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This research work investigate the problem of exponential synchronization for
complex dynamical network with mixed time-varying and hybrid coupling delays, which
is composed of state coupling, interval time-varying delay coupling and distributed time-
varying delay coupling. The designed controller ensures that the synchronization of
delayed complex dynamical network are proposed via either feedback control or
intermittent feedback control. We use common unitary matrices, and the problem of
synchronization is transformed into the stability analysis of some linear time-varying
delay systems. This is based on the construction of an improved Lyapunov-Krasovskii
functional combined with the Leibniz-Newton formula and the technique of dealing with
some integral terms. New synchronization criteria are derived in terms of LMIs which
can be solved efficiently by standard convex optimization algorithms. Numerical
examples are included to show the effectiveness of the proposed feedback control and
intermittent feedback control scheme. Moreover, we apply the controller for problem of
exponential synchronization for master-slave neural networks with mixed time-varying

delays via hybrid intermittent feedback control.
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Chapter 1

Executive Summary

1.1 Synchronization of delayed complex dynamical net-
work

Consider a complex dynamical network consisting of N identical coupled nodes,

with each node being an n-dimensional dynamical system

t

zi(s)ds) + ¢ Z a;;Ghrx;(t) (1.1)

j=1

B(O) = ftn—h), [

t—Fk1(t)

N N t

+co waGQI'j(t — h(t)) +c3 Z CijGS/ l‘j(S) ds +uz<t>7
=1 j=1 tfk‘l(t)

£>0 i=1,2 .. N,

l’l(t) = ¢z(t)7 te [—TmaX,O], Tmax — rnax{hg,d, kl, kg},

where z;(t) = (z;1(t), 2i2(t), ..., zin(t))T € R™ is the state vector of ith node; U;(t) €
R™ are the control input of the node i; the constant ¢y, cy,c3 > 0 are the coupling
strength; G = (915j)nxn, G2 = (92ij)nxns G3 = (g3ij)nxn € R™™ are a constant
inner-coupling matrix, if some pairs (i,7), 1 < 4,57 < n, with g1;; # 0, g2i; # 0
and gs;; # 0 which means two coupled nodes are linked through their ith and jth
state variables, otherwise g1,; = 0, go2;; = 0, g3i; = 0; A = (ai;)nvxn, B = (bij)nxn,
C = (¢;j)nxn € RY*N are the outer-coupling matrix of the network, in which a;;, b;;
are defined as follows: if there are a connection between node i and node j (j # i),
then a;; = aj = 1, bjj = bj; = 1, ¢;; = ¢j; = 1; otherwise, a;; = a;; = 0, bj; = bj; =0,

¢ij = c¢j; =0 (j # 1), and the diagonal elements of matrix A, B and C are defined



by
N N N
Qi = Z Z Q4 bii = Z Z bjz'>
Jj=1 J=Ll,i#j Jj=1 J=Lli#j
N N
Cii = Z - Y e i=1,2,.,N. (1.2)
j=1, j=1i#j

It is assumed that network (1.1) is connected in the sense that there are no isolated

clusters, that is, A, B, C are irreducible matrix.

Definition 1.1.1 The delayed dynamical network (1.1) is said to achieve asymptoti-

cal synchronization if
r1(t) = xo(t) =---=s(t) as t — o0, (1.3)

where s(t) is a solution of an isolated node, satisfying

5(t) = F(s(t), s(t — h(t)), /tk 50

In order to stabilize the origin of dynamical network (1.1) by means of the state

feedback controller U;(t) satisfying either (H1) or (H2) for i =1,2,...,n
t
t—ka(t)

Dayiui(t) + Dsui(t — d(t))
(H2) : U(t) = q +Dg j;ikz(t) w;(s) ds, nw<t<nw-+o

0, nw+d6<t<(n+1l)w
where Dj;, j = 1,2,...,6 are given matrices of appropriate dimensions, u;(t) =
K;(x;(t)—s(t)) and K; is a constant matrix control gain, w > 0 is the control period
and 6 > 0 is called the control width (control duration) and n is a non-negative
integer. Then, substituting it into dynamical network (1.1), it is easy to get the
following;:

.TZz(t) = f(xl(t), .f(fz(t — h(t)), /t_k © $Z<S) dS) + 1 Z ailexj(t)

J=1

N
—l—Cgaingxj(t — +C3ZCZ]G3/ .73]'(8) ds (14)
j=1

t—k1(t)



Namely, the dynamical network (1.1) is governed by the following system:

t N

Jfl(t) = f(IZ(t), SL’Z<t — h(t)),/ IZ(S> dS) + 1 Z CLZ‘jGL’Ej(t)

t—k1(t) j=1

N N t
+cCo Z bijGij<t — h(t)) + c3 Z Cing / [L’j(S) ds
j=1

t—k1(t)
t

—|—D4ZKZ($Z(t) — S(t)) + D5luz(t — d(t)) + DGi / UZ(S) dS,

t—ka(t)
nw <t<nw+ 6, (1.5)

.lel(t) = f(i[)l(t), xl(t — h(t)), / iL'Z(S) dS) + 1 Z ailexj(t)

t—ki(t) j=1

J=1

t

N N t
—f—CQZbijGQIj(t - h(t)) +ngcijG3[ ZL‘j(S) dS,
j=1

j=1 —k1 (t)

nw+d<t<(n+lw, i=1,2,..,N.

It is clear that, if the zero solution of the dynamical network (1.4) and (1.5) are
globally exponentially stable, then exponential synchronization of the controlled dy-
namical network (1.1) is achieved. The time-varying delay functions h(t), d(t), k1 (t)
and ks (t) satisfy the condition

0<hi <h(t)<hy, 0<d(t)<d, 0<ki(t) <ki, 0<hy(t) <k (1.6)

The initial condition function ¢;(t) denotes a continuous vector-valued initial func-
tion of t € [—Tax, 0].

In this paper, we assume that s(t) is an orbitally stable solution of the
above system. Clearly, the stability of the synchronized states (1.3) of network (1.1)
is determined by the dynamics of the isolate node, the coupling strength ¢y, ¢ and
c3, the inner-coupling matrix G, Gy and Gj3, the outer-coupling matrix A, B and

C.

The following definition and lemmas are used in the proof of the main result.

Definition 1.1.2 A functional V : Rt x C — R" is called a Lyapunov-Krasovskii
functional for the system (1.1) if it has the following properties. There exist A1, Ag, A3 >
0 such that



(i) Mllz@®)]* < V(E,ze) < ol
(i) V(t,20) < =l (t)].
Lemma 1.1.3 Consider the non autonomous time-delay system (1.1). If there exist

a Lyapunov function V(t,z;) and Ay, Ao > 0 such that for every solution x(t) of the

system, the following conditions hold,
(i) Az < V(E,ze) < Aoz,
(ii) V(t,2,) <0,

then the solution of the system is bounded, i.e., there exists N > 0 such that
lz(t, &)1 < Nll¢ll, ¥t = 0.

Lemma 1.1.4 Consider the autonomous time-delay system (1.1). If there exist a
Lyapunov-Krasovskii function V (x;) and A\, A2, A3 > 0 such that for every solution

x(t) of the system, the following conditions hold,
(i) Mlz@)]? < V(we) < Aelae]?,
(i) V() < =Xslz(t)]]?,

then the solution of the system (1.1) is exponentially stable.

Proposition 1.1.5 (Cauchy inequality) For any symmetric positive definite matriz

N e M™™ and x,y € R™ we have
+227y < 2" Nz +y"' N1y,

Lemma 1.1.6 (Schur complement lemma). Given constant symmetric matrices X, Y, Z
with appropriate dimensions satisfying X = X1, Y =Y7T > 0. Then X +2Z7Y 17 <
0 if and only if

X zr -Y Z

<0 or < 0.
7 =Y 7T X



Lemma 1.1.7 For any constant symmetric matric M € R™", M = MT >0, 0 <
h < h(t) < hpr, t >0, and any differentiable vector function x(t) € R", we have
t it ¢ t
(a) [ / i(s)ds} M[ / g‘g(s)ds} < hm / T (s) M (s)ds,
¢ ¢ t—hm

—hm —hm
t—hm

o) /}t o b(s)ds] M| /t o Hs)ds| < (h(0) ) / i (s)Mii(s)ds

—h(t) —h(t) t—h(t)

t—him
< (hy — hm)/ &7 (s)Mi(s)ds.
t—h(t)

Definition 1.1.8 If the matrix A € M, v, is similar to a diagonal matriz, then A is

said to be diagonalizable.

Lemma 1.1.9 Let G be a family of diagonalizable matrices. Then G is a commuting
family (under multiplication) if and only if it is a simultaneously diagonalizable

famaly.

Lemma 1.1.10 Let A, B be a family of diagonalizable matrices. Then A, B is a
commuting family (under multiplication) if and only if it is a simultaneously diago-

nalizable family.

1.2 Synchronization of master-slave neural networks

We consider the master-slave cellular neural networks (MSCNNs) with mixed time-

varying delays are described as follows:

o(t) = —Af(tt) + Of(x(t)) + Dg(x(t — ha(t)))
+E h(z(s))ds + I(t),
ko1 (1)
x(t) = ¢u(t), te[=d0], (1.7)
g(t) = —Ay(t) + Cfy®) + Dgly(t — hi(t)))
B / Fy(s))ds + I(t) +U().
ko1 (1)
y(t) = ¢o(t), te[-d,0], (1.8)

where z(t) = [x1(t), 22(t), ...,z (t)] € R™, y(t) = [y1(t),y2(), ..., yn(t)] € R™ are

the master systems state vector and the slave systems state vector of the neural



networks, respectively. n is the number of neural, and

are the activation functions, A = diag (a1, as,...,d,),a; > 0 represents the self-
feedback term and C, D, E denote the connection weights, the discretely delayed
connection weights and the distributively delayed connection weight, respectively.
The synchronization error e(t) is the form e(t) = y(t) — x(t). Therefore, the
cellular neural networks with mixed time-varying delays of synchronization error

between the master-slave systems given in (1.7) and (1.8) can be described by

et) = —Ae(t? +Cf(e(t)) + Dgle(t — ha(t)))
+E h(e(s))ds + U(L),
t—Fk1(t)
e(t) = ¢2(t) — ou1(t) = (1), t€[-d,0], (1.9)

where f(e(t)) = f(e (t) +a(t) — f(fﬁ(t)% gle(t — ha (1)) = gle(t — ha(t)) + z(t -
hi(t))) — g(x(t — hy(t ft bt (e(s))ds = Likl(t) h(e(s)+x(s)) — h(x(s))ds. The
state hybrid feedback controller U(t) satisfying :

Ut) = +Bs Lt_k2(t) u(s)ds, nw <t <nw+9, (1.10)
0, nw+6<t<(n+1l)w.

where u(t) = Ke(t) and K is a constant matrix control gain, w > 0 is the control
period and 6 > 0 is called the control width (control duration) and n is a non-
negative integer. In this paper, our goal is to design suitable K such that system

(1.8) synchronizes with system (1.7). Then, substituting it into (1.9), it is easy to



get the following:

t

e(t) = —Ae(t)+Cfle(t)) + Dgle(t — hi(t))) + E/ h(e(s))ds

t—ka(t)
+B1Ke(t) + BaKe(t — ha(t)) + Bs K t e(s)ds,
t—ka(t)
nw <t <nw-+ 9, (1.11)
é(t) = —Ae(t)+Cf(e(t))+ Dg(e(t —hi(t))) + E /t_k o h(e(s))ds

nw+6 <t<(n+ 1w,

elt) = ¢at) = ¢u(t) = o), te[=d,0]

Throughout this paper, we consider various activation functions and the activation
functions f(.),§(.) and h(.) satisfy the following assumption:

(A1) The activation functions f(.), §(.) and h(.) satisfy Lipschitzian with
the Lipschitz constants fi, g; > 0 and h; > 0:

(&) — fil&)] < filér — &, i=1,2,...,nY¥,& €R,
19:(&1) — Gi(&2)] < il&r — &2l 1=1,2,...,n,Y&,& € R, (1.12)
|Bz<§1) - Bz(€2)| S ilz|§1 - €2|7 1= ]-727 "‘7n7v£17§2 S R7

and we denote

F =diag{f;, i=1,2,..,n},
G = diag{g;, i=1,2,...,n},
H = diag{h;, i=1,2,...,n}.

The time-varying delay functions h,(t), k;(t), i = 1,2 satisfy the condition

0 < him < hi(t) < hin, 0<ho(t) < hy,

0 <hi(t) <ki, 0<ky(t) <k, (1.13)

It is worth noting that the time delay is assumed to be a continuous function
belonging to a given interval, which means that the lower and upper bounds for the

time-varying delay are available, but the delay function is bounded but not restricted



to being zero. The initial functions ¢(t) € C'([—d, 0], R"), d = max{hi, ha, k1, k2 }

with the norm

1= s Vo) 1 +1160) I

Definition 1.2.1 Given o > 0. The zero solution of system (1.11) with u(t) = Ke(t)
is a— stable if there exist a positive number N > 0 such that every solution e(t, )

satisfies the following condition:
| e(t,0) |< Ne™® || ¢ ||, Vt>0.

This research work investigate the problem of exponential synchronization
for complex dynamical network with mixed time-varying and hybrid coupling de-
lays, which is composed of state coupling, interval time-varying delay coupling and
distributed time-varying delay coupling. The designed controller ensures that the
synchronization of delayed complex dynamical network are proposed via either feed-
back control or intermittent feedback control. We use common unitary matrices,
and the problem of synchronization is transformed into the stability analysis of
some linear time-varying delay systems. This is based on the construction of an im-
proved Lyapunov-Krasovskii functional combined with the Leibniz-Newton formula
and the technique of dealing with some integral terms. New synchronization criteria
are derived in terms of LMIs which can be solved efficiently by standard convex op-
timization algorithms. Numerical examples are included to show the effectiveness of
the proposed feedback control and intermittent feedback control scheme. Moreover,
we apply the controller for problem of exponential synchronization for master-slave
neural networks with mixed time-varying delays via hybrid intermittent feedback

control.



Chapter 2
Main Results

2.1 Synchronization of delayed complex dynamical net-
work via delayed feedback control and intermittent
control

In this section, we shall obtain some delay-dependent exponential synchronization
criteria for general complex dynamical network with discrete and distributed time-

varying delays and hybrid coupling delays (1.1) by strict LMI approaches. Let us

set
A = J(t)+ MGy, By = Jy(t) + c2AaiGa, Ci = Ji, () + 353G,
and
(1) (): 1'(s(t), ), i k(o 5(€) d€) € R™ is the Jacobian of f(x(t), z(t—

), [ k) T ds) at s(t )w1th the derivative of f(x(t), x(t—h(t)) ’ft—kl(t) z(s
respect to x(t),

(2) Ju(t) = f'(s(t), ), [ k(o S(§) d€) € R™™ is the Jacobian of f(z(t), z(t—
h(t)), ff_klm (s )ds) at s(t — h(t)) with the derivative of f(z(t), z(t — h(t)),

ftt_kl(t) x(s) ds) respect to z(t — h(t)),

(3) Jkl( )= f'(s ( ), i w (o S(§) d€) € R is the Jacobian of f(z(t), z(t—
ft kl(t) s) ds) at]; B f) d§ with the derivative of f(z(t), z(t—h(t)),
ft hnt ds) respect to ft ko (ny T() ds.

Lemma 2.1.1 Consider the hybrid coupling delays dynamical network in (1.1). Let
0= X1 > N2> Njg > ... > Ny, j = {1,2,3} be the eigenvalues of the outer-

coupling matriz A, B and C, respectively. If the N — 1 following n-dimensional

ds)



10

linear time-varying delays differential equations are delay-dependent exponentially

stable about their zero solutions:

t
tfkl(t)
t
+D51K12Z(t — d(t)) + D6sz 21(8) dS, nw S t S nw + (5,
tfk:g(t)

i=2..N, (2.14)

5(t) = Aizi(t) + Biz(t — h(t)) + (Z-/ zi(s)ds, nw+8 <t < (n+1w,

then the dynamical networks (1.5) is exponentially stable, then exponential synchro-

nization of the controlled dynamical networks (1.1) is achieved.

2.1.1 Linear delayed feedback control

Let us denote

leadl = =), llgill = sup  Jlzi(s)ll, Ki=-LP,
*TmaxSSSO
Y o= Aun(P)),
_e—2ah2

lio= dmax(P71) + [2h2)\max(PflRinl) + h2)\max(Pf1Uz‘Pf1)} 1T
1 — ¢ 2od
e
§ = |2\ (PTQPT) + hodwa(PTRPT) + o (P U]
1 — ¢ 20h2 1 — e 20k

— 4+ B A (PSP
% 2a + R (P i) 200

+dAax (P LT L P

Fdmax(PTLI TN L P

1 — €—2ah2

2a
1 — 6720¢d

—|—k:2)\max(P[1LiTWflLiffl)— )
2a
N, = gz”@HQ fiH(PiHQ’

v = min{y, i=2,3,..,N}, N =max{N;, i=2,3,..,N}

Theorem 2.1.2 For some given scalars 0 < «, the dynamical networks (2.14) with

time-varying delay satisfying (1.6) are exponentially stable if there exist symmetric
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positive definite matrices P; >0, Q; >0, R; >0, 5;>0,U; >0,T;, >0, W; >0
and a matriz L; with appropriately dimensioned such that the following symmetric

linear matrix inequality holds:

T
Eu:Ei—[o 01 —I o] e‘Q“hQUi[o 01 —I 0] <0, (215)
T oan
27;2:21—[0 0 0 I —I] 670‘2U¢[0 0 0 I —I]<07 (2.16)
—0.5(e7%M e~k R, 2k CiP; koLT 2LT
* —2/616_20‘1“151- 0 0
* * — kW, 0
* * * —2e 20T,
—0.5P,  2kC;P, &L 3DL 2k, DY,
* —2ke72k1 G, 0 0 0
Yia = * * —d?T; 0 0 < 0(2.18)
* * * —3e20dT] 0
* * * * —2kqe20k2 1Y/,
t=2,...,N, where
i1 Y2 Xa3 24 25
Yz 0 Mg O
X = * Mz Mpa O ;
* * 0 D s
* * * 2i55
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S = PI(Ai+al) + (A + al)' B, = Dy;L; — LT DY, + 3¢*** DL T, Dy

)

+2kpe2%2 DWW, Dy; + 2Q; + k1S; — 0.5e 2" R; — 0.5¢ 72" R,

Y2 = BAT,
Sias = e MR,
Siaa = BiP,
Yius = e MR,

i = hR; + h3R; +n*U; — 1.5P;,

Sis = BiP,

Yigz = —e M, —e MR, — g2,
g = e hy,

Yy = —2e M2y,

Sus = e 2",

2155 —_ _26—2o¢h2 Uz o 26_2ah2Qi o 26_2ah2Ri,

then, the dynamical networks (2.14) are exponential synchronization. Moreover, the

feedback control is

ui(t) = —Li P zi(t). (2.19)

2.1.2 Intermittent delayed feedback control

Theorem 2.1.3 For some given scalars 0 < a < €, the dynamical networks (2.14)
with time-varying delay satisfying (1.6) are exponentially stable if there exist sym-
metric positive definite matrices P, > 0, Q; > 0, R; >0, S; >0, U; >0, T; >0
, Wi > 0 and a matrix L; with appropriately dimensioned such that the following

symmetric linear matriz inequality holds:

T
Hﬂ:Hi—[o 01 —I 0} e‘zahQUi[o 01 —I o]<0, (2.20)

T
Hﬂ:Hi—[o 00 I —[} e‘MQUi[o 00 I _1]<0, (2.21)
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T
Hi3:Hi_[O 01 —I 0} 6_2ah2Ui|:0 01 —I O]<0, (2.22)

T
Hi4=Hi—[o 00 I —]} e‘zahQUi[o 00 I —J]<0, (2.23)

[ _05(c M 4 e 2m\R, UCiP, kLT 2LT |
M5 = ’ eSO ! < 0,(2.24)
* * —koW; 0
* * * —2e20dT]
[ _05P, 2P LLT 3DT 2%, DT |
« 2k RS, 0 0 0
M= |« ) ~ET, 0 0 < 0(2.25)
s s x  —3e 2T, 0
* * * * —2kqye 20k 1Y,

—0.5(e720M  e20h\R _9eP, 2k, CyP;

iz = <0, (2.26)
* _2k1€—2ak1 Sl
~05P 2k P
s = <0, (2.27)
* —2]{}16_2ak15i
and
—ad+ (e —a)(w—10) <0, (2.28)

1=2,...,N, where

Ly Lo g ILg Ilgs
* IT;20 0 IT;24 0
Hi == * * Hz’33 Hi34 0 5

* * *  ILiyg 1ligs

* * * % Hi55
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ﬁill Lo 1z g Ilgs
* L0 0 ILio4 0

II; = * * L33 Ilisg 0 )
* * * ILiya Tligs
B S * B S * Hi55

My = PT(A+al)+ (A +al)' P, — DyL; — LT DY, 4 3¢***DLT, Dy,

%

+2k2€2ak2D£MD6i + 2Qz + /{151 — 0.56_2ah1Ri — 0.56_2ah2Ri,

My = PT(Ai+al)+ (A + o) P, +2Q; + kS — 0.5¢ 2" R, — 0.5¢ "2 R,

iy = PA],
My = e MR,
s = BiP,
Mys = e ™R,

iy = h2R; +h3R; +n°U; — 1.5P,

Loy = Bl P,

gz = —e 2MQ; —e MR, — e 22y,
[z = e 22y,

Ly = —2e 2"y,

Ly = e >y,

sy = —2e MU, —2e722Q); — 27> R,

then, the dynamical networks (2.14) are exponential synchronization. Moreover, the

feedback control is
—LiP7tzi(t), nw <t <nw+d,

u(t) = ’ (2.29)
0, nw+d6<t<(n+1l)w.
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2.2 Synchronization of master-slave neural networks with
mixed time-varying delays via hybrid intermittent
feedback control

Let us set

T = e MM N\ = N\ (P,

X2 = Amae(P™) 4 (him + Paas) Amaa (P QP
+(h3 A+ B ) Amaz (P RP™Y) + 0* Ao (PTTUPTY)
+h3 A mae(PTYTSTY P 4 k2 A ppaa (HUS P H)

+ k3 A mae(PTYTS;YY P7Y).

Theorem 2.2.1 For some given scalars 0 < « < ¢, the error system (1.11) with
time-varying delay satisfying (1.13) are exponentially stable if there exist symmetric
positive definite matrices P,Q, R,U, S, Ss, diagonal matrices U;, i =1,2,3 and a
matrix Y with appropriately dimensioned such that the following LMI holds:

T
M=Ti=|00 —1 10| T0|00 11 0]<0 (230
T
L=Ti—[0007 -I| Y0000 -1]<0, (2.31)
M, 2PFT PHT 2y
«  —2U, 0 0
Ty = <0, (2.32)
* * —U3 0
* * x  —2e 20h2G)
—0.1P h2YT
T, = <0, (2.33)
* —h%Sl
—0.1e"2muy 2PGT
Ts = <0, (2.34)
* —2U2

T
Fﬁzfz—[oo—ffo} TU[OO—IIO <0, (2.35)
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T
F7:I‘2—[OOO[ —I} TU[OOO I —11|<0, (2.36)
I, 2PFT k,PHT
* * —kUs
—ad+ (e —a)(w—19) <0, (2.38)

F111

F112

F122

I'ip T Thg 0 Ty
* F122 0 0 0

Iy=1 « x  I's3 T'sy 0 |
* * * Ty I'ys
* * * * F55

—0.1(e720Mm 4 gm20hn) R

[~A+allP+ P[-A+all" — BY —YTBI +2Q
+CTULC 4 DTUSD + 2k1**" ETUSE + 3e**"2 B] S, By
+2kye?** BI'S, By — 0.9e720Mm R — ().9¢2MM R,
[~A+allP+ P[-A+al]" +2Q — 2eP + CTU,C
+DTU,D + 2k1e**M ETULE — 0.9¢ 20Mm R — (0.9~ 20Mmum R
—PAT —YTBT Ty =—PAT, Ty3=e 20hnpR
e~2omm R

h? R+ h?,R+ 68U —1.9P + CTU,C + D"U,D
+2k 2" ETUS E + 3¢*™ B S, B,

2/€2€2ak2 BgSQBg,



17

Iy = h3 R+hI,R+6°U—2P+CTUC + D'U,D

+2k**M ETUE,
F33 — _e—2ah1mQ o e—2ah1mR . 6—2ah1M U,
P34 = 672ah1M U, F44 = —1.967204th U, F45 = 672athU,
F55 — _e—2ah1MQ - e—?athR . 6—2(1th []7

then the error system (1.11) have exponential synchronization. Moreover, the feed-
back control is
—BlYPAe(t) — BQYP716<t — hg(t))
Ut)=§ —BsY P [, els)ds, nw<t<nw+3, (2.39)
0, nw+d<t<(n+1lw.
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Abstract

In this paper, we shall investigate the problem of exponential synchronization for
complex dynamical network with mixed time-varying and hybrid coupling delays,
which is composed of state coupling, interval time-varying delay coupling and
distributed time-varying delay coupling. The designed controller ensures that the
synchronization of delayed complex dynamical network are proposed via either
feedback control or intermittent feedback control. The constraint on the derivative of
the time-varying delay is not required which allows the time-delay to be a fast
time-varying function. We use common unitary matrices, and the problem of
synchronization is transformed into the stability analysis of some linear time-varying
delay systems. This is based on the construction of an improved Lyapunov-Krasovskii
functional combined with the Leibniz-Newton formula and the technique of dealing
with some integral terms. New synchronization criteria are derived in terms of LMIs
which can be solved efficiently by standard convex optimization algorithms. Two
numerical examples are included to show the effectiveness of the proposed feedback
control and intermittent feedback control scheme.

Keywords: exponential synchronization; complex dynamical network; mixed
time-varying delays; hybrid coupling; intermittent control

1 Introduction

Complex dynamical network, as an interesting subject, has been thoroughly investigated
for decades. These networks show very complicated behavior and can be used to model
and explain many complex systems in nature such as computer networks [1], the world
wide web [2], food webs [3], cellular and metabolic networks [4], social networks [5], elec-
trical power grids [6] etc. In general, a complex network is a large set of interconnected
nodes, in which a node is a fundamental unit with specific contents. As an implicit as-
sumption, these networks are described by the mathematical term graph. In such graphs,
each vertex represents an individual element in the system, while edges represent the re-
lations between them. Two nodes are joined by an edge if and only if they interact.

In the last decade, the synchronization of complex dynamic networks has attracted
much attention of researchers in this field [7-18]. Because the synchronization of complex
dynamical networks can well explain many natural phenomena observed and is one of the
important dynamical mechanisms for creating order in complex dynamical networks, the
©2014 Botmart and Niamsup; licensee Springer. This is an Open Access article distributed under the terms of the Creative Com-

mons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original work is properly cited.
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synchronization of coupled dynamical networks has come be a focal point in the study
of nonlinear science. Wang and Chen introduced a uniform dynamical network model
and also investigated its synchronization [11-13]. They have shown that the synchroniz-
ability of a scale-free dynamical network is robust against random removal of nodes, and
yet it is fragile to specific removal of the most highly connected nodes [12]. The authors
in [14, 15] investigated synchronization of general complex dynamical network models
with coupling delays. Li and Chen [8] considered the synchronization stability of com-
plex dynamical network models with coupling delays for both continuous- and discrete-
time, and they derived some synchronization conditions for both delay-independent and
delay-dependent asymptotical stabilities. By utilizing Lyapunov functional method. Wang
et al. [16] introduced several synchronization criteria for both delay-independent and
delay-dependent asymptotical stability. Liand Yi [17] investigated synchronization of com-
plex networks with time-varying couplings, the stability criteria were obtained by using
Lyapunov-Krasovskii function method and subspace projection method. Yue and Li [18]
studied the synchronization stability of continuous and discrete complex dynamical net-
works with interval time-varying delays in the dynamical nodes and the coupling term
simultaneously, delay-dependent synchronization stability are derived in the form of lin-
ear matrix inequalities.

It is well known that the existence of time-delay in a system may cause instability and an
example of oscillations can be found in systems such as chemical engineering systems,
biological modeling, electrical networks, physical networks, and many others [19-25].
The stability criteria for a system with time-delays can be classified into two categories:
delay-independent and delay-dependent. Delay-independent criteria do not employ any
information on the size of the delay; while delay-dependent criteria make use of such in-
formation at different levels. Delay-dependent stability conditions are generally less con-
servative than delay-independent ones especially when the delay is small [25]. Recently,
the delay-dependent stability for interval time-varying delay was investigated in [6, 18,
20-22]. Interval time-varying delay is a time-delay that varies in an interval in which the
lower bound is not restricted to be 0. Jiang and Han [22] considered the problem of ro-
bust Hy control for uncertain linear systems with interval time-varying delay based on
Lyapunov functional approach in which restriction on the differentiability of the interval
time-varying delay was removed. Shao [24] presented a new delay-dependent stability cri-
terion for linear systems with interval time-varying delay, and stability criteria are derived
in terms of linear matrix inequalities without introducing any free-weighting matrices. In
order to reduce further the conservatism introduced by the descriptor model transforma-
tion and bounding techniques, a free-weighting matrix method is proposed in [20, 26-29].
In [18], the synchronization problem has been investigated for continuous/discrete com-
plex dynamical networks with interval time-varying delays. Based on a piecewise analysis
method and the Lyapunov functional method, some new delay-dependent synchroniza-
tion criteria are derived in the form of LMIs by introducing free-weighting matrices. It
will be pointed out later that some existing results require more free-weighting matrix
variables than our result.

Intermittent control is one of discontinuous control and has a nonzero control width. It
is an engineering approach that has been widely used in engineering fields, such as man-
ufacturing, air-quality control, transportation, and communication in practice. However,
results using intermittent control to study exponential synchronization are few. In recent
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years, several synchronization criteria for complex dynamical networks with or without
time-delays via feedback control or intermittent control have been presented; see [30—41]
and the references therein. Synchronization of a complex dynamical network with de-
layed nodes by pinning periodically intermittent control was also reported in [31]. A pe-
riodically intermittent control was applied to the complex dynamical networks with both
time-varying delays dynamical nodes and time-varying delays coupling in [32, 33]. In [34],
the authors investigated exponential synchronization of a complex network with noniden-
tical time-delayed dynamical nodes by applying open-loop control to all nodes and adding
some intermittent controllers to partial nodes. The authors in [31] investigated synchro-
nization of a general model of complex delayed dynamical networks. The periodically in-
termittent control scheme is introduced to drive the network to achieve synchronization.
Based on the Lyapunov stability theory and pinning control method, some novel synchro-
nization criteria for such dynamical network are derived. To the best of the authors’ knowl-
edge, the problem of exponential synchronization for a complex dynamical network with
mixed time-varying delays in the network hybrid coupling and time-varying delays in the
dynamical nodes has not been fully investigated yet and remains open.

In this paper, inspired by the above discussions, we shall investigate the problem of expo-
nential synchronization for a complex dynamical network with mixed time-varying and
hybrid coupling delays, which is composed of constant coupling, interval time-varying
delay coupling, and distributed time-varying delay coupling. The designed controller en-
sures that the synchronization of a delayed complex dynamical network is proposed via
either feedback control or intermittent feedback control. The constraint on the derivative
of the time-varying delay is not required, which allows the time-delay to be a fast time-
varying function. We use common unitary matrices, and the problem of synchronization
is transformed into the stability analysis of some linear time-varying delay systems. Based
on the construction of an improved Lyapunov-Krasovskii functional is combined with the
Leibniz-Newton formula and the technique of dealing with some integral terms. New syn-
chronization criteria are derived in terms of LMIs which can be solved efficiently by stan-
dard convex optimization algorithms. Two numerical examples are included to show the
effectiveness of the proposed feedback control and intermittent feedback control scheme.

The organization of the remaining part is as follows. In Section 2, a class of general com-
plex dynamical network model with mixed time-varying and hybrid coupling delays and
some useful lemmas are given. In Section 3, synchronization stability in complex dynam-
ical network with mixed time-varying and hybrid coupling delays via feedback control
and intermittent feedback control are investigated. Numerical examples illustrated the
obtained results are given in Section 4. The paper ends with conclusions in Section 5.

2 Network model and mathematic preliminaries
Consider a complex dynamical network consisting of N identical coupled nodes, with each
node being an #-dimensional dynamical system

t N N
xi(s) ds) ra Y agGu(t)+ ey Y byGox(t - h(r))

j-1 j-1

%(t)=f (xi(t),xl-(t - h(t)), /

t—ky(¢)

N t
+c3 ZCUG3/ xi(s)ds +U;(t), t=>0,i=12,...,N, (1)
j=1 t-ky(t)

xi(t) = ¢i(t)¢ te [_fmaxv 0]: Tmax = max{hz, d; kl; kZ}:
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where x;(£) = (x1(8), 22(2), ..., %,(£))T € R” is the state vector of ith node; U;(f) € R™ are
the control input of the node i; the constants cj, ¢y, ¢3 > 0 are the coupling strength; G; =
(@) nxn G2 = (€2 nxns G3 = (€34)nxn € R™™" are constant inner-coupling matrices, if some
pairs (i,), 1 < i,j < n, with g1; # 0, g2;; # 0, and g3;; # 0, which means two coupled nodes
are linked through their ith and jth state variables, otherwise gi;; = 0, g2 = 0, g3;5 = 0;
A = (ay)nxns B = (bj)nxns and C = (cj)nxn € RNV are the outer-coupling matrices of
the network, in which a;, b; are defined as follows: if there are a connection between
node i and node j (j # i), then a;; = a;; = 1, b; = b;; = 1, c;; = ¢;; = 1; otherwise, a;; = a;; = 0,
b = bj; = 0, ¢ = cjy = 0 (j # i), and the diagonal elements of matrices A, B, and C are defined

by
N N
ay=— Z aj=— Z ajis
j=Li#j j=Li#j
N N
b =- Z bj=- Z b, (2)
jLi L)
N N
== cG== G i=12..,N.
jLi joLi

It is assumed that network (1) is connected in the sense that there are no isolated clusters,
that is, A, B, C are irreducible matrices.

Definition 2.1 [18] The delayed dynamical network (1) is said to achieve asymptotical
synchronization if

x1(t) =x2(t) =---=5s(t) ast— oo, (3)

where s(2) is a solution of an isolated node, satisfying

t
5(¢) :f<s(t),s(t - h(t)),/ s(0) d@).
=k (t)
In order to stabilize the origin of dynamical network (1) by means of the state feedback
controller U;(¢) satisfying either (H1) or (H2), fori=1,2,...,n,

(H1):  Ui(¢) = Dyiui(£) + Doju; (t — d(t))
t
+ Dgi/ ui(s) dS, Vit > to,
t—ka (£)
Dyiui(t) + Ds;u(t — d(t))
(H2): U(t) = + Dg; ftt_kz(t) ui(s)ds, nw<t<nw+s,

0, nw+é<t<(m+1o,

where Dj;, j=1,2,...,6 are given matrices of appropriate dimensions, u;(£) = K;(x;(¢) —s(t))
and K; is a constant matrix control gain, w > 0 is the control period and § > O is called the

control width (control duration) and # is a non-negative integer. Then substituting it into
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dynamical network (1), it is easy to get the following:

¢ N
9.61‘(1’) =f(x,»(t),xl-(t - h(t)),/ x,-(s) dS) +C Zu,-,Glx,-(t)

—ky(2) j=1

t

N N
+ C Z b,sz?Cj (t - h(t)) +C3 Z CUGg / xj(s) ds

j=1 j=1 t—ky(t)
t
+ Dll'IQ (xi(t) - S(t)) + Dzl'lxtl'(t - d(t)) + D3L' / ui(s) ds. (4)
t—k(t)

Namely, the dynamical network (1) is governed by the following system:

¢ N
jCL'(t) :f<x,»(t),x,~(t - h(t)),/ xi(s) dS) +C Zailexj(t)

_kl(t) j=1

N N t
+ Cy Z bl‘ngﬁC/’(t — h(t)) +C3 Z Cing / xj(s) ds
j=1

= b=k (2)

t

+ D4i1<i (xi(t) - S(t)) + D5iu,- (t - d(t)) + D6i / o I/ti(S) dS,

nw <t<nw+é, (5)

¢ N
Q'Cl‘(t) =f(x,»(t),xi (t - h(t)),/ xi(s) dS) +C Zﬂ,’lexj(t)

—ha(® =

t

N N
+ C Z bingx]'(t - h(t)) +C3 Z Cing / x,-(s) dS,

i1 -1 t=ky(£)

nw+é<t<m+1w,i=12,...,N.

It is clear that, if the zero solutions of the dynamical network (4) and (5) are globally ex-
ponentially stable, then exponential synchronization of the controlled dynamical network
(1) is achieved. The time-varying delay functions 4(t), d(¢), k1 (), and k,(¢) satisfy the con-
ditions

0 <h <h(t) <hy, 0<d(t) <d, 0<k(t) <k, 0 < ky(t) < ko. (6)

The initial condition function ¢;(¢) denotes a continuous vector-valued initial function of
t € [~ Tmax 0]

In this paper, we assume that s(¢) is an orbitally stable solution of the above system.
Clearly, the stability of the synchronized states (3) of network (1) is determined by the dy-
namics of the isolate node, the coupling strength c;, ¢3, and c3, the inner-coupling matrices
G1, G, and Gs, and the outer-coupling matrices A, B, and C.

The following lemmas are used in the proof of the main result.

Lemma 2.2 [42] Let A, B be a family of diagonalizable matrices. Then A, B is a commuting
family (under multiplication) if and only if it is a simultaneously diagonalizable family.
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Lemma 2.3 [19] For any constant symmetric matrix M € R™", M = MT > 0,0 < I <

h(t) < hy, t > 0, and any differentiable vector function x(t) € R", we have

t T ¢ .
@ U i 5‘(5)”’5] M [ / . a‘c(s)ds} <h / ) T (s)Mi(s) ds,

t—hy T t—hy t—hy
(b) [ / x(s)ds] M[ / a‘c(s)ds]f(h(t)—hl) / &7 (s)Mi(s) ds

—h(t) —h(t) —h(t)

t-hn
< (hy - h1)/ &7 (s)Mx(s) ds.
t=h(z)

Lemma 2.4 (Cauchy inequality [19]) For any symmetric positive definite matrix N € M"*"
and x,y € R" we have

+2xTy <x"Nx+ y"N7y.

3 Synchronization of delayed complex dynamical network via delayed
feedback control and intermittent control

In this section, we shall obtain some delay-dependent exponential synchronization criteria

for general complex dynamical network with discrete and distributed time-varying delays

and hybrid coupling delays (1) by strict LMI approaches. Let us set
=J(t) + ciru Gy, B, = Ju(t) + c222Go, Ci = Jiy (t) + c313,G3

and

1. J@) f’(s(t) s(t h(t)), ftt (o) S(S)di—‘) € R™" is the Jacobian of
fx(8), ft 110 *(8) ds) at s(¢) with the derivative of
fx(2), x(t h t)) ft—lq(r x(s) ds) respect to x(t),

2. Ju(®) f’(s(t) S(t h(t)), f; Ko s(f)d&) € R™" is the Jacobian of
fx(8), ft k(0 *(8) ds) at s(t — h(t)) with the derivative of
fx(2), x(t - h (), ft ) x(s) ds) respect to x(t — h(t)),

3. Ju(® f/(s(t) s(t h(t)), ft k(o) s(E)dS) € R"™" is the Jacobian of
fx(8), ft K ( (s)ds) at ft ki » $(€) d€ with the derivative of
fx(8), x(t h ft ) s) ds) respect to fr fo (0 X(8) ds.

Lemma 3.1 Cousider the hybrid coupling delays dynamical network in (1). Let 0 = Ajy >
A = Aj3 = -+ = Min, j = {1, 2,3}, be the eigenvalues of the outer-coupling matrices A, B, and
C, respectively. If the N — 1 following n-dimensional linear time-varying delays differential

equations are delay-dependent exponentially stable about their zero solutions:
~ " - t
£40) = (o + Duk)aie) + (e~ o) + G [ z(o)ds
t—ky ()

t
+ D5i1<,'z,-(t - d(t)) + D6,'K,'/ zi(s)ds, no<t<nw+6,i=2,...,.N, (7)
t—ko ()

t
2(t) = Aizi(t) + Bizi(t - h(t)) + C,-/ zi(s)ds, no+8<t<(m+lwi=2,...,N,
t—ky(£)

Page 6 of 33


http://www.advancesindifferenceequations.com/content/2014/1/116

Botmart and Niamsup Advances in Difference Equations 2014, 2014:116

Page 7 of 33
http://www.advancesindifferenceequations.com/content/2014/1/116

then the dynamical networks (5) is exponentially stable, and then exponential synchroniza-
tion of the controlled dynamical networks (1) is achieved.

Proof To investigate the stability of the synchronized states (3), set
e(t) =x;(t)—s(t), i=12,...,N. (8)

Substituting (8) into (5), for 1 < i < N, we have

0 =f(xi<r>,xi(t— W), / e ds> —f(s(t),s(t— (@), / s,-(s>ds)

—k1(¢ —ky(t)
N N
+C Zﬂ,’leej(f) + Cy Z b,-ngej(t — h(t))
j=1 j=1

N t
+C3 Z Cl']‘Gg /t‘ o 61‘(5) ds + D4i1(i (e,-(t)) + D5i1<z' (ei(t — d(t)))
j=1 -

t
+ Dﬁl’I(l‘/ ei(s)ds, nw<t<nw+s, 9)
t—k(t)

t

é;(t) =f(x,'(t),xi(t - h(t)),/ x:(s) ds) -f (s(t),s(t - h(t)),/

—k1(2) —k1(8)
N N

+C Zai,Gle/(t) +Cy Z bleze,«(t - h(t))

j-1 j-1

si<s>ds)

N t
+6326ijG3/ ei(s)ds, nw+d<t<m+1w,i=12,...,N.
j=1

t—ki(t)

Since f(-) is continuous differentiable, it is easy to know that the origin of the nonlinear
system (9) is an asymptotically stable equilibrium point if it is an asymptotically stable
equilibrium point of the following linear time-varying delays systems:

&i(t) = J(t)ei(t) + Jn(t)ei(t — h(t)) + Ji (2) o ei(s)ds

+ ClGl (el(t), ez(t), ey eN(t))(aﬂ, ooy ﬂl‘N)T

+ 62G2 (el(t - h(t)), veey eN(t - h(t)))(bﬂ, veey bl'N)T

t
+03G3 / (e1(s), e2(5), ..., en(s)) (i, ..., cn) " dis
t-ky(t)

t
+ Dy Kie;(t) + D5i1<iei(t — d(t)) + Dg;K; / e,-(s) ds,
t-ky(t)

now <t<nw+d,

&i(t) = J(t)ei(t) + Jn(t)ei(t — h(t)) + Jiq (2) ei(s)ds

t—ky (£)

+ ClGl (el(t), ez(t), ooy 81\[(1’))(61,‘1, ooy ﬂl‘N)T

+ 02G2 (el(t - h(t)), ooy eN(t - h(t)))(bﬂ, ooy b,’N)T
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t
+3G3 / (31(5), ex(s)..., eN(S))(Cﬂ, cees CiN)T ds,
t—ky ()

no+d<t<m+1l)w.

Letting e(t) = (e1(t),...,en(2)) € RN, e(t — h(t)) = (e1(t — h(2)),...,ex(t — h(t))) € RN,
ff_kl(t) e(s)ds = f;_kl(t)(el(s),ez(s),...,eN(s))ds € RN, K = diag{Ky, Ky, ..., Ky}, and D; =
diag{Dﬂ,Djz, e rDjN}:j = {4, 5, 6}, we have

é(t) = (J(¢) + DK)e(t) + Ju(t)e(t — h(2)) + Ji, (2) / t e(s)ds + c1Gre(t) AT

t—ki ()
¢

+0Goe(t - h(t))BT +¢3Gs / e(s)CT ds + DsKe(t — d(t))

t—ki(t)
t
+ D6K/ e(s)ds, nw<t<nw+s, (10)
t—ko(t)
t
e(t) =J(t)e(t) + Ju(D)e(t — h(t)) + Ji, (£) » e(s)ds + c1Gre(t) AT
t—ky (¢

t
+ ¢ Gge(t - h(t))BT +¢3G3 f e(s)CTds, nw+d<t<(m+o.
t—ki(8)

Obviously, A, B, C are diagonalizable. If A, B, and C commute pairwise, i.e., AB = BA, then
based on Lemma 2.2, one can get a common unitary matrix [/ € RN*N with #; € R” such
that

I:[TAI:I=F1, I:[TBI:IZFZ, I:[TCI:[=F3,

where T =1, I'; = diag{Xyj,..., Anj), j = {1,2, 3}. In addition, with (2) and the irreducible
feature of A, B, and C we can select with 7; = \/Lﬁ(l, 1,...,1)7 such that Aj=0,j=1{1,2,3}.

Using the nonsingular transform e)U = z(t) = (z1(2), ...,zn(2)) € RN*N, from (10), we
have the following matrix equation:

2(2) = (J(¢) + DK)z(t) + Ju(£)z(t — h(t)) + Ji, (£) o )z(s) ds + ¢1Gi1z(t)T

t
+ Cszz(t - h(t))I‘z +¢3G3 / z(s)I'3 ds + D5Kz(t - d(t))
t—k(2)

t
+ Dd(/ z(8)ds, nw <t<nw+sé,
t=ka(t)
t
2(t) = J()z(t) + Jn(O)z(t = h(2)) + i (£) 2(s) ds + c1Gyz()Ty
t-k1(t)
t
+ chzz(t - h(t)) [y +¢3G3 / z(s)3ds, nw+é<t<m+1o,
t—k1(t)

that is,

t
,"Z,'(t) = (A, + D4J<,‘)Zi(t) + B,’Zi(t - h(t)) + C,/ Z,'(S) ds
t=ki(£)
t
+ D5;iKizi(t — d(t)) + D6i1(i/ zi()ds, nw<t<nw+s,
t-ky ()
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t
2(t) = Auzi(t) + Bizi(t - h(2)) + Ci / zi(s) ds,
t—ky ()

nw+é8<t<m+1w,i=1,...,N.

Thus, we have transformed the stability problem of the dynamical networks (5) to the
stability problem of the N pieces of n-dimensional linear time-varying delays differential
equations. Note that 114 = 0 corresponding to the synchronization of the dynamical net-
works (5), where the state s(¢) is an orbitally stable solution of the isolate node as assumed
above in (3). If the following N — 1 pieces of n-dimensional linear switched time-varying
delays systems:

t
24(0) = (A, + DaiK)a(®) + Biza(t — b)) + / 2s)ds
t—ky ()
t

+ D5i1(,»z,-(t - d(t)) + Dg;K; / zi(s)ds, nw<t<nw+sé,
-k (t)

2(t) = Aizi(t) + Bizi(t - h(t)) + C; / zi(s)ds,
t—ki ()

nw+é<t<m+1w,i=2,...,N,

are exponentially stable, then e(£) will tend to the origin exponentially, which is equiva-
lent to the synchronization of the dynamical networks (5) being exponentially stable. This
completes the proof. (|

Lemma 3.2 Counsider the hybrid coupling delays dynamical network in (1). Let 0 = Aj; >
A = Aj3 = -+ = Min, j =1{1, 2,3}, be the eigenvalues of the outer-coupling matrices A, B, and
C, respectively. If the N — 1 following n-dimensional linear time-varying delays differential
equations are delay-dependent exponentially stable about their zero solutions:

t
2(8) = (A; + DyK))zi(t) + Bizi(t - h(1)) + 65/ zi(s) ds
t-ky(t)
t

+ Dzl'I(,'Zi(t - d(t)) + D3i[(i / Z,’(S) dS, i=2,...,N, (11)
t—ka(t)

then the dynamical networks (4) is exponentially stable, then exponential synchronization
of the controlled dynamical networks (1) is achieved.

3.1 Linear delayed feedback control
Let us denote

lgill = |20,  lleill= sup |z(s)|,  Ki=-LP;,
—Tmax <s<0
Vi = Amin (Pl_l)y
1- e—2ah2
i = Amax(P7) + [2h22max (P RPTY) + hy domax (P;luipgl)]T

R
+d)"max(Pi Li Tl LiPi )T’
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& = [2hmax (P QiP; ) + hodmax (P RiP}Y) + By e (P UP;Y) ]

1- e—2ah2 - ~ 1- e—Zakl
X ——+ ki Amax (PSP =

1-— e—20{h2

+ dhmax (PTLT TTL:PTY) o
1- e—2ad

+ ko dmax (P 'L W' LiP;) e

’

N = Lillill* + Eill il
y =min{y;,i=2,3,...,N}, N =max{N,,i=2,3,...,N}.

Theorem 3.3 For some given scalars 0 < «, the dynamical networks (11) with time-varying
delay satisfying (6) are exponentially stable if there exist symmetric positive definite ma-
trices P;>0,Q; >0,R;>0,S,>0,U; >0, T; >0, W; >0, and a matrix L; appropriately
dimensioned such that the following symmetric linear matrix inequality holds:

Ta=%-[0 0 I -I o0lfe®™2yjo o 1 -I 0]<0, (12)
To=%-[0 0 0 I -Nfe™2u0 o 0 1 -11<0, (13)
_—0.5(6_2ah1 + e 2oh )R; 2kq Cipi kleT 2LlT ]
—2ke ks 0 0
i3 = * e ! <0, (14)
* * —k, W, 0
L * * * —2¢720dT, |
[—05P,  2CP;  d’LT 3D 2k, DT,
* —2ke ks, 0 0 0
S = * * -d>T; 0 0 <0, (15)
* * % _36—20¢dTi 0
| * * * —2kye2ek2 Wi |

i=2,...,N, where

Yu Zax Xaz Zma Zas
*  Xpe 0 Xps O

=] * *  Xpz Xpa 0 |,
* * * X4 s
* * * * Yiss

T = PI(A; + al) + (A; + al)'P; — Dy;L; - LT DL + 3¢ DL T,D,,
+ 2k 2 DLW, Ds; + 2Q; + ki S; — 0.5¢7 M R; — 0.5¢7 %2R,

Yo = piAiT,

Tz = e MR,

Tia = BiP;,

Yus = e 2R,

Eizg = h%Rl + h%Rl + nzL[i - 1.5Pl‘,
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T4 = BiP;,

EiSS _ _e—Zahl Qi _ e—2ah1Ri _ e—Zahz ui:
Yiq = e 22,

Tiag = —2e7 22,

Tis = e,

2555 = —26_20[}’2 Ui — 26_201112 Qi - 26_2ah2R,',

then the dynamical networks (11) have exponential synchronization. Moreover, the feedback

control is
Lii(t) = —LiP;IZi(t). (16)

Proof LetY; = P;',y:(t) = Y;z;(t). Using the feedback control (16) we consider the following

Lyapunov-Krasovskii functional:

Vi(zi(t)) = Va(0) + Via(2) + Vis(8) + Via(£) + Vis(2) + Vie(t) + Viz (2)

+ Vig(t) + Vio(2), 17)
where
Va(t) = 2} (£)Yiz:(0),
Via(t) = / th 2] (5)Y,QiYizi(s) ds,
-In

t
Valt) = f 6027 (9 Y,Q,Yzi(s) s,
t—hy

0 ot
VaO) = [ [ s @yR s dds,
—hy Jt+s
0 pt
Vis(t)=h2/ / 0z (2)YiR; Y izi(7) d ds,
—hy Jt+s
t—hy

t
Vie(t) = (s — ) / X0 ()Y, Y 2(x) de ds,
t+s

t—hy +.
0 pt
Vo (o) = f / 02 (1) YiS: Yzi(t) dr ds,
—ky Jt+s
0 pt
Vig(t) =d / / TN (KT T K zi(t) dt ds,
—-d Jt+s
0 ot
Viol(t) = / / 2021 (0)KT W Kizi(7) dt ds.
—ky Jt+s
It easy to check that

y|z0|* < Vi(z), ve=o. (18)
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By taking the derivative of V;;(¢) along the trajectories of system (11), we have the following:
V() = 22] (9)Yizi(2)

= 2yf(t)[(zzh +DyKG)zi(t) + Bizi(t - h(t)) +C; /t zi(s)ds
t-ky(t)

t
+ Dzﬂ(izi(t - d(t)) + Dgil(l‘ / Z,‘(S) dSi|
t—ky(t)
= le(t) [Pl'Ai + AlTPl]_)/l(t) + 2le(t)B,Plyl (t — h(t))

t

+ 2_)/?(1’)611)1/

t—k (¢t

yi(s) ds — 2y ()DL yi(t) + 2y (6)Dou; (t - d(t))
)
t
+ 2yiT(t)D3,- / u;(s)ds + ZyiT(t)aP,'yi(t) - ZyiT(t)aPiyi(t).
t-ky(t)

Applying Lemma 2.4 and Lemma 2.3 gives

t

BT OCP, f 21() ds < 2k Ny T () CPiSTP,CT yi(0)

t—ky ()
20k t T t
+ ( / ¥i(s) ds) S; ( / ¥i(s) ds)
2kt \Jeokye) t—ki(8)

< 2k ®Xy! () C:P,ST P,CLyi(t)

1 t
+ —e 2k / yl.T(s)Siyi(s) ds,
2 t-ky(6)
ZyiT(t)D%ui(t -d(t)) < 362adyiT(t)D2iTiD2TiJ’i(t)

—2ad

+ ——u] (£ -d®) T ui(t - (@),

t

27 (0D, / i(s) ds < 2k (£ D3 WD Ly (0)

t—ka(t)
ezakz t T L
+ u-(s)ds) W (
2ky (/tkz(t) l !

< 2kye**2yT () D3, W;DLy,(t)

t
/ u;(s) ds)
t=ka(t)

e
+

20ky t
/ uiT(s) M‘lui(s) ds.
2 Jikow

Therefore

Via(8) + 2 Vi (£) < ] (2) [PiAi +AiTPi]yi(t) +2y] ()aPyy;(t)
+ 2le(If)B,Plj/l(t — ]’l(t)) — ny(t)DlLlT l'(t)
+ 2k162"k1yiT(t)C,'PiSfP,’CiT l‘(t)
1 —2aky ! T
+ 56 y; ()Siyi(s) ds
t—ky ()
+3¢*y] (1) Dy TiD3yi(t)

—2ad

+ ul (t—d@®)T; ui(t - d(2))
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+ 2kye* 29T (£)D3; WD Ly,(t)

e20lk2 t
+ 5 / uiT(s) VVi’lui(s) ds. (19)
t—ka(t)

Next, by taking the derivative of V;(¢), j = 2,3,...,9 along the trajectories of system (11),
we have the following:
Viat) = 5] (0Quyi(t) — e My] (¢ = ) Quyilt — ) 2 Via(8),

Vis(t) <9I (0)Quyilt) — e "2y (¢ = hy) Quyilt — ha) — 22 Vi (£),

t
Via(8) < 5T (OR5:(t) — e ™ / VL (S)Rji(s) ds — 2 Via(£),
t—hy

t
Vis(®) < I35} (R3i(8) — hae > / 3{ (8)Ri3i(s) ds — 2a Vs (2),

t—hy

. t-h
Vis(£) < 03] () Uii(e) - ne>" / 3 () Uigils) ds — 2aVie(t),
t—hy
t

Vir () < kiy! (0)Siyi(t) — e >R / ¥} (5)Syi(s) ds — 2a V7 (2),
t—ky(t)

t
Vig(t) < 2T (KT TKE" (1) - de / STOKIT K () ds - 2aVigt) 20
t—d
t
<d*yT (O PKI TPy () - d(t)e > f “ il ()T in(s) ds — 2 Vig(2)
t—d(t,

t
=d’yT QL] T'Liy! (t) - d(t)e™ / it} ()T iti(s) ds — 2 Vig (2),
t—d(t)

t
Vio(t) < kozl (OKF W' K2 (¢) — e727R2 / ZL (K W Kiz! (s) ds — 2a Vi ()
t—ko
t
< oyl ®)PKT WK Py () — 72k f ul (YW rul (s)ds — 2a Vig(t)

t—ky(t)

t
<oy TOLTW LT (0 -2 [l Wl (5)ds -2 Vi)
t—ka(t)

Applying Lemma 2.3 and the Leibniz-Newton formula, we have

t t T t
_ T _ o . .
h /t » 9; (S)Ryi(s)ds < [ ‘/t » 7i(s) ds] R; [ /t ” 7i(s) ds]

< —[yi(t) -yt - hl)] TRi[yi(t) /(= hl)]
=~y (ORi(8) + 2y] (O)Ryyi(t — )
-y (£ = m)Ryy;(t — hy) (21)

and

t t T t
iy f ORI ds < —[ f 5109 ds] R,»[ / 5109 ds]

< ~[31(6) = it~ )] Ri[i(6) = 3t ~ )]
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= —yT(ORyi(t) + 29T (ORyyi(t - hy)

— 7 (t = ha)Ryyilt — ho). (22)
On the other hand,
t—h t—h(t)
(hy =) / ST Ui(s) ds =~y — ) / 5T () Ui(s) ds
t—hy t—hy
t—hy
=) / O Uils)ds
t=h(t)
t-h(t)
= —(hy— h(®)) f 5T () Ui(s) ds
t—hy
t—h(e)
— (W) - 1) / ST U6 ds
t—ho
t—hy
(e~ ) f 5T U7(s) ds
t—h(t)

t-hy

( )j/iT(s)L[ij/i(s) ds.
t

— (o = (1)) ft

Using Lemma 2.3 gives

t-h(t) t-h(t)

T t-h(t)
.T . -_ . - .
¥; () Uyi(s)ds < |;/;h2 7i(s) ds] U, |;/th2 ¥i(s) ds:|

~(hy = h0)) /

t-hy
< -l -h®) -yt - )] 1y

x [yi(t = h(®)) = yi(t — ha)]
= =y (¢ = h(®))Uyi(t - h(e))

+2y] (£ - h(e)) Uiyt — )

— 3] (t = o) Uyi(t — ha) (23)

and

t—hy t-hy T t—hy
—(h(t)—h1)/ )%T(S)Uij/i(S)dSS—[/ }"i(S)dSi| Ui[f %(S)dS}

t-hie ~h(e) ~h(e)
< [t =) - yi(e - h)] U
X [yi(t = ) - yi(t - h(2))]
= —y! (¢ = ) Uyt = ) + 2y (¢ = ) Uy (¢ = h(2))

—y} (t = h(®))Uyi(t - h(D)). (24)
Let 8 = % < 1. Then
t—hy t-h
_(h2 — h(t))/ j/iT(s)L[,'j/i(S) ds=-p (hy - hl)j’,-T(S)Ui}"i(S) ds
t-h(t) t-h(t)

t—hy

<-B o (h(z) - hl)j/iT(s)LI,-j/i(s) ds
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< —B[yile—m) —yi(t - h®)]" U
x [yit =) - yi(t = h(2)) ]

and
t—h(t) t=h(t)
—(h(2) — ) / , i1 () Ugi(s)ds = —(1- B) (hy = )y} () Uiyi(s) ds

t—hy
t—h(t)
<-(1-§) (h2 — ()3} ()U5i(s) ds

t—hy
< —(1-B)[yi(t - h(®)) - yile - h)] " UL
x [yi(t = h(®)) - yi(t — ho)].

Therefore from (23)-(26), we obtain

t—hy
() / SO ds = [t~ o) ~ite - )] U

x [yi(t — h(8)) = yilt — h2)]

~ [yilt =) = i - h(0)] U

x [yi(t = ) = yi(t - h(2))]

~ Byt — ) —yi(t — h(®) ] U

x [yi(t = ) = yi(t - h(2))]

— (1= B)yilt - h®) - yilt — )] U;
x [yi(t = h(2)) - yi(t — ha)].

From Vjs(¢), applying Lemma 2.3 and the Leibniz-Newton formula gives

t t T
—d(t)e’z"‘d/ l;tiT(S)Ti_liti(s) ds < —e~24 (/ 1;(s) a’s) Ti_1<
t—d(t) t-d(t)

< e ul (O T ui(2)
+ Ze_zaduf(t)iﬂ_lui(t — d(t))

_ e—ZaduiT (t _ d(t)) T;IMi (t - d(t))

< —e 2l ()T ui(e) + 3¢ ul () T ui(t)

—2ad
Sl (6= d) T 1T (e — d(0)

+
_ e—ZaduiT (t _ d(t)) T;IMi (t - d(t))

= 27247 (KT T Kizi(t)
—2ad

3
—e 2yl (£ - d(6)) T ui(t - d(p))

+

ul (t—d@) T TiT it - d(2))

/ t 1;(s) ds)
t—d(t)
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= 2e 2yl (L] T Liyi(0)

e—2ad
+

ul (t—d®) T ui(t - d(2))

_ efzaduiT (t _ d(t)) T;IM;‘ (t - d(t)) (28)

By using the following identity relation:

t
—éi(t) + (Al + D1i1<,')Zi(t) + B,'Zl'(t - h(t)) + Cl‘/ Zl'(S) ds
t—ki(2)
t

+ DZiKL'Z,'(t - d(t)) + Dgll(l/ ZL'(S) ds = O,
t—ka (£)

we have

=257 (OPi(£) + 25 (OAPyi(t) — 2] () DuiLiyi(e) + 23] (£)B:Pyyi(t - h(r))

t

+257 () CiP; / yi(s) ds + 25 () Doy (t — d(t))
t=ki(¢)

t

+25] (t)Ds; / u;(s) ds = 0. (29)
t—ka(t)

Applying Lemma 2.4 and Lemma 2.3 gives

t

257 (t)C:P; /

t—ky (¢

yi(s)ds < 2kie® 15T () C;P,ST PiCT ()
)

L

1 t T
—2aky / . .
+ e ¥i(s) ds) S;
2k ( ki (0)

i(s)d
8 (/t‘—/q([)ycg S)

< 2k132“k1)‘/iT(t)C'ipi5l,‘1piCT‘i(,j)

l

1 t
+ —e 2k / yI(5)Syi(s) ds, (30)
2 -k (1)

25} (6)Dosu; (¢ - d(2)) < 3***5! (£)D3, T Dayji(t)

e—Zad

ul (t—d®) T ui(t - d(b)), (31)

t

357 (0D, / () ds < 25T (DT W Dayi(6)

t=k(t)
1 t T
+—e 2k (/ u;(s) ds) W;
2k t—ka(0)

(], o)

< 2k2€2ak23’,-T(f)DgTi W, Dsyi(t)

ezakz t
+ / uiT(s)VVl-‘lul-(s) ds. (32)
2 Jiko
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Hence, according to (19)-(28), (30)-(32), and adding the zero items of (29) we have

Vi(zi(0) + 2aVi(z:(0) < &7 O[A = B) 1 + BDui]&®) + ¥ (O Myilt)
+ 3] (O Maigi(2), (33)

where ¥;; and Xy; are defined as in (12) and (13), respectively, and

E0=ple e yle-m) y(t-h@®) yE-h)]

Ms; = -05(e72" + e22)R; + 2k C;P;S PiC] + koL WL,
+2e7 2 I'TAL,

Ma; = —0.5P; + 2k 1 C,PS7 P,CT + d*LI T'L; + 3¢**“ DL T Dy

+ 2k2€2ak2D§; VVi_ngi.
By (1-B)%1;+ BXy; < 0 holdsifand only if ¥;; < 0 and ¥y; < 0. Applying the Schur comple-
ment lemma, the inequalities M3; < 0 and My; < 0 are equivalent to X3; < 0 and Xy; <0,
respectively. Therefore, it follows from (12)-(15), and (33), we obtain
Vi(zi()) + 20 Vi(z:(2)) <0, V&> 0. (34)
Integrating both sides of (34) from 0 to ¢, we have
Vi(zi(t)) < Vi(z:(0))e™>, Vt>o0.

On the other hand, using the condition (18), we have

|z:()] < szi(()))e‘“t, V¢ > 0.

Estimating V;(z;(0)) gives

Vit (2:(0)) = 2/ (0)P;"2:(0) < Amax(P;") il

0 0
Via(2i(0)) = / ez} (5)YiQ:Yizi(s) ds < max (P Q:P}") / e ds| pil*
- -
1- e—2ah1 1- e—2ah2
= Amax (P, Q:P) oy l@ill* < Amax (P QiP;Y) oy il
—2ahy

1—
‘/13 (ZL(O)) = Amax(Pi_lQiPi_l);T ”(pi”zr
0 0
Vi (2(0)) = In / f 2T () YR Yi(r) dr ds
—hy Js

0
[ O Yi(0) -2 ViR Yiz(5)] ds
-

0 0
< hyhma(YiRLY) / & ds|| 2 = hyhomax (ViR Y)) / & dsljgil”
-h ~h
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— e—20th1 N 1= e—Zahl )
:hZ)‘-max(YiRiYi)7”¢i” _hZ)‘-max(YiRiYi)in(pi”
20 20

oy L€ 2 “1p -1
=< hZAmax(P,‘ RiPi )T ||¢L|| + hZAmax(P,' RiPl' )
1- e—2ah2 )
x ———— @il
oy le:ll
1 1—e? 2 1 1
Vis(2:(0)) < hoAmax (P; RiP; )T||¢i|| + hayAmax (P RiP)
1-— e—20¢h2 )
X ——loill?,
oy llg:l
1- e—Zahz

Vi6 (Zl(o)) = hZ}\max(Pi_IUiPi_l)T ||¢z||2 + hZ)\max(Pi_luiPi_l)

1- e—2ah2

X ———loi
o

2
5 [

0 0
Vo (2:0) = / / 2 (0)YiS,Yiz(v) de ds
—ky Js
0 0
< / / ezl (v)Y:S;Yizi(v) dr ds
ki -k

0 0
< A (¥:S:Y)) / / & de dsljgil”
—ky J—k1

) ) 1- e—Zakl )
= kl)\max(Pi_ Szpl_ )T”@l” ’

1— g 20d
Vis(2i(0)) < dhmax (P LT TS LiPTY) —a i)l

LTty iy 1= €2 2
+d}¥max(P'7 Li T; LLP; )T”(pt” )

12

L Tyyty poy L€ 2
Vio(2i(0)) < kaAmax (P;'L Wi LiP; )TH%” )

we have

|z:®| < \/ge‘“f, V>0,

which implies the dynamical networks (11) is globally exponentially stable under the con-
troller H1, then exponential synchronization of the controlled dynamical networks (4) is
achieved. The proof is thus completed. d

3.2 Intermittent delayed feedback control

Theorem 3.4 For some given scalars 0 < « < ¢, the dynamical networks (7) with time-
varying delay satisfying (6) are exponentially stable if there exist symmetric positive definite
matrices P;>0,Q; >0,R;>0,S;>0,U;>0,T; >0, W; >0, and a matrix L; with appropri-
ately dimensioned such that the following symmetric linear matrix inequality holds:

Mp=I,-[0 0 I -I olTe®™2ujo0 o I -I 0]<0, (35)

Mp=I-[0 0 0 I -N%>2yjo o o I -I1<0, (36)
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and

Ms=0,-[0 0 I —-I 0]%e>™ujo o I -I 0]<0,

Mu=I;-[0 0 0 I -Nfe?m2yo o 0 I -I1<0,

1 1

M - * —2k ek, 0 0
* * —ky W, 0
i * * x  —2e72dT, |
[—05P,  2CP;  d*LT 3D 2k, DT,
* —2ke kg, 0 0 0
I = * * -d?T; 0 0
* * * —3¢720d T, 0
* * * * —2kye20k2 Wi |

[_0.5(e 2 4 e2m)R, _2eP, 2k CiP;
Hi7 = ok < 0)
* —2/(16‘ 20 ISZ‘

[_05P,  2kCP;
= <
* —2k16_2ak1 S;

—ad+(e—a)w-38)<0,

i=2,...,N, where

My Tlap Mps Tag s
*  Ilpp 0 Tlpg O
;=] = * Iz Tlze 0 |,
* * *  Iligg Tlys
* * * * IT;55
My Mo Mas Mae Tas
*  Ilpp 0 Tlpg O
M= * Iz Ilze 0 |,
* * *  Ilug Tlgs
* * * * I;55

My = PI(A; +al) + (A; + al) TP, = DyL; — LT DL, + 3¢ DL T,Ds;

i

+2kye**2 DI WiDg; + 2Q; + ki S; — 0.5 MR, — 0.5¢ "2 R,

ﬁill = PlT(Al + Ol[) + (Al + (xI)TPl« + 2Qz + lei - O.SB_ZQhIRi - 0.5€_Zah2Rl’,

My = PA],
M3 = e MR,
M = B:P;,
Mys = e 2R,

Higz = h%R, + h%R, + nzL[,' - 1.51),‘,

[—0.5(e72*M 4 e 2R, 2 CiP; ko LT 2LT

<0,

<0,

(37)

(38)

(39)

(41)

(42)

(43)
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M4 = BiP;,

HiBS — _e—2ah1 Qi _ e—2ah1Ri _ e—2ah2 Ui:
Mia = e 220U,

Miag = —2e>"2 1L,

Mus = e 22,

Hi55 = —26720{112 LIi — 26720[112 Qi - 2672ah2Ri,

then the dynamical networks (7) have exponential synchronization. Moreover, the feedback
control is

~ ~LiP7'zi(t), nw<t<nw+$},

ui(t) = (44)

0, nw+d8<t<(m+1lo.

Proof Casel:for nw <t < nw+§, we choose the Lyapunov-Krasovskii functional as in (17)
and using the feedback control (44), we may proof this case by using a similar argument
as in the proof of Theorem 3.3. By replacing Dy;, Dy; and Ds; in (12)-(15) with Dy;, Ds;, and
Dg;, respectively. We have
Vi(zi(8) +2aVi(z(0) < & (O]~ )i + BTIai]&i(0) + 5 (0N3i9:(2)
+ 37 (OONgi(0), (45)

where IT;; and I1y; are defined as in (35) and (36), respectively, and
E0=ple e yle-m) y(t-h®) yE-h)
,/\/él' = —0.5(6_2ah1 + e_ZQhZ)RL' + 2k162ak1 CiPiSijiCiT
+ LT WL+ 2e7 LI T L,
N4i = —0.5Pi + 2k1€2ak1 6,P,S:1P,C'lT + dleT Ti_lL,' + 362adDg; T,‘_1D5i
+ 2k DLW Dy,
By (1 - B)I1y; + BI1y; < 0 holds if and only if I1;; < 0 and ITy; < 0. Applying the Schur com-
plement lemma, the inequalities N5; < 0 and Ng; < 0 are equivalent to ITs; < 0 and ITg; < 0,
respectively. Therefore, it follows from (35)-(36), (39)-(40), and (45), we obtain
Vi(zi(t)) + 20:Vi(zi(t)) <0 fornw<t<nw+l. (46)
Thus, by the above differential inequality (46), we have

V,'(zi(t)) < V,'(zi(nw))e_zo‘“_”“’) for nw <t <nw + 6. 47)

Case II: for nw + § <t < (n+1)w, we choose the Lyapunov-Krasovskii functional having
the following form:

Vi(zi(2)) = Va () + Via(t) + Via(£) + Via(8) + Vis(8) + Vi (2) + Viz (2),
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where Vj;(t),j=1,2,...,7 are defined similar in (17). We are able to do a similar estimation
as we did for Theorem 3.3, and we have the following:

Vi(zi®)) + 2 Vi(z:(8) < £ (0)[A — B)si + BTLaiJE:(0) + ¥] (ON79:(0) + 3] (ONzi3i (D)
<& O[A - BT, + BTLaiJE(8) + ] (ON7yi(E)
+ 57 (ONaigi(t) + 26 Vi(z:(t)) — 26 Vi (2)
=/ (0)[(1 - B)s; + BTN4; )&:(8) + y] (ON79i(2) (48)
+ 3] ONsgi(0) + 26 Vi(zi(8)) - 2ey] () Piyi(t),
Vi(zi(t)) = 2(e — ) Vi(z:(0)) < &7 (0)[ (1 - B)3; + BT14;]E:(2)
+ 3] () N7 = 26P)yi(t) + 37 (ONwigi(0),

where I1;; and Iy; are defined as in (37) and (38), respectively, and

0=l 7@ yle-m) yF(e-n@) yle-h),

Noi = —0.1(e72M + e 2"\ R; + 2k e**M1 PSP, CT,

Ngi = —O.SP,‘ + 2/(1€2ak1 CiPiSi_lpiéiT.
Now (1 — B)I13; + BI14; < 0 holds if and only if IT3; < 0 and IT4; < 0. Applying the Schur
complement lemma, the inequalities (N7; — 2eP;) < 0 and Ng; < 0 are equivalent to ITy; < 0
and ITg; < 0, respectively. Therefore, it follows from (37)-(38), (41)-(42), and (48), that we
obtain

V,'(zi(t)) -2(e - a)\/i(z,'(t)) <0 fornw+dé<t<(m+1lo. (49)
From the above differential inequality (49), we have

Vi(z:(8)) < Vi(zi(nw + 8)) € (e-)(t=no=0)  for ey + 8 <t < (n+ . (50)

By (47) and (50), we have

Vila((n+ Do) < Vi

< ‘/l Z,(Vla))) —2a8 29 o) (w-3)

J(nw + 8)) e-)(w=9)

—2a8+2(e—a)(w—8)

Vi

(=
(
(
Vil
(
(

zi(nw))e

IA

zi((n— l)a)+8)) 2p(w-8) p—20+2(e-ar)(@-5)

(
< VL Zz( n— l)a))) —208+2(e— a)(w—6)6—2a6+2(8—a)(w—5)
((

_ Vvl zi((n - l)a)) (—2a8+2(e—a)(w-8))

<V (Zi(O)) (28 +2(e—a)(@=8))(+1)

For any ¢ > 0, there is a ny > 0, such that npw <t < (np + ).
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Case 1. For now + 8 < t < (no + 1)w, using condition (43), we have

(zi(now + §)) e t=lrowrd)

Zi(noa)))e—ZutB eZ(s—ot)(t—(nouHS))

Zi(()))e(—2a5+2(8—a)(w—6))n0 e—2a8 eZ(s—a)(t—(n0w+5))

(—2a8+2(e—a)(w— 8))noe—2o¢8 2(e—a)((ng+1)w—(ngw+3))

e e

(—2a8+2(s—a)(w-3))(ng+1)

I
=

e

(—2a8+2(e-a ((u -8))(ng +1)w

1]
=
o

(=2a8+2(e—a)(w=98))t

<V o G (51)

()¢
)é
(20)
)

(—2a8+2(e—a)(w—8))n oe—za(t—now)

Z(O) e (—2a8+2(e—a)(w—8))ng
i

(2a8+2(e—a)(w-8))(ny +1)w
w

i
=

(
(z:(0))e!
(2:(0)e
_ V,(zl(O))e (~205+2(e-0)(0-8)) p(~208+2(e~0x) @=3)) (o +1)
(Zl O))e -208+2(s-a)(w-5) ,
(z:(0))e™

(—2a8+2(s—a)(w=9))¢t
e —208+2(e—a)(w— 6))67“’

Let £ = g~ (-206+2(e-)(@-8)) By (51) and (52), we have

(=2a8+2(e—a)(w=93))t

Vi(z()) <§Vi(z(0)e =, V&=0.

On the other hand, using the condition (18), we have obtained the following:

2] < ,/Jf Coeatotn

which implies the dynamical networks (7) is exponentially stable under the controller H2,
then exponential synchronization of the controlled dynamical networks (5) is achieved.
The proof is thus completed. O

Remark 3.5 It is clear that as § — w the intermittent feedback control will reduce to a
continuous feedback. In this case, presented in Theorem 3.3.

Remark 3.6 In [14-16], the authors investigated synchronization of complex dynamical
network with coupling time-delay, but the time-delay considered in these three works are
assumed to be constants delay. In [9], Li et al. presented synchronization in complex dy-
namical networks with time-varying delays in the network couplings and time-varying
delays in the dynamical nodes, but the time-varying delays are required to be differen-
tiable, which is a very strict condition. Obviously, we do not need these limit condition in
this paper.
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Remark 3.7 Ifki(¢) =0, ¢; = 0, c3 = 0, and U;(¢) = 0, then system (1) reduces to the follow-
ing system presented in [9, 18]:

N
&i(t) =f (%) +c2 Y _ byGoxi(t = h(®)), t>0,i=1,2,...,N. (53)

Jj=1

According to Theorem 3.3, we obtain the following corollary for the synchronization of
network (53).

Corollary 3.8 Forsome given scalars 0 < «, the dynamical networks (53) with time-varying
delay h(t) satisfying (6) are exponentially synchronization if there exist symmetric positive
definite matrices P; >0, Q; > 0, R; > 0, U; > 0, such that the following symmetric linear
matrix inequality holds:

Ta=0;=[0 0 I -1 0]%e®™2ujo 0o I —-I 0]<0, (54)
Ip=T;—[0 0 0 I -NTe®2uyjo o 0 I -11<0, (55)
where

o= PiT(](t) + al) + (](t) + al) TP,' +2Q;—e 2R, 72 p,
T2 = PJ7 (1),

T3 = e MR,

[na = ©242:G2 Py,

Tis = e ™R,

Tio = hiR; + B3R, + n*U; — 2P;,

[ = c2A0,G2P;,

[i3s = —e 20MQ; — e 2R, — e 22,
i = e U,

Tiag = —2e7221,

Tus = e,

[iss = —2e 22 1], _ 2720 Q; _ 9g~20 .

Proof Similar to proof of Theorem 3.3. Indeed, by setting S; = 0, 7; = 0,and W; = 0 in (17),
one may easily derive the result and hence the proof is omitted. d

Remark 3.9 In [31-34], the authors investigated synchronization of complex dynami-
cal network with coupling time-delay based on intermittent control, but the controller is
presented in terms of nominal state-delayed systems. On the other hands, we have consid-
ered more complicated problem, namely, synchronization of complex dynamical network
with hybrid coupling delay and mixed time-varying delay (interval time-varying delay and
distributed time-varying delay), which time-varying delay using both state-delayed feed-
back control as well as intermittent state-delayed feedback control. It should be pointed
out that the synchronization problem for complex dynamical networks with both interval
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and distributed time-varying delays has not received much attention in the literature, not
to mention the case when the coupling and controller are also involved.

4 Numerical examples
In this section, we now provide an example to show the effectiveness of the result in The-
orem 3.3 and Theorem 3.4.

Example 4.1 We first consider the perturbed Chua circuit system with mixed time-
varying delays is used as uncoupled node in the network (1) to show the effectiveness
of the proposed control scheme. The perturbed Chua circuit system with mixed time-
varying delays is given by [43]

x1(t) = p(xz (t-h(r) - ; (2%7 (1) - xl(t))>,

& (1) = 11 (8) — 532 (8) + x5 (£ — (2)), (56)

t

Xx3(8) = quea(t) +r / x%(s) ds,
t—ky ()

where p, g, r, and s are real positive constants. It is well known that the system (56) exhibits
chaotic behavior with the parameters p, ¢, r, and s are chosenasp =7, g = —@, r=0.07,
and s = 1.5, the initial condition function ¢(t) = [0.65 cost,sint,sint]7, the time-varying
delay functions 4(¢) = 0.1+0.1| sin¢| and k; (¢) = 0.1| cos £| is shown in Figure 1. The solution
of the system (56) is denoted by s(£) = (s1(£), s2(£),s3(£))7, which is shown in Figure 2. It is
stable at the equilibrium point s(¢) = 0, s(t — h(t)) =0, ftt_kl(t) s(0)d6 = 0, and the Jacobian

matrices are

1 0 0 070 000
J&)=|1 -15 of, J®=]0 0 1|, Jy@®=]|0 0 0
0o % o 000 0 00

0.4

0.3

Figure 1 Chaotic behavior of the perturbed Chua circuit system with mixed time-varying delays (56).
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25

2 s4(t) e

solution s(t)
o
o ] —_
I —
-
—
E——
———————
p—
——
i —
e e —
—
—
1

-1.5 b

_2 I I I I I
0 10 20 30 40 50 60 70 80 90 100
Time t

Figure 2 Solution s(t) of the perturbed Chua circuit system with mixed time-varying delays (56).

Consider a network consisting of five identical perturbed Chua circuit system with
mixed time-varying and hybrid coupling delays. The corresponding controlled dynami-
cal network (4) can be described as

¢ N
xi(t) =f<x,»(t),xl- (t - h(t)),/ xi(s) dS) + Zailex,-(t)

—k(2)

j=1
N N t
+ C Z b,sz?Cj (t - h(t)) +C3 Z C,'}'Gg / xj(s) ds
=1 j=1 t—k1(t)

+ D1i1<i (xi(t) - S(t)) + D251<,‘ (xi(t - d(t)) - S(t - d(t)))

t t
+D3iIQ(/ x,'(s)ds—/ s(@)d@), i=12,...,5.
t—ko (£) t-ko(2)

Assume that Dy; = diag{3,3,3}, Dy; = diag{0.1,0.1,0.1}, Ds; = diag{0.1,0.1,0.1}, i = 1,2,

...,5, the coupling strength ¢; = 0.3, ¢ = 0.2, ¢3 = 0.4, the inner-coupling matrices are

2.0 0 1 0
G=|0 2 0|, Gy=|0 1 of,
0 0 2 0 0 1
[05 0 0
Gs=| 0 05 0|,
0 0 05
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1 1
5 2 5 2
4 3 4 3
A B=C
Figure 3 The topology structure of complex networks with N =5.

and the outer-coupling matrices are given by the following irreducible symmetric matrices

satisfying condition (2):

-2 1 0 0 1 -4 1 1 1

1 -3 1 1 0 1 -4 1 1 1
A=]10 1 -2 1 0|, B=C=|1 -4 1],

0 1 1 -3 1 1 -4 1

1 0 0 1 -2 1 1 -4

and the topology structure of complex networks is shown in Figure 3.

The eigenvalues of A, B, and C are A; = {0,-1.382,-2.382,-3.618,—4.618}, A, = {0, -5,
-5,-5,-5}, and A3 = {0,-5,-5, -5, -5}, respectively.

Solution: From the conditions (12)-(15) of Theorem 3.3, weleta@ = 0.02, /1, = 0.1, 1, = 0.2,
k1 =0.1, ky = 0.1, d = 0.3, the gain matrices of the desired controllers can be obtained as

follows:

[-4.6038 -0.2266 -0.8478] [-3.8398 -0.1242 -1.0323

Ki=| -01812 -15.2461 25773 |, K,=|-0.0015 -15.0343 19854 |,
| -1.0007  3.6578  —4.2867 | | -1.0438 27597  -4.1461
[-3.7311  0.0828 -1.2030 | [-3.9213  0.3286 -1.4385

K3=| 02016 -14.8969 1.8453 |, Ks=| 05011 -15.4924 17291 |,
| -11970 24629  -4.2466 | | -14346 21419  -4.6878
[~4.3268 05100 -1.6409 |

Ks=1| 07973 -16.7178 1.6821
| -1.6546 19279  -5.3012

The numerical simulations are carried out using the explicit Runge-Kutta-like method
(dde45), interpolation and extrapolation by spline of the third order. Figure 4 shows the
synchronization between the states of isolate node s(¢) and node «;(¢), i = 1,2,...,5. Fig-
ure 5 shows the synchronization errors between the states of isolate node s(¢) and node
x;(£), where e;(¢) = x;(t) —s;(t), fori = 1,...,5, j = 1,2, 3, without feedback control. Figure 6

shows the synchronization errors between the states of isolated node s(¢) and node x;(¢),
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Figure 4 Synchronization curves for the states of the isolated node s(t) and node x;(t),i=1,2,...,5.

Figure 5 Synchronization error curves for the isolated node s(t) and node x;(t), where
ejj(t) = x;j(t) - s(t), fori=1,...,5, j= 1,2, 3, without feedback control.
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Figure 6 Synchronization error curves for the isolated node s(t) and node x;(t), where
ejj(t) = xji(t) - si(t), fori=1,...,5,j= 1, 2,3, with feedback control.

where e;(£) = x;(t) - s;(¢), for i = 1,...,5, j = 1,2,3, with feedback control. We see that the
synchronization errors converge to zero under the above conditions.

Example 4.2 We consider the nonlinear network model with five nodes, in which each
node is a Lorenz system with mixed time-varying delay described by [7]

& (1) = a(xi(2) — xa (1)),

Xip(t) = cxin (£ = h(2)) — x2(8) — i ()i (£ — h(2)), (57)

t

s 6) = 3 (0) / x12(s) s — by (£ - ),

t—ki(t)

where a = 0.9, b = 1.3, and ¢ = —1. For the initial function ¢(¢) = [-3.2cost,2cost,5cos£]
the solution of system (57) is denoted by s(¢) = (s1(£),s2(2),s3(¢))7, which is shown in
Figure 7. It is asymptotically stable at the equilibrium point s(t) = 0, s(z — h(t)) = 0,
ftt—kl ® $(0)dO = 0 and its Jacobian matrices are

-09 09 O -1 0 0 0 0 O
J@&) =] 0 -1 0f, Jwy=0 0 0 [, Ju®)=10 0 0
0 0 O 0 0 -13 0 0 O

Assume that Dy; = diag{2,2,2}, Ds; = diag{0.1,0.1,0.1}, Dg; = diag{0.1,0.1,0.1}, i =

1,2,...,5, the coupling strength ¢; = 0.1, c; = 0.2, c3 = 0.3, the inner-coupling matrices


http://www.advancesindifferenceequations.com/content/2014/1/116

Botmart and Niamsup Advances in Difference Equations 2014, 2014:116 Page 29 of 33
http://www.advancesindifferenceequations.com/content/2014/1/116

solution s(t)

~10 ! ! ! ! !
0 2 4 6 8 10 12 14 16 18 20
Time t

Figure 7 Solution of the Lorenz system with mixed time-varying delays (57).

are
04 O 0 05 0 0 03 0 0
Gi=|0 04 0 |, Gy=| 0 05 0|, Gz=( 0 03 0|,
0 0 04 0 0 05 0 0 03

and the outer-coupling matrices are given by the following irreducible symmetric matrices
satisfying condition (2):

-4 1 1 1 1 -4 1 1 1 1

1 -3 1 0 1 -4 1 1 1
A=C=]1 1 -3 0 1], B=|1 1 -4 1 1|,

1 0o -2 0 1 1 -4 1

1 0 1 0 -2 1 1 1 1 -4

and the topology structure of complex networks is shown in Figure 8.

The eigenvalues of A, B, and C are X; = {0,-1.5858,3,-4.4142, -5}, A, = {0,-5,-5,-5,
-5}, and A3 = {0,-1.5858, 3, —4.4142, -5}, respectively.

Solution: From the conditions (35)-(43) of Theorem 3.4, we let £ = 0.09, @ = 0.07, w =
4,8 =25,h=01,h =02,k =0.1, ky = 0.12, d = 0.3; the gain matrices of the desired
controllers can be obtained as follows:

-0.1592 -0.0094 0 -0.2479 -0.0265 0
Ky =1{-0.0155 -0.1306 0 ) Ky =1-0.0336 -0.2273 0
0 0 -0.3712 0 0 -0.7249
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1
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A=C B

Figure 8 The topology structure of complex networks with N =5.

Figure 9 Synchronization error curves for the isolated node s(t) and node x;(t), where
ejj(t) = x;j(t) - s;(t), fori=1,...,5, j= 1,2, 3, without intermittent feedback control.

[-0.2325 -0.0247 0 | ~0.2188 —-0.0234 0
Ks=|-0.0306 -0.2134 0 ,  Ki=|-0.0286 -0.2006 0 ,
0 0 ~0.7079 | 0 0 ~0.6986

[-0.2132 -0.0230 0
Ks = | -0.0279 -0.1953 0
0 0 ~0.6962 |

Figure 9 shows the synchronization errors between the states of the isolated node s(¢)
and node x;(t), where e;(¢) = x;(¢) — s;(¢), for i = 1,...,5, j = 1,2,3, without intermittent

feedback control. Figure 10 shows the synchronization errors between the states of the
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Figure 10 Synchronization error curves for the isolated node s(t) and node x;(t), where
ejj(t) = x;(t) - si(t), fori=1,...,5, j= 1, 2,3, with intermittent feedback control.

isolated node s(¢) and node x;(£), where e;(t) = x;(¢) — s;(¢), for i = 1,...,5, j = 1,2,3, with
intermittent feedback control. We see that the synchronization errors converge to zero
under the above conditions.

Remark 4.1 In Example 4.1 and Example 4.2, each of them to consider general complex
networks in which every dynamical node has mixed time-varying delays (interval time-
varying delay and distributed time-varying delay), and the complex networks have state
coupling, interval time-varying delay coupling and distributed time-varying delay cou-
pling.

Example 4.3 Consider a network model with five nodes, where each node is a three-
dimensional stable linear system described by [9, 18]

x1(t) = —xa (1),
Xio(t) = —2x55(8), (58)

xi3(t) = —3x;3(2),

which is asymptotically stable at the equilibrium point s(¢) = 0, and its Jacobian matrix
is J(t) = diag{-1,-2,-3}. Assume that the network coupling is the same as that in Exam-
ple 4.1. The upper bounds on the time-delay obtained from Corollary 3.8 are listed in
Table 1. We see that Corollary 3.8 provides a less conservative result than those obtained
via the methods of [9, 18]. When /,,, # 0 especially, the result in [9] is not discussed while
Corollary 3.8 in this paper also considers the case /,, # 0.
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Table 1 Comparison of the maximum value hy (h;, = 0) for difference ¢,

(3 0.3 0.4 0.5 0.6

Lietal [9] 0.960 0.710 0.562 0.464
Yueand Li[18]  1.345 0.950 0.731 0.587
Corollary 3.8 19707 12848 08712 05941

Remark 4.2 In [9] presented the synchronization problem of general complex dynamical
networks with time-varying delays in the network couplings and time-varying delays in
the dynamical nodes, respectively. But the time-varying delays are required to be differ-
entiable, however, in most cases, these conditions are difficult to satisfy. Therefore, in this
paper we will employ some new techniques so that the above conditions can be removed.

5 Conclusions

This paper has investigated synchronization for complex dynamical network with mixed
time-varying and hybrid coupling delays, which is composed of state coupling, inter-
val time-varying delay coupling, and distributed time-varying delay coupling. The time-
varying delay function is not necessary to be differentiable which allows the time-delay
function to be a fast time-varying function. We transformed the synchronization prob-
lem of the complex network into the stability analysis of linear systems. A new class of
Lyapunov-Krasovskii functionals is constructed; new delay-dependent sufficient condi-
tions for the exponential synchronization of complex dynamical network have been de-
rived by a set of LMIs without introducing any free-weighting matrices. The delay feed-
back controllers H1 and H2 designed can guarantee exponential synchronization of the
complex dynamical network. Simulation results have been given to illustrate the effec-
tiveness of the proposed method.
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Abstract

In this paper, we investigate the problem of exponen-
tial synchronization for master-slave neural networks with
mixed time-varying delays via hybrid intermittent feedback
control. The constraint on the derivative of the time-varying
delay is not required which allows the time-delay to be
a fast time-varying function. Based on the construction
of improved Lyapunov-Krasovskii functionals is combined
with Leibniz-Newtons formula and the technique of dealing
with some integral terms. New delay-dependent sufficient
conditions for the exponential synchronization of the error
systems with memoryless hybrid feedback control are first
established in terms of LMIs without introducing any free-
weighting matrices. The designed controller ensures that
the synchronization of the error systems are proposed via
hybrid intermittent feedback control. Numerical simula-
tions are presented to illustrate the effectiveness of these
synchronization criteria.
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1 Introduction

In the past decade, synchronization in neural networks (NNs), such
as cellular NNs, hopfield NNs and bi-directional associative mem-
ory networks, has received a great deal of interest among scientists
in a variety of areas, such as signal processing, pattern recognition,
static image processing, associative memory, content-addressable
memory and combinatorial optimization [1, 2, 3, 4]. In performing
a periodicity or stability analysis of a neural network, the condi-
tions to be imposed on the neural network are determined by the
characteristics of various activation functions and network param-
eters. When neural networks are created for problem solving, it is
desirable for their activation functions are not too restrictive. As
a result, there has been considerable research work on the stability
of neural networks with various activation functions and more gen-
eral conditions [5, 6]. The first concept of chaos synchronization
is making two chaotic systems oscillate in a synchronized manner
was introduced by [2] and many different methods have been ap-
plied theoretically and experimentally to synchronize chaotic sys-
tems, for example active control [7], adaptive control [7], time-delay
feedback control [?, 8] and intermittent control [9], etc. Moreover,
neural networks with distributed delays have been extensively dis-
cussed [8, 10, 11, 12]. In [12], a neural circuit has been designed with
distributed delays, which solves the general problem of recognized
patterns in a time-dependent signal. The master-slave synchro-
nization problem has been investigated for neural networks with
discrete and distributed time-varying delays in [10], based on the
drive-response concept, LMI approach and the Lyapunov stability
theorem, several delay-dependent feedback controllers were derived
to achieve the exponential synchronization of the chaotic neural
networks.

Intermittent control is one of discontinuous control and has a
nonzero control width. It is an engineering approach that has been
widely used in engineering fields, such as manufacturing, air-quality
control,transportation and communication in practice. However,



results using intermittent control to study exponential synchroniza-
tion are few. In fact, to use synchronization of NNs in some intervals
only may prove to be more cost effective than using synchroniza-
tion of NNs at all times. Another reason could be that the inter-
mittent control scheme might be useful in communications, where
synchronization of NNs between transmitter and receiver can be
used as means of transmitting information [13]. In recent years,
several synchronization criteria for neural networks with or with-
out time delays via intermittent control have been presented, see
(14, 15, 16, 17, 18]. In [16], the problem of synchronization for a
class of CohenGrossberg neural networks with time delays under
periodical intermittent control has been investigated. The quasi-
synchronization problem has been investigated for chaotic systems
with parameter mismatch by means of periodically intermittent
control and design a general periodically-intermittent controller for
chaotic systems in [15]. To the best of the author’s knowledge,
the problem of exponential synchronization for master-slave neural
networks with mixed time-varying delays in state and control have
not been fully investigated yet and remains open.

This paper, inspired by the above discussions, we shall inves-
tigate the problem of exponential synchronization for master-slave
neural networks with mixed time-varying delays, which is composed
of discrete interval time-varying delay and distributed time-varying
delay. The designed controller ensures that the synchronization of
delayed master-slave neural networks are proposed via hybrid in-
termittent feedback control.There are various activation functions
which are considered in the system and the restriction on differen-
tiability of interval time-varying delays is removed. Based on the
construction of improved Lyapunov-Krasovskii functional is com-
bined with Leibniz-Newton formula and the technique of dealing
with some integral terms. New synchronization criteria are derived
in terms of LMIs which can be solved efficiently by standard con-
vex optimization algorithms. A numerical example is also given to
illustrate the effectiveness of the proposed method.

The rest of this paper is organized as follows. In Section 2, we
give notations, definition, propositions and lemma for using in the
proof of the main results. In Section 3, synchronization stability in
master-slave neural networks with mixed time-varying delays via
hybrid intermittent feedback control are investigated. Numerical



examples illustrated the obtained results are given in Section 4.
The paper ends with conclusions in Section 5.

2 Preliminaries

The following notation will be used in this paper: Rt denotes the
set of all real non-negative numbers; R™ denotes the n—dimensional
space and the vector norm || . |; M"™*" denotes the space of all
matrices of (n x r)—dimensions.

AT denotes the transpose of matrix A; A is symmetric if A =
AT T denotes the identity matrix; A(A) denotes the set of all eigen-
values of A; A\jax(A) = max{ReX; A € A\(A)}.

Matrix A is called semi-positive definite (A > 0) if (Az,x) > 0,
for all x € R™; A is positive definite (A > 0) if (Az,z) > 0 for all
x # 0;A> B means A — B > 0. The symmetric term in a matrix
is denoted by .

In this paper, the master-slave cellular neural networks (MSC-
NNs) with mixed time-varying delays are described as follows:

B(t) = —Ax(t)+ Cf(x(t)) + Dg(a(t — ha(t)))

E h(z(s))ds + I(t),

" /tw) (w(s))ds + 1(2)
z(t) = ¢i(t), te[—~d,0], (1)
y(t) = —Ay@t)+Cf(y(t)) + Dg(y(t — hu(t)))

+E h(y(s))ds + I(t) +U(t),

t—k1(t)

y(t) = ¢2(t)a tG[—d,O], (2)

where z(t) = [z1(t),x2(t), ...,z (t)] € R", y(t) = [yi(t), y2(), ...,
yn(t)] € R™ are the master systems state vector and the slave sys-
tems state vector of the neural networks, respectively. n is the
number of neural, and

fa@) = [filz1(t), fa(za(t)
g(z(t)) [~1(l’1(75))7§2 )

h((t)) = [l (1(t)), ho(w2(1)), s (2 ()],

are the activation functions, A = diag (a1, az, ..., dn), @ > 0 rep-
resents the self-feedback term and C, D, E denote the connection

4



weights, the discretely delayed connection weights and the distribu-
tively delayed connection weight, respectively.

The synchronization error e(t) is the form e(t) = y(t) — z(¢).
Therefore, the cellular neural networks with mixed time-varying
delays of synchronization error between the master-slave systems
given in (1) and (2) can be described by

e(t) = —Ae(t)+ Cf(e(t)) + Dgle(t — hi(t)))
+E h(e(s))ds + U(L),
t—Fk1(t)
e(t) = ¢2(t) — d1(t) = o(1), t€[-d 0], (3)
where f(e(t)) = f(e(t) + z(t) — f(= ( )) g(e (t - h1( ))) = glelt —
(1) + 2t — (1) — Gzt = ha(0), [y ds = [,

he(s) + x(s)) — h(x(s))ds. The state hybrld feedback controller
U(t) satistying :

U(t) = +Bs ftt_kz(t) u(s)ds, nw <t <nw+6, (4)
0, nw+0<t<(n+1l)w.

where u(t) = Ke(t) and K is a constant matrix control gain, w > 0
is the control period and § > 0 is called the control width (control
duration) and n is a non-negative integer. In this paper, our goal is
to design suitable K such that system (2) synchronizes with system
(1). Then, substituting it into (3), it is easy to get the following:

et) = —Ae(t)+Cf(e(t)) + Dg(e(t — hi(t))) + E/t » h(e(s))ds
+B1Ke(t) + BoKe(t — ho(t)) + Bs K t e(s)ds,
t—ko (1)
nw <t<nw-+?d, (5)
é(t) = —Ae(t)+Cfle(t))+ Dgle(t —hi(t)))+ E /tk o h(e(s))ds

nw+60 <t<(n+1lw,
e(t) = ¢ot) — ¢1(t) = 9(t), t€[=d 0]
Throughout this paper, we consider various activation functions

and the activation functions f(.), §(.) and h(.) satisfy the following
assumption:



(A1) The activation functions f (-), g(.) and E() satisfy Lips-
chitzian with the Lipschitz constants f;, ¢; > 0 and h; > 0:
‘fl(gl) - fl(€2>‘ < fl’gl - §2|7 1= 1727 "-anav517§2 S R,
|~§'L(§1> (52)| S QZ|§1 - 52'7 1= 1727 "'anav§17£2 € R7 (6)
’hz(fl) (52)’ S hl|£1 - 52’7 1= 1727 "'7n7v§17€2 € R7

and we denote

-3
— I

F= diag{fi, i=1,2,...,n},
G = diag{g;, i=1,2,...n},
H = diag{h;, i=1,2,...,n}.

The time-varying delay functions h;(t), k;(t), i = 1, 2 satisfy the
condition

0 < him < ha(t) < hapy 0 < ho(t) < ho,
0< kl(t) <k, 0< kg(t) < ky. (7)

It is worth noting that the time delay is assumed to be a contin-
uous function belonging to a given interval, which means that the
lower and upper bounds for the time-varying delay are available, but
the delay function is bounded but not restricted to being zero. The
initial functions ¢(t) € C*([—d,0], R"), d = max{his, ha, k1, ko }

with the norm

lol= s vlow I+ 601"

Definition 1. Given a > 0. The zero solution of system (5)
with u(t) = Ke(t) is a— stable if there exist a positive number N >
0 such that every solution e(t, ¢) satisfies the following condition:

| e(t,d) |[< Ne=® || ¢ ||, Vt>D0.

We introduce the following technical well-known lemma, which
will be used in the proof of our results.

Lemma 1. [19] (Cauchy inequality) For any symmetric posi-
tive definite matrix N € M™"™ and x,y € R" we have

+207y < 2T Nx +yT N1y,



Lemma 2. [19] For any symmetric positive definite matrix
M >0, scalar v > 0 and vector function w : [0,v] — R" such that
the integrations concerned are well defined, the following inequality
holds

([ ds)TM( [ wtas) <o [t is).

Lemma 3. [19] (Schur complement lemma). Given constant
symmetric matrices X,Y, Z with appropriate dimensions satisfying
X=XTY=Y">0. Then X + ZT'Y~'Z < 0 if and only if

()Z( _Z;><0 or <_Z}T/’ )Z()<O.
3 Main Results

Let us set

T = 672ah1M7 )\1 = )\min(Pil)v

)\2 - )\max(P_l) + (hlm + th))\max(P_lQP_l)
+(B3,, + B ar) Amae (PP RPTY) + 0% Ao (PTTUPTY)
FP3 A mae(PTYTSTY P7Y) + k2N e (HU; P H)
+ k3 A mae(PTYTSSYY P7Y).

Theorem 2. For some given scalars 0 < a < g, the er-
ror system (5) with time-varying delay satisfying (7) are expo-
nentially stable if there exist symmetric positive definite matrices
P,Q,R,U, S, Ss, diagonal matrices U;, 1 =1,2,3 and a matrix Y
with appropriately dimensioned such that the following LMI holds:

=Ty —[00 1 1 0]"YU[0 0 —I I 0]<0, (8
Ly=T,—[000 1 —1]"YTU[0 00 I —1]<0, (9)

I, 2PFT PHT 2Y

s o 0 0
e . <0, (10)
* * x  —2e2eh2g)
—0.1P R2YT
T, = { R R (11)



—0.le"20huy  2PGT
T, = . o, | <0 (12)

Pg=T,—[0 0 —1 I 0]'"YU[0 0 —I I 0]<0, (13)

T;=Ty—[0 00T —I]"YU[0 00 I —1]<0, (14)

I, 2PFT Kk PHT

I's= * —2U, 0 < 0, (15)
ES * —l{ilUg
—ad+ (e —a)(w—10) <0, (16)
[Ti1 Tie Tz 0 Ts)
* F122 0 0 0
I'y = * x  I's3 T'sg 0|,
* * Ty T'ys
| * * * x  I'ss
Foir Torz Tz 0 T'ys
* F222 0 0 0
Fy= 1 = I3 T'se 0|,
* * ¥ Tu I'ys
| x * * *  I'ss
where
H11 = —0.1(6_2ah1m + 6_2ah1M)R
Iy = [FA+al]P+P-A+all’ - BY - Y'Bl +2Q
+CTULC + DYULD + 2k e ETUSE + 3¢**™ B1 S| B,
+2kpe?**2 BI'Sy By — 0.9¢72Mm R — (.9 720MM R
Iy = [~A+al]P+ P[-A+all" +2Q —2¢P + CTU,C
+DTU,D + 2k e**M ETUSE — 0.9¢2Mm R — (0.9e 2MM R,
Iy = —PAT —YTBT Ty = —PA", '3 =e 2R,
F15 — 672ozthR7

I = R R+h2,R+06°U—1.9P +CTUC + DTU,D
+2k1 2 ETUSE + 3¢**"2 B] S| By
2kpe?**2 B1S, Bs,



Ty = h2 R+ h2,R+6*U—2P+CTU,C + DTU,D

+2ke* M ETULE,
FSS — _672ah1mQ o 672ah1mR o 672ah1M U,
F34 = 6_2ah1MU, F44 = —1.96_2ah1MU, F45 = 6_2ah1MU,
_ —2ah v —2ah —2ah
I‘55 = _—e¢ 11\1@ —e IMPR o 1M U'7

then the error system (5) have exponential synchronization. More-
over, the feedback control is

_BYPle(t) — B2YP‘1 (t — ho(t))
Ult) =< —BY P! ft kat) € e(s)ds, nw <t <nw+9, (17)
0, nw+d<t<(n+1)w.

Proof. Case I: for nw < t < nw+4, let W = P! 2(t) = We(t).
Using the feedback control (17) we consider the following Lyapunov-
Krasovskii functional

Vie(t) =3 Vi (18)

where
Vi = el(t)We(t),
t
Vo = / 220l (YW QWe(s) ds
t hlm
t
Vs = / DT ()W QWe(s) ds
t—him
Vi = him / / 2O=0eT ()W RWé() db ds,
him Jt+s
Vs = hiu / / 0T (YW RW () db ds,
hin Jt+s
him
Vo = 5/ / 2O=0eT ()W UWED) db ds,
t+s

—him

Vi = / 0 / 2D RT (e(0))Us h(e(6))db ds.

0 t
Vi = hy / / 2047 (9) ST u()db ds,
ho Jt+s

9



/ / 0=y () Sy u(h)db ds.
ko Jit+s

It easy to check that
Mllet) PSS V(te(t) < Az [le(t) |7, VE20. (19)

Taking the derivative of V (¢, e(t)) along the solution of system (5)
we have

Vi = 2T(t)[-AP — PAT —2B,Y]z(t) 4+ 227 (t)Cf(e(2))

+2:T(t)Dg(e(t — hi(t))) + 227 (1) E /t k ()h(e(s))ds

+227 (1) Bou(t — hy(t)) 4 227 (t) Bs /ttk o u(s)ds,

Vo = 2X0)Qxz(t) — e 22T (t — hyp)Qz(t — ham) — 2aVa,
Vs = A0)Qz(t) — e 2MM T (1 — hin)Qz(t — hipr) — 2aVs,

t
Ve < B2 5T()RE(E) — hype20Mm / ST () R2(s)ds — 20V,
t hlm

IA

Vi

IN

t
Ry 2T (D RE(L) — hyppe2Mm / T (s)Rz(s)ds — 2a Vs,
t—hinm

tfhlm
§25T (U5 (t) — Ge-2mar / ST () R2(s)ds — 20V,
t

—him

Vs

IN

Vi

IN

kzlhT(e(t))US_lh(e(t)) — e 2k /tk hT(e(s))Uglh(e(s))ds
—2aVz, (20)

Vs

IA

t
B2 (#) SV i(t) — hae20m / AT (5)Si(s)ds — 20V,
t—ho
t
Vo < E2uT(t)S5 u(t) — kye 20k / u® (5)Sy tu(s)ds — 2aVy.
t—ko

For assumption Al, we can obtain the following three inequalities:

[files@)] < filea(t) + xi(t) = 2i(t)] = files(t)],
i) < gileit) +ai(t) —zi(®)] = gilea()],  (21)
[hales®)] < hilea(t) + @(t) — 2:(8)] = hilei(t)]

10



Applying Lemma (1) and Lemma (2) and since the matrices U;, i =
1,2, 3 are diagonal, we have

27 (1)Cf(e(t)) < 2P()CTULCz(t) + 2T () PFTU; ' FP2(t)
227 (t)Dg(e(t — hi(t)) < 27 (t)DTUyDz(t)
+21(t — hy (1)) PGTUS G P2(t — hy (1)),
kihT (e))Us hie(t)) < k2" (t)PHTUSYHP2(t),

IN

t
22T(t)E/ h(e(s))ds 2k T () ETUs E2(t)
t—ka(t)

€—2ak1 t
S [ W)U he(s)) s

2 Jik
227 () Bou(t — ho(t)) < 3e**"227 (1) BY Sy By2(t)
—2aho
+5 " (t = ha() ST ult = ha (1)),
t
2:7(1) By / w(s)ds < ke T (8) BT Sy Byz (1)
t

—ka(t)

€—2ak2 t
+ / u”(s)S5  u(s)ds,
2 Stk

haut () ST u(t) = h3T(H)YTSIY A(t).

and the Leibniz-Newton formula gives

t
—hye 2002 / u” (5)S;  u(s)ds
t—ho

—2aho
< 2e72h2 T (Y TSI 2(t) + & u” (t — ha(t)) Sy u(t — ho(t))

—e 202y T (1 — hy (1)) ST u(t — ha(t)). (22)

Applying Lemma 2 and the Leibniz-Newton formula, we have

t
—hlmemhlm/ A (s)Ri(s)ds < —e 2 2T (1) R2(1)
t

—him

—22T()Rz(t — hy)  (23)
42Tt — ha)Re(t — hlm)],

11



t

—h1M62ah1M/ (s)Ri(s)ds < —e 2hu | T (1) R2(t)
t—hin

—2:T(OR2(t — hiyr)  (24)
+ZT(t — th)RZ(t — th) .

Note that

5 /t ST UHs) ds = —(hua — h()) / ST (U3 (s) ds

—huw t_hllbl

t—h(t)

—(h(t) — him) / T (s)U%(s) ds

t—hin
t_hlm

—(h(t) = him) /t_h(t) ST (s)U5(s) ds

~(huat — (1)) / ST()U2(s) ds.

t—h(t)

Using Lemma 2 and let g = Pap =) < 1 Then

hirvi—him

5 /t TN Uas) ds

< —[a(t = h(t)) = 2(t — haan)["U[2(t — h(t)) — 2(t — hanr)]
—[2(t = ham) = 2(t = h(E))]"UL2(t — ham) — 2(t = h(t))]  (25)
—Bla(t = him) = 2(t = HO)" Ul(t = ham) — 2(t = h(t))]

—(1 = B)[2(t = h(t)) = 2(t — haar)]"Ul2(t = h(t)) — 2(t — Tanr)].

By using the following identity relation

0 = —23T()Pi(t) — 22T (1) APz(t) + 227 ()C f(e(t))
+2:7(t)Dg(e(t — (1)) + 2:T(t)E /t o h(e(s))ds
—2:T()BLY 2(t) + 227 (£) Ba(t)u(t — hao(t))

+2:7(1) By /t R (26)

12



By using Lemma 1 and 2, we have

2:7(1)Cf(e(t) < 2 (CTUICL)

+2T () PFTU F P2 (t),
zT(t)DTUQDz( )
+27(t — hy (1)) PGTUS TG Pz(t — hy (1)),

2:7(t)Dg(e(t — hi(2)))

IN

2T (tE / t h(e(s))ds < 2k T () ETUsEL(L) (27)
t—k1(t)
+ 5 /tkl(t)h (e(s))Us " h(e(s))ds,
22T () By(t)u(t — ho(t)) < 3e2*M2:7(t)BIS By (1)
€—2ah2
+—3 u® (t — ho(t)) ST u(t — ha(t)),

IN

t
2:7()Bs / u(s)ds 2kpe?*2 3T (1) BY Sy B3 (1)
t—ka(t)

—2aks

t
/ u”'(5)S5  u(s)ds,
2 t—ka(t)

(&
+

From (20) - (27), we obtain

Vie(t) +2aV(e(t)) < €7(@)((1 - B)Mi + BMy)E(t)
() Maz(t) + 27 () Maz(t)
+2T(t — hi(t))Msz(t — hi(t)), (28)

where
My = —0.1R(e?2Mm 4 g=2ehiar)
+2PFTUFP + k) PHTU; " HP + 2e72°m2 YT Sty
My = —01P+hYTsty,
Ms = —0.1e2muy 4+ 2PGTUSGP,

Ms = Qi+ P 'YTQY P,

§t) = [2(t), (1), 2(t — ham), 2(t — h(t)), 2(t — hanr)]-

Since 0 < 8 < 1, (1 — B)M; + M, is a convex combination
of My and My. Therefore, (1 — )My + My < 0 is equivalent

to I'y < 0 and T'y < 0. Applying Schur complement lemma, the
inequalities M3 < 0, My < 0 and M5 < 0 are equivalent to

13



I'; <0,y <0and ['s <0, respectively. Thus, it follows from (8)
- (12) and (28), we obtain

Vie(t)) +2aV(e(t)) <0, for nw <t <nw+é. (29)
Thus, by the above differential inequality (29), we have
Vie(t)) < V(e(nw))e 2™ for nw <t < nw+ 0. (30)

Case II: for nw + 9§ <t < (n+ 1)w, we choose Lyapunov-
Krasovskii functional having the following form :

Vie(t) = Vi (31)

where V;(t), 1 = 1,2,...,7 are defined similar in (18). We are able
to do similar estimation as we did for Case I, we have the following

Vie() +2(a—e)V(e(t) < €()((L— BN + BN)E(1)

+2T (HN32(2) (32)
+2 (t = h(8))Naz(t — (1)),

where
Nz = —0.1R(e2Mm 4 o=2ahir)
+2PFTUFP + kyPHTU; ' HP,
Ny = My

Since 0 < 8 < 1, (1 — B)N; + BN, is a convex combination of N;
and Ns. Therefore, (1 — )N + SN2 < 0 is equivalent to I's < 0
and I'; < 0. Applying Schur complement lemma, the inequalities
N3 < 0, Ny < 0 are equivalent to I's < 0, I's < 0, respectively.
Thus, it follows from (12) - (15) and (32), we obtain

Vie(t)) —2(e —a)V(e(t)) <0, for nw<t<nw+9d. (33)
Thus, by the above differential inequality (29), we have

Vie(t)) < V(e(nw + 6))eE0Em=0) = for nw <t < nw + 6.(34)

14



By (30) and (34), we have

Vie((n+ 1w))

< Ve(nw + §))e2E@=9)
< V(e(nw))e 20X Eema)w=9)

= V(e(nw))eﬂaéws @) (w—>9)

< V(e((n—1w+d))e 2p(w—3) ,~2a8+2(c—a) (w—9)

< V(e((n — 1)w))e~200+2e=a)(w=0) ~2a5+2(—a) (w=5)
= V(e((n - 1)w))eX2ad+2Ae—a)(w=0))

< V(G(O))e(_20‘5+2(5—a)(w—5))(n+1)‘

For any t > 0, there is a ng > 0, such that now <t < (ng + 1)w.

Case 1.
have

Vie(t))

(VAN VAN VAN VAN

IN

Let £ = e (

For now +d <t < (ng + 1)w, using condition (16), we

now-+9))
—9) €
)

(e-
—2a6+2(e—a)(w—0))ng —204662(5—&)((n0+1)w—(n0w+5))
(e-

—(
)no 7204562 (e—a)(t—(now+9))
) (&

)

e (35)

. For ngw <t < ngw + 4§, using condition (16), we have

e —2a(t—now)

(e(
(e(0)
V(e(0)
(e(0)
(e(0)
(0)

))e
6( 2a6+2(e—a)(w—6))no —QOc(t now)
(=

206+2(e—a)(w—6))ng

IN A IA
S

I
<

(—2a6+2(s— a)(wié))e(*2a5+2(sfa)u()<u76))(n0+1)w

Il
<

e(0
< V(e(0))e 2002 a)(w—0)) , (Rt (36)

)
)
)6 —2a6+2(e—a)(w— ))e(—206+2(5—a)(w—5))(no—i-l)
Je~
)

—2a6+2(e=a)(w=9)) By (35) and (36), we have

(—2ad8+2(e—a)(w—9))t

Vie(t)) < &VI(e(0))e ” , Vt=0.

15



On the other hand, using the condition (19), we have obtained the
following;:

le(®)ll < V(e(0)) e(wéﬂa;a)(wé))t’ V> 0,
g
which implies the error system (5) is exponentially stable under the
controller H1, then the controlled slave system (1) is synchronized
with the master system (2). The proof is thus completed.
0

4 Numerical examples

In this section, we now provide an example to show the effectiveness
of the result in Theorem 2.

Example 4.1 Consider the cellular neural networks with vari-
ous activation functions and mixed time-varying delays using hybrid
intermittent feedback control with the following parameters :

#(t) = —Ax(t) + Cf(x(t) + Dg(x(t — ha(t)))
+E / h(z(s))ds + I(t), (37)
t—k1(t)
x(t) = o¢u(t), te[=d0]
g(t) = —Ay(t)+ Cfy(t) + Di(y(t — m(t)))
+E / h(y(s))ds + I(t) + U(t) (38)
t—ky(t)
y(t) = &), tel=d0]
where
0.8 0.4
A = I ] [ —03} D:{—os 0.5}’
[ 0.5 04 0 0.3 0
E=11 03 05}’F { 0 02} G:[ 0 0.2}7
(02 0 40 30
i = 0 0.3}’31:{0 1}’32:[0 1}’
2 0
By = 0 1}’
¢1(t) = [—0.4cost,0.5cost], ¢ot) = [sint,sint].
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Solution: From the conditions (8)-(15) of Theorem 2, we let a =
0.07, e = 0.09, w =4, 6 = 2.5 hyy, = 0.1, hypr = 0.2, hy = 0.3,
k1 = 0.15, ks = 0.2. By using the LMI Toolbox in MATLAB, we
obtain

P _ 1.5072 0.0147 Q= 0.3204 0.0027
N 0.0147 0.8106 |’ ~ 1 0.0027 0.1821 |’

R o— 1.5954 0.0073 U— 6.5228 0.1067
N 0.0073 0.9829 |’ ~ | 0.1067 3.2384 |’

o _ o3| 00446 —0.4554 g _ [ 00003 —0.0017
L= —0.4554 1.2455 |’ “2 7 | —0.0017 0.0311 |’
U 2.6046 0 o [ 06454 0
! 0 05215 | 27 0 01738 |’
~ [o04213 0 3 [0.0362 0.0994
Us = { 0 0.1726}’ Y =10 [0.3908 2.7357}’
5[ —0.0252 0.1231
K =10 { 0.2923 —3.3803 |-

We let hy(t) = 0.1+ 0.1| sint|, hy(t) = 0.3e/5" k) (t) = 0.15| cos t],
ko(t) = 0.2el0% ¢, (t) = [~0.4cost,0.5cost], ¢o(t) = [sint,sint],
Vt € [-0.3,0] and the activation function as follows:

filea(t)) = 02(Jz1(t) + 1] = | (t) — 1)),
fa(w2(t)) = 0.1(|z1(E) + 1] = [ (8) = 1),
gi(ea(t)) = 0.15(|z1(t) + 1] = [ (2) — 1),
g2(xa(t)) = 0.1(|z2(t) + 1] — [22(t) — 1),
hi(z1(s)) = 0.1tanh(—4z4(s)),
ha(z2(s)) = 0.15tanh(5zy(s)).

Figure 1. shows the trajectories of solutions e;(t) and ey(t) of
the cellular neural networks with various activation functions and
mixed time-varying delays without hybrid intermittent feedback
control (U(t) = 0). Figure 2. shows the trajectories of solutions
e1(t) and ey (t) of the the cellular neural networks with various acti-
vation functions and mixed time-varying delays with hybrid inter-
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mittent feedback control

( [ —0.1010 0.4924 |

—1071 00993 33803 | €®)

1070 [ s |

uw = 1o | —0-0505 0.2462 | L e(s)ds (39)
0.2923  —3.3803 | Jt—Fa2(t) ’

nw <t < nw+ 0,

0, nw+d<t<(n+1)w.

e,

Il Il Il Il Il Il Il Il Il
5 10 15 20 25 30 35 40 45 50
Time t

Figure 1: shows the trajectories of solutions e;(¢) and ey(t) of the
cellular neural networks without hybrid intermittent feedback con-
trol (U(t) =0).

5 Conclusions

In this paper, we have investigated the exponential synchronization
of cellular neural networks with various activation functions and
mixed time-varying delays via hybrid intermittent feedback con-
trol. The interval time-varying delay function is not necessary to
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Time t

Figure 2: shows the trajectories of solutions e;(¢) and ey(t) of the
cellular neural networks with hybrid intermittent feedback control
(39).

be differentiable which allows time-delay function to be a fast time-
varying function. A new class of Lyapunov-Krasovskii functional
is constructed to new delay-dependent sufficient conditions for the
exponential synchronization of the error systems have been derived
by a set of LMIs without introducing any free-weighting matrices.
The hybrid intermittent feedback controller designed can guarantee
exponential stability of the error system. Simulation results have
been given to illustrate the effectiveness of the proposed method.
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