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บทที� 1 

บทนํา(Introduction) 

 
ปญัหาอสมการแปรผนัเริ�มศกึษาโดย Stampacchia [1] ซึ�งต่อมาไดม้ผีลกระทบและมอีทิธพิลในการ

พฒันาเกอืบทุกสาขาทั 5งสาขาวทิยาศาสตรบ์รสิุทธิ 8และวทิยาศาสตรป์ระยกุตแ์ละและไดม้กีารศกึษาเรื�อยมา 
ซึ�งทั 5งสาขาต่างๆ ไมว่่าจะเป็นคณติศาสตรแ์ละวทิยาศาสตรไ์ดศ้กึษาปญัหาที�คลา้ยคลงึกนั ซึ�งผลมาจากการ
ทาํงานรว่มกนัระหว่างสาขาต่างๆ ของคณติศาสตรแ์ละวทิยาศาสตรว์ศิวกรรมตอนนี5เรามคีวามหลากหลาย
ของเทคนิคที�จะแนะนําและวเิคราะหข์ั 5นตอนวธิกีารต่างๆ ในการแกป้ญัหาอสมการแปรผนัทั �วไป และการ
เพิ�มประสทิธภิาพที�เกี�ยวขอ้ง  

ต่อมาเราไดศ้กึษาว่าปญัหาอสมการแปรผนัและปญัหาจุดตรงึรว่มกนั อยา่งไรกต็ามงานวจิยัหลายๆ 
ชิ5นในทางนี5ไดศ้กึษาภายใตเ้งื�อนไขของเซตที�เป็นเซตคอนเวกซ ์(Convex set) ซึ�งผลลพัธท์ี�ไดน้ั 5นอาจไม่จรงิ
หรอืไมส่ามารถนําไปประยกุตใ์ชบ้นเซตไมค่อนเวกซ ์(nonconvex set) โดย Noor [4] ไดเ้ริ�มตน้ศกึษาคลาส
ของปญัหาอสมการแปรผนั ซึ�งเราเรยีกว่า อสมการแปรผนัไมค่อนเวกซท์ั �วไป (general nonconvex 
variational inequality) บนเซต uniformly prox-regular ซึ�งเซตนี5เป็นเซตไมค่อนเวกซ ์และมเีซตคอนเวกซ์
เป็นกรณหีนึ�งของมนั ศกึษาเพิ�มเตมิไดใ้น [5,6,7] โดยอาศยั projection operator, Noor [8] ไดศ้กึษาการสม
นยัระหว่างอสมการแปรผนัไมค่อนเวกซท์ั �วไปกบัปญัหาจดุตรงึ  

สาํหรบังานวจิยันี5จะไดอ้ธบิายลกัษณะของ projection operator สาํหรบั เซต prox-regular และจะ
อาศยัลกัษณะดงักล่าวสรา้งกระบวนการทาํซํ5าแลว้แสดงการหาผลเฉลยของอสมการแปรผนัไมค่อนเวกซ์
ทั �วไปและปญัหาจดุตรงึของฟงักช์นั Lipschitz continuous  

ในปี 2011, I. Inchan และ N. Petrot [31], ให ้ HHgggTTT →:,,,,, 321321  be การส่งไมเ่ชงิ
เสน้ C เป็นคอนเวกซส์บัเซตของ H และ 321 ,, rrr  เป็นจาํนวนจรงิบวก   the system of general 

variational inequalities involving three different nonlinear operators สาํหรบั 321 ,, rrr  กําหนด
โดย สามารถหา HHHzyx ××∈*)*,*,(  ซึ�ง 
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จาก (1) จะเหน็ว่าปญัหา (4) สมนยักบั: 
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ซึ�ง 3,2,1 , )( =⊂ iHgC i  แลว้ลาํดบั }{ nx , }{ ny , and }{ nz  generated by (5) ลู่เขา้อยา่งเขม้ไปยงั 
**,*, zyx  ตามลาํดบั ซึ�ง *)*,*,( zyx  เป็นผลเฉลยของ system of general variational inequalities 

involving three different nonlinear operators (4) 
ต่อมา Noor [32] ใชเ้ทคนิคของกระบวนการทํ5าสามขั 5นตอนเพื�อหาผลเฉลยของ general 

nonconvex variational inequalities 
ให ้C เป็นเซตปิดที�ไมเ่ป็นเซตว่างและเป็นสบัเซตของ H  proximal normal cone ของ C ที� 

Hu∈ กําหนดโดย 
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rCvgHvugvgugvgTu ∈∈∀≥−+− )(:,0)()()()(,
2

γρ     (6) 
ซึ�งจะเรยีกว่า general nonconvex variational inequality  ไดนํ้าเสนอและศกึษาโดย Noor [23] เมื�อ 

0>γ  และ 0>ρ  เป็นค่าคงที� ซึ�งถา้ CCr ≡  เป็นคอนเวกซส์บัเซตของ H แลว้ปญัหา (6) สมนัยกบั (3) 
สาํหรบั rCugHu ∈∈ )(:  เป็นผลเฉลยของ general nonconvex variational inequality (6) กต่็อเมื�อ 
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  ],)([)( TuugPug ρ−=

Cr
     (7) 

เมื�อ 
rCP เป็น projection ของ H ไปทั �วถงึ uniformly Prox-regular set C

r
 แลว้ไดแ้สดงการลู่เขา้ของ

กระบวนการทาํซํ5าสามขั 5นตอนเพื�อหาผลเฉลยของ general nonconvex variational inequalities สาํหรบั
การส่งแบบ strongly monotone and Lipschitz continuous สาํหรบั Hu ∈0  สามารถสรา้ง 1+nu  โดย  
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เมื�อ 0>ρ  และ 0>γ  เป็นค่าคงที� แลว้ }{ nu  ลู่เขา้ไปยงั Hu∈  
จากการศกึษา (4) และ (8) จะไดว้่างานวจิยันี5จะไดศ้กึษา HHgggT →:,,, 321  เป็นการส่งไมเ่ชงิ

เสน้ และกําหนด the system of general nonconvex variational inequalities involving three 
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เมื�อ 0>ρ  และ 0>γ  โดยใช ้ (7) จะไดว้่า (9) สมนยักบั  
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เมื�อ  0>ρ  และ 0>γ  เป็นค่าคงที� และจาก (7) เราจะไดว้่า 
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*)*,*,( zyx  เป็นผลเฉลยของ system of general nonconvex variational inequalities involving three 

different nonlinear operators (9). 
 

 

 

 

 

 

 

 



บทที่ 2
Preliminaries

In this chapter, we give some defnitions, notations, and some useful results that will be used in
the later chapters.

2.1 Useful lemmas.

Lemma 2.1.1. [21] Let T : C → C be a k-strictly pseudo-contraction. Defined Sλ : C → C by
Sλx = λx + (1 − λ)Tx for each x ∈ C. Then, as λ ∈ [k, 1], Sλ is nonexpansive mapping and
F (T ) = F (Sλ).

Lemma 2.1.2. In a real Hilbert space H, there holds the inequality

1. ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 x, y ∈ H and ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2,

2. ‖tx + (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2,∀t ∈ [0, 1].

Definition 2.1.3. [1] Let C be nonempty convex subset of real Banach space. Let {Ti}N
i=1 be a

finite family of ki-strictly pseudo-contractive mapping of C into itself. For each j = 1, 2, . . . , N , let
αj = (αj

1, α
j
2, α

j
3) ∈ I × I × I where αj

1, α
j
2, α

j
3 ∈ I ≡ [0, 1] and αj

1 + αj
2 + αj

3 = 1. We define the
mapping S : C → C as follows:

U0 = I

U1 = α1
1T1U0 + α1

2U0 + α1
3I

U2 = α2
1T2U1 + α2

2U1 + α2
3I

U3 = α3
1T3U2 + α3

2U2 + α3
3I

...

UN−1 = αN−1
1 TN−1UN−2 + αN−1

2 UN−2 + αN−1
3 I

S = UN = αN
1 TNUN−1 + αN

2 UN−1 + αN
3 I.

This mapping is called S −mapping generated by T1, . . . , TN and α1, α2, . . . , αN .

Lemma 2.1.4. [10] Let C be a nonempty closed convex subset of a real Hilbert space H and S : C → C

be a self-mapping of C. If S is a k-strict pseudo-contraction mapping, then S satisfies the Lipschitz
condition

‖Sx − Sy‖ ≤ 1+k
1−k‖x− y‖, ∀x, y ∈ C.

Lemma 2.1.5. [20] Let {sn} be a sequence of nonnegative real number satisfying

sn+1 = (1− αn)sn + δn + ηn, ∀n ≥ 0

where {αn} is a sequence in (0, 1) and {δn} is a sequence such that
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1.
∑∞

n=1 αn = ∞,

2. lim supn→∞
δn
αn

≤ 0 or
∑∞

n=1 |δn| < ∞,

3.
∑∞

n=1 |ηn| < ∞.

Then limn−→∞ αn = 0.

Lemma 2.1.6. Let H be a real Hilbert space. There hold the following identities

1. ‖x + y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2 and ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2

2. ‖
∑m

i=0 αixi‖2 =
∑m

i=0 αi‖xi‖2 −
∑m

i=0 αiαj‖xi − xj‖2 for
∑m

i=0 αi = 1, αi ∈ [0, 1],

∀i ∈ {0, 1, 2, . . . ,m}.

Lemma 2.1.7. [1] Let C be a nonempty closed convex subset of real Hilbert space. Let {Ti}N
i=1

be a finite family of ki-strictly pseudo-contractive mapping of C into C with
⋂N

i=1 F (Ti) 6= ∅ and
k = max{ki : i = 1, 2, . . . , N} and let αj = (αj

1, α
j
2, α

j
3) ∈ I × I × I, j = 1, 2, 3, . . . , N, where

I = [0, 1], αj
1+αj

2+αj
3 = 1, αj

1, α
j
3 ∈ (k, 1) for all j = 1, 2, . . . , N−1 and αN

1 ∈ (k, 1], αN
3 ∈ (k, 1], αj

2 ∈
(k, 1] for all j = 1, 2, . . . , N. Let S be the mapping generated by T1, . . . , TN and α1, α2, . . . , αN . Then
F (S) =

⋂N
i=1 F (Ti) and S is a nonexpansive mapping.

Lemma 2.1.8. [19] A real Hilbert space H satisfies Opial’s condition, i.e, for any sequence {xn} ⊂ H

with xn ⇀ x, the inequality
lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖,

holds for each y ∈ H with x 6= y.

Lemma 2.1.9. [18] Let C be a nonempty closed convex subset of a real Hilbert and T : C −→ C

be a nonexpansive mapping. Then T is demi-closed on C,i.e.,if xn ⇀ x ∈ C and xn − Txn −→
0, then x = Tx.

2.2 Nonconvex Variational

Let C be a closed subset of a real Hilbert space H with inner product 〈·, ·〉 and norm ‖ · ‖
respectively. Let us recall the following well-known definitions and some auxiliary results of nonlinear
convex analysis and nonsmooth analysis.

Definition 2.2.1. Let u ∈ H be a point not lying in C. A point v ∈ C is called a closest point or a
projection of u onto C if dC(u) = ‖u − v‖ when dC is a usual distance. The set of all such closest
points is denoted by PC(u); that is,

PC(u) = {v ∈ C : dC(u) = ‖u− v‖}. (2.2.1)

Definition 2.2.2. Let C be a subset of H . The proximal normal cone to C at x is given by

NP
C (x) = {z ∈ H : ∃ρ > 0;x ∈ PC(x + ρz)}. (2.2.2)
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The following characterization of NP
C (x) can be found in [43].

Lemma 2.2.3. Let C be a closed subset of a Hilbert space H . Then

z ∈ NP
C (x) if and only if ∃σ > 0, 〈z, y − x〉 ≤ σ‖y − x‖2, ∀y ∈ C. (2.2.3)

Clark et al. [44] and Poliquin et al. [38] have introduced and atudied a new class of nonconvex
sets, which are called uniformly prox-regular sets. This class or uniformly prox-regular sets has
played an important part in many nonconvex applications such as optimization, dynamic systems, and
differential inclusions.

Definition 2.2.4. For a given r ∈ (0,+∞], a subset C of H is said to be uniformly prox-regular with
respect to r if, for all x ∈ C and for all 0 6= z ∈ NP

C (x), one has

〈 z

‖z‖
, x− x〉 ≤ 1

2r
‖x− x‖2, ∀x ∈ C. (2.2.4)

It is well known that a closed subset of a Hilbert space is convex if and only if it is proximally
smooth of radius r > 0. Thus, in Definition 2.2.4, in the case of r = ∞, the uniform r-prox-regularity
C is equivalent to convexity of C. Then, it is clear that the class of uniformly prox-regular sets is
sufficiently large to include the class p-convex sets, C1,1 submanifolds (possibly with boundary) of H ,
the images under a C1,1 diffeomorphism of convex sets, and many other nonconvex sets; see [44, 38].

Lemma 2.2.5. [39] Let C be a nonempty closed subset of H , r ∈ (0,+∞] and set Cr; = {x ∈ H :

d(x,C) < r}. If C is uniform r-uniformly prox-regular, then the following hold:

(1) for all x ∈ Cr, PC(x) 6= ∅,

(2) for all s ∈ (0, r), PC is Lipschitz continuous with constant ts = r
r−s on Cs,

(3) the proximal normal cone is closed as a set-valued mapping.

Let C be a closed subset of a real Hilbert space H . A mapping T : C → H is called γ−strongly

monotone if there exists a constant γ > 0 such that

〈Tx− Ty, x− y〉 ≥ γ‖x− y‖2, (2.2.5)

for all x, y ∈ C. A mapping T is called µ− Lipschitz if there exists a constant µ > 0 such that

‖Tx− Ty‖ ≤ µ‖x− y‖, (2.2.6)

for all x, y ∈ C.

Lemma 2.2.6. In a real Hilbert space H, there holds the inequality

1. ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 x, y ∈ H and ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2,

2. ‖tx + (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2,∀t ∈ [0, 1].



บทที่ 3
Main Results

3.1 A general hierarchical problem

In this section, we introduced the iterative scheme for finite family of k-strictly pseudo-contractive
mappings. Then we prove strong convergence of algorithm (1.6) and solving a common solution of a
general hierarchical problem and fixed point problems of finite family of k-strictly pseudo-contractive
mappings.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be a
nonempty closed convex subset of H . The hierarchical problem is of finding x̃ ∈ Fix(T ) such that

〈Sx̃− x̃, x− x̃〉 ≤ 0, ∀x ∈ Fix(T ), (3.1.1)

where S, T are two nonexpansive mappings and Fix(T ) is the set of fixed points of T . Recently, this
problem has been studied by many authors (see,[2]-[17]). Now, we briefly recall some historic
results which relate to the problem (3.1.1). For solving the problem (3.1.1), in 2006, Moudafi
and Mainge [4] first introduced an implicit iterative algorithm:

xt,s = sQ(xt,s) + (1− s)[tS(xt,s) + (1− t)T (xt,s)] (3.1.2)

and proved that the net {xt,s} defined by (1.2) strongly converges to xt as s → 0, where xt satisfies
xt=projFix(Pt)Q(xt), where Pt:C → C is a mapping defined by

Pt(x) = tS(x) + (1− t)T (x),∀x ∈ C, t ∈ (0, 1),

or, equivalently, xt is the unique solution of the quasivariational inequality:

0 ∈ (I −Q)xt + NFix(Pt)(xt),

where the normal cone to Fix(Pt), NFix(Pt) is defined as follows:

NFix(Pt) : x →

{
{u ∈ H : 〈y − x, u〉 ≤ 0}, if x ∈ Fix(Pt),

∅, otherwise.

Moreover, as t → 0, the net {xt} in turn weakly converges to the unique solution x∞ of the
fixed point equation x∞= projΩQ(x∞) or, equivalently, x∞ is the unique solution of the variational
inequality:

0 ∈ (I −Q)x∞ + NΩ(x∞).

Recall that a mapping f : C −→ C is said to be contractive if there exists a constant γ ∈ (0, 1)

such that
‖fx− fy‖ ≤ γ‖x− y‖, ∀x, y ∈ C.
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A mapping T : C −→ C is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

A mapping T is said to be k-strict pseudo-contractive if there exists k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2,∀x, y ∈ D(T ). (3.1.3)

Note that the class of k-strict pseudo-contraction strictly includes the class of nonexpansive mappings.
Forward, we use Fix(T ) to denote the fixed points set of T , that is Fix(T ) = {x ∈ C : Tx = x}.
we see that, if Sk : C → C defined by Skx = kx + (1 − k)Tx for all x ∈ C where T is k-strict
pseudo-contractive then Sk is nonexpansive mapping [21].

In this paper, motivate by Kangtunkarn and Suantai [1], we introduce a mapping for finding
a common fixed point of T is a λ-strict pseudo-contractive mapping and {Ti}N

i=1 a finite family of
ki-strict pseudo-contractive mappings of C into itself. For each n ∈ N, and j = 1, 2, ..., N , let αn

j =

(αn,j
1 , αn,j

2 , αn,j
3 ) ∈ [0, 1]× [0, 1]× [0, 1] be such that αn,j

1 , αn,j
2 , αn,j

3 ∈ [0, 1] with αn,j
1 +αn,j

2 +αn,j
3 = 1.

We define the mapping Sn : C → C as follows:

Un,0 = I;

Un,1 = αn,1
1 T1Un,0 + αn,1

2 Un,0 + αn,1
3 I;

Un,2 = αn,2
1 T2Un,1 + αn,2

2 Un,1 + αn,2
3 I;

Un,3 = αn,3
1 T3Un,2 + αn,3

2 Un,2 + αn,3
3 I;

... ;

Un,N−1 = αn,N−1
1 TN−1Un,N−2 + αn,N−1

2 Un,N−2 + αn,N−1
3 I;

Sn = Un,N = αn,N
1 TNUn,N−1 + αn,N

2 Un,N−1 + αn,N
3 I. (3.1.4)

Motivated and inspired by the results in the literature, in this paper, we consider a general
hierarchical problem of finding x∗ ∈ F (T ) such that, for any n ≥ 1,

〈Snx∗ − x∗, x− x∗〉 ≤ 0,∀x ∈ F (Sλ), (3.1.5)

where Sn is the S-mapping defined by (3.1.4) and Sλ is a nonexpansive mapping defined in Lemma
2.2.6.

Algorithm 3.1.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let T

is a λ-strict pseudo-contractive mapping with Sλx = λx + (1 − λ)Tx and {Ti}N
i=1 be a finite family

of ki-strictly pseudo-contractive mapping of C into itself. Let f : C −→ C be a contraction with
coefficient γ ∈ (0, 1). For any x0 ∈ C, let {xn} be the sequence generated by

xn+1 = αnSnxn + (1− αn)Sλ(βnf(xn) + (1− βn)xn), ∀n ≥ 0, (3.1.6)

where {αn}, {βn} are two real numbers in (0, 1) and Sn is the S −mapping defined by (3.1.4).
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We show that an explicit iterative algorithm which converges strongly to a solution x∗ of the
general hierarchical problem (3.1.5).

Lemma 3.1.2. Let H be a Hilbert space. Let {Ti}N
i=1 be a finite family of ki-strictly pseudo-contraction

of H into itself for some ki ∈ [0, 1) and k = max{ki : i = 1, 2, . . . , N} with
⋂N

i=1 F (Ti) 6= ∅. Let Sn be
the S-mapping generated by T1, T2, . . . , TN and α

(n)
1 , α

(n)
2 , . . . , α

(n)
N , where α

(n)
j = (αn,j

1 , αn,j
2 , αn,j

3 ) ∈
I×I×I, I = [0, 1], αn,j

1 +αn,j
2 +αn,j

3 = 1 and k < a ≤ αn,j
1 , αn,j

3 ≤ b < 1 for all , k < c ≤ αn,N
1 ≤ 1, k ≤

αn,N
3 ≤ d < 1, k ≤ αn,j

2 ≤ e < 1 for all j = 1, 2, . . . , N and
∑∞

n=1 |α
n+1,j
1 −αn,j

1 | < ∞,
∑∞

n=1 |α
n+1,j
3 −

αn,j
3 | < ∞ for all j = {1, 2, 3, . . . , N}. Then for all x ∈ H,

∑∞
n=1 ‖Sn+1x− Snx‖ < ∞.

พิสูจน์. For each x ∈ C and n ∈ N, we have .

‖Un+1,1x− Un,1x‖ = ‖αn+1,1
1 T1x + (1− αn+1,1

1 x)− αn,1
1 T1x + (1− αn,1

1 )x‖

= ‖αn+1,1
1 T1x− αn+1,1

1 x− αn,1
1 T1x + αn,1

1 x‖

= ‖(αn+1,1
1 − αn,1

1 )T1x− (αn+1,1
1 − αn,1

1 )x‖

= |αn+1,1
1 − αn,1

1 |‖T1x− x‖ (3.1.7)

and for n ∈ N, and for k ∈ {2, 3, . . . , N}, we have

‖Un+1,kx− Un,kx‖ = ‖αn+1,k
1 TkUn+1,k−1x + αn+1,k

2 Un+1,k−1x + αn+1,k
3 x

−αn,k
1 TkUn,k−1x + αn,k

2 Un,k−1x + αn,k
3 x‖

= ‖αn+1,k
1 TkUn+1,k−1x + αn+1,k

3 x− αn,k
1 TkUn,k−1x− αn,k

3 x

+αn+1,k
2 Un+1,k−1x− αn,k

2 Un,k−1x‖

= ‖αn+1,k
1 TkUn+1,k−1x− αn+1,k

1 TkUn,k−1x + αn+1,k
1 TkUn,k−1x

−αn,k
1 TkUn,k−1x + (αn+1,k

3 − αn,k
3 )x + αn+1,k

2 Un+1,k−1x− αn,k
2 Uk−1x‖

= ‖αn+1,k
1 (TkUn+1,k−1x− TkUn,k−1x) + (αn+1,k

1 − αn,k
1 )TkUn,k−1x

+(αn+1,k
3 − αn,k

3 )x + αn+1,k
2 Un+1,k−1x− αn,k

2 Un,k−1x‖

= ‖αn+1,k
1 (TkUn+1,k−1x− TkUn,k−1x) + (αn+1,k

1 − αn,k
1 )

×TkUn,k−1x + (αn+1,k
3 − αn,k

3 )x + αn+1,k
2 Un+1,k−1x

−αn+1,k
2 Un,k−1x + αn+1,k

2 Un,k−1x− αn,k
2 Un,k−1x‖

= ‖αn+1,k
1 (TkUn+1,k−1x− TkUn,k−1x) + (αn+1,k

1 − αn,k
1 )

×TkUn,k−1x + (αn+1,k
3 − αn,k

3 )x + αn+1,k
2 (Un+1,k−1x

−Un,k−1x) + (αn+1,k
2 − αn,k

2 )Un,k−1x‖

≤ αn+1,k
1 ‖TkUn+1,k−1x− TkUn,k−1x‖+ |αn+1,k

1 − αn,k
1 |‖TkUn,k−1x‖

+|αn+1,k
3 − αn,k

3 |‖x‖

+αn+1,k
2 ‖Un+1,k−1x− Un,k−1x‖+ |αn+1,k

2 − αn,k
2 |‖Un,k−1x‖

(3.1.8)
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= αn+1,k
1 ‖TkUn+1,k−1x− TkUn,k−1x‖+ |αn+1,k

1 − αn,k
1 |‖TkUn,k−1x‖

+αn+1,k
2 ‖Un+1,k−1x− Un,k−1x‖+ |1− αn+1,k

1

−αn+1,k
3 − 1 + αn,k

1 + αn,k
3 |‖Un,k−1x‖+ |αn+1,k

3 − αn,k
3 |‖x‖

≤ αn+1,k
1

1 + k

1− k
‖Un+1,k−1x− Un,k−1x‖+ |αn+1,k

1 − αn,k
1 |‖TkUn,k−1x‖

+αn+1,k
2 ‖Un+1,k−1x− Un,k−1x‖+ (|αn,k

1

−αn+1,k
1 |+ |αn,k

3 − αn+1,k
3 |)‖Un,k−1x‖+ |αn+1,k

3 − αn,k
3 |‖x‖

≤ 1 + k

1− k
‖Un+1,k−1x− Un,k−1x‖+ |αn+1,k

1 − αn,k
1 |‖TkUn,k−1x‖

+
1 + k

1− k
‖Un+1,k−1x− Un,k−1x‖+ (|αn,k

1 − αn+1,k
1 |

+|αn,k
3 − αn+1,k

3 |)‖Un,k−1x‖+ |αn+1,k
3 − αn,k

3 |‖x‖

=
2

1− k
‖Un+1,k−1x− Un,k−1x‖+ |αn+1,k

1 − αn,k
1 |(‖TkUn,k−1x

+‖Un,k−1x‖) + |αn,k
3 − αn+1,k

3 |(‖Un,k−1x‖+ ‖x‖).

By (3.1.7) and (3.1.8), we have

‖Sn+1x− Snx‖ = ‖Un+1,Nx− Un,Nx‖

≤ 2
1− k

‖Un+1,N−1x− Un,N−1x‖+ |αn+1,N
1 − αn,N

1 |(‖TNUn,N−1x‖

+‖Un,N−1x‖) + |αn+1,N
3 − αn,N

3 |(‖Un,N−1x‖+ ‖x‖)

≤ 2
1− k

(
2

1− k
‖Un+1,N−2x− Un,N−2x‖

+|αn+1,N−1
1 − αn,N−1

1 |(‖TN−1Un,N−2x‖+ ‖Un,N−2x‖)

+|αn+1,N−1
3 − αn,N−1

3 |[‖Un,N−2x‖+ ‖x‖]
)

+|αn+1,N
1 − αn,N

1 |(‖TNUn,N−1x‖+ ‖Un,N−1x‖)

+|αn+1,N
3 − αn,N

3 |(‖Un,N−1x‖+ ‖x‖)

=
(

2
1− k

)2

‖Un+1,N−2x− Un,N−2x‖+
N∑

j=N−1

(
2

1− k

)N−j

|αn+1,j
1 − αn,j

1 |(‖TjUn,j−1x‖

+‖Un,j−1x‖) +
N∑

j=N−1

(
2

1− k

)N−j

|αn+1,j
3 − αn,j

3 |(‖Un,j−1x‖+ ‖x‖)

...

≤
(

2
1− k

)N−1

‖Un+1,1x− Un,1x‖+
N∑

j=2

(
2

1− k

)N−j

|αn+1,j
1 − αn,j

1 |(‖TjUn,j−1x‖

+‖Un,j−1x‖) +
N∑

j=2

(
2

1− k

)N−j

|αn+1,j
3 − αn,j

3 |(‖Un,j−1x‖+ ‖x‖)
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=
(

2
1− k

)N−1

|αn+1,1
1 − αn,1

1 |‖T1x− x‖+
N∑

j=2

(
2

1− k

)N−j

+|αn+1,j
1 − αn,j

1 |(‖TjUn,j−1x‖+ ‖Un,j−1x‖+ ‖x‖) +
N∑

j=2

(
2

1− k

)N−j

+|αn+1,j
3 − αn,j

3 |(‖Un,j−1x‖+ ‖x‖).

This implies by assumption we have that
∞∑

n=1

‖Sn+1x− Snx‖ < ∞.

This complete the proof.

Lemma 3.1.3. Let H be a Hilbert space. Let {Ti}N
i=1 be a finite family of ki-strictly pseudo-contraction

of H into itself for some ki ∈ [0, 1) and k = max{ki : i = 1, 2, . . . , N} with
⋂N

i=1 F (Ti) 6= ∅. Let Sn be
the S-mapping generated by T1, T2, . . . , TN and α

(n)
1 , α

(n)
2 , . . . , α

(n)
N , where α

(n)
j = (αn,j

1 , αn,j
2 , αn,j

3 ) ∈
I × I × I, I = [0, 1], αn,j

1 + αn,j
2 + αn,j

3 = 1 and satisfy condition:

(1) k < a ≤ αn,j
1 , αn,j

3 ≤ b < 1 for all , k < c ≤ αn,N
1 ≤ 1, k ≤ αn,N

3 ≤ d < 1, k ≤ αn,j
2 ≤ e < 1 for

all j = 1, 2, . . . , N

(2)
∑∞

n=1 |α
n,j
1 −αj

1| < ∞,
∑∞

n=1 |α
n,j
2 −αj

2| < ∞,
∑∞

n=1 |α
n,j
3 −αj

3| < ∞ for all j = {1, 2, 3, . . . , N}.

Then for all x ∈ H, limn→∞ ‖Snx− Sx‖ = 0

พิสูจน์. Let x ∈ C and for each n ∈ N, from the definition of S mapping and Lemma 2.1.4, we have

‖Un,1x− U1x‖ = ‖αn,1
1 T1Un,0x + αn,1

2 Un,0x + αn,1
3 x− (α1

1T1U0x + α1
2U0x + α1

3x)‖

≤ |αn,1
1 − α1

1|‖T1x‖+ |αn,1
2 − α1

2|‖x‖+ |αn,1
3 − α1

3|‖x‖.

From boundedness and condition (2) we have

lim
n→∞

‖Un,1x− U1x‖ = 0. (3.1.9)

Next, consider

‖Un,2x− U2x‖ = ‖αn,2
1 T2Un,1x + αn,2

2 Un,1x + αn,2
3 x− (α2

1T2U1x + α2
2U1x + α2

3x)‖

≤ ‖αn,2
1 T2Un,1x− αn,2

1 T2U1x + αn,2
1 T2U1x + αn,2

2 Un,1x + αn,2
3 x

−(α2
1T2U1x + α2

2U1x + α2
3x)‖

≤ ‖αn,2
1 (T2Un,1x− T2U1x)‖+ ‖(αn,2

3 − α2
3)(x)‖+ ‖(αn,2

1 − α2
1)(T2U1x)‖

+‖αn,2
2 Un,1x− α2

2U1x‖

≤ αn,2
1 ‖T2Un,1x− T2U1x‖+ |αn,2

3 − α2
3|‖x‖+ |αn,2

1 − α2
1|‖T2U1x‖

+αn,2
2 ‖Un,1x− U1x‖+ |αn,2

2 − α2
2|‖U1x‖

≤ αn,2
1

1 + k

1− k
‖Un,1x− U1x‖+ |αn,2

3 − α2
3|‖x‖+ |αn,2

1 − α2
1|‖T2U1x‖

+αn,2
2 ‖Un,1x− U1x‖+ |αn,2

2 − α2
2|‖U1x‖.
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From boundedness, condition (2) and equation (3.1.9), we have

lim
n→∞

‖Un,2x− U2x‖ = 0. (3.1.10)

Similarly of the proof, we have
lim

n→∞
‖Un,Nx− UNx‖ = 0. (3.1.11)

Since ‖Snx− Sx‖ = ‖Un,Nx− UNx‖, we have

lim
n→∞

‖Snx− Sx‖ = 0. (3.1.12)

This complete the proof.

Theorem 3.1.4. Let C be a nonempty closed convex subset of a real Hilbert space H , let T be a
λ-strictly pseudo-contractive mapping and {Ti}N

i=1 be a finite family of ki-strictly pseudo-contractive
mappings of C into itself for some ki ∈ [0, 1) and k = max{ki : i = 1, 2, ..., N} which

⋂N
i=1 F (Ti) 6= ∅.

Let Sn be the S-mapping generated by T1, T2, ..., TN and αn
1 , αn

2 , ..., αn
N where αn

j = (αn,j
1 , αn,j

2 , αn,j
3 ) ∈

I×I×I , I = [0, 1], αn,j
1 +αn,j

2 +αn,j
3 = 1 and k < a ≤ αn,j

1 , αn,j
3 ≤ b < 1 for all j = 1, 2, ..., N−1, k <

c ≤ αn,N
1 ≤ 1, k ≤ αn,N

3 ≤ d < 1, k ≤ αn,j
2 ≤ e < 1 for all j = 1, 2, ...N . Assume that set Ω of solution

of general hierarchical problem (3.1.5) is nonempty. For a mapping f : C → C is a contraction with
γ ∈ (0, 1), sequence {αn}, {βn} are two real number in (0, 1) and assume that the following condition
hold:

(1) limn−→∞ αn = 0 and limn−→∞
βn

αn
= 0,

(2)
∑∞

n=1 βn = ∞,

(3) limn−→∞
1

βn
| 1
αn

− 1
αn−1

| = 0, and limn−→∞
1

αn
|1− βn−1

βn
| = 0

(4)
∑∞

n=1 |α
n+1,j
1 − αn,j

1 | < ∞,
∑∞

n=1 |α
n+1,j
3 − αn,j

3 | < ∞ for all j = {1, 2, 3, . . . , N},

(5)
∑∞

n=1 |α
n,j
1 −αj

1| < ∞,
∑∞

n=1 |α
n,j
2 −αj

2| < ∞,
∑∞

n=1 |α
n,j
3 −αj

3| < ∞ for all j = {1, 2, 3, . . . , N}.

Then the sequence {xn} in (3.1.6) solve the following variational inequality: x̃ ∈ Ω

〈(I − f)x̃, x− x̃〉 ≥ 0, ∀x ∈ Ω.
(3.1.13)

พิสูจน์. From (3.1.6), let yn = βnf(xn) + (1− βn)xn and x∗ ∈ Ω we have

‖xn+1 − x∗‖ = ‖αnSnxn + (1− αn)Skyn − x∗

≤ αn‖Snxn − x∗‖+ (1− αn)‖Skyn − x∗‖

≤ αn‖xn − x∗‖+ (1− αn)‖yn − x∗‖. (3.1.14)
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Consider,

‖yn − x∗‖ = ‖βnf(xn) + (1− βn)xn − x∗‖

≤ ‖βnγ‖xn − x∗‖+ ‖f(x∗)− x∗‖+ (1− βn)‖xn − x∗‖

= (1− (1− γ)βn)‖xn − x∗‖+ ‖f(x∗)− x∗‖. (3.1.15)

From (3.1.14) and (3.1.15), we have

∴ ‖xn+1 − x∗‖ ≤ αn‖xn − x∗‖+ (1− αn)
[
(1− (1− γ)βn)‖xn − x∗‖+ ‖f(x∗)− x∗‖

]
≤ αn‖xn − x∗‖+ (1− αn)‖xn − x∗‖+ (1− αn)‖f(x∗)− x∗‖

= ‖xn − x∗‖+ (1− αn)‖f(x∗)− x∗‖

≤ max{‖x0 − x∗‖, ‖f(x∗)− x∗‖}.

Then {xn} and {yn} are bounded and hence {f(xn)}, {Snxn}, {Sλyn} are also.

‖yn − yn−1‖ = ‖βnf(xn)− βnf(xn−1) + βnf(xn−1)− βn−1f(xn−1) + (1− βn)xn

−(1− βn)xn−1 + (1− βn)xn−1 − (1− βn−1)xn−1‖

≤ βnγ‖xn − xn−1‖+ |βn − βn−1|‖f(xn−1)‖+ (1− βn)‖xn − xn−1‖

+|βn − βn−1|‖xn−1‖

= (1− (1− γ)βn)‖xn − xn−1‖+ |βn − βn−1|(‖f(xn−1)‖+ ‖xn−1‖).

From definition of {xn} and nonexpansiveness of Sn, we have

‖xn − xn−1‖ = ‖αnSnxn + (1− αn)Sλyn − αn−1Sn−1xn−1 + (1− αn−1)Sλyn−1‖

= ‖αnSnxn − αnSnxn−1 + αnSnxn−1 − αn−1Snxn−1 + αn−1Snxn−1

−αn−1Sn−1xn−1 + (1− αn)Sλyn−1 + (1− αn)Sλyn−1 − (1− αn−1)Sλyn−1‖

≤ αn‖xn − xn−1‖+ |αn − αn−1|‖Snxn−1‖+ αn−1‖Snxn−1 − Sn−1xn−1‖

+(1− αn)‖yn − yn−1‖+ |αn − αn−1|‖Sλyn−1‖

≤ αn‖xn − xn−1‖+ (1− αn)
[
(1− (1− γ)βn)‖xn − xn−1‖

+|βn − βn−1|(‖f(xn−1)‖+ ‖xn−1‖)
]
+ |αn − αn−1|(‖Snxn−1‖+ ‖Sλyn−1‖)

+αn−1‖Snxn−1 − Sn−1xn−1‖

≤
[
αn + (1− αn)(1− (1− γ)βn)

]
‖xn − xn−1‖+ |βn − βn−1|(‖f(xn−1)‖+ ‖xn−1‖)

+|αn − αn−1|(‖Snxn−1‖+ ‖Sλyn−1‖) + αn−1‖Snxn−1 − Sn−1xn−1‖

=
[
1− (1− γ)βn(1− αn)

]
‖xn − xn−1‖+ |βn − βn−1|(‖f(xn−1)‖+ ‖xn−1‖)

+|αn − αn−1|(‖Snxn−1‖+ ‖Sλyn−1‖) + αn−1‖Snxn−1 − Sn−1xn−1‖.

Put M = sup
{
‖f(xn−1)‖, ‖Snxn−1‖, ‖Sλyn−1‖

}
, n ≥ 1, it follows that

‖xn+1 − xn‖ ≤ [1− (1− γ)βn((1− αn)]‖xn − xn−1‖+ (|βn − βn−1|+ |αn − αn−1|)M

+αn−1‖Snxn−1 − Sn−1xn−1‖.
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Put δn = ‖Snxn−1 − Sn−1xn−1‖, from Lemma 3.1.2, we have Σ∞n=1δn < ∞, it follows that

‖xn+1 − xn‖
αn

= [1− (1− γ)βn(1− αn)]
‖xn − xn−1‖

αn
+
|βn − βn−1|

αn
M +

|βn − βn−1|
αn

+ αn−1
δn

αn

= [1− (1− γ)βn(1− αn)]
‖xn − xn−1‖

αn−1

+[1− (1− γ)βn(1− αn)]
(
‖xn − xn−1‖

αn
− ‖xn − xn−1‖

αn−1

)
+
|βn − βn−1|

αn
M +

|αn − αn−1|
αn

M + αn−1
δn

αn

≤ [1− (1− γ)βn(1− αn)]
‖xn − xn−1‖

αn−1

+
(∣∣∣∣ 1

αn
− 1

αn−1

∣∣∣∣ +
|αn − αn−1|

αn
+
|βn − βn−1|

αn
+

δn

αn

)
M

= [1− (1− γ)βn(1− αn)]
‖xn − xn−1‖

αn−1

+(1− γ)βn(1− αn)
{

M

(1− γ)(1− αn)

(
1
βn

∣∣∣∣ 1
αn

− 1
αn−1

∣∣∣∣ +
1
βn

|αn − αn−1|
αn

+
1
βn

|αn − αn−1|
αn

+
1
βn

|βn − βn−1|
αn

+
δn

αn

)}
.

From Lemma 2.2.5, we obtain that

lim
n→∞

‖xn+1 − xn‖
αn

= 0. (3.1.16)

This implies that
lim

n→∞
‖xn+1 − xn‖ = 0. (3.1.17)

From (3.1.6) and (3.3.19), we have that

lim
n→∞

‖xn − Sλyn‖ = 0. (3.1.18)

It follows that
yn − xn = βn(f(xn)− xn) → 0. (3.1.19)

It implies that
‖yn − Sλyn‖ ≤ ‖yn − xn‖+ ‖xn − Sλyn‖ → 0. (3.1.20)

Sine the sequence {xn} and {yn} are also bounded. Thus there exists a subsequence of {yn}, which
is still denoted by {yni} which converges weakly to a point x̃ ∈ H. Therefore, x̃ ∈ Fix(T ) by (3.1.6),
we observe that

xn+1 − xn = αn(Snxn − xn) + (1− αn)(Sλyn − yn) + (1− αn)βn(fxn − xn),

that is,
xn − xn+1

αn
= (I − Sn)xn +

1− αn

αn
(I − Sλ)yn +

βn(1− αn)
αn

(I − f)xn.

Set zn = (xn−xn+1)
αn

for each n ≥ 1, that is,

zn = (I − Sn)xn +
1− αn

αn
(I − Sλ)yn +

βn(1− αn)
αn

(I − f)xn.
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Using monotonicity of I − Sλ and I − Sn, we derive that, for all u ∈ Fix(T ),

〈zn, xn − u〉 = 〈(I − Sn)xn, xn − u〉+
1− αn

αn
〈(I − Sλ)yn − (I − Sλ)u, yn − u〉

+
1− αn

αn
〈(I − Sλ)yn, xn − yn〉+

βn(1− αn)
αn

〈(I − f)xn, xn − u〉

≥ 〈(I − Sn)u, xn − u〉+
βn(1− αn)

αn
〈(I − f)xn, xn − u〉

+
(1− αn)βn

αn
〈(I − Sλyn, xn − fxn)〉

= 〈(I − S)u, xn − u〉+ 〈(S − Sn)u, xn − u〉+
βn(1− αn)

αn
〈(I − f)xn, xn − u〉

+
(1− αn)βn

αn
〈(I − Sλ)yn, xn − fxn〉.

But, since zn −→ 0, βn

αn
−→ 0 and limn−→∞ ‖Snu− Su‖ = 0, it follows from the above inequality

that

lim sup
n−→∞

〈(I − S)u, xn − u〉 ≤ 0, ∀u ∈ Fix(T ).

It suffices to guarantee that ωw(xn) ⊂ Ω. As a matter of fact, if we take any x∗ ∈ ωw(xn), then there
exists a subsequence {xnj} of {xn} such that xnj ⇀ x∗. Therefore, we have

〈(I − S)u, x∗ − u〉 = lim
j−→∞

〈(I − S)u, xnj − u〉 ≤ 0, ∀u ∈ Fix(T ).

Note that x∗ ∈ Fix(T ). Hence x∗ solves the following problem:{
x∗ ∈ Fix(T )

〈(I − S)u, x∗ − u〉 ≥ 0, ∀u ∈ Fix(T ).

It is obvious that this equivalent to the problem (3.1.5) by Lemma 3.1.3, we have Sn −→ S uniformly
in any bounded set. Thus x∗ ∈ Ω. Let x̃ be the solution of the variational inequality (3.3.12), by
Lemma 2.1.8 we have x̃ is unique. Now, take a subsequence {xni} of {xn} such that

lim sup
n−→∞

〈(I − f)x̃, xn − x̃〉 = lim
i−→∞

〈(I − f)x̃, xni − x̃〉.

Without loss of generality, we can assume that xni ⇀ x∗. Then x∗ ∈ Ω. Therefore, we have

lim sup
n−→∞

〈(I − f)x̃, xn − x̃〉 = 〈(I − f)x̃, x∗ − x̃〉 ≥ 0.

This completes the proof.

Theorem 3.1.5. Let C be a nonempty closed convex subset of a real Hilbert space H , let T be a
λ-strictly pseudo-contractive mapping and {Ti}N

i=1 be a finite family of ki-strictly pseudo-contractive
mappings of C into itself for some ki ∈ [0, 1) and k = max{ki : i = 1, 2, ..., N} which

⋂N
i=1 F (Ti) 6= ∅.

Let Sn be the S-mapping generated by T1, T2, ..., TN and αn
1 , αn

2 , ..., αn
N where αn

j = (αn,j
1 , αn,j

2 , αn,j
3 ) ∈

I×I×I , I = [0, 1], αn,j
1 +αn,j

2 +αn,j
3 = 1 and k < a ≤ αn,j

1 , αn,j
3 ≤ b < 1 for all j = 1, 2, ..., N−1, k <

c ≤ αn,N
1 ≤ 1, k ≤ αn,N

3 ≤ d < 1, k ≤ αn,j
2 ≤ e < 1 for all j = 1, 2, ...N . Assume that set Ω of

solution of generalized hierarchical problem (3.1.5) is nonempty. For a mapping f : C → C is a
contraction with γ ∈ (0, 1), sequence {αn}, {βn} are two real number in (0, 1) and assume that the
following condition hold:
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(1) limn−→∞ αn = 0 and limn−→∞
βn

αn
= 0,

(2)
∑∞

n=1 βn = ∞,

(3) limn−→∞
1

βn
| 1
αn

− 1
αn−1

| = 0 and limn−→∞
1

αn
|1− βn−1

βn
| = 0,

(4)
∑∞

n=1 |α
n+1,j
1 − αn,j

1 | < ∞,
∑∞

n=1 |α
n+1,j
3 − αn,j

3 | < ∞ for all j = {1, 2, 3, . . . , N},

(5)
∑∞

n=1 |α
n,j
1 −αj

1| < ∞,
∑∞

n=1 |α
n,j
2 −αj

2| < ∞,
∑∞

n=1 |α
n,j
3 −αj

3| < ∞ for all j = {1, 2, 3, . . . , N},

(6) there exists a constant d > 0 such that ‖x− Sλx‖ ≥ ρDist(x, F (Sλ)), where

Dist(x, F (Sλ)) = inf
y∈F (Sλ)

‖x− y‖.

Then the sequence {xn} difined by (3.1.6) converges strongly to a point x̃ ∈ Fix(T ), which solve the
variational inequality problem (3.3.12).

พิสูจน์. From (3.1.6), we have

xn+1 − x̃ = αn(Snxn − Snx̃) + αn(Snx̃− x̃) + (1− αn)(Sλyn − x̃).

Thus we have

‖xn+1 − x̃‖2 ≤ ‖αn(Snxn − Snx̃) + (1− αn)(Sλyn − x̃)‖2 + 2αn〈Snx̃− x̃, xn+1 − x̃〉

≤ (1− αn)‖Sλyn − x̃‖2 + αn‖Snxn − Snx̃‖2 + 2αn〈Snx̃− x̃, xn+1 − x̃〉(3.1.21)

≤ (1− αn)‖yn − x̃‖2 + αn‖xn − x̃‖2 + 2αn〈Snx̃− x̃, xn+1 − x̃〉.

Now we consider

‖yn − x̃‖2 = ‖(1− βn)(xn − x̃) + βn(fxn − fx̃) + βn(fx̃− x̃)‖2

≤ ‖(1− βn)(xn − x̃) + βn(fxn − fx̃)‖2 + 2βn〈fx̃− x̃, yn − x̃〉

≤ (1− βn)‖xn − x̃‖2 + βn‖(fxn − fx̃)‖2 + 2βn〈fx̃− x̃, yn − x̃〉 (3.1.22)

≤ (1− βn)‖xn − x̃‖2 + βnγ2‖xn − x̃‖2 + 2βn〈fx̃− x̃, yn − x̃〉

=
[
1−

(
1− γ2

)
βn

]
‖xn − x̃‖2 + 2βn〈fx̃− x̃, yn − x̃〉.

Substituting (3.1.22) into (3.1.21), we get

‖xn+1 − x̃‖2 = αn‖xn − x̃‖2 + (1− αn)
[
1−

(
1− γ2

)
βn

]
‖xn − x̃‖2

+2βn(1− αn)〈fx̃− x̃, yn − x̃〉+ 2αn〈Snx̃− x̃, xn+1 − x̃〉

=
[
1−

(
1− γ2

)
βn(1− αn)

]
‖xn − x̃‖2 + 2βn(1− αn)〈fx̃− x̃, yn − x̃〉

+2αn〈Snx̃− x̃, xn+1 − x̃〉

=
[
1−

(
1− γ2

)
βn(1− αn)

]
‖xn − x̃‖2 +

(
1− γ2

)
βn(1− αn)

×
{

1
1− γ2

〈fx̃− x̃, yn − x̃〉+
2

(1− γ2)(1− αn)
× αn

βn
〈Snx̃− x̃, xn+1 − x̃〉

}
.(3.1.23)
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By Theorem 3.1.4, we note that every weak cluster point of the sequence {xn} is in Ω. Since
yn − xn → 0, then every weak cluster point of {yn} is also in Ω. Consequently, since x̃ = projΩ(fx̃),
we easily have

lim sup
n→∞

〈fx̃− x̃, yn − x̃〉 ≤ 0. (3.1.24)

On the other hand, we observe that

〈Snx̃− x̃, xn+1 − x̃〉 =
〈

Snx̃− x̃, projFix(Sλ)xn+1 − x̃

〉
+

〈
Snx̃− x̃, xn+1 − projFix(Sλ)xn+1

〉
Since x̃ is a solution of the problem(3.1.5) and projFix(Sλ)xn+1 ∈ Fix(Sλ), we have〈

Snx̃− x̃, projFix(Sλ)xn+1 − x̃
〉
≤ 0.

Thus it follows that

〈Snx̃− x̃, xn+1 − x̃〉 ≤ 〈Snx̃− x̃, xn+1 − projFix(Sλ)xn+1〉

≤ ‖Snx̃− x̃‖
∥∥xn+1 − projFix(Sλ)xn+1

∥∥
= ‖Snx̃− x̃‖ ×Dist(xn+1, F ix(Sλ))

≤ 1
ρ
‖Snx̃− x̃‖‖xn+1 − Sλxn+1‖.

We note that

‖xn+1 − Sλxn+1‖ ≤ ‖xn+1 − Sλxn‖+ ‖Sλxn − Sλxn+1‖

≤ αn‖Snxn − Sλxn‖+ (1− αn)‖Sλyn − Sλxn‖+ ‖xn+1 − xn‖

≤ αn‖Snxn − Sλxn‖+ ‖yn − xn‖+ ‖xn+1 − xn‖

≤ αn‖Snxn − Sλxn‖+ βn‖fxn − xn‖+ ‖xn+1 − xn‖.

Hence we have

αn

βn
〈Snx̃− x̃, xn+1 − x̃〉 ≤ α2

n

βn

(
1
ρ
‖Snx̃− x̃‖‖Snxn − Sλxn‖

)
+αn

(
1
ρ
‖Snx̃− x̃‖‖fxn − xn‖

)
+

α2
n

βn

‖xn+1 − xn‖
αn

(
1
ρ
‖Snx̃− x̃‖

)
.

From Theorem 3.1.4 we have limn→∞
‖xn+1−xn‖

αn
= 0. And then, we note that {1

ρ‖Snx̃− x̃‖‖Snxn −
Sλxn‖}, {1

ρ‖Snx̃− x̃‖‖fxn − xn‖}, and {1
ρ‖Snx̃− x̃‖} are all bounded. Hence it follows from (i) and

the above inequality that
lim sup

n→∞

αn

βn
〈Snx̃− x̃, xn+1 − x̃〉 ≤ 0.

Finally, by (3.1.23) and Lemma 2.2.5, we conclude that the sequence {xn} converges strongly
to a point x̃ ∈ Fix(Sλ) = Fix(T ). This completes the proof.
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3.2 Existence Theorems for Nonconvex variational Inequalities Problems

In this section, we prove the existence theorem for a mapping defined by T = T1 +T2 when T1 is
a µ1-Lipschitz continuous and γ-strongly monotone mapping, T2 is a µ2-Lipschitz continuous mapping,
we have a mapping T is Lipschitz continuous but not strongly monotone mapping. This work is extend
and improve the result of N. Petrot [39].

Let H be a real Hilbert space, and let C be a nonempty closed subset of H . In this section,
will consider the following problem: find x∗ ∈ C such that

− Tx∗ ∈ NP
C (x∗). (3.2.1)

The problem of type (3.2.1) was studied by Noor [29] but in a finite dimension Hilbert space setting.
In 2010 [39] Petrot intend to consider the problem (3.2.1) in an infinite dimension Hilbert space for a
mapping T satisfied µ-Lipschitz continuous and γ-strongly monotone. In this section we extended the
result of [39] Petrot to a mapping T = T1 + T2 with T1 is a µ1-Lipschitz continuous and γ-strongly
monotone mapping, T2 is a µ2-Lipschitz continuous mapping. We see that T is Lipschitz continuous
but not strongly monotone mapping. To do this, the following remark is useful.

Remark 3.2.1. Let T1 be a µ1-Lipschitz continuous and γ-strongly monotone mapping, and let T2 be
a µ2-Lipschitz continuous mapping. Then the function f : (1,M) → (0,∞) which defined by

f(t) =

√
(tγ − µ2)2 − (µ2

1 − µ2
2)(t2 − 1)

t(µ2
1 − µ2

2)
,∀ t ∈ M,

where M = γµ2+
√

(µ2
1−γ2)(µ2

1−µ2
2)

γ2−(µ2
1−µ2

2)
.

In this work, we have to assume that µ2 < µ1. Thus, from now on, without loss of generality
we will always assume that µ2 < µ1.

Theorem 3.2.2. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H , and let
T1, T2 : C → H be such that T1 is a µ1-Lipschitz continuous and γ-strongly monotone mapping, T2 is
a µ2-Lipschitz continuous mapping. If T = T1 + T2 and 0 < δT (C) ≤ γr, then the problem (3.2.1) has
a solution.

Proof. We first, defined a function h : [1,M) → (0,∞) which is defined by

h(x) =
r(t− 1)
tδT (C)

+ f(t),∀t ∈ [1,M). (3.2.2)

We see that the net {ts}s∈(0,r) which is defined by ts = r
r−s converges to 1 as s ↓ 0. It follows that

h(t) ↓ γ−µ
µ2

1−µ2
2
as ts ↓ 1, we can find s∗ ∈ (0, r) such that γ−µ2

µ2
1−µ2

2
< h(t), Then we have

ts∗γ−2

ts∗(µ2
1 − µ2

2)
− f(ts∗) < h(ts∗)− f(ts∗) =

r(ts∗ − 1)
ts∗δT (C)

=
s∗

δT (C)
.

Now, we choose a fixed positive real number ρ such that
tsγ − µ2

µ2
1 − µ2

2

− f(ts∗) < ρ < min{ tsγ − µ2

µ2
1 − µ2

2

+ f(ts∗),
s∗

δT (C)
}. (3.2.3)
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Next, for an element x0 ∈ C and use an induction process to obtain a sequence {xn} ⊂ C satisfying

xn+1 = projC(xn − ρTxn), ∀n = 0, 1, 2, .... (3.2.4)

Consequently, from (3.3.9) and Lemma 2.2.5, we have

‖xn+1 − xn‖ = ‖projC(xn − ρTxn)− projC(xn−1 − ρTxn−1)‖

= ts‖(xn − ρTxn)− (xn−1 − ρTxn−1)‖

= ts‖(xn − xn−1)− ρ(Txn − Txn−1)‖ (3.2.5)

≤ ts[‖xn − xn−1 − ρ(T1xn − T1xn−1)‖+ ρ‖T2xn − T2xn−1‖]

≤ ts[‖xn − xn−1 − ρ(T1xn − T1xn−1)‖+ ρµ2‖xn − xn−1‖].

Since the mapping T1 is γ-strongly monotone and µ1-Lipschitz continuous, we obtain

‖xn − xn−1 − ρ(T1xn − T1xn−1)‖2 = ‖xn − xn−1‖2 − 2ρ〈xn − xn−1, T1xn − T1xn−1〉

+ρ2‖T1xn − T1xn−1‖2

≤ ‖xn − xn−1‖2 − 2ργ‖xn − xn−1‖2 + ρ2µ2
1‖xn − xn−1‖2(3.2.6)

= (1− 2ργ + ρµ2
1)‖xn − xn−1‖2.

It follows that

‖xn − xn−1 − ρ(T1xn − T1xn−1)‖ ≤
√

1− 2ργ + ρµ2
1‖xn − xn−1‖2. (3.2.7)

From (3.3.10) and (3.3.13), we get

‖xn+1 − xn‖ ≤ ts(ρµ2 +
√

1− 2ργ + ρµ2
1)‖xn − xn−1‖. (3.2.8)

Now, we see that for the choice of ρ, we know that {xn} is a Cauchy sequence in C. Then {xn} is a
convergence sequence, it follows that, if xn → x∗ as n →∞ we have x∗ ∈ projC(x∗ + ρ(−Tx∗)) for
some ρ > 0. From definition 2.2.2, we have −Tx∗ ∈ NP

C (x∗). This completes the proof. �

Corollary 3.2.3. [39] Let C be a uniformly r-prox-regular closed subset of a Hilbert space H , and let
T : C → H be a γ-strongly monotone mapping and µ-Lipschitz continuous mapping. If 0 < δT (C) ≤ γr,
then the problem (3.2.1) has a solution.

Proof. From Theorem 3.3.4, if T2 ≡ 0 we have a result. �
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3.3 Iterative Algorithm for Nonconvex Variational Inequalities

In this section, we suggest and analyze an iterative scheme for solving the system of nonconvex
variational inequalities by using projection technique. We prove strong convergence of iterative scheme
to the solution of the system of nonconvex variational inequalities requires to the modified mapping
T which is Lipschitz continuous but not strongly monotone mapping. Our result can be viewed and
improvement the result of N. Petrot [39].

Let Cr be a uniformly r-prox-regular(nonconvex) set. For given nonlinear mappings T : Cr → H ,
we consider the problem of finding x∗, y∗ ∈ Cr such that

〈ρTy∗ + x∗ − y∗, x− x∗〉 ≥ 0,∀x ∈ Cr, ρ > 0

〈ηTx∗ + y∗ − x∗, x− y∗〉 ≥ 0,∀x ∈ Cr, η > 0, (3.3.1)

which is called the system of nonconvex variational inequalities.

It is worth mentioning that if T1 = T2 = T, x∗ = y∗ = u and ρ = η, then problem (3.3.1) is
equivalent to finding u ∈ Cr such that

〈Tu, v − u〉 ≥ 0,∀v ∈ Cr, (3.3.2)

which is known as nonconvex variational inequalities introduced and studied by Bounkhel et. al. [22]
and Noor [30, 31].

It is known that problem (3.3.2) is equivalent to finding u ∈ Cr such that

0 ∈ Tu + NP
Cr

(u), (3.3.3)

which NP
Cr

(u) denote the normal cone of Cr at u. The problem (3.3.3) is called the variational
inclusion associated with nonconvex variational inequalities (3.3.2).

Lemma 3.3.1. For given x∗, y∗ ∈ Cr is a solution of system of nonconvex variational inequalities
(3.3.1), if and only if

x∗ = PC [y∗ − ρTy∗],

y∗ = PC [x∗ − ηTx∗], (3.3.4)

where PC is the projection of H onto the uniformly prox-regular set Cr.

พิสูจน์. Let x∗, y∗ ∈ Cr be a solution of (3.3.1), from (3.3.3), for a constant ρ > 0, we have

0 ∈ ρT1y
∗ + x∗ − y∗ + ρNP

Cr
(x∗) = (I + ρNP

Cr
)(x∗)− [y∗ − ρT1y

∗]

if and only if
x∗ = (I + ρNP

Cr
)−1[y∗ − ρT1y

∗] = PC [y∗ − ρT1y
∗],

where we have used the well-known fact that PC = (I + ρNP
Cr

)−1.
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Similarly, we obtain
y∗ = PC [x∗ − ηT2x

∗].

This prove our assertions.

Algorithm 3.3.2. For arbitrarily chosen initial points x0, y0 ∈ Cr, the sequence {xn} and {yn} in the
following way:

yn = PC [xn − ηTxn], η > 0

xn+1 = (1− αn)xn + αnPC [yn − ρTyn], ρ > 0, (3.3.5)

where {αn} is a sequence in [0, 1].

Remark 3.3.3. [39] Let C be a uniformly r-prox-regular closed subset of a Hilbert space H , and let
T1, T2 : C → H be such that T1 is a µ1-Lipschitz continuous and γ-strongly monotone mapping, T2 is
a µ2-Lipschitz continuous mapping. Let

ξ = r[µ2
1 − γ

µ2 −
√

(µ2
1 − γµ2)2 − µ2

1(γ − µ2)2

µ2
1

] (3.3.6)

then for each s ∈ (0, ξ), we have

γts − µ2 >
√

(µ2
1 − µ2

2)(t2s − 1), (3.3.7)

where ts = r
r−s .

In this paper, we may assume that Mρ,ηδT (C) < ξ, we see that for any s ∈ (Mρ,ηδT (C), ξ) it
satisfy the inequality 3.3.7 too. where Mρ,η = min{ρ, η}, δT (C) = sup{‖u− v‖ : u, v ∈ T (C)}.

Now, we suggest and analyze the following explicit projection method (3.3.2) for solving the
system of nonconvex variational inequalities (3.3.1). Thus, from now on, without loss of generality we
will always assume that µ2 < µ1.

Theorem 3.3.4. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H , and let
T1, T2 : C → H be such that T1 is a µ1-Lipschitz continuous and γ-strongly monotone mapping,
T2 is a µ2-Lipschitz continuous mapping. If T = T1 + T2 and there exists constant ρ, η > 0 and
s ∈ (Mρ,ηδT (C), ξ), such that

γts − µ2

ts(µ2
1 − µ2

2)
−4ts < ρ, η < min{ γts − µ2

ts(µ2
1 − µ2

2)
+4ts ,

1
tsµ2

}, (3.3.8)

where 4ts =
√

(γts−µ2)2−(µ2
1−µ2

2)(t2s−1)

ts(µ2
1−µ2

2)
. If the sequence of positive real number αn ∈ [0, 1] with

Σ∞n=0αn = 0, then the sequences {xn} and {yn} obtained from Algorithm 3.3.2 converge to a solution
of the system of nonconvex variational inequalities (3.3.1).
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พิสูจน์. Let x∗, y∗ ∈ Cr be a solution of (3.3.1) and from Lemma 3.3.1, we have

‖xn+1 − x∗‖ = ‖(1− αn)xn + αnPC [yn − ρTyn]− x∗‖

= ‖(1− αn)(xn − x∗) + αn(PC [yn − ρTyn]− PC [y∗ − ρTy∗])‖

≤ (1− αn)‖xn − x∗‖+ αn‖PC [yn − ρTyn]− PC [y∗ − ρTy∗]‖

≤ (1− αn)‖xn − x∗‖+ αnts‖(yn − ρTyn)− (y∗ − ρTy∗)‖

≤ (1− αn)‖xn − x∗‖+ αnts[‖(yn − y∗)− ρ(T1yn − T1y
∗)‖+ ρ‖(T2yn − T2y

∗)‖.](3.3.9)

From T1 are both µ1-Lipschitz continuous and γ-strongly monotone mapping and from Lemma 2.2.6,
we obtain

‖(yn − y∗)− ρ(T1yn − T1y
∗)‖2 = ‖yn − y∗‖2 − 2ρ〈yn − y∗, T1yn − T1y

∗〉+ ρ2‖T1yn − T1y
∗‖2

≤ ‖yn − y∗‖2 − 2ργ‖yn − y∗‖2 + ρ2µ2
1‖yn − y∗‖2

= (1− 2ργ + ρ2µ2
1)‖yn − y∗‖2.

It follows that
‖(yn − y∗)− ρ(T1yn − T1y

∗)‖ ≤
√

1− 2ργ + ρ2µ2
1‖yn − y∗‖. (3.3.10)

On the other hand, from T2 is µ2-Lipschitz continuous, we have

‖T2yn − T2y
∗‖ ≤ µ2‖yn − y∗‖. (3.3.11)

Thus, by (3.3.9), (3.3.10) and (3.3.11), we have

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αnts(ρµ2 +
√

1− 2ργ + ρ2µ2
1)‖yn − y∗‖. (3.3.12)

Similarly, we have

‖yn − y∗‖ = ‖PC [xn − ηTxn]− y∗‖

= ‖PC [xn − ηTxn]− PC [x∗ − ηTx∗]‖

≤ ts‖(xn − ηTxn)− (x∗ − ηx∗)‖

≤ ts[‖(xn − x∗)− η(T1xn − T1x
∗)‖+ η‖T2xn − T2x

∗‖]. (3.3.13)

Similarly, from T1 are both µ1-Lipschitz continuous and γ-strongly monotone mapping, we obtain

‖(xn − x∗)− η(T1xn − T1x
∗)‖2 = ‖xn − x∗‖2 − 2η〈xn − x∗, T1xn − T1x

∗〉+ η2‖T1xn − T1x
∗‖2

≤ ‖xn − x∗‖2 − 2ηγ‖xn − x∗‖2 + η2µ2
1‖xn − x∗‖2

= (1− 2ηγ + η2µ2
1)‖xn − x∗‖2.

It follows that
‖(xn − x∗)− η(T1xn − T1x

∗)‖ ≤
√

1− 2ηγ + η2µ2
1‖xn − x∗‖. (3.3.14)

On the other hand, from T2 is µ2-Lipschitz continuous, we have

‖T2xn − T2x
∗‖ ≤ µ2‖xn − x∗‖. (3.3.15)
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Thus, by (3.3.13), (3.3.14) and (3.3.15), we have

‖yn − y∗‖ ≤ ts(ηµ2 +
√

1− 2ηγ2 + η2µ2
1)‖xn − x∗‖. (3.3.16)

Moreover, from (3.3.12) and (3.3.16) we put θ1 = ts(ρµ2 +
√

1− 2ργ + ρ2µ2
1), θ2 = ts(ηµ2 +√

1− 2ηγ2 + η2µ2
1), it follows that

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αnθ1θ2‖xn − x∗‖

= (1− (1− θ1θ2)αn)‖xn − x∗‖

≤
n∏

i=0

(1− (1− θ1θ2)αi)‖x0 − x∗‖. (3.3.17)

Since Σ∞n=0αn = ∞ and conditions (3.3.8), we obtain

lim
n→∞

n∏
i=0

(1− (1− θ1θ2)αi) = 0. (3.3.18)

It follows from (3.3.18) and (3.3.17), we have

lim
n→∞

‖xn − x∗‖ = 0. (3.3.19)

From (3.3.16) and (3.3.19), we have

lim
n→∞

‖yn − y∗‖ = 0. (3.3.20)

Which is x∗, y∗ ∈ Cr satisfying the system of nonconvex variational inequalities (3.3.1). This completes
the proof.

Corollary 3.3.5. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H , and let
T : C → H be such that T is a µ-Lipschitz continuous and γ-strongly monotone mapping. If there
exists constant ρ, η > 0 and s ∈ (Mρ,ηδT (C), ξ), such that

γ

µ2
−4ts < ρ, η <

γ

µ2
+4ts , (3.3.21)

where 4ts =
√

(γts)2−(µ2
1)(t2s−1)

ts(µ2
1)

. If the sequence of positive real number αn ∈ [0, 1] with Σ∞n=0αn = 0,
and αn ∈ [0, 1] with Σ∞n=0αn = ∞, then the sequence {xn} and {yn} is generated by for x0, y0 ∈ Cr,

yn = PC [xn − ηTxn], η > 0

xn+1 = PC [yn − ρTyn], ρ > 0, (3.3.22)

strongly converge to a solution of the system of nonconvex variational inequalities (3.3.1).

พิสูจน์. From Theorem 3.3.4, if T2 ≡ 0 and αn = 1 for any n ≥ 0, we have a result.

We can applied Theorem 3.3.4 to the system of general of nonconvex variational inequalities,
for given nonlinear mappings T, g : Cr → H , we consider the problem of finding x∗, y∗ ∈ Cr such that

〈ρTg(y∗) + g(x∗)− g(y∗), x− g(x∗)〉 ≥ 0,∀x ∈ Cr, ρ > 0

〈ηTg(x∗) + g(y∗)− g(x∗), x− g(y∗)〉 ≥ 0,∀x ∈ Cr, η > 0, (3.3.23)
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which is called the system of general nonconvex variational inequalities. Similar of the proof of
Lemma 3.3.1, we can proof that

Lemma 3.3.6. For given x∗, y∗ ∈ Cr is a solution of system of nonconvex variational inequalities
(3.3.23), if and only if

g(x∗) = PC [g(y∗)− ρTg(y∗)],

g(y∗) = PC [g(x∗)− ηTg(x∗)], (3.3.24)

where PC is the projection of H onto the uniformly prox-regular set Cr.

Theorem 3.3.7. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H , let g : C → H

is injective mapping and let T1, T2 : C → H be such that T1 is a µ1-Lipschitz continuous and γ-strongly
monotone mapping, T2 is a µ2-Lipschitz continuous mapping. If T = T1 + T2 and there exists constant
ρ, η > 0 and s ∈ (Mρ,ηδT (C), ξ), such that

γts − µ2

ts(µ2
1 − µ2

2)
−4ts < ρ, η < min{ γts − µ2

ts(µ2
1 − µ2

2)
+4ts ,

1
tsµ2

}, (3.3.25)

where 4ts =
√

(γts−µ2)2−(µ2
1−µ2

2)(t2s−1)

ts(µ2
1−µ2

2)
. If the sequence of positive real number αn ∈ [0, 1] with

Σ∞n=0αn = 0, then the sequence {xn} and {yn} is generated by for x0, y0 ∈ Cr,

g(yn) = PC [g(xn)− ηTg(xn)], η > 0

g(xn+1) = (1− αn)g(xn) + αnPC [g(yn)− ρTg(yn)], ρ > 0, (3.3.26)

strongly converge to a solution of the system of nonconvex variational inequalities (3.3.23).

พิสูจน์. Similar the proof in Theorem 3.3.4, let x∗, y∗ ∈ Cr be a solution of (3.3.23) and from Lemma
3.3.6, we can compute that

‖g(xn+1)− g(x∗)‖ ≤
n∏

i=0

(1− (1− θ1θ2)αi)‖g(x0)− g(x∗)‖. (3.3.27)

where θ1 = ts(ρµ2 +
√

1− 2ργ + ρ2µ2
1) From Σ∞n=0αn = ∞ and conditions (3.3.25), we obtain

lim
n→∞

n∏
i=0

(1− (1− θ1θ2)αi) = 0. (3.3.28)

It follows from (3.3.27) and (3.3.28), we have

lim
n→∞

‖g(xn)− g(x∗)‖ = 0. (3.3.29)

And we can compute that
‖g(yn)− g(y∗)‖ ≤ θ2‖g(xn)− g(x∗)‖, (3.3.30)

where θ2 = ts(ηµ2 +
√

1− 2ηγ2 + η2µ2
1), it follows that

lim
n→∞

‖g(yn)− g(y∗)‖ = 0. (3.3.31)

From g is injective mapping, we have limn→∞ ‖xn − x∗‖ = 0 and limn→∞ ‖yn − y∗‖ = 0 satisfying
the system of general nonconvex variational inequalities (3.3.23). This complete the proof.
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Corollary 3.3.8. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H , let g : C → H

is injective mapping and let T : C → H be such that T is a µ-Lipschitz continuous and γ-strongly
monotone mapping. If there exists constant ρ, η > 0 and s ∈ (Mρ,ηδT (C), ξ), such that

γ

µ2
−4ts < ρ, η <

γ

µ2
+4ts , (3.3.32)

where 4ts =
√

(γts)2−(µ2
1)(t2s−1)

ts(µ2
1)

. If the sequence of positive real number αn ∈ [0, 1] with Σ∞n=0αn = 0,
and αn ∈ [0, 1] with Σ∞n=0αn = ∞, then the sequence {xn} and {yn} is generated by for x0, y0 ∈ Cr,

g(yn) = PC [g(xn)− ηTg(xn)], η > 0

g(xn+1) = PC [g(yn)− ρTg(yn)], ρ > 0, (3.3.33)

strongly converge to a solution of the system of nonconvex variational inequalities (3.3.23).

พิสูจน์. From Theorem 3.3.4, if T2 ≡ 0 and αn = 1 for any n ≥ 0, we have a result.
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1 Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥, respec-
tively. Let C be a nonempty closed convex subset of H. The hierarchical problem
is of finding x̃ ∈ Fix(T ) such that

⟨Sx̃− x̃, x− x̃⟩ ≤ 0, ∀x ∈ Fix(T ), (1.1)
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where S, T are two nonexpansive mappings and Fix(T ) to denote the fixed points
set of T , that is Fix(T ) = {x ∈ C : Tx = x}. Recently, this problem has been
studied by many authors (see,[2]-[17]).

Now, we briefly recall some historic results which relate to the problem (1.1).
For solving the problem (1.1), in 2006, Moudafi and Mainge [4] first introduced

an implicit iterative algorithm:

xt,s = sQ(xt,s) + (1− s)[tS(xt,s) + (1− t)T (xt,s)] (1.2)

and proved that the net {xt,s} defined by (1.2) strongly converges to xt as s → 0,
where xt satisfies xt=projFix(Pt)Q(xt), where Pt:C → C is a mapping defined by

Pt(x) = tS(x) + (1− t)T (x), ∀x ∈ C, t ∈ (0, 1),

or, equivalently, xt is the unique solution of the quasivariational inequality:

0 ∈ (I −Q)xt +NFix(Pt)(xt),

where the normal cone to Fix(Pt), NFix(Pt) is defined as follows:

NFix(Pt) : x →
{

{u ∈ H : ⟨y − x, u⟩ ≤ 0}, if x ∈ Fix(Pt),
∅, otherwise.

Moreover, as t → 0, the net {xt} in turn weakly converges to the unique
solution x∞ of the fixed point equation x∞= projΩQ(x∞) or, equivalently, x∞ is
the unique solution of the variational inequality:

0 ∈ (I −Q)x∞ +NΩ(x∞).

Recall that a mapping f : C −→ C is said to be contractive if there exists a
constant γ ∈ (0, 1) such that

∥fx− fy∥ ≤ γ∥x− y∥, ∀x, y ∈ C.

A mapping T : C −→ C is called nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.

A mapping T is said to be k-strict pseudo-contractive if there exists k ∈ [0, 1) such
that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2, ∀x, y ∈ D(T ). (1.3)

Note that the class of k-strict pseudo-contraction strictly includes the class of
nonexpansive mappings. We see that, if Sk : C → C defined by Skx = kx+ (1−
k)Tx for all x ∈ C where T is k-strict pseudo-contractive then Sk is nonexpansive
mapping [21].

In this paper, motivate by Kangtunkarn and Suantai [1], we introduce a map-
ping for finding a common fixed point of T is a λ-strict pseudo-contractive mapping
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and {Ti}Ni=1 a finite family of ki-strict pseudo-contractive mappings of C into itself.

For each n ∈ N, and j = 1, 2, ..., N , let αn
j = (αn,j

1 , αn,j
2 , αn,j

3 ) ∈ [0, 1]× [0, 1]× [0, 1]

with αn,j
1 + αn,j

2 + αn,j
3 = 1. We define the mapping Sn : C → C as follows:

Un,0 = I;

Un,1 = αn,1
1 T1Un,0 + αn,1

2 Un,0 + αn,1
3 I;

Un,2 = αn,2
1 T2Un,1 + αn,2

2 Un,1 + αn,2
3 I;

Un,3 = αn,3
1 T3Un,2 + αn,3

2 Un,2 + αn,3
3 I;

... ;

Un,N−1 = αn,N−1
1 TN−1Un,N−2 + αn,N−1

2 Un,N−2 + αn,N−1
3 I;

Sn = Un,N = αn,N
1 TNUn,N−1 + αn,N

2 Un,N−1 + αn,N
3 I. (1.4)

Motivated and inspired by the results in the literature, in this paper, we con-
sider a general hierarchical problem of finding x∗ ∈ F (T ) such that, for any n ≥ 1,

⟨Snx
∗ − x∗, x− x∗⟩ ≤ 0, ∀x ∈ F (Sλ), (1.5)

where Sn is the S-mapping defined by (1.4) and Sλ is a nonexpansive mapping
defined in Lemma 2.1.

Algorithm 1.1. Let C be a nonempty closed convex subset of a real Hilbert space
H and let T is a λ-strict pseudo-contractive mapping with Sλx = λx+ (1− λ)Tx
and {Ti}Ni=1 be a finite family of ki-strictly pseudo-contractive mapping of C into
itself. Let f : C → C be a contraction with coefficient γ ∈ (0, 1). For any x0 ∈ C,
let {xn} be the sequence generated by

xn+1 = αnSnxn + (1− αn)Sλ(βnf(xn) + (1− βn)xn), ∀n ≥ 0, (1.6)

where {αn}, {βn} are two real numbers in (0, 1) and Sn is the S−mapping defined
by (1.4).

We show that an explicit iterative algorithm which converges strongly to a
solution x∗ of the general hierarchical problem (1.5).

2 Preliminaries

In this section, we collect and give some definition and useful lemmas that will
be used for our main results in the next section.

Lemma 2.1. [21] Let T : C → C be a k-strictly pseudo-contraction. Defined
Sλ : C → C by Sλx = λx+ (1 − λ)Tx for each x ∈ C. Then, as λ ∈ [k, 1], Sλ is
nonexpansive mapping and F (T ) = F (Sλ).

Lemma 2.2. In a real Hilbert space H, there holds the inequality
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1. ∥x+y∥2 ≤ ∥x∥2+2⟨y, x+y⟩ and ∥x−y∥2 = ∥x∥2−2⟨x, y⟩+∥y∥2, ∀x, y ∈ H.

2. ∥tx+(1−t)y∥2 = t∥x∥2+(1−t)∥y∥2−t(1−t)∥x−y∥2, ∀t ∈ [0, 1], ∀x, y ∈ H.

3. ∥
∑m

i=0 αixi∥2 =
∑m

i=0 αi∥xi∥2−
∑m

i=0 αiαj∥xi−xj∥2 for
∑m

i=0 αi = 1, αi ∈
[0, 1], ∀i ∈ {0, 1, 2, . . . ,m}.

Definition 2.3. [1] Let C be nonempty convex subset of real Banach space. Let
{Ti}Ni=1 be a finite family of ki-strictly pseudo-contractive mapping of C into itself.

For each j = 1, 2, . . . , N , let αj = (αj
1, α

j
2, α

j
3) ∈ I × I × I where αj

1, α
j
2, α

j
3 ∈ I ≡

[0, 1] and αj
1 + αj

2 + αj
3 = 1. We define the mapping S : C → C as follows:

U0 = I

U1 = α1
1T1U0 + α1

2U0 + α1
3I

U2 = α2
1T2U1 + α2

2U1 + α2
3I

U3 = α3
1T3U2 + α3

2U2 + α3
3I

...

UN−1 = αN−1
1 TN−1UN−2 + αN−1

2 UN−2 + αN−1
3 I

S = UN = αN
1 TNUN−1 + αN

2 UN−1 + αN
3 I.

This mapping is called S −mapping generated by T1, . . . , TN and α1, α2, . . . , αN .

Lemma 2.4. [10] Let C be a nonempty closed convex subset of a real Hilbert space
H and S : C → C be a self-mapping of C. If S is a k-strict pseudo-contraction
mapping, then S satisfies the Lipschitz condition

∥Sx − Sy∥ ≤ 1 + k

1− k
∥x− y∥, ∀x, y ∈ C.

Lemma 2.5. [20] Let {sn} be a sequence of nonnegative real number satisfying

sn+1 = (1− αn)sn + δn + ηn, ∀n ≥ 0

where {αn} is a sequence in (0, 1) and {δn} is a sequence such that

1.
∑∞

n=1 αn = ∞,

2. lim supn→∞
δn
αn

≤ 0 or
∑∞

n=1 |δn| < ∞,

3.
∑∞

n=1 |ηn| < ∞.

Then limn→∞ αn = 0.

Lemma 2.6. [1] Let C be a nonempty closed convex subset of real Hilbert space.
Let {Ti}Ni=1 be a finite family of ki-strictly pseudo-contractive mapping of C into C

with
∩N

i=1 F (Ti) ̸= ∅ and k = max{ki : i = 1, 2, . . . , N} and let αj = (αj
1, α

j
2, α

j
3) ∈

I×I×I, j = 1, 2, 3, . . . , N, where I = [0, 1], αj
1+αj

2+αj
3 = 1, αj

1, α
j
3 ∈ (k, 1) for all

j = 1, 2, . . . , N − 1 and αN
1 ∈ (k, 1], αN

3 ∈ (k, 1], αj
2 ∈ (k, 1] for all j = 1, 2, . . . , N.

Let S be the mapping generated by T1, . . . , TN and α1, α2, . . . , αN . Then F (S) =∩N
i=1 F (Ti) and S is a nonexpansive mapping.



Strictly Pseudo-Contractive Mappings for a Hierarchical Problem ... 5

Lemma 2.7. [19] A real Hilbert space H satisfies Opial’s condition, i.e, for any
sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥,

holds for each y ∈ H with x ̸= y.

Lemma 2.8. [18] Let C be a nonempty closed convex subset of a real Hilbert
and T : C → C be a nonexpansive mapping. Then T is demi-closed on C,i.e.,if
xn ⇀ x ∈ C and xn − Txn → 0, then x = Tx.

3 Main Results

In this section, we prove strong convergence of algorithm (1.6) and solving a
common solution of a general hierarchical problems and fixed point problems of
finite family of strict pseudo-contractive mappings. First, we can prove the lemmas
that will be used in the main theorem.

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H, let {Ti}Ni=1 be a finite family of ki-strictly pseudo-contraction of C into itself

for some ki ∈ [0, 1) and k = max{ki : i = 1, 2, . . . , N} with
∩N

i=1 F (Ti) ̸= ∅. Let
Sn be the S-mapping generated by T1, T2, . . . , TN and α

(n)
1 , α

(n)
2 , . . . , α

(n)
N , where

α
(n)
j = (αn,j

1 , αn,j
2 , αn,j

3 ) ∈ I × I × I, I = [0, 1], αn,j
1 + αn,j

2 + αn,j
3 = 1 and k < a ≤

αn,j
1 , αn,j

3 ≤ b < 1 for all k < c ≤ αn,N
1 ≤ 1, k ≤ αn,N

3 ≤ d < 1, k ≤ αn,j
2 ≤ e < 1

for all j = 1, 2, . . . , N and
∑∞

n=1 |α
n+1,j
1 − αn,j

1 | < ∞,
∑∞

n=1 |α
n+1,j
3 − αn,j

3 | < ∞
for all j = {1, 2, 3, . . . , N}. Then for all x ∈ H,

∑∞
n=1 ∥Sn+1x− Snx∥ < ∞.

Proof. For each x ∈ C and n ∈ N, we have

∥Un+1,1x− Un,1x∥ = ∥αn+1,1
1 T1x+ (1− αn+1,1

1 x)− αn,1
1 T1x+ (1− αn,1

1 )x∥
= ∥αn+1,1

1 T1x− αn+1,1
1 x− αn,1

1 T1x+ αn,1
1 x∥

= ∥(αn+1,1
1 − αn,1

1 )T1x− (αn+1,1
1 − αn,1

1 )x∥
= |αn+1,1

1 − αn,1
1 |∥T1x− x∥ (3.1)
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and for n ∈ N, and for k ∈ {2, 3, . . . , N}, we have

∥Un+1,kx− Un,kx∥ = ∥αn+1,k
1 TkUn+1,k−1x+ αn+1,k

2 Un+1,k−1x+ αn+1,k
3 x

−αn,k
1 TkUn,k−1x+ αn,k

2 Un,k−1x+ αn,k
3 x∥

= ∥αn+1,k
1 TkUn+1,k−1x+ αn+1,k

3 x− αn,k
1 TkUn,k−1x− αn,k

3 x

+αn+1,k
2 Un+1,k−1x− αn,k

2 Un,k−1x∥
= ∥αn+1,k

1 TkUn+1,k−1x− αn+1,k
1 TkUn,k−1x+ αn+1,k

1 TkUn,k−1x

−αn,k
1 TkUn,k−1x+ (αn+1,k

3 − αn,k
3 )x+ αn+1,k

2 Un+1,k−1x− αn,k
2 Uk−1x∥

= ∥αn+1,k
1 (TkUn+1,k−1x− TkUn,k−1x) + (αn+1,k

1 − αn,k
1 )TkUn,k−1x

+(αn+1,k
3 − αn,k

3 )x+ αn+1,k
2 Un+1,k−1x− αn,k

2 Un,k−1x∥
= ∥αn+1,k

1 (TkUn+1,k−1x− TkUn,k−1x) + (αn+1,k
1 − αn,k

1 )

×TkUn,k−1x+ (αn+1,k
3 − αn,k

3 )x+ αn+1,k
2 Un+1,k−1x

−αn+1,k
2 Un,k−1x+ αn+1,k

2 Un,k−1x− αn,k
2 Un,k−1x∥

= ∥αn+1,k
1 (TkUn+1,k−1x− TkUn,k−1x) + (αn+1,k

1 − αn,k
1 )

×TkUn,k−1x+ (αn+1,k
3 − αn,k

3 )x+ αn+1,k
2 (Un+1,k−1x

−Un,k−1x) + (αn+1,k
2 − αn,k

2 )Un,k−1x∥
≤ αn+1,k

1 ∥TkUn+1,k−1x− TkUn,k−1x∥+ |αn+1,k
1 − αn,k

1 |∥TkUn,k−1x∥
+|αn+1,k

3 − αn,k
3 |∥x∥

+αn+1,k
2 ∥Un+1,k−1x− Un,k−1x∥+ |αn+1,k

2 − αn,k
2 |∥Un,k−1x∥

= αn+1,k
1 ∥TkUn+1,k−1x− TkUn,k−1x∥+ |αn+1,k

1 − αn,k
1 |∥TkUn,k−1x∥

+αn+1,k
2 ∥Un+1,k−1x− Un,k−1x∥+ |1− αn+1,k

1

−αn+1,k
3 − 1 + αn,k

1 + αn,k
3 |∥Un,k−1x∥+ |αn+1,k

3 − αn,k
3 |∥x∥

≤ αn+1,k
1

1 + k

1− k
∥Un+1,k−1x− Un,k−1x∥+ |αn+1,k

1 − αn,k
1 |∥TkUn,k−1x∥

+αn+1,k
2 ∥Un+1,k−1x− Un,k−1x∥+ (|αn,k

1

−αn+1,k
1 |+ |αn,k

3 − αn+1,k
3 |)∥Un,k−1x∥+ |αn+1,k

3 − αn,k
3 |∥x∥

≤ 1 + k

1− k
∥Un+1,k−1x− Un,k−1x∥+ |αn+1,k

1 − αn,k
1 |∥TkUn,k−1x∥

+
1 + k

1− k
∥Un+1,k−1x− Un,k−1x∥+ (|αn,k

1 − αn+1,k
1 |

+|αn,k
3 − αn+1,k

3 |)∥Un,k−1x∥+ |αn+1,k
3 − αn,k

3 |∥x∥

=
2

1− k
∥Un+1,k−1x− Un,k−1x∥+ |αn+1,k

1 − αn,k
1 |(∥TkUn,k−1x

+∥Un,k−1x∥) + |αn,k
3 − αn+1,k

3 |(∥Un,k−1x∥+ ∥x∥). (3.2)
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By (3.1) and (3.2), we have

∥Sn+1x− Snx∥ = ∥Un+1,Nx− Un,Nx∥

≤ 2

1− k
∥Un+1,N−1x− Un,N−1x∥+ |αn+1,N

1 − αn,N
1 |(∥TNUn,N−1x∥

+∥Un,N−1x∥) + |αn+1,N
3 − αn,N

3 |(∥Un,N−1x∥+ ∥x∥)

≤ 2

1− k

(
2

1− k
∥Un+1,N−2x− Un,N−2x∥

+|αn+1,N−1
1 − αn,N−1

1 |(∥TN−1Un,N−2x∥+ ∥Un,N−2x∥)

+|αn+1,N−1
3 − αn,N−1

3 |[∥Un,N−2x∥+ ∥x∥]
)

+|αn+1,N
1 − αn,N

1 |(∥TNUn,N−1x∥+ ∥Un,N−1x∥)
+|αn+1,N

3 − αn,N
3 |(∥Un,N−1x∥+ ∥x∥)

=

(
2

1− k

)2

∥Un+1,N−2x− Un,N−2x∥+
N∑

j=N−1

(
2

1− k

)N−j

|αn+1,j
1 − αn,j

1 |(∥TjUn,j−1x∥

+∥Un,j−1x∥) +
N∑

j=N−1

(
2

1− k

)N−j

|αn+1,j
3 − αn,j

3 |(∥Un,j−1x∥+ ∥x∥)

...

≤
(

2

1− k

)N−1

∥Un+1,1x− Un,1x∥+
N∑
j=2

(
2

1− k

)N−j

|αn+1,j
1 − αn,j

1 |(∥TjUn,j−1x∥

+∥Un,j−1x∥) +
N∑
j=2

(
2

1− k

)N−j

|αn+1,j
3 − αn,j

3 |(∥Un,j−1x∥+ ∥x∥)

=

(
2

1− k

)N−1

|αn+1,1
1 − αn,1

1 |∥T1x− x∥+
N∑
j=2

(
2

1− k

)N−j

+|αn+1,j
1 − αn,j

1 |(∥TjUn,j−1x∥+ ∥Un,j−1x∥+ ∥x∥) +
N∑
j=2

(
2

1− k

)N−j

+|αn+1,j
3 − αn,j

3 |(∥Un,j−1x∥+ ∥x∥).

This implies by assumption we have that

∞∑
n=1

∥Sn+1x− Snx∥ < ∞.

This complete the proof.

Lemma 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H, let {Ti}Ni=1 be a finite family of ki-strictly pseudo-contraction of C into itself



8 Thai J. Math. x (20xx)/ I. Inchan and T. Gadeewong

for some ki ∈ [0, 1) and k = max{ki : i = 1, 2, . . . , N} with
∩N

i=1 F (Ti) ̸= ∅. Let
Sn be the S-mapping generated by T1, T2, . . . , TN and α

(n)
1 , α

(n)
2 , . . . , α

(n)
N , where

α
(n)
j = (αn,j

1 , αn,j
2 , αn,j

3 ) ∈ I × I × I, I = [0, 1], αn,j
1 + αn,j

2 + αn,j
3 = 1 and satisfy

conditions:

(1) k < a ≤ αn,j
1 , αn,j

3 ≤ b < 1 for all k < c ≤ αn,N
1 ≤ 1, k ≤ αn,N

3 ≤ d < 1, k ≤
αn,j
2 ≤ e < 1 for all j = 1, 2, . . . , N

(2)
∑∞

n=1 |α
n,j
1 −αj

1| < ∞,
∑∞

n=1 |α
n,j
2 −αj

2| < ∞,
∑∞

n=1 |α
n,j
3 −αj

3| < ∞ for all
j = {1, 2, 3, . . . , N}.

Then for all x ∈ H, limn→∞ ∥Snx− Sx∥ = 0.

Proof. Let x ∈ C and for each n ∈ N, from the definition of S mapping and
Lemma 2.4, we have

∥Un,1x− U1x∥ = ∥αn,1
1 T1Un,0x+ αn,1

2 Un,0x+ αn,1
3 x− (α1

1T1U0x+ α1
2U0x+ α1

3x)∥
≤ |αn,1

1 − α1
1|∥T1x∥+ |αn,1

2 − α1
2|∥x∥+ |αn,1

3 − α1
3|∥x∥.

From boundedness and condition (2) we have

lim
n→∞

∥Un,1x− U1x∥ = 0. (3.3)

Next, consider

∥Un,2x− U2x∥ = ∥αn,2
1 T2Un,1x+ αn,2

2 Un,1x+ αn,2
3 x− (α2

1T2U1x+ α2
2U1x+ α2

3x)∥
≤ ∥αn,2

1 T2Un,1x− αn,2
1 T2U1x+ αn,2

1 T2U1x+ αn,2
2 Un,1x+ αn,2

3 x

−(α2
1T2U1x+ α2

2U1x+ α2
3x)∥

≤ ∥αn,2
1 (T2Un,1x− T2U1x)∥+ ∥(αn,2

3 − α2
3)(x)∥+ ∥(αn,2

1 − α2
1)(T2U1x)∥

+∥αn,2
2 Un,1x− α2

2U1x∥
≤ αn,2

1 ∥T2Un,1x− T2U1x∥+ |αn,2
3 − α2

3|∥x∥+ |αn,2
1 − α2

1|∥T2U1x∥
+αn,2

2 ∥Un,1x− U1x∥+ |αn,2
2 − α2

2|∥U1x∥

≤ αn,2
1

1 + k

1− k
∥Un,1x− U1x∥+ |αn,2

3 − α2
3|∥x∥+ |αn,2

1 − α2
1|∥T2U1x∥

+αn,2
2 ∥Un,1x− U1x∥+ |αn,2

2 − α2
2|∥U1x∥.

From boundedness, condition (2) and equation (3.3), we have

lim
n→∞

∥Un,2x− U2x∥ = 0. (3.4)

Similarly of the proof, we have

lim
n→∞

∥Un,Nx− UNx∥ = 0. (3.5)

Since ∥Snx− Sx∥ = ∥Un,Nx− UNx∥, we have

lim
n→∞

∥Snx− Sx∥ = 0. (3.6)

This complete the proof.
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Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space
H, let T be a λ-strictly pseudo-contractive mapping and {Ti}Ni=1 be a finite family
of ki-strictly pseudo-contractive mappings of C into itself for some ki ∈ [0, 1) and

k = max{ki : i = 1, 2, ..., N} which
∩N

i=1 F (Ti) ̸= ∅. Let Sn be the S-mapping

generated by T1, T2, ..., TN and αn
1 , α

n
2 , ..., α

n
N where αn

j = (αn,j
1 , αn,j

2 , αn,j
3 ) ∈ I ×

I × I, I = [0, 1], αn,j
1 + αn,j

2 + αn,j
3 = 1 and k < a ≤ αn,j

1 , αn,j
3 ≤ b < 1 for all

j = 1, 2, ..., N − 1, k < c ≤ αn,N
1 ≤ 1, k ≤ αn,N

3 ≤ d < 1, k ≤ αn,j
2 ≤ e < 1 for all

j = 1, 2, ...N . Assume that set Ω of solution of general hierarchical problem (1.5)
is nonempty. For a mapping f : C → C is a contraction with γ ∈ (0, 1), sequence
{αn}, {βn} are two real number in (0, 1) and assume that the following condition
hold:

(1) limn→∞ αn = 0 and limn→∞
βn

αn
= 0,

(2)
∑∞

n=1 βn = ∞,

(3) limn→∞
1
βn

| 1
αn

− 1
αn−1

| = 0, and limn→∞
1
αn

|1− βn−1

βn
| = 0

(4)
∑∞

n=1 |α
n+1,j
1 −αn,j

1 | < ∞,
∑∞

n=1 |α
n+1,j
3 −αn,j

3 | < ∞ for all j = {1, 2, 3, . . . , N},

(5)
∑∞

n=1 |α
n,j
1 −αj

1| < ∞,
∑∞

n=1 |α
n,j
2 −αj

2| < ∞,
∑∞

n=1 |α
n,j
3 −αj

3| < ∞ for all
j = {1, 2, 3, . . . , N}.

Then the sequence {xn} in (1.6) solve the following variational inequality:{
x̃ ∈ Ω

⟨(I − f)x̃, x− x̃⟩ ≥ 0, ∀x ∈ Ω.
(3.7)

Proof. From (1.6), let yn = βnf(xn) + (1− βn)xn and x∗ ∈ Ω we have

∥xn+1 − x∗∥ = ∥αnSnxn + (1− αn)Skyn − x∗

≤ αn∥Snxn − x∗∥+ (1− αn)∥Skyn − x∗∥
≤ αn∥xn − x∗∥+ (1− αn)∥yn − x∗∥. (3.8)

Consider,

∥yn − x∗∥ = ∥βnf(xn) + (1− βn)xn − x∗∥
≤ ∥βnγ∥xn − x∗∥+ ∥f(x∗)− x∗∥+ (1− βn)∥xn − x∗∥
= (1− (1− γ)βn)∥xn − x∗∥+ ∥f(x∗)− x∗∥. (3.9)

From (3.8) and (3.9), we have

∥xn+1 − x∗∥ ≤ αn∥xn − x∗∥+ (1− αn)
[
(1− (1− γ)βn)∥xn − x∗∥+ ∥f(x∗)− x∗∥

]
≤ αn∥xn − x∗∥+ (1− αn)∥xn − x∗∥+ (1− αn)∥f(x∗)− x∗∥
= ∥xn − x∗∥+ (1− αn)∥f(x∗)− x∗∥
≤ max{∥x0 − x∗∥, ∥f(x∗)− x∗∥}.
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Then {xn} and {yn} are bounded and hence {f(xn)}, {Snxn}, {Sλyn} are also.
Now we consider

∥yn − yn−1∥ = ∥βnf(xn)− βnf(xn−1) + βnf(xn−1)− βn−1f(xn−1) + (1− βn)xn

−(1− βn)xn−1 + (1− βn)xn−1 − (1− βn−1)xn−1∥
≤ βnγ∥xn − xn−1∥+ |βn − βn−1|∥f(xn−1)∥+ (1− βn)∥xn − xn−1∥

+|βn − βn−1|∥xn−1∥
= (1− (1− γ)βn)∥xn − xn−1∥+ |βn − βn−1|(∥f(xn−1)∥+ ∥xn−1∥).

From definition of {xn} and nonexpansiveness of Sn, we have

∥xn − xn−1∥ = ∥αnSnxn + (1− αn)Sλyn − αn−1Sn−1xn−1 + (1− αn−1)Sλyn−1∥
= ∥αnSnxn − αnSnxn−1 + αnSnxn−1 − αn−1Snxn−1 + αn−1Snxn−1

−αn−1Sn−1xn−1 + (1− αn)Sλyn−1 + (1− αn)Sλyn−1 − (1− αn−1)Sλyn−1∥
≤ αn∥xn − xn−1∥+ |αn − αn−1|∥Snxn−1∥+ αn−1∥Snxn−1 − Sn−1xn−1∥

+(1− αn)∥yn − yn−1∥+ |αn − αn−1|∥Sλyn−1∥
≤ αn∥xn − xn−1∥+ (1− αn)

[
(1− (1− γ)βn)∥xn − xn−1∥

+|βn − βn−1|(∥f(xn−1)∥+ ∥xn−1∥)
]
+ |αn − αn−1|(∥Snxn−1∥+ ∥Sλyn−1∥)

+αn−1∥Snxn−1 − Sn−1xn−1∥
≤

[
αn + (1− αn)(1− (1− γ)βn)

]
∥xn − xn−1∥+ |βn − βn−1|(∥f(xn−1)∥+ ∥xn−1∥)

+|αn − αn−1|(∥Snxn−1∥+ ∥Sλyn−1∥) + αn−1∥Snxn−1 − Sn−1xn−1∥
=

[
1− (1− γ)βn(1− αn)

]
∥xn − xn−1∥+ |βn − βn−1|(∥f(xn−1)∥+ ∥xn−1∥)

+|αn − αn−1|(∥Snxn−1∥+ ∥Sλyn−1∥) + αn−1∥Snxn−1 − Sn−1xn−1∥.

Put M = sup

{
∥f(xn−1)∥, ∥Snxn−1∥, ∥Sλyn−1∥

}
, n ≥ 1, it follows that

∥xn+1 − xn∥ ≤ [1− (1− γ)βn((1− αn)]∥xn − xn−1∥+ (|βn − βn−1|+ |αn − αn−1|)M
+αn−1∥Snxn−1 − Sn−1xn−1∥.

Put δn = ∥Snxn−1−Sn−1xn−1∥, from Lemma 3.1, we have Σ∞
n=1δn < ∞, it follows
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that

∥xn+1 − xn∥
αn

= [1− (1− γ)βn(1− αn)]
∥xn − xn−1∥

αn
+

|βn − βn−1|
αn

M +
|βn − βn−1|

αn
+ αn−1

δn
αn

= [1− (1− γ)βn(1− αn)]
∥xn − xn−1∥

αn−1

+[1− (1− γ)βn(1− αn)]

(
∥xn − xn−1∥

αn
− ∥xn − xn−1∥

αn−1

)
+
|βn − βn−1|

αn
M +

|αn − αn−1|
αn

M + αn−1
δn
αn

≤ [1− (1− γ)βn(1− αn)]
∥xn − xn−1∥

αn−1

+

(∣∣∣∣ 1

αn
− 1

αn−1

∣∣∣∣+ |αn − αn−1|
αn

+
|βn − βn−1|

αn
+

δn
αn

)
M

= [1− (1− γ)βn(1− αn)]
∥xn − xn−1∥

αn−1

+(1− γ)βn(1− αn)

{
M

(1− γ)(1− αn)

(
1

βn

∣∣∣∣ 1

αn
− 1

αn−1

∣∣∣∣+ 1

βn

|αn − αn−1|
αn

+
1

βn

|αn − αn−1|
αn

+
1

βn

|βn − βn−1|
αn

+
δn
αn

)}
.

From Lemma 2.5, we obtain that

lim
n→∞

∥xn+1 − xn∥
αn

= 0. (3.10)

This implies that
lim

n→∞
∥xn+1 − xn∥ = 0. (3.11)

From (1.6) and (3.11), we have that

lim
n→∞

∥xn − Sλyn∥ = 0. (3.12)

It follows that
yn − xn = βn(f(xn)− xn) → 0. (3.13)

It implies that

∥yn − Sλyn∥ ≤ ∥yn − xn∥+ ∥xn − Sλyn∥ → 0. (3.14)

Since the sequence {xn} and {yn} are also bounded. Thus there exists a subse-
quence of {yn}, which is still denoted by {yni} which converges weakly to a point
x̃ ∈ H. Therefore, x̃ ∈ Fix(T ) by (1.6), we observe that

xn+1 − xn = αn(Snxn − xn) + (1− αn)(Sλyn − yn) + (1− αn)βn(fxn − xn),
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that is,

xn − xn+1

αn
= (I − Sn)xn +

1− αn

αn
(I − Sλ)yn +

βn(1− αn)

αn
(I − f)xn.

Set zn = (xn−xn+1)
αn

for each n ≥ 1, that is

zn = (I − Sn)xn +
1− αn

αn
(I − Sλ)yn +

βn(1− αn)

αn
(I − f)xn.

Using monotonicity of I − Sλ and I − Sn, we derive that, for all u ∈ Fix(T ),

⟨zn, xn − u⟩ = ⟨(I − Sn)xn, xn − u⟩+ 1− αn

αn
⟨(I − Sλ)yn − (I − Sλ)u, yn − u⟩

+
1− αn

αn
⟨(I − Sλ)yn, xn − yn⟩+

βn(1− αn)

αn
⟨(I − f)xn, xn − u⟩

≥ ⟨(I − Sn)u, xn − u⟩+ βn(1− αn)

αn
⟨(I − f)xn, xn − u⟩

+
(1− αn)βn

αn
⟨(I − Sλyn, xn − fxn)⟩

= ⟨(I − S)u, xn − u⟩+ ⟨(S − Sn)u, xn − u⟩+ βn(1− αn)

αn
⟨(I − f)xn, xn − u⟩

+
(1− αn)βn

αn
⟨(I − Sλ)yn, xn − fxn⟩.

But, since zn → 0, βn

αn
→ 0 and limn→∞ ∥Snu − Su∥ = 0, it follows from the

above inequality that

lim sup
n→∞

⟨(I − S)u, xn − u⟩ ≤ 0, ∀u ∈ Fix(T ).

It suffices to guarantee that ωw(xn) ⊂ Ω. As a matter of fact, if we take any
x∗ ∈ ωw(xn), then there exists a subsequence {xnj} of {xn} such that xnj ⇀ x∗.
Therefore, we have

⟨(I − S)u, x∗ − u⟩ = lim
j→∞

⟨(I − S)u, xnj − u⟩ ≤ 0, ∀u ∈ Fix(T ).

Note that x∗ ∈ Fix(T ). Hence x∗ solves the following problem:{
x∗ ∈ Fix(T )
⟨(I − S)u, x∗ − u⟩ ≥ 0, ∀u ∈ Fix(T ).

It is obvious that this equivalent to the problem (1.5) by Lemma 3.2, we have
Sn → S uniformly in any bounded set. Thus x∗ ∈ Ω. Let x̃ be the solution of
the variational inequality (3.7), by Lemma 2.7 we have x̃ is unique. Now, take a
subsequence {xni} of {xn} such that

lim sup
n→∞

⟨(I − f)x̃, xn − x̃⟩ = lim
i→∞

⟨(I − f)x̃, xni − x̃⟩.
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Without loss of generality, we can assume that xni ⇀ x∗. Then x∗ ∈ Ω. Therefore,
we have

lim sup
n→∞

⟨(I − f)x̃, xn − x̃⟩ = ⟨(I − f)x̃, x∗ − x̃⟩ ≥ 0.

This completes the proof.

Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert space
H, let T be a λ-strictly pseudo-contractive mapping and {Ti}Ni=1 be a finite family
of ki-strictly pseudo-contractive mappings of C into itself for some ki ∈ [0, 1) and

k = max{ki : i = 1, 2, ..., N} which
∩N

i=1 F (Ti) ̸= ∅. Let Sn be the S-mapping

generated by T1, T2, ..., TN and αn
1 , α

n
2 , ..., α

n
N where αn

j = (αn,j
1 , αn,j

2 , αn,j
3 ) ∈ I ×

I × I, I = [0, 1], αn,j
1 + αn,j

2 + αn,j
3 = 1 and k < a ≤ αn,j

1 , αn,j
3 ≤ b < 1 for all

j = 1, 2, ..., N − 1, k < c ≤ αn,N
1 ≤ 1, k ≤ αn,N

3 ≤ d < 1, k ≤ αn,j
2 ≤ e < 1 for all

j = 1, 2, ...N . Assume that set Ω of solution of generalized hierarchical problem
(1.5) is nonempty. For a mapping f : C → C is a contraction with γ ∈ (0, 1),
sequence {αn}, {βn} are two real number in (0, 1) and assume that the following
condition hold:

(1) limn→∞ αn = 0 and limn→∞
βn

αn
= 0,

(2)
∑∞

n=1 βn = ∞,

(3) limn→∞
1
βn

| 1
αn

− 1
αn−1

| = 0 and limn→∞
1
αn

|1− βn−1

βn
| = 0,

(4)
∑∞

n=1 |α
n+1,j
1 −αn,j

1 | < ∞,
∑∞

n=1 |α
n+1,j
3 −αn,j

3 | < ∞ for all j = {1, 2, 3, . . . , N},

(5)
∑∞

n=1 |α
n,j
1 −αj

1| < ∞,
∑∞

n=1 |α
n,j
2 −αj

2| < ∞,
∑∞

n=1 |α
n,j
3 −αj

3| < ∞ for all
j = {1, 2, 3, . . . , N},

(6) there exists a constant d > 0 such that ∥x−Sλx∥ ≥ ρDist(x, F (Sλ)), where

Dist(x, F (Sλ)) = inf
y∈F (Sλ)

∥x− y∥.

Then the sequence {xn} difined by (1.6) converges strongly to a point x̃ ∈ Fix(T ),
which solve the variational inequality problem (3.7).

Proof. From (1.6), we have

xn+1 − x̃ = αn(Snxn − Snx̃) + αn(Snx̃− x̃) + (1− αn)(Sλyn − x̃).

Thus we have

∥xn+1 − x̃∥2 ≤ ∥αn(Snxn − Snx̃) + (1− αn)(Sλyn − x̃)∥2 + 2αn⟨Snx̃− x̃, xn+1 − x̃⟩
≤ (1− αn)∥Sλyn − x̃∥2 + αn∥Snxn − Snx̃∥2 + 2αn⟨Snx̃− x̃, xn+1 − x̃⟩(3.15)

≤ (1− αn)∥yn − x̃∥2 + αn∥xn − x̃∥2 + 2αn⟨Snx̃− x̃, xn+1 − x̃⟩.
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Now we consider

∥yn − x̃∥2 = ∥(1− βn)(xn − x̃) + βn(fxn − fx̃) + βn(fx̃− x̃)∥2

≤ ∥(1− βn)(xn − x̃) + βn(fxn − fx̃)∥2 + 2βn⟨fx̃− x̃, yn − x̃⟩
≤ (1− βn)∥xn − x̃∥2 + βn∥(fxn − fx̃)∥2 + 2βn⟨fx̃− x̃, yn − x̃⟩(3.16)

≤ (1− βn)∥xn − x̃∥2 + βnγ
2∥xn − x̃∥2 + 2βn⟨fx̃− x̃, yn − x̃⟩

=
[
1−

(
1− γ2

)
βn

]
∥xn − x̃∥2 + 2βn⟨fx̃− x̃, yn − x̃⟩.

Substituting (3.16) into (3.15), we get

∥xn+1 − x̃∥2 = αn∥xn − x̃∥2 + (1− αn)
[
1−

(
1− γ2

)
βn

]
∥xn − x̃∥2

+2βn(1− αn)⟨fx̃− x̃, yn − x̃⟩+ 2αn⟨Snx̃− x̃, xn+1 − x̃⟩
=

[
1−

(
1− γ2

)
βn(1− αn)

]
∥xn − x̃∥2 + 2βn(1− αn)⟨fx̃− x̃, yn − x̃⟩

+2αn⟨Snx̃− x̃, xn+1 − x̃⟩
=

[
1−

(
1− γ2

)
βn(1− αn)

]
∥xn − x̃∥2 +

(
1− γ2

)
βn(1− αn)

×
{

1

1− γ2
⟨fx̃− x̃, yn − x̃⟩+ 2

(1− γ2)(1− αn)
× αn

βn
⟨Snx̃− x̃, xn+1 − x̃⟩

}
.(3.17)

By Theorem 3.3, we note that every weak cluster point of the sequence {xn} is
in Ω. Since yn − xn → 0, then every weak cluster point of {yn} is also in Ω.
Consequently, since x̃ = projΩ(fx̃), we easily have

lim sup
n→∞

⟨fx̃− x̃, yn − x̃⟩ ≤ 0. (3.18)

On the other hand, we observe that

⟨Snx̃−x̃, xn+1−x̃⟩ =
⟨
Snx̃−x̃, projFix(Sλ)xn+1−x̃

⟩
+

⟨
Snx̃−x̃, xn+1−projFix(Sλ)xn+1

⟩
Since x̃ is a solution of the problem(1.5) and projFix(Sλ)xn+1 ∈ Fix(Sλ), we have⟨

Snx̃− x̃, projFix(Sλ)xn+1 − x̃
⟩
≤ 0.

Thus it follows that

⟨Snx̃− x̃, xn+1 − x̃⟩ ≤ ⟨Snx̃− x̃, xn+1 − projFix(Sλ)xn+1⟩
≤ ∥Snx̃− x̃∥

∥∥xn+1 − projFix(Sλ)xn+1

∥∥
= ∥Snx̃− x̃∥ ×Dist(xn+1, F ix(Sλ))

≤ 1

ρ
∥Snx̃− x̃∥∥xn+1 − Sλxn+1∥.

We note that

∥xn+1 − Sλxn+1∥ ≤ ∥xn+1 − Sλxn∥+ ∥Sλxn − Sλxn+1∥
≤ αn∥Snxn − Sλxn∥+ (1− αn)∥Sλyn − Sλxn∥+ ∥xn+1 − xn∥
≤ αn∥Snxn − Sλxn∥+ ∥yn − xn∥+ ∥xn+1 − xn∥
≤ αn∥Snxn − Sλxn∥+ βn∥fxn − xn∥+ ∥xn+1 − xn∥.
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Hence we have

αn

βn
⟨Snx̃− x̃, xn+1 − x̃⟩ ≤ α2

n

βn

(
1

ρ
∥Snx̃− x̃∥∥Snxn − Sλxn∥

)
+αn

(
1

ρ
∥Snx̃− x̃∥∥fxn − xn∥

)
+
α2
n

βn

∥xn+1 − xn∥
αn

(
1

ρ
∥Snx̃− x̃∥

)
.

From Theorem 3.3 we have limn→∞
∥xn+1−xn∥

αn
= 0. And then, we note that

{ 1
ρ∥Snx̃ − x̃∥∥Snxn − Sλxn∥}, { 1

ρ∥Snx̃ − x̃∥∥fxn − xn∥}, and { 1
ρ∥Snx̃ − x̃∥} are

all bounded. Hence it follows from (1) and the above inequality that

lim sup
n→∞

αn

βn
⟨Snx̃− x̃, xn+1 − x̃⟩ ≤ 0.

Finally, by (3.17) and Lemma 2.5, we conclude that the sequence {xn} con-
verges strongly to a point x̃ ∈ Fix(Sλ) = Fix(T ). This completes the proof.
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Abstract

In this paper, we prove the existence theorem for a mapping defined
by T = T1 + T2 when T1 is a μ1-Lipschitz continuous and γ-strongly
monotone mapping, T2 is a μ2-Lipschitz continuous mapping, we have a
mapping T is Lipschitz continuous but not strongly monotone mapping.
This work is extend and improve the result of N. Petrot [17].
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47H20

Keywords: asymptotically k-strict pseudo-contractive mapping in the in-
termediate sense; Mann’s iteration method

1 Introduction

The theory of variational inequalities is a branch of the mathematical sciences
dealing with general equilibrium problems. It has a wide range of applications
in economics, operations research, industry, physical, and engineering sciences.
Many research papers have been written lately, both on the theory and ap-
plications of this field. Important connection with main areas of pure and
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applied science have been made, see for example [2, 5, 6] and the references
cited therein.

Variational inequalities theory, which was introduce by Stampacchia [18],
provides us with a simple, natural general and unified framework to study a
wide class of problems arising in pure and applied science. The development of
variational inequality theory can be viewed as the simultaneous pursuit of two
different lines of research. On the one hand, it reveals the fundamental facts on
the qualitative aspects of the solutions to important classes of problems. On
the other hand, it also enables us to develop highly efficient and powerful new
numerical methods for solving, for example, obstacle, unilateral, free, moving,
and complex equilibrium problems.

In this work we consider the condition for existence solution of variational
inequalities problems in nonconvex sets. We will proved that a mapping T =
T1+T2 when T1 is a μ1-Lipschitz continuous and γ-strongly monotone mapping,
T2 is a μ2-Lipschitz continuous mapping has a solution on nonconvex satisfying
uniformly r-prox regular subset of Hilbert space. The result extended and
improved result of N. Petrot [17].

Let H be a real Hilbert space and let C be a nonempty closed subset of
H . A mapping T of C into H is called γ − strongly monotone if there exists
a constant γ > 0 such that

〈Tx − Ty, x− y〉 ≥ γ‖x − y‖2, (1)

for all x, y ∈ C. T is called μ−Lipschitz if there exists a constant μ > 0 such
that

‖Tx − Ty‖ ≤ μ‖x − y‖, (2)

for all x, y ∈ C.

2 Preliminaries

In this section, we collect and give some useful lemmas that will be used
for our main result in the next section.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖
respectively. Let C be a closed convex subset of H , let PC be the matric
projection of H onto C i.e. for x ∈ H, PCx satisfies the property

‖x − PCx‖ = miny∈C‖x − y‖.
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It is know that PC is nonexpansive. Further, for x ∈ H and z ∈ C

z = PCx ⇔ 〈x − z, z − y〉 ≥ 0, ∀y ∈ C.

Definition 2.1. Let u ∈ H be a point not lying in C. A point v ∈ C is
called a closest point or a projection of u onto C if dC(u) = ‖u − v‖ when dC

is a usual distance. The set of all such closest points is denoted by projC(u);
that is,

projC(u) = {v ∈ C : dC(u) = ‖u − v‖}. (3)

Definition 2.2. Let C be a subset of H. The proximal normal cone to C
at x is given by

NP
C (x) = {z ∈ H : ∃ρ > 0; x ∈ projC(x + ρz)} (4)

The following characterization of NP
C (x) can be found in [3].

Lemma 2.3. Let C be a closed subset of a Hilbert space H. Then

z ∈ NP
C (x) if and only if ∃σ > 0, 〈z, y − x〉 ≤ σ‖y − x‖2, ∀y ∈ C. (5)

Clark et al. [4] and Poliquin et al. [16] have introduced and atudied a new
class of nonconvex sets, which are called uniformly prox-regular sets. This class
or uniformly prox-regular sets has played an important part in many nonconvex
applications such as optimization, dynamic systems, and differential inclusions.

Definition 2.4. For a given r ∈ (0, +∞], a subset C of H is said to be
uniformly prox-regular with respect to r if, for all x ∈ C and for all 0 
= z ∈
NP

C (x), one has

〈 z

‖z‖ , x − x〉 ≤ 1

2r
‖x − x‖2, ∀x ∈ C. (6)

It is well known that a closed subset of a Hilbert space is convex if and only
if it is proximally smooth of radius r > 0. Thus, in definition 2.4, in the case of
r = ∞, the uniform r-prox-regularity C is equivalent to convexity of C. Then,
it is clear that the class of uniformly prox-regular sets is sufficiently large to
include the class p-convex sets, C1,1 submanifolds (possibly with boundary) of
H , the images under a C1,1 diffeomorphism of convex sets, and many other
nonconvex sets; see [4, 16].

Lemma 2.5. [17] Let C be a nonempty closed subset of H, r ∈ (0, +∞]
and set Cr; = {x ∈ H : d(x, C) < r}. If C is uniform r-uniformly prox-regular,
then the following hold:
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(1) for all x ∈ Cr, projC(x) 
= ∅,
(2) for all s ∈ (0, r), projC is Lipschitz continuous with constant r

r−s
on

Cs,

(3) the proximal normal cone is closed as a set-valued mapping.

For a given nonlinear operator T , we consider the problem of finding u ∈ Cr

such that

〈Tu, v − u〉 ≥ 0 ∀ v ∈ Cr (7)

which is called the nonconvex variational inequality. For the existence of a
solution and other aspects of the nonconvex variational inequalities and their
generalization, see [9, 15].

Similarly, if Cr is a nonconvex (uniformly prox-regular) set, then problem
(7) is equivalent to finding u ∈ Cr such that

0 ∈ Tu + NP
Cr

(u) (8)

where NP
Cr

(u) denotes the normal cone of Cr at u in the sense of nonconvex
analysis. Problem (8) is called the nonconvex variational inclusion problem
associated with nonconvex variational inequality (7).

3 Main Result

Let H be a real Hilbert space, and let C be a nonempty closed subset of
H . In this section, will consider the following problem: find x∗ ∈ C such that

−Tx∗ ∈ NP
C (x∗). (9)

The problem of type (9) was studied by Noor [7] but in a finite dimension
Hilbert space setting. In 2010 [17] Petrot intend to consider the problem (9)
in an infinite dimension Hilbert space for a mapping T satisfied μ-Lipschitz
continuous and γ-strongly monotone. In this section we extended the result of
[17] Petrot to a mapping T = T1 +T2 with T1 is a μ1-Lipschitz continuous and
γ-strongly monotone mapping, T2 is a μ2-Lipschitz continuous mapping. We
see that T is Lipschitz continuous but not strongly monotone mapping. To do
this, the following remark is useful.

Remark 3.1. Let T1 be a μ1-Lipschitz continuous and γ-strongly monotone
mapping, and let T2 be a μ2-Lipschitz continuous mapping. Then the function
f : (1, M) → (0,∞) which defined by
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f(t) =

√
(tγ − μ2)2 − (μ2

1 − μ2
2)(t

2 − 1)

t(μ2
1 − μ2

2)
, ∀ t ∈ M,

where M =
γμ2+

√
(μ2

1−γ2)(μ2
1−μ2

2)

γ2−(μ2
1−μ2

2)
.

In this work, we have to assume that μ2 < μ1. Thus, from now on, without
loss of generality we will always assume that μ2 < μ1.

Theorem 3.2. Let C be a uniformly r-prox-regular closed subset of a Hilbert
space H, and let T1, T2 : C → H be such that T1 is a μ1-Lipschitz continuous
and γ-strongly monotone mapping, T2 is a μ2-Lipschitz continuous mapping.
If T = T1 + T2 and 0 < δT (C) ≤ γr, then the problem (9) has a solution.

Proof. We first, defined a function h : [1, M) → (0,∞) which is defined by

h(x) =
r(t − 1)

tδT (C)

+ f(t), ∀t ∈ [1, M). (10)

We see that the net {ts}s∈(0,r) which is defined by ts = r
r−s

converges to 1 as

s ↓ 0. It follows that h(t) ↓ γ−μ
μ2

1−μ2
2

as ts ↓ 1, we can find s∗ ∈ (0, r) such that
γ−μ2

μ2
1−μ2

2
< h(t), Then we have

ts∗γ−2

ts∗(μ2
1 − μ2

2)
− f(ts∗) < h(ts∗) − f(ts∗) =

r(ts∗ − 1)

ts∗δT (C)
=

s∗

δT (C)
.

Now, we choose a fixed positive real number ρ such that

tsγ − μ2

μ2
1 − μ2

2

− f(ts∗) < ρ < min{tsγ − μ2

μ2
1 − μ2

2

+ f(ts∗),
s∗

δT (C)

}. (11)

Next, for an element x0 ∈ C and use an induction process to obtain a sequence
{xn} ⊂ C satisfying

xn+1 = projC(xn − ρTxn), ∀n = 0, 1, 2, .... (12)

Consequently, from (12) and Lemma 2.5, we have

‖xn+1 − xn‖ = ‖projC(xn − ρTxn) − projC(xn−1 − ρTxn−1)‖
= ts‖(xn − ρTxn) − (xn−1 − ρTxn−1)‖
= ts‖(xn − xn−1) − ρ(Txn − Txn−1)‖ (13)

≤ ts[‖xn − xn−1 − ρ(T1xn − T1xn−1)‖ + ρ‖T2xn − T2xn−1‖]
≤ ts[‖xn − xn−1 − ρ(T1xn − T1xn−1)‖ + ρμ2‖xn − xn−1‖].
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Since the mapping T1 is γ-strongly monotone and μ1-Lipschitz continuous, we
obtain

‖xn − xn−1 − ρ(T1xn − T1xn−1)‖2 = ‖xn − xn−1‖2 − 2ρ〈xn − xn−1, T1xn − T1xn−1〉
+ρ2‖T1xn − T1xn−1‖2

≤ ‖xn − xn−1‖2 − 2ργ‖xn − xn−1‖2 + ρ2μ2
1‖xn − xn−1‖2(14)

= (1 − 2ργ + ρμ2
1)‖xn − xn−1‖2.

It follows that

‖xn − xn−1 − ρ(T1xn − T1xn−1)‖ ≤
√

1 − 2ργ + ρμ2
1‖xn − xn−1‖2. (15)

From (14) and (15), we get

‖xn+1 − xn‖ ≤ ts(ρμ2 +
√

1 − 2ργ + ρμ2
1)‖xn − xn−1‖. (16)

Now, we see that for the choice of ρ, we know that {xn} is a Cauchy sequence
in C. Then {xn} is a convergence sequence, it follows that, if xn → x∗ as
n → ∞ we have x∗ ∈ projC(x∗ + ρ(−Tx∗)) for some ρ > 0. From definition
2.2, we have −Tx∗ ∈ NP

C (x∗). This completes the proof. �

Corollary 3.3. [17] Let C be a uniformly r-prox-regular closed subset of a
Hilbert space H, and let T : C → H be a γ-strongly monotone mapping and
μ-Lipschitz continuous mapping. If 0 < δT (C) ≤ γr, then the problem (9) has
a solution.

Proof. From Theorem 3.2, if T2 ≡ 0 we have a result. �
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Strong Convergence Theorems of Iterative Algorithm for Nonconvex

Variational Inequalities∗
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Abstract

In this work, we suggest and analyze an iterative scheme for solving the system of nonconvex variational
inequalities by using projection technique. We prove strong convergence of iterative scheme to the solution
of the system of nonconvex variational inequalities requires to the modified mapping T which is Lipschitz
continuous but not strongly monotone mapping. Our result can be viewed and improvement the result of N.
Petrot [18].

1 Introduction

The theory of variational inequalities is a branch of the mathematical sciences dealing with general equi-
librium problems. It has a wide range of applications in economics, operations research, industry, physical, and
engineering sciences. Many research papers have been written lately, both on the theory and applications of
this field. Important connection with main areas of pure and applied science have been made, see for example
[3, 6, 7] and the references cited therein.

Variational inequalities theory, which was introduce by Stampacchia [19], provides us with a simple, natural
general and unified framework to study a wide class of problems arising in pure and applied science. The
development of variational inequality theory can be viewed as the simultaneous pursuit of two different lines
of research. On the one hand, it reveals the fundamental facts on the qualitative aspects of the solutions to
important classes of problems. On the other hand, it also enables us to develop highly efficient and powerful
new numerical methods for solving, for example, obstacle, unilateral, free, moving, and complex equilibrium
problems.

In 2010, N. Petrot [18], introduced some existence theorems and provide the conditions for existence solutions
of the variational inequalities problems in nonconvex setting and prove the strongly monotonic assumption of
the mapping may not need for the existence of solutions.
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In this work we consider the iterative scheme for modified mapping is Lipschitz continuous but not strongly
monotone mapping and we can prove strong convergence of iterative to the solution of the system of nonconvex
variational inequalities.

2 Preliminaries

Let C be a closed subset of a real Hilbert space H with inner product 〈·, ·〉 and norm ‖ · ‖ respectively.
Let us recall the following well-known definitions and some auxiliary results of nonlinear convex analysis and
nonsmooth analysis.

Definition 2.1. Let u ∈ H be a point not lying in C. A point v ∈ C is called a closest point or a projection of
u onto C if dC(u) = ‖u− v‖ when dC is a usual distance. The set of all such closest points is denoted by PC(u);
that is,

PC(u) = {v ∈ C : dC(u) = ‖u− v‖}. (2.1)

Definition 2.2. Let C be a subset of H. The proximal normal cone to C at x is given by

NP
C (x) = {z ∈ H : ∃ρ > 0;x ∈ PC(x + ρz)}. (2.2)

The following characterization of NP
C (x) can be found in [4].

Lemma 2.3. Let C be a closed subset of a Hilbert space H. Then

z ∈ NP
C (x) if and only if ∃σ > 0, 〈z, y − x〉 ≤ σ‖y − x‖2, ∀y ∈ C. (2.3)

Clark et al. [5] and Poliquin et al. [17] have introduced and atudied a new class of nonconvex sets, which
are called uniformly prox-regular sets. This class or uniformly prox-regular sets has played an important part in
many nonconvex applications such as optimization, dynamic systems, and differential inclusions.

Definition 2.4. For a given r ∈ (0,+∞], a subset C of H is said to be uniformly prox-regular with respect to
r if, for all x ∈ C and for all 0 6= z ∈ NP

C (x), one has

〈 z

‖z‖
, x− x〉 ≤ 1

2r
‖x− x‖2, ∀x ∈ C. (2.4)

It is well known that a closed subset of a Hilbert space is convex if and only if it is proximally smooth of
radius r > 0. Thus, in Definition 2.4, in the case of r = ∞, the uniform r-prox-regularity C is equivalent to
convexity of C. Then, it is clear that the class of uniformly prox-regular sets is sufficiently large to include the
class p-convex sets, C1,1 submanifolds (possibly with boundary) of H, the images under a C1,1 diffeomorphism
of convex sets, and many other nonconvex sets; see [5, 17].

Let Cr be a uniformly r-prox-regular(nonconvex) set. For given nonlinear mappings T : Cr → H, we
consider the problem of finding x∗, y∗ ∈ Cr such that

〈ρTy∗ + x∗ − y∗, x− x∗〉 ≥ 0,∀x ∈ Cr, ρ > 0
〈ηTx∗ + y∗ − x∗, x− y∗〉 ≥ 0,∀x ∈ Cr, η > 0, (2.5)

which is called the system of nonconvex variational inequalities.

It is worth mentioning that if T1 = T2 = T, x∗ = y∗ = u and ρ = η, then problem (2.5) is equivalent to
finding u ∈ Cr such that

〈Tu, v − u〉 ≥ 0,∀v ∈ Cr, (2.6)
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which is known as nonconvex variational inequalities introduced and studied by Bounkhel et. al. [1] and Noor
[9, 10].

It is known that problem (2.6) is equivalent to finding u ∈ Cr such that

0 ∈ Tu + NP
Cr

(u), (2.7)

which NP
Cr

(u) denote the normal cone of Cr at u. The problem (2.7) is called the variational inclusion associated
with nonconvex variational inequalities (2.6).

Lemma 2.5. [18] Let C be a nonempty closed subset of H, r ∈ (0,+∞] and set Cr; = {x ∈ H : d(x, C) < r}. If
C is uniform r-uniformly prox-regular, then the following hold:

(1) for all x ∈ Cr, PC(x) 6= ∅,

(2) for all s ∈ (0, r), PC is Lipschitz continuous with constant ts = r
r−s on Cs,

(3) the proximal normal cone is closed as a set-valued mapping.

Let C be a closed subset of a real Hilbert space H. A mapping T : C → H is called γ− strongly monotone
if there exists a constant γ > 0 such that

〈Tx− Ty, x− y〉 ≥ γ‖x− y‖2, (2.8)

for all x, y ∈ C. A mapping T is called µ− Lipschitz if there exists a constant µ > 0 such that

‖Tx− Ty‖ ≤ µ‖x− y‖, (2.9)

for all x, y ∈ C.

Lemma 2.6. In a real Hilbert space H, there holds the inequality

1. ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 x, y ∈ H and ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2,

2. ‖tx + (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2,∀t ∈ [0, 1].

3 Main Results

In this section we first establish the equivalent between the system of nonconvex variational inequalities
(2.5) anf the fixed point problem with the projection technique.

Lemma 3.1. For given x∗, y∗ ∈ Cr is a solution of system of nonconvex variational inequalities (2.5), if and
only if

x∗ = PC [y∗ − ρTy∗],
y∗ = PC [x∗ − ηTx∗], (3.1)

where PC is the projection of H onto the uniformly prox-regular set Cr.

Proof. Let x∗, y∗ ∈ Cr be a solution of (2.5), from (2.7), for a constant ρ > 0, we have

0 ∈ ρT1y
∗ + x∗ − y∗ + ρNP

Cr
(x∗) = (I + ρNP

Cr
)(x∗)− [y∗ − ρT1y

∗]

if and only if
x∗ = (I + ρNP

Cr
)−1[y∗ − ρT1y

∗] = PC [y∗ − ρT1y
∗],
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where we have used the well-known fact that PC = (I + ρNP
Cr

)−1.

Similarly, we obtain
y∗ = PC [x∗ − ηT2x

∗].

This prove our assertions.

Algorithm 3.2. For arbitrarily chosen initial points x0, y0 ∈ Cr, the sequence {xn} and {yn} in the following
way:

yn = PC [xn − ηTxn], η > 0
xn+1 = (1− αn)xn + αnPC [yn − ρTyn], ρ > 0, (3.2)

where {αn} is a sequence in [0, 1].

Remark 3.3. [18] Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let T1, T2 : C → H
be such that T1 is a µ1-Lipschitz continuous and γ-strongly monotone mapping, T2 is a µ2-Lipschitz continuous
mapping. Let

ξ = r[µ2
1 − γ

µ2 −
√

(µ2
1 − γµ2)2 − µ2

1(γ − µ2)2

µ2
1

] (3.3)

then for each s ∈ (0, ξ), we have

γts − µ2 >
√

(µ2
1 − µ2

2)(t2s − 1), (3.4)

where ts = r
r−s .

In this paper, we may assume that Mρ,ηδT (C) < ξ, we see that for any s ∈ (Mρ,ηδT (C), ξ) it satisfy the
inequality 3.4 too. where Mρ,η = min{ρ, η}, δT (C) = sup{‖u− v‖ : u, v ∈ T (C)}.

Now, we suggest and analyze the following explicit projection method (3.2) for solving the system of non-
convex variational inequalities (2.5). Thus, from now on, without loss of generality we will always assume that
µ2 < µ1.

Theorem 3.4. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let T1, T2 : C → H
be such that T1 is a µ1-Lipschitz continuous and γ-strongly monotone mapping, T2 is a µ2-Lipschitz continuous
mapping. If T = T1 + T2 and there exists constant ρ, η > 0 and s ∈ (Mρ,ηδT (C), ξ), such that

γts − µ2

ts(µ2
1 − µ2

2)
−4ts

< ρ, η < min{ γts − µ2

ts(µ2
1 − µ2

2)
+4ts

,
1

tsµ2
}, (3.5)

where 4ts
=
√

(γts−µ2)2−(µ2
1−µ2

2)(t
2
s−1)

ts(µ2
1−µ2

2)
. If the sequence of positive real number αn ∈ [0, 1] with Σ∞n=0αn = 0, then

the sequences {xn} and {yn} obtained from Algorithm 3.2 converge to a solution of the system of nonconvex
variational inequalities (2.5).

Proof. Let x∗, y∗ ∈ Cr be a solution of (2.5) and from Lemma 3.1, we have

‖xn+1 − x∗‖ = ‖(1− αn)xn + αnPC [yn − ρTyn]− x∗‖
= ‖(1− αn)(xn − x∗) + αn(PC [yn − ρTyn]− PC [y∗ − ρTy∗])‖
≤ (1− αn)‖xn − x∗‖+ αn‖PC [yn − ρTyn]− PC [y∗ − ρTy∗]‖
≤ (1− αn)‖xn − x∗‖+ αnts‖(yn − ρTyn)− (y∗ − ρTy∗)‖
≤ (1− αn)‖xn − x∗‖+ αnts[‖(yn − y∗)− ρ(T1yn − T1y

∗)‖+ ρ‖(T2yn − T2y
∗)‖.] (3.6)

From T1 are both µ1-Lipschitz continuous and γ-strongly monotone mapping and from Lemma 2.6, we obtain

‖(yn − y∗)− ρ(T1yn − T1y
∗)‖2 = ‖yn − y∗‖2 − 2ρ〈yn − y∗, T1yn − T1y

∗〉+ ρ2‖T1yn − T1y
∗‖2

≤ ‖yn − y∗‖2 − 2ργ‖yn − y∗‖2 + ρ2µ2
1‖yn − y∗‖2

= (1− 2ργ + ρ2µ2
1)‖yn − y∗‖2.
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It follows that
‖(yn − y∗)− ρ(T1yn − T1y

∗)‖ ≤
√

1− 2ργ + ρ2µ2
1‖yn − y∗‖. (3.7)

On the other hand, from T2 is µ2-Lipschitz continuous, we have

‖T2yn − T2y
∗‖ ≤ µ2‖yn − y∗‖. (3.8)

Thus, by (3.6), (3.7) and (3.8), we have

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αnts(ρµ2 +
√

1− 2ργ + ρ2µ2
1)‖yn − y∗‖. (3.9)

Similarly, we have

‖yn − y∗‖ = ‖PC [xn − ηTxn]− y∗‖
= ‖PC [xn − ηTxn]− PC [x∗ − ηTx∗]‖
≤ ts‖(xn − ηTxn)− (x∗ − ηx∗)‖
≤ ts[‖(xn − x∗)− η(T1xn − T1x

∗)‖+ η‖T2xn − T2x
∗‖]. (3.10)

Similarly, from T1 are both µ1-Lipschitz continuous and γ-strongly monotone mapping, we obtain

‖(xn − x∗)− η(T1xn − T1x
∗)‖2 = ‖xn − x∗‖2 − 2η〈xn − x∗, T1xn − T1x

∗〉+ η2‖T1xn − T1x
∗‖2

≤ ‖xn − x∗‖2 − 2ηγ‖xn − x∗‖2 + η2µ2
1‖xn − x∗‖2

= (1− 2ηγ + η2µ2
1)‖xn − x∗‖2.

It follows that
‖(xn − x∗)− η(T1xn − T1x

∗)‖ ≤
√

1− 2ηγ + η2µ2
1‖xn − x∗‖. (3.11)

On the other hand, from T2 is µ2-Lipschitz continuous, we have

‖T2xn − T2x
∗‖ ≤ µ2‖xn − x∗‖. (3.12)

Thus, by (3.10), (3.11) and (3.12), we have

‖yn − y∗‖ ≤ ts(ηµ2 +
√

1− 2ηγ2 + η2µ2
1)‖xn − x∗‖. (3.13)

Moreover, from (3.9) and (3.13) we put θ1 = ts(ρµ2 +
√

1− 2ργ + ρ2µ2
1), θ2 = ts(ηµ2 +

√
1− 2ηγ2 + η2µ2

1), it
follows that

‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αnθ1θ2‖xn − x∗‖
= (1− (1− θ1θ2)αn)‖xn − x∗‖

≤
n∏

i=0

(1− (1− θ1θ2)αi)‖x0 − x∗‖. (3.14)

Since Σ∞n=0αn = ∞ and conditions (3.5), we obtain

lim
n→∞

n∏
i=0

(1− (1− θ1θ2)αi) = 0. (3.15)

It follows from (3.15) and (3.14), we have

lim
n→∞

‖xn − x∗‖ = 0. (3.16)

From (3.13) and (3.16), we have
lim

n→∞
‖yn − y∗‖ = 0. (3.17)

Which is x∗, y∗ ∈ Cr satisfying the system of nonconvex variational inequalities (2.5). This completes the
proof.
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Corollary 3.5. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let T : C → H be
such that T is a µ-Lipschitz continuous and γ-strongly monotone mapping. If there exists constant ρ, η > 0 and
s ∈ (Mρ,ηδT (C), ξ), such that

γ

µ2
−4ts

< ρ, η <
γ

µ2
+4ts

, (3.18)

where 4ts =
√

(γts)2−(µ2
1)(t

2
s−1)

ts(µ2
1)

. If the sequence of positive real number αn ∈ [0, 1] with Σ∞n=0αn = 0, and
αn ∈ [0, 1] with Σ∞n=0αn = ∞, then the sequence {xn} and {yn} is generated by for x0, y0 ∈ Cr,

yn = PC [xn − ηTxn], η > 0
xn+1 = PC [yn − ρTyn], ρ > 0, (3.19)

strongly converge to a solution of the system of nonconvex variational inequalities (2.5).

Proof. From Theorem 3.4, if T2 ≡ 0 and αn = 1 for any n ≥ 0, we have a result.

4 Applications

In this section, we can applied Theorem 3.4 to the system of general of nonconvex variational inequalities,
for given nonlinear mappings T, g : Cr → H, we consider the problem of finding x∗, y∗ ∈ Cr such that

〈ρTg(y∗) + g(x∗)− g(y∗), x− g(x∗)〉 ≥ 0,∀x ∈ Cr, ρ > 0
〈ηTg(x∗) + g(y∗)− g(x∗), x− g(y∗)〉 ≥ 0,∀x ∈ Cr, η > 0, (4.1)

which is called the system of general nonconvex variational inequalities. Similar of the proof of Lemma 3.1, we
can proof that

Lemma 4.1. For given x∗, y∗ ∈ Cr is a solution of system of nonconvex variational inequalities (4.1), if and
only if

g(x∗) = PC [g(y∗)− ρTg(y∗)],
g(y∗) = PC [g(x∗)− ηTg(x∗)], (4.2)

where PC is the projection of H onto the uniformly prox-regular set Cr.

Theorem 4.2. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, let g : C → H is injective
mapping and let T1, T2 : C → H be such that T1 is a µ1-Lipschitz continuous and γ-strongly monotone mapping,
T2 is a µ2-Lipschitz continuous mapping. If T = T1+T2 and there exists constant ρ, η > 0 and s ∈ (Mρ,ηδT (C), ξ),
such that

γts − µ2

ts(µ2
1 − µ2

2)
−4ts < ρ, η < min{ γts − µ2

ts(µ2
1 − µ2

2)
+4ts ,

1
tsµ2

}, (4.3)

where 4ts =
√

(γts−µ2)2−(µ2
1−µ2

2)(t
2
s−1)

ts(µ2
1−µ2

2)
. If the sequence of positive real number αn ∈ [0, 1] with Σ∞n=0αn = 0, then

the sequence {xn} and {yn} is generated by for x0, y0 ∈ Cr,

g(yn) = PC [g(xn)− ηTg(xn)], η > 0
g(xn+1) = (1− αn)g(xn) + αnPC [g(yn)− ρTg(yn)], ρ > 0, (4.4)

strongly converge to a solution of the system of nonconvex variational inequalities (4.1).
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Proof. Similar the proof in Theorem 3.4, let x∗, y∗ ∈ Cr be a solution of (4.1) and from Lemma 4.1, we can
compute that

‖g(xn+1)− g(x∗)‖ ≤
n∏

i=0

(1− (1− θ1θ2)αi)‖g(x0)− g(x∗)‖. (4.5)

where θ1 = ts(ρµ2 +
√

1− 2ργ + ρ2µ2
1) From Σ∞n=0αn = ∞ and conditions (4.3), we obtain

lim
n→∞

n∏
i=0

(1− (1− θ1θ2)αi) = 0. (4.6)

It follows from (4.5) and (4.6), we have

lim
n→∞

‖g(xn)− g(x∗)‖ = 0. (4.7)

And we can compute that
‖g(yn)− g(y∗)‖ ≤ θ2‖g(xn)− g(x∗)‖, (4.8)

where θ2 = ts(ηµ2 +
√

1− 2ηγ2 + η2µ2
1), it follows that

lim
n→∞

‖g(yn)− g(y∗)‖ = 0. (4.9)

From g is injective mapping, we have limn→∞ ‖xn − x∗‖ = 0 and limn→∞ ‖yn − y∗‖ = 0 satisfying the system of
general nonconvex variational inequalities (4.1). This complete the proof.

Corollary 4.3. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, let g : C → H is injective
mapping and let T : C → H be such that T is a µ-Lipschitz continuous and γ-strongly monotone mapping. If
there exists constant ρ, η > 0 and s ∈ (Mρ,ηδT (C), ξ), such that

γ

µ2
−4ts < ρ, η <

γ

µ2
+4ts , (4.10)

where 4ts
=

√
(γts)2−(µ2

1)(t
2
s−1)

ts(µ2
1)

. If the sequence of positive real number αn ∈ [0, 1] with Σ∞n=0αn = 0, and
αn ∈ [0, 1] with Σ∞n=0αn = ∞, then the sequence {xn} and {yn} is generated by for x0, y0 ∈ Cr,

g(yn) = PC [g(xn)− ηTg(xn)], η > 0
g(xn+1) = PC [g(yn)− ρTg(yn)], ρ > 0, (4.11)

strongly converge to a solution of the system of nonconvex variational inequalities (4.1).

Proof. From Theorem 3.4, if T2 ≡ 0 and αn = 1 for any n ≥ 0, we have a result.
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