

Abstract

Project Code: MRG055

Project Title: Evaluation of antisense oligomer as a molecular treatment for Spinal Muscular Atrophy in mouse models of SMA

Investigator: Dr. Chalermchai Mitprant

E-mail Address: chalermchai.mit@mahidol.ac.th

Project Period: July 2012-June 2014

Spinal muscular atrophy (SMA) is caused by loss of the Survival Motor Neuron 1 (*SMN1*) gene, resulting in reduced SMN protein. Humans possess the additional *SMN2* gene (or genes) that does produce low level of full-length SMN, but cannot adequately compensate for loss of *SMN1* due to aberrant splicing. The majority of *SMN2* gene transcripts lack exon 7 and the resultant *SMNΔ7* mRNA is translated into an unstable and nonfunctional protein. Splice intervention therapies to promote exon 7 retention and increase amounts of full-length *SMN2* transcript offer great potential as a treatment for SMA patients. Several splice silencing motifs in *SMN2* have been identified as potential targets for antisense oligonucleotide mediated splice modification. A strong splice silencer, (ISS-N1) is located downstream of exon 7 in *SMN2* intron 7. Antisense oligonucleotides targeting this motif (PMO-10-29) promoted *SMN2* exon 7 retention in the mature *SMN2* transcripts, with increased SMN expression detected in SMA fibroblasts. We systematically optimised the coordinate of AO (-10-34) that promote exon 7 retention in SMA fibroblast cultures.

We wish to confirm efficiency of this phosphorodiamidate morpholino oligomer (PMO) in mice model of SMA. Single injection of PMO(-10-34) or control were intracerebroventricularly injected into SMA mice and SMA carrier mice. Single ICV injection of PMO (-10-34) can effectively enhanced expression of FL-SMN in SMA carrier mice. Furthermore, the PMO (-10-34) gives the longest survival reported to date after a single dosing by ICV.

Keywords: Spinal muscular atrophy, antisense oligomer, Neuromuscular disorders

บทคัดย่อ

รหัสโครงการ: MRG055

ชื่อโครงการ: การทดลองใช้ antisense oligomer เพื่อเพิ่มระดับ โปรตีน SMN ในสัตว์ทดลอง

ชื่อนักวิจัย: เฉลิมชัย มิตรพันธ์

อีเมล์: chalermchai.mit@mahidol.ac.th

ระยะเวลาดำเนินงาน: กรกฎาคม 2554 - มิถุนายน 2556

โรคกล้ามเนื้อฝ่อเล็บ spinal muscular atrophy (SMA) เกิดจากการขาดหายไปของยีน survival motor neuron 1 (SMN1) มีผลให้ผู้ป่วยสร้างโปรตีน SMN ลดลง มนุษย์มียีน SMN สองซุดกล้าวคือ SMN1 และ SMN2 ทว่า yin SMN2 ผลิตโปรตีน SMN (FL-SMN) ได้ในระดับต่ำ จึงไม่สามารถชดเชยการขาดหายไปของ yin SMN1 mRNA ที่ถูกสร้างจาก yin SMN2 ส่วนใหญ่จะไม่มี exon 7 (SMN Δ 7) เป็นผลให้โปรตีน SMN ที่ผลิตได้ไม่เสถียรถูกทำลาย ได้เร็วกว่าปกติ แนวทางการรักษาระดับโมเลกุลแบบหนึ่งของโรคนี้คือการใช้สาร antisense oligomer (AO) จับ pre-mRNA ของ SMN2 บริเวณ intron7 (ISS-N1) เพื่อเปลี่ยนการแสดงออกของ SMN2 mRNA ให้สร้างโปรตีน SMN (FL-SMN) สาร AO (PMO(-10-29)) ได้ถูกทดสอบสามารถเพิ่มปริมาณ FL-SMN ในเซลล์เนื้อเยื่อเกี่ยวพันจากผู้ป่วย SMA

โครงการนี้ทำการทดสอบประสิทธิภาพของสาร AO (PMO(-10-34)) โดยการฉีดเข้าทางโพรงสมอง (intracerebroventricular injection) ของหนูที่ป่วยเป็น SMA (SMA mice) และหนูพ้าหะ SMA (SMA carrier mice) ผลที่ได้คือสาร PMO(-10-34) สามารถเพิ่มปริมาณ FL-SMN ใน SMA carrier และสามารถยืดอายุเฉลี่ยของหนู SMA mice