

รายงานวิจัยฉบับสมบูรณ์

การใช้ไซโตรีคีโนอินดิวซ์คิลเลอร์เซลล์ในการรักษาโรคหอบหืด APPLICATION OF CYTOKINE-INDUCED KILLER CELLS FOR TREATMENT OF ALLERGIC ASTHMA: A NOVEL IMMUNOTHERAPY FOR ALLERGIC ASTHMA

โดย ดร.นพ.กิติพงษ์ สุนทรากา และคณะ

กรกฎาคม 2559

สัญญาเลขที่ MRG5580129

รายงานวิจัยสนับสนุนบูรณา

การใช้ไซโตไนโอนดิวซ์คิลเลอร์เซลล์ในการรักษาโรคหอบหืด

APPLICATION OF CYTOKINE-INDUCED KILLER CELLS FOR TREATMENT OF ALLERGIC ASTHMA: A NOVEL IMMUNOTHERAPY FOR ALLERGIC ASTHMA

โดย อาจารย์ ดร.นพ.กิติพงศ์ สุนทรากา และคณะ
ภาควิชาเภสัชวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล
มหาวิทยาลัยมหิดล

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัยและต้น
สังกัด

(ความเห็นในรายงานนี้เป็นของผู้วิจัย
สกว.และต้นสังกัดไม่จำเป็นต้องเห็นด้วยเสมอไป)

คณะผู้วิจัย

1. ดร.นพ.กิติพงศ์ สุนทราภา (หัวหน้าโครงการ)
อาจารย์ ภาควิชาเภสัชวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล
2. พรรณาดี เปลืองนุช
นักวิทยาศาสตร์
3. Sunita Timalsena
นักศึกษา

ที่ปรึกษาโครงการ

รศ.ดร.นพ.อติศักดิ์ วงศ์ชารศิลป์

อาจารย์ ภาควิชาเภสัชวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

CONTENTS

	Page
Abstract (Thai)	
Abstract (English)	
Chapter1: Introduction	1
Chapter2: Objectives	4
Chapter3: Materials and Methods	
3.1 Animals and ethic statement	5
3.2 Reagents	5
3.3 Cell line culture	5
3.4 Generation of CIK cells	5
3.5 Flow cytometry analysis	6
3.6 Assessment of cytotoxicity of CIK cells	7
3.7 Asthmatic mouse model	7
3.8 Airway inflammation measurements	8
3.9 Th2 cytokines and IgE levels measurements in serum	9
3.10 Lung histological analysis	9
3.11 Statistical analysis	9
Chapter4: Results	
4.1 CD28 costimulation effectively increases total cell numbers	10
4.2 CD28 costimulation increases the percentage of CIK cells in culture	11
4.3 CD28 costimulation can potentiate cytotoxicity of CIK cells against tumor cells	12
4.4 CD28 costimulation increases the production of TH1 cytokines and cytolytic granules	12
4.5 CIK cells could effectively reduce eosinophilic inflammation in the asthmatic lungs	15
4.6 Th2-based activity was suppressed in asthmatic mice treated with CIK cells	17
4.7 Treatment with CIK cells inhibited inflammatory cell infiltration and goblet cell hyperplasia in the asthmatic lungs	18
Chapter5: Discussion	22
Chapter6: Conclusion	25
References	26
Appendices	32

บทคัดย่อ

สัญญาเลขที่: MRG5580129

Project Title: งานวิจัยการใช้ไซโตไนโคน์อินดิวซ์คิลเลอร์เซลล์ในการรักษาโรคหอบหืด

หัวหน้าโครงการ: อาจารย์ ดร.นพ.กิติพงศ์ สุนทรากา และคณะ
ภาควิชาเภสัชวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล
มหาวิทยาลัยมหิดล

อีเมล: kitipong.soo@mahidol.ac.th

ระยะเวลาโครงการ: 2 กรกฎาคม 2555 – 1 กรกฎาคม 2559

ปัจจุบันมีการรายงานถึงการใช้ไซโตไนโคน์อินดิวซ์คิลเลอร์เซลล์ในการรักษาโรคหอบหืดมา
ยาวนานกว่า 20 ปี ไซโตไนโคน์อินดิวซ์คิลเลอร์เซลล์แสดงคุณสมบัติของเซลล์เม็ดเลือดขาวทั้งชนิด NK cells และ Th1 cells ซึ่งการทดลองนี้จะอาศัยคุณสมบัติของ Th1 cells เพื่อไปปรับสมดุลของระบบภูมิคุ้มกันในผู้ป่วยโรคหอบหืด ซึ่งมีสาเหตุมาจากการตอบสนองต่อสิ่งกระตุ้นของเซลล์เม็ดเลือดขาวชนิด Th2 cells ที่มากเกินไป การเพาะเลี้ยงไซโตไนโคน์อินดิวซ์คิลเลอร์เซลล์ในหลอดทดลอง โดยทำการกระตุ้นเซลล์จากต่อมไทมัสด้วย interferon gamma (IFN- γ), anti-CD3 monoclonal antibody และ interleukin (IL)-2 ให้พัฒนาไปเป็นไซโตไนโคน์อินดิวซ์คิลเลอร์เซลล์ แล้วนำไปฉีดเข้าหูมีส์ที่อยู่ระหว่างการกระตุ้นด้วยโปรตีนไข่ขาวให้เป็นโรคหอบหืด ผลการทดลองพบว่าไซโตไนโคน์อินดิวซ์คิลเลอร์เซลล์สามารถลดการอักเสบของหลอดลมได้ โดยพับการลดลงของ eosinophil ในน้ำล้างหลอดลมถุงลมปอด (Bronchoalveolar lavage fluid), ลดระดับ Th2 cytokines (IL-5, IL-13) ในน้ำเลือด, ลดการสะสมของเซลล์เม็ดเลือดขาวและเซลล์ที่ทำหน้าที่เป็นต่อมหลังเมือก (goblet cells) รอบๆ หลอดลม การศึกษานี้เป็นครั้งแรกในการประยุกต์ใช้ไซโตไนโคน์อินดิวซ์คิลเลอร์เซลล์ในการรักษาโรคหอบหืดจากภูมิแพ้

คำหลัก: ไซโตไนโคน์อินดิวซ์คิลเลอร์เซลล์, โรคหอบหืดจากภูมิแพ้, น้ำล้างหลอดลมถุงลมปอด

Abstract

Project Code: MRG5580129

Project Title: Application of cytokine-induced killer cells for treatment of allergic asthma: a novel immunotherapy for allergic asthma.

Investigator: Dr.Kitipong Soontrapa

Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University

E-mail Address: kitipong.soo@mahidol.ac.th

Project Period: 2 July 2012 – 1 July 2016

The effectiveness of CIK cells for treatment of cancers have long been appreciated for more than two decades. Here, we report for the first time that CIK cells can be used to treat allergic asthma. Adopting from an established protocol for culturing CIK cells with some modifications, we generated CIK cells *ex vivo* from mouse T cells, and injected them intravenously into ovalbumin-induced asthmatic mice. Their curability was examined by evaluating bronchoalveolar lavage cellularity, Th2 cytokines levels and lung histology, all of which are important parameters for determining asthmatic severity. Interestingly, without any obvious adverse effects, to the degree comparable to those treated with a corticosteroid, asthmatic mice treated with CIK cells showed significant reductions in all the parameters, eosinophilic inflammation of the lungs (BALF cellularity), Th2 cytokines (IL-5, IL-13) levels in the serum, inflammatory cell infiltration around pulmonary arterioles, and mucus production in the airways. Thus, our study provides a first proof of applying CIK cells in the treatment of allergic asthma.

Keywords: Cytokine-induced killer cells, Allergic asthma, Bronchoalveolar lavage fluid, Ovalbumin-induced asthmatic mice

CHAPTER 1

INTRODUCTION

Cytokine Induced Killer (CIK) cells, reported for the first time by Schmidt-Wolf *et al.*, (1) are *ex vivo* expanded T cells that display phenotypic and functional characteristics of both natural killer (NK) cells and cytotoxic T cells (2). There are two main subsets of T cells in the human CIK cell culture, $CD3^+ CD56^+$ and $CD3^+ CD56^-$ cells (for murine CIK cell culture: $CD3^+ DX5^+ / CD3^+ NK1.1^+$ and $CD3^+ DX5^- / CD3^+ NK1.1^-$) (3). Interestingly, the double positive cells are mainly $CD8^+$ T cells with a CD1d-independent, major histocompatibility complex (MHC)-unrestricted cytolytic activity against tumor targets (4). Upon natural killer group 2 member D (NKG2D) recognition, CIK antitumor activity is mediated through the release of a variety of cytotoxic mediators including perforin, granzyme, interferon-gamma (IFN- γ) and tumor necrosis factor-alpha (TNF- α) (5). Besides anti-cancer activity, CIK cells also reduced graft-versus-host disease in an animal study (6). At present, CIK cells have proven to be safe for adoptive transfer, and are widely used as immunotherapy for various cancers including lymphoma, metastatic renal cancer, hepatocellular carcinoma and relapsing hematological malignancies (7). Almost all of the studies on CIK cells generated from human PBMC have focused on their antitumor effects (8). However, other applications of CIK cells and full elucidation of their differentiation process remain elusive. Moreover, murine CIK cells have been used for pre-clinical research, mostly adoptive immunotherapy for cancers (9). Again, the expansion of murine CIK cells is problematic for preclinical studies as the cells could be expanded for a brief time; hence, has to be infused by 14 days of culture (9). A variety of mouse models can provide clues to ascertain their usefulness in other diseases, so it would be very beneficial to generate murine T cell-derived CIK cells under optimal conditions.

Often the standard human CIK cell culture protocol is used to obtain murine CIK cells from various organs including the thymus, spleen and lymph nodes (4, 6, 9). As it has already been proven that the major effector population of human CIK cells, i.e., $CD3^+ CD56^+$, is differentiated from a $CD3^+ CD56^-$ population, i.e., T cells (10). As the thymus contains more than 90% T cells, the use of murine thymocytes for CIK cell generation can eliminate the tedious and time-consuming T cell isolation process. Previously, Baker *et al.* also used thymocytes to generate CIK cells; however the yield of CIK cells from the thymus is relatively low, unlike that of the spleen (9).

Moreover, the well-established protocol to obtain human CIK cells derived from peripheral blood mononuclear cells (PBMC) includes signaling through rIFN- γ , anti-CD3 mAb and rIL-2 (11). IFN- γ administered at the start of culture increases T cell cytotoxicity and facilitates the acquisition of a T-helper (Th) 1 phenotype (12). Next, rIL-2 further promotes proliferation, survival and differentiation of T cells (13). Finally, anti-CD3 monoclonal antibody (mAb) supplied in the culture 24 hours (h) after the activation with rIFN- γ acts via T cell receptor (TCR) signaling and provides the first fundamental signal for cell activation (14). In addition to TCR signaling, T cells require a second signal for full activation, and enhanced proliferation (15). The additive signal provided by CD28 costimulation has been shown to enhance T cell proliferation (16). The CD28 costimulatory signal in T and NKT cells is well known to act synergistically with the first TCR-derived signal (17). Moreover, the CD28 costimulatory signal was shown to enhance the expression of chemokine receptors by CIK cells. Those CIK cells showed increased trafficking into the tumor site (18). These observations demonstrated the importance of CD28 costimulatory signal in CIK cell activity. However, whether CD28 costimulatory signaling increases CIK cell proliferation and enhances cytotoxicity against tumor cells remains elusive. Also, whether enhanced cytotoxicity is due to increased number of CIK cell trafficking or their absolute potentiation of their cytotoxic ability is not clear.

Here, we generated murine thymocytes derived CIK cells in the presence or absence of the CD28 costimulatory signal, and monitored the phenotypeduring the process of culture. Then, we measured the cytotoxicity of hence generated CIK cells against murine leukemic cells. Finally, we investigated for the production of cytotoxic granules and proinflammatory cytokines to determine the potential mechanisms enhancing cytotoxicity of CIK cells by the additional CD28 costimulatory signals. Interestingly, CD28 costimulatory signaling effectively enhanced CIK cell proliferation and potentiated their cytotoxic activity against tumor cells.

Allergic asthma is a chronic inflammatory disease of the airways, one of the major public health concerns now a day. Its pathophysiology is driven mainly by T helper type2 (Th2) immune responses. In response to allergen inhalation, the Th2 cells proliferate and secrete cytokines (Interleukin (IL)-4, IL-5, IL-9 and IL-13). The role of IL-4 is activating plasma cells to produce immunoglobulin (Ig) E, while IL-5 regulates eosinophil proliferation, differentiation and histamine releasing. Moreover, IL-13 production by Th2 cells effects on induction of goblet cells and airway hyper responsiveness. Th2 cytokines action was causing eosinophilia airway inflammation, goblet cell hyperplasia, mucus secretion, airway hyperresponsiveness (AHR) and when chronic, airway remodeling (19-21). At present, using

bronchodilators and corticosteroids is a major option for treatment of allergic asthma. These drugs can cause varies adverse effects, such as osteoporosis, metabolic imbalances, glaucoma, and immunosuppression (22-24). Accordingly, it is very beneficial to fine a new therapeutic approach for millions of asthmatic patients.

The Th1/Th2 balance is very important and may define whether the immune response is appropriate or reach to severe immunopathologies. Overexpression of Th1 cytokines are involved in delay-type hypersensitivity reactions and autoimmune diseases. Conversely, allergic disorders dependent on regulation of Th2 phenotypes (25, 26). One of the novel treatments allergic asthma is cell-based immunotherapy. Previous preclinical studies with adoptive transfer of IFN- γ -producing cells into antigen-sensitized recipient mice protected from airway eosinophilia after allergen challenge. Certainly, when transferred CD4⁺ Th1 cells into recipient mice, these cells inhibited Th2-induced eosinophilia and mucus production through secretion of IFN- γ , whereas IFN- γ knockout mice provided eosinophilia (27). Anyway, other studies showed that adoptively transferred Th1 cells might motivate an inflammatory response due to the proinflammatory properties of IFN- γ (28, 29). However, application of Th1 cell to treat allergic asthma is still a matter of debates. Recently, natural killer (NK) cells are reported to play a role in resolution of airway inflammation by clearing eosinophil and antigen-specific T cells (30, 31). Since, there are various subtypes of NK cells, it is still in controversy how these different subtypes and their respective cytokines/chemokines play role in promotion/cessation of allergic asthma (32, 33).

Studies of cytokine-producing profile of CIK cells support the hypothesis that CIK cells have the ability to treat allergic asthma. Indeed, patient severe asthma display significantly reduced production of IFN- γ in response to antigen when compare to normal individuals (34, 35). The allergy resolution not to be related with a reduction cytokines produce by Th2 cells, but with normalization of IFN- γ levels (36).

In the present study, to investigate the potential of CIK cells as a treatment in allergen-induced asthma mouse model by examining the total inflammatory cells and eosinophil in bronchoalveolar lavage fluid (BALF), Th2 cytokines and IgE levels in serum, inflammatory cells infiltration and goblet cells hyperplasia in lung. Altogether, this study can also exhibit whether application of CIK cells could be beneficial for treatment of allergic asthma.

CHAPTER 2

OBJECTIVES

- 2.1 To generate the effective and reproducible protocol for murine CIK cells generation and function.
- 2.2 To ascertain a novel effective immunotherapy of allergic asthma using the OVA-induced asthma mouse model.
- 2.3 To examine effectiveness and adverse effects of applying CIK cells to treat allergic asthma.
- 2.4 To compare effectiveness of CIK cells with corticosteroids in treating asthma in mice.

CHAPTER 3

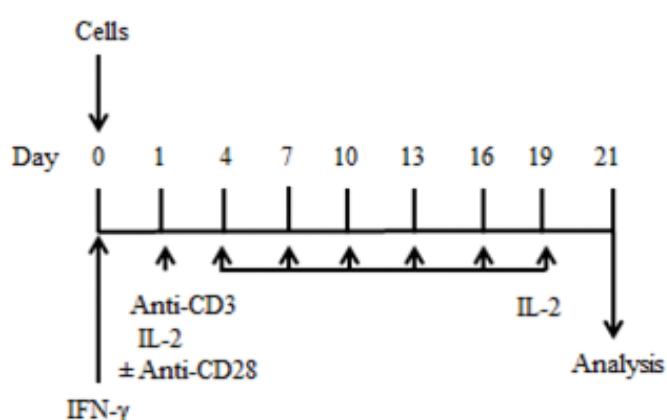
MATERIALS AND METHODS

3.1 Animals and ethic statement

5-6 weeks old male mice on the C57BL/6 background were purchased from National Laboratory Animal Center (Mahidol University, Bangkok, Thailand). The mice were housed in a temperature-controlled environment on 12 hours (h) light-dark cycles with unrestricted access to food and water. All experimental were performed in accordance with the guidelines of Mahidol University and the Office of the National Research Council of Thailand (NRCT) and approved by the Committee on Animal Care and Use of Siriraj hospital (SiACUC).

3.2 Reagents

The following reagents were used in this study: Roswell Park Memorial Institute medium (RPMI 1640) and fetal bovine serum (FBS) (Gibco Inc., Life Technologies, Carlsbad, CA, USA); mouse rIFN- γ (eBioscience, San Diego, CA, USA); anti-mouse CD3e mAb, anti-CD28 mAb and mouse rIL-2 (BioLegend, San Diego, CA, USA); Phorbol 12-myristate 13-acetate (PMA) and ionomycin (Sigma-Aldrich, St. Louis, MO, USA); BrefeldinA solution (Catalogue no 347688, BD Biosciences, San Jose, CA, USA), BD Cytofix/Cytoperm (BD Biosciences, San Jose, CA, USA); fluorescein isothiocyanate (FITC)-labeled anti-mouse Thy1.2 mAb, phycoerythrin (PE)-labeled anti-mouse IFN- γ mAb, PE-labeled anti-mouse TNF- α mAb, PE-labeled anti-mouse granzyme-B mAb and PE-labeled anti-mouse perforin mAb (eBioscience); FITC-labeled anti-mouse CD8 mAb and PE-labeled anti-mouse NK1.1 mAb (BioLegend).


3.3 Cell line culture

The mouse T lymphoma cell line (YAC-1) was a kind gift from Dr. A. Wongkajornsilp (Mahidol University, Bangkok, Thailand). YAC-1 cells were cultured in RPMI 1640 supplemented with 10% FBS and antibiotics (100 μ g/mL streptomycin and penicillin G 100 IU/mL) at 37°C in a humidified atmosphere with 5% CO₂.

3.4 Generation of CIK cells

CIK cells were generated as previously described¹ with slight modifications. Briefly, single cell suspensions were prepared from the thymus (3 mice per experiment). The cells were cultured in RPMI 1640 containing 10% heat-inactivated FBS, 100 μ g/mL

streptomycin, 100 IU/mL penicillin G and 50 μ M 2-mercaptoethanol in the presence of 1000 IU/mL mouse rIFN- γ at 37°C in a humidified atmosphere with 5% CO₂ for 24 h. Next, the cells were transferred to a dish pre-coated with 50 ng/mL anti-mouse CD3e mAb, and cultured with 300 IU/mL mouse rIL-2 in the presence or absence of 2 μ g/mL anti-mouse CD28 mAb. The concentration of anti-CD28 mAb was chosen based on previous reports (19). These cells were maintained at a density of 1 \times 10⁶ cells/mL, and medium (supplemented with 50 IU/mL mouse rIL-2) renewal was done every 2 to 3 days to ensure availability of nutrients for cell culture. After 3 weeks of culture, the cells were harvested and monitored by trypan blue staining. Moreover, thymocytes at day 0 were used as control cells (Figure 1).

Figure1. Schematic protocol for generation of thymocytes-derived murine CIK cells. Thymocytes from C57BL/6 mice were suspended at a density of 1 \times 10⁶ cells/ml in a complete RPMI culture medium supplemented with 1000 U/mL recombinant mouse IFN- γ on the first day of culture and incubated at 37°C in a 5% CO₂ incubator. After 24 hours, cells were transferred to dish coated with 50 ng/mL of anti-CD3 MAb and 300 IU/mL recombinant mouse IL-2 was added. Every 3 days, complete RPMI was added supplemented with IL-2 (50 IU/mL). On day 21, cells were collected and used for further assays.

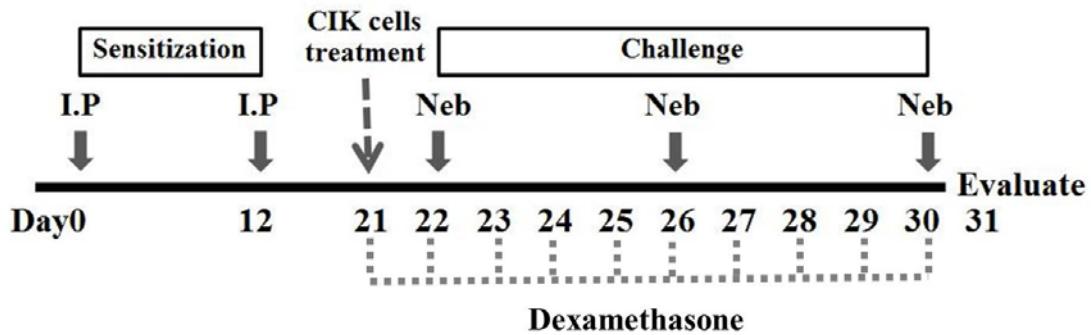
3.5 Flow cytometry analysis

The phenotypes of cells were determined by staining for both cell surface and intracellular markers on day 21. For cell surface markers, FITC-conjugated antibodies against CD8 or Thy1.2, and PE-conjugated antibody against NK1.1 were used. Briefly, one million cells (Control cells, or CIK cells) were washed once with phosphate buffered saline (PBS) and re-suspended in 100 μ L PBS containing 1% FBS (FACS buffer). Then, the cell suspension was incubated with specific antibodies for 30 min in the dark on ice or at 4°C,

washed twice with PBS and re-suspended in 100 μ L FACS buffer. Analysis was performed using a flow cytometer (FACSCalibur, BD Biosciences). Data were analyzed using Flowing Software 2.5 (Cell Imaging Core, Turku Centre for Biotechnology, Turku, Finland).

For intracellular cytokine (IFN- γ and TNF- α) staining, cells were stimulated for 24 h with 50 ng/mL PMA and 500 ng/mL ionomycin. Brefeldin A solution at final concentration of 10 μ g/mL was added 4-6 hour prior to harvesting the cells. Subsequently, the harvested cells were monitored for cell death by trypan blue staining. The cells were fixed and permeabilized with BD Cytofix/Cytoperm according to the manufacturer's instructions, and then stained with PE-conjugated mAb against IFN- γ or TNF- α . For the intracellular cytolytic granule (granzyme B and perforin) stainings, the cells were only permeabilized using BD Cytofix/Cytoperm. These cells were then stained with PE-conjugated mAb against granzyme B or perforin. Cells were finally washed with PBS, resuspended in FACS buffer and immediately analyzed by flow cytometry. In parallel, thymocytes (day 0) stimulated with PMA/Ionomycin (24 hours) were similarly stained and analyzed (Control).

3.6 Assessment of cytotoxicity of CIK cells


The method for assessment of the cytotoxicity of CIK cells was adapted from Wongkajornsilp *et al.*, 2013. Briefly, the tumor-killing ability of control cells (thymocytes cultured in media only) and CIK (day 21) effector cells was assessed against YAC-1 target cells. YAC-1 cells (2×10^4 cells/well) prepared in serum-free RPMI were seeded (40 μ L/well) in a 96-black well/clear bottom plate, and were co-cultured with the effector cells (40 μ L/well) at the desired effector to target (E:T) ratios of 3.125:1, 6.25:1, 12.5:1 and 25:1 for 4 h at 37°C in a humidified atmosphere with 5% CO₂. Propidium iodide (PI) solution (20 μ L/well of 10 μ g/mL PI in PBS) was added. After incubation for 1 h, fluorescence intensity was assessed at 482 nm excitation wavelength and 630 nm emission wavelengths using the Spectra Max M5 microplate reader (Molecular Device, Sunnyvale, CA, USA). The % cytotoxicity was calculated using the following formula:

$$\% \text{ Cytotoxicity} = 100 (FI_x - FI_0) / (FI_{100} - FI_0)$$

where, FI_x represents the fluorescence intensity emitted from the wells containing the target cells co-cultured with the effector cells at various E:T ratios (3.125:1, 6.25:1, 12.5:1 and 25:1). FI_0 represents the fluorescence intensity emitted from the wells containing the target cells only. FI_{100} represents the fluorescence intensity emitted from the wells containing the target cells incubated with 20 μ L/well of 0.04 N isopropanol.

3.7 Asthmatic mouse model

Mice were arbitrarily divided into four groups, including normal control (mice were not sensitized); Asthma group (mice were sensitized with ovalbumin), asthma + CIK cell group (asthmatic mice treated with CIK cells) and asthma + dexamethasone (Dex) group (asthmatic mice treated with Dex). As shown in Fig 2, asthmatic group mice and other treatment groups were sensitized with an intraperitoneal (i.p.) injection of 0.3 milliliter (mL) phosphate buffer saline (PBS) containing 50 microgram (µg) ovalbumin (OVA; Sigma-Aldrich, USA) and 25 µg Inject Alum (Thermo Scientific, USA) on days 0 and 12. On days 22, 26 and 30, asthmatic group mice and other treatment groups were challenged with OVA aerosol (2% (w/v) in saline) using a nebulizer (APEX, Taiwan) for 30 minutes (min). Mice in normal control were both sensitized and challenged with PBS. In asthmatic group mice treated with CIK cells, CIK cells (1×10^7 CIK cells in 300 microliter (µL) of PBS) were transferred via their tail vein on day 21 while in asthmatic group mice treated with Dex, 2mg/kg/day dexamethasone was given i.p. on day 21 to 30. Mice were then evaluated within 24 h after last challenge (Figure 2).

Figure2. Diagram of the ovalbumin-induced allergic asthma and CIK cells transfer strategy.
 C57BL/6 mice were sensitized with an intraperitoneal (i.p.) injection of 50 µg ovalbumin and 25 µg Alum on days 0 and 12. On days 22, 26 and 30, mice were challenged with OVA aerosol (2% (w/v) in saline) for 30 min. In treatment group, CIK cells (1×10^7 cells) were transferred via tail vein on day 21 while in asthmatic group mice treated with 2mg/kg/day dexamethasone was given i.p. on day 21 to 30. Mice were then evaluated within 24 h after last challenge.

3.8 Airway inflammation measurements

Twenty four hours after the final exposure to OVA challenge, mice were anesthetized. Lungs were lavaged with 1 mL PBS for three times and cells in the Broncho alveolar Lavage Fluid (BALF) were counted using hematocytometer. The differential cell counts are prepared by using Cytospin (Thermo Fisher Scientific, USA). Slide preparations were stained with methylene blue and eosin, and BAL cell differential percentages were determined based on light microscopic evaluation (>300 cells/slide).

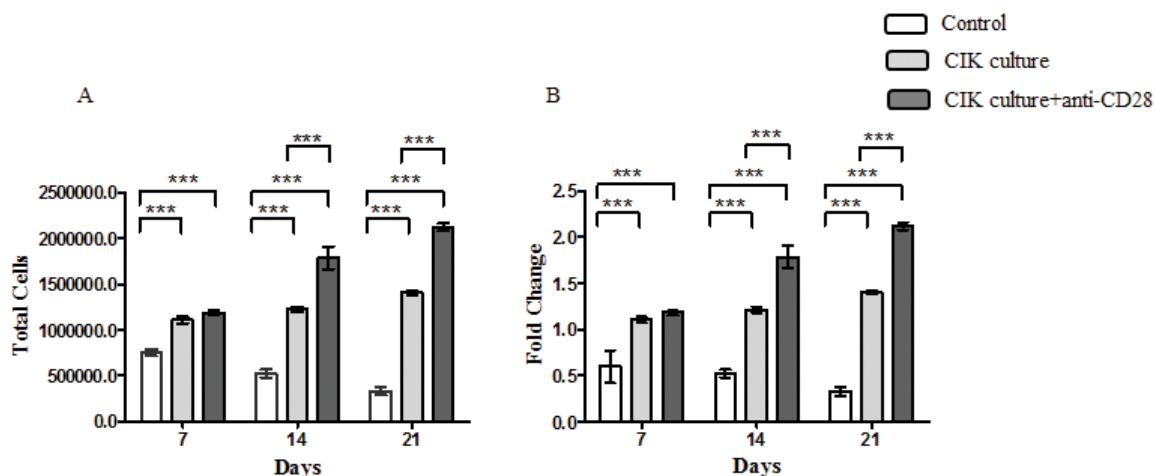
3.9 Th2 cytokines and IgE levels measurements in serum

On day 31 of the asthmatic mouse model, mice were anesthetized to collect the blood. Then, blood was centrifuged, and aliquots of the serum stored at -80° Celsius until analyzed by ELISA. The concentrations of IL-4 (R&D Systems, USA), IL-5 (eBioscience, USA), IL- 13 (eBioscience, USA) and OVA specific IgE (BioLegend, CA) were measured according to the procedures recommended by the manufacturer. The minimum detectable concentrations were 2 picogram (pg)/mL for IL-4, 3.3 pg/mL for IL-5, 2.8 pg/mL for IL-13 and 20.7 pg/mL for IgE.

3.10 Lung histological analysis

Following bronchoalveolar lavage, the left lung was removed and fixed with 4% paraformaldehyde, embedded in paraffin, sectioned and stained with haematoxylin and eosin (H&E) or periodic acid-Schiff (PAS). Semiquantitative scoring systems were used to grade the extent of lung inflammation and goblet cell hyperplasia. Briefly, to determine the severity of inflammatory cell infiltration, cell counts were performed blindly based on a five-point scoring system: 0, no cell; 1, a few cells; 2, a ring of inflammatory cells 1 cell layer deep; 3, a ring of inflammatory cells 2–4 cells layer deep; and 4, a ring of inflammatory cells >4 cells layer deep. To determine the extent of mucus production, quantified goblet cell hyperplasia in the airway epithelium using a five-point grading system: 0, no goblet cells; 1, <25%; 2, 25–50%; 3, 50–75%; and 4, >75%. Scoring of inflammatory cells and goblet cells was performed in at least 5 different fields for each lung section and mean score was calculated from 3 animals per group.

3.11 Statistical analysis


Data were analyzed using Graphpad Prism 5 statistics program. Statistical analysis was performed using Student's t-tests with error bars representing the mean \pm standard error of mean (SEM). Differences between means were considered significant when $P < 0.05$

CHAPTER 4

RESULTS

4.1 CD28 costimulation effectively increases total cell numbers

We additionally administered anti-CD28 mAb in the well-established CIK cell culture conditions and analyzed the viability and proliferation of the cultured cells at the indicated times. As such, cultures at day 21 demonstrated viability more than 90% which is in agreement with that observed previously (37). In comparison to the medium alone condition, the standard CIK cell culture conditions allowed cells to expand significantly at all-time points tested (7, 14 and 21 days) after the start of the culture. Furthermore, cells cultured under the CIK cell conditions in which anti-CD28 mAb had been included showed markedly higher cell expansion than without the addition of anti-CD28 mAb (Figure 3A). Finally, by day 21, cultures reached a mean peak of 2-fold expansion in the group receiving both antibodies, and this expansion was significantly higher as compared with the group receiving anti-CD3 mAb alone (Figure 3B). Moreover, addition of anti-CD28 mAb at day 1 showed pronounced cell expansion when compared with those added at other time points (data not shown). Thus, we could affirm that earlier addition of anti-CD28 mAb to the well-established CIK cell culture condition enhances cell proliferation. Hence, further characterization of the cells was carried out using the cells obtained after 21 days of culture.

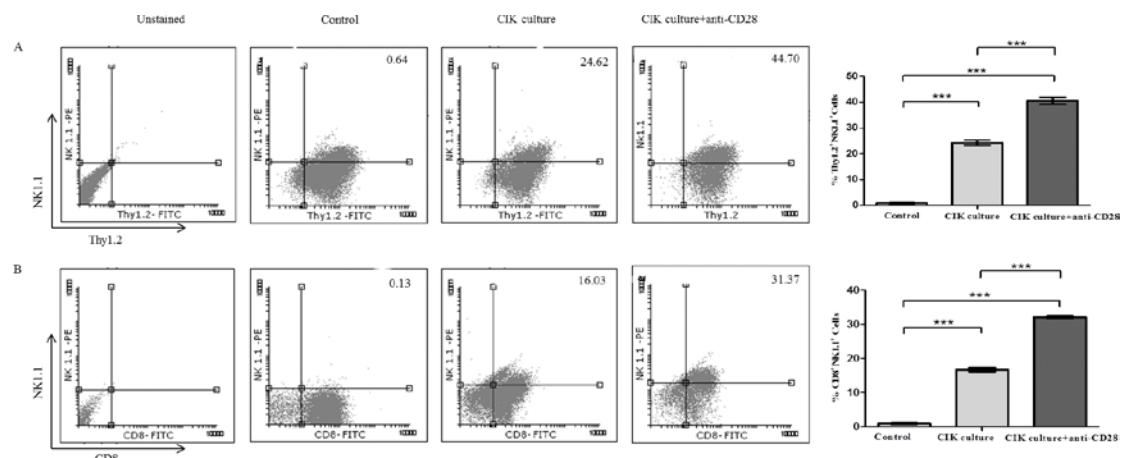


Figure3. Increase in total cell numbers by the addition of anti-CD28 mAb to the CIK cell culture. A) Total cell numbers and B) fold change in total cells from thymocytes cultured in medium only (Control), standard CIK cell culture conditions (CIK culture), and the CIK cell culture conditions with the addition of anti-CD28 mAb (CIK culture + anti-CD28) on days 7, 14

and 21. Data shown are the mean absolute number of cells \pm SEM from three separate experiments (**p < 0.001).

4.2 CD28 costimulation increases the percentage of CIK cells in culture

As murine CIK cells are positive for Thy1.2 and NK1.1, we identified the double positive population as CIK cells by flow cytometry. In the freshly isolated thymus, the majority of cells were T cells ($99.86 \pm 0.03\%$ Thy1.2 $^+$ NK1.1 $^-$ cells) whereas double positive cells were rarely found ($0.11 \pm 0.02\%$ Thy1.2 $^+$ NK1.1 $^+$). As expected, CIK cells expanded significantly under the CIK cell culture conditions ($24.32 \pm 1.85\%$). With the addition of anti-CD28 mAb, a higher proportion of CIK cells were obtained ($40.60 \pm 2.87\%$) (Figure 4A). Previous reports, found that the majority of the CIK cell population (Thy1.2 $^+$ NK1.1 $^+$) is CD8 $^+$. The addition of anti-CD28 mAb resulted in a higher proportion of CD8 $^+$ NK1.1 $^+$ cells ($32.13 \pm 0.53\%$) when compared with the CIK culture conditions without anti-CD28 mAb ($16.70 \pm 1.08\%$) (Figure 4B). Morphologically, the expanded CIK cells (day 21) growing in aggregates were larger in size and more irregular in shape when compared with control cells or fresh thymocytes (data not shown).

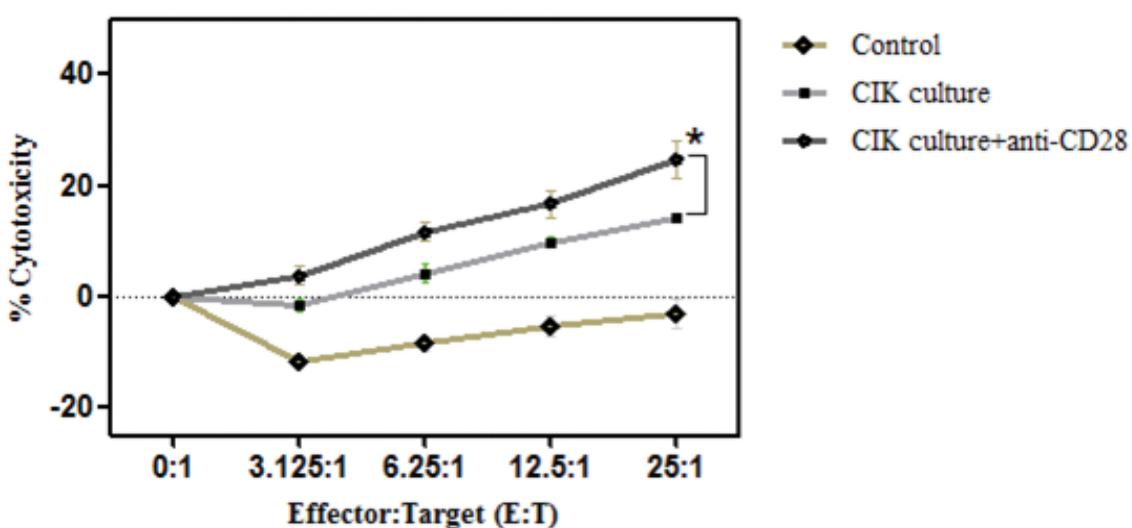


Figure 4. Increase in the major effector population of CIK cells by the addition of anti-CD28 mAb to the CIK cell culture. Flow cytometry analysis of thymocytes cultured in medium only (Control) and CIK cells (day 21) cultured under the standard CIK cell culture conditions (CIK culture), and CIK cell culture conditions with the addition of anti-CD28 mAb (CIK culture + anti-CD28) were stained with A) FITC-conjugated anti-Thy1.2 and PE-conjugated anti-NK1.1, and B) FITC-conjugated anti-CD8 and PE-conjugated anti-NK1.1. Unstained cells were used to define the negative populations. Dot plots showing the percentage of Thy1.2 $^+$ NK1.1 $^+$ and CD8 $^+$ NK1.1 $^+$ cells are representative of three experiments. The histogram shows the mean absolute percentages of Thy1.2 $^+$ NK1.1 $^+$ and

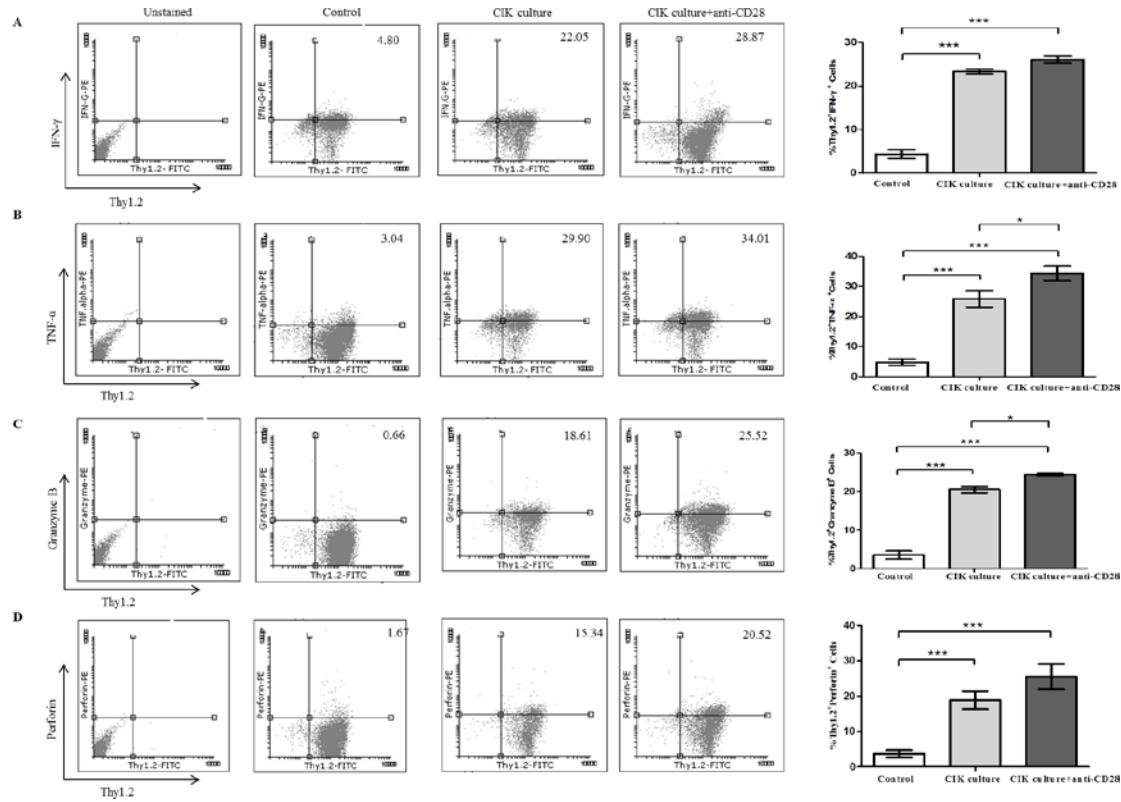
$CD8^+$ $NK1.1^+$ cells \pm SEM, respectively, from three independent experiments. Statistical significance was determined using one-way ANOVA to compare between multiple groups (** $p < 0.001$).

4.3 CD28 costimulation can potentiate cytotoxicity of CIK cells against tumor cells

As our previous results demonstrated that addition of anti-CD28 mAb to the standard CIK culture conditions enhances the proliferation of CIK cells, we next examined whether this potentiated the CIK cell cytotoxicity against tumor cells. YAC-1 cells, a murine lymphoma cell line, were used as target cells to check CIK cell cytotoxicity. As expected, control cells had no cytolytic activity, but thymocytes grown in the CIK culture conditions showed significantly higher cytotoxicity against YAC-1 cells at all the effector-to-target (E:T) ratios tested (3.125:1, 6.25:1, 12.5:1 and 25:1). Notably, CD28 costimulation significantly augmented the tumor cytotoxicity of CIK cells (Figure 5).

Figure 5. Enhancement of CIK cell cytotoxicity against YAC-1 cells by addition of anti-CD28 mAb to the CIK cell culture. Cytotoxicity of thymocytes cultured in medium only (Control), CIK cells (day 21) cultured under the standard conditions (CIK culture), and CIK cell culture conditions with the addition of anti-CD28 mAb (CIK culture + anti-CD28) were assessed against YAC-1 cells at different effector-to-target ratios, ranging from 3.125:1 to 25:1. Data are the mean \pm SEM of three independent experiments (* $p < 0.05$).

4.4 CD28 costimulation increases the production of TH1 cytokines and cytolytic granules


CIK cells are known for their ability to abundantly produce the Th1 cytokines IFN- γ and TNF- α (38). Therefore, we examined whether the potentiation of CIK cell cytotoxicity against tumor cells could be attributed for the upregulation of cytotoxic granules and cytokines. Hence, the production of these cytokines by CIK cells was measured using flow cytometry. Thymocytes were expanded under the conditions described above, and harvested at day 21. The harvested cells were re-stimulated *in vitro* with PMA and ionomycin for 24 h. The viability of re-stimulated cells was more than 90% as checked by trypan blue dye staining (Table 1). Subsequent flow cytometry analysis revealed that the number of cells producing cytokines under standard CIK cell culture conditions was increased significantly when compared control cells (IFN- γ : $23.40 \pm 1.40\%$ vs. $4.36 \pm 2.44\%$, respectively, and TNF- α : $25.81 \pm 6.88\%$ vs. $4.82 \pm 2.59\%$, respectively). Notably, the addition of anti-CD28 to the CIK culture conditions tended to increase the number of cells producing both cytokines (IFN- γ : $26.09 \pm 1.40\%$ and TNF- α ($34.3 \pm 5.88\%$) (Figure 6A and 6B).

Along with the production of Th1 cytokines, CIK cells also release cytolytic granules (39). We next addressed whether the addition of anti-CD28 mAb to the CIK culture condition enhances the production of cytolytic granules, as defined by the number of granzyme B $^+$ and perforin $^+$ cells by flow cytometry analysis. We confirmed that the CIK cells cultured under the standard CIK cell culture conditions had a significantly increased proportion of cells expressing cytolytic granules (granzyme B and perforin) when compared with thymocytes cultured in media only (granzyme B: $20.50 \pm 1.99\%$ vs. $2.02 \pm 1.63\%$, respectively, and perforin: $18.88 \pm 6.17\%$ vs. $3.72 \pm 2.60\%$, respectively). Additionally, the inclusion of anti-CD28 mAb in the CIK culture conditions further enhanced the number of cells producing these granules (granzyme B: $24.38 \pm 0.86\%$ and perforin: $25.55 \pm 8.64\%$) (Figure 6C and 6D).

Culture Conditions	Percentage of live cells (mean \pm SD)	
	Unstimulated	PMA/I stimulated (24 hours)
Thymocytes (day 0)	99 ± 0.82	95.6 ± 2.83
CIK (day 21)	95 ± 2.45	93.6 ± 2.17
CIK + anti-CD28 (day 21)	97 ± 1.63	94.7 ± 2.05

SD, Standard Deviations; PMA, Phorbol 12-myristate 13-acetate; I, Ionomycin

Table1 Cell viability of control thymocytes, CIK culture, and CIK culture + anti-CD28

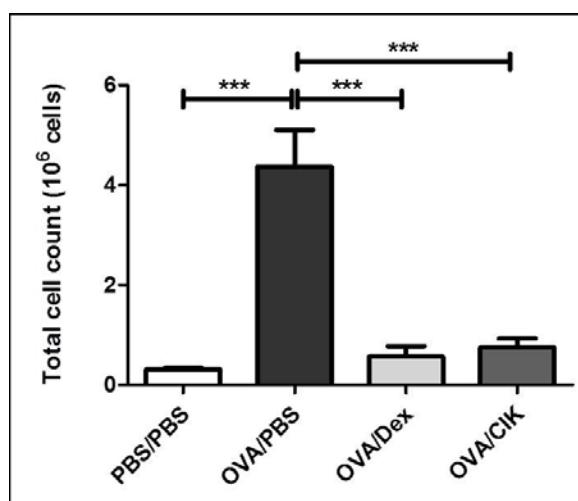
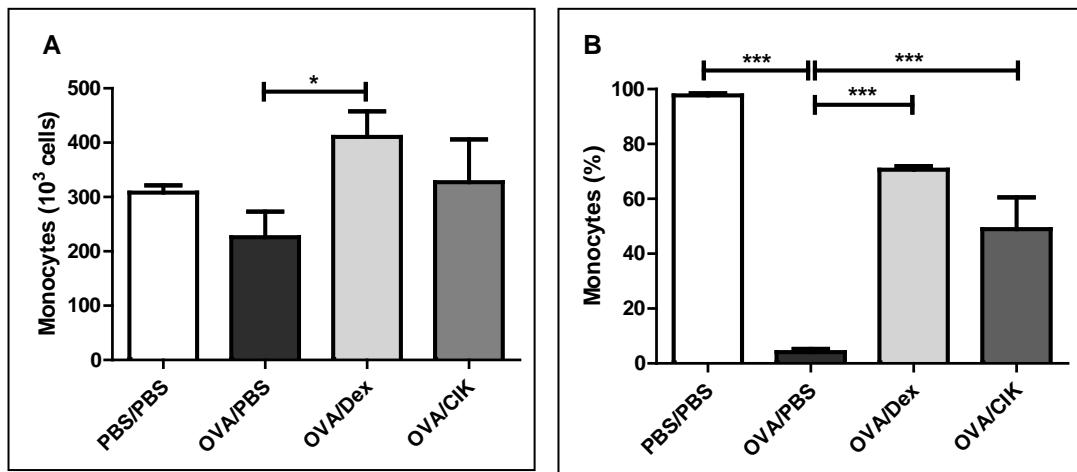


Figure 6. Increase in the major effector population of CIK cells producing T_H 1 cytokines and cytolytic granules by the addition of anti-CD28 mAb to the CIK cell culture.

Thymocytes cultured in medium only (Control) and CIK cells (day 21) cultured under the standard CIK cell culture conditions (CIK culture), and the CIK cell culture conditions with the addition of anti-CD28 mAb (CIK culture + anti-CD28) were stained for intracellular cytokines, A) FITC-conjugated anti-Thy1.2 and PE-conjugated anti-IFN- γ , B) FITC-conjugated anti-Thy1.2 and PE-conjugated anti-TNF- α and for intracellular cytolytic granules, C) FITC-conjugated anti-Thy1.2 and PE-conjugated anti-granzyme B and D) FITC-conjugated anti-Thy1.2 and PE-conjugated anti-perforin. Unstained cells were used to define the negative populations. Dot plots along with the percentage in A, B, C and D are representatives of three experiments for intracellular staining to determine the expression of the indicated cytokines and cytolytic granules. The histogram shows the mean absolute percentages of Thy1.2⁺ IFN- γ ⁺, Thy1.2⁺ TNF- α ⁺, Thy1.2⁺ granzyme B⁺ and Thy1.2⁺ perforin⁺ cells \pm SEM, respectively, from three independent experiments. Statistical significance was determined using one-way ANOVA (* p < 0.05, ** p < 0.01 and *** p < 0.001).


4.5 CIK cells could effectively reduce eosinophilic inflammation in the asthmatic lungs

To study the effectiveness of applying CIK cells to treat asthmatic mice, broncho alveolar lavage fluid (BALF) was collected from different groups of mice for total cell count. The total cell count was significantly raised by 15-fold in the mice with OVA challenge (OVA/PBS) compared to normal group of mice (PBS/PBS). Treatment of these asthmatic mice with CIK cells (OVA/CIK) or dexamethasone (OVA/Dex) significantly reduced the total cell counts in BAL fluid to the level below 50% (Figure 7). The differential cell counts are prepared by Cytospin and determine the specific inflammatory cell populations including monocytes, lymphocytes and eosinophils. The proportion and number of monocytes are significantly increased in the treatment group. In contrast, the total lymphocytes and eosinophils are significantly decreased in the treatment group (Figure 8-10). Interestingly, there are no differences in the BALF cell count, monocytes, lymphocytes and eosinophil numbers between mice treated with dexamethasone and CIK cells (Figure 7-10). Taken together, these results indicate that CIK cells can relieve airway eosinophilic inflammation induced by ovalbumin sensitization and challenge.

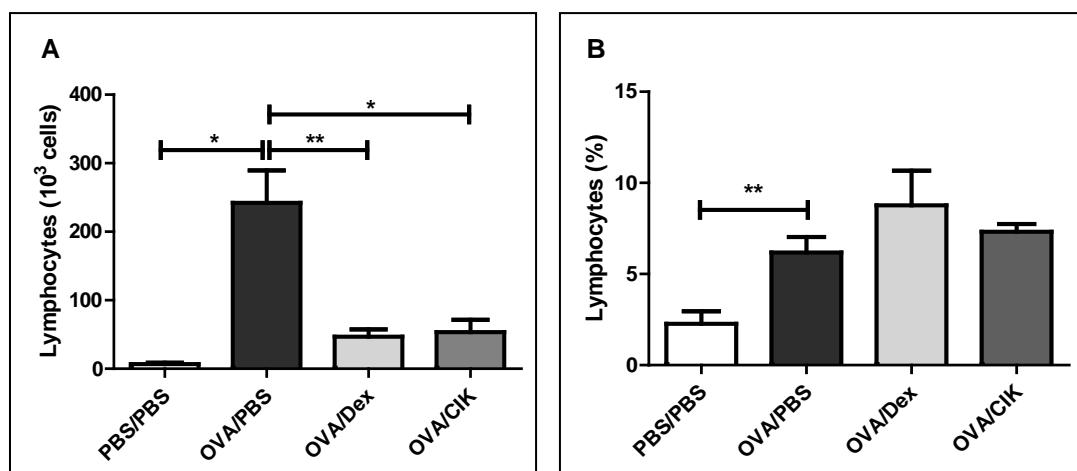


Figure7. Total cell counts were determined in BAL fluid.

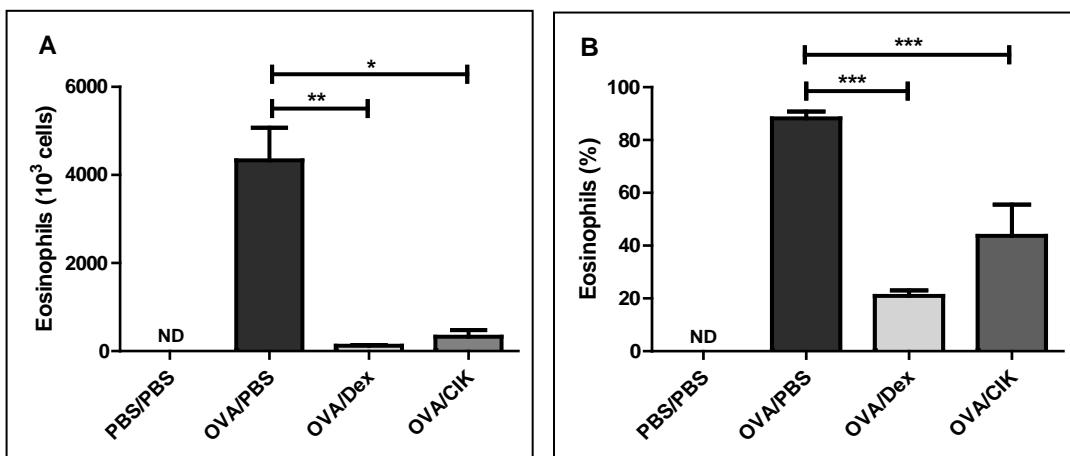

Mice were sensitized and challenged with OVA and treated with PBS (OVA/PBS), dexamethasone (OVA/Dex) or CIK cells (OVA/CIK). Data are means \pm SEM of 3 independent experiments including 6-8 mice/group are shown (**p < 0.001).

Figure8. The total numbers (A) and percentage (B) of monocytes were determined in BAL fluid. Mice were sensitized and challenged with OVA and treated with PBS (OVA/PBS), dexamethasone (OVA/Dex) or CIK cells (OVA/CIK). Data are means \pm SEM of 3 independent experiments including 6-8 mice per group are shown (** p <0.001).

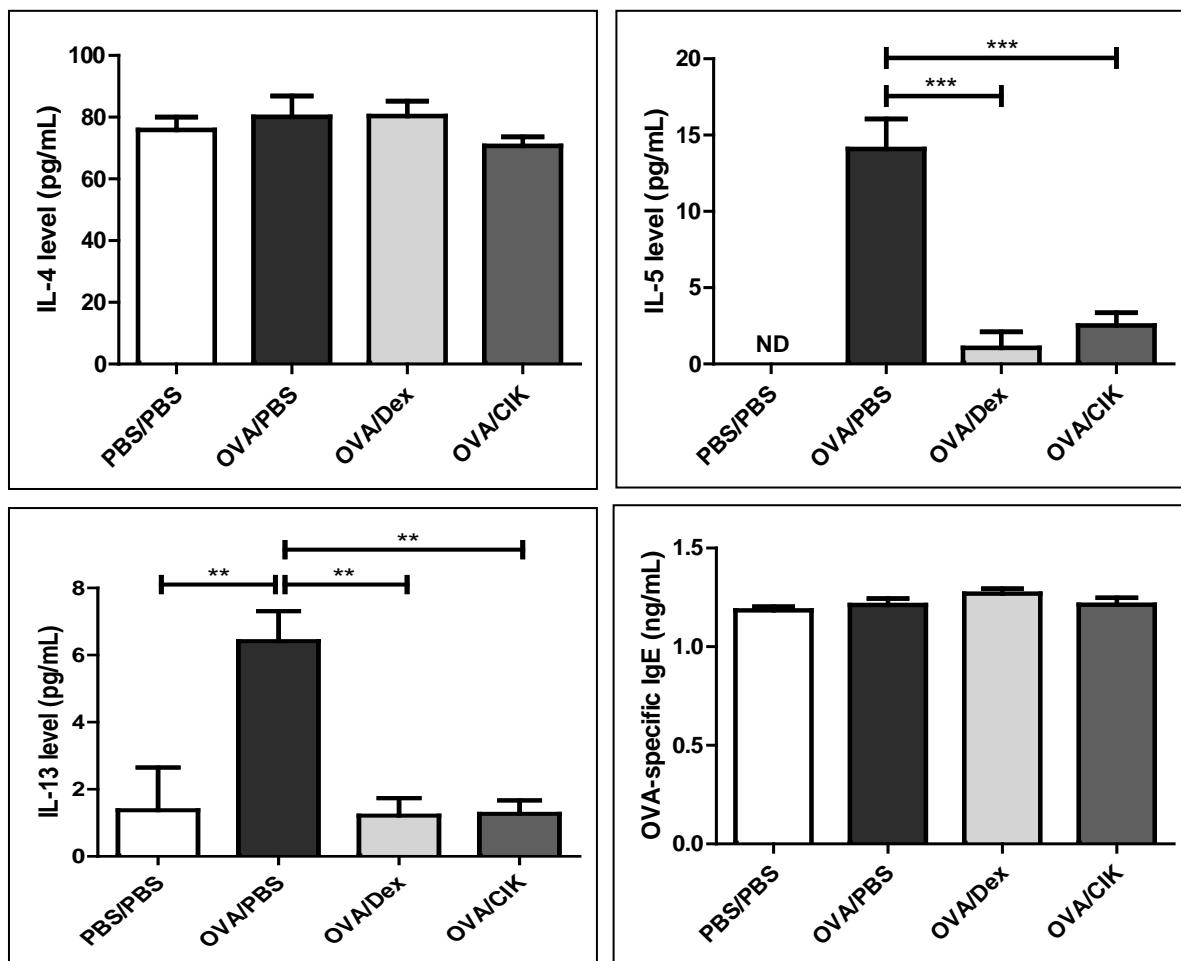

Figure9. The total numbers (A) and percentage (B) of lymphocytes were determined in BAL fluid. Mice were sensitized and challenged with OVA and treated with PBS (OVA/PBS), dexamethasone (OVA/Dex) or CIK cells (OVA/CIK). Data are means \pm SEM of 3 independent experiments including 6-8 mice per group are shown (** p < 0.005).

Figure10. The total numbers (A) and percentage (B) of eosinophils were determined in BAL fluid. Mice were sensitized and challenged with OVA and treated with PBS (OVA/PBS), dexamethasone (OVA/Dex) or CIK cells (OVA/CIK). Data are means \pm SEM of 3 independent experiments including 6-8 mice per group are shown. ND: not detected (** p < 0.001).

4.6 Th2-based activity was suppressed in asthmatic mice treated with CIK cells

Next, to further examine therapeutic effects of CIK cells, blood was collected after final OVA-challenge and Th2 cytokines production, namely IL-4, IL-5 and IL-13 were detected by ELISA. IL-5 and IL-13 levels in the mice sensitized/challenge with OVA were significantly increased when compared to the normal mice. Treatment with CIK cells significantly lowered the productions of these cytokines (Figure 11). Moreover, the effects shown by the CIK treatment was similar to dexamethasone treatment. However, there were no changes in the levels of IL-4 and OVA-specific in all groups of mice.

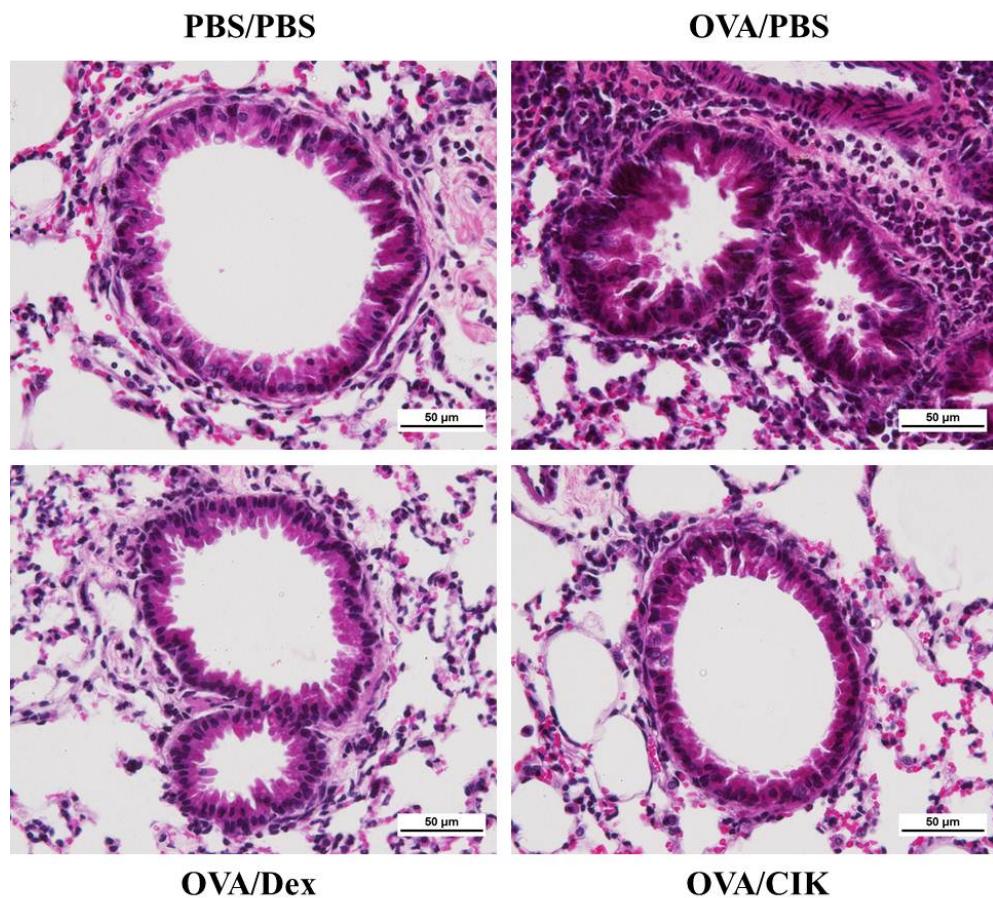
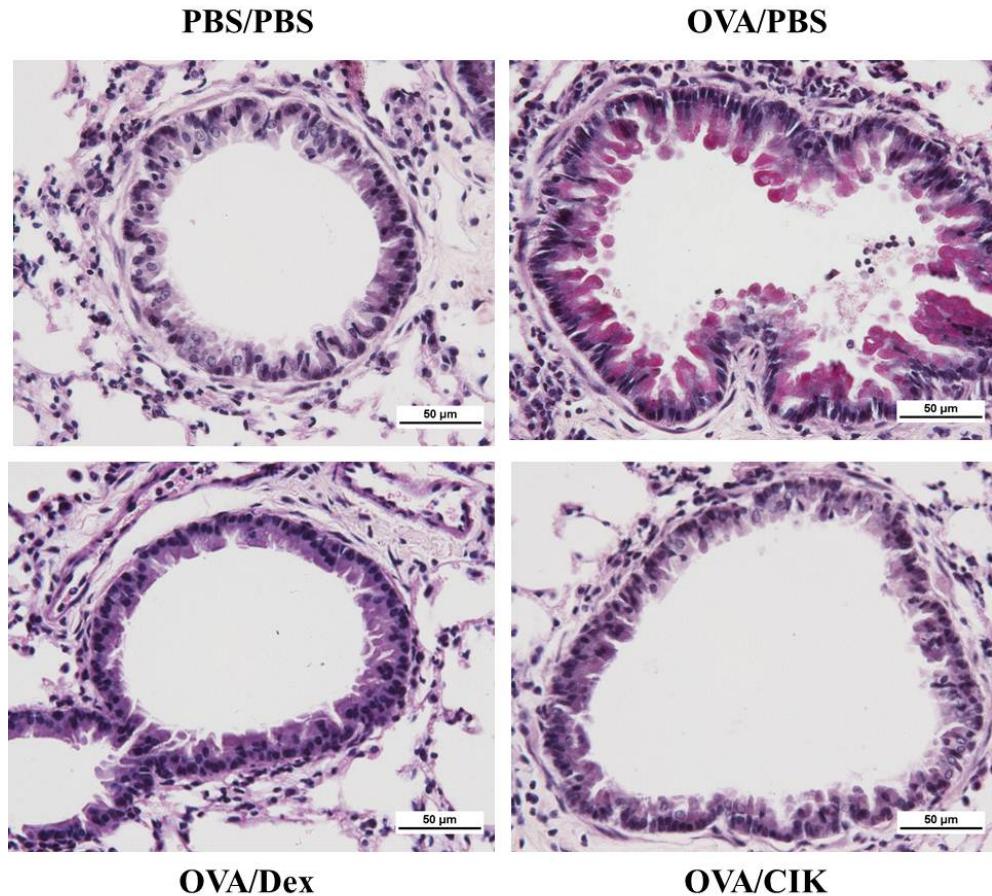


Figure 11. The levels of IL-4, IL-5, IL-13 and OVA-specific IgE in serum were measured in normal mice group (PBS/PBS), asthmatic mice treated with PBS (OVA/PBS), dexamethasone (OVA/Dex) or CIK cells (OVA/CIK). The results shown are from 3 independent experiments and each bar represents mean \pm SEM of 4-8 mice per group.


4.7 Treatment with CIK cells inhibited inflammatory cell infiltration and goblet cell hyperplasia in the asthmatic lungs

As asthmatic mice show increase in the infiltration of inflammatory cells and mucus producing goblet cells, we examined whether CIK cells could reduce these pathologies. Compared to the normal mice, the asthmatic mice exhibited an increase in both inflammatory cell infiltration and mucus-producing goblet cells in the lungs. Whereas, CIK cell treated-asthmatic mice exhibited less infiltration and goblet cells hyperplasia (Figure 12-13). The observations were confirmed by semi quantitative scoring of the inflammatory cells infiltration and PAS positive cells showing significant reduction in the airway inflammation and goblet cell hyperplasia in asthmatic mice treated with CIK cells, as compared to diseased

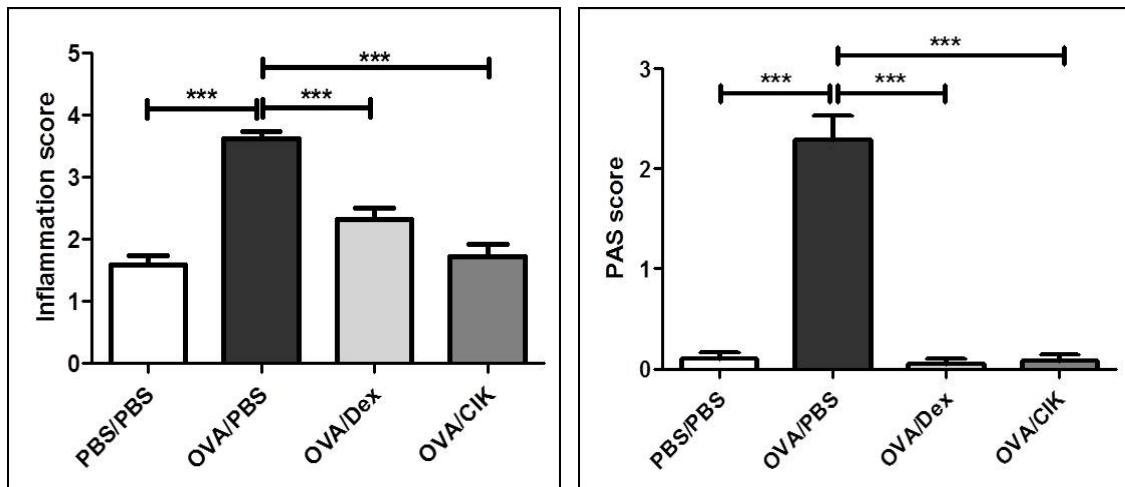

animals without treatment (Figure 14). Again, CIK cell treatment significantly reduced the cell infiltration and mucus-producing goblet cells in similar fashion to dexamethasone treatment.

Figure12. Representative histological images of lung sections for the assessment of cellular inflammation (haematoxylin and eosin staining) from normal mice group (PBS/PBS), asthmatic mice treated with PBS (OVA/PBS), dexamethasone (OVA/Dex) or CIK cells (OVA/CIK.)

Figure13. Representative histological images of lung sections stained with periodic acid-Schiff (PAS) for the quantification of goblet cells from normal mice group (PBS/PBS), asthmatic mice treated with PBS (OVA/PBS), dexamethasone (OVA/Dex) or CIK cells (OVA/CIK).

Figure14. Bar graph represents semi quantitative scoring of inflammatory cell infiltration (left) and PAS positive cells (right) (mean \pm SEM). Scores were obtained from 3 animals/group (*** $p < 0.0001$)

CHAPTER 5

DISCUSSION

Over the past several years, CIK cells have been recognized as the primary candidate for adoptive immunotherapy. Their dual Th1 and NK properties mediating effective tumor killing activity and resistance to Fas-mediated apoptosis promoted these CIK cells as a potential immunotherapeutic approach (12, 40, 41). Previously, there are numerous research groups proving the efficacy and safety of CIK cells through clinical studies (2, 7, 41). Moreover, the functional properties of CIK cells, especially the production of IFN- γ , TNF- α , perforin and granzyme B, have been used to study the antiviral activity of human CIK cells against human immunodeficiency virus and Epstein–Barr virus (42). At present, there are a wide variety of mouse-based disease models that mimic human pathologies (1, 6). These mouse models can broaden the application of CIK cell therapy to diseases other than cancers, such as allergic asthma. Therefore, optimal generation of murine CIK cells and their use in preclinical studies will be highly beneficial when exploring other applications of CIK cells. Considering that the most potent CIK population consists of CD8 $^{+}$ NKT-like cells, which are believed to be differentiated from T cells (11), we cultured T cells from mouse thymus to generate CIK cells.

The standard protocol to generate and expand human CIK cells is the incubation of PBMC in medium containing IFN- γ for 1 day, followed by stimulation with CD3 mAb and IL-2 for 21 days (43). Immobilization with CD3 mAb is used to trigger T cell proliferation (44). The addition of IFN- γ before IL-2 increases cellular cytotoxicity. Similarly, IL-2 is required as absence of this cytokine not only limits T cell expansion, but also results in the death of cells in culture (1). Adopting the well-established protocol for culturing human CIK cells to obtain murine CIK cells defined as Thy1.2 $^{+}$ NK1.1 $^{+}$ cells, we could expand this rarely found population from the thymus as many as 24-fold. As this well-established CIK cell generation method lacks a costimulatory signal, we examined whether the incorporation of this signal could increase the expansion of CIK cells and enhance their functional properties. We found that addition of anti-CD28 mAb to the culture increases the CIK cell population up to 40-fold. Furthermore, it has also been reported that CIK cells are CD8 $^{+}$ cells (9). and we confirmed that CD8 $^{+}$ NK1.1 $^{+}$ CIK cells were expanded up to 16-fold in culture. Moreover, the addition of anti-CD28 mAb to CIK culture conditions increased this CD8 $^{+}$ NK1.1 $^{+}$ population even higher to 32-fold. Our results suggest that CD28 signaling acts synergistically with other stimuli. The reason behind enhanced proliferation of CIK cells mediated by CD28 signaling needs to be explored. Since, CD28 signaling was shown to

enhance T cell survival by enhancing the anti-apoptotic factor Bcl-2 (45); whether this holds true for CIK cells needs to be justified. Moreover, addition of CD28 at times other than day 1 decreased the number of CIK cells, and the anti-proliferative effect of CD28 signaling at later time needs to be elucidated.

In addition to gaining higher numbers of CIK cells, it is also important to generate CIK cells that have potent cytotoxicity against tumor cells. To assess this we determined the *in vitro* cytotoxic activity of murine CIK cells towards YAC-1 cells. As expected, the additional CD28 costimulatory signal also enhanced the tumor killing activity of CIK cells. The antitumor cytotoxicity of CIK cells is determined by their ability to produce Th1 cytokines (IFN- γ and TNF- α) and cytolytic granules (perforin and granzyme B). Furthermore, cytolytic granules are reported to be important both *in vitro* and *in vivo* for the anticancer activity of CIK cells (13, 46). Therefore, we further tested whether enhanced antitumor cytotoxicity of CIK cells generated in presence of anti-CD28 mAb is due to an increased production of cytolytic mediator. Our results demonstrated that the additional CD28 costimulation augmented the production of all these mediators (IFN- γ , TNF- α , perforin and granzyme B) compared with those in absence of CD28 signaling. Thus, the inclusion of anti-CD28 mAb to the culture not only increased CIK differentiation and proliferation, but also potentiated the function of CIK cells.

Nevertheless, cytotoxicity of CIK cells has been improved by eliminating the suppressive factors like removing or downregulating regulatory T (Treg) cells (47). Different strategies like addition of IL-15 (48), or IL-6 (49) to the CIK cell culture were shown to inhibit Treg cells which subsequently enhanced the cytotoxicity. Moreover, the observation that CD28 costimulation suppresses induction of Treg cells from naïve precursors (50) might be responsible for the enhanced cytotoxicity of the CIK cells cultured in presence of anti-CD28 mAb; however, further studies is warranted.

Allergic asthma is characterized by an increase in total number of inflammatory cells in BALF, goblet cells hyperplasia, high mucus production and high numbers of eosinophils infiltrating into the lungs (51-53). Corticosteroids are a standard therapy for allergic asthma, but their long term use is associated with several side effects and complications. This highlights the alternative strategy for treatment of allergic asthma. Previously, allergen specific Th1 lymphocytes have been found to suppress allergic airway inflammation in IFN- γ dependent manner (27, 54).

In this study, CIK cells were infused intravenously to treat allergic asthma in mice. The number of total cells, monocytes, lymphocytes and eosinophils were measured in the BALF of normal mice, asthmatic mice without treatment, or those treated with either CIK cells or dexamethasone. The result showed that CIK cells treatment significantly decreased numbers of

total inflammatory cells and eosinophils in BALF of asthmatic mice. This could be attributed to the secretion of IFN- γ by CIK cells. Previously, IFN- γ was shown to modulate activation, differentiation and recruitment of eosinophils (55, 56). In particular, productions of IFN- γ suppressed the expression of eotaxin receptor (CCR3) which was shown to be an important inducer of eosinophil differentiation (55). Moreover, OVA-sensitized mice were treated with recombinant IFN- γ , and subsequently challenged with aerosolized OVA exhibited reduced eosinophil infiltration into the airway.

Allergic asthma is driven by Th2 cytokines (IL-4, IL-5 and IL-13), and Th2 cells also control the regulation of B cell class-switching to IgE (57), (58). So, we measured serum Th2 cytokines (IL-4, IL-5 and IL-13) and IgE levels after CIK cells treatment and found reduced production of IL-5 and IL-13. Our result suggests that CIK cell attenuate IL-5 or IL-13 pathways. Also, serum IL-5 and IL-13 are the best predictors for the blood eosinophilia phenotypes in asthma (59). However, we did not find any difference in the amount of IL-4 production between the groups. Given the information that IL-4 was identified as B cells growth factor and reported to promote IgE synthesis by B cells (60), IL-4 may not play an important role in our asthma model, which corresponds with those reported previously (61) that eosinophils derived IL-13, but not IL-4, was responsible for allergic respiratory inflammation in mice. Also, Rodrigues-Machado, *et al.* (62) reported that IL-4 may not play a significant role in chronic airway inflammation. As our results showed the similar levels of OVA-specific serum IgE in all groups collected after 31 days, this may be due collection timing (63).

Regarding infiltration of inflammatory cells and mucus producing goblet cells in the lungs, asthmatic mice treated with CIK cells showed markedly low inflammation scores and reduction in goblet cell hyperplasia. It was suggested that AHR directly correlated with increased inflammation of the inflammatory cells and mucus production in the lung (64, 65). Although AHR was not examined in this study, such findings suggested that CIK cells treatment can suppress the development of airway inflammation.

In summary, asthmatic mice treated with CIK cells showed significant reductions in all asthmatic parameters; eosinophilic inflammation of the lungs (BALF cellularity), serum Th2 cytokines (IL-5, IL-13) levels, inflammatory cell infiltration around pulmonary arterioles, and mucus secreting cells in the airways. Moreover, the efficacy of CIK cells treatment in OVA-induced asthmatic mice was comparable to dexamethasone. Further studies are required to clearly demonstrate the therapeutic mechanism of CIK cells in the treatment of allergic asthma.

CHAPTER 6

CONCLUSION

The CD28 costimulatory signal enhances murine CIK cell differentiation and upregulation of cytotoxic mediator production, leading to greater cytotoxicity against tumor cells. It remains to be delineated how CD28 signaling enhances proliferation and cytotoxicity of the CIK cells. Moreover, whether CIK cell can be used as an adoptive therapy for treatment of viral diseases and other human pathological conditions using disease mouse models is of our interest. Hopefully, CD28 costimulatory signal proved beneficial for generating murine CIK cells from pure T cells. This will in turn help not only for the development of more effective cancer immunotherapy, but also for exploring novel clinical applications of CIK cells in the future.

Regarding application of CIK cells in treatment of allergic asthma, as the standard treatment of allergic asthma pose many serious side effects, we reported for the first time that CIK cells can be used to treat allergic asthma. CIK cells treatment in OVA-induced asthmatic mice significantly reduced the total inflammatory cell count and the eosinophil count in BALF. Th2 cytokines (IL-5 and IL-13) production in serum were also decreased to normal levels. Additionally, histological studies demonstrated that CIK cells potentially inhibited lung inflammatory cell infiltration and goblet cells hyperplasia. Thus, our study provides a first proof of applying CIK cells in the treatment of allergic asthma. Further studies are required to confirm this application in clinical practice. We hope that CIK cells will be an effective immunotherapy for allergic asthma in the future.

REFERENCES

1. Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. *The Journal of experimental medicine*. 1991;174(1):139-49.
2. Linn YC, Hui KM. Cytokine-induced killer cells: NK-like T cells with cytolytic specificity against leukemia. *Leukemia & lymphoma*. 2003;44(9):1457-62.
3. Helms MW, Prescher JA, Cao YA, Schaffert S, Contag CH. IL-12 enhances efficacy and shortens enrichment time in cytokine-induced killer cell immunotherapy. *Cancer Immunol Immunother*. 2010;59(9):1325-34.
4. Joshi PS, Liu JQ, Wang Y, Chang X, Richards J, Assarsson E, et al. Cytokine-induced killer T cells kill immature dendritic cells by TCR-independent and perforin-dependent mechanisms. *Journal of leukocyte biology*. 2006;80(6):1345-53.
5. Rajbhandary S, Zhao MF, Zhao N, Lu WY, Zhu HB, Xiao X, et al. Multiple cytotoxic factors involved in IL-21 enhanced antitumor function of CIK cells signaled through STAT-3 and STAT5b pathways. *Asian Pacific journal of cancer prevention : APJCP*. 2013;14(10):5825-31.
6. Nishimura R, Baker J, Beilhack A, Zeiser R, Olson JA, Segal EI, et al. In vivo trafficking and survival of cytokine-induced killer cells resulting in minimal GVHD with retention of antitumor activity. *Blood*. 2008;112(6):2563-74.
7. Leemhuis T, Wells S, Scheffold C, Edinger M, Negrin RS. A phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma. *Biol Blood Marrow Transplant*. 2005;11(3):181-7.
8. Wongkajornsilp A, Wamanuttajinda V, Kasetsinsombat K, Duangsa-ard S, Sangiamsuntorn K, Hongeng S, et al. Sunitinib indirectly enhanced anti-tumor cytotoxicity of cytokine-induced killer cells and CD3(+)CD56(+) subset through the co-culturing dendritic cells. *PLoS one*. 2013;8(11):e78980.
9. Baker J, Verneris MR, Ito M, Shizuru JA, Negrin RS. Expansion of cytolytic CD8(+) natural killer T cells with limited capacity for graft-versus-host disease induction due to interferon gamma production. *Blood*. 2001;97(10):2923-31.
10. Schmidt-Wolf GD, Negrin RS, Schmidt-Wolf IG. Activated T cells and cytokine-induced CD3+CD56+ killer cells. *Annals of hematology*. 1997;74(2):51-6.

11. Franceschetti M, Pievani A, Borleri G, Vago L, Fleischhauer K, Golay J, et al. Cytokine-induced killer cells are terminally differentiated activated CD8 cytotoxic T-EMRA lymphocytes. *Exp Hematol.* 2009;37(5):616-28.e2.
12. Sangiolo D. Cytokine induced killer cells as promising immunotherapy for solid tumors. *Journal of Cancer.* 2011;2:363-8.
13. Wang W, Meng M, Zhang Y, Wei C, Xie Y, Jiang L, et al. Global transcriptome-wide analysis of CIK cells identify distinct roles of IL-2 and IL-15 in acquisition of cytotoxic capacity against tumor. *BMC medical genomics.* 2014;7:49.
14. Ochoa AC, Gromo G, Alter BJ, Sondel PM, Bach FH. Long-term growth of lymphokine-activated killer (LAK) cells: role of anti-CD3, beta-IL 1, interferon-gamma and -beta. *J Immunol.* 1987;138(8):2728-33.
15. Frauwirth KA, Thompson CB. Activation and inhibition of lymphocytes by costimulation. *J Clin Invest.* 2002;109(3):295-9.
16. Trickett A, Kwan YL. T cell stimulation and expansion using anti-CD3/CD28 beads. *Journal of immunological methods.* 2003;275(1-2):251-5.
17. Schwartz RH. A cell culture model for T lymphocyte clonal anergy. *Science.* 1990;248(4961):1349-56.
18. Zou Y, Li F, Hou W, Sampath P, Zhang Y, Thorne SH. Manipulating the expression of chemokine receptors enhances delivery and activity of cytokine-induced killer cells. *British journal of cancer.* 2014;110(8):1992-9.
19. Kim HY, DeKruyff RH, Umetsu DT. The many paths to asthma: phenotype shaped by innate and adaptive immunity. *Nat Immunol.* 2010;11(7):577-84.
20. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. *Nat Med.* 2012;18(5):716-25.
21. Gavett SH, O'Hearn DJ, Li X, Huang SK, Finkelman FD, Wills-Karp M. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. *The Journal of experimental medicine.* 1995;182(5):1527-36.
22. Holgate ST, Polosa R. The mechanisms, diagnosis, and management of severe asthma in adults. *The Lancet.* 2006;368(9537):780-93.
23. O'Byrne PM, Parameswaran K. Pharmacological management of mild or moderate persistent asthma. *The Lancet.* 2006;368(9537):794-803.
24. Liberman AC, Refojo D, Druker J, Toscano M, Rein T, Holsboer F, et al. The activated glucocorticoid receptor inhibits the transcription factor T-bet by direct protein-protein interaction. *FASEB J.* 2007;21(4):1177-88.

25. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. *Nature*. 1996;383(6603):787-93.
26. Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. *Alternative medicine review : a journal of clinical therapeutic*. 2003;8(3):223-46.
27. Cohn L, Homer RJ, Niu N, Bottomly K. T helper 1 cells and interferon gamma regulate allergic airway inflammation and mucus production. *The Journal of experimental medicine*. 1999;190(9):1309-18.
28. Randolph DA, Carruthers CJ, Szabo SJ, Murphy KM, Chaplin DD. Modulation of airway inflammation by passive transfer of allergen-specific Th1 and Th2 cells in a mouse model of asthma. *J Immunol*. 1999;162(4):2375-83.
29. Hansen G, Berry G, DeKruyff RH, Umetsu DT. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. *J Clin Invest*. 1999;103(2):175-83.
30. Haworth O, Cernadas M, Levy BD. NK cells are effectors for resolvin E1 in the timely resolution of allergic airway inflammation. *J Immunol*. 2011;186(11):6129-35.
31. Karimi K, Forsythe P. Natural killer cells in asthma. *Front Immunol*. 2013;4:159.
32. Mathias CB, Guernsey LA, Zammit D, Brammer C, Wu CA, Thrall RS, et al. Pro-inflammatory role of natural killer cells in the development of allergic airway disease. *Clin Exp Allergy*. 2014;44(4):589-601.
33. Korsgren M, Persson CG, Sundler F, Bjerke T, Hansson T, Chambers BJ, et al. Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice. *The Journal of experimental medicine*. 1999;189(3):553-62.
34. Leonard C, Tormey V, Burke C, Poulter LW. Allergen-induced cytokine production in atopic disease and its relationship to disease severity. *American journal of respiratory cell and molecular biology*. 1997;17(3):368-75.
35. Renzi PM, Turgeon JP, Marcotte JE, Drblik SP, Berube D, Gagnon MF, et al. Reduced interferon-gamma production in infants with bronchiolitis and asthma. *Am J Respir Crit Care Med*. 1999;159(5 Pt 1):1417-22.
36. Smart JM, Horak E, Kemp AS, Robertson CF, Tang MLK. Polyclonal and allergen-induced cytokine responses in adults with asthma: Resolution of asthma is associated with normalization of IFN- γ responses. *Journal of Allergy and Clinical Immunology*. 2002;110(3):450-6.
37. Onlamoon N, Boonchan M, Unpol P, Khunweeraphong N, Sukapirom K, Ammaranond P, et al. Influence of cell isolation method on the optimization of CD4+ T cell expansion using

anti-CD3/CD28 coated beads. Asian Pacific journal of allergy and immunology / launched by the Allergy and Immunology Society of Thailand. 2013;31(2):99-105.

38. Mehrle S, Frank S, Schmidt J, Schmidt-Wolf IG, Marten A. SAP and SLAM expression in anti-CD3 activated lymphocytes correlates with cytotoxic activity. Immunology and cell biology. 2005;83(1):33-9.

39. Introna M, Franceschetti M, Ciocca A, Borleri G, Conti E, Golay J, et al. Rapid and massive expansion of cord blood-derived cytokine-induced killer cells: an innovative proposal for the treatment of leukemia relapse after cord blood transplantation. Bone marrow transplantation. 2006;38(9):621-7.

40. Verneris MR, Kornacker M, Mailander V, Negrin RS. Resistance of ex vivo expanded CD3+CD56+ T cells to Fas-mediated apoptosis. Cancer Immunol Immunother. 2000;49(6):335-45.

41. Jiang J, Wu C, Lu B. Cytokine-induced killer cells promote antitumor immunity. Journal of translational medicine. 2013;11:83.

42. Jiang Y, Cui X, Cui C, Zhang J, Zhou F, Zhang Z, et al. The function of CD3+CD56+ NKT-like cells in HIV-infected individuals. BioMed research international. 2014;2014:863625.

43. Schmidt-Wolf IG, Lefterova P, Mehta BA, Fernandez LP, Huhn D, Blume KG, et al. Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Exp Hematol. 1993;21(13):1673-9.

44. Lu PH, Negrin RS. A novel population of expanded human CD3+CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency. J Immunol. 1994;153(4):1687-96.

45. Watts TH. Staying alive: T cell costimulation, CD28, and Bcl-xL. J Immunol. 2010;185(7):3785-7.

46. Tettamanti S, Marin V, Pizzitola I, Magnani CF, Giordano Attianese GM, Cribioli E, et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. British journal of haematology. 2013;161(3):389-401.

47. Li H, Yu JP, Cao S, Wei F, Zhang P, An XM, et al. CD4 +CD25 + regulatory T cells decreased the antitumor activity of cytokine-induced killer (CIK) cells of lung cancer patients. Journal of clinical immunology. 2007;27(3):317-26.

48. Tao Q, Chen T, Tao L, Wang H, Pan Y, Xiong S, et al. IL-15 improves the cytotoxicity of cytokine-induced killer cells against leukemia cells by upregulating CD3+CD56+ cells and

downregulating regulatory T cells as well as IL-35. *Journal of immunotherapy* (Hagerstown, Md : 1997). 2013;36(9):462-7.

49. Lin G, Wang J, Lao X, Wang J, Li L, Li S, et al. Interleukin-6 inhibits regulatory T cells and improves the proliferation and cytotoxic activity of cytokine-induced killer cells. *Journal of immunotherapy* (Hagerstown, Md : 1997). 2012;35(4):337-43.

50. Semple K, Nguyen A, Yu Y, Wang H, Anasetti C, Yu XZ. Strong CD28 costimulation suppresses induction of regulatory T cells from naive precursors through Lck signaling. *Blood*. 2011;117(11):3096-103.

51. Pope SM, Brandt EB, Mishra A, Hogan SP, Zimmermann N, Matthaei KI, et al. IL-13 induces eosinophil recruitment into the lung by an IL-5- and eotaxin-dependent mechanism. *J Allergy Clin Immunol*. 2001;108(4):594-601.

52. Chai OH, Han EH, Lee HK, Song CH. Mast cells play a key role in Th2 cytokine-dependent asthma model through production of adhesion molecules by liberation of TNF-alpha. *Exp Mol Med*. 2011;43(1):35-43.

53. Liou CJ, Cheng PY, Huang WC, Chan CC, Chen MC, Kuo ML, et al. Oral lovastatin attenuates airway inflammation and mucus secretion in ovalbumin-induced murine model of asthma. *Allergy Asthma Immunol Res*. 2014;6(6):548-57.

54. Huang TJ, MacAry PA, Eynott P, Moussavi A, Daniel KC, Askenase PW, et al. Allergen-specific Th1 cells counteract efferent Th2 cell-dependent bronchial hyperresponsiveness and eosinophilic inflammation partly via IFN-gamma. *J Immunol*. 2001;166(1):207-17.

55. Lamkhioued B, Abdelilah SG, Hamid Q, Mansour N, Delespesse G, Renzi PM. The CCR3 receptor is involved in eosinophil differentiation and is up-regulated by Th2 cytokines in CD34+ progenitor cells. *J Immunol*. 2003;170(1):537-47.

56. Iwamoto I, Nakajima H, Endo H, Yoshida S. Interferon gamma regulates antigen-induced eosinophil recruitment into the mouse airways by inhibiting the infiltration of CD4+ T cells. *The Journal of experimental medicine*. 1993;177(2):573-6.

57. Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. *Am J Respir Crit Care Med*. 2009;180(5):388-95.

58. Kim SH, Kim BK, Lee YC. Antiasthmatic effects of hesperidin, a potential Th2 cytokine antagonist, in a mouse model of allergic asthma. *Mediators Inflamm*. 2011;2011:485402.

59. Agache I, Strasser DS, Klenk A, Agache C, Farine H, Ciobanu C, et al. Serum IL-5 and IL-13 consistently serve as the best predictors for the blood eosinophilia phenotype in adult asthmatics. *Allergy*. 2016;71(8):1192-202.

60. Del Prete G, Maggi E, Parronchi P, Chretien I, Tiri A, Macchia D, et al. IL-4 is an essential factor for the IgE synthesis induced in vitro by human T cell clones and their supernatants. *J Immunol*. 1988;140(12):4193-8.

61. Jacobsen EA, Doyle AD, Colbert DC, Zellner KR, Protheroe CA, LeSuer WE, et al. Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice. *Allergy*. 2015;70(9):1148-59.

62. Rodrigues-Machado MG, Magalhaes GS, Cardoso JA, Kangussu LM, Murari A, Caliari MV, et al. AVE 0991, a non-peptide mimic of angiotensin-(1-7) effects, attenuates pulmonary remodelling in a model of chronic asthma. *Br J Pharmacol*. 2013;170(4):835-46.

63. Morokata T, Ishikawa J, Ida K, Yamada T. C57BL/6 mice are more susceptible to antigen-induced pulmonary eosinophilia than BALB/c mice, irrespective of systemic T helper 1/T helper 2 responses. *Immunology*. 1999;98(3):345-51.

64. Tomkinson A, Cieslewicz G, Duez C, Larson KA, Lee JJ, Gelfand EW. Temporal association between airway hyperresponsiveness and airway eosinophilia in ovalbumin-sensitized mice. *Am J Respir Crit Care Med*. 2001;163(3 Pt 1):721-30.

65. Hoshino M, Nakamura Y, Sim J, Shimojo J, Isogai S. Bronchial subepithelial fibrosis and expression of matrix metalloproteinase-9 in asthmatic airway inflammation. *J Allergy Clin Immunol*. 1998;102(5):783-8.