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 This research work investigate the problem of exponential synchronization for 
complex dynamical network with mixed time-varying and hybrid coupling delays, which 
is composed of state coupling, interval time-varying delay coupling and distributed time-
varying delay coupling. The designed controller ensures that the synchronization of 
delayed complex dynamical network are proposed via either feedback control or 
intermittent feedback control. We use common unitary matrices, and the problem of 
synchronization is transformed into the stability analysis of some linear time-varying 
delay systems. This is based on the construction of an improved Lyapunov-Krasovskii 
functional combined with the Leibniz-Newton formula and the technique of dealing with 
some integral terms. New synchronization criteria are derived in terms of LMIs which 
can be solved efficiently by standard convex optimization algorithms. Numerical 
examples are included to show the effectiveness of the proposed feedback control and 
intermittent feedback control scheme. Moreover, we apply the controller  for  problem of 
exponential synchronization for master-slave neural networks with mixed time-varying 
delays via hybrid intermittent feedback control. 
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Chapter 1

Executive Summary

1.1 Synchronization of delayed complex dynamical net-

work

Consider a complex dynamical network consisting of N identical coupled nodes,

with each node being an n-dimensional dynamical system

ẋi(t) = f(xi(t), xi(t− h(t)),

∫ t

t−k1(t)

xi(s) ds) + c1

N∑
j=1

aijG1xj(t) (1.1)

+c2

N∑
j=1

bijG2xj(t− h(t)) + c3

N∑
j=1

cijG3

∫ t

t−k1(t)

xj(s) ds+ Ui(t),

t ≥ 0, i = 1, 2, ..., N,

xi(t) = ϕi(t), t ∈ [−τmax, 0], τmax = max{h2, d, k1, k2},

where xi(t) = (xi1(t), xi2(t), ..., xin(t))
T ∈ Rn is the state vector of ith node; Ui(t) ∈

Rm are the control input of the node i; the constant c1, c2, c3 > 0 are the coupling

strength; G1 = (g1ij)n×n, G2 = (g2ij)n×n, G3 = (g3ij)n×n ∈ Rn×n are a constant

inner-coupling matrix, if some pairs (i, j), 1 ≤ i, j ≤ n, with g1ij ̸= 0, g2ij ̸= 0

and g3ij ̸= 0 which means two coupled nodes are linked through their ith and jth

state variables, otherwise g1ij = 0, g2ij = 0, g3ij = 0; A = (aij)N×N , B = (bij)N×N ,

C = (cij)N×N ∈ RN×N are the outer-coupling matrix of the network, in which aij, bij

are defined as follows: if there are a connection between node i and node j (j ̸= i),

then aij = aji = 1, bij = bji = 1, cij = cji = 1; otherwise, aij = aji = 0, bij = bji = 0,

cij = cji = 0 (j ̸= i), and the diagonal elements of matrix A, B and C are defined
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by

aii = −
N∑

j=1,i ̸=j

aij = −
N∑

j=1,i ̸=j

aji, bii = −
N∑

j=1,i ̸=j

bij = −
N∑

j=1,i̸=j

bji,

cii = −
N∑

j=1,i ̸=j

cij = −
N∑

j=1,i̸=j

cji, i = 1, 2, ..., N. (1.2)

It is assumed that network (1.1) is connected in the sense that there are no isolated

clusters, that is, A, B, C are irreducible matrix.

Definition 1.1.1 The delayed dynamical network (1.1) is said to achieve asymptoti-

cal synchronization if

x1(t) = x2(t) = · · · = s(t) as t −→ ∞, (1.3)

where s(t) is a solution of an isolated node, satisfying

ṡ(t) = f(s(t), s(t− h(t)),

∫ t

t−k1(t)

s(θ) dθ).

In order to stabilize the origin of dynamical network (1.1) by means of the state

feedback controller Ui(t) satisfying either (H1) or (H2) for i = 1, 2, ..., n,:

(H1) : Ui(t) = D1iui(t) +D2iui(t− d(t)) +D3i

∫ t

t−k2(t)

ui(s) ds, ∀t ≥ t0,

(H2) : Ui(t) =


D4iui(t) +D5iui(t− d(t))

+D6i

∫ t

t−k2(t)
ui(s) ds, nω ≤ t ≤ nω + δ

0, nω + δ < t ≤ (n+ 1)ω

where Dji, j = 1, 2, ..., 6 are given matrices of appropriate dimensions, ui(t) =

Ki(xi(t)−s(t)) and Ki is a constant matrix control gain, ω > 0 is the control period

and δ > 0 is called the control width (control duration) and n is a non-negative

integer. Then, substituting it into dynamical network (1.1), it is easy to get the

following:

ẋi(t) = f(xi(t), xi(t− h(t)),

∫ t

t−k1(t)

xi(s) ds) + c1

N∑
j=1

aijG1xj(t)

+c2

N∑
j=1

bijG2xj(t− h(t)) + c3

N∑
j=1

cijG3

∫ t

t−k1(t)

xj(s) ds (1.4)

+D1iKi(xi(t)− s(t)) +D2iui(t− d(t)) +D3i

∫ t

t−k2(t)

ui(s) ds.
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Namely, the dynamical network (1.1) is governed by the following system:

ẋi(t) = f(xi(t), xi(t− h(t)),

∫ t

t−k1(t)

xi(s) ds) + c1

N∑
j=1

aijG1xj(t)

+c2

N∑
j=1

bijG2xj(t− h(t)) + c3

N∑
j=1

cijG3

∫ t

t−k1(t)

xj(s) ds

+D4iKi(xi(t)− s(t)) +D5iui(t− d(t)) +D6i

∫ t

t−k2(t)

ui(s) ds,

nω ≤ t ≤ nω + δ, (1.5)

ẋi(t) = f(xi(t), xi(t− h(t)),

∫ t

t−k1(t)

xi(s) ds) + c1

N∑
j=1

aijG1xj(t)

+c2

N∑
j=1

bijG2xj(t− h(t)) + c3

N∑
j=1

cijG3

∫ t

t−k1(t)

xj(s) ds,

nω + δ < t ≤ (n+ 1)ω, i = 1, 2, ..., N.

It is clear that, if the zero solution of the dynamical network (1.4) and (1.5) are

globally exponentially stable, then exponential synchronization of the controlled dy-

namical network (1.1) is achieved. The time-varying delay functions h(t), d(t), k1(t)

and k2(t) satisfy the condition

0 ≤ h1 ≤ h(t) ≤ h2, 0 ≤ d(t) ≤ d, 0 ≤ k1(t) ≤ k1, 0 ≤ k2(t) ≤ k2. (1.6)

The initial condition function ϕi(t) denotes a continuous vector-valued initial func-

tion of t ∈ [−τmax, 0].

In this paper, we assume that s(t) is an orbitally stable solution of the

above system. Clearly, the stability of the synchronized states (1.3) of network (1.1)

is determined by the dynamics of the isolate node, the coupling strength c1, c2 and

c3, the inner-coupling matrix G1, G2 and G3, the outer-coupling matrix A, B and

C.

The following definition and lemmas are used in the proof of the main result.

Definition 1.1.2 A functional V : R+ × C → R+ is called a Lyapunov-Krasovskii

functional for the system (1.1) if it has the following properties. There exist λ1, λ2, λ3 >

0 such that
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(i) λ1∥x(t)∥2 ≤ V (t, xt) ≤ λ2∥xt∥2,

(ii) V̇ (t, xt) ≤ −λ3∥x(t)∥2.

Lemma 1.1.3 Consider the non autonomous time-delay system (1.1). If there exist

a Lyapunov function V (t, xt) and λ1, λ2 > 0 such that for every solution x(t) of the

system, the following conditions hold,

(i) λ1∥x(t)∥2 ≤ V (t, xt) ≤ λ2∥xt∥2,

(ii) V̇ (t, xt) ≤ 0,

then the solution of the system is bounded, i.e., there exists N > 0 such that

∥x(t, ϕ)∥ ≤ N∥ϕ∥, ∀t ≥ 0.

Lemma 1.1.4 Consider the autonomous time-delay system (1.1). If there exist a

Lyapunov-Krasovskii function V (xt) and λ1, λ2, λ3 > 0 such that for every solution

x(t) of the system, the following conditions hold,

(i) λ1∥x(t)∥2 ≤ V (xt) ≤ λ2∥xt∥2,

(ii) V̇ (xt) ≤ −λ3∥x(t)∥2,

then the solution of the system (1.1) is exponentially stable.

Proposition 1.1.5 (Cauchy inequality) For any symmetric positive definite matrix

N ∈ Mn×n and x, y ∈ Rn we have

±2xTy ≤ xTNx+ yTN−1y.

Lemma 1.1.6 (Schur complement lemma). Given constant symmetric matrices X, Y, Z

with appropriate dimensions satisfying X = XT , Y = Y T > 0. Then X+ZTY −1Z <

0 if and only if X ZT

Z −Y

 < 0 or

−Y Z

ZT X

 < 0.
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Lemma 1.1.7 For any constant symmetric matrix M ∈ Rn×n, M = MT > 0, 0 ≤

hm ≤ h(t) ≤ hM , t ≥ 0, and any differentiable vector function x(t) ∈ Rn, we have

(a)
[ ∫ t

t−hm

ẋ(s)ds
]T

M
[ ∫ t

t−hm

ẋ(s)ds
]

≤ hm

∫ t

t−hm

ẋT (s)Mẋ(s)ds,

(b)
[ ∫ t−hm

t−h(t)

ẋ(s)ds
]T

M
[ ∫ t−hm

t−h(t)

ẋ(s)ds
]

≤ (h(t)− hm)

∫ t−hm

t−h(t)

ẋT (s)Mẋ(s)ds

≤ (hM − hm)

∫ t−hm

t−h(t)

ẋT (s)Mẋ(s)ds.

Definition 1.1.8 If the matrix A ∈ Mn×n is similar to a diagonal matrix, then A is

said to be diagonalizable.

Lemma 1.1.9 Let G be a family of diagonalizable matrices. Then G is a commuting

family (under multiplication) if and only if it is a simultaneously diagonalizable

family.

Lemma 1.1.10 Let A, B be a family of diagonalizable matrices. Then A, B is a

commuting family (under multiplication) if and only if it is a simultaneously diago-

nalizable family.

1.2 Synchronization of master-slave neural networks

We consider the master-slave cellular neural networks (MSCNNs) with mixed time-

varying delays are described as follows:

ẋ(t) = −Ax(t) + Cf̃(x(t)) +Dg̃(x(t− h1(t)))

+E

∫ t

t−k1(t)

h̃(x(s))ds+ I(t),

x(t) = ϕ1(t), t ∈ [−d, 0], (1.7)

ẏ(t) = −Ay(t) + Cf̃(y(t)) +Dg̃(y(t− h1(t)))

+E

∫ t

t−k1(t)

h̃(y(s))ds+ I(t) + U(t),

y(t) = ϕ2(t), t ∈ [−d, 0], (1.8)

where x(t) = [x1(t), x2(t), ..., xn(t)] ∈ Rn, y(t) = [y1(t), y2(t), ..., yn(t)] ∈ Rn are

the master systems state vector and the slave systems state vector of the neural



6

networks, respectively. n is the number of neural, and

f̃(x(t)) = [f̃1(x1(t)), f̃2(x2(t)), ..., f̃n(xn(t))]
T ,

g̃(x(t)) = [g̃1(x1(t)), g̃2(x2(t)), ..., g̃n(xn(t))]
T ,

h̃(x(t)) = [h̃1(x1(t)), h̃2(x2(t)), ..., h̃n(xn(t))]
T ,

are the activation functions, A = diag (ā1, ā2, ..., ān), āi > 0 represents the self-

feedback term and C,D,E denote the connection weights, the discretely delayed

connection weights and the distributively delayed connection weight, respectively.

The synchronization error e(t) is the form e(t) = y(t)− x(t). Therefore, the

cellular neural networks with mixed time-varying delays of synchronization error

between the master-slave systems given in (1.7) and (1.8) can be described by

ė(t) = −Ae(t) + Cf(e(t)) +Dg(e(t− h1(t)))

+E

∫ t

t−k1(t)

h(e(s))ds+ U(t),

e(t) = ϕ2(t)− ϕ1(t) = ϕ(t), t ∈ [−d, 0], (1.9)

where f(e(t)) = f̃(e(t) + x(t)) − f̃(x(t)), g(e(t − h1(t))) = g̃(e(t − h1(t)) + x(t −

h1(t)))− g̃(x(t−h1(t))),
∫ t

t−k1(t)
h(e(s))ds =

∫ t

t−k1(t)
h(e(s)+x(s))−h(x(s))ds. The

state hybrid feedback controller U(t) satisfying :

U(t) =


B1u(t) +B2u(t− h2(t))

+B3

∫ t

t−k2(t)
u(s)ds, nω ≤ t ≤ nω + δ,

0, nω + δ < t ≤ (n+ 1)ω.

(1.10)

where u(t) = Ke(t) and K is a constant matrix control gain, ω > 0 is the control

period and δ > 0 is called the control width (control duration) and n is a non-

negative integer. In this paper, our goal is to design suitable K such that system

(1.8) synchronizes with system (1.7). Then, substituting it into (1.9), it is easy to
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get the following:

ė(t) = −Ae(t) + Cf(e(t)) +Dg(e(t− h1(t))) + E

∫ t

t−k1(t)

h(e(s))ds

+B1Ke(t) +B2Ke(t− h2(t)) +B3K

∫ t

t−k2(t)

e(s)ds,

nω ≤ t ≤ nω + δ, (1.11)

ė(t) = −Ae(t) + Cf(e(t)) +Dg(e(t− h1(t))) + E

∫ t

t−k1(t)

h(e(s))ds

nω + δ < t ≤ (n+ 1)ω,

e(t) = ϕ2(t)− ϕ1(t) = ϕ(t), t ∈ [−d, 0].

Throughout this paper, we consider various activation functions and the activation

functions f̃(.), g̃(.) and h̃(.) satisfy the following assumption:

(A1) The activation functions f̃(.), g̃(.) and h̃(.) satisfy Lipschitzian with

the Lipschitz constants f̂i, ĝi > 0 and ĥi > 0:

|f̃i(ξ1)− f̃i(ξ2)| ≤ f̂i|ξ1 − ξ2|, i = 1, 2, ..., n, ∀ξ1, ξ2 ∈ R,

|g̃i(ξ1)− g̃i(ξ2)| ≤ ĝi|ξ1 − ξ2|, i = 1, 2, ..., n, ∀ξ1, ξ2 ∈ R, (1.12)

|h̃i(ξ1)− h̃i(ξ2)| ≤ ĥi|ξ1 − ξ2|, i = 1, 2, ..., n, ∀ξ1, ξ2 ∈ R,

and we denote

F = diag{f̂i, i = 1, 2, ..., n},

G = diag{ĝi, i = 1, 2, ..., n},

H = diag{ĥi, i = 1, 2, ..., n}.

The time-varying delay functions hi(t), ki(t), i = 1, 2 satisfy the condition

0 ≤ h1m ≤ h1(t) ≤ h1M , 0 ≤ h2(t) ≤ h2,

0 ≤ k1(t) ≤ k1, 0 ≤ k2(t) ≤ k2. (1.13)

It is worth noting that the time delay is assumed to be a continuous function

belonging to a given interval, which means that the lower and upper bounds for the

time-varying delay are available, but the delay function is bounded but not restricted
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to being zero. The initial functions ϕ(t) ∈ C1([−d, 0], Rn), d = max{h1M , h2, k1, k2}

with the norm

∥ ϕ ∥= sup
t∈[−d,0]

√
∥ ϕ(t) ∥2 + ∥ ϕ̇(t) ∥2.

Definition 1.2.1 Given α > 0. The zero solution of system (1.11) with u(t) = Ke(t)

is α− stable if there exist a positive number N > 0 such that every solution e(t, ϕ)

satisfies the following condition:

∥ e(t, ϕ) ∥≤ Ne−αt ∥ ϕ ∥, ∀t ≥ 0.

This research work investigate the problem of exponential synchronization

for complex dynamical network with mixed time-varying and hybrid coupling de-

lays, which is composed of state coupling, interval time-varying delay coupling and

distributed time-varying delay coupling. The designed controller ensures that the

synchronization of delayed complex dynamical network are proposed via either feed-

back control or intermittent feedback control. We use common unitary matrices,

and the problem of synchronization is transformed into the stability analysis of

some linear time-varying delay systems. This is based on the construction of an im-

proved Lyapunov-Krasovskii functional combined with the Leibniz-Newton formula

and the technique of dealing with some integral terms. New synchronization criteria

are derived in terms of LMIs which can be solved efficiently by standard convex op-

timization algorithms. Numerical examples are included to show the effectiveness of

the proposed feedback control and intermittent feedback control scheme. Moreover,

we apply the controller for problem of exponential synchronization for master-slave

neural networks with mixed time-varying delays via hybrid intermittent feedback

control.



Chapter 2

Main Results

2.1 Synchronization of delayed complex dynamical net-

work via delayed feedback control and intermittent

control

In this section, we shall obtain some delay-dependent exponential synchronization

criteria for general complex dynamical network with discrete and distributed time-

varying delays and hybrid coupling delays (1.1) by strict LMI approaches. Let us

set

Ãi = J(t) + c1λ1iG1, B̃i = Jh(t) + c2λ2iG2, C̃i = Jk1(t) + c3λ3iG3,

and

(1) J(t) = f ′(s(t), s(t−h(t)),
∫ t

t−k1(t)
s(ξ) dξ) ∈ Rn×n is the Jacobian of f(x(t), x(t−

h(t)),
∫ t

t−k1(t)
x(s) ds) at s(t) with the derivative of f(x(t), x(t−h(t)),

∫ t

t−k1(t)
x(s) ds)

respect to x(t),

(2) Jh(t) = f ′(s(t), s(t−h(t)),
∫ t

t−k1(t)
s(ξ) dξ) ∈ Rn×n is the Jacobian of f(x(t), x(t−

h(t)),
∫ t

t−k1(t)
x(s) ds) at s(t − h(t)) with the derivative of f(x(t), x(t − h(t)),∫ t

t−k1(t)
x(s) ds) respect to x(t− h(t)),

(3) Jk1(t) = f ′(s(t), s(t−h(t)),
∫ t

t−k1(t)
s(ξ) dξ) ∈ Rn×n is the Jacobian of f(x(t), x(t−

h(t)),
∫ t

t−k1(t)
x(s) ds) at

∫ t

t−k1(t)
s(ξ) dξ with the derivative of f(x(t), x(t−h(t)),∫ t

t−k1(t)
x(s) ds) respect to

∫ t

t−k1(t)
x(s) ds.

Lemma 2.1.1 Consider the hybrid coupling delays dynamical network in (1.1). Let

0 = λj1 > λj2 ≥ λj3 ≥ ... ≥ λjN , j = {1, 2, 3} be the eigenvalues of the outer-

coupling matrix A, B and C, respectively. If the N − 1 following n-dimensional
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linear time-varying delays differential equations are delay-dependent exponentially

stable about their zero solutions:

żi(t) = (Ãi +D4iKi)zi(t) + B̃izi(t− h(t)) + C̃i

∫ t

t−k1(t)

zi(s) ds

+D5iKizi(t− d(t)) +D6iKi

∫ t

t−k2(t)

zi(s) ds, nω ≤ t ≤ nω + δ,

i = 2, ..., N, (2.14)

żi(t) = Ãizi(t) + B̃izi(t− h(t)) + C̃i

∫ t

t−k1(t)

zi(s) ds, nω + δ < t ≤ (n+ 1)ω,

i = 2, ..., N,

then the dynamical networks (1.5) is exponentially stable, then exponential synchro-

nization of the controlled dynamical networks (1.1) is achieved.

2.1.1 Linear delayed feedback control

Let us denote

∥ϕi∥ = ∥zi(0)∥, ∥φi∥ = sup
−τmax≤s≤0

∥zi(s)∥, Ki = −LiP
−1
i ,

γi = λmin(P
−1
i )),

ℓi = λmax(P
−1
i ) +

[
2h2λmax(P

−1
i RiP

−1
i ) + h2λmax(P

−1
i UiP

−1
i )

]1− e−2αh2

2α

+dλmax(P
−1
i LT

i T
−1
i LiP

−1
i )

1− e−2αd

2α
,

ξi =
[
2λmax(P

−1
i QiP

−1
i ) + h2λmax(P

−1
i RiP

−1
i ) + h2λmax(P

−1
i UiP

−1
i )

]
×1− e−2αh2

2α
+ k1λmax(P

−1
i SiP

−1
i )

1− e−2αk1

2α

+dλmax(P
−1
i LT

i T
−1
i LiP

−1
i )

1− e−2αh2

2α

+k2λmax(P
−1
i LT

i W
−1
i LiP

−1
i )

1− e−2αd

2α
,

Ni = ℓi∥ϕi∥2 + ξi∥φi∥2,

γ = min{γi, i = 2, 3, ..., N}, N = max{Ni, i = 2, 3, ..., N}.

Theorem 2.1.2 For some given scalars 0 < α, the dynamical networks (2.14) with

time-varying delay satisfying (1.6) are exponentially stable if there exist symmetric
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positive definite matrices Pi > 0, Qi > 0, Ri > 0, Si > 0, Ui > 0, Ti > 0 , Wi > 0

and a matrix Li with appropriately dimensioned such that the following symmetric

linear matrix inequality holds:

Σi1 = Σi −
[
0 0 I −I 0

]T
e−2αh2Ui

[
0 0 I −I 0

]
< 0, (2.15)

Σi2 = Σi −
[
0 0 0 I −I

]T
e−2αh2Ui

[
0 0 0 I −I

]
< 0, (2.16)

Σi3 =


−0.5(e−2αh1 + e−2αh2)Ri 2k1C̃iPi k2L

T
i 2LT

i

∗ −2k1e
−2αk1Si 0 0

∗ ∗ −k2Wi 0

∗ ∗ ∗ −2e−2αdTi

 < 0,(2.17)

Σi4 =



−0.5Pi 2k1C̃iPi d2LT
i 3DT

2i 2k2D
T
3i

∗ −2k1e
−2αk1Si 0 0 0

∗ ∗ −d2Ti 0 0

∗ ∗ ∗ −3e−2αdTi 0

∗ ∗ ∗ ∗ −2k2e
−2αk2Wi


< 0,(2.18)

i = 2, ..., N, where

Σi =



Σi11 Σi12 Σi13 Σi14 Σi15

∗ Σi22 0 Σi24 0

∗ ∗ Σi33 Σi34 0

∗ ∗ ∗ Σi44 Σi45

∗ ∗ ∗ ∗ Σi55


,
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Σi11 = P T
i

(
Ãi + αI) + (Ãi + αI

)T
Pi −D1iLi − LT

i D
T
1i + 3e2αdDT

2iTiD2i

+2k2e
2αk2DT

3iWiD3i + 2Qi + k1Si − 0.5e−2αh1Ri − 0.5e−2αh2Ri,

Σi12 = PiÃ
T
i ,

Σi13 = e−2αh1Ri,

Σi14 = B̃iPi,

Σi15 = e−2αh2Ri,

Σi22 = h2
1Ri + h2

2Ri + η2Ui − 1.5Pi,

Σi24 = B̃iPi,

Σi33 = −e−2αh1Qi − e−2αh1Ri − e−2αh2Ui,

Σi34 = e−2αh2Ui,

Σi44 = −2e−2αh2Ui,

Σi45 = e−2αh2Ui,

Σi55 = −2e−2αh2Ui − 2e−2αh2Qi − 2e−2αh2Ri,

then, the dynamical networks (2.14) are exponential synchronization. Moreover, the

feedback control is

ui(t) = −LiP
−1
i zi(t). (2.19)

2.1.2 Intermittent delayed feedback control

Theorem 2.1.3 For some given scalars 0 < α < ε, the dynamical networks (2.14)

with time-varying delay satisfying (1.6) are exponentially stable if there exist sym-

metric positive definite matrices Pi > 0, Qi > 0, Ri > 0, Si > 0, Ui > 0, Ti > 0

, Wi > 0 and a matrix Li with appropriately dimensioned such that the following

symmetric linear matrix inequality holds:

Πi1 = Πi −
[
0 0 I −I 0

]T
e−2αh2Ui

[
0 0 I −I 0

]
< 0, (2.20)

Πi2 = Πi −
[
0 0 0 I −I

]T
e−2αh2Ui

[
0 0 0 I −I

]
< 0, (2.21)
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Πi3 = Π̃i −
[
0 0 I −I 0

]T
e−2αh2Ui

[
0 0 I −I 0

]
< 0, (2.22)

Πi4 = Π̃i −
[
0 0 0 I −I

]T
e−2αh2Ui

[
0 0 0 I −I

]
< 0, (2.23)

Πi5 =


−0.5(e−2αh1 + e−2αh2)Ri 2k1C̃iPi k2L

T
i 2LT

i

∗ −2k1e
−2αk1Si 0 0

∗ ∗ −k2Wi 0

∗ ∗ ∗ −2e−2αdTi

 < 0,(2.24)

Πi6 =



−0.5Pi 2k1C̃iPi d2LT
i 3DT

5i 2k2D
T
6i

∗ −2k1e
−2αk1Si 0 0 0

∗ ∗ −d2Ti 0 0

∗ ∗ ∗ −3e−2αdTi 0

∗ ∗ ∗ ∗ −2k2e
−2αk2Wi


< 0,(2.25)

Πi7 =

 −0.5(e−2αh1 + e−2αh2)Ri − 2εPi 2k1C̃iPi

∗ −2k1e
−2αk1Si

 < 0, (2.26)

Πi8 =

 −0.5Pi 2k1C̃iPi

∗ −2k1e
−2αk1Si

 < 0, (2.27)

and

−αδ + (ε− α)(ω − δ) < 0, (2.28)

i = 2, ..., N, where

Πi =



Πi11 Πi12 Πi13 Πi14 Πi15

∗ Πi22 0 Πi24 0

∗ ∗ Πi33 Πi34 0

∗ ∗ ∗ Πi44 Πi45

∗ ∗ ∗ ∗ Πi55


,
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Π̃i =



Π̃i11 Πi12 Πi13 Πi14 Πi15

∗ Πi22 0 Πi24 0

∗ ∗ Πi33 Πi34 0

∗ ∗ ∗ Πi44 Πi45

∗ ∗ ∗ ∗ Πi55


,

Πi11 = P T
i

(
Ãi + αI) + (Ãi + αI

)T
Pi −D4iLi − LT

i D
T
4i + 3e2αdDT

5iTiD5i

+2k2e
2αk2DT

6iWiD6i + 2Qi + k1Si − 0.5e−2αh1Ri − 0.5e−2αh2Ri,

Π̃i11 = P T
i

(
Ãi + αI) + (Ãi + αI

)T
Pi + 2Qi + k1Si − 0.5e−2αh1Ri − 0.5e−2αh2Ri,

Πi12 = PiÃ
T
i ,

Πi13 = e−2αh1Ri,

Πi14 = B̃iPi,

Πi15 = e−2αh2Ri,

Πi22 = h2
1Ri + h2

2Ri + η2Ui − 1.5Pi,

Πi24 = B̃iPi,

Πi33 = −e−2αh1Qi − e−2αh1Ri − e−2αh2Ui,

Πi34 = e−2αh2Ui,

Πi44 = −2e−2αh2Ui,

Πi45 = e−2αh2Ui,

Πi55 = −2e−2αh2Ui − 2e−2αh2Qi − 2e−2αh2Ri,

then, the dynamical networks (2.14) are exponential synchronization. Moreover, the

feedback control is

ui(t) =

 −LiP
−1
i zi(t), nω ≤ t ≤ nω + δ,

0, nω + δ < t ≤ (n+ 1)ω.
(2.29)
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2.2 Synchronization of master-slave neural networks with

mixed time-varying delays via hybrid intermittent

feedback control

Let us set

Υ = e−2αh1M , λ1 = λmin(P
−1),

λ2 = λmax(P
−1) + (h1m + h1M)λmax(P

−1QP−1)

+(h3
1m + h3

1M)λmax(P
−1RP−1) + δ3λmax(P

−1UP−1)

+h3
2λmax(P

−1Y TS−1
1 Y P−1) + k2

1λmax(HU−1
3 H)

+k2
2λmax(P

−1Y TS−1
2 Y P−1).

Theorem 2.2.1 For some given scalars 0 < α < ε, the error system (1.11) with

time-varying delay satisfying (1.13) are exponentially stable if there exist symmetric

positive definite matrices P,Q,R, U, S1, S2, diagonal matrices Ui, i = 1, 2, 3 and a

matrix Y with appropriately dimensioned such that the following LMI holds:

Γ1 = Γ1 −
[
0 0 −I I 0

]T
ΥU

[
0 0 −I I 0

]
< 0, (2.30)

Γ2 = Γ1 −
[
0 0 0 I −I

]T
ΥU

[
0 0 0 I −I

]
< 0, (2.31)

Γ3 =


Π11 2PF T PHT 2Y

∗ −2U1 0 0

∗ ∗ −U3 0

∗ ∗ ∗ −2e−2αh2S1

 < 0, (2.32)

Γ4 =

−0.1P h2
2Y

T

∗ −h2
2S1

 < 0, (2.33)

Γ5 =

−0.1e−2αh1MU 2PGT

∗ −2U2

 < 0, (2.34)

Γ6 = Γ2 −
[
0 0 −I I 0

]T
ΥU

[
0 0 −I I 0

]
< 0, (2.35)
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Γ7 = Γ2 −
[
0 0 0 I −I

]T
ΥU

[
0 0 0 I −I

]
< 0, (2.36)

Γ8 =


Π11 2PF T k1PHT

∗ −2U1 0

∗ ∗ −k1U3

 < 0, (2.37)

−αδ + (ε− α)(ω − δ) < 0, (2.38)

Γ1 =



Γ111 Γ112 Γ13 0 Γ15

∗ Γ122 0 0 0

∗ ∗ Γ33 Γ34 0

∗ ∗ ∗ Γ44 Γ45

∗ ∗ ∗ ∗ Γ55


,

Γ2 =



Γ211 Γ212 Γ13 0 Γ15

∗ Γ222 0 0 0

∗ ∗ Γ33 Γ34 0

∗ ∗ ∗ Γ44 Γ45

∗ ∗ ∗ ∗ Γ55


,

where

Π11 = −0.1(e−2αh1m + e−2αh1M )R

Γ111 = [−A+ αI]P + P [−A+ αI]T −B1Y − Y TBT
1 + 2Q

+CTU1C +DTU2D + 2k1e
2αk1ETU3E + 3e2αh2BT

2 S1B2

+2k2e
2αk2BT

3 S2B3 − 0.9e−2αh1mR− 0.9e−2αh1MR,

Γ211 = [−A+ αI]P + P [−A+ αI]T + 2Q− 2εP + CTU1C

+DTU2D + 2k1e
2αk1ETU3E − 0.9e−2αh1mR− 0.9e−2αh1MR,

Γ112 = −PAT − Y TBT , Γ212 = −PAT , Γ13 = e−2αh1mR,

Γ15 = e−2αh1MR,

Γ122 = h2
1mR + h2

1MR + δ2U − 1.9P + CTU1C +DTU2D

+2k1e
2αk1ETU3E + 3e2αh2BT

2 S1B2

2k2e
2αk2BT

3 S2B3,
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Γ222 = h2
1mR + h2

1MR + δ2U − 2P + CTU1C +DTU2D

+2k1e
2αk1ETU3E,

Γ33 = −e−2αh1mQ− e−2αh1mR− e−2αh1MU,

Γ34 = e−2αh1MU, Γ44 = −1.9e−2αh1MU,Γ45 = e−2αh1MU,

Γ55 = −e−2αh1MQ− e−2αh1MR− e−2αh1MU,

then the error system (1.11) have exponential synchronization. Moreover, the feed-

back control is

U(t) =


−B1Y P−1e(t)−B2Y P−1e(t− h2(t))

−B3Y P−1
∫ t

t−k2(t)
e(s)ds, nω ≤ t ≤ nω + δ,

0, nω + δ < t ≤ (n+ 1)ω.

(2.39)
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Abstract
In this paper, we shall investigate the problem of exponential synchronization for
complex dynamical network with mixed time-varying and hybrid coupling delays,
which is composed of state coupling, interval time-varying delay coupling and
distributed time-varying delay coupling. The designed controller ensures that the
synchronization of delayed complex dynamical network are proposed via either
feedback control or intermittent feedback control. The constraint on the derivative of
the time-varying delay is not required which allows the time-delay to be a fast
time-varying function. We use common unitary matrices, and the problem of
synchronization is transformed into the stability analysis of some linear time-varying
delay systems. This is based on the construction of an improved Lyapunov-Krasovskii
functional combined with the Leibniz-Newton formula and the technique of dealing
with some integral terms. New synchronization criteria are derived in terms of LMIs
which can be solved efficiently by standard convex optimization algorithms. Two
numerical examples are included to show the effectiveness of the proposed feedback
control and intermittent feedback control scheme.

Keywords: exponential synchronization; complex dynamical network; mixed
time-varying delays; hybrid coupling; intermittent control

1 Introduction
Complex dynamical network, as an interesting subject, has been thoroughly investigated
for decades. These networks show very complicated behavior and can be used to model
and explain many complex systems in nature such as computer networks [], the world
wide web [], food webs [], cellular and metabolic networks [], social networks [], elec-
trical power grids [] etc. In general, a complex network is a large set of interconnected
nodes, in which a node is a fundamental unit with specific contents. As an implicit as-
sumption, these networks are described by the mathematical term graph. In such graphs,
each vertex represents an individual element in the system, while edges represent the re-
lations between them. Two nodes are joined by an edge if and only if they interact.

In the last decade, the synchronization of complex dynamic networks has attracted
much attention of researchers in this field [–]. Because the synchronization of complex
dynamical networks can well explain many natural phenomena observed and is one of the
important dynamical mechanisms for creating order in complex dynamical networks, the

©2014 Botmart and Niamsup; licensee Springer. This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original work is properly cited.
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synchronization of coupled dynamical networks has come be a focal point in the study
of nonlinear science. Wang and Chen introduced a uniform dynamical network model
and also investigated its synchronization [–]. They have shown that the synchroniz-
ability of a scale-free dynamical network is robust against random removal of nodes, and
yet it is fragile to specific removal of the most highly connected nodes []. The authors
in [, ] investigated synchronization of general complex dynamical network models
with coupling delays. Li and Chen [] considered the synchronization stability of com-
plex dynamical network models with coupling delays for both continuous- and discrete-
time, and they derived some synchronization conditions for both delay-independent and
delay-dependent asymptotical stabilities. By utilizing Lyapunov functional method. Wang
et al. [] introduced several synchronization criteria for both delay-independent and
delay-dependent asymptotical stability. Li and Yi [] investigated synchronization of com-
plex networks with time-varying couplings, the stability criteria were obtained by using
Lyapunov-Krasovskii function method and subspace projection method. Yue and Li []
studied the synchronization stability of continuous and discrete complex dynamical net-
works with interval time-varying delays in the dynamical nodes and the coupling term
simultaneously, delay-dependent synchronization stability are derived in the form of lin-
ear matrix inequalities.

It is well known that the existence of time-delay in a system may cause instability and an
example of oscillations can be found in systems such as chemical engineering systems,
biological modeling, electrical networks, physical networks, and many others [–].
The stability criteria for a system with time-delays can be classified into two categories:
delay-independent and delay-dependent. Delay-independent criteria do not employ any
information on the size of the delay; while delay-dependent criteria make use of such in-
formation at different levels. Delay-dependent stability conditions are generally less con-
servative than delay-independent ones especially when the delay is small []. Recently,
the delay-dependent stability for interval time-varying delay was investigated in [, ,
–]. Interval time-varying delay is a time-delay that varies in an interval in which the
lower bound is not restricted to be . Jiang and Han [] considered the problem of ro-
bust H∞ control for uncertain linear systems with interval time-varying delay based on
Lyapunov functional approach in which restriction on the differentiability of the interval
time-varying delay was removed. Shao [] presented a new delay-dependent stability cri-
terion for linear systems with interval time-varying delay, and stability criteria are derived
in terms of linear matrix inequalities without introducing any free-weighting matrices. In
order to reduce further the conservatism introduced by the descriptor model transforma-
tion and bounding techniques, a free-weighting matrix method is proposed in [, –].
In [], the synchronization problem has been investigated for continuous/discrete com-
plex dynamical networks with interval time-varying delays. Based on a piecewise analysis
method and the Lyapunov functional method, some new delay-dependent synchroniza-
tion criteria are derived in the form of LMIs by introducing free-weighting matrices. It
will be pointed out later that some existing results require more free-weighting matrix
variables than our result.

Intermittent control is one of discontinuous control and has a nonzero control width. It
is an engineering approach that has been widely used in engineering fields, such as man-
ufacturing, air-quality control, transportation, and communication in practice. However,
results using intermittent control to study exponential synchronization are few. In recent
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years, several synchronization criteria for complex dynamical networks with or without
time-delays via feedback control or intermittent control have been presented; see [–]
and the references therein. Synchronization of a complex dynamical network with de-
layed nodes by pinning periodically intermittent control was also reported in []. A pe-
riodically intermittent control was applied to the complex dynamical networks with both
time-varying delays dynamical nodes and time-varying delays coupling in [, ]. In [],
the authors investigated exponential synchronization of a complex network with noniden-
tical time-delayed dynamical nodes by applying open-loop control to all nodes and adding
some intermittent controllers to partial nodes. The authors in [] investigated synchro-
nization of a general model of complex delayed dynamical networks. The periodically in-
termittent control scheme is introduced to drive the network to achieve synchronization.
Based on the Lyapunov stability theory and pinning control method, some novel synchro-
nization criteria for such dynamical network are derived. To the best of the authors’ knowl-
edge, the problem of exponential synchronization for a complex dynamical network with
mixed time-varying delays in the network hybrid coupling and time-varying delays in the
dynamical nodes has not been fully investigated yet and remains open.

In this paper, inspired by the above discussions, we shall investigate the problem of expo-
nential synchronization for a complex dynamical network with mixed time-varying and
hybrid coupling delays, which is composed of constant coupling, interval time-varying
delay coupling, and distributed time-varying delay coupling. The designed controller en-
sures that the synchronization of a delayed complex dynamical network is proposed via
either feedback control or intermittent feedback control. The constraint on the derivative
of the time-varying delay is not required, which allows the time-delay to be a fast time-
varying function. We use common unitary matrices, and the problem of synchronization
is transformed into the stability analysis of some linear time-varying delay systems. Based
on the construction of an improved Lyapunov-Krasovskii functional is combined with the
Leibniz-Newton formula and the technique of dealing with some integral terms. New syn-
chronization criteria are derived in terms of LMIs which can be solved efficiently by stan-
dard convex optimization algorithms. Two numerical examples are included to show the
effectiveness of the proposed feedback control and intermittent feedback control scheme.

The organization of the remaining part is as follows. In Section , a class of general com-
plex dynamical network model with mixed time-varying and hybrid coupling delays and
some useful lemmas are given. In Section , synchronization stability in complex dynam-
ical network with mixed time-varying and hybrid coupling delays via feedback control
and intermittent feedback control are investigated. Numerical examples illustrated the
obtained results are given in Section . The paper ends with conclusions in Section .

2 Network model and mathematic preliminaries
Consider a complex dynamical network consisting of N identical coupled nodes, with each
node being an n-dimensional dynamical system

ẋi(t) = f
(

xi(t), xi
(
t – h(t)

)
,
∫ t

t–k(t)
xi(s) ds

)
+ c

N∑
j=

aijGxj(t) + c

N∑
j=

bijGxj
(
t – h(t)

)

+ c

N∑
j=

cijG

∫ t

t–k(t)
xj(s) ds + Ui(t), t ≥ , i = , , . . . , N , ()

xi(t) = φi(t), t ∈ [–τmax, ], τmax = max{h, d, k, k},
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where xi(t) = (xi(t), xi(t), . . . , xin(t))T ∈ Rn is the state vector of ith node; Ui(t) ∈ Rm are
the control input of the node i; the constants c, c, c >  are the coupling strength; G =
(gij)n×n, G = (gij)n×n, G = (gij)n×n ∈Rn×n are constant inner-coupling matrices, if some
pairs (i, j),  ≤ i, j ≤ n, with gij �= , gij �= , and gij �= , which means two coupled nodes
are linked through their ith and jth state variables, otherwise gij = , gij = , gij = ;
A = (aij)N×N , B = (bij)N×N , and C = (cij)N×N ∈ RN×N are the outer-coupling matrices of
the network, in which aij, bij are defined as follows: if there are a connection between
node i and node j (j �= i), then aij = aji = , bij = bji = , cij = cji = ; otherwise, aij = aji = ,
bij = bji = , cij = cji =  (j �= i), and the diagonal elements of matrices A, B, and C are defined
by

aii = –
N∑

j=,i�=j

aij = –
N∑

j=,i�=j

aji,

bii = –
N∑

j=,i�=j

bij = –
N∑

j=,i�=j

bji, ()

cii = –
N∑

j=,i�=j

cij = –
N∑

j=,i�=j

cji, i = , , . . . , N .

It is assumed that network () is connected in the sense that there are no isolated clusters,
that is, A, B, C are irreducible matrices.

Definition . [] The delayed dynamical network () is said to achieve asymptotical
synchronization if

x(t) = x(t) = · · · = s(t) as t → ∞, ()

where s(t) is a solution of an isolated node, satisfying

ṡ(t) = f
(

s(t), s
(
t – h(t)

)
,
∫ t

t–k(t)
s(θ ) dθ

)
.

In order to stabilize the origin of dynamical network () by means of the state feedback
controller Ui(t) satisfying either (H) or (H), for i = , , . . . , n,

(H): Ui(t) = Diui(t) + Diui
(
t – d(t)

)
+ Di

∫ t

t–k(t)
ui(s) ds, ∀t ≥ t,

(H): Ui(t) =

⎧⎪⎨
⎪⎩

Diui(t) + Diui(t – d(t))
+ Di

∫ t
t–k(t) ui(s) ds, nω ≤ t ≤ nω + δ,

, nω + δ < t ≤ (n + )ω,

where Dji, j = , , . . . ,  are given matrices of appropriate dimensions, ui(t) = Ki(xi(t) – s(t))
and Ki is a constant matrix control gain, ω >  is the control period and δ >  is called the
control width (control duration) and n is a non-negative integer. Then substituting it into
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dynamical network (), it is easy to get the following:

ẋi(t) = f
(

xi(t), xi
(
t – h(t)

)
,
∫ t

t–k(t)
xi(s) ds

)
+ c

N∑
j=

aijGxj(t)

+ c

N∑
j=

bijGxj
(
t – h(t)

)
+ c

N∑
j=

cijG

∫ t

t–k(t)
xj(s) ds

+ DiKi
(
xi(t) – s(t)

)
+ Diui

(
t – d(t)

)
+ Di

∫ t

t–k(t)
ui(s) ds. ()

Namely, the dynamical network () is governed by the following system:

ẋi(t) = f
(

xi(t), xi
(
t – h(t)

)
,
∫ t

t–k(t)
xi(s) ds

)
+ c

N∑
j=

aijGxj(t)

+ c

N∑
j=

bijGxj
(
t – h(t)

)
+ c

N∑
j=

cijG

∫ t

t–k(t)
xj(s) ds

+ DiKi
(
xi(t) – s(t)

)
+ Diui

(
t – d(t)

)
+ Di

∫ t

t–k(t)
ui(s) ds,

nω ≤ t ≤ nω + δ, ()

ẋi(t) = f
(

xi(t), xi
(
t – h(t)

)
,
∫ t

t–k(t)
xi(s) ds

)
+ c

N∑
j=

aijGxj(t)

+ c

N∑
j=

bijGxj
(
t – h(t)

)
+ c

N∑
j=

cijG

∫ t

t–k(t)
xj(s) ds,

nω + δ < t ≤ (n + )ω, i = , , . . . , N .

It is clear that, if the zero solutions of the dynamical network () and () are globally ex-
ponentially stable, then exponential synchronization of the controlled dynamical network
() is achieved. The time-varying delay functions h(t), d(t), k(t), and k(t) satisfy the con-
ditions

 ≤ h ≤ h(t) ≤ h,  ≤ d(t) ≤ d,  ≤ k(t) ≤ k,  ≤ k(t) ≤ k. ()

The initial condition function φi(t) denotes a continuous vector-valued initial function of
t ∈ [–τmax, ].

In this paper, we assume that s(t) is an orbitally stable solution of the above system.
Clearly, the stability of the synchronized states () of network () is determined by the dy-
namics of the isolate node, the coupling strength c, c, and c, the inner-coupling matrices
G, G, and G, and the outer-coupling matrices A, B, and C.

The following lemmas are used in the proof of the main result.

Lemma . [] Let A, B be a family of diagonalizable matrices. Then A, B is a commuting
family (under multiplication) if and only if it is a simultaneously diagonalizable family.

http://www.advancesindifferenceequations.com/content/2014/1/116
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Lemma . [] For any constant symmetric matrix M ∈ Rn×n, M = MT > ,  ≤ h ≤
h(t) ≤ h, t ≥ , and any differentiable vector function x(t) ∈ Rn, we have

(a)
[∫ t

t–h

ẋ(s) ds
]T

M
[∫ t

t–h

ẋ(s) ds
]

≤ h

∫ t

t–h

ẋT (s)Mẋ(s) ds,

(b)
[∫ t–h

t–h(t)
ẋ(s) ds

]T

M
[∫ t–h

t–h(t)
ẋ(s) ds

]
≤ (

h(t) – h
)∫ t–h

t–h(t)
ẋT (s)Mẋ(s) ds

≤ (h – h)
∫ t–h

t–h(t)
ẋT (s)Mẋ(s) ds.

Lemma . (Cauchy inequality []) For any symmetric positive definite matrix N ∈ Mn×n

and x, y ∈Rn we have

±xT y ≤ xT Nx + yT N–y.

3 Synchronization of delayed complex dynamical network via delayed
feedback control and intermittent control

In this section, we shall obtain some delay-dependent exponential synchronization criteria
for general complex dynamical network with discrete and distributed time-varying delays
and hybrid coupling delays () by strict LMI approaches. Let us set

Ãi = J(t) + cλiG, B̃i = Jh(t) + cλiG, C̃i = Jk (t) + cλiG

and
. J(t) = f ′(s(t), s(t – h(t)),

∫ t
t–k(t) s(ξ ) dξ ) ∈ Rn×n is the Jacobian of

f (x(t), x(t – h(t)),
∫ t

t–k(t) x(s) ds) at s(t) with the derivative of
f (x(t), x(t – h(t)),

∫ t
t–k(t) x(s) ds) respect to x(t),

. Jh(t) = f ′(s(t), s(t – h(t)),
∫ t

t–k(t) s(ξ ) dξ ) ∈ Rn×n is the Jacobian of
f (x(t), x(t – h(t)),

∫ t
t–k(t) x(s) ds) at s(t – h(t)) with the derivative of

f (x(t), x(t – h(t)),
∫ t

t–k(t) x(s) ds) respect to x(t – h(t)),
. Jk (t) = f ′(s(t), s(t – h(t)),

∫ t
t–k(t) s(ξ ) dξ ) ∈ Rn×n is the Jacobian of

f (x(t), x(t – h(t)),
∫ t

t–k(t) x(s) ds) at
∫ t

t–k(t) s(ξ ) dξ with the derivative of
f (x(t), x(t – h(t)),

∫ t
t–k(t) x(s) ds) respect to

∫ t
t–k(t) x(s) ds.

Lemma . Consider the hybrid coupling delays dynamical network in (). Let  = λj >
λj ≥ λj ≥ · · · ≥ λjN , j = {, , }, be the eigenvalues of the outer-coupling matrices A, B, and
C, respectively. If the N –  following n-dimensional linear time-varying delays differential
equations are delay-dependent exponentially stable about their zero solutions:

żi(t) = (Ãi + DiKi)zi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s) ds

+ DiKizi
(
t – d(t)

)
+ DiKi

∫ t

t–k(t)
zi(s) ds, nω ≤ t ≤ nω + δ, i = , . . . , N , ()

żi(t) = Ãizi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s) ds, nω + δ < t ≤ (n + )ω, i = , . . . , N ,
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then the dynamical networks () is exponentially stable, and then exponential synchroniza-
tion of the controlled dynamical networks () is achieved.

Proof To investigate the stability of the synchronized states (), set

ei(t) = xi(t) – s(t), i = , , . . . , N . ()

Substituting () into (), for  ≤ i ≤ N , we have

ėi(t) = f
(

xi(t), xi
(
t – h(t)

)
,
∫ t

t–k(t)
xi(s) ds

)
– f

(
s(t), s

(
t – h(t)

)
,
∫ t

t–k(t)
si(ξ ) dξ

)

+ c

N∑
j=

aijGej(t) + c

N∑
j=

bijGej
(
t – h(t)

)

+ c

N∑
j=

cijG

∫ t

t–k(t)
ej(s) ds + DiKi

(
ei(t)

)
+ DiKi

(
ei

(
t – d(t)

))

+ DiKi

∫ t

t–k(t)
ej(s) ds, nω ≤ t ≤ nω + δ, ()

ėi(t) = f
(

xi(t), xi
(
t – h(t)

)
,
∫ t

t–k(t)
xi(s) ds

)
– f

(
s(t), s

(
t – h(t)

)
,
∫ t

t–k(t)
si(ξ ) dξ

)

+ c

N∑
j=

aijGej(t) + c

N∑
j=

bijGej
(
t – h(t)

)

+ c

N∑
j=

cijG

∫ t

t–k(t)
ej(s) ds, nω + δ < t ≤ (n + )ω, i = , , . . . , N .

Since f (·) is continuous differentiable, it is easy to know that the origin of the nonlinear
system () is an asymptotically stable equilibrium point if it is an asymptotically stable
equilibrium point of the following linear time-varying delays systems:

ėi(t) = J(t)ei(t) + Jh(t)ei
(
t – h(t)

)
+ Jk (t)

∫ t

t–k(t)
ei(s) ds

+ cG
(
e(t), e(t), . . . , eN (t)

)
(ai, . . . , aiN )T

+ cG
(
e

(
t – h(t)

)
, . . . , eN

(
t – h(t)

))
(bi, . . . , biN )T

+ cG

∫ t

t–k(t)

(
e(s), e(s), . . . , eN (s)

)
(ci, . . . , ciN )T ds

+ DiKiei(t) + DiKiei
(
t – d(t)

)
+ DiKi

∫ t

t–k(t)
ej(s) ds,

nω ≤ t ≤ nω + δ,

ėi(t) = J(t)ei(t) + Jh(t)ei
(
t – h(t)

)
+ Jk (t)

∫ t

t–k(t)
ei(s) ds

+ cG
(
e(t), e(t), . . . , eN (t)

)
(ai, . . . , aiN )T

+ cG
(
e

(
t – h(t)

)
, . . . , eN

(
t – h(t)

))
(bi, . . . , biN )T
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+ cG

∫ t

t–k(t)

(
e(s), e(s), . . . , eN (s)

)
(ci, . . . , ciN )T ds,

nω + δ < t ≤ (n + )ω.

Letting e(t) = (e(t), . . . , eN (t)) ∈ Rn×N , e(t – h(t)) = (e(t – h(t)), . . . , eN (t – h(t))) ∈ Rn×N ,∫ t
t–k(t) e(s) ds =

∫ t
t–k(t)(e(s), e(s), . . . , eN (s)) ds ∈ Rn×N , K = diag{K, K, . . . , KN }, and Dj =

diag{Dj, Dj, . . . , DjN }, j = {, , }, we have

ė(t) =
(
J(t) + DK

)
e(t) + Jh(t)e

(
t – h(t)

)
+ Jk (t)

∫ t

t–k(t)
e(s) ds + cGe(t)AT

+ cGe
(
t – h(t)

)
BT + cG

∫ t

t–k(t)
e(s)CT ds + DKe

(
t – d(t)

)

+ DK
∫ t

t–k(t)
e(s) ds, nω ≤ t ≤ nω + δ, ()

ė(t) = J(t)e(t) + Jh(t)e
(
t – h(t)

)
+ Jk (t)

∫ t

t–k(t)
e(s) ds + cGe(t)AT

+ cGe
(
t – h(t)

)
BT + cG

∫ t

t–k(t)
e(s)CT ds, nω + δ < t ≤ (n + )ω.

Obviously, A, B, C are diagonalizable. If A, B, and C commute pairwise, i.e., AB = BA, then
based on Lemma ., one can get a common unitary matrix Û ∈ RN×N with ûi ∈ Rn such
that

ÛT AÛ = 	, ÛT BÛ = 	, ÛT CÛ = 	,

where ÛT Û = I , 	j = diag{λj, . . . ,λNj}, j = {, , }. In addition, with () and the irreducible
feature of A, B, and C we can select with û = √

N (, , . . . , )T such that λj = , j = {, , }.
Using the nonsingular transform e(t)Û = z(t) = (z(t), . . . , zN (t)) ∈ RN×N , from (), we

have the following matrix equation:

ż(t) =
(
J(t) + DK

)
z(t) + Jh(t)z

(
t – h(t)

)
+ Jk (t)

∫ t

t–k(t)
z(s) ds + cGz(t)	

+ cGz
(
t – h(t)

)
	 + cG

∫ t

t–k(t)
z(s)	 ds + DKz

(
t – d(t)

)

+ DK
∫ t

t–k(t)
z(s) ds, nω ≤ t ≤ nω + δ,

ż(t) = J(t)z(t) + Jh(t)z
(
t – h(t)

)
+ Jk (t)

∫ t

t–k(t)
z(s) ds + cGz(t)	

+ cGz
(
t – h(t)

)
	 + cG

∫ t

t–k(t)
z(s)	 ds, nω + δ < t ≤ (n + )ω,

that is,

żi(t) = (Ãi + DiKi)zi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s) ds

+ DiKizi
(
t – d(t)

)
+ DiKi

∫ t

t–k(t)
zi(s) ds, nω ≤ t ≤ nω + δ,
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żi(t) = Ãizi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s) ds,

nω + δ < t ≤ (n + )ω, i = , . . . , N .

Thus, we have transformed the stability problem of the dynamical networks () to the
stability problem of the N pieces of n-dimensional linear time-varying delays differential
equations. Note that λk =  corresponding to the synchronization of the dynamical net-
works (), where the state s(t) is an orbitally stable solution of the isolate node as assumed
above in (). If the following N –  pieces of n-dimensional linear switched time-varying
delays systems:

żi(t) = (Ãi + DiKi)zi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s) ds

+ DiKizi
(
t – d(t)

)
+ DiKi

∫ t

t–k(t)
zi(s) ds, nω ≤ t ≤ nω + δ,

żi(t) = Ãizi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s) ds,

nω + δ < t ≤ (n + )ω, i = , . . . , N ,

are exponentially stable, then e(t) will tend to the origin exponentially, which is equiva-
lent to the synchronization of the dynamical networks () being exponentially stable. This
completes the proof. �

Lemma . Consider the hybrid coupling delays dynamical network in (). Let  = λj >
λj ≥ λj ≥ · · · ≥ λjN , j = {, , }, be the eigenvalues of the outer-coupling matrices A, B, and
C, respectively. If the N –  following n-dimensional linear time-varying delays differential
equations are delay-dependent exponentially stable about their zero solutions:

żi(t) = (Ãi + DiKi)zi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s) ds

+ DiKizi
(
t – d(t)

)
+ DiKi

∫ t

t–k(t)
zi(s) ds, i = , . . . , N , ()

then the dynamical networks () is exponentially stable, then exponential synchronization
of the controlled dynamical networks () is achieved.

3.1 Linear delayed feedback control
Let us denote

‖φi‖ =
∥∥zi()

∥∥, ‖ϕi‖ = sup
–τmax≤s≤

∥∥zi(s)
∥∥, Ki = –LiP–

i ,

γi = λmin
(
P–

i
)
,

�i = λmax
(
P–

i
)

+
[
hλmax

(
P–

i RiP–
i

)
+ hλmax

(
P–

i UiP–
i

)] – e–αh

α

+ dλmax
(
P–

i LT
i T–

i LiP–
i

) – e–αd

α
,
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ξi =
[
λmax

(
P–

i QiP–
i

)
+ hλmax

(
P–

i RiP–
i

)
+ hλmax

(
P–

i UiP–
i

)]
×  – e–αh

α
+ kλmax

(
P–

i SiP–
i

) – e–αk

α

+ dλmax
(
P–

i LT
i T–

i LiP–
i

) – e–αh

α

+ kλmax
(
P–

i LT
i W –

i LiP–
i

) – e–αd

α
,

Ni = �i‖φi‖ + ξi‖ϕi‖,

γ = min{γi, i = , , . . . , N}, N = max{Ni, i = , , . . . , N}.

Theorem . For some given scalars  < α, the dynamical networks () with time-varying
delay satisfying () are exponentially stable if there exist symmetric positive definite ma-
trices Pi > , Qi > , Ri > , Si > , Ui > , Ti > , Wi > , and a matrix Li appropriately
dimensioned such that the following symmetric linear matrix inequality holds:

�i = �i – [  I –I ]T e–αh Ui[  I –I ] < , ()

�i = �i – [   I –I]T e–αh Ui[   I –I] < , ()

�i =

⎡
⎢⎢⎢⎣

–.(e–αh + e–αh )Ri kC̃iPi kLT
i LT

i

∗ –ke–αk Si  
∗ ∗ –kWi 
∗ ∗ ∗ –e–αdTi

⎤
⎥⎥⎥⎦ < , ()

�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

–.Pi kC̃iPi dLT
i DT

i kDT
i

∗ –ke–αk Si   
∗ ∗ –dTi  
∗ ∗ ∗ –e–αdTi 
∗ ∗ ∗ ∗ –ke–αk Wi

⎤
⎥⎥⎥⎥⎥⎥⎦

< , ()

i = , . . . , N , where

�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

�i �i �i �i �i

∗ �i  �i 
∗ ∗ �i �i 
∗ ∗ ∗ �i �i

∗ ∗ ∗ ∗ �i

⎤
⎥⎥⎥⎥⎥⎥⎦

,

�i = PT
i (Ãi + αI) + (Ãi + αI)T Pi – DiLi – LT

i DT
i + eαdDT

iTiDi

+ keαk DT
iWiDi + Qi + kSi – .e–αh Ri – .e–αh Ri,

�i = PiÃT
i ,

�i = e–αh Ri,

�i = B̃iPi,

�i = e–αh Ri,

�i = h
 Ri + h

Ri + ηUi – .Pi,
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�i = B̃iPi,

�i = –e–αh Qi – e–αh Ri – e–αh Ui,

�i = e–αh Ui,

�i = –e–αh Ui,

�i = e–αh Ui,

�i = –e–αh Ui – e–αh Qi – e–αh Ri,

then the dynamical networks () have exponential synchronization. Moreover, the feedback
control is

ui(t) = –LiP–
i zi(t). ()

Proof Let Yi = P–
i , yi(t) = Yizi(t). Using the feedback control () we consider the following

Lyapunov-Krasovskii functional:

Vi
(
zi(t)

)
= Vi(t) + Vi(t) + Vi(t) + Vi(t) + Vi(t) + Vi(t) + Vi(t)

+ Vi(t) + Vi(t), ()

where

Vi(t) = zT
i (t)Yizi(t),

Vi(t) =
∫ t

t–h

eα(s–t)zT
i (s)YiQiYizi(s) ds,

Vi(t) =
∫ t

t–h

eα(s–t)zT
i (s)YiQiYizi(s) ds,

Vi(t) = h

∫ 

–h

∫ t

t+s
eα(τ–t)żT

i (τ )YiRiYiżi(τ ) dτ ds,

Vi(t) = h

∫ 

–h

∫ t

t+s
eα(τ–t)żT

i (τ )YiRiYiżi(τ ) dτ ds,

Vi(t) = (h – h)
∫ t–h

t–h

∫ t

t+s
eα(τ–t)żT

i (τ )YiUiYiżi(τ ) dτ ds,

Vi(t) =
∫ 

–k

∫ t

t+s
eα(τ–t)zT

i (τ )YiSiYzi(τ ) dτ ds,

Vi(t) = d
∫ 

–d

∫ t

t+s
eα(τ–t)żT

i (τ )KT
i T–

i Kiżi(τ ) dτ ds,

Vi(t) =
∫ 

–k

∫ t

t+s
eα(τ–t)zT

i (τ )KT
i W –

i Kizi(τ ) dτ ds.

It easy to check that

γ
∥∥zi(t)

∥∥ ≤ Vi
(
zi(t)

)
, ∀t ≥ . ()
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By taking the derivative of Vi(t) along the trajectories of system (), we have the following:

V̇i(t) = zT
i (t)Yiżi(t)

= yT
i (t)

[
(Ãi + DiKi)zi(t) + B̃izi

(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s) ds

+ DiKizi
(
t – d(t)

)
+ DiKi

∫ t

t–k(t)
zi(s) ds

]

= yT
i (t)

[
PiÃi + ÃT

i Pi
]
yi(t) + yT

i (t)B̃iPiyi
(
t – h(t)

)
+ yT

i (t)C̃iPi

∫ t

t–k(t)
yi(s) ds – yT

i (t)DiLT
i yi(t) + yT

i (t)Diui
(
t – d(t)

)

+ yT
i (t)Di

∫ t

t–k(t)
ui(s) ds + yT

i (t)αPiyi(t) – yT
i (t)αPiyi(t).

Applying Lemma . and Lemma . gives

yT
i (t)C̃iPi

∫ t

t–k(t)
yi(s) ds ≤ keαk yT

i (t)C̃iPiS–
i PiC̃T

i yi(t)

+
e–αk

k

(∫ t

t–k(t)
yi(s) ds

)T

Si

(∫ t

t–k(t)
yi(s) ds

)

≤ keαk yT
i (t)C̃iPiS–

i PiC̃T
i yi(t)

+



e–αk

∫ t

t–k(t)
yT

i (s)Siyi(s) ds,

yT
i (t)Diui

(
t – d(t)

) ≤ eαdyT
i (t)DiTiDT

iyi(t)

+
e–αd


uT

i
(
t – d(t)

)
T–

i ui
(
t – d(t)

)
,

yT
i (t)Di

∫ t

t–k(t)
ui(s) ds ≤ keαk yT

i (t)DiWiDT
iyi(t)

+
eαk

k

(∫ t

t–k(t)
ui(s) ds

)T

W –
i

(∫ t

t–k(t)
ui(s) ds

)

≤ keαk yT
i (t)DiWiDT

iyi(t)

+
eαk



∫ t

t–k(t)
uT

i (s)W –
i ui(s) ds.

Therefore

V̇i(t) + αVi(t) ≤ yT
i (t)

[
PiÃi + ÃT

i Pi
]
yi(t) + yT

i (t)αPiyi(t)

+ yT
i (t)B̃iPiyi

(
t – h(t)

)
– yT

i (t)DiLT
i yi(t)

+ keαk yT
i (t)C̃iPiS–

i PiC̃T
i yi(t)

+



e–αk

∫ t

t–k(t)
yT

i (s)Siyi(s) ds

+ eαdyT
i (t)DiTiDT

iyi(t)

+
e–αd


uT

i
(
t – d(t)

)
T–

i ui
(
t – d(t)

)
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+ keαk yT
i (t)DiWiDT

iyi(t)

+
eαk



∫ t

t–k(t)
uT

i (s)W –
i ui(s) ds. ()

Next, by taking the derivative of Vij(t), j = , , . . . ,  along the trajectories of system (),
we have the following:

V̇i(t) ≤ yT
i (t)Qiyi(t) – e–αh yT

i (t – h)Qiyi(t – h) – αVi(t),

V̇i(t) ≤ yT
i (t)Qiyi(t) – e–αh yT

i (t – h)Qiyi(t – h) – αVi(t),

V̇i(t) ≤ h
 ẏT

i (t)Riẏi(t) – he–αh

∫ t

t–h

ẏT
i (s)Riẏi(s) ds – αVi(t),

V̇i(t) ≤ h
ẏT

i (t)Riẏi(t) – he–αh

∫ t

t–h

ẏT
i (s)Riẏi(s) ds – αVi(t),

V̇i(t) ≤ ηẏT
i (t)Uiẏi(t) – ηe–αh

∫ t–h

t–h

ẏT
i (s)Uiẏi(s) ds – αVi(t),

V̇i(t) ≤ kyT
i (t)Siyi(t) – e–αk

∫ t

t–k(t)
yT

i (s)Siyi(s) ds – αVi(t),

V̇i(t) ≤ dżT
i (t)KT

i T–
i KiżT

i (t) – de–αd
∫ t

t–d
żT

i (s)KT
i T–

i KiżT
i (s) ds – αVi(t)

≤ dẏT
i (t)PiKT

i T–
i KiPiẏT

i (t) – d(t)e–αd
∫ t

t–d(t)
u̇T

i (s)T–
i u̇i(s) ds – αVi(t)

= dẏT
i (t)LT

i T–
i LiẏT

i (t) – d(t)e–αd
∫ t

t–d(t)
u̇T

i (s)T–
i u̇i(s) ds – αVi(t),

V̇i(t) ≤ kzT
i (t)KT

i W –
i KizT

i (t) – e–αk

∫ t

t–k

zT
i (s)KT

i W –
i KizT

i (s) ds – αVi(t)

≤ kyT
i (t)PiKT

i W –
i KiPiyT

i (t) – e–αk

∫ t

t–k(t)
uT

i (s)W –
i uT

i (s) ds – αVi(t)

≤ kyT
i (t)LT

i W –
i LiyT

i (t) – e–αk

∫ t

t–k(t)
uT

i (s)W –
i uT

i (s) ds – αVi(t).

()

Applying Lemma . and the Leibniz-Newton formula, we have

–h

∫ t

t–h

ẏT
i (s)Riẏi(s) ds ≤ –

[∫ t

t–h

ẏi(s) ds
]T

Ri

[∫ t

t–h

ẏi(s) ds
]

≤ –
[
yi(t) – yi(t – h)

]T Ri
[
yi(t) – yi(t – h)

]
= –yT

i (t)Riyi(t) + yT
i (t)Riyi(t – h)

– yT
i (t – h)Riyi(t – h) ()

and

–h

∫ t

t–h

ẏT
i (s)Riẏi(s) ds ≤ –

[∫ t

t–h

ẏi(s) ds
]T

Ri

[∫ t

t–h

ẏi(s) ds
]

≤ –
[
yi(t) – yi(t – h)

]T Ri
[
yi(t) – yi(t – h)

]
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= –yT
i (t)Riyi(t) + yT

i (t)Riyi(t – h)

– yT
i (t – h)Riyi(t – h). ()

On the other hand,

–(h – h)
∫ t–h

t–h

ẏT
i (s)Uiẏi(s) ds = –(h – h)

∫ t–h(t)

t–h

ẏT
i (s)Uiẏi(s) ds

– (h – h)
∫ t–h

t–h(t)
ẏT

i (s)Uiẏi(s) ds

= –
(
h – h(t)

)∫ t–h(t)

t–h

ẏT
i (s)Uiẏi(s) ds

–
(
h(t) – h

)∫ t–h(t)

t–h

ẏT
i (s)Uiẏi(s) ds

–
(
h(t) – h

)∫ t–h

t–h(t)
ẏT

i (s)Uiẏi(s) ds

–
(
h – h(t)

)∫ t–h

t–h(t)
ẏT

i (s)Uiẏi(s) ds.

Using Lemma . gives

–
(
h – h(t)

)∫ t–h(t)

t–h

ẏT
i (s)Uiẏi(s) ds ≤ –

[∫ t–h(t)

t–h

ẏi(s) ds
]T

Ui

[∫ t–h(t)

t–h

ẏi(s) ds
]

≤ –
[
yi

(
t – h(t)

)
– yi(t – h)

]T Ui

× [
yi

(
t – h(t)

)
– yi(t – h)

]
= –yT

i
(
t – h(t)

)
Uiyi

(
t – h(t)

)
+ yT

i
(
t – h(t)

)
Uiyi(t – h)

– yT
i (t – h)Uiyi(t – h) ()

and

–
(
h(t) – h

)∫ t–h

t–h(t)
ẏT

i (s)Uiẏi(s) ds ≤ –
[∫ t–h

t–h(t)
ẏi(s) ds

]T

Ui

[∫ t–h

t–h(t)
ẏi(s) ds

]

≤ –
[
yi(t – h) – yi

(
t – h(t)

)]T Ui

× [
yi(t – h) – yi

(
t – h(t)

)]
= –yT

i (t – h)Uiyi(t – h) + yT
i (t – h)Uiyi

(
t – h(t)

)
– yT

i
(
t – h(t)

)
Uiyi

(
t – h(t)

)
. ()

Let β = h–h(t)
h–h

≤ . Then

–
(
h – h(t)

)∫ t–h

t–h(t)
ẏT

i (s)Uiẏi(s) ds = –β

∫ t–h

t–h(t)
(h – h)ẏT

i (s)Uiẏi(s) ds

≤ –β

∫ t–h

t–h(t)

(
h(t) – h

)
ẏT

i (s)Uiẏi(s) ds
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≤ –β
[
yi(t – h) – yi

(
t – h(t)

)]T Ui

× [
yi(t – h) – yi

(
t – h(t)

)]
()

and

–
(
h(t) – h

)∫ t–h(t)

t–h

ẏT
i (s)Uiẏi(s) ds = –( – β)

∫ t–h(t)

t–h

(h – h)ẏT
i (s)Uiẏi(s) ds

≤ –( – β)
∫ t–h(t)

t–h

(
h – h(t)

)
ẏT

i (s)Uiẏi(s) ds

≤ –( – β)
[
yi

(
t – h(t)

)
– yi(t – h)

]T Ui

× [
yi

(
t – h(t)

)
– yi(t – h)

]
. ()

Therefore from ()-(), we obtain

–(h – h)
∫ t–h

t–h

ẏT
i (s)Uiẏi(s) ds ≤ –

[
yi

(
t – h(t)

)
– yi(t – h)

]T Ui

× [
yi

(
t – h(t)

)
– yi(t – h)

]
–

[
yi(t – h) – yi

(
t – h(t)

)]T Ui

× [
yi(t – h) – yi

(
t – h(t)

)]
– β

[
yi(t – h) – yi

(
t – h(t)

)]T Ui

× [
yi(t – h) – yi

(
t – h(t)

)]
– ( – β)

[
yi

(
t – h(t)

)
– yi(t – h)

]T Ui

× [
yi

(
t – h(t)

)
– yi(t – h)

]
. ()

From V̇i(t), applying Lemma . and the Leibniz-Newton formula gives

–d(t)e–αd
∫ t

t–d(t)
u̇T

i (s)T–
i u̇i(s) ds ≤ –e–αd

(∫ t

t–d(t)
u̇i(s) ds

)T

T–
i

(∫ t

t–d(t)
u̇i(s) ds

)

≤ –e–αduT
i (t)T–

i ui(t)

+ e–αduT
i (t)iT–

i ui
(
t – d(t)

)
– e–αduT

i
(
t – d(t)

)
T–

i ui
(
t – d(t)

)
≤ –e–αduT

i (t)T–
i ui(t) + e–αduT

i (t)T–
i ui(t)

+
e–αd


uT

i
(
t – d(t)

)
T–

i TiT–
i ui

(
t – d(t)

)
– e–αduT

i
(
t – d(t)

)
T–

i ui
(
t – d(t)

)
= e–αdzT

i (t)KT
i T–

i Kizi(t)

+
e–αd


uT

i
(
t – d(t)

)
T–

i TiT–
i ui

(
t – d(t)

)
– e–αduT

i
(
t – d(t)

)
T–

i ui
(
t – d(t)

)
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= e–αdyT
i (t)LT

i T–
i Liyi(t)

+
e–αd


uT

i
(
t – d(t)

)
T–

i ui
(
t – d(t)

)
– e–αduT

i
(
t – d(t)

)
T–

i ui
(
t – d(t)

)
. ()

By using the following identity relation:

–żi(t) + (Ãi + DiKi)zi(t) + B̃izi
(
t – h(t)

)
+ C̃i

∫ t

t–k(t)
zi(s) ds

+ DiKizi
(
t – d(t)

)
+ DiKi

∫ t

t–k(t)
zi(s) ds = ,

we have

–ẏT
i (t)Piẏi(t) + ẏT

i (t)ÃiPiyi(t) – ẏT
i (t)DiLiyi(t) + ẏT

i (t)B̃iPiyi
(
t – h(t)

)
+ ẏT

i (t)C̃iPi

∫ t

t–k(t)
yi(s) ds + ẏT

i (t)Diui
(
t – d(t)

)

+ ẏT
i (t)Di

∫ t

t–k(t)
ui(s) ds = . ()

Applying Lemma . and Lemma . gives

ẏT
i (t)C̃iPi

∫ t

t–k(t)
yi(s) ds ≤ keαk ẏT

i (t)C̃iPiS–
i PiC̃T

i ẏi(t)

+


k
e–αk

(∫ t

t–k(t)
yi(s) ds

)T

Si

×
(∫ t

t–k(t)
yi(s) ds

)

≤ keαk ẏT
i (t)C̃iPiS–

i PiC̃T
i ẏi(t)

+



e–αk

∫ t

t–k(t)
yT

i (s)Siyi(s) ds, ()

ẏT
i (t)Diui

(
t – d(t)

) ≤ eαdẏT
i (t)DT

iT
–
i Diẏi(t)

+
e–αd


uT

i
(
t – d(t)

)
T–

i ui
(
t – d(t)

)
, ()

ẏT
i (t)Di

∫ t

t–k(t)
ui(s) ds ≤ keαk yT

i (t)DT
iW

–
i Diyi(t)

+


k
e–αk

(∫ t

t–k(t)
ui(s) ds

)T

Wi

×
(∫ t

t–k(t)
ui(s) ds

)

≤ keαk yT
i (t)DT

iW
–
i Diyi(t)

+
eαk



∫ t

t–k(t)
uT

i (s)W –
i ui(s) ds. ()
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Hence, according to ()-(), ()-(), and adding the zero items of () we have

V̇i
(
zi(t)

)
+ αVi

(
zi(t)

) ≤ ξT
i (t)

[
( – β)�i + β�i

]
ξi(t) + yT

i (t)Miyi(t)

+ ẏT
i (t)Miẏi(t), ()

where �i and �i are defined as in () and (), respectively, and

ξT
i (t) =

[
yT

i (t) ẏT
i (t) yT

i (t – h) yT
i
(
t – h(t)

)
yT

i (t – h)
]
,

Mi = –.
(
e–αh + e–αh

)
Ri + keαk C̃iPiS–

i PiC̃T
i + kLT

i W –
i Li

+ e–αdLT
i T–

i Li,

Mi = –.Pi + keαk C̃iPiS–
i PiC̃T

i + dLT
i T–

i Li + eαdDT
iT

–
i Di

+ keαk DT
iW

–
i Di.

By (–β)�i +β�i <  holds if and only if �i <  and �i < . Applying the Schur comple-
ment lemma, the inequalities Mi <  and Mi <  are equivalent to �i <  and �i < ,
respectively. Therefore, it follows from ()-(), and (), we obtain

V̇i
(
zi(t)

)
+ αVi

(
zi(t)

) ≤ , ∀t ≥ . ()

Integrating both sides of () from  to t, we have

Vi
(
zi(t)

) ≤ Vi
(
zi()

)
e–αt , ∀t ≥ .

On the other hand, using the condition (), we have

∥∥zi(t)
∥∥ ≤

√
Vi(zi())

γ
e–αt , ∀t ≥ .

Estimating Vi(zi()) gives

Vi
(
zi()

)
= zT

i ()P–
i zi() ≤ λmax

(
P–

i
)‖φi‖,

Vi
(
zi()

)
=

∫ 

–h

eαszT
i (s)YiQiYizi(s) ds ≤ λmax

(
P–

i QiP–
i

)∫ 

–h

eαs ds‖ϕi‖

= λmax
(
P–

i QiP–
i

) – e–αh

α
‖ϕi‖ ≤ λmax

(
P–

i QiP–
i

) – e–αh

α
‖ϕi‖,

Vi
(
zi()

) ≤ λmax
(
P–

i QiP–
i

) – e–αh

α
‖ϕi‖,

Vi
(
zi()

)
= h

∫ 

–h

∫ 

s
eατ żT

i (τ )YiRiYiżi(τ ) dτ ds

= h

∫ 

–h

eαs[zT
i ()YiRiYizi() – zT

i (s)YiRiYizi(s)
]

ds

≤ hλmax(YiRiYi)
∫ 

–h

eαs ds‖φi‖ – hλmax(YiRiYi)
∫ 

–h

eαs ds‖ϕi‖
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= hλmax(YiRiYi)
 – e–αh

α
‖φi‖ – hλmax(YiRiYi)

 – e–αh

α
‖ϕi‖

≤ hλmax
(
P–

i RiP–
i

) – e–αh

α
‖φi‖ + hλmax

(
P–

i RiP–
i

)

×  – e–αh

α
‖ϕi‖,

Vi
(
zi()

) ≤ hλmax
(
P–

i RiP–
i

) – e–αh

α
‖φi‖ + hλmax

(
P–

i RiP–
i

)

×  – e–αh

α
‖ϕi‖,

Vi
(
zi()

) ≤ hλmax
(
P–

i UiP–
i

) – e–αh

α
‖φi‖ + hλmax

(
P–

i UiP–
i

)

×  – e–αh

α
‖ϕi‖,

Vi
(
zi()

)
=

∫ 

–k

∫ 

s
eατ zT

i (τ )YiSiYizi(τ ) dτ ds

≤
∫ 

–k

∫ 

–k

eαszT
i (τ )YiSiYizi(τ ) dτ ds

≤ λmax(YiSiYi)
∫ 

–k

∫ 

–k

eατ dτ ds‖ϕi‖

= kλmax
(
P–

i SiP–
i

) – e–αk

α
‖ϕi‖,

Vi
(
zi()

) ≤ dλmax
(
P–

i LT
i T–

i LiP–
i

) – e–αd

α
‖φi‖

+ dλmax
(
P–

i LT
i T–

i LiP–
i

) – e–αd

α
‖ϕi‖,

Vi
(
zi()

) ≤ kλmax
(
P–

i LT
i W –

i LiP–
i

) – e–αk

α
‖ϕi‖,

we have

∥∥zi(t)
∥∥ ≤

√
N
γ

e–αt , ∀t ≥ ,

which implies the dynamical networks () is globally exponentially stable under the con-
troller H, then exponential synchronization of the controlled dynamical networks () is
achieved. The proof is thus completed. �

3.2 Intermittent delayed feedback control
Theorem . For some given scalars  < α < ε, the dynamical networks () with time-
varying delay satisfying () are exponentially stable if there exist symmetric positive definite
matrices Pi > , Qi > , Ri > , Si > , Ui > , Ti > , Wi > , and a matrix Li with appropri-
ately dimensioned such that the following symmetric linear matrix inequality holds:

�i = �i – [  I –I ]T e–αh Ui[  I –I ] < , ()

�i = �i – [   I –I]T e–αh Ui[   I –I] < , ()
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�i = �̃i – [  I –I ]T e–αh Ui[  I –I ] < , ()

�i = �̃i – [   I –I]T e–αh Ui[   I –I] < , ()

�i =

⎡
⎢⎢⎢⎣

–.(e–αh + e–αh )Ri kC̃iPi kLT
i LT

i

∗ –ke–αk Si  
∗ ∗ –kWi 
∗ ∗ ∗ –e–αdTi

⎤
⎥⎥⎥⎦ < , ()

�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

–.Pi kC̃iPi dLT
i DT

i kDT
i

∗ –ke–αk Si   
∗ ∗ –dTi  
∗ ∗ ∗ –e–αdTi 
∗ ∗ ∗ ∗ –ke–αk Wi

⎤
⎥⎥⎥⎥⎥⎥⎦

< , ()

�i =

[
–.(e–αh + e–αh )Ri – εPi kC̃iPi

∗ –ke–αk Si

]
< , ()

�i =

[
–.Pi kC̃iPi

∗ –ke–αk Si

]
<  ()

and

–αδ + (ε – α)(ω – δ) < , ()

i = , . . . , N , where

�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

�i �i �i �i �i

∗ �i  �i 
∗ ∗ �i �i 
∗ ∗ ∗ �i �i

∗ ∗ ∗ ∗ �i

⎤
⎥⎥⎥⎥⎥⎥⎦

,

�̃i =

⎡
⎢⎢⎢⎢⎢⎢⎣

�̃i �i �i �i �i

∗ �i  �i 
∗ ∗ �i �i 
∗ ∗ ∗ �i �i

∗ ∗ ∗ ∗ �i

⎤
⎥⎥⎥⎥⎥⎥⎦

,

�i = PT
i (Ãi + αI) + (Ãi + αI)T Pi – DiLi – LT

i DT
i + eαdDT

iTiDi

+ keαk DT
iWiDi + Qi + kSi – .e–αh Ri – .e–αh Ri,

�̃i = PT
i (Ãi + αI) + (Ãi + αI)T Pi + Qi + kSi – .e–αh Ri – .e–αh Ri,

�i = PiÃT
i ,

�i = e–αh Ri,

�i = B̃iPi,

�i = e–αh Ri,

�i = h
 Ri + h

Ri + ηUi – .Pi,
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�i = B̃iPi,

�i = –e–αh Qi – e–αh Ri – e–αh Ui,

�i = e–αh Ui,

�i = –e–αh Ui,

�i = e–αh Ui,

�i = –e–αh Ui – e–αh Qi – e–αh Ri,

then the dynamical networks () have exponential synchronization. Moreover, the feedback
control is

ui(t) =

{
–LiP–

i zi(t), nω ≤ t ≤ nω + δ,
, nω + δ < t ≤ (n + )ω.

()

Proof Case I: for nω ≤ t ≤ nω+δ, we choose the Lyapunov-Krasovskii functional as in ()
and using the feedback control (), we may proof this case by using a similar argument
as in the proof of Theorem .. By replacing Di, Di and Di in ()-() with Di, Di, and
Di, respectively. We have

V̇i
(
zi(t)

)
+ αVi

(
zi(t)

) ≤ ξT
i (t)

[
( – β)�i + β�i

]
ξi(t) + yT

i (t)Niyi(t)

+ ẏT
i (t)Niẏi(t), ()

where �i and �i are defined as in () and (), respectively, and

ξT
i (t) =

[
yT

i (t) ẏT
i (t) yT

i (t – h) yT
i
(
t – h(t)

)
yT

i (t – h)
]
,

Ni = –.
(
e–αh + e–αh

)
Ri + keαk C̃iPiS–

i PiC̃T
i

+ kLT
i W –

i Li + e–αdLT
i T–

i Li,

Ni = –.Pi + keαk C̃iPiS–
i PiC̃T

i + dLT
i T–

i Li + eαdDT
iT

–
i Di

+ keαk DT
iW

–
i Di.

By ( – β)�i + β�i <  holds if and only if �i <  and �i < . Applying the Schur com-
plement lemma, the inequalities Ni <  and Ni <  are equivalent to �i <  and �i < ,
respectively. Therefore, it follows from ()-(), ()-(), and (), we obtain

V̇i
(
zi(t)

)
+ αVi

(
zi(t)

) ≤  for nω ≤ t ≤ nω + δ. ()

Thus, by the above differential inequality (), we have

Vi
(
zi(t)

) ≤ Vi
(
zi(nω)

)
e–α(t–nω) for nω ≤ t ≤ nω + δ. ()

Case II: for nω + δ ≤ t ≤ (n + )ω, we choose the Lyapunov-Krasovskii functional having
the following form:

Vi
(
zi(t)

)
= Vi(t) + Vi(t) + Vi(t) + Vi(t) + Vi(t) + Vi(t) + Vi(t),
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where Vij(t), j = , , . . . ,  are defined similar in (). We are able to do a similar estimation
as we did for Theorem ., and we have the following:

V̇i
(
zi(t)

)
+ αVi

(
zi(t)

) ≤ ξT
i (t)

[
( – β)�i + β�i

]
ξi(t) + yT

i (t)Niyi(t) + ẏT
i (t)Niẏi(t)

≤ ξT
i (t)

[
( – β)�i + β�i

]
ξi(t) + yT

i (t)Niyi(t)

+ ẏT
i (t)Niẏi(t) + εVi

(
zi(t)

)
– εVi(t)

= ξT
i (t)

[
( – β)�i + β�i

]
ξi(t) + yT

i (t)Niyi(t) ()

+ ẏT
i (t)Niẏi(t) + εVi

(
zi(t)

)
– εyT

i (t)Piyi(t),

V̇i
(
zi(t)

)
– (ε – α)Vi

(
zi(t)

) ≤ ξT
i (t)

[
( – β)�i + β�i

]
ξi(t)

+ yT
i (t)(Ni – εPi)yi(t) + ẏT

i (t)Niẏi(t),

where �i and �i are defined as in () and (), respectively, and

ξT
i (t) =

[
yT

i (t) ẏT
i (t) yT

i (t – h) yT
i
(
t – h(t)

)
yT

i (t – h)
]
,

Ni = –.
(
e–αh + e–αh

)
Ri + keαk C̃iPiS–

i PiC̃T
i ,

Ni = –.Pi + keαk C̃iPiS–
i PiC̃T

i .

Now ( – β)�i + β�i <  holds if and only if �i <  and �i < . Applying the Schur
complement lemma, the inequalities (Ni – εPi) <  and Ni <  are equivalent to �i < 
and �i < , respectively. Therefore, it follows from ()-(), ()-(), and (), that we
obtain

V̇i
(
zi(t)

)
– (ε – α)Vi

(
zi(t)

) ≤  for nω + δ < t ≤ (n + )ω. ()

From the above differential inequality (), we have

Vi
(
zi(t)

) ≤ Vi
(
zi(nω + δ)

)
e(ε–α)(t–nω–δ) for nω + δ < t ≤ (n + )ω. ()

By () and (), we have

Vi
(
zi

(
(n + )ω

)) ≤ Vi
(
zi(nω + δ)

)
e(ε–α)(ω–δ)

≤ Vi
(
zi(nω)

)
e–αδe(ε–α)(ω–δ)

= Vi
(
zi(nω)

)
e–αδ+(ε–α)(ω–δ)

≤ Vi
(
zi

(
(n – )ω + δ

))
eρ(ω–δ)e–αδ+(ε–α)(ω–δ)

≤ Vi
(
zi

(
(n – )ω

))
e–αδ+(ε–α)(ω–δ)e–αδ+(ε–α)(ω–δ)

= Vi
(
zi

(
(n – )ω

))
e(–αδ+(ε–α)(ω–δ))

...

≤ Vi
(
zi()

)
e(–αδ+(ε–α)(ω–δ))(n+).

For any t > , there is a n ≥ , such that nω ≤ t ≤ (n + )ω.
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Case . For nω + δ ≤ t ≤ (n + )ω, using condition (), we have

Vi
(
zi(t)

) ≤ Vi
(
zi(nω + δ)

)
e(ε–α)(t–(nω+δ))

≤ Vi
(
zi(nω)

)
e–αδe(ε–α)(t–(nω+δ))

≤ Vi
(
zi()

)
e(–αδ+(ε–α)(ω–δ))n e–αδe(ε–α)(t–(nω+δ))

≤ Vi
(
zi()

)
e(–αδ+(ε–α)(ω–δ))n e–αδe(ε–α)((n+)ω–(nω+δ))

= Vi
(
zi()

)
e(–αδ+(ε–α)(ω–δ))(n+)

= Vi
(
zi()

)
e

(–αδ+(ε–α)(ω–δ))(n+)ω
ω

≤ Vi
(
zi()

)
e

(–αδ+(ε–α)(ω–δ))t
ω . ()

Case . For nω ≤ t ≤ nω + δ, using condition (), we have

Vi
(
zi(t)

) ≤ Vi
(
zi(nω)

)
e–α(t–nω)

≤ Vi
(
zi()

)
e(–αδ+(ε–α)(ω–δ))n e–α(t–nω)

≤ Vi
(
zi()

)
e(–αδ+(ε–α)(ω–δ))n

= Vi
(
zi()

)
e–(–αδ+(ε–α)(ω–δ))e(–αδ+(ε–α)(ω–δ))(n+)

= Vi
(
zi()

)
e–(–αδ+(ε–α)(ω–δ))e

(–αδ+(ε–α)(ω–δ))(n+)ω
ω

≤ Vi
(
zi()

)
e–(–αδ+(ε–α)(ω–δ))e

(–αδ+(ε–α)(ω–δ))t
ω . ()

Let ξ = e–(–αδ+(ε–α)(ω–δ)). By () and (), we have

Vi
(
zi(t)

) ≤ ξVi
(
zi()

)
e

(–αδ+(ε–α)(ω–δ))t
ω , ∀t ≥ .

On the other hand, using the condition (), we have obtained the following:

∥∥zi(t)
∥∥ ≤

√
N ξ

γ
e

(–αδ+(ε–α)(ω–δ))t
ω , ∀t ≥ .

which implies the dynamical networks () is exponentially stable under the controller H,
then exponential synchronization of the controlled dynamical networks () is achieved.
The proof is thus completed. �

Remark . It is clear that as δ → ω the intermittent feedback control will reduce to a
continuous feedback. In this case, presented in Theorem ..

Remark . In [–], the authors investigated synchronization of complex dynamical
network with coupling time-delay, but the time-delay considered in these three works are
assumed to be constants delay. In [], Li et al. presented synchronization in complex dy-
namical networks with time-varying delays in the network couplings and time-varying
delays in the dynamical nodes, but the time-varying delays are required to be differen-
tiable, which is a very strict condition. Obviously, we do not need these limit condition in
this paper.
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Remark . If k(t) = , c = , c = , and Ui(t) = , then system () reduces to the follow-
ing system presented in [, ]:

ẋi(t) = f
(
xi(t)

)
+ c

N∑
j=

bijGxj
(
t – h(t)

)
, t > , i = , , . . . , N . ()

According to Theorem ., we obtain the following corollary for the synchronization of
network ().

Corollary . For some given scalars  < α, the dynamical networks () with time-varying
delay h(t) satisfying () are exponentially synchronization if there exist symmetric positive
definite matrices Pi > , Qi > , Ri > , Ui > , such that the following symmetric linear
matrix inequality holds:

	i = 	i – [  I –I ]T e–αh Ui[  I –I ] < , ()

	i = 	i – [   I –I]T e–αh Ui[   I –I] < , ()

where

	i = PT
i
(
J(t) + αI

)
+

(
J(t) + αI

)T Pi + Qi – e–αh Ri – e–αh Ri,

	i = PiJT (t),

	i = e–αh Ri,

	i = cλiGPi,

	i = e–αh Ri,

	i = h
 Ri + h

Ri + ηUi – Pi,

	i = cλiGPi,

	i = –e–αh Qi – e–αh Ri – e–αh Ui,

	i = e–αh Ui,

	i = –e–αh Ui,

	i = e–αh Ui,

	i = –e–αh Ui – e–αh Qi – e–αh Ri.

Proof Similar to proof of Theorem .. Indeed, by setting Si = , Ti = , and Wi =  in (),
one may easily derive the result and hence the proof is omitted. �

Remark . In [–], the authors investigated synchronization of complex dynami-
cal network with coupling time-delay based on intermittent control, but the controller is
presented in terms of nominal state-delayed systems. On the other hands, we have consid-
ered more complicated problem, namely, synchronization of complex dynamical network
with hybrid coupling delay and mixed time-varying delay (interval time-varying delay and
distributed time-varying delay), which time-varying delay using both state-delayed feed-
back control as well as intermittent state-delayed feedback control. It should be pointed
out that the synchronization problem for complex dynamical networks with both interval
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and distributed time-varying delays has not received much attention in the literature, not
to mention the case when the coupling and controller are also involved.

4 Numerical examples
In this section, we now provide an example to show the effectiveness of the result in The-
orem . and Theorem ..

Example . We first consider the perturbed Chua circuit system with mixed time-
varying delays is used as uncoupled node in the network () to show the effectiveness
of the proposed control scheme. The perturbed Chua circuit system with mixed time-
varying delays is given by []

ẋ(t) = p
(

x
(
t – h(t)

)
–



(
x

 (t) – x(t)
))

,

ẋ(t) = x(t) – sx(t) + x
(
t – h(t)

)
, ()

ẋ(t) = qx(t) + r
∫ t

t–k(t)
x

 (s) ds,

where p, q, r, and s are real positive constants. It is well known that the system () exhibits
chaotic behavior with the parameters p, q, r, and s are chosen as p = , q = – 

 , r = .,
and s = ., the initial condition function φ(t) = [. cos t, sin t, sin t]T , the time-varying
delay functions h(t) = .+.| sin t| and k(t) = .| cos t| is shown in Figure . The solution
of the system () is denoted by s(t) = (s(t), s(t), s(t))T , which is shown in Figure . It is
stable at the equilibrium point s(t) = , s(t – h(t)) = ,

∫ t
t–k(t) s(θ ) dθ = , and the Jacobian

matrices are

J(t) =

⎡
⎢⎣

  
 –. 
 – 

 

⎤
⎥⎦ , Jh(t) =

⎡
⎢⎣

  
  
  

⎤
⎥⎦ , Jk (t) =

⎡
⎢⎣

  
  
  

⎤
⎥⎦ .

Figure 1 Chaotic behavior of the perturbed Chua circuit system with mixed time-varying delays (56).
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Figure 2 Solution s(t) of the perturbed Chua circuit system with mixed time-varying delays (56).

Consider a network consisting of five identical perturbed Chua circuit system with
mixed time-varying and hybrid coupling delays. The corresponding controlled dynami-
cal network () can be described as

ẋi(t) = f
(

xi(t), xi
(
t – h(t)

)
,
∫ t

t–k(t)
xi(s) ds

)
+ c

N∑
j=

aijGxj(t)

+ c

N∑
j=

bijGxj
(
t – h(t)

)
+ c

N∑
j=

cijG

∫ t

t–k(t)
xj(s) ds

+ DiKi
(
xi(t) – s(t)

)
+ DiKi

(
xi

(
t – d(t)

)
– s

(
t – d(t)

))
+ DiKi

(∫ t

t–k(t)
xi(s) ds –

∫ t

t–k(t)
s(θ ) dθ

)
, i = , , . . . , .

Assume that Di = diag{, , }, Di = diag{., ., .}, Di = diag{., ., .}, i = , ,
. . . , , the coupling strength c = ., c = ., c = ., the inner-coupling matrices are

G =

⎡
⎢⎣

  
  
  

⎤
⎥⎦ , G =

⎡
⎢⎣

  
  
  

⎤
⎥⎦ ,

G =

⎡
⎢⎣

.  
 . 
  .

⎤
⎥⎦ ,

http://www.advancesindifferenceequations.com/content/2014/1/116


Botmart and Niamsup Advances in Difference Equations 2014, 2014:116 Page 26 of 33
http://www.advancesindifferenceequations.com/content/2014/1/116

Figure 3 The topology structure of complex networks with N = 5.

and the outer-coupling matrices are given by the following irreducible symmetric matrices
satisfying condition ():

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦

, B = C =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and the topology structure of complex networks is shown in Figure .
The eigenvalues of A, B, and C are λ = {, –., –., –., –.}, λ = {, –,

–, –, –}, and λ = {, –, –, –, –}, respectively.
Solution: From the conditions ()-() of Theorem ., we let α = ., h = ., h = .,

k = ., k = ., d = ., the gain matrices of the desired controllers can be obtained as
follows:

K =

⎡
⎢⎣

–. –. –.
–. –. .
–. . –.

⎤
⎥⎦ , K =

⎡
⎢⎣

–. –. –.
–. –. .
–. . –.

⎤
⎥⎦ ,

K =

⎡
⎢⎣

–. . –.
. –. .

–. . –.

⎤
⎥⎦ , K =

⎡
⎢⎣

–. . –.
. –. .

–. . –.

⎤
⎥⎦ ,

K =

⎡
⎢⎣

–. . –.
. –. .

–. . –.

⎤
⎥⎦ .

The numerical simulations are carried out using the explicit Runge-Kutta-like method
(dde), interpolation and extrapolation by spline of the third order. Figure  shows the
synchronization between the states of isolate node s(t) and node xi(t), i = , , . . . , . Fig-
ure  shows the synchronization errors between the states of isolate node s(t) and node
xi(t), where eij(t) = xij(t) – si(t), for i = , . . . , , j = , , , without feedback control. Figure 
shows the synchronization errors between the states of isolated node s(t) and node xi(t),
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Figure 4 Synchronization curves for the states of the isolated node s(t) and node xi(t), i = 1, 2, . . . , 5.

Figure 5 Synchronization error curves for the isolated node s(t) and node xi(t), where
eij(t) = xij(t) – si(t), for i = 1, . . . , 5, j = 1, 2, 3, without feedback control.
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Figure 6 Synchronization error curves for the isolated node s(t) and node xi(t), where
eij(t) = xij(t) – si(t), for i = 1, . . . , 5, j = 1, 2, 3, with feedback control.

where eij(t) = xij(t) – si(t), for i = , . . . , , j = , , , with feedback control. We see that the
synchronization errors converge to zero under the above conditions.

Example . We consider the nonlinear network model with five nodes, in which each
node is a Lorenz system with mixed time-varying delay described by []

ẋi(t) = a
(
xi(t) – xi(t)

)
,

ẋi(t) = cxi
(
t – h(t)

)
– xi(t) – xi(t)xi

(
t – h(t)

)
, ()

ẋi(t) = xi(t)
∫ t

t–k(t)
xi(s) ds – bxi

(
t – h(t)

)
,

where a = ., b = ., and c = –. For the initial function φ(t) = [–. cos t,  cos t,  cos t]
the solution of system () is denoted by s(t) = (s(t), s(t), s(t))T , which is shown in
Figure . It is asymptotically stable at the equilibrium point s(t) = , s(t – h(t)) = ,∫ t

t–k(t) s(θ ) dθ =  and its Jacobian matrices are

J(t) =

⎡
⎢⎣

–. . 
 – 
  

⎤
⎥⎦ , Jh(t) =

⎡
⎢⎣

–  
  
  –.

⎤
⎥⎦ , Jk (t) =

⎡
⎢⎣

  
  
  

⎤
⎥⎦ .

Assume that Di = diag{, , }, Di = diag{., ., .}, Di = diag{., ., .}, i =
, , . . . , , the coupling strength c = ., c = ., c = ., the inner-coupling matrices
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Figure 7 Solution of the Lorenz system with mixed time-varying delays (57).

are

G =

⎡
⎢⎣

.  
 . 
  .

⎤
⎥⎦ , G =

⎡
⎢⎣

.  
 . 
  .

⎤
⎥⎦ , G =

⎡
⎢⎣

.  
 . 
  .

⎤
⎥⎦ ,

and the outer-coupling matrices are given by the following irreducible symmetric matrices
satisfying condition ():

A = C =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

–    
 –   
  –  
   – 
    –

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and the topology structure of complex networks is shown in Figure .
The eigenvalues of A, B, and C are λ = {, –., , –., –}, λ = {, –, –, –,

–}, and λ = {, –., , –., –}, respectively.
Solution: From the conditions ()-() of Theorem ., we let ε = ., α = ., ω =

, δ = ., h = ., h = ., k = ., k = ., d = .; the gain matrices of the desired
controllers can be obtained as follows:

K =

⎡
⎢⎣

–. –. 
–. –. 

  –.

⎤
⎥⎦ , K =

⎡
⎢⎣

–. –. 
–. –. 

  –.

⎤
⎥⎦ ,
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Figure 8 The topology structure of complex networks with N = 5.

Figure 9 Synchronization error curves for the isolated node s(t) and node xi(t), where
eij(t) = xij(t) – si(t), for i = 1, . . . , 5, j = 1, 2, 3, without intermittent feedback control.

K =

⎡
⎢⎣

–. –. 
–. –. 

  –.

⎤
⎥⎦ , K =

⎡
⎢⎣

–. –. 
–. –. 

  –.

⎤
⎥⎦ ,

K =

⎡
⎢⎣

–. –. 
–. –. 

  –.

⎤
⎥⎦ .

Figure  shows the synchronization errors between the states of the isolated node s(t)
and node xi(t), where eij(t) = xij(t) – si(t), for i = , . . . , , j = , , , without intermittent
feedback control. Figure  shows the synchronization errors between the states of the
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Figure 10 Synchronization error curves for the isolated node s(t) and node xi(t), where
eij(t) = xij(t) – si(t), for i = 1, . . . , 5, j = 1, 2, 3, with intermittent feedback control.

isolated node s(t) and node xi(t), where eij(t) = xij(t) – si(t), for i = , . . . , , j = , , , with
intermittent feedback control. We see that the synchronization errors converge to zero
under the above conditions.

Remark . In Example . and Example ., each of them to consider general complex
networks in which every dynamical node has mixed time-varying delays (interval time-
varying delay and distributed time-varying delay), and the complex networks have state
coupling, interval time-varying delay coupling and distributed time-varying delay cou-
pling.

Example . Consider a network model with five nodes, where each node is a three-
dimensional stable linear system described by [, ]

ẋi(t) = –xi(t),

ẋi(t) = –xi(t), ()

ẋi(t) = –xi(t),

which is asymptotically stable at the equilibrium point s(t) = , and its Jacobian matrix
is J(t) = diag{–, –, –}. Assume that the network coupling is the same as that in Exam-
ple .. The upper bounds on the time-delay obtained from Corollary . are listed in
Table . We see that Corollary . provides a less conservative result than those obtained
via the methods of [, ]. When hm �=  especially, the result in [] is not discussed while
Corollary . in this paper also considers the case hm �= .
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Table 1 Comparison of the maximum value hM (hm = 0) for difference c2

c2 0.3 0.4 0.5 0.6

Li et al. [9] 0.960 0.710 0.562 0.464
Yue and Li [18] 1.345 0.950 0.731 0.587
Corollary 3.8 1.9707 1.2848 0.8712 0.5941

Remark . In [] presented the synchronization problem of general complex dynamical
networks with time-varying delays in the network couplings and time-varying delays in
the dynamical nodes, respectively. But the time-varying delays are required to be differ-
entiable, however, in most cases, these conditions are difficult to satisfy. Therefore, in this
paper we will employ some new techniques so that the above conditions can be removed.

5 Conclusions
This paper has investigated synchronization for complex dynamical network with mixed
time-varying and hybrid coupling delays, which is composed of state coupling, inter-
val time-varying delay coupling, and distributed time-varying delay coupling. The time-
varying delay function is not necessary to be differentiable which allows the time-delay
function to be a fast time-varying function. We transformed the synchronization prob-
lem of the complex network into the stability analysis of linear systems. A new class of
Lyapunov-Krasovskii functionals is constructed; new delay-dependent sufficient condi-
tions for the exponential synchronization of complex dynamical network have been de-
rived by a set of LMIs without introducing any free-weighting matrices. The delay feed-
back controllers H and H designed can guarantee exponential synchronization of the
complex dynamical network. Simulation results have been given to illustrate the effec-
tiveness of the proposed method.
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Abstract

In this paper, we investigate the problem of exponen-
tial synchronization for master-slave neural networks with
mixed time-varying delays via hybrid intermittent feedback
control. The constraint on the derivative of the time-varying
delay is not required which allows the time-delay to be
a fast time-varying function. Based on the construction
of improved Lyapunov-Krasovskii functionals is combined
with Leibniz-Newtons formula and the technique of dealing
with some integral terms. New delay-dependent sufficient
conditions for the exponential synchronization of the error
systems with memoryless hybrid feedback control are first
established in terms of LMIs without introducing any free-
weighting matrices. The designed controller ensures that
the synchronization of the error systems are proposed via
hybrid intermittent feedback control. Numerical simula-
tions are presented to illustrate the effectiveness of these
synchronization criteria.
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1 Introduction

In the past decade, synchronization in neural networks (NNs), such
as cellular NNs, hopfield NNs and bi-directional associative mem-
ory networks, has received a great deal of interest among scientists
in a variety of areas, such as signal processing, pattern recognition,
static image processing, associative memory, content-addressable
memory and combinatorial optimization [1, 2, 3, 4]. In performing
a periodicity or stability analysis of a neural network, the condi-
tions to be imposed on the neural network are determined by the
characteristics of various activation functions and network param-
eters. When neural networks are created for problem solving, it is
desirable for their activation functions are not too restrictive. As
a result, there has been considerable research work on the stability
of neural networks with various activation functions and more gen-
eral conditions [5, 6]. The first concept of chaos synchronization
is making two chaotic systems oscillate in a synchronized manner
was introduced by [2] and many different methods have been ap-
plied theoretically and experimentally to synchronize chaotic sys-
tems, for example active control [7], adaptive control [7], time-delay
feedback control [?, 8] and intermittent control [9], etc. Moreover,
neural networks with distributed delays have been extensively dis-
cussed [8, 10, 11, 12]. In [12], a neural circuit has been designed with
distributed delays, which solves the general problem of recognized
patterns in a time-dependent signal. The master-slave synchro-
nization problem has been investigated for neural networks with
discrete and distributed time-varying delays in [10], based on the
drive-response concept, LMI approach and the Lyapunov stability
theorem, several delay-dependent feedback controllers were derived
to achieve the exponential synchronization of the chaotic neural
networks.

Intermittent control is one of discontinuous control and has a
nonzero control width. It is an engineering approach that has been
widely used in engineering fields, such as manufacturing, air-quality
control,transportation and communication in practice. However,
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results using intermittent control to study exponential synchroniza-
tion are few. In fact, to use synchronization of NNs in some intervals
only may prove to be more cost effective than using synchroniza-
tion of NNs at all times. Another reason could be that the inter-
mittent control scheme might be useful in communications, where
synchronization of NNs between transmitter and receiver can be
used as means of transmitting information [13]. In recent years,
several synchronization criteria for neural networks with or with-
out time delays via intermittent control have been presented, see
[14, 15, 16, 17, 18]. In [16], the problem of synchronization for a
class of CohenGrossberg neural networks with time delays under
periodical intermittent control has been investigated. The quasi-
synchronization problem has been investigated for chaotic systems
with parameter mismatch by means of periodically intermittent
control and design a general periodically-intermittent controller for
chaotic systems in [15]. To the best of the author’s knowledge,
the problem of exponential synchronization for master-slave neural
networks with mixed time-varying delays in state and control have
not been fully investigated yet and remains open.

This paper, inspired by the above discussions, we shall inves-
tigate the problem of exponential synchronization for master-slave
neural networks with mixed time-varying delays, which is composed
of discrete interval time-varying delay and distributed time-varying
delay. The designed controller ensures that the synchronization of
delayed master-slave neural networks are proposed via hybrid in-
termittent feedback control.There are various activation functions
which are considered in the system and the restriction on differen-
tiability of interval time-varying delays is removed. Based on the
construction of improved Lyapunov-Krasovskii functional is com-
bined with Leibniz-Newton formula and the technique of dealing
with some integral terms. New synchronization criteria are derived
in terms of LMIs which can be solved efficiently by standard con-
vex optimization algorithms. A numerical example is also given to
illustrate the effectiveness of the proposed method.

The rest of this paper is organized as follows. In Section 2, we
give notations, definition, propositions and lemma for using in the
proof of the main results. In Section 3, synchronization stability in
master-slave neural networks with mixed time-varying delays via
hybrid intermittent feedback control are investigated. Numerical
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examples illustrated the obtained results are given in Section 4.
The paper ends with conclusions in Section 5.

2 Preliminaries

The following notation will be used in this paper: R+ denotes the
set of all real non-negative numbers; Rn denotes the n−dimensional
space and the vector norm ∥ . ∥; Mn×r denotes the space of all
matrices of (n× r)−dimensions.

AT denotes the transpose of matrix A; A is symmetric if A =
AT ; I denotes the identity matrix; λ(A) denotes the set of all eigen-
values of A; λmax(A) = max{Reλ;λ ∈ λ(A)}.

Matrix A is called semi-positive definite (A ≥ 0) if ⟨Ax, x⟩ ≥ 0,
for all x ∈ Rn;A is positive definite (A > 0) if ⟨Ax, x⟩ > 0 for all
x ̸= 0;A > B means A− B > 0. The symmetric term in a matrix
is denoted by ∗.

In this paper, the master-slave cellular neural networks (MSC-
NNs) with mixed time-varying delays are described as follows:

ẋ(t) = −Ax(t) + Cf̃(x(t)) +Dg̃(x(t− h1(t)))

+E

∫ t

t−k1(t)

h̃(x(s))ds+ I(t),

x(t) = ϕ1(t), t ∈ [−d, 0], (1)

ẏ(t) = −Ay(t) + Cf̃(y(t)) +Dg̃(y(t− h1(t)))

+E

∫ t

t−k1(t)

h̃(y(s))ds+ I(t) + U(t),

y(t) = ϕ2(t), t ∈ [−d, 0], (2)

where x(t) = [x1(t), x2(t), ..., xn(t)] ∈ Rn, y(t) = [y1(t), y2(t), ...,
yn(t)] ∈ Rn are the master systems state vector and the slave sys-
tems state vector of the neural networks, respectively. n is the
number of neural, and

f̃(x(t)) = [f̃1(x1(t)), f̃2(x2(t)), ..., f̃n(xn(t))]
T ,

g̃(x(t)) = [g̃1(x1(t)), g̃2(x2(t)), ..., g̃n(xn(t))]
T ,

h̃(x(t)) = [h̃1(x1(t)), h̃2(x2(t)), ..., h̃n(xn(t))]
T ,

are the activation functions, A = diag (ā1, ā2, ..., ān), āi > 0 rep-
resents the self-feedback term and C,D,E denote the connection
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weights, the discretely delayed connection weights and the distribu-
tively delayed connection weight, respectively.

The synchronization error e(t) is the form e(t) = y(t) − x(t).
Therefore, the cellular neural networks with mixed time-varying
delays of synchronization error between the master-slave systems
given in (1) and (2) can be described by

ė(t) = −Ae(t) + Cf(e(t)) +Dg(e(t− h1(t)))

+E

∫ t

t−k1(t)

h(e(s))ds+ U(t),

e(t) = ϕ2(t)− ϕ1(t) = ϕ(t), t ∈ [−d, 0], (3)

where f(e(t)) = f̃(e(t) + x(t))− f̃(x(t)), g(e(t− h1(t))) = g̃(e(t−
h1(t)) + x(t − h1(t))) − g̃(x(t − h1(t))),

∫ t

t−k1(t)
h(e(s))ds =

∫ t

t−k1(t)

h(e(s) + x(s)) − h(x(s))ds. The state hybrid feedback controller
U(t) satisfying :

U(t) =


B1u(t) +B2u(t− h2(t))

+B3

∫ t

t−k2(t)
u(s)ds, nω ≤ t ≤ nω + δ,

0, nω + δ < t ≤ (n+ 1)ω.

(4)

where u(t) = Ke(t) and K is a constant matrix control gain, ω > 0
is the control period and δ > 0 is called the control width (control
duration) and n is a non-negative integer. In this paper, our goal is
to design suitable K such that system (2) synchronizes with system
(1). Then, substituting it into (3), it is easy to get the following:

ė(t) = −Ae(t) + Cf(e(t)) +Dg(e(t− h1(t))) + E

∫ t

t−k1(t)

h(e(s))ds

+B1Ke(t) +B2Ke(t− h2(t)) +B3K

∫ t

t−k2(t)

e(s)ds,

nω ≤ t ≤ nω + δ, (5)

ė(t) = −Ae(t) + Cf(e(t)) +Dg(e(t− h1(t))) + E

∫ t

t−k1(t)

h(e(s))ds

nω + δ < t ≤ (n+ 1)ω,

e(t) = ϕ2(t)− ϕ1(t) = ϕ(t), t ∈ [−d, 0].

Throughout this paper, we consider various activation functions
and the activation functions f̃(.), g̃(.) and h̃(.) satisfy the following
assumption:
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(A1) The activation functions f̃(.), g̃(.) and h̃(.) satisfy Lips-
chitzian with the Lipschitz constants f̂i, ĝi > 0 and ĥi > 0:

|f̃i(ξ1)− f̃i(ξ2)| ≤ f̂i|ξ1 − ξ2|, i = 1, 2, ..., n, ∀ξ1, ξ2 ∈ R,

|g̃i(ξ1)− g̃i(ξ2)| ≤ ĝi|ξ1 − ξ2|, i = 1, 2, ..., n, ∀ξ1, ξ2 ∈ R, (6)

|h̃i(ξ1)− h̃i(ξ2)| ≤ ĥi|ξ1 − ξ2|, i = 1, 2, ..., n, ∀ξ1, ξ2 ∈ R,

and we denote

F = diag{f̂i, i = 1, 2, ..., n},
G = diag{ĝi, i = 1, 2, ..., n},
H = diag{ĥi, i = 1, 2, ..., n}.

The time-varying delay functions hi(t), ki(t), i = 1, 2 satisfy the
condition

0 ≤ h1m ≤ h1(t) ≤ h1M , 0 ≤ h2(t) ≤ h2,

0 ≤ k1(t) ≤ k1, 0 ≤ k2(t) ≤ k2. (7)

It is worth noting that the time delay is assumed to be a contin-
uous function belonging to a given interval, which means that the
lower and upper bounds for the time-varying delay are available, but
the delay function is bounded but not restricted to being zero. The
initial functions ϕ(t) ∈ C1([−d, 0], Rn), d = max{h1M , h2, k1, k2}
with the norm

∥ ϕ ∥= sup
t∈[−d,0]

√
∥ ϕ(t) ∥2 + ∥ ϕ̇(t) ∥2.

Definition 1. Given α > 0. The zero solution of system (5)
with u(t) = Ke(t) is α− stable if there exist a positive number N >
0 such that every solution e(t, ϕ) satisfies the following condition:

∥ e(t, ϕ) ∥≤ Ne−αt ∥ ϕ ∥, ∀t ≥ 0.

We introduce the following technical well-known lemma, which
will be used in the proof of our results.

Lemma 1. [19] (Cauchy inequality) For any symmetric posi-
tive definite matrix N ∈ Mn×n and x, y ∈ Rn we have

±2xTy ≤ xTNx+ yTN−1y.
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Lemma 2. [19] For any symmetric positive definite matrix
M > 0, scalar γ > 0 and vector function ω : [0, γ] → Rn such that
the integrations concerned are well defined, the following inequality
holds(∫ γ

0

ω(s) ds

)T

M

(∫ γ

0

ω(s) ds

)
≤ γ

(∫ γ

0

ωT (s)Mω(s) ds

)
.

Lemma 3. [19] (Schur complement lemma). Given constant
symmetric matrices X, Y, Z with appropriate dimensions satisfying
X = XT , Y = Y T > 0. Then X + ZTY −1Z < 0 if and only if(

X ZT

Z −Y

)
< 0 or

(
−Y Z
ZT X

)
< 0.

3 Main Results

Let us set

Υ = e−2αh1M , λ1 = λmin(P
−1),

λ2 = λmax(P
−1) + (h1m + h1M)λmax(P

−1QP−1)

+(h3
1m + h3

1M)λmax(P
−1RP−1) + δ3λmax(P

−1UP−1)

+h3
2λmax(P

−1Y TS−1
1 Y P−1) + k2

1λmax(HU−1
3 H)

+k2
2λmax(P

−1Y TS−1
2 Y P−1).

Theorem 2. For some given scalars 0 < α < ε, the er-
ror system (5) with time-varying delay satisfying (7) are expo-
nentially stable if there exist symmetric positive definite matrices
P,Q,R, U, S1, S2, diagonal matrices Ui, i = 1, 2, 3 and a matrix Y
with appropriately dimensioned such that the following LMI holds:

Γ1 = Γ1 −
[
0 0 −I I 0

]T
ΥU

[
0 0 −I I 0

]
< 0, (8)

Γ2 = Γ1 −
[
0 0 0 I −I

]T
ΥU

[
0 0 0 I −I

]
< 0, (9)

Γ3 =


Π11 2PF T PHT 2Y
∗ −2U1 0 0
∗ ∗ −U3 0
∗ ∗ ∗ −2e−2αh2S1

 < 0, (10)

Γ4 =

[
−0.1P h2

2Y
T

∗ −h2
2S1

]
< 0, (11)
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Γ5 =

[
−0.1e−2αh1MU 2PGT

∗ −2U2

]
< 0, (12)

Γ6 = Γ2 −
[
0 0 −I I 0

]T
ΥU

[
0 0 −I I 0

]
< 0, (13)

Γ7 = Γ2 −
[
0 0 0 I −I

]T
ΥU

[
0 0 0 I −I

]
< 0, (14)

Γ8 =

Π11 2PF T k1PHT

∗ −2U1 0
∗ ∗ −k1U3

 < 0, (15)

−αδ + (ε− α)(ω − δ) < 0, (16)

Γ1 =


Γ111 Γ112 Γ13 0 Γ15

∗ Γ122 0 0 0
∗ ∗ Γ33 Γ34 0
∗ ∗ ∗ Γ44 Γ45

∗ ∗ ∗ ∗ Γ55

 ,

Γ2 =


Γ211 Γ212 Γ13 0 Γ15

∗ Γ222 0 0 0
∗ ∗ Γ33 Γ34 0
∗ ∗ ∗ Γ44 Γ45

∗ ∗ ∗ ∗ Γ55

 ,

where

Π11 = −0.1(e−2αh1m + e−2αh1M )R

Γ111 = [−A+ αI]P + P [−A+ αI]T −B1Y − Y TBT
1 + 2Q

+CTU1C +DTU2D + 2k1e
2αk1ETU3E + 3e2αh2BT

2 S1B2

+2k2e
2αk2BT

3 S2B3 − 0.9e−2αh1mR− 0.9e−2αh1MR,

Γ211 = [−A+ αI]P + P [−A+ αI]T + 2Q− 2εP + CTU1C

+DTU2D + 2k1e
2αk1ETU3E − 0.9e−2αh1mR− 0.9e−2αh1MR,

Γ112 = −PAT − Y TBT , Γ212 = −PAT , Γ13 = e−2αh1mR,

Γ15 = e−2αh1MR,

Γ122 = h2
1mR + h2

1MR + δ2U − 1.9P + CTU1C +DTU2D

+2k1e
2αk1ETU3E + 3e2αh2BT

2 S1B2

2k2e
2αk2BT

3 S2B3,
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Γ222 = h2
1mR + h2

1MR + δ2U − 2P + CTU1C +DTU2D

+2k1e
2αk1ETU3E,

Γ33 = −e−2αh1mQ− e−2αh1mR− e−2αh1MU,

Γ34 = e−2αh1MU, Γ44 = −1.9e−2αh1MU,Γ45 = e−2αh1MU,

Γ55 = −e−2αh1MQ− e−2αh1MR− e−2αh1MU,

then the error system (5) have exponential synchronization. More-
over, the feedback control is

U(t) =


−B1Y P−1e(t)−B2Y P−1e(t− h2(t))

−B3Y P−1
∫ t

t−k2(t)
e(s)ds, nω ≤ t ≤ nω + δ,

0, nω + δ < t ≤ (n+ 1)ω.

(17)

Proof. Case I: for nω ≤ t ≤ nω+δ, letW = P−1, z(t) = We(t).
Using the feedback control (17) we consider the following Lyapunov-
Krasovskii functional

V (e(t)) =
9∑

i=1

Vi, (18)

where

V1 = eT (t)We(t),

V2 =

∫ t

t−h1m

e2α(s−t)eT (s)WQWe(s) ds,

V3 =

∫ t

t−h1M

e2α(s−t)eT (s)WQWe(s) ds,

V4 = h1m

∫ 0

−h1m

∫ t

t+s

e2α(θ−t)ėT (θ)WRWė(θ) dθ ds,

V5 = h1M

∫ 0

−h1M

∫ t

t+s

e2α(θ−t)ėT (θ)WRWė(θ) dθ ds,

V6 = δ

∫ −h1m

−h1M

∫ t

t+s

e2α(θ−t)ėT (θ)WUWė(θ) dθ ds,

V7 =

∫ 0

−k1

∫ t

t+s

e2α(θ−t)hT (e(θ))U−1
3 h(e(θ))dθ ds.

V8 = h2

∫ 0

h2

∫ t

t+s

e2α(θ−t)u̇T (θ)S−1
1 u̇(θ)dθ ds,
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V9 =

∫ 0

−k2

∫ t

t+s

e2α(θ−t)uT (θ)S−1
2 u(θ)dθ ds.

It easy to check that

λ1 ∥ e(t) ∥2≤ V (t, e(t)) ≤ λ2 ∥ et(t) ∥2, ∀t ≥ 0. (19)

Taking the derivative of V (t, e(t)) along the solution of system (5)
we have

V̇1 = zT (t)[−AP − PAT − 2B1Y ]z(t) + 2zT (t)Cf(e(t))

+2zT (t)Dg(e(t− h1(t))) + 2zT (t)E

∫ t

t−k1(t)

h(e(s))ds

+2zT (t)B2u(t− h2(t)) + 2zT (t)B3

∫ t

t−k2(t)

u(s)ds,

V̇2 = zT (t)Qz(t)− e−2αh1mzT (t− h1m)Qz(t− h1m)− 2αV2,

V̇3 = zT (t)Qz(t)− e−2αh1M zT (t− h1M)Qz(t− h1M)− 2αV3,

V̇4 ≤ h2
1mż

T (t)Rż(t)− h1me
−2αh1m

∫ t

t−h1m

żT (s)Rż(s)ds− 2αV4,

V̇5 ≤ h2
1M żT (t)Rż(t)− h1Me−2αh1M

∫ t

t−h1M

żT (s)Rż(s)ds− 2αV5,

V̇6 ≤ δ2żT (t)Uż(t)− δe−2αh1M

∫ t−h1m

t−h1M

żT (s)Rż(s)ds− 2αV6,

V̇7 ≤ k1h
T (e(t))U−1

3 h(e(t))− e−2αk1

∫ t

t−k1

hT (e(s))U−1
3 h(e(s))ds

−2αV7, (20)

V̇8 ≤ h2
2u̇

T (t)S−1
1 u̇(t)− h2e

−2αh2

∫ t

t−h2

u̇T (s)S−1
1 u̇(s)ds− 2αV8,

V̇9 ≤ k2
2u

T (t)S−1
2 u(t)− k2e

−2αk2

∫ t

t−k2

uT (s)S−1
2 u(s)ds− 2αV9.

For assumption A1, we can obtain the following three inequalities:

|fi(ei(t))| ≤ f̂i|ei(t) + xi(t)− xi(t)| = f̂i|ei(t)|,
|gi(ei(t))| ≤ ĝi|ei(t) + xi(t)− xi(t)| = ĝi|ei(t)|, (21)

|hi(ei(t))| ≤ ĥi|ei(t) + xi(t)− xi(t)| = ĥi|ei(t)|.
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Applying Lemma (1) and Lemma (2) and since the matrices Ui, i =
1, 2, 3 are diagonal, we have

2zT (t)Cf(e(t)) ≤ zT (t)CTU1Cz(t) + zT (t)PF TU−1
1 FPz(t)

2zT (t)Dg(e(t− h1(t))) ≤ zT (t)DTU2Dz(t)

+zT (t− h1(t))PGTU−1
2 GPz(t− h1(t)),

k1h
T (e(t))U−1

3 h(e(t)) ≤ k1z
T (t)PHTU−1

3 HPz(t),

2zT (t)E

∫ t

t−k1(t)

h(e(s))ds ≤ 2k1e
2αk1zT (t)ETU3Ez(t)

+
e−2αk1

2

∫ t

t−k1(t)

hT (e(s))U−1
3 h(e(s))ds,

2zT (t)B2u(t− h2(t)) ≤ 3e2αh2zT (t)BT
2 S1B2z(t)

+
e−2αh2

3
uT (t− h2(t))S

−1
1 u(t− h2(t)),

2zT (t)B3

∫ t

t−k2(t)

u(s)ds ≤ 2k2e
2αk2zT (t)BT

3 S2B3z(t)

+
e−2αk2

2

∫ t

t−k2(t)

uT (s)S−1
2 u(s)ds,

h2
2u̇

T (t)S−1
1 u̇(t) = h2

2ż
T (t)Y TS−1

1 Y ż(t).

and the Leibniz-Newton formula gives

−h2e
−2αh2

∫ t

t−h2

u̇T (s)S−1
1 u̇(s)ds

≤ 2e−2αh2zT (t)Y TS−1
1 Y z(t) +

e−2αh2

3
uT (t− h2(t))S

−1
1 u(t− h2(t))

−e−2αh2uT (t− h2(t))S
−1
1 u(t− h2(t)). (22)

Applying Lemma 2 and the Leibniz-Newton formula, we have

−h1me
−2αh1m

∫ t

t−h1m

żT (s)Rż(s)ds ≤ −e−2αh1m

[
zT (t)Rz(t)

−2zT (t)Rz(t− h1m) (23)

+zT (t− h1m)Rz(t− h1m)
]
,
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−h1Me−2αh1M

∫ t

t−h1M

żT (s)Rż(s)ds ≤ −e−2αh1M

[
zT (t)Rz(t)

−2zT (t)Rz(t− h1M) (24)

+zT (t− h1M)Rz(t− h1M)
]
.

Note that

−δ

∫ t−h1m

t−h1M

żT (s)Uż(s) ds = −(h1M − h(t))

∫ t−h(t)

t−h1M

żT (s)Uż(s) ds

−(h(t)− h1m)

∫ t−h(t)

t−h1M

żT (s)Uż(s) ds

−(h(t)− h1m)

∫ t−h1m

t−h(t)

żT (s)Uż(s) ds

−(h1M − h(t))

∫ t−h1m

t−h(t)

żT (s)Uż(s) ds.

Using Lemma 2 and let β = h1M−h(t)
h1M−h1m

≤ 1. Then

−δ

∫ t−h1m

t−h1M

żT (s)Uż(s) ds

≤ −[z(t− h(t))− z(t− h1M)]TU [z(t− h(t))− z(t− h1M)]

−[z(t− h1m)− z(t− h(t))]TU [z(t− h1m)− z(t− h(t))] (25)

−β[z(t− h1m)− z(t− h(t))]TU [z(t− h1m)− z(t− h(t))]

−(1− β)[z(t− h(t))− z(t− h1M)]TU [z(t− h(t))− z(t− h1M)].

By using the following identity relation

0 = −2żT (t)P ż(t)− 2żT (t)APz(t) + 2żT (t)Cf(e(t))

+2żT (t)Dg(e(t− h1(t))) + 2żT (t)E

∫ t

t−k1(t)

h(e(s))ds

−2żT (t)B1Y z(t) + 2żT (t)B2(t)u(t− h2(t))

+2żT (t)B3

∫ t

t−k2(t)

u(s)ds. (26)

12



By using Lemma 1 and 2, we have

2żT (t)Cf(e(t)) ≤ żT (t)CTU1Cż(t)

+zT (t)PF TU−1
1 FPz(t),

2żT (t)Dg(e(t− h1(t))) ≤ żT (t)DTU2Dż(t)

+zT (t− h1(t))PGTU−1
2 GPz(t− h1(t)),

2żT (t)E

∫ t

t−k1(t)

h(e(s))ds ≤ 2k1e
2αk1 żT (t)ETU3Eż(t) (27)

+
e−2αk1

2

∫ t

t−k1(t)

hT (e(s))U−1
3 h(e(s))ds,

2żT (t)B2(t)u(t− h2(t)) ≤ 3e2αh2 żT (t)BT
2 S1B2ż(t)

+
e−2αh2

3
uT (t− h2(t))S

−1
1 u(t− h2(t)),

2żT (t)B3

∫ t

t−k2(t)

u(s)ds ≤ 2k2e
2αk2 żT (t)BT

3 S2B3ż(t)

+
e−2αk2

2

∫ t

t−k2(t)

uT (s)S−1
2 u(s)ds,

From (20) - (27), we obtain

V̇ (e(t)) + 2αV (e(t)) ≤ ξT (t)
(
(1− β)M1 + βM2

)
ξ(t)

+zT (t)M3z(t) + żT (t)M4ż(t)

+zT (t− h1(t))M5z(t− h1(t)), (28)

where

M3 = −0.1R(e−2αh1m + e−2αh1M )

+2PF TU−1
1 FP + k1PHTU−1

3 HP + 2e−2αh2Y TS−1
1 Y

M4 = −0.1P + h2
2Y

TS−1
1 Y,

M5 = −0.1e−2αh1MU + 2PGTU−1
2 GP,

M6 = Q1 + P−1Y TQ2Y P−1,

ξ(t) = [z(t), ż(t), z(t− h1m), z(t− h(t)), z(t− h1M)].

Since 0 ≤ β ≤ 1, (1 − β)M1 + βM2 is a convex combination
of M1 and M2. Therefore, (1 − β)M1 + βM2 < 0 is equivalent
to Γ1 < 0 and Γ2 < 0. Applying Schur complement lemma, the
inequalities M3 < 0, M4 < 0 and M5 < 0 are equivalent to
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Γ3 < 0, Γ4 < 0 and Γ5 < 0 , respectively. Thus, it follows from (8)
- (12) and (28), we obtain

V̇ (e(t)) + 2αV (e(t)) ≤ 0, for nω ≤ t ≤ nω + δ. (29)

Thus, by the above differential inequality (29), we have

V̇ (e(t)) ≤ V (e(nω))e−2αt−nω, for nω ≤ t ≤ nω + δ. (30)

Case II: for nω + δ ≤ t ≤ (n + 1)ω, we choose Lyapunov-
Krasovskii functional having the following form :

V (e(t)) =
7∑

i=1

Vi, (31)

where Vi(t), 1 = 1, 2, ..., 7 are defined similar in (18). We are able
to do similar estimation as we did for Case I, we have the following

V̇ (e(t)) + 2(α− ε)V (e(t)) ≤ ξT (t)
(
(1− β)N1 + βN2

)
ξ(t)

+zT (t)N3z(t) (32)

+zT (t− h1(t))N4z(t− h1(t)),

where

N3 = −0.1R(e−2αh1m + e−2αh1M )

+2PF TU−1
1 FP + k1PHTU−1

3 HP,

N4 = M4.

Since 0 ≤ β ≤ 1, (1 − β)N1 + βN2 is a convex combination of N1

and N2. Therefore, (1 − β)N1 + βN2 < 0 is equivalent to Γ6 < 0
and Γ7 < 0. Applying Schur complement lemma, the inequalities
N3 < 0, N4 < 0 are equivalent to Γ8 < 0, Γ5 < 0, respectively.
Thus, it follows from (12) - (15) and (32), we obtain

V̇ (e(t))− 2(ε− α)V (e(t)) ≤ 0, for nω ≤ t ≤ nω + δ. (33)

Thus, by the above differential inequality (29), we have

V̇ (e(t)) ≤ V (e(nω + δ))e2(ε−α)(t−nω−δ), for nω ≤ t ≤ nω + δ.(34)
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By (30) and (34), we have

V (e((n+ 1)ω)) ≤ V (e(nω + δ))e2(ε−α)(ω−δ)

≤ V (e(nω))e−2αδe2(ε−α)(ω−δ)

= V (e(nω))e−2αδ+2(ε−α)(ω−δ)

≤ V (e((n− 1)ω + δ))e2ρ(ω−δ)e−2αδ+2(ε−α)(ω−δ)

≤ V (e((n− 1)ω))e−2αδ+2(ε−α)(ω−δ)e−2αδ+2(ε−α)(ω−δ)

= V (e((n− 1)ω))e2(−2αδ+2(ε−α)(ω−δ))

...

≤ V (e(0))e(−2αδ+2(ε−α)(ω−δ))(n+1).

For any t > 0, there is a n0 ≥ 0, such that n0ω ≤ t ≤ (n0 + 1)ω.
Case 1. For n0ω + δ ≤ t ≤ (n0 + 1)ω, using condition (16), we

have

V (e(t)) ≤ V (e(n0ω + δ))e2(ε−α)(t−(n0ω+δ))

≤ V (e(n0ω))e
−2αδe2(ε−α)(t−(n0ω+δ))

≤ V (e(0))e(−2αδ+2(ε−α)(ω−δ))n0e−2αδe2(ε−α)(t−(n0ω+δ))

≤ V (e(0))e(−2αδ+2(ε−α)(ω−δ))n0e−2αδe2(ε−α)((n0+1)ω−(n0ω+δ))

= V (e(0))e(−2αδ+2(ε−α)(ω−δ))(n0+1)

= V (e(0))e
(−2αδ+2(ε−α)(ω−δ))(n0+1)ω

ω

≤ V (e(0))e
(−2αδ+2(ε−α)(ω−δ))t

ω . (35)

Case 2. For n0ω ≤ t ≤ n0ω + δ, using condition (16), we have

V (e(t)) ≤ V (e(n0ω))e
−2α(t−n0ω)

≤ V (e(0))e(−2αδ+2(ε−α)(ω−δ))n0e−2α(t−n0ω)

≤ V (e(0))e(−2αδ+2(ε−α)(ω−δ))n0

= V (e(0))e−(−2αδ+2(ε−α)(ω−δ))e(−2αδ+2(ε−α)(ω−δ))(n0+1)

= V (e(0))e−(−2αδ+2(ε−α)(ω−δ))e
(−2αδ+2(ε−α)(ω−δ))(n0+1)ω

ω

≤ V (e(0))e−(−2αδ+2(ε−α)(ω−δ))e
(−2αδ+2(ε−α)(ω−δ))t

ω . (36)

Let ξ = e−(−2αδ+2(ε−α)(ω−δ)). By (35) and (36), we have

V (e(t)) ≤ ξV (e(0))e
(−2αδ+2(ε−α)(ω−δ))t

ω , ∀t ≥ 0.
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On the other hand, using the condition (19), we have obtained the
following:

∥e(t)∥ ≤

√
V (e(0))ξ

γ
e

(−αδ+(ε−α)(ω−δ))t
ω , ∀t ≥ 0.

which implies the error system (5) is exponentially stable under the
controller H1, then the controlled slave system (1) is synchronized
with the master system (2). The proof is thus completed.

4 Numerical examples

In this section, we now provide an example to show the effectiveness
of the result in Theorem 2.

Example 4.1 Consider the cellular neural networks with vari-
ous activation functions and mixed time-varying delays using hybrid
intermittent feedback control with the following parameters :

ẋ(t) = −Ax(t) + Cf̃(x(t)) +Dg̃(x(t− h1(t)))

+E

∫ t

t−k1(t)

h̃(x(s))ds+ I(t), (37)

x(t) = ϕ1(t), t ∈ [−d, 0],

ẏ(t) = −Ay(t) + Cf̃(y(t)) +Dg̃(y(t− h1(t)))

+E

∫ t

t−k1(t)

h̃(y(s))ds+ I(t) + U(t) (38)

y(t) = ϕ2(t), t ∈ [−d, 0],

where

A =

[
1 0
0 1

]
, C =

[
0.3 −0.2
0.1 −0.3

]
, D =

[
0.8 0.4
−0.3 0.5

]
,

E =

[
0.5 0.2
−0.3 0.5

]
, F =

[
0.4 0
0 0.2

]
, G =

[
0.3 0
0 0.2

]
,

H =

[
0.2 0
0 0.3

]
, B1 =

[
4 0
0 1

]
, B2 =

[
3 0
0 1

]
,

B3 =

[
2 0
0 1

]
,

ϕ1(t) = [−0.4 cos t, 0.5 cos t], ϕ2(t) = [sin t, sin t].
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Solution: From the conditions (8)-(15) of Theorem 2, we let α =
0.07, ε = 0.09, ω = 4, δ = 2.5 h1m = 0.1, h1M = 0.2, h2 = 0.3,
k1 = 0.15, k2 = 0.2. By using the LMI Toolbox in MATLAB, we
obtain

P =

[
1.5072 0.0147
0.0147 0.8106

]
, Q =

[
0.3204 0.0027
0.0027 0.1821

]
,

R =

[
1.5954 0.0073
0.0073 0.9829

]
, U =

[
6.5228 0.1067
0.1067 3.2384

]
,

S1 = 10−3

[
0.0446 −0.4554
−0.4554 1.2455

]
, S2 =

[
0.0003 −0.0017
−0.0017 0.0311

]
,

U1 =

[
2.6046 0

0 0.5215

]
, U2 =

[
0.6454 0

0 0.1738

]
,

U3 =

[
0.4273 0

0 0.1726

]
, Y = 10−3

[
0.0362 0.0994
0.3908 2.7357

]
,

K = 10−3

[
−0.0252 0.1231
0.2923 −3.3803

]
.

We let h1(t) = 0.1+ 0.1| sin t|, h2(t) = 0.3e| sin t|, k1(t) = 0.15| cos t|,
k2(t) = 0.2e| cos t|, ϕ1(t) = [−0.4 cos t, 0.5 cos t], ϕ2(t) = [sin t, sin t],
∀t ∈ [−0.3, 0] and the activation function as follows:

f1(x1(t)) = 0.2(|x1(t) + 1| − |x1(t)− 1|),
f2(x2(t)) = 0.1(|x1(t) + 1| − |x1(t)− 1|),
g1(x1(t)) = 0.15(|x1(t) + 1| − |x1(t)− 1|),
g2(x2(t)) = 0.1(|x2(t) + 1| − |x2(t)− 1|),
h1(x1(s)) = 0.1 tanh(−4x1(s)),

h2(x2(s)) = 0.15 tanh(5x2(s)).

Figure 1. shows the trajectories of solutions e1(t) and e2(t) of
the cellular neural networks with various activation functions and
mixed time-varying delays without hybrid intermittent feedback
control (U(t) = 0). Figure 2. shows the trajectories of solutions
e1(t) and e2(t) of the the cellular neural networks with various acti-
vation functions and mixed time-varying delays with hybrid inter-
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mittent feedback control

U(t) =



−10−3

[
−0.1010 0.4924
0.2923 −3.3803

]
e(t)

−10−3

[
−0.0757 0.3693
0.2923 −3.3803

]
e(t− h2(t))

−10−3

[
−0.0505 0.2462
0.2923 −3.3803

] ∫ t

t−k2(t)
e(s)ds,

nω ≤ t ≤ nω + δ,
0, nω + δ < t ≤ (n+ 1)ω.

(39)
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Figure 1: shows the trajectories of solutions e1(t) and e2(t) of the
cellular neural networks without hybrid intermittent feedback con-
trol (U(t) = 0).

5 Conclusions

In this paper, we have investigated the exponential synchronization
of cellular neural networks with various activation functions and
mixed time-varying delays via hybrid intermittent feedback con-
trol. The interval time-varying delay function is not necessary to
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Figure 2: shows the trajectories of solutions e1(t) and e2(t) of the
cellular neural networks with hybrid intermittent feedback control
(39).

be differentiable which allows time-delay function to be a fast time-
varying function. A new class of Lyapunov-Krasovskii functional
is constructed to new delay-dependent sufficient conditions for the
exponential synchronization of the error systems have been derived
by a set of LMIs without introducing any free-weighting matrices.
The hybrid intermittent feedback controller designed can guarantee
exponential stability of the error system. Simulation results have
been given to illustrate the effectiveness of the proposed method.

6 Acknowledgements.

We would like to thank referees for their valuable comments and
suggestions. This work is supported by the Thailand Research
Fund(TRF), the Office of the Higher Education Commission(OHEC),
Srinakharinwirot University (grant number MRG5580081). We would
like to thank Assoc. Prof. Dr. Piyapong Niamsup for valuable
comments and suggestions

19



References

[1] M. M. Gupta, L. Jin and N. Homma, Static and Dynamic
Neural Networks: From Fundamentals to Advanced Theory,
New York: Wiley, 2003.

[2] L. M. Pecora and T. L. Carroll, Synchronization in chaotic
systems, Phys. Rev. Lett., 64 (1990), 821-824.

[3] J. Liang and J. Cao, Global asymptotic stability of bi-
directional associative memory networks with distributed de-
lays, Appl. Math. Comput., 152 (2004), 415-424.

[4] H. Zhao, Global asymptotic stability of Hopfield neural net-
work involving distributed delays,Neural Netw., 17 (2004), 47-
53.

[5] M. V. Thuan, Guaranteed cost control of neural networks with
various activation functions and mixed time-varying delays in
state and control, Differential equations and control processes,
3 (2011), 18-29.

[6] V. N. Phat and H. Trinh, Exponential stabilization of neu-
ral networks with varous activation functions and mixed time-
varying delays, IEEE Trans. Neural Networks, 21 (2010),
1180-1184.

[7] T. Botmart and P. Niamsup, Adaptive control and synchro-
nization perturbed Chuas system, Math. Comput. Simulation,
75 (2007), 37-55.

[8] T. Botmart and W. Weera, Guaranteed Cost Control for Ex-
ponential Synchronization of Cellular Neural Networks with
Mixed Time-Varying Delays via Hybrid Feedback Control, Ab-
str. Appl. Anal. , 2013 (2013), 1-12.

[9] T. Botmart, P. Niamsup and X. Liu, Synchronization of non-
autonomous chaotic systems with time-varying delay via de-
layed feedback control, Commun. Nonlinea.r Sci. Numer. Sim-
ulat., 17 (2012), 189–1907.

20



[10] T. Li, S.-M. Fei and K.-J. Zhang, Synchronization control of
recurrent neural networks with distributed delays, Physica A,
387 (2008), 982-996.

[11] Z.-G. Wu, P. Shi, H. Su and J. Chu, Exponential synchroniza-
tion of neural networks with discrete and distributed delays
under time-varying sampling, IEEE Trans. Neural Netw, 23
(2012), 1368-1376.

[12] J. H. Park, On global stability criterion of neural networks
eiyh continuously distributed delays, Chaos Solitons Fractals,
37 (2008), 444-449.

[13] Zochowski M, Intermittent dynamical control, Phys D., 145
(2000), 181-90.

[14] X. Yang, J. Cao, Stochastic synchronization of coupled neural
networks with intermittent control, Phys. Lett. A., 373 (2009),
3359-3272.

[15] W. Zhang, J. Huang, P. Wei, Weak synchronization of chaotic
neural networks with parameter mismatch via periodically in-
termittent control, Appl. Math. Model., 35 (2011), 612-620.

[16] J. Yu, C. Hu, H. Jiang, Z. Teng, Exponential synchronization
of Cohen-Grossberg neural networks via periodically intermit-
tent control, Neurocomputing, 74 (2011), 1776-1782.

[17] H. Zhu, B. Cui, Stabilization and synchronization of chaotic
systems via intermittent control, Commun Nonlinear Sci Nu-
mer Simulat., 15 (2010), 3577-3586.

[18] G. Zhang, X. Lin, X. Zhang, Exponential Stabilization of
Neutral-Type Neural Networks with Mixed Interval Time-
Varying Delays by Intermittent Control, Circuits Systems Sig-
nal Process., 33 (2014), 371-391.

[19] K. Gu, V.L. Kharitonov and J.Chen, Stability of time-delay
system, Boston: Birkhauser; 2003.

21


	Exponential synchronization of complex dynamical network with mixed time-varying and hybrid coupling delays via intermittent control.pdf
	Exponential synchronization of complex dynamical network with mixed time-varying and hybrid coupling delays via intermittent control
	Abstract
	Keywords

	Introduction
	Network model and mathematic preliminaries
	Synchronization of delayed complex dynamical network via delayed feedback control and intermittent control
	Linear delayed feedback control
	Intermittent delayed feedback control

	Numerical examples
	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References





