular InvF exerts inhibitory effect on SPI-1 effector proteins secretion. The activities of this molecule against *Salmonella* make it potential candidate, likely combined with other agents, to use as a novel anti-salmonellosis agents.

References

Akeda, Y., & Galan, J. E. (2004). Genetic analysis of the *Salmonella enterica* type III secretion-associated ATPase InvC defines discrete functional domains. *J. Bacteriol.*, 186(8), 2402-2412.

Akeda, Y., & Galan, J. E. (2005). Chaperone release and unfolding of substrates in type III secretion. *Nature*, 437(7060), 911-915.

Aurass, P., Duvel, J., Karste, S., Nubel, U., Rabsch, W., & Flieger, A. (2018). glnA Truncation in *Salmonella enterica* Results in a Small Colony Variant Phenotype, Attenuated Host Cell Entry, and Reduced Expression of Flagellin and SPI-1-Associated Effector Genes. *Appl Environ Microbiol*, 84(2). doi:10.1128/AEM.01838-17

Bajaj, V., Lucas, R. L., Hwang, C., & Lee, C. A. (1996). Co-ordinate regulation of *Salmonella* typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. *Mol. Microbiol*, 22(4), 703-714.

Coburn, B., Li, Y., Owen, D., Vallance, B. A., & Finlay, B. B. (2005). *Salmonella enterica* serovar Typhimurium pathogenicity island 2 is necessary for complete virulence in a mouse model of infectious enterocolitis. *Infect. Immun*, 73(6), 3219-3227.

Coker, A. O., Isokpehi, R. D., Thomas, B. N., Amisu, K. O., & Obi, C. L. (2002). Human campylobacteriosis in developing countries. *Emerg. Infect. Dis*, 8(3), 237-244.

Cornelis, G. R. (2006). The type III secretion injectisome. *Nat. Rev. Microbiol*, 4(11), 811-825.

Cornelis, G. R., & Van, G. F. (2000). Assembly and function of type III secretory systems. *Annu. Rev. Microbiol*, 54, 735-774.

Dahlgren, M. K., Kauppi, A. M., Olsson, I. M., Linusson, A., & Elofsson, M. (2007). Design, synthesis, and multivariate quantitative structure-activity relationship of salicylanilides--potent inhibitors of type III secretion in *Yersinia*. *J Med Chem*, 50(24), 6177-6188. doi:10.1021/jm070741b

Dahlgren, M. K., Zetterstrom, C. E., Gylfe, S., Linusson, A., & Elofsson, M. (2010). Statistical molecular design of a focused salicylidene acylhydrazide library and multivariate QSAR of inhibition of type III secretion in the Gram-negative bacterium *Yersinia*. *Bioorg Med Chem*, 18(7), 2686-2703. doi:10.1016/j.bmc.2010.02.022

Dai, W., & Li, Z. (2014). Conserved type III secretion system exerts important roles in *Chlamydia trachomatis*. *Int J Clin Exp Pathol*, 7(9), 5404-5414.

Darwin, K. H., & Miller, V. L. (1999). InvF is required for expression of genes encoding proteins secreted by the SPI1 type III secretion apparatus in *Salmonella* typhimurium. *J Bacteriol*, 181(16), 4949-4954.

Darwin, K. H., & Miller, V. L. (2000). The putative invasion protein chaperone SicA acts together with InvF to activate the expression of *Salmonella* typhimurium virulence genes. *Mol Microbiol*, 35(4), 949-960. doi:10.1046/j.1365-2958.2000.01772.x

Darwin, K. H., & Miller, V. L. (2001). Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in *Salmonella* typhimurium. *EMBO J*, 20(8), 1850-1862. doi:10.1093/emboj/20.8.1850

Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci. U. S. A*, 97(12), 6640-6645.

Development of Livestock Development. (2003). Procedure for Standard Pig Farm Practice. Bangkok: Agriculture cooperative federation of Thailand.

Dieye, Y., Dyszel, J. L., Kader, R., & Ahmer, B. M. (2007). Systematic analysis of the regulation of type three secreted effectors in *Salmonella enterica* serovar Typhimurium. *BMC Microbiol*, 7, 3. doi:10.1186/1471-2180-7-3

Echeverria, P., Taylor, D. N., Lexsomboon, U., Bhaibulaya, M., Blacklow, N. R., Tamura, K., & Sakazaki, R. (1989). Case-control study of endemic diarrheal disease in Thai children. *J Infect. Dis*, 159(3), 543-548.

Eichelberg, K., & Galan, J. E. (1999). Differential regulation of *Salmonella* typhimurium type III secreted proteins by pathogenicity island 1 (SPI-1)-encoded transcriptional activators InvF and hilA. *Infect. Immun*, 67(8), 4099-4105.

Ellermeier, C. D., Ellermeier, J. R., & Slauch, J. M. (2005). HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in *Salmonella enterica* serovar Typhimurium. *Mol Microbiol*, 57(3), 691-705. doi:10.1111/j.1365-2958.2005.04737.x

Galan, J. E. (2001). *Salmonella* interactions with host cells: type III secretion at work. *Annu. Rev. Cell Dev. Biol*, 17, 53-86.

Galan, J. E. (2008). Energizing type III secretion machines: what is the fuel? *Nat. Struct. Mol. Biol*, 15(2), 127-128.

Galan, J. E., & Collmer, A. (1999). Type III secretion machines: bacterial devices for protein delivery into host cells. *Science*, 284(5418), 1322-1328.

Gauthier, A., & Finlay, B. B. (2003). Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic *Escherichia coli*. *J Bacteriol*, 185(23), 6747-6755. doi:10.1128/jb.185.23.6747-6755.2003

Gophna, U., Ron, E. Z., & Graur, D. (2003). Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. *Gene*, 312, 151-163. doi:10.1016/s0378-1119(03)00612-7

Hayward, R. D., & Koronakis, V. (1999). Direct nucleation and bundling of actin by the SipC protein of invasive *Salmonella*. *EMBO J*, 18(18), 4926-4934.

Hensel, M. (2000). *Salmonella* pathogenicity island 2. *Mol Microbiol*, 36(5), 1015-1023. doi:10.1046/j.1365-2958.2000.01935.x

Imada, K., Minamino, T., Tahara, A., & Namba, K. (2007). Structural similarity between the flagellar type III ATPase Flil and F1-ATPase subunits. *Proc Natl Acad Sci U S A*, 104(2), 485-490. doi:10.1073/pnas.0608090104

Ina, K., Kusugami, K., & Ohta, M. (2003). Bacterial hemorrhagic enterocolitis. *J Gastroenterol*, 38(2), 111-120. doi:10.1007/s005350300019

Isenbarger, D. W., Hoge, C. W., Srijan, A., Pitarangsi, C., Vithayasai, N., Bodhidatta, L., . Cam, P. D. (2002). Comparative antibiotic resistance of diarrheal pathogens from Vietnam and Thailand, 1996-1999. *Emerg. Infect. Dis*, 8(2), 175-180.

Jarvis, K. G., Giron, J. A., Jerse, A. E., McDaniel, T. K., Donnenberg, M. S., & Kaper, J. B. (1995). Enteropathogenic *Escherichia coli* contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. *Proc Natl Acad Sci U S A*, 92(17), 7996-8000. doi:10.1073/pnas.92.17.7996

Kauppi, A. M., Nordfelth, R., Hagglund, U., Wolf-Watz, H., & Elofsson, M. (2003). Salicylanilides are potent inhibitors of type III secretion in *Yersinia*. *Adv Exp Med Biol*, 529, 97-100. doi:10.1007/0-306-48416-1_17

Keyser, P., Elofsson, M., Rosell, S., & Wolf-Watz, H. (2008). Virulence blockers as alternatives to antibiotics: type III secretion inhibitors against Gram-negative bacteria. *J. Intern. Med*, 264(1), 17-29.

Kimbrough, T. G., & Miller, S. I. (2002). Assembly of the type III secretion needle complex of *Salmonella typhimurium*. *Microbes. Infect*, 4(1), 75-82.

Kimura, K., Iwatsuki, M., Nagai, T., Matsumoto, A., Takahashi, Y., Shiomi, K., . . . Abe, A. (2011). A small-molecule inhibitor of the bacterial type III secretion system protects against in vivo infection with *Citrobacter rodentium*. *J Antibiot (Tokyo)*, 64(2), 197-203. doi:10.1038/ja.2010.155

Li, J., Lv, C., Sun, W., Li, Z., Han, X., Li, Y., & Shen, Y. (2013). Cytosporone B, an inhibitor of the type III secretion system of *Salmonella enterica* serovar Typhimurium. *Antimicrob Agents Chemother*, 57(5), 2191-2198. doi:10.1128/AAC.02421-12

Lim, S., Yoon, H., Kim, M., Han, A., Choi, J., Choi, J., & Ryu, S. (2013). Hfq and ArcA are involved in the stationary phase-dependent activation of *Salmonella* pathogenicity island 1 (SPI1) under shaking culture conditions. *J Microbiol Biotechnol*, 23(12), 1664-1672. doi:10.4014/jmb.1305.05022

Linington, R. G., Robertson, M., Gauthier, A., Finlay, B. B., van Soest, R., & Andersen, R. J. (2002). Caminoside A, an antimicrobial glycolipid isolated from the marine sponge *Caminus sphaeroconia*. *Org Lett*, 4(23), 4089-4092. doi:10.1021/o10268337

McHugh, R. E., O'Boyle, N., Connolly, J. P. R., Hoskisson, P. A., & Roe, A. J. (2019). Characterization of the Mode of Action of Aurodox, a Type III Secretion System Inhibitor from *Streptomyces goldiniensis*. *Infect Immun*, 87(2). doi:10.1128/IAI.00595-18

Murray, P. R., & Baron, E. J. (2007). Manual of clinical microbiology. 9th ed.

Nordfelth, R., Kauppi, A. M., Norberg, H. A., Wolf-Watz, H., & Elofsson, M. (2005). Small-molecule inhibitors specifically targeting type III secretion. *Infect Immun*, 73(5), 3104-3114. doi:10.1128/IAI.73.5.3104-3114.2005

Padungtod, P., Kadohira, M., & Hill, G. (2008). Livestock production and foodborne diseases from food animals in Thailand. *J. Vet. Med. Sci*, 70(9), 873-879.

Padungtod, P., & Kaneene, J. B. (2006). *Salmonella* in food animals and humans in northern Thailand. *Int. J. Food Microbiol*, 108(3), 346-354.

Pardo-Este, C., Hidalgo, A. A., Aguirre, C., Briones, A. C., Cabezas, C. E., Castro-Severyn, J., . . . Saavedra, C. P. (2018). The ArcAB two-component regulatory system promotes resistance to reactive oxygen species and systemic infection by *Salmonella* Typhimurium. *PLoS One*, 13(9), e0203497. doi:10.1371/journal.pone.0203497

Patchanee, P., Zessin, K., Staak, C., Srikiatkarn, L., Taravijitkul, P., & Tesaprateep, T. (2002). Pre-slaughter infection of *Salmonella* spp. and consideration of using the Danish Mix-ELISA for monitoring *Salmonella* in pigs. *Chiang Mai Vet J*, 1, 33-38.

Pendergrass, H. A., & May, A. E. (2019). Natural Product Type III Secretion System Inhibitors. *Antibiotics (Basel)*, 8(4). doi:10.3390/antibiotics8040162

Rasrinaul, L., Suthienkul, O., Echeverria, P. D., Taylor, D. N., Seriwatana, J., Bangtrakulnonth, A., & Lexomboon, U. (1988). Foods as a source of enteropathogens causing childhood diarrhea in Thailand. *Am. J. Trop. Med. Hyg*, 39(1), 97-102.

Salmond, G. P., & Reeves, P. J. (1993). Membrane traffic wardens and protein secretion in gram-negative bacteria. *Trends Biochem Sci*, 18(1), 7-12. doi:10.1016/0968-0004(93)90080-7

Schesser Bartra, S., Lorica, C., Qian, L., Gong, X., Bahnan, W., Barreras, H., Jr., . . . Schesser, K. (2019). Chromosomally-Encoded *Yersinia pestis* Type III Secretion Effector Proteins Promote Infection in Cells and in Mice. *Front Cell Infect Microbiol*, 9, 23. doi:10.3389/fcimb.2019.00023

Swietnicki, W., Carmany, D., Retford, M., Guelta, M., Dorsey, R., Bozue, J., . . . Olson, M. A. (2011). Identification of small-molecule inhibitors of *Yersinia pestis* Type III secretion system YscN ATPase. *PLoS One*, 6(5), e19716. doi:10.1371/journal.pone.0019716

Tao, H., Fan, S. S., Jiang, S., Xiang, X., Yan, X., Zhang, L. H., & Cui, Z. N. (2019). Small Molecule Inhibitors Specifically Targeting the Type III Secretion System of *Xanthomonas oryzae* on Rice. *Int J Mol Sci*, 20(4). doi:10.3390/ijms20040971

Tao, H., Tian, H., Jiang, S., Xiang, X., Lin, Y., Ahmed, W., . . . Cui, Z. N. (2019). Synthesis and biological evaluation of 1,3,4-thiadiazole derivatives as type III secretion system inhibitors against *Xanthomonas oryzae*. *Pestic Biochem Physiol*, 160, 87-94. doi:10.1016/j.pestbp.2019.07.005

Tsolis, R. M., Adams, L. G., Ficht, T. A., & Baumler, A. J. (1999). Contribution of *Salmonella typhimurium* virulence factors to diarrheal disease in calves. *Infect Immun*, 67(9), 4879-4885.

Tsolis, R. M., Kingsley, R. A., Townsend, S. M., Ficht, T. A., Adams, L. G., & Baumler, A. J. (1999). Of mice, calves, and men. Comparison of the mouse typhoid model with other *Salmonella* infections. *Adv. Exp. Med. Biol*, 473, 261-274.

Wallis, T. S., & Galyov, E. E. (2000). Molecular basis of *Salmonella*-induced enteritis. *Mol. Microbiol*, 36(5), 997-1005.

Appendix

เอกสารสรุปผลการวิจัยสำหรับการประชาสัมพันธ์

โรคติดเชื้อเป็นปัญหาสำคัญทางสาธารณสุขของทั่วโลกและรวมทั้งของประเทศไทย โดยโรคดังกล่าวมีอัตราการเจ็บป่วยและอัตราเสียชีวิตสูงในลำดับต้นๆ เมื่อเปรียบเทียบกับโรคไม่ติดเชื้ออื่น การรักษาโรคติดเชื้อแบคทีเรียมักจำเป็นต้องได้รับยาต้านจุลชีพเพื่อฆ่าเชื้อแบคทีเรียทำให้เชื้อก่อโรคลดลงอย่างรวดเร็วและทำให้ผู้ป่วยฟื้นและอาการหายขาดโดยเร็วที่สุด อย่างไรก็ตามเนื่องจากความซุกที่เพิ่มขึ้นของสายพันธุ์แบคทีเรียที่ดื้อต่อการรักษาด้วยยาต้านจุลชีพและการพัฒนายาต้านจุลชีพชนิดใหม่แต่ละชนิดที่ต้องใช้เวลานาน ดังนั้นจึงทำให้มีการวิจัยเพื่อค้นหาเป้าหมายใหม่ในการรักษาด้วยยาต้านจุลชีพโดยเป้าหมายนั้นๆ ต้องไม่จำเป็นต่อการมีชีวิตของแบคทีเรียแต่ต้องเกี่ยวข้องกับกลไกการก่อโรค ระบบการขยับโปรตีนของแบคทีเรียแบบที่ 3 (Type 3 Secretion System, T3SS) เป็นเป้าหมายหนึ่งที่ได้รับความสนใจในการใช้เป็นเป้าหมายในการพัฒนา เนื่องจากระบบการขยับดังกล่าวเป็นระบบการขยับโปรตีนหลักที่ขยับโปรตีนก่อโรคเข้าสู่เซลล์โฮสต์ โดยผลการวิจัยของคณะผู้วิจัยพบว่าสารเคมี N-[2-[4-(benzimidazol-1-yl)anilino]-2-oxoethyl]-3-chloro-1-benzothiophene-2-carboxamide ($C_{24}H_{17}ClN_4O_2S$) มีความสามารถในการยับยั้งการหลั่งโปรตีนก่อโรคที่หลังผ่านระบบการขยับโปรตีนของแบคทีเรียแบบที่ 3 ของเชื้อ *Salmonella Typhimurium* ส่งผลให้เชื้อแบคทีเรียมีการหลั่งโปรตีนก่อโรคได้ลดลงและเข้าสู่เซลล์เจ้าบ้านได้ลดลงถูกที่ จากผลการวิจัยดังกล่าวแสดงให้เห็นว่าสารดังกล่าว่น่าจะมีการต่อยอดเพื่อนำไปใช้เป็นยาต้านจุลชีพได้ในอนาคต

โปสเตรอร์ในการนำเสนอผลงานเสนอใน การประชุมนักวิจัยรุ่นใหม่ พน เมธีวิจัยอาวุโส สกอ. ครั้งที่ 14, ชลบุรี ประเทศไทย. 23-25 ตุลาคม 2557.