

รายงานวิจัยฉบับสมบูรณ์

โครงการคุณลักษณะของเดลย์ธรรมชาติในไทยที่มีอิทธิพล
เป็นองค์ประกอบและการใช้งานเป็นตัวเร่งปฏิกริยาเพนตัน
ชนิดวิธพันธ์ในการกำจัดสีของเมทิลออกเรนจ์

โดย

อาทิตย์ อัศวสุข

มิถุนายน 2557

สัญญาเลขที่ MRG5580065

รายงานวิจัยสนับสนุนบูรณา

โครงการคุณลักษณะของเดิร์ชาร์มชาติในไทยที่มีอิทธิพล
เป็นองค์ประกอบและการใช้งานเป็นตัวเร่งปฏิกริยาเพนตัน
ชนิดวิธีพันธ์ในการกำจัดสีของเมทิลօอเรนจ์

อาทิตย์ อัศวสุข
มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สก.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

รหัสโครงการ : MRG5580065
ชื่อโครงการ : คุณลักษณะของเคลย์ธรรมชาติในไทยที่มีอิอร์อ่อนเป็นองค์ประกอบ
 และการใช้งานเป็นตัวเร่งปฏิกิริยาเฟนตันชนิดวิวิชพันธ์
 ในการกำจัดสีของเมทิลօอเรนจ์
ชื่อนักวิจัย : นายอาทิตย์ อัศวสุข
 มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน
E-mail Address : ausavasukhi@gmail.com
ระยะเวลาโครงการ : 2 ปี

ในการศึกษานี้เคลย์ที่มีอิอร์อ่อนเป็นองค์ประกอบถูกเตรียมขึ้นด้วยกระบวนการทาง
 ความร้อนเพื่อใช้เป็นตัวเร่งปฏิกิริยาสำหรับการกำจัดสีของสารละลายเมทิลօอเรนจ์ ซึ่งใช้เป็น¹
 แบบจำลองของสีย้อมชนิดเอโอโซ่ เคลย์จากธรรมชาติที่ประกอบด้วยแมกนีไทต์ และมอนต์มอริล
 โลไนต์ ภายใต้การปรับสภาพที่อุณหภูมิสูงกว่าหรือเท่ากับ 500 องศาเซลเซียส ตัวเร่งปฏิกิริยานี้²
 จะเปลี่ยนเป็นเขมาไทร์และอิลลิต์ โดยเคลย์ที่มีอิอร์อ่อนเป็นองค์ประกอบที่ได้รับการปรับสภาพ
 ทางความร้อนที่อุณหภูมิ 500 องศาเซลเซียสเป็นตัวเร่งปฏิกิริยาที่มีประสิทธิภาพในการเร่ง
 ปฏิกิริยาออกซิเดชัน สันนิษฐานว่าสปีชีส์ของไออร์อ่อนที่ว่องไวต่อการเกิดปฏิกิริยาจะเกิดขึ้นที่
 อุณหภูมิสูงกว่าหรือเท่ากับ 500 องศาเซลเซียสและเร่งการสลายตัวของไฮโดรเจนเปอร์ออกไซด์
 เกิดเป็นสารออกซิเดนต์ที่ว่องไวบริเวณพื้นผิวของตัวเร่งปฏิกิริยา และสารออกซิเดนต์นี้
 สามารถทำให้เมทิลօอเรนจ์เกิดการสลายตัวผ่านกลไกที่พื้นผิว ในขณะที่เคลย์ที่ได้รับการปรับ
 สภาพที่อุณหภูมิต่ำกว่า 500 องศาเซลเซียส จะมีประสิทธิภาพในการเร่งปฏิกิริยาที่ต่ำกว่า การ
 เกิดขึ้นของสปีชีส์ของไออร์อ่อนที่ว่องไวในการเร่งปฏิกิริยาจะถูกวิเคราะห์ด้วยเทคนิค³
 อิเล็กตรอนสปินเรโซนนนซ์ เทคนิคคุลตราไวโอลেต วิชิเบลลสเปคโตรสโคปีชนิดดิฟฟิวชันรีเฟลค⁴
 แตนซ์ และเทคนิคฟูเรย์ทรานซ์ฟอร์มอินฟราเรดสเปคโตรสโคปี โดยตัวเร่งปฏิกิริยาเคลย์ที่มีอิอร์
 อ่อนเป็นองค์ประกอบที่ได้รับการปรับสภาพที่อุณหภูมิ 500 องศาเซลเซียสจะให้เปอร์เซ็นต์การ
 กำจัดสี 88 เปอร์เซ็นต์ภายในเวลา 120 นาที ซึ่งให้เห็นว่าการเกิดดีไฮดรอกซิเลชันที่อุณหภูมิสูง
 จะมีส่วนช่วยให้เกิดการเปลี่ยนเฟส และการเกิดขึ้นของสปีชีส์ที่ว่องไวในการเกิดปฏิกิริยาเฟน
 ตันออกซิเดชัน

คำหลัก : การปรับสภาพทางความร้อน, เคลย์ที่มีอิอร์อ่อนเป็นองค์ประกอบ,
 เฟนตันออกซิเดชัน, การกำจัดสี, เมทิลօอเรนจ์

Abstract

Project Code :

MRG5580065

Project Title :

Characterization of iron containing Thai natural clay and its application as heterogeneous Fenton catalyst in the decolourization of methyl orange

Investigator :

Mr. Artit Ausavasukhi

Rajamangala University of Technology Isan

E-mail Address :

ausavasukhi@gmail.com

Project Period :

2 years

In this study, iron containing clay prepared by thermal treatment was used as Fenton-like catalyst for the decolourization of methyl orange (MO) aqueous solution, a model compound representing an azo dye. The parent catalyst is a composite material, naturally contained crystalline magnetite (Fe_3O_4) and montmorillonite. Under thermal treatment ≥ 500 °C, the catalyst was completely transformed into hematite (Fe_2O_3) and illite. The iron containing clay treated at 500 °C (Clay-500) was found to be the most active catalyst for oxidation. It was proposed that the active iron species formed by high thermal treatment (≥ 500 °C) initiated the H_2O_2 decomposition leading to the formation of the active oxidant on the surface of catalyst. Such active species can promote oxidation of MO based on surface reaction. While the iron containing clay treated at lower temperature (< 500 °C) provided the lower activity. Moreover, the formation of the iron active species were evidenced by electron spin resonance (ESR), diffused reflectance-ultraviolet visible spectroscopy (DR-UV), and Fourier transformed infrared spectroscopy (FTIR). Approximately 88 % decolourization efficiency was achieved within 120 minutes when using the Clay-500. The high-temperature dehydroxylation may well be responsible for both phase transformation and generation of active species promoting Fenton oxidation.

Keywords : Thermal treatment, Iron containing clay, Fenton oxidation, Decolourization, Methyl orange

1. บทนำ

ปัจจุบันกระบวนการออกซิเดชันเพื่อใช้ในการบำบัดน้ำเสียในอุตสาหกรรม เพื่อสลายสารอินทรีย์ที่ปอยสลายได้ยากกำลังได้รับความสนใจในการศึกษา โดยเฉพาะอย่างยิ่งกระบวนการ芬顿氧化 (Fenton oxidation) ซึ่งเป็นกระบวนการที่ได้รับความนิยมเนื่องจากมีค่าใช้จ่ายในการดำเนินการต่ำ และมีความสะดวกในการดำเนินการ กระบวนการ芬顿氧化เป็นกระบวนการที่ใช้สารละลายไอร์โอน(II) (Fe^{2+}) ทำปฏิกิริยากับไฮโดรเจนเปอร์ออกไซด์ (H_2O_2) เพื่อกิดเป็นอนุมูลอิสระไฮดรอกซิล ($\cdot OH$) ซึ่งเป็นสารที่มีความสามารถในการออกซิเดช์สูง จึงสามารถใช้กำจัดสารอินทรีย์ที่ปอยสลายได้ยาก อย่างไรก็ตามการใช้สารละลายไอร์โอน(II) เป็นตัวเร่งปฏิกิริยาในระบบเอกพันธ์ (Homogeneous catalyst) มีข้อจำกัดเนื่องจากการแยกสารละลายไอร์โอน(II) ออกจากน้ำเสียกระทำได้ยาก หรือในบางกรณีสารที่ต้องการกำจัดสามารถทำปฏิกิริยากับสารละลายไอร์โอน(II) ก็จะเป็นสารประกอบเชิงซ้อนที่มีเสถียรภาพสูง ทำให้ไม่สามารถกำจัดมลพิษนั้นได้ เพื่อเป็นการแก้ปัญหานี้จึงมีการศึกษาการใช้ตัวเร่งปฏิกิริยาวิชพันธ์ (Heterogeneous catalyst) เช่น การใช้ไอร์โอนออกไซด์บันซิลิกา (Fe_xO_y/SiO_2) หรือไอร์โอนออกไซด์บันซิโซไลต์ ($Fe_xO_y/Zeolite$) เป็นตัวเร่งปฏิกิริยา อย่างไรก็ตามตัวเร่งปฏิกิริยาดังกล่าวมีราคาแพง

จากการศึกษางานวิจัยในเบื้องต้นพบว่าเคลย์ (Clay) ซึ่งเป็นตะกอนของแร่ที่ทับถมโดยธรรมชาติ และสามารถพบได้ในหลายจังหวัดของประเทศไทย เช่น ลพบุรี ศรีสะเกษ นครราชสีมา มีสารประกอบไอร์โอนเป็นองค์ประกอบอยู่ในเคลย์ด้วยซึ่งอาจอยู่ในรูปของไอออนที่แลกเปลี่ยนประจุ (Exchangeable ion) หรือแร่ไอร์โอนออกไซด์ (Iron oxide) ทำให้เคลย์ที่มีไอร์โอนเป็นองค์ประกอบนี้มีศักยภาพที่จะนำมาใช้เป็นตัวเร่งปฏิกิริยาวิชพันธ์ในระบบ芬顿 ซึ่งตัวเร่งปฏิกิริยานี้เป็นตัวเร่งปฏิกิริยาที่ได้จากธรรมชาติ หาได้ง่าย ราคาไม่แพง และเป็นมิตรกับสิ่งแวดล้อม ดังนั้นในงานวิจัยนี้จะได้ตรวจสอบสมบัติของเคลย์ที่มีไอร์โอนเป็นองค์ประกอบ และทดสอบสมบัติในการเร่งปฏิกิริยา芬顿โดยใช้เมทิลօอเรนจ์เป็นแบบจำลองของสีข้อมูลในการศึกษา โดยศึกษาอิทธิพลที่มีผลต่อการเร่งปฏิกิริยา芬顿ออกซิเดชัน เช่น ค่าพีเอช ความเข้มข้นของไฮโดรเจนเปอร์ออกไซด์ ปริมาณของตัวเร่งปฏิกิริยา ความเข้มข้นของเมทิลօอเรนจ์ และทำการศึกษาการนำตัวเร่งปฏิกิริยานี้กลับมาใช้ใหม่ มากไปกว่าหนึ่งครั้งในการปรับปรุงเคลย์ที่มีไอร์โอนเป็นองค์ประกอบโดยวิธีการทางความร้อน และทดสอบสมบัติในการเร่งปฏิกิริยาของตัวเร่งปฏิกิริยาที่ได้รับการปรับปรุงสมบัตินี้

2. วัตถุประสงค์

- เพื่อเข้าใจคุณลักษณะและสมบัติในการเร่งปฏิกิริยาของเคลย์ซึ่งมีไอร์โอนเป็นองค์ประกอบ
- เพื่อเข้าใจถึงผลของการปรับปรุงเคลย์ซึ่งมีไอร์โอนเป็นองค์ประกอบด้วยกระบวนการทางความร้อน
- เพื่อให้ได้ตัวเร่งปฏิกิริยาและสภาวะที่เหมาะสมในการกำจัดสีของเมทิลօอเรนจ์

3. วิธีทดลอง

3.1 การตรวจสอบสมบัติของตัวเร่งปฏิกิริยาที่มีไอร์อ่อนเป็นองค์ประกอบ

ตรวจสอบโครงสร้างของตัวเร่งปฏิกิริยาด้วยเทคนิคการเลี้ยงเบนรังสีเอกซ์ (X-ray powder diffraction; XRD), ตรวจสอบองค์ประกอบของชาตุด้วยเทคนิคการวิเคราะห์รังสีเอกซ์ (X-ray fluorescence spectroscopy; XRF), ศึกษาเสถียรภาพทางความร้อนด้วยเทคนิคการสลายตัวด้วยความร้อน (Thermogravimetric analysis; TGA), ศึกษาการสั่นของพันธะ และการดูดกลืนรังสีด้วยเทคนิคฟูเรียร์ทرانส์ฟอร์มอินฟราเรดสเปคโตรสโคปี (Fourier transform infrared spectroscopy; FTIR) และอุลตราไวโอเลต วิชีเบลสเปคโตรสโคปีนิดดิฟฟิวชันรีฟลักแทนซ์ (Diffused reflectance-ultraviolet spectroscopy; DR-UV) และศึกษาสเปกตริสของไอร์อ่อนด้วยเทคนิคอิเล็กตรอนสปินเรโซนนنس (Electron spin resonance; ESR)

3.2 การเตรียมตัวเร่งปฏิกิริยา

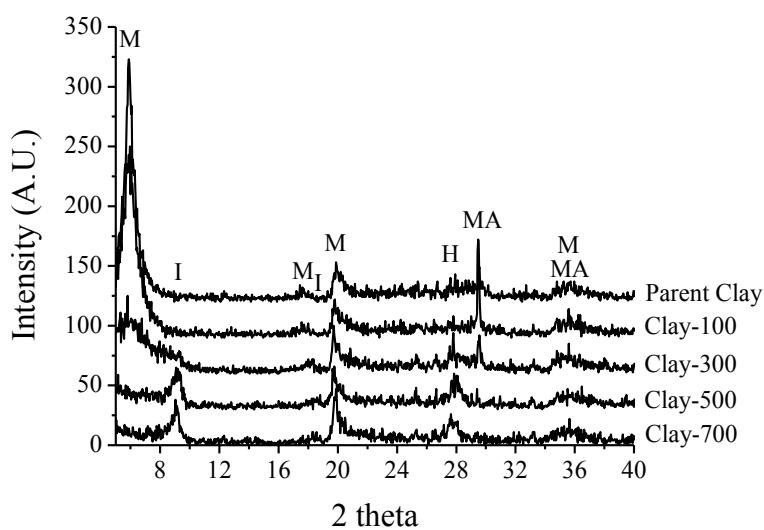
เตรียมตัวเร่งปฏิกิริยาเคลย์ที่มีไอร์อ่อนเป็นองค์ประกอบด้วยวิธีการทางความร้อน โดยการเผาที่อุณหภูมิ 100, 300, 500 และ 700 องศาเซลเซียส ตัวเร่งปฏิกิริยาที่ได้จะใช้สัญลักษณ์ Clay-อุณหภูมิที่ใช้ในการปรับสภาพ เช่น Clay-500 หมายถึง เคลย์ที่มีไอร์อ่อนเป็นองค์ประกอบที่ได้รับการปรับสภาพทางความร้อนที่อุณหภูมิ 500 องศาเซลเซียส

3.3 การศึกษาสมบัติในการเร่งปฏิกิริยาการกำจัดสีของเมทิลօอเรนจ์

การทดสอบประสิทธิภาพในการเร่งปฏิกิริยาการกำจัดสีของเมทิลօอเรนจ์ดำเนินการในถังปฏิกิริณ์แบบบatch (Batch reactor) ด้วยสภาพะดังนี้ พีเอช 3.0-7.0, ปริมาตรของสารละลายน้ำไฮโดรเจนเปอร์ออกไซด์ 0.1-0.6 มิลลิลิตร, เวลาในการทำปฏิกิริยา 7-120 นาที, ปริมาตรของสารละลายน้ำทิลօอเรนจ์ 50-500 มิลลิลิตร และอุณหภูมิในการทำปฏิกิริยา 25-50 องศาเซลเซียส โดยแต่ละการทดลองใช้ความเข้มข้นเริ่มต้นของเมทิลօอเรนจ์ 60 มิลลิกรัมต่อลิตร และความเข้มข้นของตัวเร่งปฏิกิริยา 1 กรัมต่อลิตร การลดลงของสีของสารละลายน้ำทิลօอเรนจ์จะตรวจสอบด้วยเทคนิคอุลตราไวโอเลต วิชีเบลสเปคโตรสโคปี และศึกษาความสามารถในการนำตัวเร่งปฏิกิริยากลับมาใช้ใหม่

4. ผลการทดลองและอภิปราย

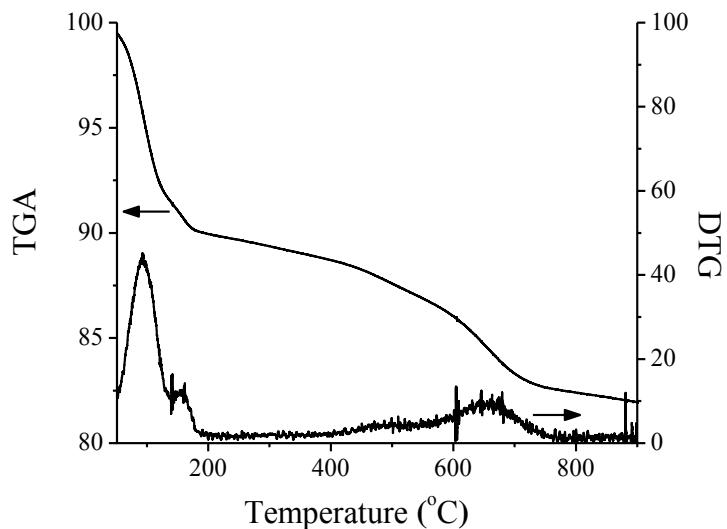
4.1 การศึกษาคุณลักษณะของตัวเร่งปฏิกิริยาเคลย์ที่มีไอร์อ่อนเป็นองค์ประกอบ


จากการวิเคราะห์ปริมาณของไอร์อ่อนที่เป็นองค์ประกอบในตัวเร่งปฏิกิริยาที่ได้รับการปรับสภาพทางความร้อน และพื้นที่ผิวของตัวเร่งปฏิกิริยาให้ผลการทดลองดังตารางที่ 4.1

ตารางที่ 4.1 ปริมาณของไออร์ออนและพื้นที่ผิวของตัวเร่งปฏิกิริยาที่ได้รับการปรับสภาพทางความร้อน

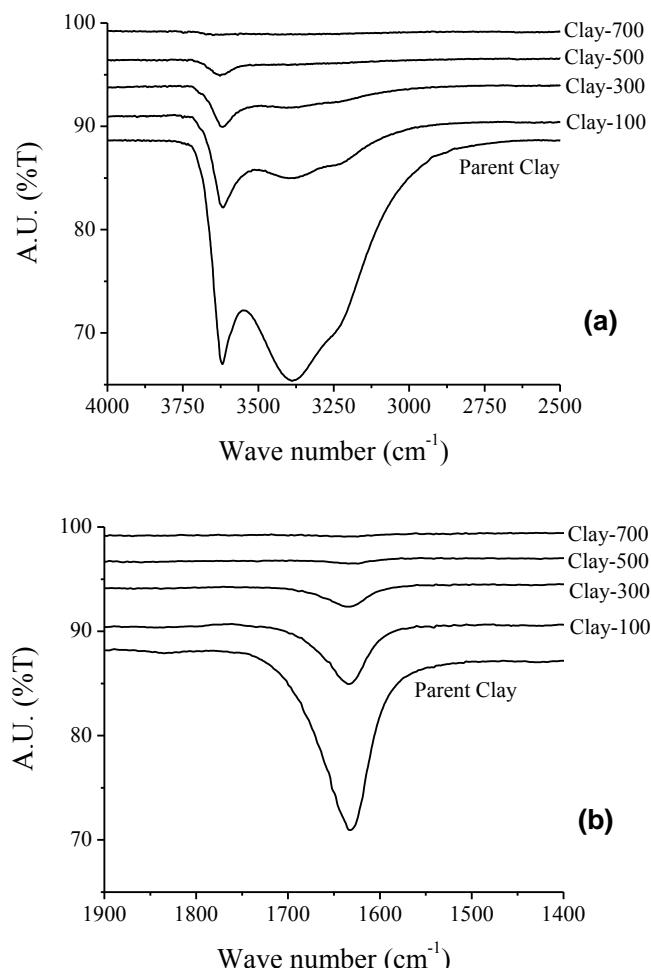
ชนิดของตัวเร่งปฏิกิริยา	พื้นที่ผิว (m^2/g)	ปริมาณของไออร์ออน (% โดยน้ำหนัก)
Clay-100	85	5.4
Clay-300	84	5.3
Clay-500	72	5.1
Clay-700	43	5.1

จากตารางที่ 4.1 พบว่าตัวเร่งปฏิกิริยาที่มีปริมาณของไออร์ออนประมาณ 5 เปอร์เซ็นต์โดยน้ำหนักทำให้ตัวเร่งปฏิกิริยานี้มีศักยภาพในการนำมาใช้เป็นตัวเร่งปฏิกิริยาเฟนตันออกซิเดชันชนิดวิวิธพันธ์สำหรับการกำจัดสีของเมทิลอะเอนจ์ โดยตัวเร่งปฏิกิริยาที่ผ่านการปรับสภาพทางความร้อนที่อุณหภูมิ 100 องศาเซลเซียสจะมีพื้นที่ผิว 85 ตารางเมตรต่อกิรัม แต่เมื่อได้รับการปรับสภาพทางความร้อนที่อุณหภูมิสูงขึ้นจะมีพื้นที่ผิวลดต่ำลงโดยเฉพาะในกรณีของ Clay-700 ซึ่งผ่านการปรับสภาพทางความร้อนที่อุณหภูมิ 700 องศาเซลเซียส


เมื่อนำตัวเร่งปฏิกิริยาที่ผ่านการปรับสภาพทางความร้อนไปวิเคราะห์ทางโครงสร้างด้วยเทคนิคการเลี้ยวเบนรังสีเอกซ์ให้ผลการทดลองดังรูปที่ 4.1

รูปที่ 4.1 รูปแบบการเลี้ยวเบนรังสีเอกซ์ของตัวเร่งปฏิกิริยาที่ได้รับการปรับสภาพทางความร้อน (M = Montmorillonite, I = Illite, H = Hematite, MA = Magnetite)

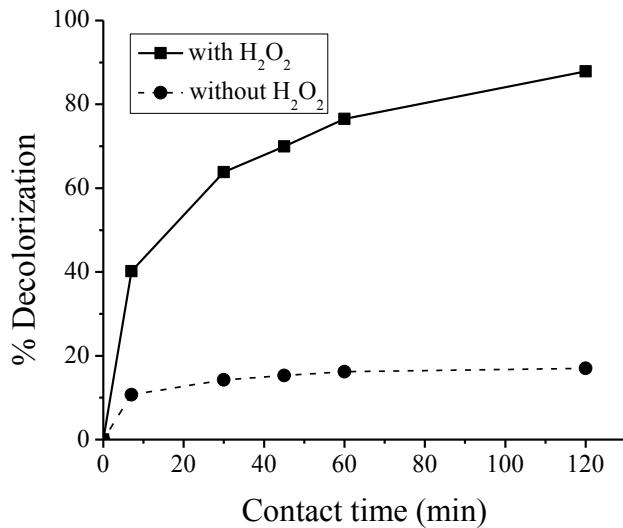
จากรูปที่ 4.1 พบว่าเคลย์ที่มีไอร์ออนเป็นองค์ประกอบที่ยังไม่ได้รับการปรับสภาพทางความร้อน (Parent clay) จะให้พิกของการเลี้ยวเบนที่ตำแหน่ง 5.9, 17.6, 19.9 และ 35.6 องศาซึ่งแสดงเฟสของเคลย์ชนิดมอนต์มอริลโลไนต์ [1] ในขณะที่พิกของการเลี้ยวเบนที่ 29.5 และ 35.6 องศาแสดงเฟสของแมกนีไทด์ (Magnetite; Fe_3O_4 หรือ $FeO \cdot Fe_2O_3$) [2] โดยไอร์ออนที่เป็นองค์ประกอบในเคลย์นี้ อาจอยู่ในรูปไอร์ออนออกไซด์ซึ่งกระจายตัวอยู่บนพื้นผิวของเคลย์มอนต์มอริลโลไนต์ และ/หรือเป็นไอรอนสำหรับดูปละจุซึ่งอยู่ในชั้นของเคลย์


ภายหลังการปรับสภาพตัวเร่งปฏิกิริยาที่อุณหภูมิมากกว่า 300 องศาเซลเซียสพบว่าพิกการเลี้ยวเบนจะเกิดการเลื่อนโดยปราบภัยพิกของการเลี้ยวเบนที่ตำแหน่ง 9.1 และ 18.3 องศาซึ่งแสดงการเกิดของอิลไลต์ [3] และพิกของการเลี้ยวเบนที่ตำแหน่ง 27.8 องศาซึ่งแสดงการเกิดขึ้นของเอมาไทด์ (Hematite; Fe_2O_3) [4] จากผลการทดลองทำให้สูญได้ว่าการปรับสภาพเคลย์ที่มีไอร์ออนเป็นองค์ประกอบที่อุณหภูมิมากกว่า 300 องศาเซลเซียส จะทำให้มอนต์มอริลโลไนต์เปลี่ยนเป็นอิลไลต์ และแมกนีไทด์เปลี่ยนเป็นเอมาไทด์ ซึ่งการเปลี่ยนแปลงดังกล่าวนี้เกิดขึ้นเนื่องจากการสลายตัวด้วยความร้อนของเคลย์ที่มีไอร์ออนเป็นองค์ประกอบโดยการคายชั้บของน้ำที่ถูกดูดซับบนพื้นผิว และปฏิกิริยาดีไฮดรอออกซิเลชัน (Dehydroxylation) ดังจะสังเกตได้จากผลการศึกษาเสถียรภาพทางความร้อนด้วยเทคนิคฟูเรียร์ทรานส์ฟอร์มอินฟราเรดสเปกโตรสโคปี (รูปที่ 4.2) และการศึกษาการสั่นของพันธะด้วยเทคนิคฟูเรียร์ทรานส์ฟอร์มอินฟราเรดสเปกโตรสโคปี (รูปที่ 4.3)

รูปที่ 4.2 เทอร์โมแกรมของเคลย์ที่มีไอร์ออนเป็นองค์ประกอบ

จากรูปที่ 4.2 จะพบพิกของการสูญเสียน้ำหนักในช่วง 60-180 องศาเซลเซียสซึ่งแสดงการคายชั้บ (Desorption) ของน้ำที่ถูกดูดซับบนพื้นผิว [5] ในขณะที่พิกของการสูญเสียน้ำหนัก

ในช่วง 450-700 องศาเซลเซียสจะเกิดขึ้นเนื่องจากปฏิกิริยาดีไซดรอกซิเลชันที่พื้นผิวของเคลย์ที่มีไอร์ออกเป็นองค์ประกอบ [5]

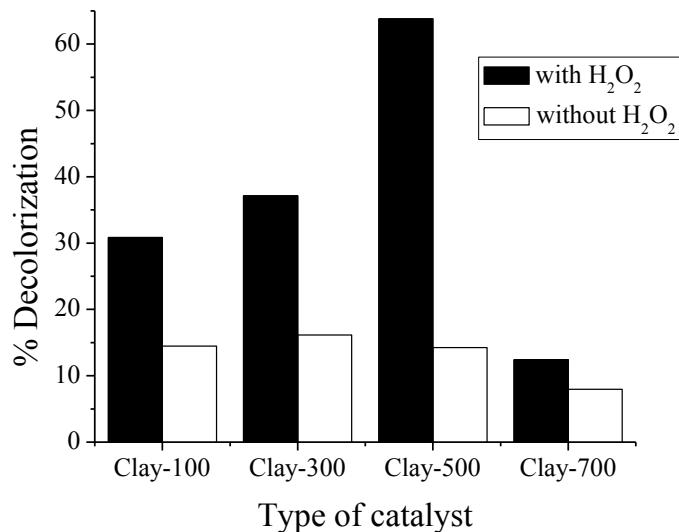


รูปที่ 4.3 อินฟราเรดสเปกตรัมของเคลย์ที่มีไอร์ออกเป็นองค์ประกอบที่ได้รับการปรับสภาพทางความร้อน

จากการทดลองในรูปที่ 4.3 ให้ผลที่สอดคล้องกับผลการทดลองที่ได้จากเทคนิคพูเรียร์ทรานส์ฟอร์มอินฟราเรดสเปกตรัสโคลปีซึ่งแสดงการลดลงของพันธะออกซิเจน-ไฮโดรเจน (O-H) ที่เลขคู่ 3600-3200 เซนติเมตร $^{-1}$ (รูปที่ 4.3a) และ 1700-1550 เซนติเมตร $^{-1}$ (รูปที่ 4.3b) จากผลการทดลองทำให้สรุปได้ว่าเคลย์ที่มีไอร์ออกเป็นองค์ประกอบที่ผ่านการปรับสภาพทางความร้อนจะทำให้เกิดการเปลี่ยนแปลงเฟสเกิดขึ้นเนื่องจากปฏิกิริยาดีไซดรอกซิเลชันที่อุณหภูมิสูง

4.2 การศึกษาประสิทธิภาพในการเร่งปฏิกิริยาการกำจัดสีของเมทิลօอเรนจ์

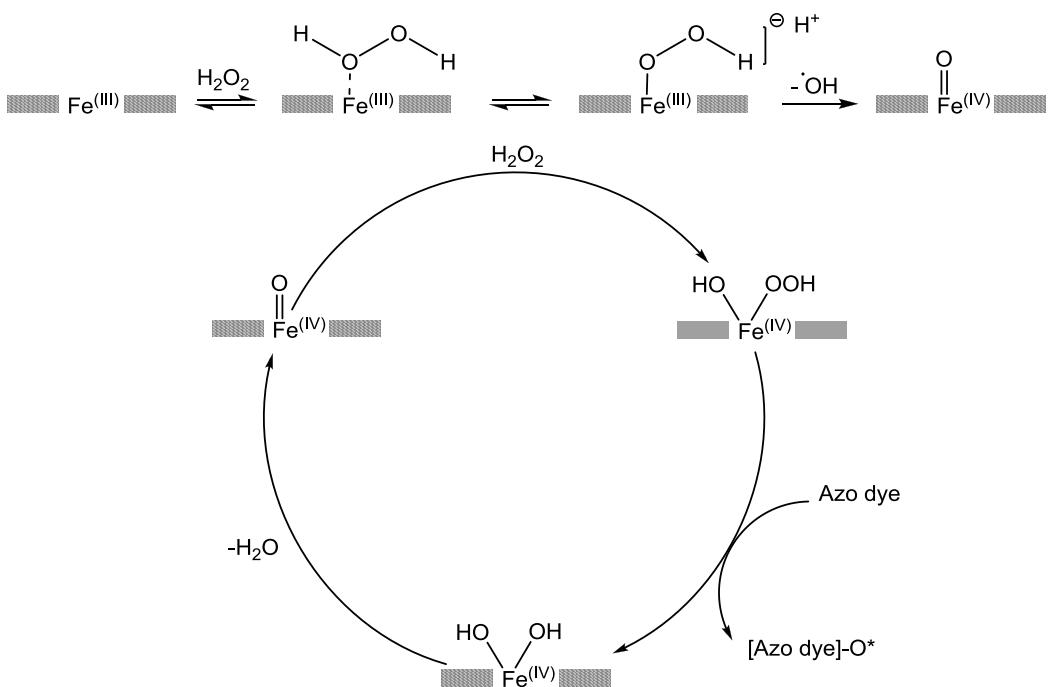
การศึกษาการกำจัดสีของเมทิลօอเรนจ์ที่มีความเข้มข้นเริ่มต้น 60 มิลลิกรัมต่อลิตรโดยใช้ Clay-500 ให้ผลการทดลองดังรูปที่ 4.4


รูปที่ 4.4 ผลของการเติมไฮโดรเจนเปอร์ออกไซด์และเวลาต่อประสิทธิภาพการกำจัดสีของเมทิลօอเรนจ์

สภาวะการทดลอง: ความเข้มข้นของสารละลายนเมทิลօอเรนจ์เริ่มต้น = 60 มิลลิกรัมต่อลิตร, Clay-500 = 50 มิลลิกรัม, ปริมาตรของสารละลายนไฮโดรเจนเปอร์ออกไซด์ 30 เปอร์เซ็นต์ = 0.5 มิลลิลิตร, อุณหภูมิ = 50 องศาเซลเซียส, พีเอช = 3, ปริมาตรของสารละลายนเมทิลօอเรนจ์ = 250 มิลลิลิตร

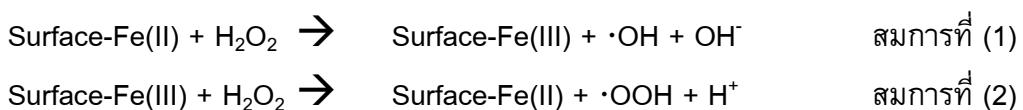
ในกรณีที่ไม่มีการเติมไฮโดรเจนเปอร์ออกไซด์ ประสิทธิภาพการกำจัดสีของเมทิลօอเรนจ์มีค่าเพิ่มขึ้นเมื่อเวลาในการทดลองการกำจัดสีเพิ่มขึ้น และจะเริ่มคงที่ที่เวลา 60 นาที เมื่อพิจารณาจากไกการดูดซับพบว่าเป็นแบบอันดับสองเที่ยม (Pseudo-second-order kinetic model) [6] ซึ่งมีค่าความจุของการดูดซับที่สภาวะสมดุล (Equilibrium adsorption capacity; q_e) เท่ากับ 51.81 มิลลิกรัมต่อกิโลกรัม และในกรณีที่มีการเติมไฮโดรเจนเปอร์ออกไซด์พบว่าประสิทธิภาพการกำจัดสีของเมทิลօอเรนจ์จะมีค่าสูงกว่ามาก และที่เวลาของการทดลองการกำจัดสีที่ 120 นาทีจะให้ค่าการกำจัดประมาณ 264 มิลลิกรัมต่อกิโลกรัม ซึ่งมีค่าสูงกว่าประมาณ 5 เท่าเมื่อเทียบกับในกรณีที่ไม่มีการเติมไฮโดรเจนเปอร์ออกไซด์ และงให้เห็นว่าภายใต้สภาวะที่มีไฮโดรเจนเปอร์ออกไซด์ไฮดรอนที่เป็นองค์ประกอบในเคลย์สามารถเร่งปฏิกิริยาการสลายตัวของไฮโดรเจนเปอร์ออกไซด์เกิดเป็นสารออกซิเดนต์ที่พื้นผิว และสารออกซิเดนต์นี้สามารถกำจัดสีของเมทิลօอเรนจ์ได้อย่างมีประสิทธิภาพ แต่ในกรณีที่ไม่มีการเติมไฮโดรเจนเปอร์ออกไซด์การกำจัดสีของเมทิลօอเรนจ์เกิดขึ้นเนื่องจากกลไกการดูดซับแต่เพียงอย่างเดียวทำให้มีประสิทธิภาพในการกำจัดสีที่ต่ำกว่า ส่วนในกรณีที่ไม่มีการเติมตัวเร่งปฏิกิริยา แต่มีการเติม

ไฮโดรเจนเปอร์ออกไซด์ในปริมาณที่เท่ากันพบว่าให้ประสิทธิภาพในการกำจัดสีของเมทิลออกเรนจ์เพียง 5 เปอร์เซ็นต์เท่านั้น เนื่องจากไฮโดรเจนเปอร์ออกไซด์เป็นตัวออกซิเดนต์ที่มีประสิทธิภาพต่ำเมื่อเทียบกับในกรณีที่เกิดตัวออกซิเดนต์บนพื้นผิวของตัวเร่งปฏิกิริยาที่มีไฮดรอนเป็นองค์ประกอบ

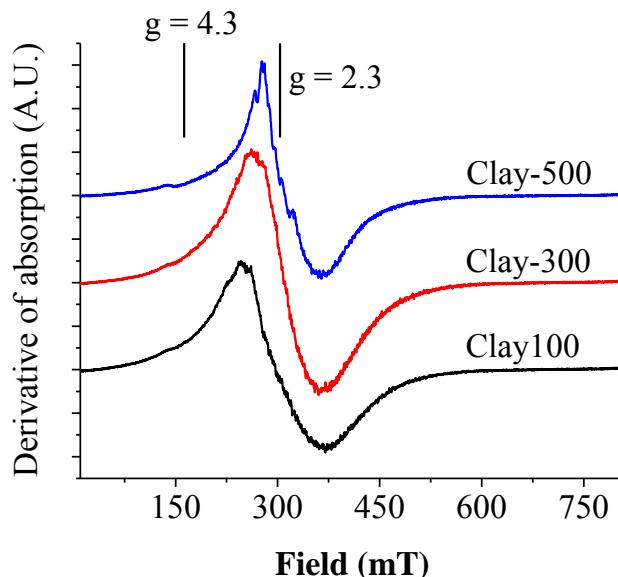

เมื่อเปรียบเทียบประสิทธิภาพในการกำจัดสีของเมทิลออกเรนจ์โดยใช้เคลย์ที่มีไฮดรอนเป็นองค์ประกอบที่ได้รับการปรับสภาพที่อุณหภูมิต่างๆ ให้ผลการทดลองดังรูปที่ 4.5

รูปที่ 4.5 ผลของการเติมไฮโดรเจนเปอร์ออกไซด์ต่อประสิทธิภาพการกำจัดสีของเมทิลออกเรนจ์ เมื่อใช้ตัวเร่งปฏิกิริยาชนิดต่างๆ

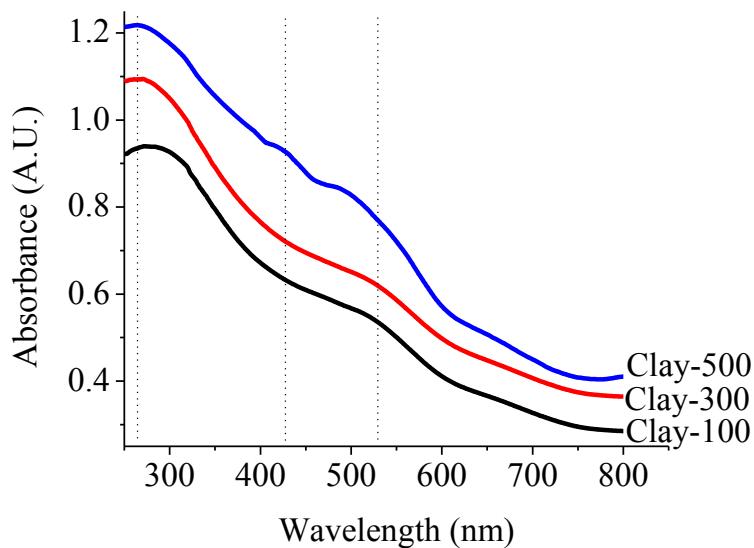
สภาวะการทดลอง: ความเข้มข้นของสารละลายนเมทิลออกเรนจ์เริ่มต้น = 60 มิลลิกรัมต่อลิตร, ตัวเร่งปฏิกิริยา = 50 มิลลิกรัม, ปริมาตรของสารละลายนไฮโดรเจนเปอร์ออกไซด์ 30 เปอร์เซ็นต์ = 0.5 มิลลิลิตร, อุณหภูมิ = 50 องศาเซลเซียส, พีเอช = 3, ปริมาตรของสารละลายนเมทิลออกเรนจ์ = 250 มิลลิลิตร, เวลาในการทดลองการกำจัดสี = 30 นาที


จากการทดลองในรูปที่ 4.5 ซึ่งให้ผลที่สอดคล้องกับรูปที่ 4.4 ซึ่งการเติมไฮโดรเจนเปอร์ออกไซด์ในระบบที่มีตัวเร่งปฏิกิริยาเคลย์ที่มีไฮดรอนเป็นองค์ประกอบให้ประสิทธิภาพการกำจัดสีของเมทิลออกเรนจ์สูงกว่าในกรณีที่ไม่มีการเติมไฮโดรเจนเปอร์ออกไซด์ เมื่อพิจารณาถึงชนิดของตัวเร่งปฏิกิริยาที่มีผลต่อประสิทธิภาพการเร่งปฏิกิริยาพบว่า Clay-500 ให้ประสิทธิภาพการกำจัดสีสูงกว่าตัวเร่งปฏิกิริยาชนิดอื่นๆ สันนิษฐานว่าไฮดรอนซึ่งเกิดขึ้นในขณะที่ได้รับการปรับสภาพทางความร้อนที่ 500 องศาเซลเซียสมีประสิทธิภาพในการเร่งปฏิกิริยาการกำจัดสีสูง ซึ่งคาดว่าไฮดรอนสเปชีส์น่าจะเกิดขึ้นจากไฮดรอน(III) ทำปฏิกิริยากับไฮโดรเจนเปอร์ออกไซด์ กลายเป็นไฮดรอน(IV) ซึ่งมีสถานะออกซิเดชันสูง (Surface-Fe(IV)=O) ดังแผนภาพที่ 1

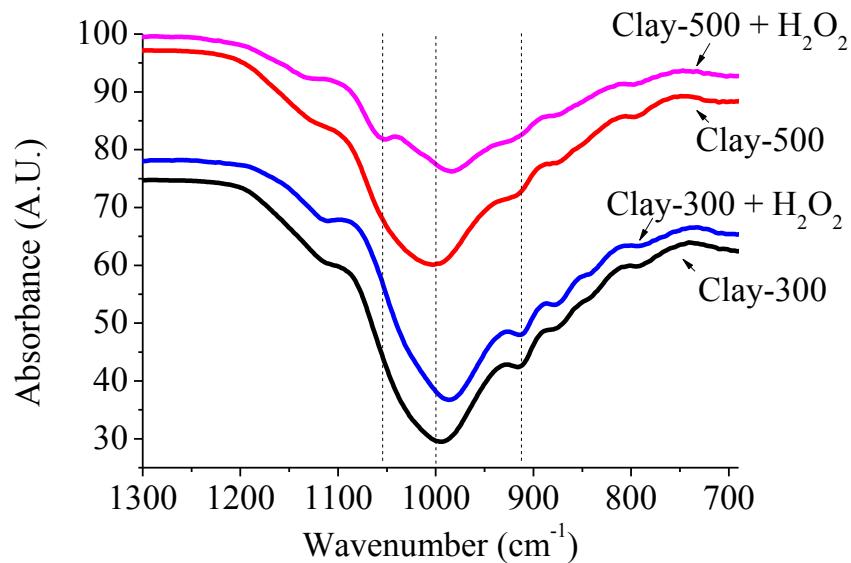
แผนภาพที่ 1 กลไกการเกิดไออกซิเจนสปีชีส์และกลไกการเร่งปฏิกิริยาการกำจัดสี


ในกรณีของ Clay-700 แม้ว่าจะมีการปรับสภาพทางความร้อนสูง แต่ให้ประสิทธิภาพในการเร่งปฏิกิริยาการกำจัดสีของเมทิลօอเรนจ์ต่ำ ทั้งนี้เนื่องจากการลดลงของพื้นที่ผิว (ตารางที่ 4.1) เนื่องจากการเกิดปฏิกิริยาด้วยdroอกซิเลชันที่เพิ่มขึ้นในขณะที่ได้รับการปรับสภาพ

ความแตกต่างของประสิทธิภาพในการเร่งปฏิกิริยาของ Clay-100, Clay-300 และ Clay-500 นี้อาจเกิดขึ้นเนื่องจากความแตกต่างของกลไกในการเร่งปฏิกิริยา ในกรณีของ Clay-100 และ Clay-300 กลไกการเร่งปฏิกิริยาอาจเกิดขึ้นเนื่องจากไออกซิเจน(II) ทำปฏิกิริยากับไฮโดรเจน เปอroxอกไซด์เกิดเป็นอนุมูลอิสระไฮdroอกซิล (Hydroxyl radical; ·OH) (สมการที่ (1)) และไออกซอน(III) ที่เกิดขึ้นทำปฏิกิริยากับไฮโดรเจนเปอroxอกไซด์ย้อนกลับเป็นไออกซอน(II) (สมการที่ (2)) [7]


โดยปฏิกิริยาที่เกิดขึ้นตามสมการที่ (2) เกิดขึ้นได้จาก [8-10] เป็นผลทำให้ประสิทธิภาพในการเร่งปฏิกิริยาการกำจัดสีของเมทิลօอเรนจ์เมื่อใช้ Clay-100 และ Clay-300 มีค่าต่ำ

การเกิดขึ้นของไออกซอนสปีชีส์ที่ว่องไวต่อการเร่งปฏิกิริยาการกำจัดสีของเมทิลօอเรนจ์ที่เกิดขึ้นเมื่อเคลย์ที่มีไออกซอนเป็นองค์ประกอบได้รับการปรับสภาพทางความร้อนที่อุณหภูมิ 500 องศาเซลเซียสสามารถยืนยันได้ด้วยเทคนิคอิเล็กตรอนสปินเรโซนанс (รูปที่ 4.6) และเทคนิคอุลตราไวโอลেต วิชีเบิลสเปค troscopy บีชนิดดิฟฟิวชันรีเฟลคเตอร์ (รูปที่ 4.7)


รูปที่ 4.6 สัญญาณอิเล็กตรอนสปินเรโซแนนซ์ของตัวเร่งปฏิกริยาชนิดต่างๆ

จากรูปที่ 4.6 แสดงพีกเอกลักษณ์ของไอร์อ่อน(III) ของเคลย์ที่มีไอร์อ่อนเป็นองค์ประกอบ ซึ่งให้สัญญาณที่ 4.3 และ 2.3 ซึ่งสัญญาณที่ 4.3 แสดงไอโซเลตไอร์อ่อน(III) (Isolated Fe(III)) [11-12] ในโครงสร้างเตตราหีดรอล (Tetrahedral) หรือออกต้าหีดรอล (Octahedral) โดยในกรณี นี้คือไอร์อ่อนที่อยู่ระหว่างชั้นของเคลย์ ซึ่งไอร์อ่อนที่เป็นสเปชิสที่ว่องไวไม่น่าจะเกิดขึ้นจากไอร์ อ่อนในส่วนนี้เนื่องจากให้สัญญาณที่มีค่าต่ำ ส่วนสัญญาณที่ 2.3 จะแสดงคลัสเตอร์ของไอร์อ่อน (Clusters of iron) [11-12] ที่ปรากฏในตัวอย่าง ในกรณีของ Clay-500 จะปรากฏสัญญาณของ ไอร์อ่อน(III) ที่มีลักษณะแตกต่างไปจากตัวเร่งปฏิกริยาชนิดอื่นๆ อีกด้วยคาดว่าเป็นไอร์อ่อน(III) ออกไซด์ซึ่งอยู่ในสภาพแวดล้อมที่แตกต่างกัน และไอร์อ่อน(III) นี้น่าจะเป็นสเปชิสที่ว่องไวในการ เร่งปฏิกริยาการกำจัดสีของเมทิลออกเรนซ์ โดยเกิดขึ้นเนื่องจากปฏิกริยาดีไซดรอกซิเลชันที่ อุณหภูมิสูง สอดคล้องกับผลการทดลองที่พบในเทคโนโลยีอุลตราไวโอลেต วิชีเบิลสเปคโกรสโคปี ชนิดดิฟพิวชันรีเฟลกแตนซ์ (รูปที่ 4.7)

รูปที่ 4.7 สเปกตรากการดูดกลืนแสงอุลตราไวโอล็อก และวิชิเบิลของตัวเร่งปฏิกิริยาชนิดต่างๆ

เคลย์ที่มีไอร์ออนเป็นองค์ประกอบจะปรากฏพิกของกรดกลืนที่สำคัญจำนวน 2 พิกที่ความยาวคลื่น 263 นาโนเมตรซึ่งแสดงไอร์ออน(III) ในโครงสร้างออกอะซีโรล [13] และที่ความยาวคลื่น 525 นาโนเมตรซึ่งแสดงไอร์ออน(III) ออกไซด์ซึ่งมีอนุภาคขนาดใหญ่ [14] ส่วนในกรณีของ Clay-500 จะปรากฏพิกที่เพิ่มขึ้นที่ความยาวคลื่น 425 นาโนเมตรซึ่งแสดงไอร์ออน(III) ซึ่งมีขนาดเล็ก [14] ซึ่งน่าจะเกิดขึ้นจากการปรับสภาพทางความร้อนที่อุณหภูมิ 500 องศาเซลเซียส

รูปที่ 4.8 อินฟราเรดสเปกตรากของตัวเร่งปฏิกิริยาที่เติมและไม่เติมไฮโดรเจนเปอร์ออกไซด์

เพื่อเป็นการยืนยันการเกิดขึ้นของไอร์ออนสปีชีส์ที่ว่องไวต่อการเร่งปฏิกิริยาซึ่งเกิดขึ้นเนื่องจากการปรับสภาพด้วยความร้อน และเมื่อไอร์ออนสปีชีส์นี้ทำปฏิกิริยากับไฮโดรเจนเปอร์ออกไซด์จะได้สารออกซิแอนต์ที่ว่องไวต่อการกำจัดสีของเมทิลօอเรนจ์ที่พื้นผิวของตัวเร่งปฏิกิริยา (แผนภาพที่ 4.1) จึงได้ทดลองนำตัวเร่งปฏิกิริยาเคลย์ที่มีไอร์ออนเป็นองค์ประกอบที่ได้รับการปรับสภาพด้วยความร้อนที่อุณหภูมิแตกต่างกันและนำมาทำปฏิกิริยากับไฮโดรเจนเปอร์ออกไซด์และนำไปตรวจวิเคราะห์ด้วยเทคนิคฟูเรย์ทรานซ์ฟอร์มอินฟราเรดสเปกตรอสโคปีให้ผลการทดลองดังรูปที่ 4.8 ซึ่งพบแผนการสันที่ 1000 และ 916 เซนติเมตร⁻¹ ซึ่งแสดงพันธะไฮร์ออน-ออกซิเจน-ไฮโดรเจน (Fe-O-H) ซึ่งเกิดการซ้อนทับ (Overlap) กับมอนต์มอริลโลไนต์ [5] และอัลูมิเนียม-ออกซิเจน-ไฮโดรเจน (Al₂-O-H) ตามลำดับ [15] ในการณ์ของการเติมไฮโดรเจนเปอร์ออกไซด์ไปทำปฏิกิริยา กับ Clay-500 จะปรากฏพิกเพิ่มขึ้นที่เลขคู่ลี่น 1050 เซนติเมตร⁻¹ ซึ่งคาดว่าจะนำจะเกี่ยวข้องกับการเกิดไฮร์ออนสปีชีส์ที่มีสถานะออกซิเดชันสูง (ดังแผนภาพที่ 4.1) ซึ่งมีประสิทธิภาพในการเร่งปฏิกิริยาการกำจัดสีของเมทิลօอเรนจ์ที่สูงกว่าไฮร์ออนสปีชีส์ที่มีการปรับสภาพด้วยความร้อนที่อุณหภูมิต่ำกว่า

เมื่อศึกษาปัจจัยที่มีผลต่อการเร่งปฏิกิริยาการกำจัดสีของเมทิลօอเรนจ์ที่สภาวะต่างๆ พบว่าการใช้พีเอชเท่ากับ 3, ปริมาตรของสารละลายน้ำไฮโดรเจนเปอร์ออกไซด์ 30 เปอร์เซ็นต์จำนวน 0.5 มิลลิลิตร (ความเข้มข้นของไฮโดรเจนเปอร์ออกไซด์ 0.02 มอลต์ลิตร), ความเข้มข้นเริ่มต้นของสารละลายนเมทิลօอเรนจ์ 60 มิลลิกรัมต์ลิตร, ปริมาตรของสารละลายนเมทิลօอเรนจ์ 250 มิลลิลิตร และปริมาณของตัวเร่งปฏิกิริยา Clay-500 จำนวน 2 กรัมต์ลิตรที่อุณหภูมิในการทำปฏิกิริยาที่ 50 องศาเซลเซียสให้ประสิทธิภาพการกำจัดสีถึง 88 เปอร์เซ็นต์ภายในเวลา 120 นาที และเมื่อนำตัวเร่งปฏิกิริยา Clay-500 มาทดสอบการนำกลับมาใช้ใหม่พบว่าสามารถนำกลับมาใช้ใหม่ได้ 2 ครั้งโดยประสิทธิภาพในการเร่งปฏิกิริยาลดต่ำลงเพียงเล็กน้อยเท่านั้น

5. เอกสารอ้างอิง

- [1] Timofeeva, M.N., Khankhasaeva, S.Ts., Badmaeva, S.V., Chuvilin, A.L., Burgina, E.B., Ayupov, A.B., Panchenko, V.N., Kulikova, A.V., 2005. Synthesis, characterization and catalytic application for wet oxidation of phenol of iron-containing clays. *Applied Catalysis B: Environmental* 59 (3-4), 243-248.
- [2] Kim, K.C., Kim, E.K., Lee, J.W., Maeng, S.L., Kim, Y.S., 2008. Synthesis and characterization of magnetite nanopowders. *Current Applied Physics* 8 (6), 758-760.
- [3] Garrels, R.M., 1984. Montmorillonite/illite stability diagrams. *Clays and Clay Minerals* 32 (3), 161-166.
- [4] Roberts, A.P., Liu, Q., Rowan, C.J., Chang, L., Carvallo, C., Torrent, J., Horng, C.S., 2006. Characterization of hematite (α -Fe₂O₃), goethite (FeOOH), greigite

(Fe_3S_4) and pyrrhotite (Fe_7S_8) using first-order reversal curve (FORC) diagrams. *Journal of Geophysical Research* 111 (B12S35), 1-16.

[5] Yuan, P., Bergaya, F.A., Taoa, Q., Fan, M., Liu, Z., Zhu, J., He, H., Chen, T., 2008. A combined study by XRD, FTIR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay. *Journal of Colloid and Interface Science* 324 (1-2), 142-149.

[6] Ho, Y. S.; McKay, G., 2000. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. *Water Research* 34 (3), 735-742.

[7] Kwan, W.P., Voelker, B.M., 2003. Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems. *Environmental Science and Technology* 37, 1150-1158.

[8] Barb, W.G., Baxendale, J.H., George, P., Hargrave, K.R., 1949. Reactions of ferrous and ferric ions with hydrogen peroxide. *Nature* 163, 692-694.

[9] Barb, W.G., Baxendale, J.H., George, P., Hargrave, K.R., 1951. Reactions of ferrous and ferric ions with hydrogen peroxide. Part I: The ferrous ion reaction. *Transactions of the Faraday Society* 47, 462-500.

[10] Barb, W.G., Baxendale, J.H., George, P., Hargrave, K.R., 1951. Reactions of ferrous and ferric ions with hydrogen peroxide. Part II. The ferric ion reaction. *Transactions of the Faraday Society* 47, 591-616.

[11] Kucherov, A., Shelef, M., 2000. Quantitative determination of isolated Fe^{3+} cations in FeHZSM-5 catalysts by ESR. *Journal of Catalysis* 195, 106-112.

[12] Gue'lou, E., Barrault, J., Fournier, J., Tatibouë't, J.M., 2003. Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron. *Applied Catalysis B: Environmental* 44, 1-8.

[13] Timofeeva, M.N., Khankhasaeva, S.T., Chesalov, Y.A., Tsybulya, S.V., Panchenko, V.N., Dashinamzhilova, E.T., 2009. Synthesis of Fe,Al-pillared clays starting from the Al,Fe-polymeric precursor: Effect of synthesis parameters on textural and catalytic properties. *Applied Catalysis B: Environmental* 88, 127-134.

[14] Caudo, S., Centi, G., Genovese, C., Perathoner, S., 2007. Copper- and iron-pillared clay catalysts for the WHPCO of model and real wastewater streams from olive oil milling production. *Applied Catalysis B: Environmental* 70, 437-446.

[15] Madejova J., 2003. FTIR techniques in clay mineral studies. *Vibrational Spectroscopy* 31, 1-10.

6. สรุป และวิจารณ์ผลการทดลอง และข้อเสนอแนะสำหรับงานวิจัยในอนาคต

6.1 สรุปผลการทดลอง

ตัวเร่งปฏิกิริยาเคลย์ทีมไอร์อ่อนเป็นองค์ประกอบที่ได้รับการปรับสภาพทางความร้อนที่อุณหภูมิ 500 องศาเซลเซียสจะให้ประสิทธิภาพในการกำจัดสีของเมทิลօอเรนจ์สูงกว่าเคลย์ทีมไอร์อ่อนเป็นองค์ประกอบที่ได้รับการปรับสภาพทางความร้อนที่อุณหภูมิต่ำกว่า โดยคาดว่าไอร์อ่อนสปีชีส์ที่เป็นตัวแทนที่ว่องไวเกิดขึ้นเนื่องจากปฏิกิริยาดีไซดรออซิเลชันในขณะที่ได้รับการปรับสภาพทางความร้อนเกิดเป็นไอร์อ่อน(III) ซึ่งไอร์อ่อนสปีชีส์นี้สามารถทำปฏิกิริยากับไฮโดรเจนเปอร์ออกไซด์เกิดเป็นสารออกซิเดนต์ที่ว่องไวที่พื้นผิวของตัวเร่งปฏิกิริยา และสารออกซิเดนต์นี้มีประสิทธิภาพในการกำจัดสีของเมทิลօอเรนจ์ด้วยปฏิกิริยาออกซิเดชัน

6.2 วิจารณ์ผลการทดลอง และข้อเสนอแนะ

ตัวเร่งปฏิกิริยานี้มีประสิทธิภาพในการเร่งปฏิกิริยาออกซิเดชัน ดังนั้นจึงควรศึกษาการนำตัวเร่งปฏิกิริยาเคลย์ทีมไอร์อ่อนเป็นองค์ประกอบนี้ไปทดสอบการเร่งปฏิกิริยาออกซิเดชันในอุตสาหกรรม เช่น การเปลี่ยนเตตระไฮโดรฟูเรนเป็นบิวทิโรแลคโตัน เป็นต้น

Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ.

- ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ระบุชื่อผู้แต่ง ชื่อเรื่อง ชื่อวารสาร ปี เล่มที่ เลขที่ และหน้า) หรือผลงานตามที่คาดไว้ในสัญญาโครงการ
 - ต้นฉบับบทความ (Manuscript) เรื่อง Influence of thermal treatment on the catalytic activity of iron-containing clay in methyl orange decolorization
 - Artit Ausavasukhi and Tawan Sooknoi, "Tunable activity of [Ga]HZSM-5 with H₂ treatment: Ethane dehydrogenation", Catal. Comm. 45 (2014) 63-68.
- การนำผลงานวิจัยไปใช้ประโยชน์
 - การบริการวิชาการแก่ชุมชนผู้ผลิตผ้าไหมอำเภอปักธงชัย จังหวัดนครราชสีมา
- อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุมวิชาการ หนังสือ การจดสิทธิบัตร)
 - Artit Ausavasukhi, Janya Mordeewang, Sukanya Sae-ngoe, Tanyarat Pattanate, Tawan Sooknoi, "Characterization and catalytic application for methyl orange wet oxidation of iron-containing clay" The 7th Pure and Applied Chemistry International Conference 2013, 23-25 January 2013, The Tide Resort, Bangsaen Beach, Chon Buri, Thailand.

ภาคผนวก

Influence of thermal treatment on the catalytic activity of iron-containing clay in methyl orange decolorization

Artit Ausavasukhi^{1*} and Tawan Sooknoi²

¹ Program in Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand

² Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

* Corresponding authors; Tel.: +668 9217 1381; Fax: +664 4233 072. E-mail address: ausavasukhi@gmail.com

ABSTRACT

In this study, iron-containing clay prepared by thermal treatment was used as Fenton-like catalyst for the decolorization of methyl orange (MO) aqueous solution, a model compound representing an azo dye. The parent catalyst is a composite material, naturally contained crystalline magnetite (Fe_3O_4) and montmorillonite. Under thermal treatment ≥ 500 °C, the catalyst was completely transformed into hematite (Fe_2O_3) and illite. The iron-containing clay treated at 500 °C (Clay-500) was found to be the most active catalyst for oxidation. It was proposed that the active iron species formed by high thermal treatment (≥ 500 °C) initiated the H_2O_2 decomposition leading to the formation of the active oxidant on the surface of catalyst. Such active species can promote oxidation of MO based on surface reaction. While the iron-containing clay treated at lower temperature (< 500 °C) provided the lower activity. Moreover, the formation of the iron active species were evidenced by electron spin resonance

(ESR), diffused reflectance-ultraviolet visible spectroscopy (DR-UV), and Fourier transformed infrared spectroscopy (FTIR). Approximately 88 % decolorization efficiency was achieved within 120 minutes when using the Clay-500. The high-temperature dehydroxylation may well be responsible for both phase transformation and generation of active species promoting Fenton oxidation.

Keywords: Thermal treatment, Iron-containing clay, Fenton oxidation, Decolorization, Methyl orange

1. Introduction

Catalytic wet peroxide oxidation (CWPO) is nowadays in focus of the wide range of effective methods for oxidation organic compounds to valuable product and treatment of industrial wastewater containing non-biodegradable organic pollutants. Many efforts have been made to develop new catalysts to oxidize organic substrates under mild conditions [1-6]. Iron is the element of choice which perform a number of chemically challenging oxidative processes. Although many researchers have intensively studied the Fenton (Fe(II)/H₂O₂) and Fenton-like (Fe(III)/H₂O₂) reactions, the nature of both mechanisms and kinetics is still unclear [7-11]. However, the interconversion of Fe(III)/Fe(II) plays an important role in both the Fenton and Fenton-like reactions, and research on this interconversion is also crucial for understanding the mechanisms of these reactions [12]. The major drawback of the Fenton system was the accumulation of Fe(III), which could further result in the decline of reaction rates. Some researchers introduced UV radiation [13] into Fenton system, which accelerated the interconversion of Fe(III)/Fe(II) and the oxidation reactivity. Others adopted electrochemistry [14] in Fenton system, but the optimum pH ranges were even narrower than

that in classical Fenton system. Some researchers added quinone [15] and humic acid [16] to Fenton system, which acted as catalyst to facilitate the transformation of Fe(III) to Fe(II).

In this research, heterogeneous Fenton systems using iron-containing clay catalysts have recently been developed by thermal treatment process. It was expected that the active iron species formed by thermal treatment can greatly accelerated the oxidation, which was due to the formation of active oxidant on the catalyst surface. Accordingly, we have undertaken a study of the Fenton-like processes by decolorization of methyl orange using iron-containing clay as catalyst. The iron-containing clay catalyst was characterized by X-ray fluorescence spectroscopy (XRF), powder X-ray diffraction (XRD), thermogravimetric/differential thermogravimetric (TGA/DTG), Fourier transform infrared spectroscopy (FTIR), electronspin resonance (ESR), and diffused reflectance-ultraviolet visible spectroscopy (DR-UV). The effects of thermal treatment of such iron-containing clay on its oxidation activity was studied in this work.

2. Experimental

2.1 Chemicals

All chemicals used here are of reagent grade and used without further purification. Methyl orange (MO) was purchased from Carlo Erba. Hydrogen peroxide (H_2O_2) (30 % w/v) was obtained from Merck. The pH of the solution was adjusted to a desired value using dilute solutions of H_2SO_4 or $NaOH$. The required concentration of the MO solution was made using deionized water. Iron-containing clay was obtained from the SCG Chemicals. The clay samples were calcined at 100-700 °C for 5 hours. Hereafter, the catalysts will be designated as Clay-100, Clay-300, Clay-500 and Clay-700 according to their thermal treatment.

2.2 Catalyst Characterization

X-ray fluorescence (XRF) was carried out for determining the elemental composition of the iron-containing clay. Powder X-ray diffraction (XRD) was employed for determining phase formation and crystallographic state (CuK α radiation ($\lambda = 0.154$ nm)). For TGA/DTG, the sample (10-15 mg) was heated from 50 to 900 °C under a flow of N₂ with a heating rate of 10 °C/min. FTIR spectra were acquired in the transmission mode at room temperature over the wavenumber range of 4000-650 cm⁻¹. The UV-vis-diffuse reflectance spectra of the clay samples in the form of self-supporting pellets were recorded with BaSO₄ coated integration sphere. The ESR spectra was taken in the X-band at 20 °C and registered at microwave power 1 mW in the field range of 10-810 mT (one scan with a sweep time of 4 min).

2.3 Decolorization of methyl orange

The activity of this catalyst to decolorize MO was tested by varying other parameters such as solution pH in the range of 3.0-7.0, volume of H₂O₂ solution between 0.1-0.6 mL, reaction time between 7-120 minutes, volume of MO solution between 50-500 mL, and reaction temperature in the range of 25-50 °C. For each experiment, the concentration of MO and dosage of the catalyst were 60 mg/L and 1 g/L, respectively. The color removal of dye solutions analyzed by measuring the absorbance with UV-Vis spectrophotometer at $\lambda_{\text{max}} = 507$ nm.

3. Results and Discussion

3.1 Characterization of iron-containing clay

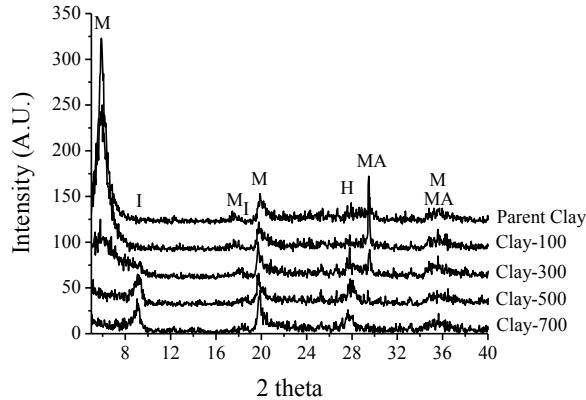

Table 1 shows the approximate elemental composition of parent clay determined from XRF.

Table 1 Elemental composition using XRF (relative wt.%)

Elements	% Weight	Elemental oxide	% Weight
Si	56.68	SiO ₂	51.04
Al	9.67	Al ₂ O ₃	15.40
Fe	9.45	Fe ₃ O ₄	16.53
Ca	9.41	CaO	5.55
Mg	6.92	MgO	4.84
Na	1.91	Na ₂ O	2.18
Ti	3.74	TiO ₂	2.63
K	0.94	K ₂ O	0.95
Cu	0.41	CuO	0.22
Pd	0.41	PdO	0.20
P	0.13	PO ₄	0.17
Mn	0.19	MnO ₂	0.13
S	0.14	SO ₄	0.17

The formation of clay is a result of the weathering of magmatic and metamorphic rocks. Therefore, depending on the type of primary rocks and the conditions of processes, the clays with various mineralogical and elemental compositions are formed. The clays are highly dispersive aluminosilicates with the macrocomponents: SiO₂ and Al₂O₃ contain impurities such as Ca, Mg, Na, Ti, K, Cu, Pd, and Mn. Apparently, the parent clay possesses a relatively high wt.% of Fe (~ 9 %), which make it ideal as Fenton catalyst.

The XRD patterns of the parent and the thermally treated iron-containing clay are shown in [Fig. 1](#).

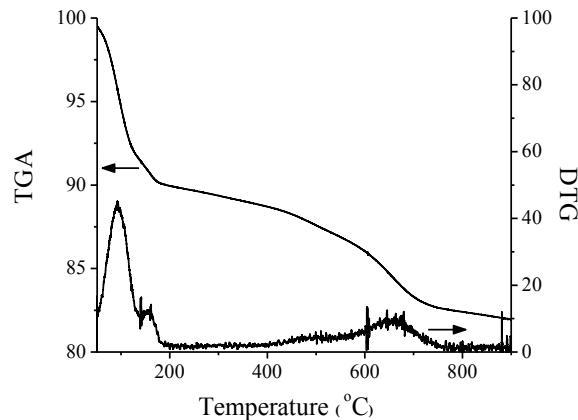
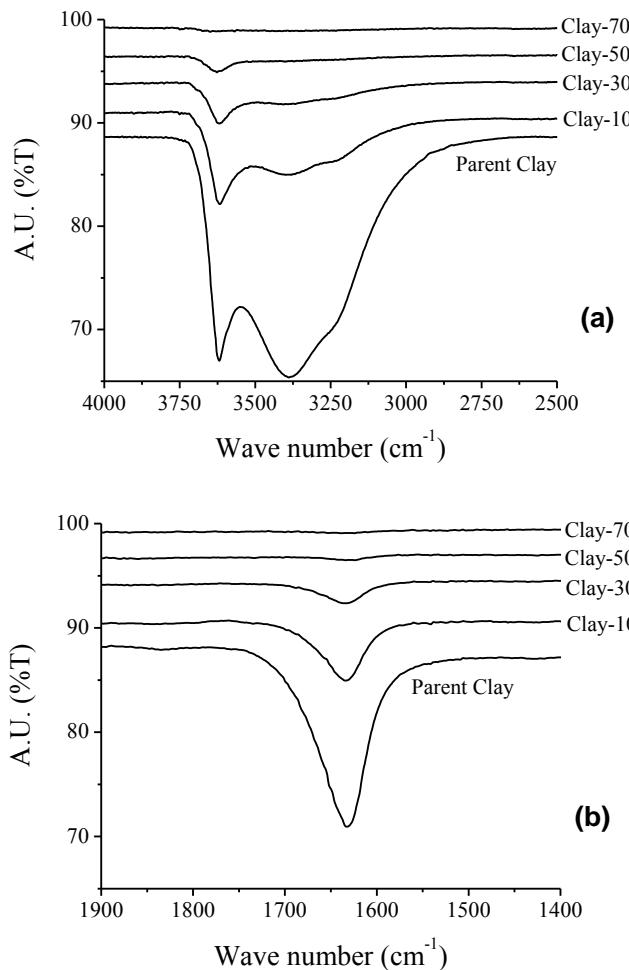


Fig. 1. XRD patterns of treated-clay (M = Montmorillonite, I = Illite, H = Hematite, MA = Magnetite).

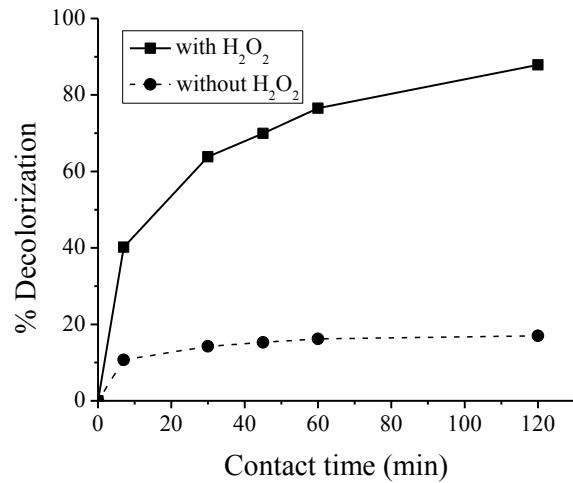
The parent clay shows a strong diffraction peak at 5.9° , 17.6° , 19.9° and 35.6° corresponding to montmorillonite phase [17]. While, the diffraction peaks at 29.5° and 35.6° are assigned to the magnetite (Fe_3O_4 or $\text{FeO}\cdot\text{Fe}_2\text{O}_3$) crystallite [18]. The peak intensity of Fe_3O_4 crystallite are accordingly low as some iron species may well be dispersed. The presence of iron species may include; (i) iron oxide species distributing onto the surface of montmorillonite and/or (ii) iron oxide species present in the intercalating layer.


After thermal treatment ($> 300^\circ\text{C}$), the treated-clay shows the shift peak at 5.9° to 9.1° and peak at 17.6° to 18.3° (lower d-spacing). This is presumably due to a removal of interlayer water molecules as evidenced by TGA/DTG (Fig. 2) and FTIR (Fig. 3). The peak at 9.1° and 18.3° indicates the formation of illite [19], as a result of thermal treatment. Moreover, the magnetite structure was altered after thermal treatment ($> 300^\circ\text{C}$) as a new peak at 27.8° was appeared indicating the formation of hematite (Fe_2O_3) [20]. However, no significant change of XRD pattern can be observed after treating at temperature greater than 500°C . The oxidation of iron(II) to iron(III) (particularly iron present in the intercalating layer) may lead to a change in the total layer charge and consequently d-spacing layer. The

magnitude of the possible alteration due to oxidation of structural iron is restricted by the iron content in the montmorillonite. This result indicates that the dehydroxylation may well promote a phase transformation of both iron species and clay.

Fig. 2. TGA/DTG thermogram of treated-clay.

From [Fig. 2](#), the weight-loss at 60-180 °C which corresponds to desorption of the physisorbed water can be observed [\[21\]](#). While the weight-loss at 450-700 °C denotes the dehydroxylation of iron hydroxide and/or clay layer [\[21\]](#).

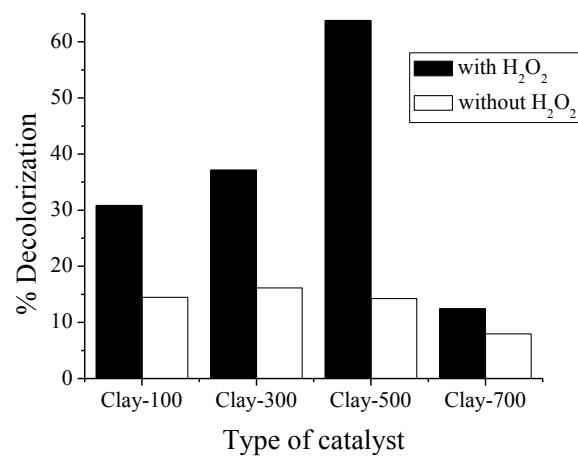

Fig. 3. FTIR spectra of treated-clay.

Consistent with the FTIR results that a decrease in O-H vibration at $3600\text{-}3200\text{ cm}^{-1}$ (Fig. 3a) and $1700\text{-}1550\text{ cm}^{-1}$ (Fig. 3b) can be observed after the thermal treatment. In conclusion, the oxidation of iron species and the removal of water molecules by desorption of physisorbed water and dehydroxylation may lead to the phase transformation of the iron-containing clay.

3.2 Catalytic activity for methyl orange (MO) decolorization

3.2.1 Adsorption and catalytic decolorization of MO

From [Fig. 4](#), decolorization of 60 mg/L MO was tested with Clay-500. It was found that % decolorization of MO over Clay-500 in the presence of H₂O₂ is much higher than those over Clay-500 in the absence of H₂O₂.

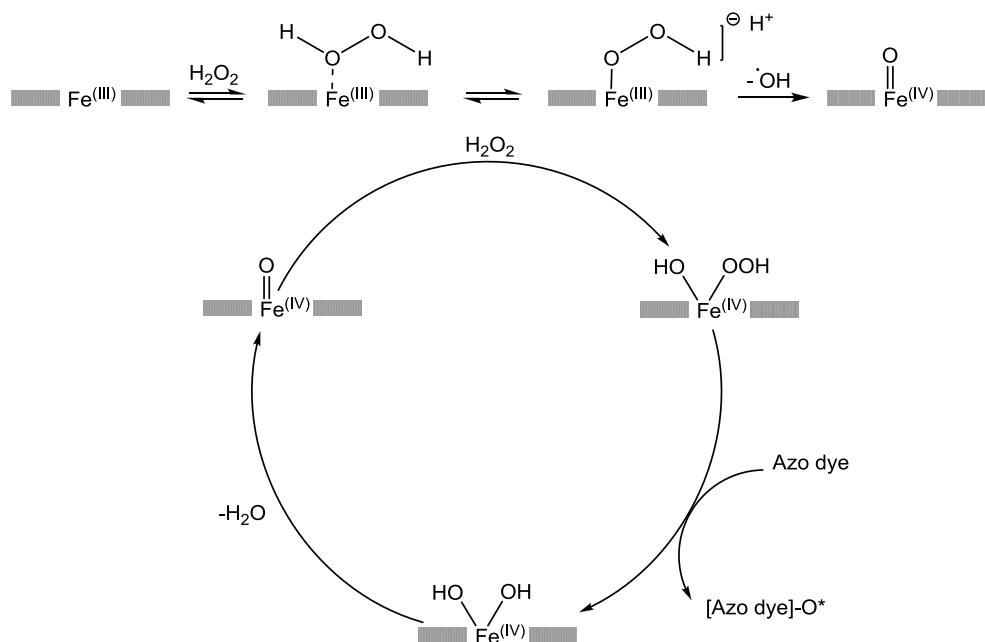

Fig. 4. Effect of H₂O₂ on % MO decolorization catalyzed by Clay-500 as a function of time.

Reaction condition: [MO]₀ = 60 mg/L, Clay-500 = 50 mg, [H₂O₂]₀ = 0.5 mL, Temperature = 50 °C, pH = 3, Volume of MO solution = 250 mL.

In the case of without H₂O₂, the % decolorization of MO increased with increase in contact time and reached equilibrium after approximately 60 min. This may be due to strong adsorption of MO on iron-containing clay via the sulfonic group, forming bridged bidentate complex with iron species on the clay surface [\[22\]](#). To compare the adsorption kinetics precisely, the changes of adsorbed amount with time are treated with the versatile pseudo-second-order kinetic model [\[23\]](#). The calculated equilibrium adsorption capacity (q_e) is 51.81 mg/g. In the case of H₂O₂ addition, the decolorization of MO at 120 min contact time is ~ 264 mg/g, approximately 5 times larger than the equilibrium adsorption capacity (q_e). It is

speculated that loading H_2O_2 over iron-containing catalyst can generate the active oxidant. Such active oxidant can readily decompose the diazo-linkage of the dye leading to decolorization. To elucidate the significant role of iron-containing clay as catalyst, the decolorization of MO experiment was carried out in the absence of iron-containing clay and in the presence of H_2O_2 . It was found that the % decolorization of MO is exceedingly low (5 % decolorization) in consistent with an observation made by Panda and *et al.* [24]. This result can be explained by the fact that H_2O_2 possesses a poor oxidation potential, as compared to the active oxidant generated *in-situ* in presence of iron-containing clay catalyst.

The MO decolorization efficiency was tested with different type of the catalysts (Fig. 5).


Fig. 5. Effect of H_2O_2 on % MO decolorization catalyzed by various treated-clay.

Reaction condition: $[\text{MO}]_0 = 60 \text{ mg/L}$, Catalyst = 50 mg, $[\text{H}_2\text{O}_2]_0 = 0.5 \text{ mL}$, Temperature = 50 °C, pH = 3, Volume of MO solution = 250 mL, Reaction time = 30 min.

In consistent, % decolorization of MO over the treated clay in the presence of H_2O_2 is much higher than those over the treated clay in the absence of H_2O_2 . This confirms that the

iron-containing clay sample can readily provide the catalytic activity for Fenton-like reactions.

In addition, it is found that Clay-500 is the most active catalyst for decolorization of MO among those investigated in this work. It is expected that the formation of active iron species by thermal treatment would play important role for MO decolorization. The thermal treatment at 500 °C can remove the water molecules by desorption of physisorbed water and dehydroxylation may lead to the phase transformation of the iron-containing clay and the oxidation of iron species. It is expected that the active Fe(III) species which is on the surface of the catalyst reacts with hydrogen peroxide and leads to the formation of a high valent iron-oxo species (Surface-Fe(IV)=O) (**Scheme 1**).

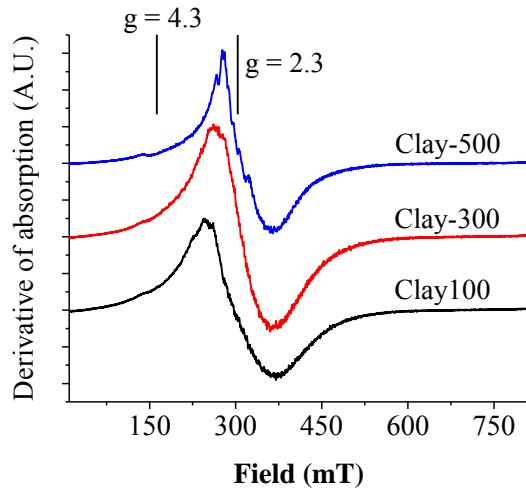
Scheme 1

Such iron-oxo species can further react with hydrogen peroxide forming hydroperoxo-iron species which is proposed as the active species that oxidizes the diazo-linkage of the MO leading to decolorization (**Scheme 1**).

In the case of using Clay-700 as the catalyst, MO decolorization decreases with rise in treatment temperature (Fig. 5). This is presumably due to the further dehydroxylation of clay under high thermal treatment at 700 °C leading to the lost of surface area of catalyst (Surface area of Clay-100, Clay-300, Clay-500 and Clay-700 were 85, 84, 72 and 43 m²/g, respectively). This is consistent with the TGA/DTG (Fig. 2) and FT-IR results (Fig. 3) that show the dehydroxylation of clay layer.

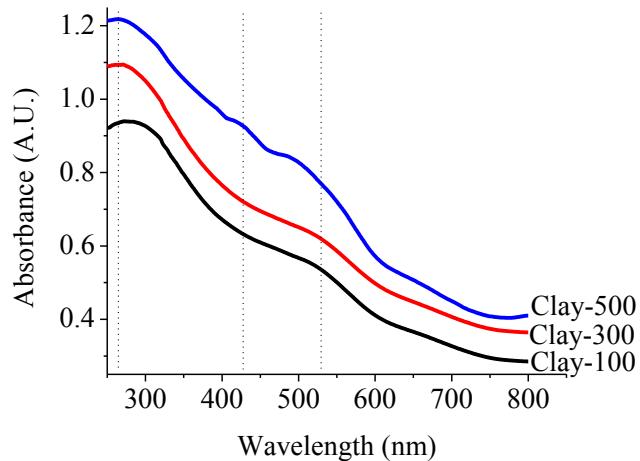
In evaluating the activity of different iron minerals in catalyzing the degradation of 2,4,6-trinitrotoluene (TNT) through a Fenton-like reaction in aqueous solution at pH 3, Matta *et al.* [25] found that iron(III) oxides (hematite, goethite, lepidocrocite, and ferrihydrite) were less effective than iron(II) minerals, such as magnetite and pyrite. As iron(III) oxides are catalytically less active than their iron(II) counterparts [26], one can expect that if the iron species mostly present as iron(II) oxide, it would be able to decolorize MO when using iron-containing clay treated at low temperature (Clay-100 or Clay-300). Conversely, Clay-500 provides a relative higher % decolorization of MO (Fig. 5). It is believed that bulk iron(III) oxide are less active. While the active Fe(III) species are suggested to be the non-framework Fe species generated by dehydroxylation of the clay structure. However, the presence of the active Fe(III) species may include; (i) iron oxide species distributing onto the surface of montmorillonite and/or (ii) iron oxide species present in the intercalating layer. Interestingly, one could not expect only a single form of iron species for all cases. This is because the iron species formed are affected by many parameters. Accordingly, the alteration of iron species during the thermal treatment and reaction can largely affect the catalyst activity and stability.

In addition, the relative lower decolorization of MO was obtained from the reaction using Clay-100 and Clay-300 as catalyst. This is due to the fact that the Fenton process involves the reaction of Fe(II) with H₂O₂, giving rise to hydroxyl radicals (•OH) (Eq. (1)). This catalytic reaction is proceeded by the reduction of Fe(III) to Fe(II) (Eq. (2)) [26].


This may be the case particularly for the reaction using Clay-100 and Clay-300 (where less active Fe species is present) as catalyst. Since the reduction of Fe(III) by hydrogen peroxide is too slow to generate Fe(II) [27-29], the removal of the MO in the activation period is delayed.

From the above results, it can be concluded that the active iron species was successfully generated on the clay surface at 500 °C. Such active iron species can readily react with hydrogen peroxide forming the active intermediates that can decolorize the MO. This is also consistent with the Zhang's report [30]. The structure of the activate iron species in the montmorillonite was an amorphous FeO(OH)-like species after calcining at 500 °C. Such iron active species generated by dehydroxylation reaction at high temperature is suggested to play a decisive role on the catalytic activity towards MO decolorization.

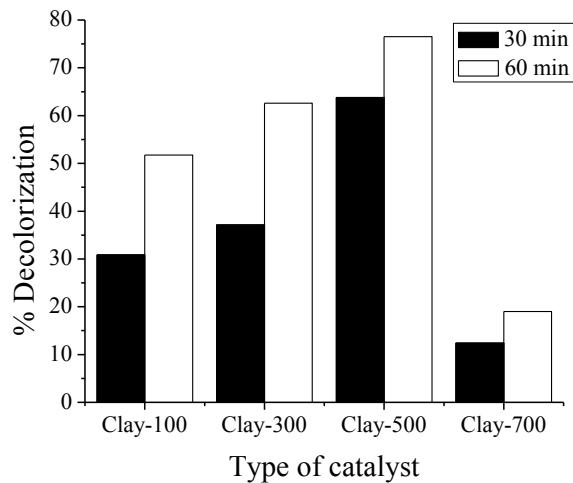
The formation of different oxidative intermediate species generated by the active iron species (Clay-500) and less active iron species (Clay-100 and Clay-300) for the decolorization of the MO was proposed. It is expected that the oxidation activity provided Clay-100 and Clay-300 was $\cdot\text{OH}$ radical mechanism. Interestingly, the surface reaction promoted by Clay-500 can provide a high catalytic oxidation. The high valent iron-oxo species process does not involve free radicals. The bond formation between organic substrate and O^* is assumed to originate from a Fe(IV)(OH)(OOH) intermediate that undergoes oxidation (**Scheme 1**).


From the catalytic activity results, it is suggested that the active sites may be generated by reaction of H_2O_2 with Fe species formed by dehydroxylation of Fe_3O_4 in the

clay structure. The formation of iron active site can be evidenced by ESR (Fig. 6) and DR-UV (Fig. 7).


Fig. 6. ESR signal of the treated-clay.

Fig. 6 reveals the presence of two characteristic Fe(III) signals in iron-containing clay to values of $g = 4.3$ and 2.3 . The signal at $g = 4.3$ is assigned to the presence of isolated Fe(III) [31-32] in tetrahedral or octahedral coordination, which in the case of the clay minerals corresponds to the iron located in the interior of the clay sheets (iron substituting aluminum in the octahedral layers). Therefore, we can suggest that the active iron species partially present in the interlayer of clay (due to the small signal at $g = 4.3$), while mostly present in iron oxide minerals generated by dehydroxylation. Additionally, the signal at $g = 2.3$ is associated to the presence of clusters of iron [31-32]. Experimentally, the intensity of the ESR line at $g = 2.3$ increased significantly when the parent clay was thermal treatment due to the transformation of Fe_3O_4 to Fe_2O_3 . It is interesting to note that the weak signals were also visible on the ESR spectra which were attributed to Fe(III) ions in different coordination environments (Clay-500) (Fig. 6). This is consistent with the observed the DR-UV spectra recorded for the treated-clay (Fig. 7).


Fig. 7. DR-UV spectra of the treated-clay.

In the spectrum of the Clay-100 and Clay-300 only two absorption bands are observed at about $\lambda=263$ nm, corresponding to octahedral Fe(III) substituting for Al(III) [33], and at about $\lambda=525$ nm, corresponding to larger particles of Fe_2O_3 aggregates [34]. Interestingly, the additional signal of the 425 nm band ascribed to the smaller and larger oligomeric octahedrally coordinated Fe(III) species [34], can be observed over the Clay-500. This is the further evidenced supporting the formation of iron active site generated by the dehydroxylation under thermal treatment at 500 °C.

Fig. 8. FTIR spectra of treated-clay with and without H_2O_2 .

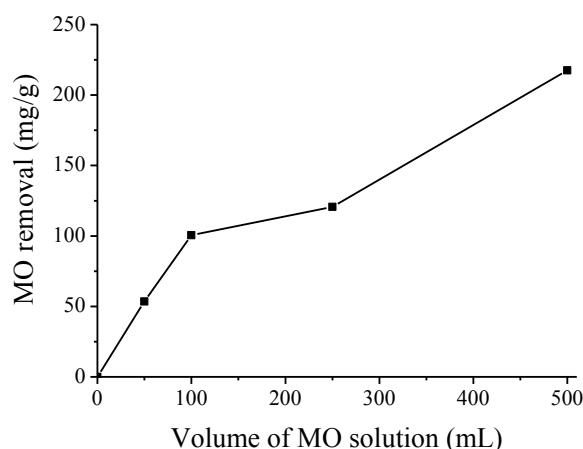

Moreover, the oxidative intermediate species generated by reaction of H_2O_2 and iron activate sites can be investigated by FTIR (Fig. 8). The FTIR spectrums at 1000 , 916 cm^{-1} were assigned to Fe-O-H overlapped with montmorillonite [21] and $\text{Al}_2\text{-OH}$ [35], respectively. Interestingly, a new signal at 1050 cm^{-1} become pronounced when H_2O_2 is introduced into Clay-500. It is proposed in this work that the active Fe(III) species which is on the surface of the dehydroxylated clay reacts with H_2O_2 and leads to the formation of $\text{Fe}(\text{IV})(\text{OH})(\text{OOH})$ species exhibits an additional signal at 1050 cm^{-1} . However, we suggest that the additional signal could be obtained only for the reaction of H_2O_2 and Clay treated at high reaction temperature (Clay-500). This leads to the formation of a high valent iron-oxo species which can promote decolorization of MO.

Fig. 9. Effect of reaction time on % MO decolorization catalyzed by various treated-clay.

Reaction condition: $[MO]_o = 60 \text{ mg/L}$, Catalyst = 50 mg, $[H_2O_2]_o = 0.5 \text{ mL}$, Temperature = 50°C , $pH = 3$, Volume of MO solution = 250 mL.

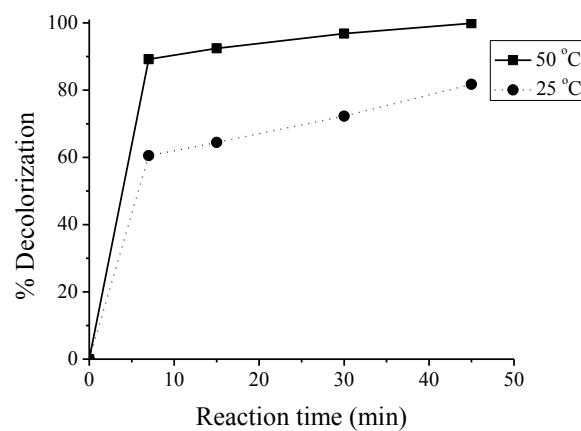

From Fig. 9, the MO decolorization efficiency was tested over the treated clay with different reaction time. This again confirms that Clay-500 was found to be the most active catalyst both reaction at 30 and 60 minutes. The increase in reaction time leads to an increase in the % decolorization of MO. Approximately 77 % decolorization efficiency was achieved within 60 minutes when using the Clay-500.

Fig. 10. Effect of MO volume on % MO decolorization catalyzed by Clay-500.

Reaction condition: $[MO]_o = 60 \text{ mg/L}$, Clay-500 = 50 mg, $[H_2O_2]_o = 0.5 \text{ mL}$, Temperature = 50°C , $pH = 3$, Reaction time = 7 min.

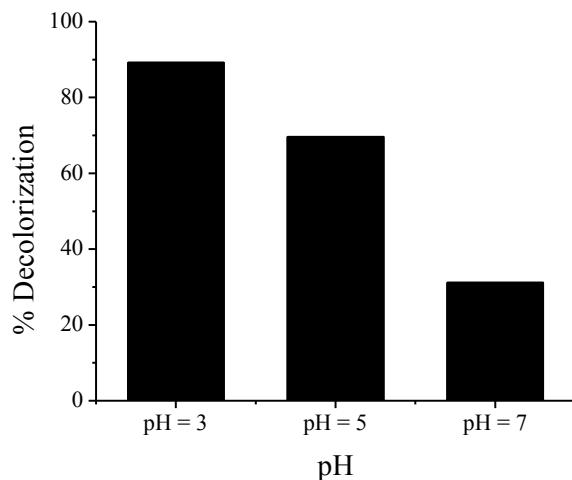

Fig. 10 showed an increase in MO removal (mg of MO/g of catalyst) when the volume of MO solution was increased. The MO was removed from 54 to 218 mg/g when the volume of MO solution was increased from 50 to 500 mL within a period of 7 minutes. Accordingly, using the iron-containing clay as catalyst for the heterogeneous Fenton oxidation of MO from aqueous solution has proven to be an excellent way to treat organic pollutants.

Fig. 11. Effect of reaction temperature on % MO decolorization catalyzed by Clay-500 as a function of time.

Reaction condition: $[MO]_o = 60 \text{ mg/L}$, Clay-500 = 50 mg, $[H_2O_2]_o = 0.5 \text{ mL}$, $pH = 3$, Volume of MO solution = 50 mL.

The decolorization of MO was investigated at different temperatures (25, and 50 °C) over Clay-500. The results presented in Fig. 11 showed clearly that the % decolorization of MO increased with increasing temperature. At higher reaction temperature, the iron-containing catalyst can readily accelerate decomposition of H₂O₂ and generate the active oxidant which causes an increase in % decolorization of MO.

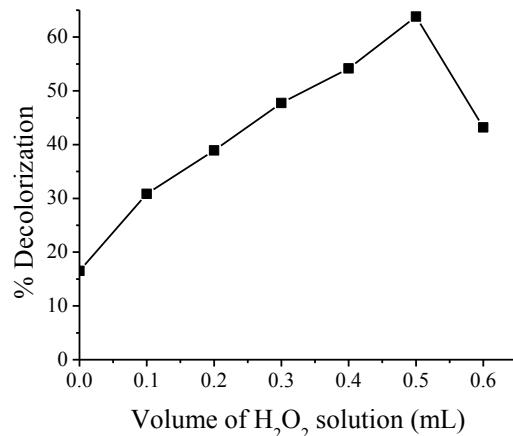
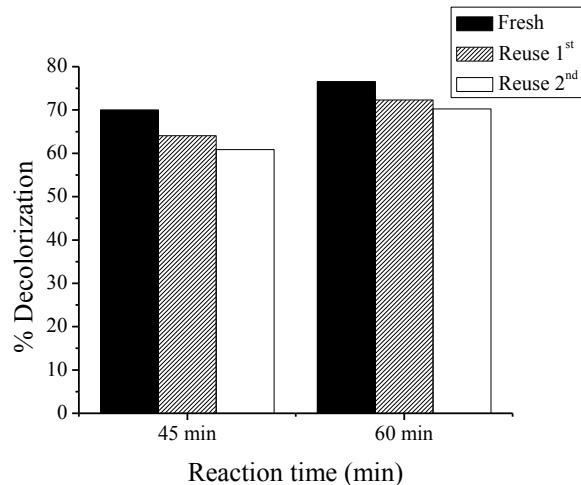


Fig. 12. Effect of pH on % MO decolorization catalyzed by Clay-500.

Reaction condition: [MO]_o = 60 mg/L, Clay-500 = 50 mg, [H₂O₂]_o = 0.5 mL, Temperature = 50 °C, Volume of MO solution = 50 mL, Reaction time = 7 min.

It is worth noting that the increase in pH the degree of decolorization decreases (Fig. 12). No significant decolorization occurs (~ 31 %) above pH 5. This is due to the fact that H₂O₂ can decompose to molecular O₂ and H₂O in basic medium and hence, relative less oxidizing agent is available [24]. Moreover, at higher pH, the catalyst surface becomes negatively charged and the adsorption of MO (containing SO₃⁻ group) on the catalyst surface is very weak [24]. While in acidic medium, the nitrogen-nitrogen double bond (-N=N-) can be protonated and its resonance structure provide nitrogen-nitrogen single bond (-H)N-N=)

linkage. Consequently, such protonated MO are more easily decomposed by the active oxidant.


Fig. 13. Effect of H_2O_2 volume on % MO decolorization catalyzed by Clay-500.

Reaction condition: $[\text{MO}]_o = 60 \text{ mg/L}$, Clay-500 = 50 mg, Temperature = 50 $^{\circ}\text{C}$, $\text{pH} = 3$, Volume of MO solution = 250 mL, Reaction time = 30 min.

The decolorization of MO increases 17 to 64 % (Fig. 13) with increasing volume of H_2O_2 solution (0 to 0.5 mL). This is due to the fact that at higher H_2O_2 concentration more available active oxidant is produced leading to almost complete decolorization. However, increase of H_2O_2 (0.6 mL) further results decrease in degradation process because surplus H_2O_2 molecules act as scavenger of hydroxyl radical to generate perhydroxy radical which has lower oxidation potential than the former [36]. The optimum volume of H_2O_2 solution about 0.5 mL was obtained for efficient decolorization of MO and this result is consistent with the observation by Chen et al. [37].

From the above results, the best reacting conditions were found to be initial pH of 3.0, $[\text{H}_2\text{O}_2]_o$ of 0.02 mol/L (Volume of H_2O_2 solution = 0.5 mL), $[\text{Methyl orange}]_o$ of 60 mg/L, volume of MO solution = 250 mL, and the dosage of catalyst is 2.0 g/L at temperature 50 $^{\circ}\text{C}$.

Under these conditions, 88 % decolorization efficiency of methyl orange was achieved within 120 minutes reaction time when using the iron-containing clay treated at 500 °C.

Fig. 14. Effect of recovery activity of catalyst on % MO decolorization.

Reaction condition: $[MO]_o = 60 \text{ mg/L}$, Catalyst = 50 mg, $[H_2O_2]_o = 0.5 \text{ mL}$, Temperature = 50 °C, pH = 3, Volume of MO solution = 250 mL.

To study the reusability of the catalyst, the catalyst recovered from decolorization experiment was treated with the dye solution under similar condition for another two cycles (Fig. 14). The catalytic behavior of iron-containing clay is reproducible in consecutive experiments without a remarkable drop in the process efficiency, which indicates the absence of significant deactivation of the catalyst due to small amount of iron leaching.

4. Conclusions

In this research, catalytic activity of the Fenton-like catalyst iron-containing clay towards successful decolorization of methyl orange was demonstrated. Among the iron-containing catalyst, the sample treated at 500 °C provides highest activity presumably due to high number of available active sites. The formation of such iron active species by

dehydroxylation reaction evidenced by TGA/DTG and FTIR is suggested to play a decisive role on the catalytic activity. The decolorization process is found to be optimum with an acidic solution pH at 3 giving 88 % decolorization. The successive reusability of the catalyst can be obtained in consecutive experiments without a dramatic drop in activity, which indicates the absence of significant iron leaching.

Acknowledgements

This work was financially supported by the Thailand Research Fund (Grant No. MRG-5580065). The authors would like to thank Miss Jaruwan Deepakwean and Miss Wipa Kingkan for TGA/DTG and FT-IR analysis.

References

- [1] Jia, C., Kitamura, T., Fujiwara, Y., 2001. Catalytic functionalization of arenes and alkanes via C-H bond activation. *Accounts of Chemical Research* 34(8), 633-639.
- [2] Periana, R.A., Mironov, O., Taube, D., Bhalla, G., Jones, C.J., 2003. Catalytic oxidative condensation of CH₄ to CH₃COOH in one step via CH activation. *Science* 301, 814-818.
- [3] Pradhan, S., Bartley, J.K., Bethell, D., Frederick, C.A., Marco, C., Stanislaw, G., Matthew, H., Leyshon, J.R., Rhys, L., John, H.G., 2012. Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. *Nature Chemistry* 4, 134-139.
- [4] Stavropoulos, P., Celenligil-Cetin, R., Tapper, A.E., 2001. The gif paradox. *Accounts of Chemical Research* 34, 745-752.
- [5] Barton, D.H.R., 1998. Gif chemistry: The present situation. *Tetrahedron* 54, 5805-5817.

- [6] Barton, D.H.R., Doller, D., 1992. The selective functionalization of saturated hydrocarbons: Gif chemistry. *Accounts of Chemical Research* 25, 504-512.
- [7] Gozzo, F., 2001. Radical and non-radical chemistry of the Fenton-like systems in the presence of organic substrates. *Journal of Molecular Catalysis A: Chemical* 171, 1-22.
- [8] Bossmann, S., Oliveros, E., Golb, S., Siegwart, S., Dahlen, E.P., Payawan, L., Straub, J.M., Wolrner, M., Braun, A.M., 1998. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. *The Journal of Physical Chemistry A* 102, 5542-5550.
- [9] Pignatello, J.J., Oliveros, E., MacKay, A., 2006. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. *Critical Reviews in Environmental Science and Technology* 36, 1-84.
- [10] Masarwa, A., Rachmilovich-Calis, S., Meyerstein, N., Meyerstein, D., 2005. Oxidation of organic substrates in aerated aqueous solutions by the Fenton reagent. *Coordination Chemistry Reviews* 249, 1937-1943.
- [11] Wang, J., Xu, L.J., 2012. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. *Critical Reviews in Environmental Science and Technology* 42, 251-325.
- [12] Jiang, C., Gao, Z., Qu, H., Li, J., Wang, X., Li, P., Liu, H., 2013. A new insight into Fenton and Fenton-like processes for water treatment: Part II. Influence of organic compounds on Fe(III)/Fe(II) interconversion and the course of reactions. *Journal of Hazardous Materials* 250-251, 76-81.
- [13] Zepp, R.G., Faust, B.C., Hoigne, J., 1992. Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction. *Environmental Science & Technology* 26 (2), 313-319.

[14] Oturan, M.A., Oturan, N., Lahitte, C., Trevin, S., 2001. Production of hydroxyl radicals by electrochemically assisted Fenton's reagent: Application to the mineralization of an organic micropollutant, pentachlorophenol. *Journal of Electroanalytical Chemistry* 507 (1-2), 96-102.

[15] Duesterberg, C.K., Waite, T.D., 2007. Kinetic modeling of the oxidation of *p*-hydroxybenzoic acid by Fenton's reagent: Implications of the role of quinones in the redox cycling of iron. *Environmental Science & Technology*, 41 (11), 4103-4110.

[16] Paciolla, M.D., Kolla, S., Jansen, S.A., 2002. The reduction of dissolved iron species by humic acid and subsequent production of reactive oxygen species. *Advances in Environmental Research* 7 (1), 169-178.

[17] Timofeeva, M.N., Khankhasaeva, S.Ts., Badmaeva, S.V., Chuvinin, A.L., Burgina, E.B., Ayupov, A.B., Panchenko, V.N., Kulikova, A.V., 2005. Synthesis, characterization and catalytic application for wet oxidation of phenol of iron-containing clays. *Applied Catalysis B: Environmental* 59 (3-4), 243-248.

[18] Kim, K.C., Kim, E.K., Lee, J.W., Maeng, S.L., Kim, Y.S., 2008. Synthesis and characterization of magnetite nanopowders. *Current Applied Physics* 8 (6), 758-760.

[19] Garrels, R.M., 1984. Montmorillonite/illite stability diagrams. *Clays and Clay Minerals* 32 (3), 161-166.

[20] Roberts, A.P., Liu, Q., Rowan, C.J., Chang, L., Carvallo, C., Torrent, J., Horng, C.S., 2006. Characterization of hematite (α -Fe₂O₃), goethite (FeOOH), greigite (Fe₃S₄) and pyrrhotite (Fe₇S₈) using first-order reversal curve (FORC) diagrams. *Journal of Geophysical Research* 111 (B12S35), 1-16.

[21] Yuan, P., Bergaya, F.A., Taoa, Q., Fan, M., Liu, Z., Zhu, J., He, H., Chen, T., 2008. A combined study by XRD, FTIR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay. *Journal of Colloid and Interface Science* 324 (1-2), 142-149.

[22] Bandara, J., Mielczarski, J., Kiwi, A.J., 1999. Molecular Mechanism of Surface Recognition. Azo Dyes Degradation on Fe, Ti, and Al Oxides through Metal Sulfonate Complexes. *Langmuir* 15, 7670-7679.

[23] Ho, Y. S.; McKay, G., 2000. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. *Water Research* 34 (3), 735-742.

[24] Panda, N., Sahoo, H., Mohapatra, S., 2011. Decolourization of Methyl Orange using Fenton-like mesoporous Fe_2O_3 - SiO_2 composite. *Journal of Hazardous Materials* 185 (1), 359-365.

[25] Matta, R., Hanna, K., Chiron, S., 2007. Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. *Science of the Total Environment* 385 (1-3), 242-251.

[26] Kwan, W.P., Voelker, B.M., 2003. Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems. *Environmental Science and Technology* 37, 1150-1158.

[27] Barb, W.G., Baxendale, J.H., George, P., Hargrave, K.R., 1949. Reactions of ferrous and ferric ions with hydrogen peroxide. *Nature* 163, 692-694.

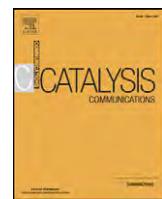
[28] Barb, W.G., Baxendale, J.H., George, P., Hargrave, K.R., 1951. Reactions of ferrous and ferric ions with hydrogen peroxide. Part I: The ferrous ion reaction. *Transactions of the Faraday Society* 47, 462-500.

[29] Barb, W.G., Baxendale, J.H., George, P., Hargrave, K.R., 1951. Reactions of ferrous and ferric ions with hydrogen peroxide. Part II. The ferric ion reaction. *Transactions of the Faraday Society* 47, 591-616.

[30] Zhang, S., Liang, S., Wang, X., Long, J., Li, Z., Wu, L., 2011. Trinuclear iron cluster intercalated montmorillonite catalyst: Microstructure and photo-Fenton performance. *Catalysis Today* 175 (1), 362-369.

[31] Kucherov, A., Shelef, M., 2000. Quantitative determination of isolated Fe^{3+} cations in FeHZSM-5 catalysts by ESR. *Journal of Catalysis* 195, 106-112.

[32] Gue'lou, E., Barrault, J., Fournier, J., Tatibouet, J.M., 2003. Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron. *Applied Catalysis B: Environmental* 44, 1-8.


[33] Timofeeva, M.N., Khankhasaeva, S.T., Chesalov, Y.A., Tsybulya, S.V., Panchenko, V.N., Dashinamzhilova, E.T., 2009. Synthesis of Fe,Al-pillared clays starting from the Al,Fe-polymeric precursor: Effect of synthesis parameters on textural and catalytic properties. *Applied Catalysis B: Environmental* 88, 127-134.

[34] Caudo, S., Centi, G., Genovese, C., Perathoner, S., 2007. Copper- and iron-pillared clay catalysts for the WHPCO of model and real wastewater streams from olive oil milling production. *Applied Catalysis B: Environmental* 70, 437-446.

[35] Madejova J., 2003. FTIR techniques in clay mineral studies. *Vibrational Spectroscopy* 31, 1-10.

[36] Neamtu, M., Yediler, A., Siminiceanu, I., Kettrup, A., 2003. Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. *Journal of Photochemistry and Photobiology A: Chemistry* 161 (1), 87-93.

[37] Chen, A., Ma, X., Sun, H., 2008. Decolorization of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites. *Journal of Hazardous Materials* 156 (1-3), 568-575.

Short Communication

Tunable activity of [Ga]HZSM-5 with H₂ treatment:
Ethane dehydrogenationArtit Ausavasukhi ^a, Tawan Sooknoi ^{b,*}^a Program in Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand^b Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

ARTICLE INFO

Article history:

Received 7 September 2013

Received in revised form 18 October 2013

Accepted 22 October 2013

Available online 7 November 2013

Keywords:

[Ga]HZSM-5

Ethane dehydrogenation

Ga species

Pulsed reactor

ABSTRACT

Ethane dehydrogenation over [Ga]HZSM-5 catalyst were studied to probe activity of various gallium species (Ga_2O_3 , GaO^+ , Ga^+ , and GaH_2^+) in a pulsed reactor. H₂-TPR was used for characterizing the reducible Ga species. It was found that the activity of [Ga]HZSM-5 can be regulated by the H₂ treatment. Among the various Ga species, the H₂-incorporated species (i.e. GaH_2^+) displays the highest dehydrogenation activity (~55% conversion) under the H₂ stream. However, this so-called GaH_2^+ can readily decompose in the absence of H₂, presumably to Ga^+ that give a lower ethane conversion (~30%). While the Ga oxide species, which may well be retained as isolated Ga_2O_3 and exchangeable GaO^+ , provide the lowest dehydrogenation activity (~25% conversion). The lower activity is observed with an increase in the Si/Al ratio of the host zeolite, suggesting that the active site is associated with the negative framework charge, presumably as a charge balancing cation (i.e. GaH_2^+ , Ga^+ , GaO^+). In addition, treatment with hydrogen and steam can readily disperse occluded Ga_2O_3 into exchangeable Ga^+ and GaO^+ , respectively.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Gallium incorporated HZSM-5 zeolites ([Ga]HZSM-5) are recognized as effective bi-functional catalysts for converting light alkanes to aromatics [1–8]. The dehydrogenation of paraffins, is played by the incorporated Ga species [1–3], whereas Brønsted acid catalyzes the oligomerization of the olefins and their subsequent aromatization. While the study of the type of Ga species has spanned over past years, controversy remains on which gallium species is responsible for the catalytic activity [1,9–12]. It was first believed that the Ga_2O_3 obtained after calcination, was the active catalytic species for dehydrocyclization [9,13] and H₂ dissociations [14]. However, it was later found that the intrinsic dehydrogenation activity of $\text{Ga}_2\text{O}_3/\text{HZSM-5}$ was better than that of Ga_2O_3 alone [15]. Since this discovery, several investigations attempt to elucidate the structure of the Ga species under the reducing atmosphere and its interaction with Brønsted acid sites. Researchers have reported that the Ga_2O_3 species are readily reduced during pretreatment with hydrogen or with the hydrocarbon feed to Ga_2O species that migrate into the zeolite channels [3,10,16,17].

These mobile species react with the zeolitic Brønsted acid, resulting in the formation of reduced cationic, Ga^+ species bound to a negative framework charge of the zeolites [3,10,16,17].

Alternatively, several reports [3,18–20] suggest that $\text{Ga}(\text{OH})_2^+$ is primarily exchanged into the negative framework of HZSM-5. Such species can dehydrate to form GaO^+ at high temperature [3,21].

The GaO^+ would be dispersed over the exchangeable sites in the framework, however, such Ga species can readily react with H₂, finally forming the Ga^+ species [22,23].

It is also suggested that H₂ not only keeps Ga species in its reduced forms but can also chemisorb on Ga^+ species and consecutively dissociate to form dihydrido gallium complex (GaH_2^+) [24].

The existence of the dihydrido gallium species is in good agreement with the observed adsorption band at ~2040 cm^{-1} [24]. Kazansky et al. [21,24] reported that such Ga species are relatively stable and

* Corresponding author. Tel.: +66 8 1929 8288; fax: +66 2 326 4415.

E-mail address: kstawan@gmail.com (T. Sooknoi).

decompose only partially in a reductive hydrogen atmosphere at elevated temperatures.

One could expect that upon calcination, the gallium oxides (Ga_2O_3 , GaO^+) are most likely species present in the catalysts. The oxide species may include aggregates both on the external surface and in the micropores of the zeolite. These species may even retain under the reducing stream of H_2 , if the reduction process is not complete. However, the presence of Ga^+ , and GaH_2^+ would be expected under flow of H_2 as suggested previously. As most of the studies on $[\text{Ga}]$ HZSM-5 focus on alkane aromatization, the Ga active species initially promoted alkane dehydrogenation has not been fully understood.

Accordingly, this research has attempted to demonstrate the dehydrogenation activity of various Ga species that can be purposely prepared using different treatments (i.e. reducing and steaming). Ethane was used as a model feed to selectively probe the dehydrogenation activity without inference from further aromatization of the olefin produced. A pulsed reactor allows an observation of an initial activity and also deactivation if applicable. H_2 -TPR and NH_3 -TPD provide insight on reducibility and acidity of the Ga species formed under various treatments. In addition, the effect of Si/Al ratio of the host zeolite was highlighted. Due to the high activity obtained from this results, $[\text{Ga}]$ HZSM-5 may also become an alternative dehydrogenation catalyst for light alkanes.

2. Experimental details

HZSM-5 samples were commercially obtained from Zeolyst International (Si/Al ~ 11 and 28) and Sud-Chemie (Si/Al ~ 165). Conventional impregnation of HZSM-5 with $\text{Ga}(\text{NO}_3)_3$ was employed to obtain 3 wt.% Ga loading. The sample was then calcined at 550 °C for 4 h in a flow of dry air. Hereafter, the catalysts will be designated as $[\text{Ga}]$ HZSM-5(Si/Al) according to their Si/Al ratio. In addition, the b-[Ga]HZSM-5 (3 wt.% Ga loading) was prepared by physical mixing of HZSM-5 with bulk Ga_2O_3 (particle size ~ 50–200 nm) in order to evaluate bi-functional behavior of the catalyst. Temperature-programmed reduction (TPR) and NH_3 -temperature-programmed desorption (NH₃-TPD) experiments were carried out using a TCD detector. All temperature-programmed measurements were taken with a heating rate of 10 °C/min, with He as the carrier gas. For the pulse reaction studies, 15 mg of catalyst was pretreated in a flow of He or H_2 (60 mL/min). After the pretreatment, 25 μL of 5 v/v% ethane in He or H_2 gas was injected into the pretreated catalyst bed to obtain its initial activity. The pulses were repeated for different reaction conditions/treatment. The products of the ethane pulse reaction were on-line analyzed by the FID detector.

3. Results and discussion

3.1. Catalyst characterization

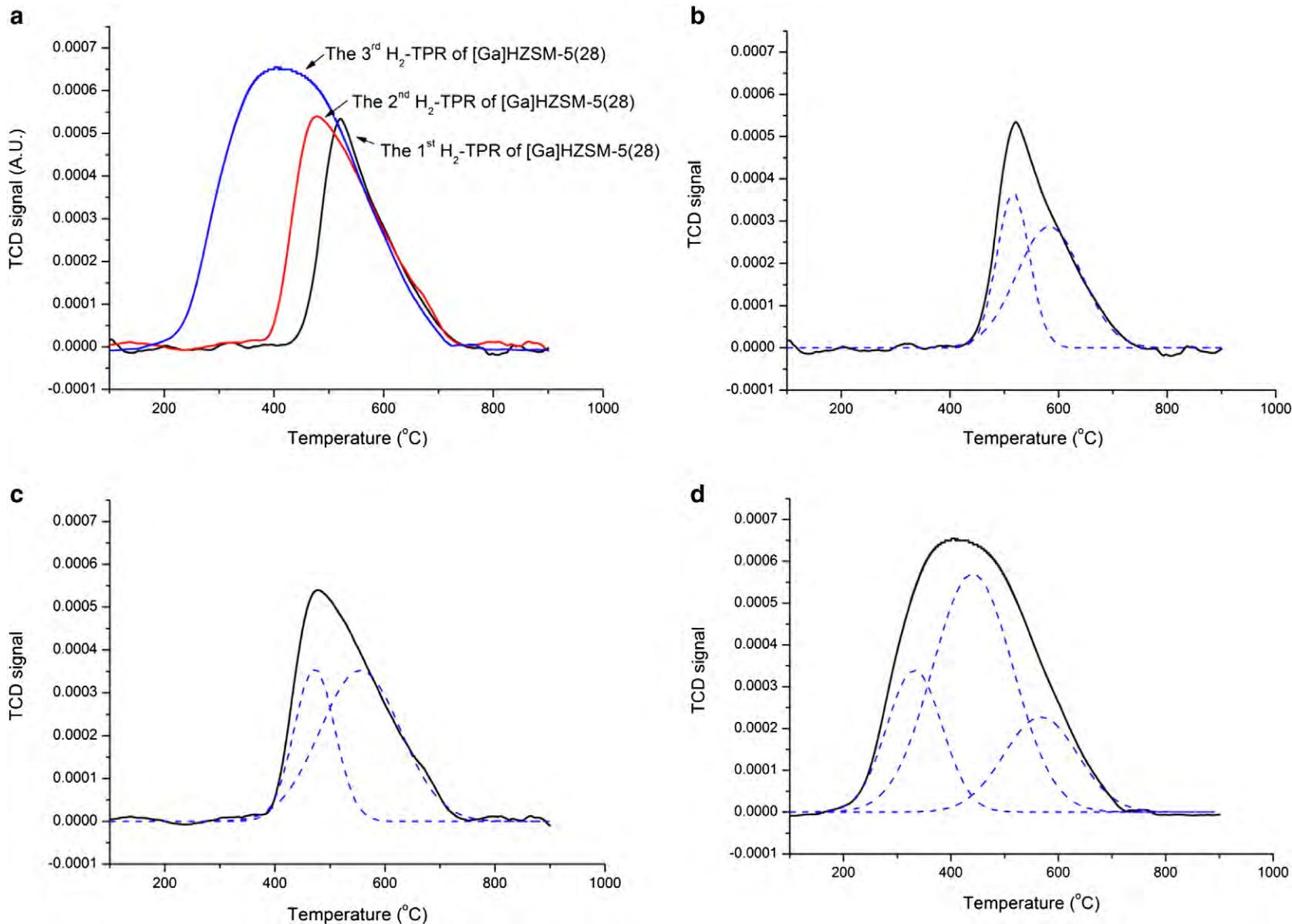
The characteristics of the zeolite samples including Si/Al ratio of the host zeolite, % Ga loading, and BET surface area are shown in Table 1. The Ga contents of the impregnated and physical mixed catalyst are comparably in the same range. Fig. 1a shows the TPR profile of the Ga modified HZSM-5(28) zeolite samples. With the Gaussian deconvolution (Fig. 1b), two major reduction were assigned to (i) the well-dispersed Ga species (~510 °C) such as small Ga_2O_3 particles and/or GaO^+ species interacting with the zeolite framework and (ii) bulk Ga_2O_3 particles (~600 °C) separated from or loosely supported on the zeolite matrix [20]. Detail of these species has fully described in previous work [25].

After the primary H_2 -TPR, the sample was cooled down to 100 °C, then purged with air for 2 h in order to recover the Ga oxide species. Secondary and tertiary H_2 -TPR was then performed. It clearly showed that the reduction temperature shifted toward lower temperature with increasing hydrogen consumption (Fig. 1c and d) indicating that re-dispersion of the Ga species was obtained after series of reduction/

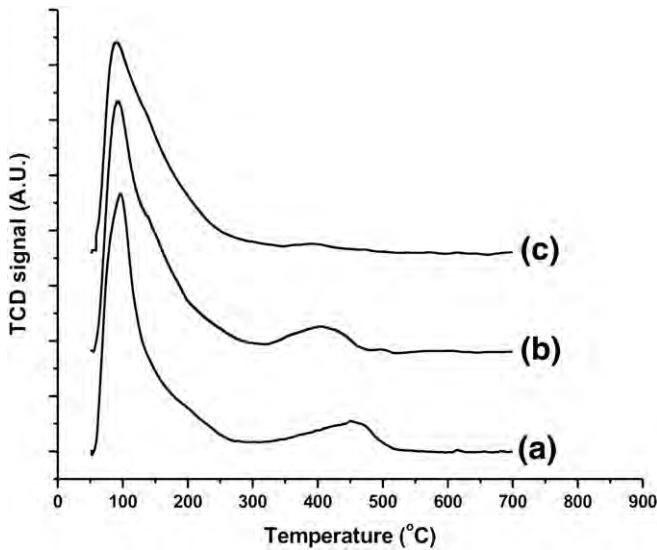
Table 1
Chemical composition and surface area of zeolite samples.

Catalyst	Si/Al	Al/Ga	Ga content ^a (wt.%)		Surface area (m ² /g)
			ICP	XRF	
HZSM-5(11)	11	∞	–	–	645
HZSM-5(28)	28	∞	–	–	560
HZSM-5(165)	165	∞	–	–	540
[Ga]HZSM-5(11)	11	3.45	2.8	2.9	590
[Ga]HZSM-5(28)	28	1.43	2.8	2.9	525
[Ga]HZSM-5(165)	165	0.25	2.8	2.9	520
b-[Ga]HZSM-5(28)	28	1.48	2.7	2.8	530
b-[Ga]HZSM-5(165)	165	0.26	2.7	2.8	510

^a Elemental analysis for Si, Al, and Ga was performed using ICP and XRF.


oxidation cycles. It is suggested that the Ga_2O_3 particles can be partially reduced and subsequently migrated to the negative framework sites. When this species was re-oxidized, a smaller particle of Ga species was generated resulting in the shift to a lower reduction temperature. An increase in hydrogen consumption also indicates the better reducibility of the Ga species formed after a series of re-dispersion.

One may expect that dispersion of Ga species may be better inferred from XRD or TEM. However, no Ga_2O_3 or Ga phase is observed by XRD for all cases. In our previous work [26], TEM provided additional clues for a better dispersion of Ga species when the catalyst was treated with steam. However, it may be a mistake to deduce Ga dispersion from TEM in these samples. This is because, unlike other metals that trend to form aggregates upon reduction, Ga cannot be readily reduced to metallic species (Ga). The cationic species, such as Ga^+ and GaO^+ formed after reduction with H_2 , would also be highly dispersed at the exchangeable sites and cannot be observed by TEM.


In fact, the previously published TPR study on the same catalyst systems [25] describes the dispersion of Ga species in detail. The observed reduction peak at high temperature indicates that the incorporated Ga species agglomerate into larger Ga_2O_3 clusters at higher loading (~6 wt.%), and are probably segregated to the outer surface of ZSM-5. As a series of TPR is repeated, the shift toward lower reduction temperature is clearly noticed and this must be derived from the reduction of different species. Moreover, the increase in H_2 consumption, as the TPR is repeated, may well support the reversible association of H_2 of highly dispersed Ga species (Ga^+ to GaH_2^+) proposed in literatures [24]. With these reason we believe that, for $[\text{Ga}]$ HZSM-5, the nature and dispersion of Ga species can better be investigated using TPR.

Although acid site is not active site for dehydrogenation, NH_3 -TPD provides a clue for the dispersion of the reduced Ga species into the exchangeable sites. It can be seen from NH_3 -TPD in Fig. 2 that when the Ga species was introduced into zeolite, strong acid sites (~300–500 °C, [27,28]) is slightly decreased while the weak acid sites and physisorbed NH_3 were slightly increased (50–200 °C). The observed change in acidity distribution, when Ga is incorporated, is in line with acidity measured by IPA-TPD [25] and MAS-NMR [26] of the same catalyst system previously reported.

The above observation suggested that, as the catalyst was calcined, the incorporated Ga were mostly retained as isolated oxides (Ga_2O_3) and cationic species (GaO^+) that would also occupy some of the exchangeable sites. Accordingly, the acidity of the $[\text{Ga}]$ HZSM-5 is relatively reduced as compared to that of HZSM-5. However, a noticeably decrease in strong acid site can be seen when the catalyst was reduced in H_2 . This is presumably due to the better dispersion of Ga species as cationic species (Ga^+ and GaH_2^+), which is consistent with the previous suggestions that reduced Ga species (i.e., Ga^+ and GaH_2^+) act as exchangeable cations and replace the acid sites [24,25,29]. Together with the TPR results, the reduction of the $[\text{Ga}]$ HZSM-5 can readily disperse the incorporated Ga species, predominantly as the Ga cationic species on the exchangeable sites. It should be noted that, for $[\text{Ga}]$ HZSM-

Fig. 1. The TPR profiles of (a) comparison data of [Ga]HZSM-5(28), (b) the primary H_2 -TPR of [Ga]HZSM-5(28), (c) the secondary H_2 -TPR of [Ga]HZSM-5(28), (d) the tertiary H_2 -TPR of [Ga]HZSM-5(28). The samples were first calcined at 550 °C and cooled down to 50 °C in air; then, heated in a flow of 2% H_2 /Ar (30 mL/min) with a heating rate of 10 °C/min up to 900 °C. After primary TPR experiments, the samples were then cooled to 50 °C in a flow of He and the experiments were repeated under the same condition.

Fig. 2. NH₃-TPD profiles of (a) HZSM-5(28), (b) [Ga]HZSM-5(28) and (c) [Ga]HZSM-5(28) reduced with H₂ at 550 °C. The samples (0.05 g) were dried in flowing He at 425 °C for 2 h. Adsorption of 10% NH₃/He until saturation took place at 50 °C, then the samples were flushed with He at the same temperature for 2 h. TPD measurements were done from 50 to 700 °C with a heating rate of 10 °C/min, with He as the carrier gas.

5(11) and [Ga]HZSM-5(28), number of exchangeable sites in this sample are in excess, as compared to the Ga loading (Al/Ga > 1, Table 1). In the case of [Ga]HZSM-5(165), the oxide species may include aggregates on the surface of the zeolite. These species may even retain under the stream of H₂.

It is also worth noting that no attempt to prove or propose new Ga species in GaHZSM-5 was made in this work. All species are referred to those previously reported and proposed in literatures. Additional characterization including effect of high temperature treatment can be deduced from some of our own characterization results as well as previously published spectroscopic studies on the same catalyst systems [25,26].

3.2. Dehydrogenation of ethane

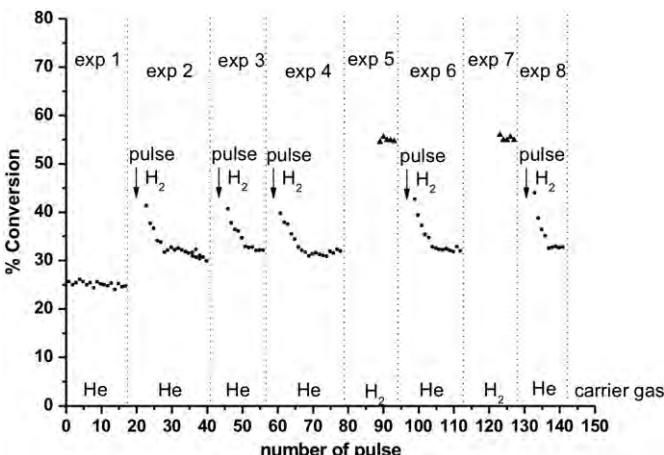
From Table 2, it can be clearly seen that the conversion of ethane to ethylene is increased with reaction temperature for all experiments. For HZSM-5(28), a low conversion of ethane is obtained either using H₂ or He as carrier gas. While [Ga]HZSM-5(28) show a higher dehydrogenation activity, particularly in the H₂ stream. This implies that the reduced Ga species (Ga⁺, GaH₂⁺) possesses a high dehydrogenation activity, as compared to the Ga oxide species (Ga₂O₃, GaO⁺). In order to clearly

compare the catalytic activity of the Ga species under H₂ and He atmosphere, the pulsed reaction was carried out as shown in Fig. 3.

From Fig. 3, ~25% conversion of ethane was obtained at 650 °C using He as a carrier gas (Exp. 1). It is believed that Ga₂O₃ particles and/or GaO⁺ were the active species under this reaction condition. As the catalyst was calcined and only treated with He, the incorporated Ga are mostly retained as isolated Ga₂O₃ and exchangeable GaO⁺ (from dehydration of Ga(OH)₂⁺, Eq. (3)) [3]. Such Ga oxide species in [Ga]HZSM-5(28) can provide a relatively higher activity of ethane dehydrogenation, as compared to HZSM-5 (~2% conversion). Again, it is interesting to note that only ethylene and hydrogen are produced and there is no change of activity with the number of ethane pulses. This clearly shows that there is an excess of Ga active sites and the initial activity can be obtained from every single pulse.

When the catalyst was in situ reduced with 10 pulses of pure H₂ and ethane was then pulsed under He (Exp. 2), a marked increase in activity was initially observed, but slowly decline to a certain level (~30% conversion) after 7–8 pulses of ethane. It was suggested that, by pulsing with H₂, a reduced Ga species (presumably Ga⁺) could be generated. Moreover, the Ga⁺ formed may also chemisorb H₂ to form a H₂-incorporated Ga species, “GaH₂⁺” (Eq. (5)) as reported earlier [24]. These two species seem to be responsible for the high activity observed initially, as compared to that over the oxide forms. However, at high reaction temperatures, the “GaH₂⁺” cannot be stabilized in the absence of H₂ as reported by Kazansky et al. [21,24]. It would be readily decomposed to the reduced Ga⁺ species after H₂ is withdrawn. Hence, a decrease in catalytic activity can be observed (~40% to ~30% conversion after 7–8 pulses) in Exp. 2. The reduced Ga⁺ species appears to be less active, as compared to the H₂-incorporated Ga species (GaH₂⁺), but somewhat more active, as compared to the Ga oxide species. The same operating condition as Exp. 2 was performed for Exps. 3 and 4 and similar results can be repeatedly observed. It is, therefore, assumed that H₂ chemisorption of Ga⁺ and decomposition of GaH₂⁺ species in [Ga]HZSM-5(28) is readily reversible.

Since the decomposition of such GaH₂⁺ to Ga⁺ would be favored in the absence of H₂, one could expect that by keeping the catalyst in a H₂ stream, decomposition of the so-called GaH₂⁺ may well be prevented. Hence, H₂ mixed with ethane was then pulsed in the reaction (Exp. 5) under the H₂ carrier. It was found that a relatively high activity was obtained (~55% conversion) and there is no change in catalytic activity throughout a series of ethane pulses under H₂ as the carrier gas. Accordingly, it is believed that the H₂-incorporated Ga species (presumably GaH₂⁺) is kept under this condition and this species seems to be more active, as compared to other Ga species mentioned previously. To elucidate that, the carrier was switched back to He (Exp. 6), and while pulsing of ethane was continued. It can be clearly seen that, a result as in Exps. 2–4 was exactly reproduced for Exp. 6. This again demonstrates that the H₂-incorporated Ga species (GaH₂⁺) could only be preserved


Table 2

% Conversion of ethane to ethylene over various modified HZSM-5.

Catalyst	Type of carrier gas	% Ethane conversion at various reaction temperature (°C)				
		550	600	650	700	750
HZSM-5(28)	He	0.0	0.7	2.6	6.1	12.6
HZSM-5(28)	H ₂	0.0	0.0	0.9	2.2	3.4
[Ga]HZSM-5(28)	He	4.9	18.5	25.8	55.9	67.7
[Ga]HZSM-5(28)	H ₂	19.3	42.3	53.4	62.4	69.1
b-[Ga]HZSM-5(28)	He	0.0	1.1	2.9	7.7	9.9
b-[Ga]HZSM-5(28) treated with H ₂	He	0.0	4.3	18.4	27.3	35.4
b-[Ga]HZSM-5(28) treated with steam	He	0.0	2.7	12.1	19.1	29.1
b-[Ga]HZSM-5(165)	He	0.0	0.0	0.0	3.9	8.4
b-[Ga]HZSM-5(165) treated with H ₂	He	0.0	0.0	6.3	12.6	26.7
b-[Ga]HZSM-5(165) treated with steam	He	0.0	0.0	5.4	9.2	14.9

Reaction condition: Reaction temperature = 550–750 °C, Carrier gas = He and H₂, Reactant = ethane

^a The selectivity of ethylene was 100% except these results that ethylene and methane selectivity were shown in blanket.

Fig. 3. Ethane pulsed reaction over [Ga]HZSM-5(28) catalyst with different reaction condition. exp 1 = 5% ethane/He was feed using He as carrier gas, exp 2 = the 10 pulses of pure H₂ was injected to the catalyst, and then 5% ethane/He was feed using He as carrier gas, exp 3, 4 = the exp 2 was re-operated, exp 5 = 5% ethane/H₂ was feed using H₂ as carrier gas, exp 6 = the exp 2 was re-operated, exp 7 = the exp 5 was re-operated, exp 8 = the exp 2 was re-operated. Reaction condition: Catalyst = [Ga]HZSM-5(28), Reaction temperature = 650 °C, Pulsed volume = 25 μ L.

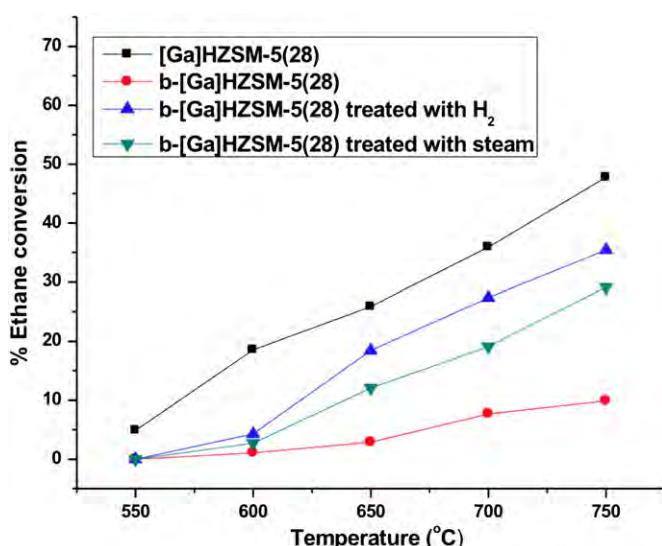
under the reducing H₂ stream. As a non-reducing stream of He replaced H₂, the active “GaH₂⁺” was gradually decomposed to “Ga⁺”, leading to a decrease in dehydrogenation activity as observed in Exps. 2–4. Exps. 7 and 8 were further performed to verify the above phenomenon and, as expected, the process was clearly reversible.

From the above results, it can be concluded at this stage that dehydrogenation activity of [Ga]HZSM-5 is largely dependent upon the Ga species present. The H₂-incorporated Ga species (presumably GaH₂⁺) exhibits higher activity, as compared to the reduced Ga⁺ and Ga oxide species, respectively. This is probably due to the noble-metal-like characteristics of such H₂-incorporated Ga species [30], as compared to others. If this species is really GaH₂⁺, one could expect that such 16-electrons complex with soft hydrido ligands would interact well with hydrogen in a manner similar to the noble metals. However, this species appears to be present only under H₂ stream.

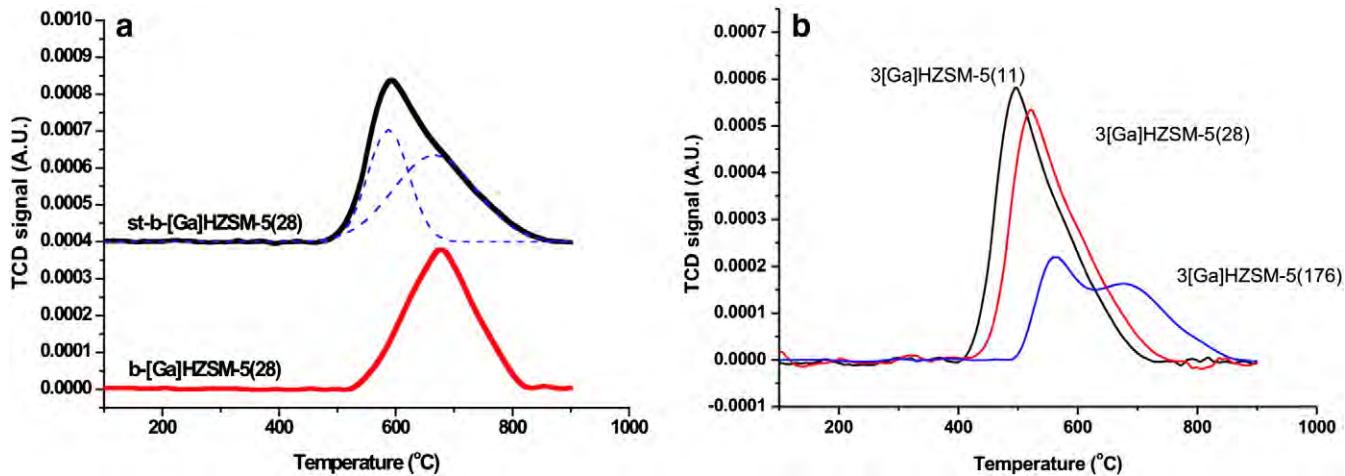
According to the above observation, the active Ga species would be highly dispersed as exchangeable cationic species. This can be demonstrated by the reaction using the bulk Ga₂O₃ support on HZSM-5(28)

(b-[Ga]HZSM-5(28)) under non-reducing stream of He as shown in **Fig. 4**.

As expected from **Fig. 4**, a relatively lower ethane conversion can be obtained over b-[Ga]HZSM-5(28) (Ga particle size ~ 50–200 nm, not shown), as compared to the [Ga]HZSM-5(28). It is noted that the conversion over b-[Ga]HZSM-5(28) is only 2–3% higher than that over HZSM-5 (**Table 2**) suggesting that, predominantly, the observed activity is thermally driven. After steaming at 425 °C for 2 h, the dehydrogenation activity can be enhanced (st-b-[Ga]HZSM-5(28)). It is believed that water can react with the bulk Ga₂O₃ forming relatively well-dispersed GaO(OH) species that can consecutively react with Brønsted acid sites to form an exchangeable GaO⁺ species [26,31].


The better dispersion of Ga species in st-b-[Ga]HZSM-5(28) can be supported by the TPR, as shown in **Fig. 5a**. It is clearly seen that a H₂ consumption peak of the Ga species in the steamed sample (st-b-[Ga]HZSM-5(28)) shifted toward a lower temperature, as compared to that of the b-[Ga]HZSM-5(28) (~670 °C). This is probably because reduction of the dispersed Ga species (presumably GaO(OH) or GaO⁺) obtained from the steam treatment would be more feasible, as compared to the bulk Ga₂O₃. With the Gaussian deconvolution, a weaker signal at ~670 °C was observed over the st-b-[Ga]HZSM-5(28), indicating that less bulk Ga₂O₃ was retained in this sample. In other words, larger parts of the bulk Ga₂O₃ may well be re-dispersed by the reaction with steam ((Eqs. (6–7)) to form GaO(OH) or GaO⁺ that possesses a higher dehydrogenation activity, as compared to the bulk Ga₂O₃ (**Fig. 4**).

After H₂ reduction at 750 °C, the catalysts (red-b-[Ga]HZSM-5(28)) become even more active as shown in **Fig. 4**. In line with the change in the nature of the Ga species observed upon H₂ reduction (**Fig. 1**), it is believed that the some parts of bulk Ga oxide species could be reduced and re-dispersed on the zeolite support, presumably forming exchangeable Ga⁺ species that is more active than the Ga oxide species as discussed earlier.


To emphasize the role of these exchangeable Ga species, the same loading of bulk Ga₂O₃ on HZSM-5 with a higher Si/Al (b-[Ga]HZSM-5(165)) was prepared (**Table 1**). After reduction at 750 °C, the dehydrogenation activity in He was compared as shown in **Table 2**. It is clearly seen that, despite of the same Ga₂O₃ loading, the lower dehydrogenation activity can be obtained from b-[Ga]HZSM-5(165), as compared to that from b-[Ga]HZSM-5(28). This is expected because b-[Ga]HZSM-5(165) would possess relatively less acid sites and, according to Eqs. (2) and (7), less exchangeable Ga species would be obtained in this catalyst after reduction. In line with a separate measurement, higher number of dispersed Ga species was obtained for the same Ga loading on zeolite with lower Si/Al (**Fig. 5b**). From the above results, it is interesting to note that the acidity of zeolite determines the dispersion of the Ga species and hence the high dehydrogenation activity.

4. Conclusions

As [Ga]HZSM-5 was calcined in air and only treated with He, the incorporated Ga oxide species provide ~25% ethane dehydrogenation at the reaction condition studied (650 °C). After reduction, the catalyst shows a slightly higher activity (~30% conversion), presumably due to the presence of more active reduced Ga species, i.e. Ga⁺. Under H₂ stream, the active site can reversibly chemisorb H₂ forming so called “GaH₂⁺” that is even more active for ethane hydrogenation (~55% conversion). However, such H₂-incorporate Ga species (GaH₂⁺) can gradually decompose in the absence of H₂. Nevertheless the process is readily reversible. In addition, steam treatment and reduction with H₂ can disperse the bulk Ga oxide into the higher active cationic Ga species (presumably GaO⁺ and Ga⁺). In addition, the number of acid sites of the

Fig. 4. Effect of catalyst preparations and treatments. Reaction condition: Catalyst = [Ga]HZSM-5(28), b-[Ga]HZSM-5(28), st-b-[Ga]HZSM-5(28) and red-b-[Ga]HZSM-5(28), Reaction temperature = 550–750 °C, Carrier gas = He, Reactant = ethane.

Fig. 5. The TPR profiles of (a) b-[Ga]HZSM-5(28) and st-b-[Ga]HZSM-5(28) treated with steam at 425 °C and (b) [Ga]HZSM-5 different Si/Al ratio. The samples were first calcined at 550 °C and cooled down to 50 °C in air; then, heated in a flow of 2% H₂/Ar (30 mL/min) with a heating rate of 10 °C/min up to 900 °C.

host zeolite determine the Ga species dispersion and hence the dehydrogenation activity. This result indicates that [Ga]HZSM-5 can be an alternative candidate for light alkane dehydrogenation catalyst.

Acknowledgments

The authors thank the Thailand Research Fund for financial support (Grant No. MRG-5580065).

References

- [1] V.R. Choudhary, K. Mantri, C. Sivadinayana, *Microporous Mesoporous Mater.* 37 (2000) 1–8.
- [2] T.V. Choudhary, A.K. Kinage, S. Banerjee, V.R. Choudhary, *Microporous Mesoporous Mater.* 70 (2004) 37–42.
- [3] K.M. Dooley, C. Chang, G.L. Price, *Appl. Catal. A* 84 (1992) 17–30.
- [4] V. Kanazirev, G.L. Price, K.M. Dooley, *Stud. Surf. Sci. Catal.* 69 (1991) 277–285.
- [5] Y. Ono, K. Kanae, *J. Chem. Soc. Faraday Trans. 1* (87) (1991) 663–667.
- [6] B.S. Kwak, W.M.H. Sachtler, *J. Catal.* 145 (1994) 456–463.
- [7] V.R. Choudhary, A.K. Kinage, C. Sivadinayana, M. Guisnet, *J. Catal.* 158 (1996) 23–33.
- [8] J.F. Joly, H. Ajot, E. Merlen, F. Raatz, F. Alario, *Appl. Catal. A* 79 (1991) 249–263.
- [9] M. Guisnet, N.S. Gnepp, F. Alario, *Appl. Catal.* 89 (1992) 1–30.
- [10] G.D. Meitzner, E. Iglesia, J.E. Baumgartner, E.S. Huang, *J. Catal.* 140 (1993) 209–225.
- [11] S.B. Abdul Hamid, E.G. Derouane, P. Meriaudeau, C. Naccache, *Catal. Today* 31 (1996) 327–334.
- [12] R. Fricke, H. Kosslick, G. Lischke, M. Richter, *Chem. Rev.* 100 (2000) 2303–2405.
- [13] P. Meriaudeau, C. Naccache, *J. Mol. Catal.* 50 (1989) L7–L10.
- [14] P. Meriaudeau, M. Primet, *J. Mol. Catal.* 61 (1990) 227–234.
- [15] N.S. Gnepp, J.Y. Doyen, M. Guisnet, *J. Mol. Catal.* 45 (1988) 281–284.
- [16] J.A. Biscardi, E. Iglesia, *Catal. Today* 31 (1996) 207–231.
- [17] G.L. Price, V. Kanazirev, *J. Catal.* 126 (1990) 267–278.
- [18] G.S. Pokrovski, J. Schott, J.L. Hazemann, F. Farges, O.S. Pokrovsky, *Geochim. Cosmochim. Acta* 66 (2002) 4203–4220.
- [19] E.S. Shiro, D.P. Shevchenko, O.P. Tkachenko, R.V. Dmitriev, *Appl. Catal.* 107 (1994) 147–164.
- [20] I. Nowak, J. Quartararo, E.G. Derouane, J.C. Vedrine, *Appl. Catal.* 251 (2003) 107–120.
- [21] V.B. Kazansky, I.R. Subbotina, R.A. van Santen, E.J.M. Hensen, *J. Catal.* 233 (2005) 351–358.
- [22] N.O. Gonzales, A.K. Chakraborty, A.T. Bell, *Top. Catal.* 9 (1999) 207–213.
- [23] N. Rane, A.R. Overweg, V.B. Kazansky, R.A. van Santen, E.J.M. Hensen, *J. Catal.* 239 (2006) 478–485.
- [24] V.B. Kazansky, I.R. Subbotina, R.A. van Santen, E.J.M. Hensen, *J. Catal.* 227 (2004) 263–269.
- [25] A. Ausavasukhi, T. Sooknoi, D.E. Resasco, *J. Catal.* 268 (I) (2009) 68–78.
- [26] A. Ausavasukhi, T. Sooknoi, *Appl. Catal. A* 361 (2009) 93–98.
- [27] C.V. Hidalgo, H. Itoh, T. Hattori, M. Niwa, Y. Murakami, *J. Catal.* 85 (1984) 362–369.
- [28] J.G. Post, J.H.C. van Hoff, *Zeolites* 4 (1984) 9–14.
- [29] P. Meriaudeau, C. Naccache, *Appl. Catal.* 73 (1991) 13–18.
- [30] A.I. Serykh, M.D. Amiridis, *Surf. Sci.* 603 (2009) 2037–2041.
- [31] M. Garcia Sanchez, P.C.M.M. Magusin, E.J.M. Hensen, P.C. Thune, *J. Catal.* 219 (2003) 352–361.

รายงานสรุปผลการดำเนินโครงการบริการวิชาการ

เรื่อง

การนำบันดัชน้ำทึบจากการย้อมผ้าในชุมชนผู้ผลิตผ้าไหหม้อเกอบึงชัย
ด้วยกระบวนการดูดซับโดยใช้ดินจากอําเภอโขคชัยและอําเภอพิมาย

ดำเนินงานโดย

อาทิตย์ อัศวสุจิ
ณัฏฐิณี ศุภเมธานนท์
สุstrarัตน์ สมบัติศรี

สาขาวิชาเคมีประยุกต์ คณะวิทยาศาสตร์และศิลปศาสตร์
ศูนย์กลางมหาวิทยาลัย มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน

พ.ศ. 2555

บทที่ 1

บทนำ

หลักการและเหตุผล

ชุมชนผู้ผลิตผ้าไหมในอำเภอปึกบังชัย จังหวัดนราธิวาสเป็นผู้ผลิตผ้าไหมคุณภาพดีที่สำคัญของประเทศไทย ตลอดสิ่งกับคำว่า “เมือง宦ยังกล้า ผ้าไหมดี หมู่โกราช ปราสาทหิน คินค่านเกวียน” โดยในปัจจุบัน ผู้ผลิตจะใช้สีข้อมผ้าเป็นจำนวนมากและมีการปล่อยน้ำเสียที่มีการปนเปื้อนของสีข้อมผ้าอุกมาสู่สิ่งแวดล้อมในปริมาณที่มากตามไปด้วยเช่นกัน ในกลุ่มโรงงานอุตสาหกรรมได้จำแนกสีข้อมตามวิธีใช้ออกเป็น 11 ประเภท คือ (1) สีเอชิค (2) สีไดเร็กท์ (3) สีเบติก (4) สีดิสเพอร์ส (5) สีรีแอคทีฟ (6) สีอะโซชิค (7) สีแวนิล (8) สีมอร์แคนท์ (9) สีอินกรน (10) สีออกซิเดชัน และ (11) สีซัลเฟอร์ โดยที่สีข้อมแต่ละประเภทจะมีสูตรโครงสร้างทางเคมี สมบัติของสีข้อม ตลอดจนวิธีใช้ที่แตกต่างกันไป บางชนิดมีโครงสร้างทางเคมีเป็นพากะโรเมติกส์เอมิน (Aromatic amine) ซึ่งเป็นสารก่อมะเร็ง เช่น 2-naphthylamine และ benzidine นอกจากสีข้อมผ้าบางชนิดจะมีส่วนประกอบที่เป็นพิษ และย่อยสลายตามธรรมชาติได้ยาก สีข้อมผ้าซึ่งก่อให้เกิดปัญหาภาวะมลพิษ และทัศนียภาพทางสิ่งแวดล้อม สีที่ปนเปื้อนลงไปในแหล่งน้ำยังมีผลบดบังการสังเคราะห์แสงของแพลงก์ตอนและพืชนำเสนอซึ่งมีผลกระทบต่อห่วงโซ่ออาหารในระบบนิเวศโดยตรง น้ำทึบที่จะระบายน้ำสู่แม่น้ำ ลำคลองหรือแหล่งน้ำตามธรรมชาติจึงควรได้รับการบำบัดให้ได้มาตรฐานเสียก่อน

การกำจัดสีข้อมในน้ำเสียทำได้โดยวิธีทางเคมี และชีวภาพ การใช้กระบวนการดูดซับ (Adsorption) เป็นทางเลือกหนึ่งที่มีการนำมาใช้ เทคโนโลยีนี้ประกอบด้วยตัวดูดซับ (Adsorbent) ที่ใช้เป็นตัวจับสีข้อมที่ปนเปื้อนในน้ำเสีย โดยตัวดูดซับที่เลือกใช้ในprocessing สามารถดูดซับสารต่างๆ ได้แก่แร่ดิน (Mineral clay) จากอำเภอโขคชัยและอำเภอพิมายซึ่งมีเคลย์ และแร่เหล็ก (Iron mineral) เป็นองค์ประกอบ เทคโนโลยีนี้ไม่เพียงแต่มีประสิทธิภาพและมีค่าใช้จ่ายน้อยเท่านั้นแต่ยังเป็นกระบวนการที่เป็นมิตรต่อระบบนิเวศในธรรมชาติอีกด้วย โดยประสิทธิภาพการดูดซับสีข้อมแต่ละชนิดจะขึ้นกับอัตราการดูดซับของสีข้อมซึ่งมีโครงสร้างที่แตกต่างกันกับเหล็กที่เป็นองค์ประกอบในเคลย์ ภายหลังจากการบำบัดน้ำทึบจากการฟอกซ้อม จะตรวจวัดคุณภาพน้ำทึบด้วยค่าซีโอดี (Chemical Oxygen Demand; COD) ซึ่งน้ำทึบควรมีค่าซีโอดีไม่เกิน 120 มิลลิกรัมต่อลิตร และค่าความสุ่น (Turbidity) ซึ่งน้ำทึบควรมีค่าความสุ่นไม่เกิน 50 JTU

วัตถุประสงค์

- 1) เพื่อถ่ายทอดเทคโนโลยีการกำจัดน้ำทึบจากสีข้อมผ้าแก่ชุมชนผู้ผลิตผ้าใหม่กำลังปัจจุบันโดยใช้กระบวนการคุณภาพด้วยคุณภาพดีและเชื่อถือได้
- 2) เพื่อบำบัดน้ำทึบให้มีค่าซีไอดี และค่าความชื้นอยู่ในเกณฑ์มาตรฐานน้ำทึบ โรงงานอุตสาหกรรม (ค่าซีไอดีไม่เกิน 120 มิลลิกรัมต่อลิตร ค่าความชื้นไม่เกิน 50 JTU)
- 3) เพื่อส่งเสริมการพัฒนาคุณภาพชีวิตของคนในชุมชน
- 4) เพื่อสร้างการมีส่วนร่วมของคนในชุมชนและบุคลากรจากมหาวิทยาลัยเทคโนโลยีราชมงคลอีสานที่มีจิตอาสาพัฒนาท้องถิ่นและชุมชนบ้านเกิด
- 5) เพื่อประชาสัมพันธ์สาขาวิชาเคมีประยุกต์ คณะวิทยาศาสตร์และศิลปศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน

ลักษณะโครงการ

(✓) เป็นโครงการที่มีกระบวนการเกี่ยวข้องกับการพัฒนาองค์ความรู้จากงานวิจัย

(....) เป็นโครงการที่มีการบูรณาการกับการเรียนการสอน

(....) เป็นโครงการที่มีการบูรณาการกับการวิจัย

วิธีดำเนินการ

- 1) การเตรียมการ
 - 1.1 จัดตั้งคณะกรรมการดำเนินงาน
 - 1.2 สำรวจ และประสานงานกับกลุ่มเป้าหมาย
 - 1.3 เก็บตัวอย่างน้ำทึบจากการบูรณาการข้อมูล
 - 1.4 ทดลองบำบัดน้ำทึบจากการบูรณาการข้อมูลในห้องปฏิบัติการ
- 2) การดำเนินงานหรือการให้บริการ
 - 2.1 วิเคราะห์ปัญหา ดำเนินโครงการให้เหมาะสมกับชุมชน
 - 2.2 ติดตั้งเทคโนโลยีการบำบัดน้ำทึบจากการข้อมูลในสถานประกอบการที่ถูกคัดเลือก
 - 2.3 จัดเตรียมเอกสารการฝึกอบรม
 - 2.4 ถ่ายทอดเทคโนโลยี
 - 2.5 ประเมินโครงการ
 - 2.6 สรุปผลการดำเนินการ

ผู้รับผิดชอบ

- 1) อาทิตย์ อัศวสุจิ
- 2) ณัฏฐินี ศุภเมธานนท์
- 3) สุดารัตน์ สมบัติศรี

สาขาวิชาเคมีประยุกต์ คณะวิทยาศาสตร์และศิลปศาสตร์

ระยะเวลาและสถานที่ในการดำเนินโครงการ

ระยะเวลาในการดำเนินโครงการ 6 เดือน

สถานที่ในการดำเนินโครงการ

- 1) สาขาวิชาเคมีประยุกต์ คณะวิทยาศาสตร์และศิลปศาสตร์
มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน
- 2) ร้านคัญนาตาติก
- 3) ร้านมัชชาดา ใหม่ไทย

บทที่ 2
วิธีดำเนินโครงการ

แผนการดำเนินโครงการ

- 1) ประสานงานกับกลุ่มเป้าหมาย
- 2) เตรียมอุปกรณ์และเอกสาร
- 3) ถ่ายทอดเทคโนโลยี
- 4) ติดตามผลและประเมินผล
- 5) เก็บรวบรวม

การประชาสัมพันธ์

- 1) ประชาสัมพันธ์โครงการผ่านผู้ประสานงาน คุณอาทิตยา สิริมัชชาดาภุล ประธานกลุ่มใหม่ ที่มีอีเมลชั้นชัย และคุณพิเชษฐ์ คงชู สมาชิกสภากเทศบาลเมืองเมืองปึก
- 2) ประชาสัมพันธ์ผ่านลือสิ่งพิมพ์ ที่ติดอยู่ที่ร้านผู้ประกอบการ

วิทยากร

- 1) นายอาทิตย์ อัสวสุจิ
 ตำแหน่ง อาจารย์ประจำสาขาวิชาเคมีประยุกต์
 คณะวิทยาศาสตร์และศิลปศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลลีลาภ
 อำเภอเมือง จังหวัดครรราชสีมา 30000
 โทรศัพท์: 089-217-1381 โทรสาร 044-233-072
 E-mail: ausavasukhi@gmail.com

- 2) นางสาวณัฐริณี ศุภเมธานนท์
 ตำแหน่ง อาจารย์ประจำสาขาวิชาเคมีประยุกต์
 คณะวิทยาศาสตร์และศิลปศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลลีลาภ
 อำเภอเมือง จังหวัดครรราชสีมา 30000
 โทรศัพท์ 081-076-2778 โทรสาร 044-233-072
 E-mail: nsupamathanon@gmail.com

3) นางสาวสุควร์ตัน สมบัติศรี

ตำแหน่ง อาจารย์ประจำสาขาวิชาเคมีประยุกต์

คณะวิทยาศาสตร์และศิลปศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน

อำเภอเมือง จังหวัดนครราชสีมา 30000

โทรศัพท์: 081-048-0882 โทรสาร 044-233-072

E-mail: ssombatsri@hotmail.com

เอกสารประกอบการดำเนินโครงการ

หลักสูตรการอบรมเชิงปฏิบัติการการนำบันทึกจากการข้อมูลผ้าโดยใช้แร่ดินในประเทศไทย

บทที่ 3

ผลการดำเนินโครงการ

ผลการดำเนินโครงการ

ผลการดำเนินโครงการการนำบัณฑิตที่จากการย้อมผ้าในชุมชนผู้ผลิตผ้าไหมอำเภอปึกชงชัย ด้วยกระบวนการคุณภาพโดยใช้คิดจากอภิภากด้วยชัยและอภิภากด้วยพิมาย ประกอบด้วย

ตอนที่ 1 การประสานงานกับกลุ่มชุมชนผู้ผลิตผ้าไหมอำเภอปึกชงชัย

คณะผู้วิจัยเข้าร่วมประชุมกับกลุ่มชุมชนผู้ผลิตผ้าไหมอำเภอปึกชงชัย จังหวัดนราธิวาสที่ร้านมชชาดาไหมไทย ซึ่งมีคุณอาทิตยา ศิริมชชาดาภุกุล เป็นเจ้าของร้าน และประธานกลุ่มไหมทอมีอปึกชงชัย และคุณพิเชษฐ์ คงชูน สมาชิกสภากเทศบาลเมืองเมืองปึก (ภาพที่ 3.1)

ภาพที่ 3.1 คณะผู้วิจัยร่วมประชุมกับผู้ประกอบการผู้ผลิตผ้าไหม

ภายหลังจากการร่วมประชุมเพื่อขี้แจงการดำเนินงาน คณะผู้วิจัยได้เก็บตัวอย่างน้ำทึ้งจากกระบวนการย้อมผ้าที่ร้านต่างๆ และเลือกร้านคุณภาพดี ซึ่งตั้งอยู่ที่เลขที่ 244/4 หมู่ 12 ถนนประชาธิค ตำบลเมืองปึก อำเภอปึกชงชัย จังหวัดนราธิวาส 30150 (ภาพที่ 3.2) เป็นสถานที่ทดลองการนำบัณฑิตที่จากการย้อมผ้า

ภาพที่ 3.2 ผู้ร่วมวิจัยเข้าเยี่ยมชมร้านคัญชาติก

กระบวนการทำผ้าบานาติกของร้านคัญชาติกสามารถทำได้โดยการเย็บนลวดลายด้วยไบบันผ้าซึ่งถูกปักตรึง (ภาพที่ 3.3)

ภาพที่ 3.3 ผู้ประกอบการสาขิตการเบี่ยนลวดลายบนผ้า

หลังจากนั้นจะนำผ้าที่เบี่ยนลวดลายเสร็จแล้วเข้าสู่หม้อย้อมที่มีการเติมสารเคมีสำหรับการย้อมผ้า (ภาพที่ 3.4) ซึ่งลักษณะจะมีความเข้มข้นในช่วง 10 - 50 กรัมต่อลิตร ($10,000 - 50,000$ มิลลิกรัมต่อลิตร)

ภาพที่ 3.4 กระบวนการย้อมผ้าของร้านคุณบาติก

ภายหลังจากการย้อมผ้าแล้วเสร็จ ไขที่ใช้ในการเขียนลวดลายของผ้าไหมจะถูกแยกออกเพื่อนำกลับไปใช้ใหม่ (**ภาพที่ 3.5**)

ภาพที่ 3.5 ไขที่ใช้เขียนลวดลายบนผ้าถูกแยกออกเพื่อนำกลับมาใช้ใหม่

ในขณะที่น้ำทึ่งจากการกระบวนการย้อมผ้าจะถูกเททิ้งลงที่พื้น (**ภาพที่ 3.6**) ก่อนที่จะไหลลงสู่ทางน้ำสาธารณะต่อไป (**ภาพที่ 3.7**)

ภาพที่ 3.6 น้ำทึ่งจากการกระบวนการย้อมผ้าถูกเททิ้งลงบนพื้น

ภาพที่ 3.7 น้ำทึบจากการกระบวนการย้อมผ้าให้ลดลงสู่ทางน้ำสาธารณะ

ตอนที่ 2 การทดสอบบำบัดน้ำทึบจากการย้อมผ้าในห้องปฏิบัติการ

ก่อนทำการถ่ายทอดเทคโนโลยีการบำบัดน้ำทึบจากการย้อมผ้าในชุมชนผู้ผลิตผ้า ใหม่ำเกอปึก ลงชี้ด้วยกระบวนการคุณภาพโดยใช้คินจากอีเกอ โซคชั่นและอีเกอพิมาย คณะผู้วิจัยได้เก็บน้ำตัวอย่าง จากร้านค้ายาติก และนำมาทดสอบในห้องปฏิบัติการ

จากการศึกษาน้ำทึบจากการกระบวนการย้อมผ้าร้านค้ายาติก พบว่าความเข้มข้นของสีย้อมมีค่าสูง กระบวนการคุณภาพเพียงอย่างเดียวไม่สามารถบำบัดน้ำทึบจากการกระบวนการย้อมผ้าได้อย่างมีประสิทธิภาพ จึงได้เพิ่มกระบวนการออกซิเดชันเพื่อเพิ่มประสิทธิภาพในการบำบัดน้ำทึบจากการกระบวนการย้อมผ้า และใช้เวลาในการบำบัดน้ำทึบที่ลดลง ซึ่งเป็นอีกทางเลือกหนึ่งของการแก้ไขปัญหา น้ำทึบจากการกระบวนการย้อมผ้า โดยขั้นตอนที่เหมาะสมสมำหันบำบัดน้ำทึบจากการกระบวนการย้อมผ้าคือ ปรับสภาพให้น้ำทึบมีค่าพีอีชประมาณ 3 และตกลตะกอนแยกชั้น โปรตีนออกจากน้ำเสีย จากนั้นบำบัด โดยวิธีการคุณภาพร่วมกับการเร่งปฏิกริยาออกซิเดชัน ซึ่งเป็นผลให้น้ำทึบจากการกระบวนการย้อมผ้ามีค่า ความชุ่นที่ลดลง และค่าการละลายน้ำของออกซิเจนที่เพิ่มขึ้น และขั้นตอนสุดท้ายเป็นการปรับพีอีชให้มีค่า เหมาะสมก่อนปล่อยลงสู่แหล่งน้ำสาธารณะต่อไป

ตอนที่ 3 การติดตั้งเทคโนโลยีการบำบัดน้ำทิ้งจากการย้อมผ้าที่ร้านคุณนาติก

ภาพที่ 3.8 คณะผู้วิจัยอธิบายขั้นตอนการบำบัดน้ำทิ้งจากการย้อมผ้าให้ผู้ประกอบการร้านคุณนาติก

ภาพที่ 3.9 คณะผู้วิจัยอธิบายขั้นตอนการปรับพีอิเชของน้ำทิ้งให้มีค่าประมาณ 5-7

ภาพที่ 3.10 คณะผู้วิจัยสาขาวิชตวิธีการเติมแร่ดินที่มีเหล็กเป็นส่วนประกอบ

ภาพที่ 3.11 คณะผู้วิจัยสาขาวิชตวิธีการเติมไฮโดรเจนเปอร์อ๊อกไซด์และการปั่นกวาน

ภาพที่ 3.12 คันจะจัดแน่น้ำช่วงเวลาที่เหมาะสมสำหรับการบำบัดน้ำทึ่งจากการระบายน้ำ

(๗)

(๖)

ภาพที่ 3.13 เปรียบเทียบน้ำทึ้งจากการกระบวนการย้อมผ้า (ก) ก่อนการบำบัด และ (ข) หลังการบำบัด

ภาพที่ 3.14 น้ำทึ้งจากการกระบวนการย้อมผ้าหลังการบำบัดดูကน้ำไปทิ้งที่บ่อพัก

ภาพที่ 3.15 คณะวิทยากรจากสาขาวิชาเคมีประยุกต์ถ่ายรูปร่วมกับผู้ประกอบการร้านคุณนาติก

ตอนที่ 4 การถ่ายทอดเทคโนโลยีการบำบัดน้ำทิ้งจากการย้อมผ้าให้กับชุมชนผู้ผลิตผ้าใหม่เจ้าปีก ชังชั้ง

ภายหลังจากที่คณะผู้วิจัยได้ติดตั้งระบบบำบัดน้ำทิ้งจากการย้อมผ้าให้กับร้านคุณนาติก คณะผู้วิจัยได้ประสานงานกับคุณอาทิตยา สิริมัชชาดาภุญ ประธานกลุ่มผ้าใหม่ทอมนีอ และคุณพิเชษฐ์ คงชูน เลขานิการกลุ่มฯ และสมาชิกสภากเทศบาลเมืองบึง เพื่อถ่ายทอดเทคโนโลยีให้กับผู้ประกอบการรายอื่นๆ โดยคณะวิจัยสาขาวิชาเคมีประยุกต์ ประกอบด้วย ผศ.ดร.รัชนีวรรณ การคำ, ดร.ณัฐริณี ศุภเมธานนท์, ดร.อาทิตย์ อัศวสุข, ดร.อรีพร อ่อนตาม, อาจารย์สุくだารัตน์ สมบัติศรี, อาจารย์ธิดารัตน์ กุณวงศ์ และอาจารย์ชัยยศ จันทร์แก้ว พร้อมด้วยนักศึกษาสาขาวิชาเคมีประยุกต์จำนวน 6 คน ได้ทำการถ่ายทอดเทคโนโลยีการบำบัดน้ำทิ้งจากการย้อมผ้า ณ ร้าน “มัชชาดาใหม่ไทย” ตำบลนกออก อําเภอปีก ชังชั้ง จังหวัดนราธิวาส พร้อมกันนี้ รศ.ดร.สันน์ การคำ คณบดีคณะวิทยาศาสตร์และศิลปศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ได้ให้เกียรติเป็นประธานในการมอบประกาศนียบัตรให้กับผู้เข้ารับการฝึกอบรม

ภาพที่ 3.16 ผู้เข้ารับการฝึกอบรมลงทะเบียน

ภาพที่ 3.17 คุณอาทิตยา สิริมัชชาดาภุล เจ้าของร้านมัชชาดาใหม่ไทยกล่าวให้การต้อนรับคณะผู้วิจัย

ภาพที่ 3.18 คณะผู้วิจัยถ่ายทอดเทคโนโลยีให้กับผู้เข้ารับการฝึกอบรม

ภาพที่ 3.19 ผู้เข้ารับการฝึกอบรมสังเกตความชุ่นที่ลดลงของสีข้อมภายในหลังจากการบำบัด

ภาพที่ 3.20 คุณจิตรลดา เนียมจะ ไป ตัวแทนจากร้านคัญหาติกซึ่งได้รับคิดตั้งเทคโนโลยีการบำบัดน้ำทึ้งจากการข้อมูลกล่าวขوبคุณคณะผู้วิจัยและกล่าวขึ้นยันถึงประสิทธิภาพการบำบัดน้ำทึ้ง

ภาพที่ 3.21 คณะผู้บริหารรับฟังข้อคิดเห็นจากผู้เข้ารับการฝึกอบรม

ภาพที่ 3.22 รศ.ดร.สันนั่น การค้า คณบดีคณะวิทยาศาสตร์และศิลปศาสตร์เป็นประธานมอบประกาศนียบัตรให้แก่ผู้เข้ารับการฝึกอบรม

ภาพที่ 3.23 ผู้บริหาร คณะผู้วิจัย และผู้เข้ารับการฝึกอบรมถ่ายภาพร่วมกัน

ตารางที่ 3.1 รายชื่อผู้เข้ารับบริการพร้อมสถานที่ติดต่อและหมายเลขโทรศัพท์

ลำดับ	รายชื่อ	สถานที่ติดต่อ	หมายเลขโทรศัพท์
1	คุณจิตรลดา เนียมจะ โปะ (ร้านคัญนาติก)	244/4 หมู่ 12 ต.เมืองปัก อ.ปัก ชัย จ.นครราชสีมา	083-934-7361
2	คุณจุรีพร ฝ่ายนิมพลี (ร้านจุรีพร ใหม่ไทย)	16 หมู่ 10 ต.วัว อ.ปักชัย จ. นครราชสีมา	081-877-7804
3	คุณแనลี่ม เกตุตระกุ	34 หมู่ 7 ต.ตะคุ อ.ปักชัย จ. นครราชสีมา	080-484-5107
4	คุณชญานันท์ โภลดสัมพร (ร้านชญานันท์ใหม่ไทย)	143/6 หมู่ 7 ต.ตะคุ อ.ปักชัย จ.นครราชสีมา	086-248-9563
5	คุณชุมพนุท คงชูบ (ร้านปักชัยโภมชิลค์)	269 หมู่ 12 ต.เมืองปัก อ.ปัก ชัย จ.นครราชสีมา	081-837-4674
6	คุณชัยรัตน์ สินจะ โปะ	88 หมู่ 9 ต.โคงไทย อ.ปัก ชัย จ.นครราชสีมา	081-075-4871
7	คุณชัยวัฒน์ ศศิสุริยาภูมิ (หจก.วรรณวัฒน์ใหม่ไทย)	345 หมู่ 12 ต.เมืองปัก อ.ปัก ชัย จ.นครราชสีมา	081-879-1018
8	คุณชุลีกร ศักดิ์ (หจก.เมฆใหม่ไทย)	547 หมู่ 10 อ.ปักชัย จ. นครราชสีมา	087-654-4792
9	คุณทัศนีย์ สิทธิสม (ราตรีใหม่ไทย)	244/4 หมู่ 12 ต.เมืองปัก อ.ปัก ชัย จ.นครราชสีมา	087-247-9130
10	คุณชนวัฒน์ เจริญธรรมะ (ร้านต้อยใหม่ไทย)	22 หมู่ 6 ต.เมืองปัก อ.ปัก ชัย จ.นครราชสีมา	084-476-2058
11	คุณธีรยุทธ คุ่มดอน	227 หมู่ 6 ต.เมืองปัก อ.ปัก ชัย จ.นครราชสีมา	081-076-2533
12	คุณผ่อง การะเกย	9 หมู่ 9 ต.โคงไทย อ.ปักชัย จ.นครราชสีมา	086-249-5238
13	คุณพรวิภา หาญณรงค์	145 หมู่ 2 ต.เมืองปัก อ.ปัก ชัย จ.นครราชสีมา	044-283-750
14	คุณเพียง ป้าดอน	178/1 หมู่ 6 ต.เมืองปัก อ.ปัก ชัย จ.นครราชสีมา	086-251-7889

15	คุณยุพา แพ่งประเสริฐ (ศูนย์พัฒนาภูมิปัญญาอาชีพปักธงชัย)	64 ม.1 ต.ธงชัยเหนือ อ.ปึก ธงชัย จ.นครราชสีมา	081-725-4191
16	คุณรุ่งตะวัน สุขใหม่	92/1 ม.15 ต.ตะคุ อ.ปักธงชัย จ.นครราชสีมา	081-976-7267
17	คุณรุ่งนภา พงศ์พาสุก	82 ม.15 ต.ตะคุ อ.ปักธงชัย จ.นครราชสีมา	083-129-8776
18	คุณวารีย์ งามชงไชย (กลุ่มไฟมทองสุรนารี)	189/5 ม.2 ต.เมืองปึก อ.ปึก ธงชัย จ.นครราชสีมา	087-825-0552
19	คุณ瓦สินี ชมอินทร์ (ร้านน้อยไฟมแก้ว)	179/12-13 ม.13 ต.เมืองปึก อ.ปักธงชัย จ.นครราชสีมา	081-789-4227
20	คุณวิเชียร อินทวงศ์ (กลุ่มผู้ผลิตผ้าไหมมีบ้านจะไป)	53 ม.2 ต.เมืองปึก อ.ปึก ธงชัย จ.นครราชสีมา	084-930-8882
21	คุณวิໄด สะเดิงดอน	232 ม.12 ต.เมืองปึก อ.ปึก ธงชัย จ.นครราชสีมา	085-403-2447
22	คุณสำราวย บุญมา	95 ม.6 ต.เมืองปึก อ.ปึก ธงชัย จ.นครราชสีมา	081-877-9425
23	คุณสุจิตรา ทีบสารน้อย ¹ (ร้านสำเนียงใหม่ไทย)	258 ม.7 ต.ตะคุ อ.ปักธงชัย จ.นครราชสีมา	086-727-7755
24	คุณสุนีย์ อินทรรณรงค์	237/1 ม.12 ต.เมืองปึก อ.ปึก ธงชัย จ.นครราชสีมา	081-185-9819
25	คุณหมาย ² (ร้านเกสรใหม่ไทย)	95 ม.9 ต.เมืองปึก อ.ปึก ธงชัย จ.นครราชสีมา	088-367-9149
26	คุณอัจฉราพรรณ ไรร	234 ม.7 ต.ตะคุ อ.ปักธงชัย จ.นครราชสีมา	082-148-6836

จากการจัดโครงการการนำบัณฑิตที่จากการเข้มผ้าในชุมชนผู้ผลิตผ้าไหมอำเภอปักธงชัยด้วยกระบวนการคุณภาพโดยใช้คิดนจากอาเภอโซคชัยและอำเภอพิมาย โดยมีการบรรยายทั้งในภาคทฤษฎี และการลงมือปฏิบัติจริงในภาคปฏิบัติ ซึ่งได้รับความร่วมมือจากคณาจารย์และเจ้าหน้าที่ในสาขาวิชาเคมี ประยุกต์ และมีผู้เข้าร่วมโครงการรวมทั้งสิ้น 26 คน ซึ่งผู้เข้าร่วมโครงการคือผู้ประกอบการในชุมชนผู้ผลิตผ้าไหมอำเภอปักธงชัย การจัดโครงการฯ บรรลุวัตถุประสงค์ของโครงการทุกประการ นั่นคือ สามารถถ่ายทอดเทคโนโลยีการนำบัณฑิตที่จากการเข้มผ้าแก่ชุมชนผู้ผลิตผ้าไหมอำเภอปักธงชัยโดยใช้

กระบวนการคุดซับด้วยดินจากอำเภอโขศัยและอำเภอพิมาย สามารถนำดันน้ำทิ้งให้มีค่าซีไอดี และค่าความชุ่นอยู่ในเกณฑ์มาตรฐานน้ำทิ้ง โรงงานอุตสาหกรรม (ค่าซีไอดีไม่เกิน 120 มิลลิกรัมต่อลิตร ค่าความชุ่นไม่เกิน 50 JTU) สามารถส่งเสริมการพัฒนาคุณภาพชีวิตของคนในชุมชน สามารถสร้างการมีส่วนร่วมของคนในชุมชน และบุคคลากรจากมหาวิทยาลัยเทคโนโลยีราชมงคลอีสานที่มีจิตอาสาพัฒนาท้องถิ่นและชุมชนบ้านเกิด และสามารถประชาสัมพันธ์สาขาวิชาเคมีประยุกต์ คณะวิทยาศาสตร์และศิลปศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน

บทที่ 4

สรุปผลและข้อเสนอแนะ

สรุปผล

การดำเนินโครงการและผลการประเมินในภาพรวมของโครงการการถ่ายทอดเทคโนโลยีการนำบัดน้ำทึบจากการย้อมผ้าในชุมชนผู้ผลิตผ้า ใหม่ อำเภอปึกบึง ชัยภูมิ กระบวนการคุณภาพ โดยใช้คินจาก อำเภอโชคชัย และอำเภอพิมาย สามารถสรุปผลได้ดังตารางต่อไปนี้

ตารางที่ 4.1 แสดงผลการดำเนินโครงการ

ตัวชี้วัด	หน่วยนับ	แผน	ผล
เชิงปริมาณ :			
- จำนวนคนเข้าร่วมโครงการ	คน	30	26
- จำนวนเครือข่ายความร่วมมือทางวิชาการ	เครือข่าย	1	1
- จำนวนกิจกรรมการให้บริการวิชาการ	กิจกรรม	1	1
เชิงคุณภาพ :			
- ร้อยละความพึงพอใจของผู้รับบริการในกระบวนการให้บริการ	ร้อยละ	80	91.60
- ร้อยละการนำความรู้ไปใช้ประโยชน์	ร้อยละ	30	66.67

หมายเหตุ

ร้อยละการนำความรู้ไปใช้ประโยชน์คิดเป็นร้อยละ 66.67 ของผู้ตอบแบบประเมิน หรือร้อยละ 38.46 ของผู้เข้าร่วมโครงการ

ข้อเสนอแนะ

- ควรมีงบประมาณสนับสนุนสถานประกอบการที่ต้องการนำเทคโนโลยีที่ได้รับการถ่ายทอดไปใช้ในการทำงาน

องค์ความรู้ที่ได้จากการดำเนินโครงการ

การดำเนินโครงการการถ่ายทอดเทคโนโลยีการนำบัดน้ำทึบจากการย้อมผ้าในชุมชนผู้ผลิตผ้า ใหม่ อำเภอปึกบึง ชัยภูมิ กระบวนการคุณภาพ โดยใช้คินจาก อำเภอโชคชัย และอำเภอพิมาย ผู้รับการถ่ายทอดเทคโนโลยีเห็นประโยชน์ของโครงการ และมีความสนใจที่จะดำเนินโครงการ แม้ว่าการดำเนินโครงการจะมีค่าใช้จ่ายในการดำเนินการนำบัดน้ำทึบจากการย้อมผ้า เพราะผู้ประกอบการใน

ชุมชนต่างประเทศถึงคุณประโยชน์ที่จะได้รับเมื่อสภาพแวดล้อมในชุมชนดีขึ้น ผู้ดำเนินโครงการได้เลือกเทคโนโลยีการนำบัณฑิตที่มีความสามารถด้านการดูแลชุมชนร่วมกับกระบวนการออกซิเดชันโดยใช้แร่ดินซึ่งสามารถหาได้ง่ายภายในประเทศที่ทางสาขาวิชาเคมีประยุกต์ คณะวิทยาศาสตร์และศิลปศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา จ.นนทบุรี ได้พัฒนาขึ้น

นอกจากผู้ดำเนินโครงการจะถ่ายทอดเทคโนโลยีในการนำบัณฑิตที่มีความสามารถด้านการดูแลชุมชน ผู้ผลิตผ้าไหมอาภิภูมิบังชัยแล้ว ผู้ดำเนินการได้ให้ความรู้เกี่ยวกับปัญหาสิ่งแวดล้อม และสร้างจิตสำนึกรักษาสิ่งแวดล้อมอีกด้วย มากไปกว่านั้นผู้ดำเนินโครงการได้แนะนำให้ใช้ประโยชน์จากการอนุรักษ์สิ่งแวดล้อมในการโฆษณาประชาสัมพันธ์ในเรื่อง ผลิตภัณฑ์สีเขียว (Green product) ซึ่งเป็นผลิตภัณฑ์ที่ในขั้นตอนการผลิตจะไม่ทำลายสิ่งแวดล้อม หรือทิ้งของเสียสู่สิ่งแวดล้อม ซึ่งสามารถใช้การตลาดที่เรียกว่า การตลาดสีเขียว (Green marketing) เพื่อส่งเสริมการขายผลิตภัณฑ์ โดยผู้ประกอบการต้องมีจิตสำนึกรักษาสิ่งแวดล้อม ตั้งแต่กระบวนการผลิต ดูแลสภาพแวดล้อมของโรงงานให้สะอาด มีมาตรการกำจัดของเสียจากโรงงานไม่ให้ทำลายสิ่งแวดล้อม

CHARACTERIZATION AND CATALYTIC APPLICATION FOR METHYL ORANGE WET OXIDATION OF IRON-CONTAINING CLAY

Artit Ausavasukhi^{1*}, Janya Mordeewang¹, Sukanya Sae-ngoe¹, Tanyarat Pattanate¹
Tawan Sooknoi²

¹ Program in Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand

² Department of Chemistry, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand

* Author for correspondence; ausavasukhi@gmail.com, Tel. +66 44 233000 ext. 4102, Fax. +66 44 233072

Abstract: Methyl orange decolorization by hydrogen peroxide was performed on local clay catalyst, a composite material that naturally contains crystalline magnetite (Fe_3O_4) and montmorillonite characterized by XRD. Under thermal treatment at 500 °C, the iron-containing clay catalyst was completely transformed into hematite (Fe_2O_3) and illite. Moreover, intensity of the ESR line at $g = 2.3$ which was characteristic of the Fe^{3+} ion in the iron oxide phase (Fe_2O_3) increased significantly. The weak signals were also visible on the ESR spectra which were attributed to Fe^{3+} ions in different coordination environments. From the catalytic results, the iron-containing clay treated at 500 °C provided a good performance toward total methyl orange decolorization (~ 65% decolorization at 50 °C). It is suggested that the dehydroxylation at the clay surface, which occurs by thermal treatment, plays an important role on the catalytic activity. Upon heating, the TGA/DTG profile of the catalyst sample showed the weight-loss at 450-700 °C which denoted the dehydroxylation of iron hydroxide and/or clay layer. Consistently, the FTIR result showed the decrease in O-H vibration at 3600-3200 cm^{-1} and 1630 cm^{-1} . The activate sites, i.e. $FeO(OH)$ -like species, may be generated by reaction of H_2O_2 with Fe species formed by dehydroxylation of Fe_3O_4 in the clay structure.

1. Introduction

In the last decade, several systems based on heterogeneous Fenton-like catalyst (Fe-supported solids), such as iron oxides, zeolites, pillared clays, and alumina, have been investigated for use in environmental remediation processes [1-4]. Using such heterogeneous catalyst avoids the significant disadvantages of homogeneous Fenton: (i) the need for the removal of remaining iron ions after the treatment and (ii) a limited yield of reaction process due to the formation of stable iron-complexes [5-7]. Moreover, the heterogeneous catalyst can also be easily recycled, and all operations in the effluent treatment are significantly simplified if the solid catalyst is easy to handle.

Natural clays locally found in Thailand already contain iron that is present in the form of exchangeable iron cation and/or iron oxide minerals. Such incorporated iron within the clay structure makes them possible as Fenton-type catalyst designed for oxidation

process. We have recently shown that the iron-containing clay is an efficient catalyst in the Fenton oxidation for methyl orange (MO) decolorization [8]. However, the understanding of the altering of iron species and/or phase transformation influenced their catalytic behavior during the reaction and also preparation by thermal treatment is unclear.

Therefore, this research will be studied the nature of the active species in the iron-containing clay catalyst used in the MO decolorization. For that purpose, the characterization of catalysts with various hydrothermal treatment has been undertaken using X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy (Raman), electronspin resonance (ESR), and diffused reflectance-ultraviolet visible spectroscopy (DR-UV).

2. Materials and Methods

2.1 Catalyst preparation

The iron-containing clay sample was obtained from the SCG Chemicals. The sample material was brown color and was used as received. The sample was calcined at 100-700 °C for 5 hours. Hereafter, the catalysts will be designated as FeClay-(Temperature) according to their treatment temperature.

2.2 Catalyst characterization

X-ray fluorescence (XRF) was carried out for determining the elemental composition of the iron-containing clay. Powder X-ray diffraction (XRD) was employed for determining phase formation and crystallographic state. For TGA/DTG, the sample (10-15 mg) was heated from 50 to 900 °C under a flow of N_2 with a heating rate of 10 °C/min. FTIR spectra was acquired in the transmission mode at room temperature over the wavenumber range of 4000-650 cm^{-1} . The FT-Raman spectra was recorded using 1064 nm excitation from a Nd:YAG laser. Two thousand scans were accumulated at 8 cm^{-1} resolution. The UV-vis-diffuse reflectance spectra of the clay samples in the form of self-supporting pellets were recorded with $BaSO_4$ coated integration sphere. The ESR spectra was taken in the X-band at 20 °C and registered at microwave power 1 mW in the field range of 10-810 mT (one scan with a sweep time of 4 min).

2.3 Decolorization of methyl orange

The activity of this catalyst to decolorize methyl orange was tested by varying the parameters such as solution pH, initial concentration of H_2O_2 , reaction time, and temperature [8].

3. Results and Discussion

3.1 Characterization of the iron-containing clay

From XRF result, the parent clay possesses a relatively high wt.% of Fe (~ 10 %), which makes it ideal as Fenton catalyst. The XRD patterns of the parent and the thermally treated iron-containing clay are shown in Figure 1.

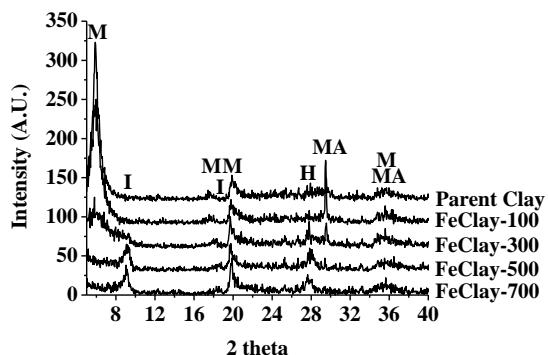


Figure 1. XRD patterns of the treated-clay (M = Montmorillonite, I = Illite, H = Hematite, MA = Magnetite).

The parent clay shows the strong diffraction peaks at 5.9° , 17.6° , 19.9° and 35.6° corresponding to montmorillonite phase [9]. While, the diffraction peaks at 29.5° and 35.6° are assigned to the magnetite (Fe_3O_4 or $FeO\cdot Fe_2O_3$) crystallite [10]. The presence of iron species may include; (i) iron species distributing onto the surface of montmorillonite and/or (ii) iron species present in the interlayer.

After thermal treatment ($> 300^\circ C$), the treated-clay shows the shift peak at 5.9° to 9.1° and peak at 17.6° to 18.3° (lower d-spacing). This is presumably due to a removal of interlayer water molecules as evidenced by TGA/DTG (Figure 2) and FTIR (Figure 3).

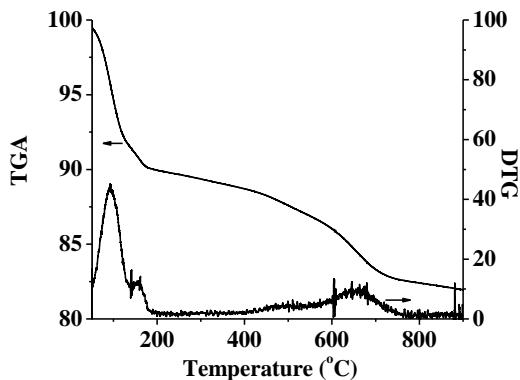


Figure 2. TGA/DTG thermogram of the parent clay.

The peaks at 9.1° and 18.3° indicate the formation of illite [11], as a result of thermal treatment. Moreover, the magnetite structure was altered after thermal treatment ($> 300^\circ C$). The new peak at 27.8° was appeared indicating the formation of hematite (Fe_2O_3) [12]. However, no significant change of XRD pattern can be observed after treating at temperature greater than $500^\circ C$.

The oxidation of iron(II) to iron(III) (particularly iron present in the interlayer) may lead to a change in the total layer charge and consequently d-spacing layer. This result indicates that the oxidation may well promote a phase transformation of both iron species and clay.

From Figure 2, the weight-loss at 60 - $180^\circ C$ which corresponds to desorption of the physisorbed water can be observed [13]. While the weight-loss at 450 - $700^\circ C$ denotes the dehydroxylation of iron hydroxide and/or clay layer [13]. Consistent with the FTIR results (Figure 3) that a decrease in O-H vibration at 3600 - 3200 cm^{-1} and 1630 cm^{-1} can be observed after the thermal treatment.

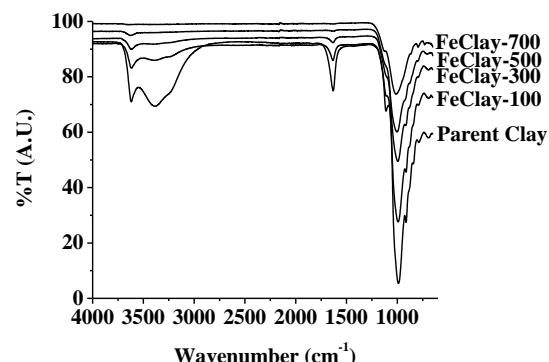


Figure 3. FTIR spectra of the treated-clay.

The formation of Fe_2O_3 after thermal treatment at $500^\circ C$ is further confirmed by the Raman results (Figure 4) showed that the characteristic features around 247 , 293 , 412 , 503 , 613 , and 702 cm^{-1} [14].

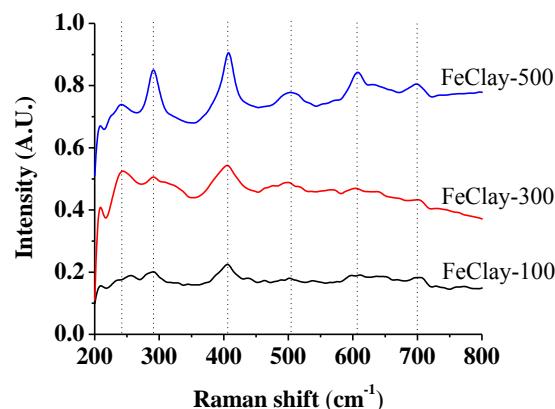
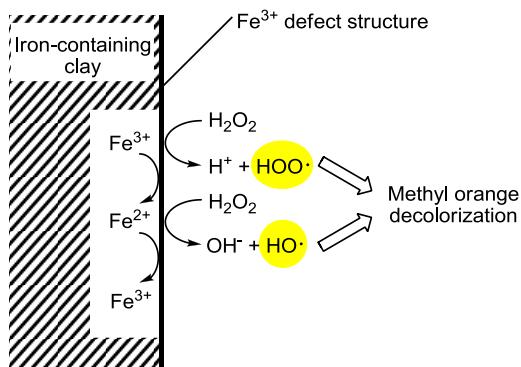



Figure 4. Raman spectra of the treated-clay.

The characteristic peaks at 298 , 319 , 540 , and 668 cm^{-1} corresponding to Fe_3O_4 [14] cannot be observed over FeClay-100, although the XRD of FeClay-100

shows a strong diffraction peak assigned to the Fe_3O_4 (Figure 1). This is presumably because magnetite is easily prone to oxidation when exposed to heating or laser irradiation (from Raman analysis) [15].

In conclusion, the oxidation of iron species and the removal of water molecules by desorption of physisorbed water and dehydroxylation may lead to the phase transformation of the iron-containing clay.

Scheme 1. Catalytic decolorization of the iron-containing clay.

3.2 Catalytic activity for MO decolorization

From Figure 5, it was observed that concentration of MO decreased after the addition of the iron-containing clay, particularly in the reaction with H_2O_2 . This is due to the fact that loading H_2O_2 over the iron-containing catalyst can generate the hydroxyl ($\cdot\text{OH}$) and perhydroxy ($\cdot\text{OOH}$) radicals (Scheme 1). Such radicals can readily decompose the azo dye leading to decolorization of MO. This confirms that the iron-containing clay sample can readily provide the catalytic activity for Fenton-like reactions.

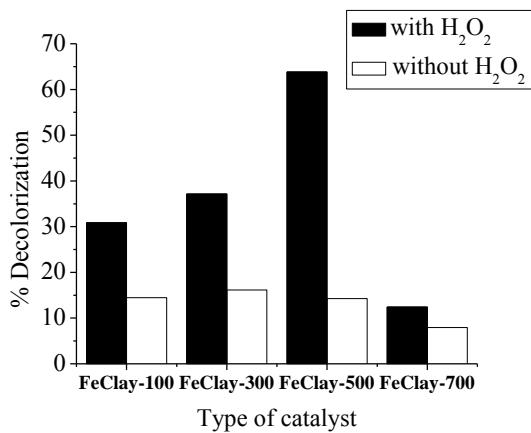


Figure 5. Effect of H_2O_2 on % MO decolorization catalyzed by various treated-clay.

Reaction condition: $[\text{MO}]_0 = 60 \text{ mg/L}$, Catalyst = 50 mg, $[\text{H}_2\text{O}_2]_0 = 0.5 \text{ mL}$, Temperature = 50 °C, pH = 3, Volume of MO = 250 mL, Reaction time = 30 min.

Moreover, it is found that FeClay-500 provides a relative higher % decolorization of MO (Figure 5). It is expected that the formation of active iron species by thermal treatment would play important role for MO

decolorization. In the case of the FeClay-700, MO decolorization decreases with rise in treatment temperature. This is presumably due to the further dehydroxylation of clay under high thermal treatment at 700 °C leading to the loss of surface area of catalyst. This is consistent with the TGA/DTG (Figure 2) and FT-IR results (Figure 3) that show the dehydroxylation of clay layer.

In evaluating the activity of different iron minerals, the efficiency of the catalysts decreased in the sequence magnetite > hematite > goethite [16-17]. One can expect that if the iron species mostly present in iron oxide minerals it will be able to dramatically decolorize MO when using iron-containing clay treated with low temperature (FeClay-100 or FeClay-300). Conversely, the FeClay-500 provides a relative higher % decolorization of MO. It is suggested that the active sites, i.e. $\text{FeO}(\text{OH})$ -like species, may be generated by reaction of H_2O_2 with Fe species formed by dehydroxylation of Fe_3O_4 in the clay structure. The formation of iron active site can be evidenced by ESR (Figure 6) and DR-UV (Figure 7).

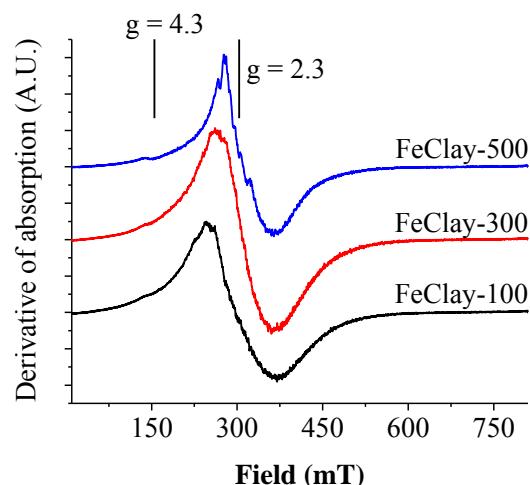


Figure 6. ESR signal of the treated-clay.

Figure 6 reveals the presence of two characteristic Fe^{3+} signals in iron-containing clay to values of $g = 4.3$ and 2.3. The signal at $g = 4.3$ is assigned to the presence of isolated Fe^{3+} [18-21] in tetrahedral or octahedral coordination, which in the case of the clay minerals corresponds to the iron located in the interior of the clay sheets (iron substituting aluminum in the octahedral layers). Therefore, we can suggest that the active iron species partially present in the interlayer of clay (due to the small signal at $g = 4.3$), while mostly present in iron oxide minerals generated by dehydroxylation.

Additionally, the signal at $g = 2.3$ is associated to the presence of clusters of iron [18-20]. Experimentally, the intensity of the ESR line at $g = 2.3$ increased significantly when the parent clay was thermal treatment due to the transformation of Fe_3O_4 to Fe_2O_3 . It is interesting to note that the weak signals were also visible on the ESR spectra which were attributed to Fe^{3+} ions in different coordination

environments (FeClay-500) (Figure 6). This is consistent with the observed the DR-UV spectra recorded for the treated-clay (Figure 7).

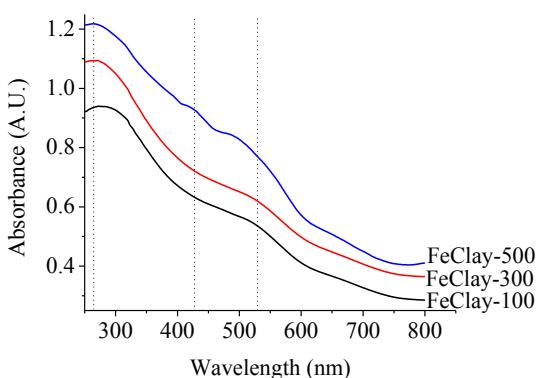


Figure 7. DR-UV spectra of the treated-clay.

In the spectrum of the FeClay-100 and FeClay-300 only two absorption bands are observed at about $\lambda=263$ nm, corresponding to octahedral Fe^{3+} substituting for Al^{3+} [22], and at about $\lambda=525$ nm, corresponding to larger particles of Fe_2O_3 aggregates [23]. Interestingly, the additional signal of the 425 nm band ascribed to the smaller and larger oligomeric octahedrally coordinated Fe^{3+} species [23], can be observed over the FeClay-500. This is the further evidenced supporting the formation of iron active site generated by the dehydroxylation under thermal treatment at 500 °C.

From the above results, it is suggested that the active iron species was successfully generated into surface of the iron-containing clay and was an amorphous after 500 °C treatment. This is consistent with the Zhang's report [24]. The structure of the activate iron species in the montmorillonite was an amorphous $\text{FeO}(\text{OH})$ -like species after calcining at 500 °C. Such iron active species generated by dehydroxylation reaction at high temperature are suggested to play a decisive role on the catalytic activity towards MO decolorization. Moreover, the catalytic behavior of the iron-containing clay is reproducible in consecutive experiments without a remarkable drop in the process efficiency, which indicates the absence of significant deactivation of the catalyst due to small loss of iron.

4. Conclusions

In this research, catalytic activity of the Fenton-like catalyst iron-containing clay towards successful decolorization of MO. Among the iron-containing catalyst, the sample treated at 500 °C was found to provide the highest activity. The formation of such iron active species by dehydroxylation reaction is suggested to play a decisive role on the catalytic activity.

Acknowledgements

This work was financially supported by the Thailand Research Fund (Grant No. MRG-5580065).

References

- [1] J.H. Ramirez, F.J. Maldonado-Hodar, and A.F. Perez-Cadenas, *Appl. Catal. B: Environ.* **75** (2007) 312-323.
- [2] G. Calleja, J.A. Melero, F. Martinez, and R. Molina, *Water Res.* **39** (2005) 1741-1750.
- [3] M. Noorjaha, V.D. Kumari, M. Subrahmanyam, and L. Panda, *Appl. Catal. B: Environ.* **57** (2005) 291-298.
- [4] J. Feng, X. Hu, and P.L. Yue, *Water Res.* **40** (2006) 641-646.
- [5] J. Herney-Ramirez, M.A. Vicente, and L.M. Madeira, *Appl. Catal. B: Environ.* **98** (2010) 10-26.
- [6] M. Neamtu, C. Zaharia, C. Catrinescu, A. Yedile, M. Macoveanu, and A. Kettrup, *Appl. Catal. Environ.* **48** (2004) 287-294.
- [7] E.V. Kuznetsova, E.N. Savinov, L.A. Vostrikova, and V.N. Parmon, *Appl. Catal. B: Environ.* **51** (2004) 165-170.
- [8] <http://paccon2011.swu.ac.th/> (Retrieved December 4, 2012). (J. Deepakwean, W. Kingkan, and A. Ausavasukhi, Decolorization of methyl orange using iron-containing Thai clay)
- [9] M.N. Timofeeva, S.Ts. Khankhasaeva, S.V. Badmaeva, A.L. Chuvilin, E.B. Burgina, A.B. Ayupov, V.N. Panchenko, and A.V. Kulikova, *Appl. Catal. B: Environ.* **59** (2005) 243-248.
- [10] K.C. Kim, E.K. Kim, J.W. Lee, S.L. Maeng, and Y.S. Kim, *Cur. Appl. Phys.* **8** (2008) 758-760.
- [11] R.M. GARRELS, *Clay Clay Miner.* **32** (1984) 161-166.
- [12] A.P. Roberts, Q. Liu, C.J. Rowan, L. Chang, C. Carvallo, J. Torrent, and C.S. Horng, *J. Geophys. Res.* **111** (2006) B12S35 1-16.
- [13] P. Yuan, F.A. Bergaya, Q. Taoa, M. Fan, Z. Liu, J. Zhu, H. He, and T. Chen, *J. Coll. Int. Sci.* **324** (2008) 142-149.
- [14] M.A. Legodi, and D. de Waal, *Dyes Pigments* **74** (2007) 161-168.
- [15] C. Guo, Y. Hu, H. Qian, J. Ning, and S. Xu, *Mater. Charact.* **62** (2011) 148-151.
- [16] R. Matta, K. Hanna, and S. Chiron, *Sci. Total Environ.* **385** (2007) 242-251.
- [17] S. Lee, J. Oh, and Y. Park, *Bull. Korean Chem. Soc.* **27** (2006) 489-494.
- [18] A. Montenero, K. Suzuki, T. Enoki, S. Vittorio, M. Dresselhaus, K. Koga, M. Endo, and N. Shindo, *Synthetic Met.* **55** (1993) 3736.
- [19] A. Kucherov, and M. Shelef, *J. Catal.* **195** (2000) 106.
- [20] D. Loveridge, and S. Parke, *Phys. Chem. Glasses.* **12** (1971) 19.
- [21] E. Gue'lou, J. Barrault, J. Fournier, and J.-M. Tatibouet, *Appl. Catal. B: Environ.* **44** (2003) 1.
- [22] M.N. Timofeeva, S.T. Khankhasaeva, Y.A. Chesalov, S.V. Tsybulya, V.N. Panchenko, and E.T. Dashinamzhilova, *Appl. Catal. B: Environ.* **88** (2009) 127-134.
- [23] S. Caudo, G. Centi, C. Genovese, and S. Perathoner, *Appl. Catal. B: Environ.* **70** (2007) 437-446.
- [24] S. Zhang, S. Liang, X. Wang, J. Long, Z. Li, and L. Wu, *Catal. Today* **175** (2011) 362-369.