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Abstract

The aim of this project is to consider and study a new iterative scheme for solving the
general nonconvex variational inequalities. We plan to prove the convergence criteria for the
suggested iterative methods under suitable conditions.

In the first year, we will study and discuss some important basic results and consider some
new theorems about the general iterative scheme for general nonconvex variational inequalities in
the normed spaces.

In the second year, we will focus our study to the heart of our project, that is, we will suggest
and analyze the iterative scheme for finding the approximation solvability of the system of general
nonconvex variational inequalities in the normed spaces.

In conclusion, we point out that the results of this project are the extension and
improvements of the earlier and recent results in this field. Much work is needed to develop this

interesting subject.
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uni 2
Preliminaries
In this chapter, we give some defnitions, notations, and some useful results that will be used in
the later chapters.
2.1 Useful lemmas.
Lemma 2.1.1. [21] Let T': C' — C be a k-strictly pseudo-contraction. Defined S) : C — C by

Syt = Ax + (1 — \)Tx for each x € C. Then, as A € [k, 1], S\ is nonexpansive mapping and
F(T) = F(S)).

Lemma 2.1.2. In a real Hilbert space H, there holds the inequality

Lz +yl?<|z|*+2(y,z+y) =z,y€H and ||z —y|* = ||z]? — 2(z,y) + [|yl/%
2. Itz + (1= t)yll? = tl|z)* + 1 = &)||yll* — t(1 — t)[|w — y||%, vt € [0,1].

Definition 2.1.3. [1] Let C be nonempty convex subset of real Banach space. Let {T;}Y, be a
finite family of k;-strictly pseudo-contractive mapping of C' into itself. For each j = 1,2,... N, let
aj = (a{,ag,ag) € I x I x I where a{,ag,aé € I =1[0,1] and oz{ + aé +oz§ = 1. We define the

mapping S : C — C as follows:

U = I
Up = aiTiUy+ a3Uy + ail
Uy = iU+ adUs + ail
Uy = aiT3Us + ajUs + ail
Uvo1 = o "Iy Uy g+ad Wy o+ ozév’ll
S = Uv=aTnUn_1+dUn_1+aiT

This mapping is called S — mapping generated by 11,...,Ty and a1, a2, ..., anN.

Lemma 2.1.4. [10] Let C be a nonempty closed convex subset of a real Hilbert space H and S : C' — C
be a self-mapping of C. If S is a k-strict pseudo-contraction mapping, then S satisfies the Lipschitz

condition
1Se = Syll < 55 lle —yll,  Va,yeC.
Lemma 2.1.5. [20] Let {s,} be a sequence of nonnegative real number satisfying
Spe1 = (1 —an)spn +0p+10p, Yn >0

where {a,} is a sequence in (0,1) and {d,} is a sequence such that



L >0y = 00,
2. limsup,, STZ <0or Y o2 |0, < oo,

3. 2 02 Inn| < oo

Then lim,, ., a,, = 0.

Lemma 2.1.6. Let H be a real Hilbert space. There hold the following identities

Lz +yl? = ll2]* + 2(z,y) + llylI* and [lz — y|* = [|l2[|* — 2(z,y) + [ly[|

2. | i camil|® = o7 cullw | — i cviells — a5 * for 3og i = 1, € [0,1],

Vie {0,1,2,...,m}.

Lemma 2.1.7. [1] Let C' be a nonempty closed convex subset of real Hilbert space. Let {T,}ZJ\L 1
be a finite family of k;-strictly pseudo-contractive mapping of C' into C' with ﬂf\i L F(T;) # 0 and
k= max{k; : ¢ = 1,2,...,N} and let o; = (a{,aé,ag) eI xIxI,j=1,23,...,N, where
I =100,1],a)+ab+aod =1,0],0} € (k,1) forall j =1,2,..., N—1 and o) € (k,1],0d € (k,1],0] €
(k,1] for all j =1,2,...,N. Let S be the mapping generated by T1,...,Tx and a1, g, ...,an. Then
F(S) = ﬂfil F(T;) and S is a nonexpansive mapping.

Lemma 2.1.8. [19] A real Hilbert space H satisfies Opial’s condition, i.e, for any sequence {z,} C H
with z,, — z, the inequality

liminf ||z, — z| < liminf ||z, —y|,
n—oo n—oo
holds for each y € H with x # y.

Lemma 2.1.9. [18] Let C be a nonempty closed convex subset of a real Hilbert and 7' : C — C
be a nonexpansive mapping. Then 7' is demi-closed on Ci.e.,if z, — x € C and z, — Tx,, —

0, then x = Tx.

2.2 Nonconvex Variational

Let C be a closed subset of a real Hilbert space H with inner product (-,-) and norm || - ||
respectively. Let us recall the following well-known definitions and some auxiliary results of nonlinear

convex analysis and nonsmooth analysis.

Definition 2.2.1. Let v € H be a point not lying in C. A point v € C' is called a closest point or a
projection of u onto C' if do(u) = ||u — v|| when d¢ is a usual distance. The set of all such closest

points is denoted by Pc(u); that is,
Po(u)={veC:do(u)=||lu—uvl}. (2.2.1)
Definition 2.2.2. Let C be a subset of H. The proximal normal cone to C' at = is given by

NE(x)={z€ H:3p>0;z € Po(x + p2)}. (2.2.2)



The following characterization of NZ'(x) can be found in [43].

Lemma 2.2.3. Let C be a closed subset of a Hilbert space H. Then

z € NE(z) if and only if 30 > 0, (2,y — z) < olly — z||?, VyeC. (2.2.3)

Clark et al. [44] and Poliquin et al. [38] have introduced and atudied a new class of nonconvex
sets, which are called uniformly prox-regular sets. This class or uniformly prox-regular sets has
played an important part in many nonconvex applications such as optimization, dynamic systems, and

differential inclusions.

Definition 2.2.4. For a given r € (0, +oc], a subset C' of H is said to be uniformly prox-regular with
respect to 7 if, for all T € C and for all 0 # z € N (), one has

z _ 1 _192
—x— < —||lx — . 2.2.4
<HZH,$ T) < 27‘”$ z||*, Veel ( )

It is well known that a closed subset of a Hilbert space is convex if and only if it is proximally
smooth of radius r > 0. Thus, in Definition 2.2.4, in the case of r = oo, the uniform r-prox-regularity
C is equivalent to convexity of C. Then, it is clear that the class of uniformly prox-regular sets is
sufficiently large to include the class p-convex sets, C'**! submanifolds (possibly with boundary) of H,

the images under a C'"! diffeomorphism of convex sets, and many other nonconvex sets; see [44, 38].

Lemma 2.2.5. [39] Let C' be a nonempty closed subset of H, r € (0,+o0c] and set C,;= {x € H :
d(z,C) < r}. If C is uniform r-uniformly prox-regular, then the following hold:

(1) for all x € Cy., Po(x) # 0,

(2) for all s € (0,r), Pc is Lipschitz continuous with constant ¢; = ﬁ on Cj,

(3) the proximal normal cone is closed as a set-valued mapping.

Let C' be a closed subset of a real Hilbert space H. A mapping 7' : C' — H is called v—strongly

monotone if there exists a constant v > 0 such that
(Tx = Ty,x —y) > llz -y, (2.2.5)
for all z,y € C. A mapping T is called u — Lipschitz if there exists a constant p > 0 such that
[Tz — Tyl < pllz -yl (2.2.6)

for all z,y € C.

Lemma 2.2.6. In a real Hilbert space H, there holds the inequality

Lo flz+yl® < ||zl +2(y, 2 +y) 2,y € H and [z —y|* = [lz|* — 2(z,y) + [[y]*,

2. [t + (1= t)yll* = tll=]” + (1 = )yl — t(1 = &)= — y||*, vt € [0, 1].



YN 3

Main Results

3.1 A general hierarchical problem

In this section, we introduced the iterative scheme for finite family of k-strictly pseudo-contractive
mappings. Then we prove strong convergence of algorithm (1.6) and solving a common solution of a
general hierarchical problem and fixed point problems of finite family of k-strictly pseudo-contractive

mappings.

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively. Let C' be a

nonempty closed convex subset of H. The hierarchical problem is of finding # € Fixz(T) such that

(S%—F,2— &) <0, Vze Fiz(T), 3.1.1)

where S, T are two nonexpansive mappings and Fixz(T) is the set of fixed points of 7. Recently, this
problem has been studied by many authors (see,[2]-[17]). Now, we briefly recall some historic
results which relate to the problem (3.1.1). For solving the problem (3.1.1), in 2006, Moudafi

and Mainge [4] first introduced an implicit iterative algorithm:
T = sQ(xrs) + (1 — 5)[tS(zr,5) + (1 — )T (2¢,)] (3.1.2)

and proved that the net {x;} defined by (1.2) strongly converges to z; as s — 0, where z; satisfies

T=projpiz(p,)@(7¢), where P:C' — C'is a mapping defined by
Px)=tS(x)+ (1 —t)T(z),Vz € C,t € (0,1),
or, equivalently, x; is the unique solution of the quasivariational inequality:

0€ (I —Q)xt + Npigp,) (1),
where the normal cone to F'iz(F;), Npiy(p,) is defined as follows:

{ue H: (y—z,u) <0}, if z e Fiz(FP,),

N . Tr—
Fiz(Py) { 0, otherwise.

Moreover, as ¢ — 0, the net {z;} in turn weakly converges to the unique solution z, of the
fixed point equation z.o=projn@Q(r~) or, equivalently, ., is the unique solution of the variational
inequality:

0€(I—-Q)rx + Nao(ro).

Recall that a mapping f : C — C' is said to be contractive if there exists a constant y € (0, 1)

such that
[ fz — fyll <Allz —yll, Vo,yeC.



A mapping T : C — C is called nonexpansive if
[Tz =Tyl < [z —yll, Va,yeC.
A mapping T is said to be k-strict pseudo-contractive if there exists k& € [0,1) such that
1Tz = Ty|* < |lz = ylI* + k(I = T)x — (I = T)yl*,Va,y € D(T). (3.1.3)

Note that the class of k-strict pseudo-contraction strictly includes the class of nonexpansive mappings.
Forward, we use Fiz(T) to denote the fixed points set of 7', that is Fiz(T) = {z € C : Tz = x}.
we see that, if Sy : C — C defined by Syz = kx + (1 — k)Tx for all x € C' where T is k-strict

pseudo-contractive then S, is nonexpansive mapping [21].

In this paper, motivate by Kangtunkarn and Suantai [1], we introduce a mapping for finding
a common fixed point of 7" is a A-strict pseudo-contractive mapping and {Tl}fil a finite family of
k;-strict pseudo-contractive mappings of C' into itself. For each n € N, and j = 1,2,..., N, let aj =
(o)’ a5’ a3”) € [0,1] x [0,1] x [0,1] be such that o], ay™”, a5’ € [0,1] with o} +a5”? + a3’ = 1.

We define the mapping 5, : C' — C as follows:

Un,O = I;
U o n,lT U, n,lU n,lI.
nl = a7 11Upo+ Qg n,0 T Qg 1]
n,2 n,2 n,2 r.
Un72 = o TQUml + gy Un,l + a5 I;
’fL,3 ’fL,3 TL,3 .
Un73 = o T3Un72 + gy Un72 + ag I;
;
n,N—1 n,N—1 n,N—1 .
Uwn-1 = o TN 1UpNn—2+ ay UnN—2+ a3 I;
n,N n,N n,N
Sy = Unn=a"NTnUpn 1+ 2N Unn 1 +adNT. (3.1.4)

Motivated and inspired by the results in the literature, in this paper, we consider a general

hierarchical problem of finding z* € F(T") such that, for any n > 1,
(Spa™ — ™,z — %) <0,Vz € F(S)), (3.1.5)

where S, is the S-mapping defined by (3.1.4) and S is a nonexpansive mapping defined in Lemma
2.2.6.

Algorithm 3.1.1. Let C' be a nonempty closed convex subset of a real Hilbert space H and let T
is a A-strict pseudo-contractive mapping with Syx = Az + (1 — \)Tx and {T;}}¥, be a finite family
of k;-strictly pseudo-contractive mapping of C' into itself. Let f : C' — C be a contraction with

coefficient v € (0,1). For any xg € C, let {x,} be the sequence generated by
Tnt+l = STy + (1 - an)s)\(ﬁnf(xn) + (1 - ﬁn)-rn)a Vn > 0, (3.1.6)

where {a,}, {0,} are two real numbers in (0,1) and S, is the S — mapping defined by (3.1.4).



We show that an explicit iterative algorithm which converges strongly to a solution x* of the

general hierarchical problem (3.1.5).

Lemma 3.1.2. Let H be a Hilbert space. Let {T;}, be a finite family of k;-strictly pseudo-contraction
of H into itself for some k; € [0,1) and k = max{k; : i = 1,2,..., N} with X, F(T;) # 0. Let S,, be
the S-mapping generated by 77,7, ..., T and agn),agn), . ,ag\?), where a§- ) = (a7, ab7 a7 e
IXIxI, T =[0,1],0™ +al +a =1land k <a < a™ o’ <b<lforall ,k<c<a!V <1k<
N<d<lk<ah? <e<lforall j=1,2,...,Nand ¥°° [a}™ —a/| < 00, 3°°° | |af ™ —

ay?| < oo for all j ={1,2,3,...,N}. Then for all z € H,Y°°, [|Spr12 — Spz|| < oo.

Q

wg 9% For each x € C and n € N, we have .

|Uns112 — Upazl| = |laP™ Tz + (1= o) — o' Tz + (1 — oz
= | e — oy d“ﬂx+a?xu
= (@™ =Tz — (a7 = D

= | — oY Tz — 2| (3.1.7)

and for n € N, and for k£ € {2,3,..., N}, we have

k k
1Uni167 = Ungzll = oy ™ " Tl 12 + o T U vz + o o
-0y’ TkUmk_la: + ag’ Up k-1 + ag’ x|

k

1 k; k
s — " TR Up 1z — a3’

n+1,k
= |lag TpUni1k—17 + ag
n+1,k n,k
+042 U, n+1,k—1T — Qo Un k,1$H

n+1, n+1, n+1,
= ||a1 TkUn+1k 1ZC—a1 TkUnk 1T+ oy TkUnk 12

k k k k
—Oél TkUn k—1T + ( ntl, Oég’ )z + Oéngl ntl,k—1% — Ozg’ Uk_12||
k k
= o (T Uns1 k1w — TelUppa) + (a7 = aP T U g1

n+1,k n,k)

) n"l‘l,k ’I"L,]i?
+(oy —a3" )z + a b1 k—1Z — 0 Up 12|

1,k k k
= Ha"+ (TkUn+1 k-1 — TkUn kfl.li) + (O/H_l’ — 047117 )
Lk k 1,k
X TpUpp—17 + (af ™ ay™)a + ab T UL g

1,k
oan+’U

n+1,k
nk,.’L'—f-OéQ U

k
k=12 — " Up 1|

& K
= (Ui 12 — ToUp ) + (o] T8 — o)

n+1,k

n+1,k nk)
T+ Qg

XTpUp k-1 + (a3 — oy’ (Uns1 -1

wk1z) + (T — MU oz

k ke k
< 0/1%1 HTkUn—i-l b1 — Telp ]| + |y T — oV Tk ka2
k ke k
+043+ 1 k12 — Uy 12| + ’anﬂ — " [[|Un 1|

(3.1.8)
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k k
= n+1 | TkUns1 -1 — TiUp 196||-|-|04mrl —ay’ ’”TkUnk 1|

+ay PR Uy 1 — Uz + |1 — a8
—ay T 1 o+ o F U poaz]) + o T — ol F
< Al I - Ungaz] 4 ol — MU 1ol
+O‘g+17k”Un+1,k71x — Un 12| + (|of*
—a T ot — af TV U poazl] + 5T — a2
< TR0 p e~ Va4 [0} — a1z
W11 — Ungorall + (Ja}* — o714
Hog® — o TN |Unporz] + o = af Pz
= Unerw — Uz + [0 = ol (1T

H|Un 1)) + lag ™ = ai ™| ([T g-r2l] + [|2])-

By (3.1.7) and (3.1.8), we have

[Snt12 = Spz] 1Un+1,5 = Up,nz||

2
< o Unvaaz = Unvoaz | + o5 — oY (| T Un -]
1f
H|Un v —12l]) + TN = N (|Un v -al] + [|2])
2 2
< 2 (2ot~ Unaal
+Ha T — o YT (| Ty U v oz + | Un v—22])

+1,N-1 N-1
ottt g HIIUn,NszIHIxII])

+Ho N — o N (I TN Uy —12]| + [T, v—12]])
Hoag TN — oV [(| U v -1z + )
2 ? al 2 N n+1,5 n,J
— (124) Wenwoar—Oarl + 30 (125) 1ol - @ I(T Ul
j=N-1
N 9 \N-i , :
H Uzl + D <1—k:> a7 — a7 |([Unjorz]) + [l]))

j=N-1

IN

2 \"! Nogog NN |
(1 - k:> 1Unira = Unpall + 3 (1 - k) @y ™ — a7 (T3 U a2
=2

N 9 N—j .
+ 7‘ 7.
gl + 3 (125) e - o
=2

IUn -1l + [l]))
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x—x||+2( )N :

| N 9 N—j
(IT5Un 12| + 1Un gzl + llz]) + > <1—k>
j=2

_ 2 \V! n+11
1-%

n+17j n?]
+lay -y

+17 "
Hagz™ = ag? [([Un -1l + [l])).

This implies by assumption we have that

oo
Z |Sn+12 — Spz| < 0.

n=1

This complete the proof. O

Lemma 3.1.3. Let H be a Hilbert space. Let {T;}, be a finite family of k;-strictly pseudo-contraction
of H into itself for some k; € [0,1) and k = max{k; : i = 1,2,..., N} with O\, F(T;) # 0. Let S, be
(n)  (n) (n)

the S-mapping generated by Ty, 15, .. TN and oy, 0y, ...,y , where a§ ) _ (al’],aQ’],ag’j) €

IxIxI,I=101],a” + ay m oy ay” =1 and satisfy condition:

(1) k:<a§o/f’j,ozg’j§b<1forall,k‘<c§a?’NSl,kﬁag’N§d<1,k§a§’j§e<lfor
all j=1,2,...,N

2) >0, |a?’j—a{\ <00,y 0, \ozg’j—ag| <00,> 00 |a§’j—ag| <ooforall j ={1,2,3,...,N}.

Then for all x € H,lim,_, ||Spz — Sz|| =0

a

W91l Let 2 € C and for each n € N, from the definition of S mapping and Lemma 2.1.4, we have

L7

|Upaz — Uzl = ||a?’1T1Un701: + ag’lUn,gm + ag’lx — (a%Tonx + oz%on + a%x)”

IN

,1 ,1 1
o — an|Thzll + lag™ — agfllz]| + a5 — agllz]-

From boundedness and condition (2) we have

lim ||Up 12 — Usz| = 0. (3.1.9)
n—oo
Next, consider
|Unox — Uszt|| = | a}?TolUpaz + o Uiz + a5z — (2 ToUrz + a3Urz + o3x)|
< ||a?’2T2Un711‘ — a?’2T2U1x + a?’2T2U1:n + ag’ Uniz + oy 2z
*(Ol%TQUll‘ + a%le + a%x)”
< o (TUnaz — ToUra)|| + [[(0f® — o) ()] + [[(a]® — o) (TaU12))|
—i—Hozz Un1z — a3Urz||
< AP |Toln sz — Tolhall + o - adlllell + o} - o3| TsUra]
+ay 2 |Un 1z — Uiz + |ab® — o3| Ura|
1+ k
< ap? T 1Unaz = Urzl| + loiy? — o3|zl + |o)? — o] | ToUh x|

+0<2 HUn,lx — Uha|| + |af? — od||Uhz]).
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From boundedness, condition (2) and equation (3.1.9), we have

lim ||Up 22 — Uszx| = 0. (3.1.10)
n—oo
Similarly of the proof, we have
lim ||U, o — Unz| = 0. (3.1.11)
n—oo
Since ||Spz — Sz| = ||Uy, vz — Unz||, we have
lim [|S,x — Sz| = 0. (3.1.12)
n—oo
This complete the proof. O

Theorem 3.1.4. Let C' be a nonempty closed convex subset of a real Hilbert space H, let T" be a
A-strictly pseudo-contractive mapping and {Tz}f\il be a finite family of k;-strictly pseudo-contractive
mappings of C' into itself for some k; € [0,1) and k = max{k; : i = 1,2,..., N} which "\, F(T;) # 0.
Let S,, be the S-mapping generated by T3, 75, ..., Ty and of, o, ..., @}, where aff = (a7, al?, ozg’j ) €
IxIxI, I =101, 0" 4+a5’+a5? =1land k <a <o}’ a3’ <b<lforall j=1,2,..,N-1,k<
c < o/f’N <1,k< ag’N <d<1l,k< o/;’j <e<1forall j =1,2,..N. Assume that set ) of solution
of general hierarchical problem (3.1.5) is nonempty. For a mapping f : C — C is a contraction with
v € (0,1), sequence {ay,},{B,} are two real number in (0,1) and assume that the following condition

hold:

(1) limy oo = 0 and lim, . 22 =0,

n

(2) Y0l B =0,

(3) lim, e |- — 21 =0, and lim, oo L1 - 2221 =0
@ 252 [af T — ] < o0, 1002 Jag ™ — af| < oo for all j = {1,2,3,..., N},

(5) 200 a7 —ad| < 00, 3% o —ad| < 00,32 |ag? —ad| < oo forall j = {1,2,3,...,N}.

Then the sequence {z,} in (3.1.6) solve the following variational inequality:
e

(I—-flz,x—z) >0, Vo e .

(3.1.13)

ﬁgrmf. From (3.1.6), let y, = Bnf(xn) + (1 — Bp)zy, and z* € Q we have

|Tni1 — 2" lotn Snn + (1 — o) Spyn — 2™
< an|Snrn — 2| + (1 — an) || Skyn — 7|

< apllan — 2+ (1 — ap)|lyn — 2. (3.1.14)
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lyn — 2"l = [1Bnf (2n) + (1 = Bp)an — 27|

IN

1By llzn — 2 || + [ f(2%) — 2 || + (1 = Bn)l|wn — 27|
(1= (1 =7)Bn)|lwn — || + || f(z*) — ™. (3.1.15)

From (3.1.14) and (3.1.15), we have

S wng — 2|

< apflan =27+ (1= an) [(1= (1= 7)Bn)llon — 2™ + [ £ (=) — "]
< anllan =2t + (1= an)llen — 27 + (1= an) || f(27) — 27|

= len — 2%+ (1 = an) || f(z7) — 27

< max{[lzo — 2|, [ f(z¥) — 27|}

Then {x,} and {y,} are bounded and hence {f(xy)}, {Snan}, {Sr\yn} are also.

||yn - yn—l”

= ||Bnf(zn) = Buf(@n-1) + Bnf(2n-1) = Bn—1f(¥n-1) + (1 — Bp)an
—(1=Bp)rn—1+ (1= Bp)an- — (1 = Ba1)zn-1]|

Bullzn — zn-1ll +18p = Ba-alllf (@n-1)[l + (L = Bn) |20 — zn-1|

+16n = Bn-1ll|zn-1]

= (1= QA =B)lzn = zn-1ll + 80 = Ba-1l( f (@n-1)l + [[zn-1])-

IN

From definition of {z,} and nonexpansiveness of S,,, we have

[ Y|

IN

IN

IN

|onSnwn + (1 — ) Sayn — an—1Sn-1Zn—-1 + (1 — @n—1)Sxyn—1l|

|otn Snn — @ Sp®n—1 + anSpTn—1 — Ap—1SnTn—1 + Wn—1SnTn—1
—an-1Sn-1Zn-1 + (1 = an)Sxyn—1 + (1 — ) Sxyn—1 — (1 — an-1)Sxyn—1||
anl|Tn — Tp—1ll + lan — an—1|[|Sn@n-1ll + an—1|SnTn—1 — Sn—12n-1|

+(1 = an)llyn — yn-1ll + o — a1 [[Sxyn-1]l

an|zn = n-1ll + (1 = an) [(1 = (1 = 7)Bn)llzn — 21l

+Bn = Butl(1f (@n-0)ll + lzn-1lD] + lan — an—1|(|Snzn-1ll + [[Sxyn-1l)
+ap—1||SnTn—1 — Sp—1Tp—1||

[an + (1 = an)(1 = (1 =98] llzn = @a-all + 180 = Ba-al(1f (@a-1) | + zn-1l])
+Han = an—1|([|Snzn-1ll + [[Sxyn-1) + an-1[|SnTn—1 — Sn—1Zn—1]|

(1= (1 =7)Ba(1 = an)]llzn — zn—1ll + 18 = Ba-al(If (@n-0)ll + 2n—1]))
+lan = an—1l(1Snzn—1ll + [1S2yn-1ll) + an-1l|Sn@n—1 = Sn-12n-1].

Put M = sup {Hf(xn_l)H, |Snxn—1], ||S>\yn_1||}, n > 1, it follows that

| Tnt1 — @nl

< [1 — (T —=7)Bn((1 - an)]Hxn — Tp1|l + (|80 — Bn—1| + |an — an—1|) M

+apn—1 HSnxn—l — Sh—1Tp—1 H .
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Put 0,, = ||Spxp—1 — Sn—1Zn—1]|, from Lemma 3.1.2, we have X9° 4, < oo, it follows that

— — Ty — B — B 1)
Hxn+1 an _ [1 o (1 _,y)ﬁn(l - an)] Hxn Tn IH + ‘571 /Bn 1’M—i— |/8n ﬁn 1’ +an717n
[a77% Op Oy Oy 7%
Ty, — Ty
= 1= (1= Bl — ) L= ol
Qp—1
Ty — Ty Ty — Ty
H1= (1= )01 - o) (L Eemtl - frn =]
Qn Qn—1
— B — Oy 1)
_‘_‘ﬂn ﬁn 1|M—|— ‘an (079 1’M—|—Oén717n
Qp Oy n
Ty, — Ty
< (1= (1= 9)Ba(1 — a2 2nnl
On—1
+<1_ 1 +|an_an—l|+|/8n_ﬁn—1’+5n>M
(o775 Op—1 (a77% (679 Qo
Ty — Ty
1= (1= )a(1 — gy IZn = Enmal
p—1
M 1]1 1 1 Jon, — ap—1
+(1— 1—« —|— = + —
( 7)ﬁn( n){ (1 - 7)(1 - an) <ﬁn (679 Qp—1 /Bn (079
+LM 4 LM 4 5”) }
/871 aTL /677, Oén Oén
From Lemma 2.2.5, we obtain that
i 1Znr =2l (3.1.16)
n—oo a{n
This implies that
lim ||zp41 — 2, = 0. (3.1.17)
n—oo
From (3.1.6) and (3.3.19), we have that
lim ||z, — Sxyn| = 0. (3.1.18)
n—oo
It follows that
Yn — Tn, = Pn(f(xn) —xy) — 0. (3.1.19)
It implies that
Hyn — Sl < Hyn — zp | + ||rn — SkynH — 0. (3.1.20)

Sine the sequence {z,} and {y,} are also bounded. Thus there exists a subsequence of {y,}, which

is still denoted by {y,,} which converges weakly to a point & € H. Therefore, = € Fixz(T) by (3.1.6),

we observe that

Tp+l — Tp = Oén(Sn$n - $n) + (1 - an)(S)\yn - yn) + (1 - O‘n)ﬁn(fxn - xn)a

that is,
— 11—« 11—«
M:(I_Sn)xn+ n(I_S/\)yn_i_M(I_f)xn
(7% (679 n
Set z, = W for each n > 1, that is,
l—« l—«
zn = (I — Sp)x, + (I — S))yn + M(I — f)zn.

n n
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Using monotonicity of I — Sy and I — S,,, we derive that, for all v € Fixz(T),

(smsion =) = (T = Sy)a = 1) + (T = S\ — (T = S3)us — )
A1 = Sy — )+ PC 01— )
> (I — Sp)u,zn — u) + ﬁ"(la_o‘")«l — [)on, xn — u)
A=l gy )
(T = S)uyn — ) + (S — Sy — u) + B"(lao""‘)«f — F)an, T — u)
+ A=l 1 )y, 20— Fa)
But, since z, — 0, g—z — 0 and lim,,_ ||Spu — Su|| = 0, it follows from the above inequality

that

limsup((I — S)u,zp, —u) < 0, Vu e Fiz(T).

n—--auoQo

It suffices to guarantee that wy,(z,) C 2. As a matter of fact, if we take any z* € w,,(z,), then there

exists a subsequence {z,,} of {z,} such that z,,, — x*. Therefore, we have

(I =S,z —u)y = lim (I —S)u,rp;, —u) <0, Yuec Fiz(T).

j—00
Note that 2* € Fiz(T'). Hence z* solves the following problem:
z* € Fiz(T)
{ (I = S)u,z* —u) >0, Yu € Fiz(T).
It is obvious that this equivalent to the problem (3.1.5) by Lemma 3.1.3, we have S,, — S uniformly
in any bounded set. Thus z* € (). Let & be the solution of the variational inequality (3.3.12), by
Lemma 2.1.8 we have Z is unique. Now, take a subsequence {z,,} of {z,} such that

limsup((I — f)Z,zp, — ) = lm ((I — f)T,xn, — T).

n—-o0 1——00

Without loss of generality, we can assume that z,, — z*. Then z* € (). Therefore, we have

limsup((I — f)Z,zp, —Z) = (I — f)z,2* =) > 0.

n—-auoo

This completes the proof. O

Theorem 3.1.5. Let C' be a nonempty closed convex subset of a real Hilbert space H, let T" be a
A-strictly pseudo-contractive mapping and {Tz}fil be a finite family of k;-strictly pseudo-contractive
mappings of C' into itself for some k; € [0,1) and k = max{k; : i = 1,2, ..., N} which N, F(T}) # 0.
Let Sy, be the S-mapping generated by 71, T3, ..., Ty and af, a3, ..., &y, where o} = (o/f’j, ag’j, ag’j) €
IxIxI, I=10,1,a!"+a5’+a3? =land k <a<a]’ a3’ <b<lforalj=12... ,N-1k<
c < o/f’N <1,k < ag’N <d< 1lk< a;’j <e <1 forall j =1,2,...N. Assume that set ) of
solution of generalized hierarchical problem (3.1.5) is nonempty. For a mapping f : C' — C is a
contraction with v € (0,1), sequence {a,},{Bn} are two real number in (0,1) and assume that the

following condition hold:
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(1) limp, oo @y = 0 and limy, o 22 =0,

(2) 32021 Bn = o0,

|1 ﬁn;1| :07

o n

4) Zn ) |an+17] ald n+1,j

ag’j < oo for all j ={1,2,3,...,N},

< 0, Zn 1 ’04
(5) 0%, a7 —ad| < 00, 325 o —ad)| < 00, 32°% |ag? —ad| < oo forall j = {1,2,3,..., N},
(6) there exists a constant d > 0 such that ||z — Sxz|| > pDist(x, F(S))), where

Dist(z, F(Sy) = inf o=yl
yeF (S

Then the sequence {z,} difined by (3.1.6) converges strongly to a point = € Fiiz(T), which solve the

variational inequality problem (3.3.12).

a

Wg91. From (3.1.6), we have

Tnt1 — T = ap(Spxp — SnT) + an(SpZ — ) + (1 — ay) (Sayn — T).

Thus we have

IN

|Zns1 — i'Hz lon (Snn — Sn®) + (1 — an)(Sayn — 5:)”2 + 20, (ST — T, Tpy1 — T)

IA

(1 - Oén)HS)\yn - i‘HQ + O‘nHSnl'n - ni'HQ + 20‘n<snj — T, Tpy1 — j(>3°1°21)

< (1= an)llyn — 2|2 + anl|@n — || + 2000 (Sn@ — &, Ty — T).

Now we consider

lyn — 1% = [|(1 = Bu)(@n — &) + Bulfrn — f2) + Bul(fZ — T)||
< H(l_ﬁn)(xn_j)+ﬁn(fxn_fj)||2+25n<fj_jayn_f>
< (1= B)llzn — 2l + Bal(fon — fO)® + 26 (fF — Z,yn — F)  (3.1.22)
<

(
(1= Ba)llzn — ZI* + Bar*llen — 2|1 + 260 (fZ — &, yn — )
[1 ( VQ)ﬂn]Hwn_‘%”2+2ﬂn<f‘%_£7yn_i'>'

Substituting (3.1.22) into (3.1.21), we get

|z — 21> = anllan — )+ 1 — an)[1 = (1= +?) B]l|lzn — |2
+2Bn(1 — ) {fF — %, yn — &) + 20 (SnT — &, Tppi1 — I)
= [1=(1=")B8(1 = )]z = Z|* + 26, (1 — n)(fE — &, y0 — T)
4200, (Sp& — &, Tpy1 — )
= [1-(1=7)8.(1 = an)]llzn — 2 + (1 = 7*) Bu(1 — o)

{1 _1 <fx —Z,Yn — > (1 — 72)2(1 — an) X %<Snj — T, Tp41 — @-}23)
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By Theorem 3.1.4, we note that every weak cluster point of the sequence {z,} is in Q. Since
Yn — Ty, — 0, then every weak cluster point of {y,} is also in 2. Consequently, since & = projo(fz),
we easily have

limsup(fz — z,y, — &) < 0. (3.1.24)

n—oo

On the other hand, we observe that
(Sn@ — T,Tn41 — T) = <Sn9:“ — T, PrOJFin(Sy)Tnt+1 — 9?> + <5n9z — T, Tpy1 — pTOjFim(SA)$n+1>
Since 7 is a solution of the problem(3.1.5) and projpiz(s,)Tn+1 € Fix(Sy), we have
(Sni — &, projpis(sy)Tns1 — ) < 0.

Thus it follows that

(Sp = %, 2n41 —T) < (Sud — T, Tnt1 — PrOJFin(sy)Tntl)
< 1907 = & || 21 — Projpie(s,Tatil|
= ||SnZ — Z|| X Dist(xpy1, Fixz(Sy))
< 218 = @l = Shanll

We note that

Hxn-i—l - S)\xn-i-lu < Hxn—l—l - S)\an + HS)\xn - S)\l'n—&-lH

< anl|Snn — Sxanll + (1 — an) |3y — Sxzn|| + || 2011 — 20|
< anl|Snn — Sxznll + |yn — Tull + (201 — 24|
< an”Snxn — S| + 5anxn - xn” =+ Hxn—i-l - an

Hence we have

2
o . ~ an (1 - -
ﬂ—n(Sn:U — T, Ty —2) < =2 (pHSna: — Z|||| Sy, — SAan>
n n
1o ~ -~
(211508 = 3l 0 — 2]
2
o ||z - 1 U
—i-ﬂnH ntl = ull (HSnx - a:”)
n On p
From Theorem 3.1.4 we have lim,,_. W = 0. And then, we note that {%HSniﬁ — Z|||Snan —

Sxznll}s {%HSnyE —Z||| fxn — znl|}, and {%HSHJE — ||} are all bounded. Hence it follows from (i) and
the above inequality that

. (0% . . .
limsup —(SpZ — &, Tpy1 — &) < 0.
n—oo n

Finally, by (3.1.23) and Lemma 2.2.5, we conclude that the sequence {x,} converges strongly
to a point & € Fiiz(S)) = Fiz(T). This completes the proof. O
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3.2 Existence Theorems for Nonconvex variational Inequalities Problems

In this section, we prove the existence theorem for a mapping defined by 1" = T} + 15 when 7 is
a p1-Lipschitz continuous and -strongly monotone mapping, 7% is a pe-Lipschitz continuous mapping,
we have a mapping T is Lipschitz continuous but not strongly monotone mapping. This work is extend

and improve the result of N. Petrot [39].

Let H be a real Hilbert space, and let C' be a nonempty closed subset of H. In this section,
will consider the following problem: find x* € C' such that

— Ta* € NE(x%). (3.2.1)

The problem of type (3.2.1) was studied by Noor [29] but in a finite dimension Hilbert space setting.
In 2010 [39] Petrot intend to consider the problem (3.2.1) in an infinite dimension Hilbert space for a
mapping 1" satisfied p-Lipschitz continuous and y-strongly monotone. In this section we extended the
result of [39] Petrot to a mapping T = T + T3 with 77 is a pp-Lipschitz continuous and ~-strongly
monotone mapping, 15 is a pe-Lipschitz continuous mapping. We see that 71" is Lipschitz continuous

but not strongly monotone mapping. To do this, the following remark is useful.

Remark 3.2.1. Let T be a pp-Lipschitz continuous and y-strongly monotone mapping, and let 75 be

a uo-Lipschitz continuous mapping. Then the function f : (1, M) — (0,00) which defined by

V(ty — p2)? — (uf — p3)(#% — 1)
t(pf — p3)

ft) = NV teM,

+ 2_ A2 2_,,2
where M — 7#2 2(u1 il )(2u1 13)
V2= (ui—p3)

In this work, we have to assume that po < py. Thus, from now on, without loss of generality

we will always assume that ps < py.

Theorem 3.2.2. Let C' be a uniformly r-prox-regular closed subset of a Hilbert space H, and let
T1,T5 : C — H be such that T} is a uq-Lipschitz continuous and ~y-strongly monotone mapping, 75 is
a po-Lipschitz continuous mapping. If 7'="T) + T2 and 0 < dp(cy < 77, then the problem (3.2.1) has

a solution.

Proof. We first, defined a function & : [1, M) — (0,00) which is defined by
r(t—1)

h(z) = + f(t),Vt € [1, M). (3.2.2)

T

We see that the net {ts},c () Which is defined by ¢, = ;= converges to 1 as s | 0. It follows that
h(t) | =35 as ts | 1, we can find s* € (0,r) such that L2
HI—H2 HI—H2

< h(t), Then we have

r(tss — 1) s
tsorcy  Orc)

Lo y—2 —
R gy ) <) = I () =

Now, we choose a fixed positive real number p such that

S*

tsy — ls
SR ) < p < min{ L2 4 f(te),
) R T(C)

1. (3.2.3)
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Next, for an element oy € C' and use an induction process to obtain a sequence {z,} C C satisfying

Tnt1 = projo(xy, — pTxy,), Yn=0,1,2,... (3.2.4)
Consequently, from (3.3.9) and Lemma 2.2.5, we have

||l'n+1 - xn” = Hp’I"OJ'C(l'n - pT-rn) - pTOjC(xnfl - pT$n71)H

= tsll(zn — pT2n) — (Tp-1 — pTTp—1)||

= tsl|(@n — xp-1) — p(Tzn, — Tp—1)|| (3.2.5)
< tylllen — 2n1 — p(Tiwn — Thzn—1)|| + pl|Toxn — Towp 1]
< tlllen — 2p—1 — p(Th2n — Thxn—1)|| + pp2l|zn — zn-1l]-

Since the mapping 77 is y-strongly monotone and p1-Lipschitz continuous, we obtain

lzn — 2n1 — p(T1xp — Tizn_1)|? = |20 — zn_1l]* = 2p(xn — 1, T1xp — T12p_1)
+0° | Than — Thzp-1 |
< g = zpal? = 209w =z |+ p*pillzn — 20 3I.6)
= (1 =2py+ pi) [z — @ |”
It follows that

|xn — xn—1 — p(Thxy — Thxn-1)|| < /1 —2py+ p,u%”xn — xn,1|]2. (3.2.7)

From (3.3.10) and (3.3.13), we get

|Tns1 — an < ts(pp2 + \/ 1—=2py+ p#?)llxn - xn—IH- (3.2.8)

Now, we see that for the choice of p, we know that {x,} is a Cauchy sequence in C. Then {z,} is a
convergence sequence, it follows that, if z,, — x* as n — oo we have z* € projo(z* + p(=Tz*)) for

some p > 0. From definition 2.2.2, we have —T'z* € NZ(z*). This completes the proof. O

Corollary 3.2.3. [39] Let C' be a uniformly 7-prox-regular closed subset of a Hilbert space H, and let
T :C — H be a y-strongly monotone mapping and p-Lipschitz continuous mapping. If 0 < oy < 7,
then the problem (3.2.1) has a solution.

Proof. From Theorem 3.3.4, if T5 = 0 we have a result. ]
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3.3 TIterative Algorithm for Nonconvex Variational Inequalities

In this section, we suggest and analyze an iterative scheme for solving the system of nonconvex
variational inequalities by using projection technique. We prove strong convergence of iterative scheme
to the solution of the system of nonconvex variational inequalities requires to the modified mapping
T which is Lipschitz continuous but not strongly monotone mapping. Our result can be viewed and

improvement the result of N. Petrot [39].

Let C, be a uniformly r-prox-regular(nonconvex) set. For given nonlinear mappings 1" : C, — H,

we consider the problem of finding z*,y* € C, such that

(pTy* + 2" —y",x —2*) >0,V € Cr,p >0
nTz" +y* —a*,x —y*) >0,Vx € Cr,n >0, (3.3.1)
which is called the system of nonconvex variational inequalities.

It is worth mentioning that if 73 = T = T,2* = y* = u and p = 0, then problem (3.3.1) is
equivalent to finding v € C) such that

(Tu,v —u) > 0,Yv € Cp, (3.3.2)

which is known as nonconvex variational inequalities introduced and studied by Bounkhel et. al. [22]
and Noor [30, 31].

It is known that problem (3.3.2) is equivalent to finding u € C,. such that
0€ Tu+ N (u), (3.3.3)

which Ngr(u) denote the normal cone of C, at uw. The problem (3.3.3) is called the variational

inclusion associated with nonconvex variational inequalities (3.3.2).

Lemma 3.3.1. For given z*,y* € C, is a solution of system of nonconvex variational inequalities
(3.3.1), if and only if

x* = Pely” — pTy],
y* = Polz® — nTz"], (3.3.4)

where P is the projection of H onto the uniformly prox-regular set C;.

=) o

wWgau. Let x*,y* € C, be a solution of (3.3.1), from (3.3.3), for a constant p > 0, we have

0 € pTuy" + 2% —y* + pNE. (") = (I + pNE)(@™) — [y" — pTiy]

if and only if
" = (I+pNG,) 'y — pTay’] = Pely” — pT1y,

where we have used the well-known fact that Po = (I + pNgr)_l.
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Similarly, we obtain
y* = Polx™ — nTyx™].
This prove our assertions. O

Algorithm 3.3.2. For arbitrarily chosen initial points zg,yo € C,, the sequence {x,} and {y,} in the

following way:

Yn = Polrn —nTan),n >0
Tnt1 = (1 —apn)xn + anPolyn — pTyn], p > 0, (3.3.5)
where {«,} is a sequence in [0, 1].

Remark 3.3.3. [39] Let C' be a uniformly r-prox-regular closed subset of a Hilbert space H, and let
T1,T5 : C — H be such that T3 is a p-Lipschitz continuous and ~y-strongly monotone mapping, 75 is

a uo-Lipschitz continuous mapping. Let

o k2 — /(1] —yp2)® — pd(y — m)Q]

E=rlul —v 5 (3.3.6)
251
then for each s € (0,¢), we have
Yt — iz > (2~ i3) (12 1), (337)

where tg = .

In this paper, we may assume that M”"dpcy < &, we see that for any s € (MP’”(ST(C),f) it
satisfy the inequality 3.3.7 too. where M#" =min{p,n},dpcy = sup{|lu —v| : u,v € T(C)}.

Now, we suggest and analyze the following explicit projection method (3.3.2) for solving the
system of nonconvex variational inequalities (3.3.1). Thus, from now on, without loss of generality we

will always assume that o < 1.

Theorem 3.3.4. Let C' be a uniformly r-prox-regular closed subset of a Hilbert space H, and let

T1,T> : C — H be such that 77 is a pq-Lipschitz continuous and ~y-strongly monotone mapping,

T is a po-Lipschitz continuous mapping. If 7' = 77 4+ 15 and there exists constant p,n > 0 and
5 € (MP"5p(cy,§), such that
Vs — 12

ts(u% - :U’%)

AV (yts—p2)? = (3 —p3) (#2-1)

where A\;, = =) .

X2 g, = 0, then the sequences {x,} and {y,} obtained from Algorithm 3.3.2 converge to a solution

ty — 1
— A, < py < min{t7 s T 12 1, (3.3.8)

ap2 AL
s(pd — p3) tspho

If the sequence of positive real number «, € [0,1] with

of the system of nonconvex variational inequalities (3.3.1).
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a o

Wgau. Let x*,y* € C, be a solution of (3.3.1) and from Lemma 3.3.1, we have

v

[Zns1 — 2| = (1= on)zn + onPolyn — pTya] — 2*|
(1 = an)(zn — ") + an(Pelyn — pTyn] — Pely* — pTy*]) ||
1

< (I =ap)llzn — 2| + anl| Pelyn — pTyn] — Poly™ — pTy]||
< (I —an)llzn — 2% + antsl|(yn — pTyn) — (y* — pTy")||
< (I =ap)|lzn — 2™ + ants[|(yn — ) — p(Tryn — T1y")|| + pll(T2yn — T23IRI9)

From 77 are both pq-Lipschitz continuous and ~y-strongly monotone mapping and from Lemma 2.2.6,

we obtain

(o = ¥*) = p(Tiyn — Ty = Nvn — ¥ 11* = 20(yn — ¥* Tiyn — T0y*) + P2 Thyn — Thy*||?
< Nyn — ¥* 11> = 2071lyn — *112 + P21t llyn — v I
= (1-2p7+ p*ud)llyn — v [

It follows that
[y — ") = p(T1yn — T1y")|| < /1 =207 + P21y — v |- (3.3.10)

On the other hand, from 7% is po-Lipschitz continuous, we have
1T2yn — Toy™|| < p2llyn — y*||- (3.3.11)
Thus, by (3.3.9), (3.3.10) and (3.3.11), we have

st — 27 < (1= an)|on — || + ants(ops + /1= 207 + P21 lgm =l (33.12)

Similarly, we have

lyn —y* Il = [[Pclzn —nTw.] —y*||
= ||Pclrn —nTxy) — Polo™ — nTx”]||

IN

tsl|(zn — nTxn) — (2* —nz”)||
< tsl||(zn — =) — n(Thzy, — Tha™)|| + n||Tex, — Tox™||]. (3.3.13)

Similarly, from 77 are both p;-Lipschitz continuous and ~y-strongly monotone mapping, we obtain

I(zn — 2*) = n(T1z — T12")|” len = @||* = 2020 — 2™, Thzn — Tia") + 0*| Thwn — Tr2"|?

< lwn — 2*)* = 2pyl|lan — 27| + P pd |2, — 2|
= (1 —=2ny+°ud)llzn — 2|
It follows that
(@0 — 2*) = n(Tizn — Tiz™)|| < /1 =20y + n?pille, — 2. (3.3.14)

On the other hand, from 75 is po-Lipschitz continuous, we have

| Toxy, — Tox™|| < pel|lx, — =¥ (3.3.15)
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Thus, by (3.3.13), (3.3.14) and (3.3.15), we have

1y — 47| < ts(npa + \/1 = 2my2 + n?p) [z — 27 (3.3.16)
Moreover, from (3.3.12) and (3.3.16) we put 61 = ts(ppe + /1 — 2py + p? ,ul s(nue +

V1 =217y +n2p?), it follows that

[znr =2l < (1= an)lzn — 27| + anbrOz]|zn — 27|

= (1= (1 —=60z)an)|lz, — 27

n

< JJ0 = (= 6162)c) |20 — 2*]]. (3.3.17)

i=0
Since X702 o, = oo and conditions (3.3.8), we obtain
n
lim J](1 - (1 - 6165)0:) =0. (3.3.18)

n—o0 4
=0

It follows from (3.3.18) and (3.3.17), we have

lim ||z, —2*|| = 0. (3.3.19)
n—oo

From (3.3.16) and (3.3.19), we have
lim |y, —y*|| =0. (3.3.20)
n—oo

Which is z*, y* € C, satisfying the system of nonconvex variational inequalities (3.3.1). This completes

the proof. O

Corollary 3.3.5. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let
T : C — H be such that T" is a u-Lipschitz continuous and -strongly monotone mapping. If there
exists constant p,n > 0 and s € (M*"0p(),§), such that

XA, <pn< % + Ay (3.3.21)
V( .
where A\, = (Ots) (: L . If the sequence of positive real number o, € [0,1] with ¥£2° ja,, = 0,
l

and «, € [0, 1] with ¥2° ja,, = 00, then the sequence {z,} and {y,} is generated by for xo,yo € Cy,

yn = Peolrn —nTzy],n >0
Tny1 = Polyn — pTyn],p >0, (3.3.22)

strongly converge to a solution of the system of nonconvex variational inequalities (3.3.1).

a

#W@91]. From Theorem 3.34, if T, =0 and o, = 1 for any n > 0, we have a result. O

Y

We can applied Theorem 3.3.4 to the system of general of nonconvex variational inequalities,

for given nonlinear mappings 1, g : C;, — H, we consider the problem of finding z*,y* € C, such that

(pTg(y") + g(z") — g(y"), 2 — g(z*)) 2 0,Vz € Cp, p > 0
nTg(z*) + g(y*) — g(z),x — g(y*)) > 0,Yx € Cy,n > 0, (3.3.23)
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which is called the system of general nonconvex variational inequalities. Similar of the proof of

Lemma 3.3.1, we can proof that

Lemma 3.3.6. For given z*,y* € C, is a solution of system of nonconvex variational inequalities
(3.3.23), if and only if

9(y") = Pelg(z™) —nTg(«")], (3.3.24)
where P is the projection of H onto the uniformly prox-regular set C;.

Theorem 3.3.7. Let C' be a uniformly r-prox-regular closed subset of a Hilbert space H, let g : C — H
is injective mapping and let 77,75 : C' — H be such that 77 is a p;-Lipschitz continuous and v-strongly
monotone mapping, 75 is a uo-Lipschitz continuous mapping. If T' =T} 4+ 15 and there exists constant
p,n >0 and s € (M?"0pc),§), such that
Vts — pi2
tS(H% - N%)

AV (ts—p2)2— (13 —p3) (12-1)
where A\;, = W 7—12) .

X0 yan, = 0, then the sequence {z,} and {y,} is generated by for zo,yo € Cy,

ts — 1
EAYY <p,7]<min{t7 s 2 1

— ey —— (3.3.25)
s(uf — 13) tspiz

If the sequence of positive real number o, € [0,1] with

9(yn) = Pelg(zn) —nTg(xn)],n >0
9(@nt1) = (1 —an)g(zn) + anlclg(yn) — pTg(yn)l, p > 0, (3.3.26)

strongly converge to a solution of the system of nonconvex variational inequalities (3.3.23).

ﬁgmf. Similar the proof in Theorem 3.3.4, let 2™, y* € C,. be a solution of (3.3.23) and from Lemma

3.3.6, we can compute that

lg(@nsn) — gl < TL — (1 = G162)as) lg(xo) — gla™)]]. (33.27)
i=0
where 01 = ts(pu2 + /1 —2py + pzu%) From ¥>° o, = oo and conditions (3.3.25), we obtain
lim [J(1— (1 6162)0) = 0. (3.3.28)
"0

It follows from (3.3.27) and (3.3.28), we have

lim ||g(zn) — g(z")| = 0. (3.3.29)
n—oo
And we can compute that
l9(yn) =9Il < Oallg(zn) — g(z), (3.3.30)

where 0y = ts(nue + \/ 1 — 2ny9 4+ n%p?), it follows that

lim {|g(yn) — (™) = 0. (3.3.31)
n—oo
From ¢ is injective mapping, we have lim, . ||z, — 2*|| = 0 and lim,, . ||yn — ¥*|| = O satisfying

the system of general nonconvex variational inequalities (3.3.23). This complete the proof. O
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Corollary 3.3.8. Let C' be a uniformly r-prox-regular closed subset of a Hilbert space H, let g : C — H
is injective mapping and let T : C — H be such that T is a p-Lipschitz continuous and ~-strongly
monotone mapping. If there exists constant p,n > 0 and s € (M”67, §), such that

XA << L4 A (3.3.32)
p I

_ V()2 = () (2 -1) 00

where A\ = 02 . If the sequence of positive real number o, € [0,1] with £2° ja,, = 0,
s\Hy

and a, € [0, 1] with X9° a,, = oo, then the sequence {z,} and {y,} is generated by for zo,yo € C,,

9yn) = Folg(zn) —nTg(xn)],n>0
9(wn1) = Pelg(yn) — pTg(yn)],p > 0, (3.3.33)

strongly converge to a solution of the system of nonconvex variational inequalities (3.3.23).

Q 4

Wg91. From Theorem 3.3.4, if 75 =0 and a,, = 1 for any n > 0, we have a result. UJ

U
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1 Introduction

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respec-
tively. Let C' be a nonempty closed convex subset of H. The hierarchical problem
is of finding & € Fiz(T) such that

(St — 2,2 —%) <0, Vze Fiz(T), (1.1)
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where S, T are two nonexpansive mappings and Fiz(T') to denote the fixed points
set of T, that is Fix(T) = {& € C : Tx = x}. Recently, this problem has been
studied by many authors (see,[2]-[17]).
Now, we briefly recall some historic results which relate to the problem (1.1).
For solving the problem (1.1), in 2006, Moudafi and Mainge [4] first introduced
an implicit iterative algorithm:

15 = 8Q(@1,s) + (L= 8)[ES(wr,5) + (1 = )T (21,5)] (1.2)

and proved that the net {z; s} defined by (1.2) strongly converges to z; as s — 0,
where z; satisfies 2;=projriz(p,)Q(z¢), where P;:C — C' is a mapping defined by

Pi(z)=tS(z)+ (1 —t)T(x),Yx € C,t € (0,1),
or, equivalently, x; is the unique solution of the quasivariational inequality:

0€ (I —Q)xt + Npinp,)(Tt),

where the normal cone to Fiz(P;), Npiy(p,) is defined as follows:

‘ ] {ue H:{y—x,u) <0}, ifxe Fiz(P),
Nria(p) 4 = { 0, otherwise.

Moreover, as t — 0, the net {z:} in turn weakly converges to the unique
solution z of the fixed point equation z.,= projoQ(z) or, equivalently, x ., is
the unique solution of the variational inequality:

0€e(lI—Q)xoo + Na(rs)-

Recall that a mapping f : C — C' is said to be contractive if there exists a
constant v € (0,1) such that

| fz — fyll <~llz —yll, Vo,yeC.

A mapping T : C — C is called nonexpansive if
[Te =Tyl < |z —yll, Vz,yeC.

A mapping T is said to be k-strict pseudo-contractive if there exists k € [0, 1) such
that

IT2 — Tyl < |l — y|> + klI(I = T)x — (I - T)y|%,Va,y € D(T).  (13)

Note that the class of k-strict pseudo-contraction strictly includes the class of
nonexpansive mappings. We see that, if S : C' — C defined by Six = kx + (1 —
k)Tx for all x € C where T is k-strict pseudo-contractive then Sy is nonexpansive
mapping [21].

In this paper, motivate by Kangtunkarn and Suantai [1], we introduce a map-
ping for finding a common fixed point of T" is a A-strict pseudo-contractive mapping
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and {T;}¥ , a finite family of k;-strict pseudo-contractive mappings of C' into itself.
Foreach n € N, and j = 1,2,..., N, let af = (o], a5’ as?) €10,1] x [0,1] x [0, 1]
with o + a5 + a3 = 1. We define the mapping S, : C' — C as follows:

Un,O = I
Unp = O‘?’lTlUn,O + CV;’lUmo + Oég’lf;
U = T+ Uy + o}
Uus = o¥T3la + o} Usa+ o}
5
U,n-1 = Oz?’N_lTNflUn’Ni2 + a;7N—1Un’N72 n Oég’N_lf;
Sn = Uny =0 TInUnnor+03 Unnos+af "L (14)

Motivated and inspired by the results in the literature, in this paper, we con-
sider a general hierarchical problem of finding «* € F(T') such that, for any n > 1,

(Spr™ —x*,x — %) <0,Vx € F(S)), (1.5)

where S,, is the S-mapping defined by (1.4) and Sy is a nonexpansive mapping
defined in Lemma 2.1.

Algorithm 1.1. Let C' be a nonempty closed convex subset of a real Hilbert space
H and let T is a A-strict pseudo-contractive mapping with Sxx = Az + (1 — \)Tz
and {T;}X | be a finite family of k;-strictly pseudo-contractive mapping of C into
itself. Let f : C'— C be a contraction with coefficient v € (0,1). For any xg € C,
let {x,} be the sequence generated by

anrl = ansnxn + (]- - an)S)\(an((En) + (]- - Bn)xn)u Vn 2 07 (16)

where {a, }, {Bn} are two real numbers in (0,1) and S, is the S —mapping defined
by (1.4).

We show that an explicit iterative algorithm which converges strongly to a
solution z* of the general hierarchical problem (1.5).

2 Preliminaries

In this section, we collect and give some definition and useful lemmas that will
be used for our main results in the next section.

Lemma 2.1. [21] Let T : C — C be a k-strictly pseudo-contraction. Defined
Sx:C = C by Sye = A+ (1 — XN)Tx for each x € C. Then, as X € [k, 1], Sy is
nonezpansive mapping and F(T) = F(Sy).

Lemma 2.2. In a real Hilbert space H, there holds the inequality
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Loz +yl? < ol +2(y, 2 +y) and |z —y||* = ||=|* —2(z, y) + |y[?, Y2,y € H.
2. Ntz +(1=t)yl* =tz + A=) [lyl]* —t(1 - 1) [z —y[|*, vt € [0, 1], Ya,y € H.

8o caml|? = Yo g il = 207 gl — ] for Yok i = 1,04 €
0,1],Vi € {0,1,2, ..., m}.

Definition 2.3. [1] Let C' be nonempty convex subset of real Banach space. Let
{T:}Y| be a finite family of k;-strictly pseudo-contractive mapping of C into itself.

For each j =1,2,...,N, let aj = (a{,aé,ag) € I x I x I where a{,ag,aé el =

0,1] and o + o, + ag = 1. We define the mapping S : C — C as follows:

Uy = I
Ui = aiTiUy+ adUy+ail
Uy = aiToU; +adUy + a3l
Us = a3T3Us +adUs + a3l
Uv-1 = o "Tn1Un o+ ad 'Un_g+a) 1T
S = Uv=aYTyUn_1+ad Uy 1 +d1.

This mapping is called S — mapping generated by T1,...,Tn and a1, a9, ..., aN.

Lemma 2.4. [10] Let C be a nonempty closed convez subset of a real Hilbert space
H and S : C — C be a self-mapping of C. If S is a k-strict pseudo-contraction
mapping, then S satisfies the Lipschitz condition

1+k
1Sz = Syl < mHIE—yH, Va,y € C.

Lemma 2.5. [20] Let {s,} be a sequence of nonnegative real number satisfying
Spr1 =1 —n)sn+0n+1mn, Yn>0
where {a,} is a sequence in (0,1) and {6,} is a sequence such that
1.5 oy = 00,

2. limsup,,_, % <0 or 3307 [0n] < oo,

8. Yooty Il < oo

Then lim,,_, ¢, = 0.

Lemma 2.6. [1] Let C be a nonempty closed convex subset of real Hilbert space.
Let {T; Y., be a finite family of k;-strictly pseudo-contractive mapping of C into C
with ﬂf\;l F(T;) # 0 and k = max{k; : i = 1,2,..., N} and let aj = (o, oy, o) €
IxIxI,j7=1,2,3,...,N, where I = |0, 1]7a{+ag+a§ = La{,aé € (k,1) for all
i=1,2,...,N—1 and & € (k,1],a} € (k, 1,0}, € (k,1] for all j =1,2,...,N.
Let S be the mapping generated by T, ..., Tn and a1,qa,...,ay. Then F(S) =
ﬂilil F(T;) and S is a nonexpansive mapping.
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Lemma 2.7. [19] A real Hilbert space H satisfies Opial’s condition, i.e, for any
sequence {x,} C H with x, — x, the inequality

liminf ||z, — z|| < liminf ||z, — y||,

holds for each y € H with x # y.

Lemma 2.8. [18] Let C be a nonempty closed convex subset of a real Hilbert
and T : C — C be a nonexpansive mapping. Then T is demi-closed on Ci.e.,if
r, ~x€C and x, — Tx, — 0, then x = Tx.

3 Main Results

In this section, we prove strong convergence of algorithm (1.6) and solving a
common solution of a general hierarchical problems and fixed point problems of
finite family of strict pseudo-contractive mappings. First, we can prove the lemmas
that will be used in the main theorem.

Lemma 3.1. Let C' be a nonempty closed convex subset of a real Hilbert space
H, let {T;}X., be a finite family of k;-strictly pseudo-contraction of C into itself
for some k; € [0,1) and k = max{k; : i =1,2,..., N} with ﬂi\;l F(T;) # 0. Let

() o0 (n)

Sn be the S-mapping generated by T1,Ts,...,Tn and o sy, where

agn) = (a7 0y e Ix I x I, I =[0,1],a}7 +ab? + a7 =1 and k < a <
af? ag? <b< 1forallk<c§a?’N < Lkgozg’N <d< Lk<ay? <e<l1
forallj =1,2,...,N and > o7, la T — | < 00, >0, ozg'H’J — a3’ < oo

forall j ={1,2,3,...,N}. Then for allz € H,> " | [|Sny12 — Spz|| < occ.

Proof. For each x € C' and n € N, we have

[Uns102 = Upazl| = Jai™ ' Tz + (1 - o™ e) — o' Tz + (1 - o)z
- ||a?+1’1T1x—a?+1’1x —a?’lTlx—i—a?’lmH
(03— 0Ty — (0™ — g )a

lai ™ — || The — 2 (3.1)
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and for n € N, and for k € {2,3,..., N}, we have

[Un+1,62 — Un ||

IA

IN

IN

n+1,k n+1,k n+1, k
o™ TUnt1,k—17 + @y nt1,k—1T + Q3

n,k n,k
—a" " TpUp o1 + g Uy g1 + :c||

n+1,k n+1, k n,k
et TpUpt1,k—12 + Qg —ay” TkUn,k,lx —ay’z

oLk
||a"+1’ TeUnt1 k—12 — cu"+1 kaUn E_1T + Oz”+1 kaUn’k,lx
R Un kx4 (a5 T — o Mye + o T UL ez — ol UL 2
Ha;”r1 (TeUpsi1p—12 — TpUp 1) + (o/f+1 - af’ )TkUn 1T
(al ok
ey T M (T Ungr jm12 — TeUpp—rz) + (o T8 — ook

XTkUnk 11._’_( n+l,k nk) +ag+ k
+1 kU

Unt1,6-17 — g kUnk 1|

- ag’k)m + O‘S-H)k n+1,k—1L — Qg kUn k-1

Unt1,k-17

R k1 — oy UL oz

1T+ gy
||a"+1 ’“(TkUnH,k_lx - TkUn roa) 4 (@ thE — ot
XTpUp -1 + (043’“’]’C — "k) + an+1 k(Un+1,k71$
~Up p-12) + (05T — a3 MU, ka2
ol T U1 ko120 — TiUngp—rz]| + |00 — o M| T U 12

1,k
+| ]

+ay U g1 = U a4 lag ™8 — o ™[ Un 12|
AT U g1 k1@ — Tl gz + | — @[T U g 2|
+oy | Unga pm12 — Up ]| + 1 — o FHF
—al 1 ol R B |0 ] + e — |z
1+ &

QI U1 = Un szl + 0l — ol ¥ Tl 1]
+Oé; ’ |‘Un+17k_1z — Un,k—lx” + (|0¢n’k
—a TR ot — Q) U] + |a"“ * ok
1+ k&
17||Un+1k 12— Up g 1$|| +|Oén+1k n,k—ll’H

1+k&
1 U k12 = Un o] + (Jof " = af ™

) 1,k 1,k Kk

Hlal® — o) koral] + ol — al¥ |12

2 ntlk ok
U112 = Ul + 1o (1T 12

, +1,k

U irz]) + g™ — a2 F (U ezl + ). (3.2)
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By (3.1) and (3.2), we have
[Snt1z — Spz|| = ||Unt1,n7 — Un ne||
< %”U'Hﬁ-l,]\/—lx —Upnoaz|| + la TN — QN (|1 Ty U 12|
H|Unv—az]) + 1™ = ap (| Un,v—12l] + l|])

2 2
< m <1_k||Un+1,N—2$ - Un,N—2I||
Haf T = oYY (Ty U v + (| Un v —2)
1,N—1 N-—1
Hag Y o N[0, o] + ] )
Haf N — a PN (1T U v 12| + [Un, v —12]])
Hlag ™Y — ab N ([Un v 1] + [l2]))
2 2 N 2 N—j 1 .
= (1—k> [Un+1,N—22 — Un,n—22| + Z (1_1{:) o — o |(|I Ty Uy -1
j=N-1
N 9 N—j
L
el + > (H) o™ — a3 | (|Un gz + )
j=N-1
9 N-1 N 9 N—j y '
< (125) Weae-Unal+ X (125) ol - L0,
j=2
N 9 N—j
v+1,7 g
HUns12l) +3_ (H) ai 7 — a3 (U j-a2ll + ll2])
j=2
9 N-1 T ) N 9 N—j
n+1, n,
- () et -attime s+ ()
Jj=2
N 2 N—j
1,5 \J
ATt = QP (Tl + 0ol + el + 3 (2 )
j=2
n+l,j  n,j U .
+lo oz |(|Un,j—12] + [|]))-
This implies by assumption we have that
o0
Z I1Snt12 — Spz| < oc.
n=1
This complete the proof. O

Lemma 3.2. Let C' be a nonempty closed convex subset of a real Hilbert space
H, let {T;}X.| be a finite family of k;-strictly pseudo-contraction of C into itself
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for some k; € [0,1) and k = max{k; : i = 1,2,..., N} with ﬂfil F(T;) # 0. Let
Sy, be the S-mapping lgenemted by 11,15, ..., TN ‘and ozg.n), ag")', cee ag\?), where
a§-n) = (a7, ay?,a57) e I x I x I,I =10,1],a7” + ay”? + a3’ =1 and satisfy
conditions:
(1) k <a< a?’j,ag’j <b<l1forallk<c< a;l’N <1,k< ag’N <d<1,k<
ay? <e<1foralj=1,2,...,N
(2) S0y lat —ad| < o0, 307, g —ag| < o0, Y0, g —af| < oo for all
j=1{1,2,3,....N}.
Then for all x € H,lim,_, ||Spz — Sz| = 0.

Proof. Let x € C and for each n € N, from the definition of S mapping and
Lemma 2.4, we have

|Upiz — Uhz|| = ||a?’1T1Un’0x + a;’lUn,ox + ag’lm — (aiThUpz + adUpz + azx)||

IA

,1 ,1 ,1
ot = aillITvall + oz — aslllll + lag " — asll«].

From boundedness and condition (2) we have

nh_)ngo |Un 12 — Urz|| = 0. (3.3)
Next, consider
|Up oz — Usz|| = |a}?TalUpix 4 oy *Upaz + ay’e — (a3ToUrz + a3Usx + o2z
< ||a?’2T2Un71x — oz?’2T2U1x + oz?’2T2U1x + ozg’2Un71x + a§’2x
— (3 TyUrx + 03Uz + o))
< o (ToUn iz — ToUra) || + (a5 ® = a3) (@) + (] — o) (ToUs2) |
+ay?Up 1z — a2U 2|
< P ToUnz — ToUra|| + |of® = al|z]| + | — of || ToUs x|
+ay? |Upaz — Ura|| + lag? — o3 ||| Uz
< o0, o ]+ 03 - alle] + Jo}? - ol Tie]

+ay? [ Unaz — Urel| + |y ® — a3 Urz].

From boundedness, condition (2) and equation (3.3), we have

lim ||Up, 22 — Usz| = 0. (3.4)
n—oo
Similarly of the proof, we have
ILm U, nx — Unz|| = 0. (3.5)
Since ||Spz — Sz|| = ||Un,nx — Unz||, we have
lim ||Spz — Sz| = 0. (3.6)
n—oo

This complete the proof. O
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Theorem 3.3. Let C' be a nonempty closed convexr subset of a real Hilbert space
H, let T be a A-strictly pseudo-contractive mapping and {Ti}f\[:l be a finite family
of k;-strictly pseudo-contractive mappings of C into itself for some k; € [0,1) and
k = max{k; : i = 1,2,..., N} which ﬂf\[:l F(T;) # 0. Let S,, be the S-mapping
generated by Ty, Ty, ..., T and af, oy, ...,af where aff = (oz?’j,oz;’j,ozg’j) clx
IxI,T=101),a}7 +ay’ +ay? =1 and k < a < a}?,ay? <b<1 for all
j=1,2,.,N-lLk<c<aPVN <lLk<ap <d<lk<ay? <e<1 forall
j=1,2,..N. Assume that set Q of solution of general hierarchical problem (1.5)
is nonempty. For a mapping f : C — C is a contraction with v € (0,1), sequence
{an}, {Bn} are two real number in (0,1) and assume that the following condition
hold:

(1) limy, o0 @y = 0 and lim,, o g—" =0,

(2) 2:;1 Bn = 00,

11

Qn Qn—1

(3) Timp o0 5 | =0, and lim, o0 (1 - 2222 =0
(4) oyl —al?] < 00, 3207 |ag T —ag | < oo forallj = {1,2,3,..., N},

(5) Yol lai? —al| < 00,302 an — o] < 00, 30 |af — o] < oo for all
j={1,2,3,...,N}.

Then the sequence {x,} in (1.6) solve the following variational inequality:

zeN
{ (I = f)z,z—3)>0, Vo eQ. (3.7)

Proof. From (1.6), let y, = By f(xn) + (1 — Bp)x, and x* € Q we have

241 — ¥ = |lenSnzyn + (1 — an)Skyn —
< an|lSnwn — x*H + (1 — an)|Skyn — 2" ||
< ol — 2T+ (1= an)llyn — 27 (3-8)
Consider,
lyn — 2| = [IBaf(@n) + (1 = Bn)zn — 27|
< Bayllzn — 21+ 1 f(2%) — 2| + (1 = B) lzn — 2™
= (1-QQ=9)8n)llzn — 2|+ If (") — 2" (3.9)

From (3.8) and (3.9), we have

[Znt — 2" < anllan — 2"+ (1= an)[(1 = X =)Bn)lwn — 2™ + [If (=7) — =7[]
< anflen =27+ (1= an)llzn — 2"+ (1 = an)l| f(z7) — 27
[2n = 27| + (1 = an)[[ f(27) — 27|

< max{|lzo — 27|, [ f(27) — 7|}

A
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Then {x,} and {y,} are bounded and hence {f(z,)},{Snzn}, {Sryn} are also.

Now we consider

[yn —ynall = NBuf(@n) = Buf(n-1) + Buf(n-1) = Bnrf(wn-1) + (1 = Bn)an
—(1=Bn)zn—1+ (1= Bp)rn-1— (1 = Bp-1)Tn-1]|

Ballen = Znall + 160 = Baalllf(@n-1)]| + (1 = Bu)llzn — 2n]

+1Bn = Br-1lllzn-1l

= (=0 =Bz = xnall + 180 = Bnal (If (@n-)l + lzn-11)-

IN

From definition of {z,} and nonexpansiveness of S, we have

Hmn - xnfln = ||ansnxn + (]- - an)S)\yn - Oénfl‘snflxnfl + (]- - Oln71)5/\yn71||
= ||ansnxn — 0 SpTp_1 + 0 SnTp_1 — y_1SnTp—1 + y_1S,Tp_1

_an—lsn—l-rn—l + (1 - an)S)\yn—l + (1 - an)Skyn—l - (1 - an—l)SAyn—1||

< aonn - xn,1|| + |an - anfllnsnmnflu + O‘anHSnxnfl - 5n71$n71||
+(1 = an)llyn — Yn-1ll + lan — an—1[|Sxyn-1l

< anl|zn —wpal + (1 - an) [(1 — (L =y)Bu)llzn — Tn_1|
H B = Bual (1 @n-)ll + llzn—11)] + lan — an—1 (| Sn@n—1l + [|Sxyn-1])
+an—1||SnTn-1— Sn—1Zn—_1||

< Jan+ (1 =an)1 = Q=8 l[#n = zn-all + 80 = Baaa (I f (@n-1) | + llzn-1l])

+|an - an—1|(||5nxn—1|| + ||S)\yn—lH) + an—lHSnxn—l - Sn—lxn—lH
= [1 - (1 —)Bn(1 — O‘n)] Hxn - $n71|| + |5n - 5n71|(||f(xn71)” + Hxnfln)
+|05n - Oén—1|(||5nxn—1” + ||S)\yn—1H) + an—lHSnxn—l - Sn—lxn—lH~

Put M = sup {|f(xn1)||, 1Snzn—_1ll, ||S>\yn1}, n > 1, it follows that

|Tn1 —2nll < 1 =1 =9)Bu((1 = an)]l|zn — 21|l + (|Bn — Bu-1| + |an — an_1[)M

+an—1 HSnxn—l — Sp—1%n—1 ||

Put d,, = ||Snen—1—Sn—1Zn—1||, from Lemma 3.1, we have ¥5° ,4,, < o0, it follows
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that
||$n+1 - xn” [1 _ (1 _ 'Y)Bn<1 _ an)} Hxn - xn—l” + |Bn - ﬁn—1|M + |ﬁn - 6n—1| + Q1
Qp Qo 7% Qp
R
= 1= (1= 7)Ball — agy L= Znal
Op—1
|Tn — 21| |2n — 21|
1—(1- W (1 — an, —
HI= (1= )01 - a) (125 —
+|Bn - ﬁn—1|M+ |an - Oln—1|M+an_157n
oy oy oy
Ty — Ly
< = (1= )B(1 — = tenl
Op—1
1 1 n — Un— n - Mn— 677,
+<_ —i—‘a o 1\+|5 p 1|+>M
Qp Qp—1 Qo Qo Qp
Ty — Ty
= 1= (- )Bal1 - a2l
M 1|1 1 1 |a, — ap—1
+(1 — W(l—ap)d ————— [ — | — — —
( P)/)B ( ){ (1 - ’Y)(l - an) <ﬁn Qp Qp—1 Bn Qp
]- n — Gn— 1 n — Mn— 571
4_7|Oé, Ot,1|+7\ﬂ p 1|+7 )
Bn Qp 671 Oy Qp
From Lemma 2.5, we obtain that
lim NZnts = zall _ 0. (3.10)
n—oo an
This implies that
nhHH;O |€n+1 — zn] = 0. (3.11)
From (1.6) and (3.11), we have that
lim ||, — Sxy.| = 0. (3.12)
n— oo
It follows that
It implies that
”yn - S)\yn” < ”yn - an + ”mn - Skyn” — 0. (3'14)

Since the sequence {x,} and {y,} are also bounded. Thus there exists a subse-
quence of {y,}, which is still denoted by {y,, } which converges weakly to a point
Z € H. Therefore, & € Fiz(T) by (1.6), we observe that

Tpy1 — Tp = n(SnTn — n) + (1 — @n) (Sxyn — yn) + (1 — @) Bu(frn — 1),

n

n
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that is,
n - 4n 1-—- n n 1-— n
w:(j_sn)xn_k o (I—S,\)yn—kM(I—f)xn.

Qp, Qp, Qp,

Set z,, = W for each n > 1, that is
1_ n n 1_ n
o= (I — S )m + 22071 — )y + oL =) >(I—f)xn.
(7% Qg

Using monotonicity of I — Sy and I — S,,, we derive that, for all u € Fixz(T),

(smsion =) = (1= Su)omstn =) + (L= Sy — (I = Sy )ty — )
(1 = Sy — )+ 20—
> (1= S ), mm — ) + ww — F)tn, T — u)
P 1y = )
= (I = S)uywm — ) + (S — S)u, 2 —u) + w«l — F)am, T — u)
=l 1y = ).
But, since z, — 0, g—: — 0 and lim, o |[Spu — Sul| = 0, it follows from the

above inequality that

limsup((I — S)u,z, —u) <0, Yue Fiz(T).
n— oo
It suffices to guarantee that w,(x,) C Q. As a matter of fact, if we take any
x* € wy(2yn), then there exists a subsequence {z,,} of {z,} such that x,, — x*.
Therefore, we have
(I = S)u,z* —u) = lim (I —S)u,rn; —u) <0, Vue Fiz(T).

j—o0
Note that z* € Fiz(T). Hence z* solves the following problem:

z* € Fizx(T)
{ (I = S)u,z* —u) >0, Yu € Fiz(T).

It is obvious that this equivalent to the problem (1.5) by Lemma 3.2, we have
S, — S uniformly in any bounded set. Thus z* € Q. Let & be the solution of
the variational inequality (3.7), by Lemma 2.7 we have Z is unique. Now, take a
subsequence {z,,} of {z,} such that

limsup{(I — f)&,x, — Z) = lm (I — )T, z,, — ).

n—oo 1—r 00
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Without loss of generality, we can assume that x,, — x*. Then * € Q. Therefore,
we have

limsup{(I — f)&,z, — %) = (I — )z, 2" —F) >0.

n—oo

This completes the proof. O

Theorem 3.4. Let C be a nonempty closed conver subset of a real Hilbert space
H, let T be a \-strictly pseudo-contractive mapping and {T;}X_, be a finite family
of k;-strictly pseudo-contractive mappings of C into itself for some k; € [0,1) and
k = max{k; : i = 1,2,..., N} which ﬂil F(T;) # 0. Let S, be the S-mapping
generated by Ty, Ta, ..., Ty and af, o, ...,y where off = (a7 al? ay?) e T x
IxI, 1=10,1],0/ +ay? a7 =1 and k <a <a}? o’ <b<1 for all
i=1,2,.,.N—-1k<c< a?’N <1,k< ag’N <d<1l,k< a;“j <e<1 forall
j=1,2,...N. Assume that set Q of solution of generalized hierarchical problem
(1.5) is nonempty. For a mapping f : C — C is a contraction with v € (0,1),
sequence {an},{Bn} are two real number in (0,1) and assume that the following
condition hold:

(1) limy, o @ty = 0 and lim, o 2= =0,

(2) 27010:1 Bn = 00,

(3) limy oo 2| L — 1

An—1

| =0 and lim,_, a%|1 - %| =0,
(4) >0, |a;’+1’j—o¢’f’j| <00, 300 |a§+1’j—a;”j| < oo forallj={1,2,3,...,N},

(5) ZZOZI |0¢T’j —a{| <00,y |ozg’j —ag| <00,y |ag’j —a§| < oo for all
7 :{1,2,3,...,]\7},

(6) there exists a constant d > 0 such that |x — Sxz|| > pDist(x, F(Sy)), where

Dist(x, F'(Sy)) = inf |z —y|.
(z, F(S)) yeF(SA)II yll

Then the sequence {xy} difined by (1.6) converges strongly to a point T € Fix(T),
which solve the variational inequality problem (3.7).

Proof. From (1.6), we have
Tpt1 — T = @p(Sn@n — SnZ) + an(Sp® — &) + (1 — ap)(Sayn — T).
Thus we have

llon (Snzn — Sp®) + (1 — ) (Sayn — 2)||* + 200 (Sp® — &, 2011 — &)
(1 — an)||Sayn — Z|> + anl|Snn — SnZ||? + 200, (SnZ — &, 24 1(3-15)

(1 — ap)||yn — Z||? + anl|zn — E)|> + 200, (Sp& — &, Tpy1 — ).

[@nt1 — 2]

INIACIA
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Now we consider

S H(l - Bn)(xn - *%) + Bn(fxn - fi‘)||2 + 2Bn<fi' - jvyn - j>
< (U= Ballzn = ElI + Ball(fan — fE)? + 26, (fF — &, yn {F)6)
<

(1= Ba)llzn = 2% + Bar?lwn — 2 + 280 (f7 = T, yn — )
(1= (U= %)Bn]llzn = 2% + 260 (fF = &,y — 7).
Substituting (3.16) into (3.15), we get
[zne1 —21* = anllzn —Z]* + (1 - an) [1 - (1 - 72)571] 2y, — |2
+2Bn(1 - an)<f‘% - i'7yn - :Z‘> + 2an<Sn‘% - i'7xn+1 - i>
= [1=(1=2)8.(1 = an)]llen = Z|* + 26, (1 — 0n)(fT — T,y — )
+20,(SnT — T, Tpt1 — T)
= [1 - (1 - WQ)ﬂn(l - an)] lzn — &% + (1 - 'yg)ﬁn(l —ay)
1 2 o
T —T n_N JSHN_Nan X
AT - =) oy * G s {82
By Theorem 3.3, we note that every weak cluster point of the sequence {z,} is
in Q. Since y, — z, — 0, then every weak cluster point of {y,} is also in Q.
Consequently, since & = projo(fz), we easily have
limsup(fz — Z,y, — &) < 0. (3.18)

n—oo

On the other hand, we observe that
<Snj_j7 mn—&-l_-i) = <Snj_j7pr0jFix(Sx)xn+l_j>+<sni'_i‘7 xn+l_pr0jFix(S,\)xn+1>

Since  is a solution of the problem(1.5) and projpiz(s,)Tns1 € Fiz(Sy), we have

<Snfi' - ‘%ap’rojFiz(SA)xn%»l - ‘%> S 0.

Thus it follows that

(Sp% =T, 2p41 — &) < (Suf — T, Tny1 — Projpiz(sy)Tnt1)
< |19n@ = &ll||@nt1 — Projrie(sy) Tnt |
= ||SnZ — Z|| X Dist(xyy1, Fiz(Sy))

1 S
< ;HSnm = Z[|[Tns1 — Sx®nya-

We note that

Hxn-i-l - Skxn-ﬁ-l” ||xn+1 - S/\an + ||S/\xn - Skxn-ﬁ-lH
W ||Snn — Sxxn | + (1 — an)[|S2yn — Saznll + [Tn41 — 20|
@n||Snn — Sxxn|l + |yn — Tull + |Tnt1 — 2nl

an”Sna:n - S)\-TnH + Bn”fxn - anH + Hxn—i-l - xn”

INIA N IA
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Hence we have

a21

O (6,5 — By —8) < ﬁ(|snx—x|||snxn Swnn)

+an(p||snf: ~ &/ —xnl)

2
Bn Qp,

From Theorem 3.3 we have lim,,_ oo M = 0. And then, we note that
{51902 = Z[[Snzn — Sxzall}, {511Sn7 — #ll £, — 4]}, and {511Sn@ — 2|} are
all bounded. Hence it follows from (1) and the above inequality that

70

Bn

lim sup (8T — Ty xpe1 —T) < 0.
n—o0 /Bn

Finally, by (3.17) and Lemma 2.5, we conclude that the sequence {x,} con-
verges strongly to a point & € Fixz(Sy) = Fiz(T). This completes the proof. [
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Abstract

In this paper, we prove the existence theorem for a mapping defined
by T = Ty 4+ 15 when 17 is a pj-Lipschitz continuous and ~v-strongly
monotone mapping, 75 is a pa-Lipschitz continuous mapping, we have a
mapping 7" is Lipschitz continuous but not strongly monotone mapping.
This work is extend and improve the result of N. Petrot [17].
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1 Introduction

The theory of variational inequalities is a branch of the mathematical sciences
dealing with general equilibrium problems. It has a wide range of applications
in economics, operations research, industry, physical, and engineering sciences.
Many research papers have been written lately, both on the theory and ap-
plications of this field. Important connection with main areas of pure and
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applied science have been made, see for example [2, 5, 6] and the references
cited therein.

Variational inequalities theory, which was introduce by Stampacchia [18],
provides us with a simple, natural general and unified framework to study a
wide class of problems arising in pure and applied science. The development of
variational inequality theory can be viewed as the simultaneous pursuit of two
different lines of research. On the one hand, it reveals the fundamental facts on
the qualitative aspects of the solutions to important classes of problems. On
the other hand, it also enables us to develop highly efficient and powerful new
numerical methods for solving, for example, obstacle, unilateral, free, moving,
and complex equilibrium problems.

In this work we consider the condition for existence solution of variational
inequalities problems in nonconvex sets. We will proved that a mapping 7' =
T1+T5 when T7 is a p-Lipschitz continuous and y-strongly monotone mapping,
T is a uo-Lipschitz continuous mapping has a solution on nonconvex satisfying
uniformly r-prox regular subset of Hilbert space. The result extended and
improved result of N. Petrot [17].

Let H be a real Hilbert space and let C' be a nonempty closed subset of
H. A mapping T of C' into H is called v — strongly monotone if there exists
a constant v > 0 such that

(Tx — Ty, z —y) > y|lz — y|* (1)

for all z,y € C. T is called u — Lipschitz if there exists a constant p > 0 such
that

[T = Tyll < pllz = yll, (2)

for all z,y € C.

2 Preliminaries

In this section, we collect and give some useful lemmas that will be used
for our main result in the next section.

Let H be a real Hilbert space with inner product (-,-) and norm || - ||
respectively. Let C' be a closed convex subset of H, let Po be the matric
projection of H onto C i.e. for x € H, Pox satisfies the property

lz = Pexl| = minyec |z — y|-
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It is know that Pc is nonexpansive. Further, for x € H and z € C
z2=Pox s (x—2z,z—y) >0,Vy € C.

Definition 2.1. Let u € H be a point not lying in C. A point v € C is
called a closest point or a projection of u onto C' if de(u) = ||u — v|| when de

is a usual distance. The set of all such closest points is denoted by projc(u);
that is,

projo(u) = {v € C: do(u) = ||u — v} (3)

Definition 2.2. Let C be a subset of H. The proximal normal cone to C
at x 1s qiven by

N () ={z€ H:3p>0;z € projc(z + p2)} (4)

The following characterization of N} (z) can be found in [3].

Lemma 2.3. Let C be a closed subset of a Hilbert space H. Then

z € NE(z) if and only if 3o > 0, (z,y — 2) < o|ly — z|*, Wy e C. (5)

Clark et al. [4] and Poliquin et al. [16] have introduced and atudied a new
class of nonconvex sets, which are called uniformly prox-regular sets. This class
or uniformly prox-regular sets has played an important part in many nonconvex
applications such as optimization, dynamic systems, and differential inclusions.

Definition 2.4. For a given r € (0,+00], a subset C' of H is said to be

uniformly proz-reqular with respect to r if, for all® € C and for all 0 # z €
NE(z), one has

z 1
LT < |z — 7| .
(HZH,x T) < 27n||a: z||*, Vel (6)

It is well known that a closed subset of a Hilbert space is convex if and only
if it is proximally smooth of radius » > 0. Thus, in definition 2.4, in the case of
r = 00, the uniform r-prox-regularity C'is equivalent to convexity of C'. Then,
it is clear that the class of uniformly prox-regular sets is sufficiently large to
include the class p-convex sets, C1! submanifolds (possibly with boundary) of
H, the images under a C%! diffeomorphism of convex sets, and many other
nonconvex sets; see [4, 16].

Lemma 2.5. [17] Let C be a nonempty closed subset of H, r € (0,40
and set Cp;={x € H : d(z,C) < r}. If C is uniform r-uniformly prox-reqular,
then the following hold:
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(1) for all z € C,, projc(z) # 0,

(2) for all s € (0,7),projc is Lipschitz continuous with constant — on

CS?

(8) the prozimal normal cone is closed as a set-valued mapping.

For a given nonlinear operator 7', we consider the problem of finding u € C..
such that

(Tu,v—u) >0 Yoved, (7)

which is called the nonconvex variational inequality. For the existence of a
solution and other aspects of the nonconvex variational inequalities and their
generalization, see [9, 15].

Similarly, if C). is a nonconvex (uniformly prox-regular) set, then problem
(7) is equivalent to finding u € C, such that

0 € Tu+ N (u) (8)

where NE (u) denotes the normal cone of C, at u in the sense of nonconvex
analysis. Problem (8) is called the nonconvex variational inclusion problem
associated with nonconvex variational inequality (7).

3 Main Result

Let H be a real Hilbert space, and let C' be a nonempty closed subset of
H. In this section, will consider the following problem: find z* € C such that

~Ta* € Ni(x%). (9)

The problem of type (9) was studied by Noor [7] but in a finite dimension
Hilbert space setting. In 2010 [17] Petrot intend to consider the problem (9)
in an infinite dimension Hilbert space for a mapping T satisfied p-Lipschitz
continuous and ~-strongly monotone. In this section we extended the result of
[17] Petrot to a mapping T' = T + T with T} is a py-Lipschitz continuous and
~v-strongly monotone mapping, 75 is a uo-Lipschitz continuous mapping. We
see that 7' is Lipschitz continuous but not strongly monotone mapping. To do
this, the following remark is useful.

Remark 3.1. LetT be a p1-Lipschitz continuous and y-strongly monotone
mapping, and let Ty be a ps-Lipschitz continuous mapping. Then the function
f:(1,M)— (0,00) which defined by
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f(t) _ \/(t’}/ - ,UQ)Q — (N% B N%)(ﬁ B 1),V te M,

t(pf — p3)

i/ (B —y?) (1 —pi3)
where M = 2
ol *(#17112)

In this work, we have to assume that ps < pq. Thus, from now on, without
loss of generality we will always assume that puo < puy.

Theorem 3.2. Let C be a uniformly r-proz-reqular closed subset of a Hilbert
space H, and let Ty, Ty : C'— H be such that Ty is a pi-Lipschitz continuous
and y-strongly monotone mapping, Ty is a ps-Lipschitz continuous mapping.
If T =Ty +1T5 and 0 < dpc) < 7r, then the problem (9) has a solution.

Proof. We first, defined a function h : [1, M) — (0, 00) which is defined by

h(z) = r(t—1)

+F(), Yt € [1, M), (10)
t(ST(C)

We see that the net {Z,}sc(o, which is defined by ¢, = -~ converges to 1 as
s | 0. It follows that h(t) | 35 as ts | 1, we can find s* € (0,7) such that

=13
12 < h(t), Then we have
H1—H3

ts*/y_Q
te(uf — p13)

— f(te) < h(te) — f(te) = _

Now, we choose a fixed positive real number p such that

tsy — o sy — e s*
ST T2 ) < po< min{ P2 4 f(t), : 11
g 1) Cag Tt 5t W)

Next, for an element x5 € C' and use an induction process to obtain a sequence
{z,} C C satisfying

Tp4+1 = prOjC(xn - pTxn)a Vn = 07 17 27 (12)

Consequently, from (12) and Lemma 2.5, we have

[Zn1 —zall = llproje(zn — pTxs) — proje(xn—1 — pPTr,-1)|
= tsl(2n — pT2n) — (Tp-1 — pTTp1)||
toll(@n — @p—1) — p(T2y — Txp1) || (13)
< tlllen — xpay — p(Than — Than—1)|| + pl|Toxy — Toxp—_1]|]
< tlllvn — 2o — p(Thxn — Thwp )| + ppallzn — 201 ][]
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Since the mapping 77 is y-strongly monotone and p;-Lipschitz continuous, we
obtain

|20 — 21 — p(Thxy — Thzp )| = |2n — 201l)® = 20(zn — 2py, T1wy — T1, 1)

+P2||T1$n _jﬂlen—IH2
Hxn - xn—lHQ - Q/WHZE” - In—1||2 + p2lu
= (1 =207+ p})[2n — 2o |*

IN

It follows that
|20 — Tt — p(Th2n — Tiag_1)|| < \/1 =207 + ppidllz, — s>, (15)

From (14) and (15), we get

Hxn-‘rl - xn” < ts(plvb2 + \/ 1=2py+ pﬂ%)”xn - xn—lH‘ (16>

Now, we see that for the choice of p, we know that {z,} is a Cauchy sequence
in C. Then {z,} is a convergence sequence, it follows that, if z,, — z* as
n — oo we have z* € projo(z* + p(=Tx*)) for some p > 0. From definition
2.2, we have —T'z* € NJ (z*). This completes the proof. O

Corollary 3.3. [17] Let C' be a uniformly r-proz-reqular closed subset of a
Hilbert space H, and let T : C' — H be a ~y-strongly monotone mapping and
p-Lipschitz continuous mapping. If 0 < opy < yr, then the problem (9) has
a solution.

Proof. From Theorem 3.2, if 75 = 0 we have a result. O
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Abstract

In this work, we suggest and analyze an iterative scheme for solving the system of nonconvex variational
inequalities by using projection technique. We prove strong convergence of iterative scheme to the solution
of the system of nonconvex variational inequalities requires to the modified mapping T' which is Lipschitz
continuous but not strongly monotone mapping. Our result can be viewed and improvement the result of N.
Petrot [18].

1 Introduction

The theory of variational inequalities is a branch of the mathematical sciences dealing with general equi-
librium problems. It has a wide range of applications in economics, operations research, industry, physical, and
engineering sciences. Many research papers have been written lately, both on the theory and applications of
this field. Important connection with main areas of pure and applied science have been made, see for example
[3, 6, 7] and the references cited therein.

Variational inequalities theory, which was introduce by Stampacchia [19], provides us with a simple, natural
general and unified framework to study a wide class of problems arising in pure and applied science. The
development of variational inequality theory can be viewed as the simultaneous pursuit of two different lines
of research. On the one hand, it reveals the fundamental facts on the qualitative aspects of the solutions to
important classes of problems. On the other hand, it also enables us to develop highly efficient and powerful
new numerical methods for solving, for example, obstacle, unilateral, free, moving, and complex equilibrium
problems.

In 2010, N. Petrot [18], introduced some existence theorems and provide the conditions for existence solutions
of the variational inequalities problems in nonconvex setting and prove the strongly monotonic assumption of
the mapping may not need for the existence of solutions.
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MRG5580080.
fCorresponding author
Email addresses: peissara@uru.ac.th. (I. Inchan)
Keywords: Lipschitz continuous; strongly monotone mapping; Nonconvex; Uniformly prox regular

1



2 I. Inchan

In this work we consider the iterative scheme for modified mapping is Lipschitz continuous but not strongly
monotone mapping and we can prove strong convergence of iterative to the solution of the system of nonconvex
variational inequalities.

2 Preliminaries

Let C be a closed subset of a real Hilbert space H with inner product (-,-) and norm || - || respectively.
Let us recall the following well-known definitions and some auxiliary results of nonlinear convex analysis and
nonsmooth analysis.

Definition 2.1. Let u € H be a point not lying in C. A point v € C is called a closest point or a projection of
uwonto C' if do(u) = ||u — v|| when d¢ is a usual distance. The set of all such closest points is denoted by Pe(u);
that is,

Po(u)={v e C:dc(u) =|lu—0|} (2.1)

Definition 2.2. Let C be a subset of H. The proximal normal cone to C' at x is given by

NE(z)={z€ H:3p> 0,z € Po(x + pz)}. (2.2)

The following characterization of NZ (x) can be found in [4].

Lemma 2.3. Let C be a closed subset of a Hilbert space H. Then

z € NE(z) if and only if Jo > 0, (z,y — x) < olly — z|*, Vy € C. (2.3)

Clark et al. [5] and Poliquin et al. [17] have introduced and atudied a new class of nonconvex sets, which
are called uniformly prox-regular sets. This class or uniformly prox-regular sets has played an important part in
many nonconvex applications such as optimization, dynamic systems, and differential inclusions.

Definition 2.4. For a given r € (0,+0o0], a subset C of H is said to be uniformly prox-regular with respect to
r if, for all T € C and for all 0 # z € NE(x), one has

z . 1 —12
—r—T) < —|lx— V. C. 24
(o= < golle =%, o e (2.4)

It is well known that a closed subset of a Hilbert space is convex if and only if it is proximally smooth of
radius 7 > 0. Thus, in Definition 2.4, in the case of r = oo, the uniform r-prox-regularity C' is equivalent to
convexity of C. Then, it is clear that the class of uniformly prox-regular sets is sufficiently large to include the
class p-convex sets, C'*! submanifolds (possibly with boundary) of H, the images under a C'! diffeomorphism
of convex sets, and many other nonconvex sets; see [5, 17].

Let C, be a uniformly r-prox-regular(nonconvex) set. For given nonlinear mappings T : C,, — H, we
consider the problem of finding z*, y* € C. such that

(pTy" + 2" —y*,x—a*) >0,V € Cr,p>0
Tz +y* — 2",z —y*) >0,Ve € Cr,n >0, (2.5)

which is called the system of nonconvez variational inequalities.

It is worth mentioning that if T4y = Ty = T, 2* = y* = u and p = 7, then problem (2.5) is equivalent to
finding uw € C) such that

<T’LL, v = U> > O,V’U € 07"7 (26)
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which is known as nonconvezr variational inequalities introduced and studied by Bounkhel et. al. [1] and Noor

[9, 10].

It is known that problem (2.6) is equivalent to finding u € C,. such that
0 € Tu+ NE (u), (2.7)

which N£ (u) denote the normal cone of C,. at u. The problem (2.7) is called the variational inclusion associated
with nonconvexr variational inequalities (2.6).

Lemma 2.5. [18] Let C' be a nonempty closed subset of H, r € (0,+00] and set Cr;={z € H : d(z,C) < r}. If
C is uniform r-uniformly prox-reqular, then the following hold:

(1) for all x € C,, Pc(x) # 0,

T
r—S

(2) for all s € (0,1), Pc is Lipschitz continuous with constant ts = on Cl,

(3) the proxzimal normal cone is closed as a set-valued mapping.
Let C be a closed subset of a real Hilbert space H. A mapping T : C' — H is called v — strongly monotone
if there exists a constant v > 0 such that
(Tzx =Ty, —y) > vz -y, (2.8)
for all x,y € C. A mapping T is called u — Lipschitz if there exists a constant g > 0 such that
[Tz = Tyl < pllz = yl|, (2.9)
for all x,y € C.

Lemma 2.6. In a real Hilbert space H, there holds the inequality

Loz+yl? <zl +2y,z+y) =yeH and ||z —y|* = [|z]|* — 2(z,y) + ylI*,
2. |lte + (L —t)y||* = tlz)|* + (L = t)||yl|* — t(1 — )|l — y||*, V¢t € [0, 1].

3 Main Results

In this section we first establish the equivalent between the system of nonconvex variational inequalities
(2.5) anf the fixed point problem with the projection technique.

Lemma 3.1. For given z*,y* € C, is a solution of system of nonconver variational inequalities (2.5), if and
only if

" = Poly" — pTy™],
y* = Polz™ —nTx"], (3.1)

where Pg is the projection of H onto the uniformly prox-reqular set C,.

Proof. Let z*,y* € C, be a solution of (2.5), from (2.7), for a constant p > 0, we have
0 € phy* + 2" —y* + pN¢, (¢¥) = (I + pNE ) (") = [y* — pThy’]

if and only if
o' = (I +pNE) ' y* — pThy*] = Pely* — pThy'],
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where we have used the well-known fact that Po = (I + pNCPT)_l.

Similarly, we obtain
y* = Pola®™ — nTha™].
This prove our assertions. [

Algorithm 3.2. For arbitrarily chosen initial points xo,yo € C., the sequence {x,} and {y,} in the following
way:

Yn = Polz, —nTz,],n>0
Tny1 = (1= an)zn +anPelyn — pTyn],p > 0, (32)
where {a,} is a sequence in [0,1].
Remark 3.3. [18] Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let Ty, T» : C — H

be such that T3 is a u;-Lipschitz continuous and -strongly monotone mapping, 75 is a po-Lipschitz continuous
mapping. Let

2 2_ 72 2
_ —5 —2(y -
M1
then for each s € (0,£), we have
Yt — iz > (2 — i3) (22 1), (3.4)

T
r—s’

where t, =

In this paper, we may assume that M?"dpcy < &, we see that for any s € (M?"6p(c),§) it satisfy the
inequality 3.4 too. where M*" = min{p,n}, dp(c) = sup{|ju — v : u,v € T(C)}.

Now, we suggest and analyze the following explicit projection method (3.2) for solving the system of non-
convex variational inequalities (2.5). Thus, from now on, without loss of generality we will always assume that

M2 < p-
Theorem 3.4. Let C' be a uniformly r-prox-reqular closed subset of a Hilbert space H, and let T1,T5 : C — H

be such that Ty is a pq-Lipschitz continuous and ~y-strongly monotone mapping, Ts s a po-Lipschitz continuous
mapping. If T =Ty + Ty and there exists constant p,n >0 and s € (M""0p(cy,§), such that

Yts — o . Yts — U2 1
T e 7 T R T &5)
_ VOt == B) (- oo

where Ay, D If the sequence of positive real number cu, € [0,1] with ¥ o, = 0, then

ts(ni—p3)
the sequences {x,} and {y,} obtained from Algorithm 5.2 converge to a solution of the system of nonconvex
variational inequalities (2.5).

Proof. Let *,y* € C,. be a solution of (2.5) and from Lemma 3.1, we have

|Tnt1 — 2" = (1 —an)zn +anPelyn — pTys] —2*||

(1 = an)(@n —2%) + an(Pelyn — pTyn] — Pely™ — pTy DI

(1 = an)l|zn — 2| + anl|Pclyn — pTyn] — Pcly™ — pTy"]||

(1 —an)l|zn — 2| + ants|(yn — pTyn) — (¥" — pTy")|l

(1 — a)l|zn — 2| + ants[|(Yn — y*) = p(Tryn — T1y")|| + pll(Toyn — Toy®)|.]  (3.6)

From T3 are both p;-Lipschitz continuous and 7-strongly monotone mapping and from Lemma 2.6, we obtain
[yn =) = p(Tryn =Ty )N* = llyn = v"I1” = 20(0m — ¥, Thyn — T1y*) + | Tryn — Try*|)?

lyn = y* 1> = 207 llyn — v*II° + P13 lym — v*|I?

(1 =207+ 1) lyn — y*II°.

INIACIA
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It follows that
1(yn =) = p(Tryn — Tay")| < /1 =207+ P21 llym — 7 |I- (3.7)
On the other hand, from T3 is ps-Lipschitz continuous, we have
1 Toyn — Toy™|| < pallyn — 7|l (3.8)
Thus, by (3.6), (3.7) and (3.8), we have

lonss — 2% < (1= an)llzn — 2| + anta(pp2 + /1 — 207 + 026l — 7. (3.9)
Similarly, we have
lyn =yl = |Pclzn —nTzn] — v
= |IPclzn —nTzn] = Polz® —nTz"]|
< tsll(@n = nTwn) — (27 —nz)|
< tsllien —27) = n(Tizn — Toa”) || + 0l Tozn — Tox™||]. (3.10)
Similarly, from T; are both p;-Lipschitz continuous and «y-strongly monotone mapping, we obtain
[(@n —2%) = n(Taey — Tiz")|? = |log — 2" = 209(2n — 2", vz — Tiz*) + 07| Tizn — Tia*||?
< o = 2| = 2myllen — 2|7 + n?pillen — 27|
= (L=2ny +0pd) |z, — 2>
It follows that
(20 —2%) = n(Tizn — Tra®)| < /1= 207 + 7202 | — 2. (3.11)
On the other hand, from 75 is ps-Lipschitz continuous, we have
T2z — Tox™|| < po|la, — ¥ (3.12)

Thus, by (3.10), (3.11) and (3.12), we have

[y —y" || < ts(pz + /1 = 2072 + ?ud)|Jzn — 7. (3.13)
Moreover, from (3.9) and (3.13) we put 61 = ts(pua + /1 — 2py + p2u?), 02 = ts(nuz + /1 — 2172 + n2u?), it

follows that

[enir =2 < (1 —an)llon — 2" + anbiba]zn — 27|
(1= (1= 6102)c)||lzn — 2™
S H(l — (1 — 9192)0@)”1‘0 — 1‘*” (314)

=0

Since X2 g, = oo and conditions (3.5), we obtain

lim [](1- (1= 6102)es) =0. (3.15)
1=0

It follows from (3.15) and (3.14), we have

lim ||z, —2*|| = 0. (3.16)
From (3.13) and (3.16), we have
Jim |y, —y*[ = 0. (3.17)

Which is z*,y* € C, satisfying the system of nonconvex variational inequalities (2.5). This completes the
proof. O
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Corollary 3.5. Let C be a uniformly r-proz-reqular closed subset of a Hilbert space H, and let T : C — H be
such that T is a p-Lipschitz continuous and ~y-strongly monotone mapping. If there exists constant p,n > 0 and
5 € (MP"or(cy,§), such that

gl

2
E—Ats <p,’l’]<E+Ats7 (318)

_ V(ts)2=(u)(#2-1)
- ts(u) '
ap € [0, 1] with 2 o, = 00, then the sequence {x,} and {y,} is generated by for xo,yo € Cr,

where A, If the sequence of positive real number oy, € [0,1] with X5 qa, = 0, and

Yn = Polrn —nTz,],n>0
Tn+l = Pc[yn - PTynL p > 07 (319)

strongly converge to a solution of the system of nonconvex variational inequalities (2.5).

Proof. From Theorem 3.4, if T» =0 and «,, = 1 for any n > 0, we have a result. O

4 Applications

In this section, we can applied Theorem 3.4 to the system of general of nonconvex variational inequalities,
for given nonlinear mappings T, g : C,. — H, we consider the problem of finding z*,y* € C). such that
(pTg(y*) +9(z") —g(y"),z —g(z")) = 0,Vz € Cr,p >0
(nTg(z™) +g(y") — g(2"),x — g(y")) 2 0,Vz € Cy,n > 0, (4.1)

which is called the system of general nonconvexr variational inequalities. Similar of the proof of Lemma 3.1, we
can proof that

Lemma 4.1. For given x*,y* € C,. is a solution of system of nonconvexr variational inequalities (4.1), if and
only if

9(y*) = Polg(z”™) —nTg(x")], (4.2)
where P is the projection of H onto the uniformly proz-regular set C,..

Theorem 4.2. Let C be a uniformly r-proz-regular closed subset of a Hilbert space H, let g : C — H is injective
mapping and let Ty, Ty : C — H be such that Ty is a uy-Lipschitz continuous and y-strongly monotone mapping,
T is a po-Lipschitz continuous mapping. If T = Ty+T and there exists constant p,n > 0 and s € (M”57, §),
such that

Yt — U2 ) Yts — U2 1
— = Ay, < pynp <min{——5— + A, —}, (4.3)
to(pd —p3) to(pd —13) T tpe

VOt —p2)?—(p3—p3) (21
- ts(ui—p3)
the sequence {x,} and {yn,} is generated by for xg,yo € Cy,

where Ay, ), If the sequence of positive real number o, € [0,1] with X3 o, = 0, then

9(n) = Polg(en) —nTg(zn)],n >0
9(Tnt1) = (1= an)g(wn) + anPclg(yn) — pT9(yn)l, p > 0, (4.4)

strongly converge to a solution of the system of nonconvex variational inequalities (4.1).
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Proof. Similar the proof in Theorem 3.4, let 2*,y* € C, be a solution of (4.1) and from Lemma 4.1, we can
compute that

lg(2n+1) = g™ < TT(A — (1 = 6182)c) | g(wo) — g(2™)]. (4.5)
i=0
where 01 = ts(pu2 + /1 — 2p7 + p?p3) From X5° (o, = oo and conditions (4.3), we obtain
lim [](1-(1—6102)e) =0. (4.6)
=0

It follows from (4.5) and (4.6), we have

Tim [lglea) — g(a)] = 0. (47)
And we can compute that
19(yn) — g(y")I| < Oallg(zn) — g(z™)], (4.8)
where 0 = ts(nua + /1 — 2172 + n?p?), it follows that
im_[lg(y) — gly")]| = 0. (4.9)
From g is injective mapping, we have lim,, o ||z, — 2| = 0 and lim,,_,« ||y — y*|| = 0 satisfying the system of
general nonconvex variational inequalities (4.1). This complete the proof. O

Corollary 4.3. Let C be a uniformly r-proz-regular closed subset of a Hilbert space H, let g : C' — H 1is injective
mapping and let T : C — H be such that T is a p-Lipschitz continuous and y-strongly monotone mapping. If
there exists constant p,n > 0 and s € (MP"5py,§), such that

gl

vy
E—Ats <p,7’]<ﬁ+Ats, (410)

_ VO E-D

where A, = o)

oy, € [0, 1] with L2 ya, = 00, then the sequence {x,} and {y,} is generated by for xo,yo € Cr,

If the sequence of positive real number oy, € [0,1] with £ qo, = 0, and

g(yn) = Pelg(zn) —nTg(x,)],n>0
9(@ns1) = Pelglyn) — pTg(yn)],p > 0, (4.11)

strongly converge to a solution of the system of nonconver variational inequalities (4.1).
Proof. From Theorem 3.4, if T» =0 and «,, = 1 for any n > 0, we have a result. O

Acknowledgements. The author would like to thank The Thailand Research Fund and the Commission on
Higher Education under grant MRG5580080. Moreover, we would like to thank Prof. Dr. Somyot Plubiteng for
providing valuable suggestions.

References

[1] M. Bounkhel, L. Tadj, A. Hamdi, Iterative schemes to solve nonconvex variational problems, J. Inequal.
Pure Appl. Math. 4 (2003) 1-14.



2]

I. Inchan

R. P. Agarwal and R. U. Verma, General system of A(n)-mazimal relazed monotone variational inclusion
problems based on generalized hybrid algorithms, Communications in Nonlinear Science and Numerical Sim-
ulation, vol. 15, no. 2, pp. 238-251, 2010.

A. Bensoussan and J. L. Lions, Application des Inequations Variationelles en Control et en Stochastiques,
Dunod, Paris 1978.

F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R.Wolenski, Nonsmooth Analysis and Control Theory, vol.
178 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1998.

F. H. Clarke, R. J. Stern, and P. R.Wolenski, Prozimal smoothness and the lower-C2 property, Journal of
Convex Analysis, vol. 2, no. 1-2, pp. 117-144, 1995.

R. Glowinski and P. Letallec, Augmented Kargrangin and Operator-splitting Methods in Control Theory,
Springer-Verlag, New York, 1989.

P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity prob-
lems: A survey of theory, algorithm and applications, Math. Program. 48, 161 - 220, 1990.

M. A. Noor, On a system of general mized variational inequalities, Optimization Letters, vol. 3, no. 3, pp.
437-451, 2009.

M. A. Noor, Iterative schemes for nonconvex variational inequalities, Journal of Optimization Theory and
Applications, vol. 121, no. 2, pp. 385-395, 2004.

M. A Noor, Projection methods for nonconvex variational inequalities, Optim. Lett. 3, 411-418, 2009.

M. A Noor, Implicit iterative method for nonconvex variational inequalities, J. Optim. Theory Appl. 143,
619-624, 2009.

M. A Noor, An extragradient algorithm for solving the gemeral monconvex wvariational inequalities, Appl.
Math. Lett. 23, 917-921, 2010.

M. A Noor, On an implicit method for nonconvex variational inequalities, J. Optim. Theory Appl. 147,
411-417, 2010.

M. A Noor, New implicit methods for general nonconvex variational inequalities, Bull. Math. Anal. Appl. 3,
2010.

M. A Noor, Iterative methods for general nonconver variational inequalities, Albanian J. Math. 3, 117-127,
2009.

M. A Noor, Some iterative methods for general nonconvexr variational inequalities, Comput. Math. Model.
21, 97-108, 2010.

R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Transactions
of the American Mathematical Society, vol. 352, no. 11, pp. 5231-5249, 2000.

N. Petrot, Some Existence Theorems for Nonconvex Variational Inequalities Problems, Hindawi Publishing
Corporation Abstract and Applied Analysis, Volume 2010, Article ID 472760, doi:10.1155/2010/472760, 9

pages.

G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes,Comptes Rendus de 1Academie
des Sciences, vol. 258, pp. 4413-4416, 1964.



	1. รายงานความก้าวหน้าฉบับสมบูรณ์ MRG5580080(ปก).pdf
	2. รายงานความก้าวหน้าฉบับสมบูรณ์ MRG5580080(บทที่1).pdf
	3. MRG5380081.pdf
	Useful lemmas.
	Nonconvex Variational
	A general hierarchical problem
	Existence Theorems for Nonconvex variational Inequalities Problems
	Iterative Algorithm for Nonconvex Variational Inequalities
	Outputs 3 papers (Supported by TRF: MRG5580080)

	4. ภาคผนวก.pdf
	968-2906-2-PB.pdf
	inchanAMS29-32-2013.pdf
	manuscript(T1+T2).pdf
	Introduction
	Preliminaries
	Main Results
	Applications



