บทคัดย่อ

รหัสโครงการ: RMG5580062

ชื่อโครงการ : การศึกษาพฤติกรรมทางไฮโดรไดนามิกส์และคุณลักษณะการเผาไหม้เชื้อเพลิงชีวมวลเดี่ยวและ การเผาไหม้เชื้อเพลิงชีวมวลร่วมกับถ่านหินในเตาเผาไหม้ฟลูอิไดซ์เบดแบบหมุนเวียนขนาด 50 kW_{th}

ชื่อนักวิจัย: ผู้ช่วยศาสตราจารย์ ดร. ประสาน สถิตย์เรื่องศักดิ์ มหาวิทยาลัยเทคโนโลยีมหานคร รองศาสตราจารย์ ดร. ฐานิตย์ เมธิยานนท์ มหาวิทยาลัยเทคโนโลยีมหานคร

Email Address: prasan_mut@yahoo.com, thanid_m@yahoo.com

ระยะเวลาโครงการ : 2 กรกฎาคม 2555 – 1 กรกฎาคม 2557

ความต้องการพลังงานของประเทศไทยมีเพิ่มสูงขึ้นอย่างรวดเร็วเนื่องจากการเดิบโดของจำนวน ประชากรและการพัฒนาของภาคอุตสาหกรรม โดยความร้อนและไฟฟ้าเป็นรูปแบบของพลังงานที่ถูกนำไปใช้ ประโยชน์ซึ่งถูกแปรรูปมากจากพลังงานเคมีในเชื้อเพลิง ถ่านในแง่ของการเป็นเชื้อเพลิงทั่วไปได้ถูกมองว่าเป็น แหล่งพลังงานที่มีศักยภาพสูงเพราะว่ามีปริมาณสำรองที่มาก ทั้งนี้ ในหลายปีที่ผ่านมาได้มีการพิสูจน์แล้วว่า เทคโนโลยีการเผาไหม้ฟลูอิไดซ์เบดแบบหมุนเวียน (CFB) ได้ถูกนำมาใช้งานอย่างแพร่หลายทั้งกับเชื้อเพลิง ถ่านหินและชีวมวล เนื่องจากมีข้อดีที่สามารถใช้กับเชื้อเพลิงได้อย่างหลากหลาย รวมไปถึงปลดปล่อยมลพิษ น้อยเมื่อเปรียบเทียบกับเทคโนโลยีการเผาไหม้ฟลูอิไดซ์เบดแบบฟองแก๊ส (BFB) นอกจากนี้ เทคโนโลยีการ เผาไหม้แบบ CFB นี้ดูเหมือนว่าจะเป็นเป็นเทคโนโลยีที่ได้รับความสนใจและจะถูกนำมาใช้ในประเทศไทยใน อนาคต ดังนั้น จึงต้องมีการศึกษาผลกระทบของตัวแปรต่าง ๆ ในการเผาไหม้เชื้อเพลิงแต่ละชนิด โครงการวิจัย นี้ได้มุ่งเน้นถึงการศึกษาเชิงทดลองถึงไฮโดรไดนามิกส์ของอนุภาค ตลอดจนคุณลักษณะการเผาไหม้และ สมรรถนะการเผาไหม้ของถ่านหินเดี่ยว และการเผาไหม้ร่วมระหว่างถ่านหินและแกลบในเตาเผาไหม้ฟลูอิไดซ์ เบดแบบหมุนเวียนซึ่งมีความสูง 6 m และมีขนาดเส้นผ่านศูนย์กลางท่อไรเซอร์ 150 mm

ผลกระทบของน้ำหนักเบดและความเร็วอากาศที่ก่อให้เกิดฟลูอิไดเซชันที่มีต่อพฤติกรรมทางไฮโดร- ไดนามิกส์ของอนุภาคในแง่ของการกระจายความดัน อัตราการเวียนกลับของอนุภาคและสัดส่วนช่องว่างนั้นได้ ทำการศึกษาภายใต้เงื่อนไขที่ไม่มีการเผาไหม้ ส่วนการเปลี่ยนแปลงของพฤติกรรมและสมรรถนะการเผาไหม้ เชื้อเพลิงเดี่ยวหรือเชื้อเพลิงร่วมในแง่ของการกระจายอุณหภูมิ แก๊สมลพิษและประสิทธิภาพการแปลงสภาพ คาร์บอนในเชื้อเพลิง (η_c) ภายใต้อัตราส่วนอากาศส่วนเกิน (λ) ต่างๆ ได้ทำการศึกษาด้วยเช่นกัน โดยได้ทำการปรับเปลี่ยนอัตราการไหลของอากาศปฐมภูมิและทุติยภูมิ ซึ่งทำให้ค่า λ เปลี่ยนแปลงในช่วง 1.10–1.96 สำหรับกรณีการเผาไหม้ถ่านหิน ส่วนการเปลี่ยนแปลงสัดส่วนการผสมแกลบในช่วง 0–40% wt. ภายใต้อัตราการป้อนเชื้อเพลิงคงที่ในกรณีเผาไหม้ร่วมนั้นส่งผลให้ค่า λ เปลี่ยนแปลงในช่วง 1.22–1.42

การทดลองไฮโดรไดนามิกส์ของอนุุภาคพบว่า การกระจายความดันภายในเตาสามารถอธิบาย ปรากฏการณ์การเวียนกลับของอนุภาคจากฝั่งไรเซอร์มายังฝั่งดาวน์คัมเมอร์ได้ และสามารถคำนวณหาสัดส่วน ช่องว่างตลอดความสูงท่อไรเซอร์ได้ ซึ่งมีค่าในช่วง 0.887–0.997 ขึ้นอยู่กับปริมาณเบดและความเร็วอากาศที่ ก่อให้เกิดฟลูอิไดเซชันที่ใช้ นอกจากนี้ การเพิ่มปริมาณเบดและความเร็วอากาศนั้น ยังส่งผลให้อัตราการเวียน กลับของอนุภาคที่สูงขึ้น โดยมีค่าระหว่าง 2.7 และ 10 kg/m²-s ส่วนผลการทดลองการเผาไหม้ถ่านหินอย่าง เดียวพบว่า การกระจายอุณหภูมิตลอดความสูงท่อไรเซอร์เกิดขึ้นค่อนข้างสม่ำเสมอโดยมีค่าในช่วง 780-955°C และมีแนวโน้มที่ลดต่ำลงตามปริมาณอากาศส่วนเกิน นอกจากนี้ การเพิ่ม λ_1 และ λ_2 ในการเผาไหม้ ถ่านหินนำมาสู่การเพิ่มสมรรถนะการเผาไหม้ซึ่งดูได้จาก การลดลงของ CO และค่า η_c ที่สูงขึ้น ในแง่ของแก๊ส มลพิษที่ความเข้มขัน O_2 6% พบว่า CO ในกรณีการเผาไหม้ถ่านหินลดลงจาก 1500 ppm เหลือค่าต่ำสุดที่ 54 ppm เมื่อใช้ค่า λ ในช่วง 1.62–1.77 ส่วน NO_x มีแนวโน้มเพิ่มขึ้นอย่างต่อเนื่องไปจนถึงค่าสูงสุดที่ 340 ppm หากใช้ λ > 1.30 นอกจากนี้ การผสมแกลบยิ่งมากยิ่งส่งผลให้ค่า CO และ NO_x มากยิ่งขึ้น ท้ายสุดพบว่าค่า η_c ในทุกกรณีมีค่าเป็นที่น่าพอใจ โดยมีค่ามากกว่า 97%

คำหลัก: การเผาใหม้ร่วม/ ถ่านหิน/ ฟลูอิไดซ์เบดแบบหมุนเวียน/ มลพิษ/ อัตราส่วนอากาศส่วนเกิน

Abstract

1. Project Code: RMG5580062

2. Project Title: The investigations of hydrodynamics and characteristics of stand-alone biomass combustion and biomass co-firing with coal in a 50 kW_{th} circulating fluidized bed combustor

3. Investigators: Asst. Prof. Dr. Prasan Sathitruangsak Mahanakorn University of Technology
Assoc. Prof. Dr. Thanid Madhiyanon Mahanakorn University of Technology

Email Address: prasan_mut@yahoo.com, thanid_m@yahoo.com

Project Period: 2 July 2012 - 1 July 2014

Energy demand of Thailand has been increasing rapidly due to the enormous growth of domestic population and industrial development. Heat and power are general forms of useful energy which were mostly converted from the chemical energy in the fuels. Coal, as a conventional fuel, has been considered as a high potential energy resource because of its abundant reserve. In recent years, it has been proven that circulating fluidized bed (CFB) combustion technology is widely applied in the utilization of both coal and biomass fuels, because of its advantages of fuel flexibility as well as low pollutant emission compared to the bubbling fluidized bed (BFB) combustion technology. CFB, moreover, seems to be an attractively becoming combustion technology will be utilized in Thailand, so that some basic parameters effecting combustion characteristics of each specific fuel have to be studied.

This project emphasized on the experimental studies on hydrodynamics of particles, as well as combustion characteristics and performance of pure coal, and co-firing between coal and rice husk in a circulating fluidized bed combustor (CFB), 6 m height and 150 mm riser diameter. The effects of bed weight and fluidizing air velocity on the hydrodynamics of particle, in terms of pressure distribution profile, solid circulation rate, and voidage, were performed in a non-reaction condition. The dependences of (co)-combustion characteristics and performance, in terms of temperature profile, as well as gaseous emissions and carbon conversion efficiency (η_c) under the different excess air ratios (λ) were also investigated. Varied by adjusting the primary and secondary air flows, λ were changed between 1.10 and 1.96 for the cases of coal combustion. The changes in rice husk share between 0 – 40 %wt. at the fixed feed rate in the co-firing tests, corresponding to the alteration of λ in the range 1.22–1.42, were also performed.

The cold-flow tests showed that the pressure distribution profiles inside the combustor could explain the particle circulation phenomena between the riser and downcomer, and could calculate the voidage along the riser, ranging 0.887–0.997 depending on the bed weight as well as fluidized velicity employed. Moreover, increases in bed weight and velocity were accountable for the higher solid circulation rate ranged between 2.7 and 10 kg/m^2 -s. The experimental results of pure coal firing showed that temperature profiles throughout the riser were nearly uniform, ranging 780-955°C, and tended to abated with both increased primary (λ_1) and secondary (λ_2) excess air ratios. In the cases of co-firing, increasing rice husk shares, resulted in lowering heating value of the fuel mixtures, caused a reduction in temperatures. Increasing λ_1 and λ_2 in the coal firing led to enhance the combustion performance, for instance, the CO reduction and the better η_c . In view of gaseous emissions corrected to 6% O_2 , CO in the coal firing cases dramatically decreased from 1500 ppm to the lowest value of 54 ppm when λ in the range of 1.62-1.77 was utilized. When $\lambda > 1.30$ was introduced, NO_x emission tended to increase gradually to the maximum value of 340 ppm. The more the rice husk was blended in co-firing, the higher the CO and NO_x were produced. Finally, the carbon conversion efficiency for all cases was satisfied, mostly higher than 97%.

Keywords: Coal/ Co-firing/ Circulating fluidized bed/ Emission/ Excess air ratio