บทคัดย่อ

โครงการวิจัยเลขที่ : MRG5580104

ชื่อโครงการ: การเตรียมและสมบัติของยางธรรมชาติดัดแปรด้วยสารประกอบโบรอนสำหรับวัสดุหน่วง ไฟชนิดใหม่

ชื่อนักวิจัย: ดร.ปุญญานิช อินทรพัฒน์ มหาวิทยาลัยสงขลานครินทร์

E-mail Address: punyanich@hotmail.com

ระยะเวลาโครงการ: 29 เดือน (2 กรกฎาคม 2555 ถึง 2 ธันวาคม 2557)

ยางธรรมชาติดัดแปรโมเลกุลด้วยกรดบอริก (Boron supported natural rubber, BSNR) เป็น อนุพันธ์ของยางธรรมชาติที่มีอะตอมของโบรอนอยู่ในโครงสร้าง สามารถเตรียมได้โดยผ่านปฏิกิริยา แทนที่ (Substitution reaction) ของไดออลในโมเลกุลยางธรรมชาติจากการเปิดวงแหวนอิพอกไซด์กับ กรดบอริก โดยศึกษาอัตราส่วนระหว่างกรดบอริกต่อไดออล พบว่า การใช้อัตราส่วนโดยโมลของกรด บอริกต่อไดออล เท่ากับ 1.0 ที่อุณหภูมิ 60°C เวลาทำปฏิกิริยา 72 ชั่วโมง ให้ระดับการแทนที่ของ สารประกอบโบรอนในโมเลกุลยางสูงที่สุด เท่ากับ 18 เปอร์เซ็นต์โดยโมล จากนั้นนำยางธรรมชาติที่ดัด แปรโมเลกุลด้วยกรดบอริกที่มีปริมาณโบรอนแตกต่างกัน 3 ระดับ คือ 18, 15 และ 4 เปอร์เซ็นต์โดยโมล โดยให้ชื่อเรียกว่า BSNR-18, และBSNR-4 ศึกษาสมบัติทางกายภาพและเคมี ได้แก่ BSNR-15 ปริมาณธาตุโบรอน ความหนืด อุณหภูมิคล้ายแก้วและอุณหภูมิการสลายตัวที่อัตราการสลายตัวสูงสุด พบว่า สมบัติเหล่านี้มีค่าเพิ่มขึ้นตามปริมาณโบรอนที่มีอยู่ในยางธรรมชาติที่ดัดแปรโมเลกุล สำหรับ การศึกษาในขั้นตอนต่อไป ยาง BSNR-15 และ BSNR-18 จะถูกนำมาศึกษาเนื่องจากมีธาตุโบรอนใน ปริมาณสูง สำหรับการศึกษาอิทธิพลของระบบวัลคาในซ์ ได้แก่ ระบบกำมะถัน ระบบเปอร์ออกไซด์ และ ระบบฟีนอลิค ที่มีต่อสมบัติต่างๆของยาง BSNR พบว่า ค่าทอร์คสูงสุด และค่าผลต่างทอร์คของยาง BSNR-15 ที่วัลคาในซ์ด้วยระบบกำมะถันมีค่าสูงกว่าและมีระยะเวลาสกอชยาวกว่า ในขณะที่เวลาวัลคา ในซ์สั้นกว่าระบบเปอร์ออกไซด์และฟีนอลิก เรซิน ตามลำดับ และมีดัชนีอัตราการวัลคาในซ์เร็วที่สุด รองลงมาคือระบบเปอร์ออกไซด์ และฟีนอลิค เรซิน ตามลำดับ นอกจากนี้ การวัลคาในซ์ยาง BSNR ้ด้วยระบบเปอร์ออกไซด์ให้ค่ามอดูลัสและความแข็งสูงที่สุด แต่มีค่าความทนต่อแรงดึงและความสามารถ ในการยืดจนขาดต่ำที่สุด ในขณะที่ระบบกำมะถันและฟืนอลิค เรซิน ให้สมบัติด้านแรงดึงไม่แตกต่างกัน เมื่อศึกษาอิทธิพลของปริมาณโบรอนในยาง BSNRs ได้แก่ BSNR-18 และ BSNR-15 ที่มีต่อลักษณะ

การวัลคาในซ์และสมบัติเชิงกลโดยวัลคาในซ์ด้วยระบบกำมะถัน พบว่า ยางทั้ง 2 ชนิด มีเวลาสกอชและ เวลาวัลคาในซ์ไม่แตกต่างกัน ในขณะที่ค่าทอร์คต่ำสุด ค่าทอร์คสูงสุดและผลต่างค่าทอร์คของยาง BSNR-18 สูงกว่ายาง BSNR-15 ส่วนค่ามอดูลัสและความทนต่อแรงดึง รวมทั้งความแข็งจะแปรผัน โดยตรงกับปริมาณโบรอนที่มีอยู่ในยาง BSNR สำหรับสมบัติความต้านทานต่อการติดไฟของยาง BSNR-18 เปรียบเทียบกับยาง ENR-50 และยาง ENR-50 ที่ใส่สารอลูมิเนียมไตรไฮเดรต ปริมาณ 1 phr ซึ่งแสดงผลในเทอมของ Limit oxygen index (LOI) พบว่า ยาง BSNR-18 ให้ค่า LOI เท่ากับ 26 สูงเทียบเท่ากับ ENR-50 ที่ใส่สารอลูมิเนียมไตรไฮเดรต ส่วนยาง ENR-50 ที่ไม่ใส่สารอลูมิเนียมไตรไฮเดรต ส่วนยาง ENR-50 ที่ไม่ใส่สารอลูมิเนียม-ใตรไฮเดรตมีค่า LOI ต่ำสุด เท่ากับ 20 สำหรับความแข็งและสมบัติเชิงกลของยาง BSNR-18 พบว่า มี ค่าสูงกว่ายาง ENR-50 ที่ผสมและไม่ผสมอลูมิเนียมไตรไฮเดรต ยกเว้นความสามารถในการยึดจนขาดมี ค่าต่ำกว่า ส่วนยาง ENR-50 ที่ผสมและไม่ผสมอลูมิเนียมไตรไฮเดรต มีสมบัติเชิงกลและความแข็งที่ไม่ แตกต่างกัน

คำหลัก: ยางธรรมชาติ; กรดบอริก; สารหน่วงไฟ

Abstract

Project Code: MRG5580104

Project Title: A novel boron supported natural rubber (BSNR) for flame retardant material: preparation

and its properties

Investigator: Dr. Punyanich Intharapat Prince of Songkla University

E-mail Address: punyanich@hotmail.com

Project Period: 29 months (2 July 2012 – 2 December 2014)

Abstract

Boron supported natural rubber (BSNR) was a rubber derivative containing boron atom in its structure. It can perform via substitution reaction of the hydroxyl hydrogen from diol in rubber molecules, which was generated from ring opening of epoxide ring, and boric acid. The effect of mole ratio of [boric acid]/[diol unit] was studied, and it was found that the use of [boric acid]/[diol unit] = 1.0 under reaction temperature and time of 60°C and 72 hr, showed the maximum level of boron in rubber molecule of 18 %mole. respectively, The chemical modification of natural rubber introducing boric acid in its structure with different 3 levels of 18, 15 and 4 %mole was coded as BSNR-18, BSNR-15 and BSNR-4, respectively. They was studied physical and chemical properties such as boron element quantity, viscosity, glass transition temperature and maximum degradation temperature, which these properties increased with increasing boron quantity in BSNR. For further studies, BSNR-15 and BSNR-18 was selected to investigate because they contained effective high level of boron. BSNR-15 compounding was prepared for investigation of vulcanization systems (i.e., sulphur, peroxide, and phenolic resin). It was found that maximum torque and torque difference using sulphur system were higher and longer scorch time than other systems while cure time was shorter, and cure rate index (CRI) was higher than peroxide and phenolic resin system, respectively.

Besides, vulcanization of BSNR using peroxide gave the highest modulus and hardness. However, tensile strength and elongation at break was the lowest value. While, sulphur and phenolic resin systems gave similar tensile properties. The effect of boron content in BSNRs (i.e., BSNR-18 and BSNR-15) on cure characteristic and mechanical properties using sulphur system was found that both types of BSNRs had similar scorch time and cure time while minimum torque, maximum torque and torque difference of BSNR-18 were higher than BSNR-15. In addition, modulus, tensile strength and hardness were directly depended on boron content in BSNRs. For flame resistance property of BSNR-18 comparing with ENR-50 and ENR-50 added 1 phr of aluminium trihydrate represented in term of LOI value was found that LOI of BSNR-18 was 26 which was comparable to ENR-50 added aluminium trihydrate. While, LOI of ENR-50 without aluminium trihydrate was the lowest value of 20. Hardness and mechanical properties of BSNR-18 were higher than ENR-50 and ENR-50 added aluminium trihydrate excepting elongation at break which was lower. For ENR-50 added and ENR-50 without added aluminium trihydrate showed similar mechanical properties and hardness.

Keywords: Natural rubber; Boric acid; Flame retardant