Abstract

Alzheimer's disease (AD), an age-related neurodegenerative disorder, is widely recognized as a serious public health problem. As lifespan increases, greater proportions of our population are affected by AD. β -amyloid (A β) plaque, one of the hallmarks of AD, is toxic to neurons and causes cell death in the brain. Oxidative stress is known to play an important role in AD, and there is strong evidence linking oxidative stress to Aeta. Thai dietary herbal plant "Tiew kon" (Cratoxylum formosum ssp. pruniflorum) is an indigenous Thai vegetable that is mostly grown in the Northeast of Thailand. Many reports suggested that the extract from C. formosum possesses antioxidant property. Previous studies demonstrated that the extract from C. formosum has protective effect against various conditions including acid/alcohol-induced gastric mucosal damage, and phenylhydrazine-induced oxidative stress and vascular injury. The purpose of this study was to investigate the protective effect of the twig extract from C. formosum against A β toxicity using the transgenic Caenorhabditis elegans (C. elegans) model. In the C. elegans model, human Aeta is expressed intracellularly in the body wall muscle. The expression and subsequent aggregation of $A\beta$ in the muscle lead to progressive paralysis. This study demonstrated that the extract significantly delayed A β -induced paralysis in the C. elegans model of Alzheimer's disease. Moreover, using a genetic approach, we found that DAF-16/FOXO transcription factor, heat shock protein-1 (HSF-1), and SKN-1 (Nrf2 in mammals) were required for the extract-mediated delayed paralysis. The extract ameliorated oxidative stress by reducing the level of H₂O₂, which appeared to account for the protective action of the extract. The extract possesses antioxidant activity against juglone-induced oxidative stress as it was shown to increase survival of the stressed worms. In addition, the extract decreased the expression of hsp-16.2 gene which was induced by thermal stress, indicating its ability to reduce cellular stress. The results from this study support the C. elegans model in the search for disease-modifying agents to treat AD and indicate the potential of the extract from C. formosum ssp. pruniflorum as a source for the development for anti-Alzheimer drug.

Keywords: Alzheimer's disease, Amyloid-eta, Cratoxylum formosum ssp. pruniflorum, Caenorhabditis elegans

บทคัดย่อ

โรคอัลไซเมอร์ เป็นโรคความเสื่อมของเซลล์ประสาทที่มีความสัมพันธ์กับอาย (Alzheimer's (age-associated disease) neurodegenerative disease) จัดเป็นโรคที่เป็นปัญหาสำคัญในระบบสาธารณสุขเนื่องจากปัจจุบันประชากรมีอายุยืนยาวขึ้น ทำให้จำนวน ของประชากรที่ป่วยด้วยโรคอัลไซเมอร์เพิ่มมากขึ้น ลักษณะพยาธิสภาพที่สำคัญของโรคอัลไซเมอร์ประกอบด้วยแผ่น พลัคอะไมลอยด์ (βamyloid (A $oldsymbol{eta}$) plaque) โดยอะไมลอยด์บีต้า (A $oldsymbol{eta}$) มีความเป็นพิษต่อเซลล์ประสาทและทำให้เซลล์ประสาทตาย ภาวะ oxidative stress มีบทบาทสำคัญในการเกิดโรคอัลไซเมอร์ และมีหลักฐานแสดงความสัมพันธ์ระหว่างภาวะ oxidative stress และ Aeta ต้นติ้วขน (Cratoxylum formosum ssp. pruniflorum) เป็นพืชท้องถิ่นที่ปลูกมากบริเวณภาคตะวันออกเฉียงเหนือของประเทศไทย มีรายงานหลาย ฉบับรายงานว่าสารสกัดจาก C. formosum มีฤทธิ์ต้านอนุมูลอิสระ โดยสารสกัดจาก C. formosum มีฤทธิ์ปกป้องต่อสภาวะต่างๆ เช่น acid/alcohol-induced gastric mucosal damage และ phenylhydrazine-induced oxidative stress และ vascular injury การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาฤทธิ์ปกป้องของสารสกัดจากกิ่งของ *C. formosum* ต่อพิษที่เกิดจาก A $oldsymbol{eta}$ ในโมเดล transgenic Caenorhabditis elegans (C. elegans) โดยในโมเดล C. elegans นี้มีการใส่ยืน Aeta ของมนุษย์และเหนี่ยวนำให้มีการแสดงออกของยืน AB ที่บริเวณเซลล์กล้ามเนื้อ ทำให้มีลักษณะที่แสดงออกคือ progressive paralysis การศึกษานี้พบว่าสารสกัดจากกิ่งของ C. formosum สามารถยับยั้งพิษของ Aeta โดยชลอการ paralysis นอกจากนี้ จากการใช้วิธีการทางพันธกรรม (genetic approach) คณะผัวิจัยพบว่า DAF-16/FOXO transcription factor, heat shock protein-1 (HSF-1) และ SKN-1 มีความสำคัญต่อฤทธิ์ในการปกป้องนี้ สารสกัดลด oxidative stress โดยการลดระดับของ H_2O_2 นอกจากนี้สารสกัดสามารถลด oxidative stress ที่เกิดจากการเหนี่ยวนำด้วย juglone และ ลดการแสดงออกของยีน hsp-16.2 ซึ่งถูกเหนี่ยวนำให้แสดงออกด้วยการทำ heat shock ผลจากการศึกษานี้สนับสนุนการใช้ C. elegans เป็นโมเดลในการค้นหาสารที่มีฤทธิ์เป็น disease-modifying agents ในการรักษาโรคอัลไซเมอร์และสารสกัดที่ได้จากกิ่งของ C. formosum spp. pruniflorum มีแนวโน้มที่จะเป็นแหล่งของสารที่จะนำไปพัฒนาเป็นยารักษาโรคอัลไซเมอร์

คำสำคัญ: โรคอัลไซเมอร์ (Alzheimer's disease), อะไมลอยด์บีต้า(Amyloid-eta), Cratoxylum formosum ssp. pruniflorum, Caenorhabditis elegans