

รายงานวิจัยฉบับสมบูรณ์

โครงการ “การทดลองและการจำลองพลศาสตร์ของไฟลเชิง
คำนวณของช่วงการไฟลในเครื่องปฏิกรณ์ฟลูอิไดซ์เบด
แบบหมุนเวียนสองมิติที่มีความหนาแน่นของแก๊สสูง”

โดย ผู้ช่วยศาสตราจารย์ ดร.เบญจพล เฉลิมสินสุวรรณ และคณะ

กรกฎาคม 2557

สัญญาเลขที่ MRG5580140

รายงานวิจัยฉบับสมบูรณ์

โครงการ “การทดลองและการจำลองพลศาสตร์ของไฟลเซิง
คำนวณของช่วงการไฟลในเครื่องปฏิกรณ์ฟลูอิไดซ์เบด
แบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง”

ผู้วิจัย

ผู้ช่วยศาสตราจารย์ ดร.เบญจพล เนลิมสินสุวรรณ
รองศาสตราจารย์ ดร.พรพจน์ เปี่ยมสมบูรณ์

ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา สำนักงานกองทุนสนับสนุนการวิจัย
และ จุฬาลงกรณ์มหาวิทยาลัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

รหัสโครงการ :	MRG5580140
ชื่อโครงการ :	การทดลองและการจำลองพลศาสตร์ของไหหลเชิงคำนวณของช่วงการไหหลในเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง
ชื่อหัววิจัย :	ผู้ช่วยศาสตราจารย์ ดร.เบญจพล เฉลิมสินสุวรรณ ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ที่อยู่อีเมล :	benjapon.c@chula.ac.th
ระยะเวลาโครงการ :	2 ปี

โครงการนี้มีวัตถุประสงค์เพื่อทำการทดลองและการจำลองพลศาสตร์ของไหหลเชิงคำนวณสำหรับวิเคราะห์ช่วงการไหแบบต่างๆ ในเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง นอกจากนี้ แผนภาพสรุปช่วงการไหและวิธีการดำเนินการเครื่องปฏิกรณ์กับการประยุกต์ใช้งานต่างๆ ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูงได้ถูกเสนอ การดำเนินการวิจัยจะประกอบด้วยการทบทวนวรรณกรรมที่เกี่ยวข้อง การออกแบบและสร้างเครื่องปฏิกรณ์ต้นแบบฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ การทำการทดลองและวิเคราะห์ช่วงการไห การพัฒนาแบบจำลองพลศาสตร์ของไหหลเชิงคำนวณของเครื่องปฏิกรณ์ต้นแบบฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ การจำลองพลศาสตร์ของไหหลเชิงคำนวณและวิเคราะห์ช่วงการไห การสรุปช่วงการไหต่างๆ และเสนอวิธีการดำเนินการเครื่องปฏิกรณ์กับการประยุกต์ใช้งานต่างๆ สำหรับผลที่ได้รับ ผลการทดลองและผลการจำลองพลศาสตร์ของไหหลเชิงคำนวณที่ได้จากเครื่องปฏิกรณ์ต้นแบบฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูงให้ผลสอดคล้องกัน ความแตกต่างของอุกพลศาสตร์ในช่วงการไหแบบต่างๆ ได้ถูกแบ่งจากการพิจารณาอุกพลศาสตร์และค่าตัวแปรทางสถิติ 3 ค่า ได้แก่ ค่าเฉลี่ยของสัดส่วนของแข็งโดยปริมาตร ค่าส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรตามแนวรัศมีและตามแนวแกน สองช่วงการไหใหม่ได้ถูกเสนอ ได้แก่ ช่วงการไหแบบปั่นป่วนหมุนเวียนและช่วงการไหของผสมไหหลเลี้ยงหนาแน่น ที่ความเร็วแก๊สป้อนเข้ากระบวนการต่อและสูง ตามลำดับ ช่วงการไหแบบปั่นป่วนหมุนเวียน หมายความว่าการประยุกต์ใช้กับงานที่ต้องการพื้นที่สัมผัสที่สูง ส่วนช่วงการไหของผสมไหหลเลี้ยงหนาแน่นหมายความว่าการประยุกต์ใช้กับงานที่ต้องการถ่ายโอนอนุภาคของแข็งปริมาณมาก

คำหลัก : เครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียน, การจำลองพลศาสตร์ของไหหลเชิงคำนวณ, การทดลอง, ช่วงการไห, ความหนาแน่นของแข็งสูง

Abstract

Project Code : MRG5580140

Project Title : Experiment and Computational Fluid Dynamics Simulation of Flow Regimes in Two-dimensional Circulating Fluidized Bed Reactor with High Solid Density

Investigator : Assistant Professor Dr.Benjapon Chalermisinsuwan

Department of Chemical Technology, Faculty of Science,
Chulalongkorn University

E-mail Address : benjapon.c@chula.ac.th

Project Period : 2 years

In this study, the objective is to conduct the experiment and computational fluid dynamics simulation for analyzing the flow regimes in two-dimensional circulating fluidized bed reactor with high solid density. In addition, the flow regime mapping and operating methodology with various applications for the circulating fluidized bed reactor with high solid density are proposed. The research methodologies are consisting of surveying the literatures, designing and constructing two-dimensional circulating fluidized bed reactor prototype unit system, conducting the experiment and analyzing the flow regimes, developing the computational fluid dynamics model of two-dimensional circulating fluidized bed reactor, performing the simulation and analyzing the flow regimes, summarizing the flow regimes and proposing the operating methodology with various applications. About the obtained results, the experiment and computational fluid dynamics simulation results in two-dimensional circulating fluidized bed reactor with high solid density were consistent with each other. The difference between flow regimes were considered from hydrodynamics and three statistical parameters which were average of solid volume fraction and standard deviation of solid volume fraction in radial and axial directions. Two novel flow regimes were proposed which were circulating-turbulent and dense suspension bypassing regimes at low and high gas inlet velocities, respectively. The circulating-turbulent regime will be optimal for applications that need a high contact surface area, while the dense suspension bypassing regime will be suitable for applications that need to transport high quantity of solid particles.

Keywords : Circulating Fluidized Bed Reactor, Computational Fluid Dynamics Simulation, Experiment, Flow Regime, High Solid Density

บทคัดย่อ

รหัสโครงการ :	MRG5580140
ชื่อโครงการ :	การทดลองและการจำลองพลศาสตร์ของไหหลเชิงคำนวนของช่วงการไหในเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง
ชื่อหัววิจัย :	ผู้ช่วยศาสตราจารย์ ดร.เบญจพล เฉลิมสินสุวรรณ ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ที่อยู่อีเมล :	benjapon.c@chula.ac.th
ระยะเวลาโครงการ :	2 ปี

โครงการนี้มีวัตถุประสงค์เพื่อทำการทดลองและการจำลองพลศาสตร์ของไหหลเชิงคำนวนสำหรับวิเคราะห์ช่วงการไหแบบต่างๆ ในเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง นอกจากนี้ แผนภาพสรุปช่วงการไหและวิธีการดำเนินการเครื่องปฏิกรณ์กับการประยุกต์ใช้งานต่างๆ ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูงได้ถูกเสนอ การดำเนินการวิจัยจะประกอบด้วยการทบทวนวรรณกรรมที่เกี่ยวข้อง การออกแบบและสร้างเครื่องปฏิกรณ์ต้นแบบฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ การทำการทดลองและวิเคราะห์ช่วงการไห การพัฒนาแบบจำลองพลศาสตร์ของไหหลเชิงคำนวนของเครื่องปฏิกรณ์ต้นแบบฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ การจำลองพลศาสตร์ของไหหลเชิงคำนวนและวิเคราะห์ช่วงการไห การสรุปช่วงการไหต่างๆ และเสนอวิธีการดำเนินการเครื่องปฏิกรณ์กับการประยุกต์ใช้งานต่างๆ สำหรับผลที่ได้รับ ผลการทดลองและผลการจำลองพลศาสตร์ของไหหลเชิงคำนวนที่ได้จากเครื่องปฏิกรณ์ต้นแบบฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูงให้ผลสอดคล้องกัน ความแตกต่างของอุกพลศาสตร์ในช่วงการไหแบบต่างๆ ได้ถูกแบ่งจากการพิจารณาอุกพลศาสตร์และค่าตัวแปรทางสถิติ 3 ค่า ได้แก่ ค่าเฉลี่ยของสัดส่วนของแข็งโดยปริมาตร ค่าส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรตามแนวรัศมีและตามแนวแกน สองช่วงการไหใหม่ได้ถูกเสนอ ได้แก่ ช่วงการไหแบบปั่นป่วนหมุนเวียนและช่วงการไหของผสมไหเลี้ยงหนาแน่น ที่ความเร็วแก๊สป้อนเข้ากระบวนการต่อและสูง ตามลำดับ ช่วงการไหแบบปั่นป่วนหมุนเวียน หมายความว่าการประยุกต์ใช้กับงานที่ต้องการพื้นที่สัมผัสที่สูง ส่วนช่วงการไหของผสมไหเลี้ยงหนาแน่นหมายความว่าการประยุกต์ใช้กับงานที่ต้องการถ่ายโอนอนุภาคของแข็งปริมาณมาก

คำหลัก : เครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียน, การจำลองพลศาสตร์ของไหหลเชิงคำนวน, การทดลอง, ช่วงการไห, ความหนาแน่นของแข็งสูง

Abstract

Project Code : MRG5580140

Project Title : Experiment and Computational Fluid Dynamics Simulation of Flow Regimes in Two-dimensional Circulating Fluidized Bed Reactor with High Solid Density

Investigator : Assistant Professor Dr.Benjapon Chalermisinsuwan

Department of Chemical Technology, Faculty of Science,
Chulalongkorn University

E-mail Address : benjapon.c@chula.ac.th

Project Period : 2 years

In this study, the objective is to conduct the experiment and computational fluid dynamics simulation for analyzing the flow regimes in two-dimensional circulating fluidized bed reactor with high solid density. In addition, the flow regime mapping and operating methodology with various applications for the circulating fluidized bed reactor with high solid density are proposed. The research methodologies are consisting of surveying the literatures, designing and constructing two-dimensional circulating fluidized bed reactor prototype unit system, conducting the experiment and analyzing the flow regimes, developing the computational fluid dynamics model of two-dimensional circulating fluidized bed reactor, performing the simulation and analyzing the flow regimes, summarizing the flow regimes and proposing the operating methodology with various applications. About the obtained results, the experiment and computational fluid dynamics simulation results in two-dimensional circulating fluidized bed reactor with high solid density were consistent with each other. The difference between flow regimes were considered from hydrodynamics and three statistical parameters which were average of solid volume fraction and standard deviation of solid volume fraction in radial and axial directions. Two novel flow regimes were proposed which were circulating-turbulent and dense suspension bypassing regimes at low and high gas inlet velocities, respectively. The circulating-turbulent regime will be optimal for applications that need a high contact surface area, while the dense suspension bypassing regime will be suitable for applications that need to transport high quantity of solid particles.

Keywords : Circulating Fluidized Bed Reactor, Computational Fluid Dynamics Simulation, Experiment, Flow Regime, High Solid Density

Executive Summary

รหัสโครงการ :	MRG5580140
ชื่อโครงการ (ภาษาไทย) :	การทดลองและการจำลองพลศาสตร์ของไอลเซิงคำนวณของช่วงการไอลในเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง
(ภาษาอังกฤษ) :	Experiment and Computational Fluid Dynamics Simulation of Flow Regimes in Two-dimensional Circulating Fluidized Bed Reactor with High Solid Density

ชื่อหัวหน้าโครงการ หน่วยงานสังกัด และที่อยู่

ชื่อ-สกุล :	ผู้ช่วยศาสตราจารย์ ดร.เบญจพล เนลิมสินสุวรรณ
หน่วยงาน :	ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ที่อยู่ :	254 ถนนพญาไท แขวงวังใหม่ เขตปทุมวัน กรุงเทพฯ 10330
โทรศัพท์ :	02-218-7682, 087-547-1155
Email address :	benjapon.c@chula.ac.th
งบประมาณทั้งโครงการ :	480,000 บาท
ระยะเวลาดำเนินงาน :	2 ปี (ตั้งแต่วันที่ 2 กุมภาพันธ์ 2555 ถึงวันที่ 1 กุมภาพันธ์ 2557)

ปัญหาที่ทำวิจัยและความสำคัญ

เครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนเป็นเครื่องปฏิกรณ์ที่สามารถประยุกต์ใช้งานกับกระบวนการไอลหลายสถานะ มีหลักการทำงาน คือ ของไอลจะไอลผ่านอนุภาคของแข็งด้วยความเร็วที่เพียงพอค่าหนึ่งเพื่อผสานอนุภาคของแข็งและเปลี่ยนให้อนุภาคของแข็งมีพฤติกรรมคล้ายกับของไอล เมื่อความเร็วของไอลเพิ่มขึ้น พฤติกรรมการไอลของอนุภาคของแข็งที่แตกต่างกันจะถูกคันพบ เรียกว่า ช่วงการไอล ในโครงการนี้ จะสนใจการไอลระหว่างแก๊สและอนุภาคของแข็งเท่านั้น สำหรับช่วงการไอลปกติที่มีการใช้งานกันโดยทั่วไปตามความเร็วแก๊สป้อนเข้าที่เพิ่มขึ้น คือ ช่วงการไอลแบบฟองแก๊ส ช่วงการไอลแบบบีบปูน ช่วงการไอลแบบฟลูอิไดเซ็น ความเร็วสูง และช่วงการไอลแบบเบาบาง แต่ละช่วงการไอลข้างตันจะมีลักษณะเฉพาะที่แตกต่างกัน อย่างไรก็ตาม แผนภาพสรุปช่วงการไอลที่มีการใช้งานกันอยู่จะสนใจแค่ระบบที่มีความหนาแน่นหรืออัตราการไอลของแข็งในกระบวนการดำเนินการ

ปัญหาทางอุทกศาสตร์ภายในเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนที่พบจากการใช้งานกันอยู่ คือ การมีปริมาณอนุภาคของแข็งต่ำและไม่สม่ำเสมอ ดังนั้น โครงการนี้มีสมมุติฐานว่าการดำเนินการเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนภายใต้ช่วงการไฟล์ใหม่ที่มีความหนาแน่นของแข็งหรืออัตราการไฟล์ของแข็งในกระบวนการสูง รวมทั้งมีการกระจายตัวที่สม่ำเสมอ ทั้งในแนวรัศมีและแนวแกนจะส่งผลเชิงบวกต่อประสิทธิภาพการทำงานและร้อยละการเปลี่ยนของปฏิกิริยาเคมีภายในเครื่องปฏิกรณ์ อย่างไรก็ตาม จากการวิจัยที่ผ่านมา มีการศึกษางานทางด้านนี้ค่อนข้างน้อย ส่วนใหญ่จะเน้นให้ริชการดำเนินการเครื่องปฏิกรณ์ให้มีปริมาณอนุภาคของแข็งสูงขึ้น และทดสอบวิธีการวัดความหนาแน่นของแข็งภายใต้กระบวนการด้วยอุปกรณ์การวัดค่าต่างๆ อีกทั้งช่วงการไฟล์ในระบบที่มีความหนาแน่นของแข็งหรืออัตราการไฟล์ของแข็งในกระบวนการสูงยังไม่มีการศึกษาอย่างเป็นระบบและไม่มีการศึกษาตัวแปรเชิงลึก ความรู้ความเข้าใจที่เพิ่มขึ้น จะช่วยให้สามารถดำเนินการเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนได้อย่างมีประสิทธิภาพมากขึ้น

ในอดีตที่ผ่านมา งานวิจัยส่วนใหญ่จะใช้วิธีการทดลองจริงในการดำเนินการ อย่างไรก็ตาม ยังมีวิธีการอื่นที่สามารถใช้ดำเนินการได้ คือ การจำลองพลศาสตร์ของไฟล์เชิงคำนวณ ซึ่งกำลังได้รับความสนใจ วิธีการนี้เป็นสาขานึงของกลศาสตร์การไฟล์ที่ใช้วิธีการเชิงตัวเลขและระเบียบวิธีต่างๆ ในการแก้ปัญหาที่เกี่ยวกับการไฟล์และปฏิกิริยาเคมี สำหรับเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียน ระเบียบวิธีอยู่เรียนที่เหมาะสมกับกระบวนการที่มีสัดส่วนของแข็งโดยปริมาตรใกล้เคียงกับสัดส่วนของไฟล์โดยปริมาตรได้ถูกเลือกนำมาใช้งาน ระเบียบวิธีนี้จะแก้สมการอนุรักษ์ของแต่ละสถานะแยกจากกัน เพื่อให้สามารถแก้สมการได้ทุกช่วงของการไฟล์ของแข็งถูกนำมาใช้เป็นสมการเสริมในการคำนวณสำหรับสมบัติของอนุภาคของแข็งต่างๆ อย่างไรก็ตาม ยังไม่มีแบบจำลองพลศาสตร์ของไฟล์เชิงคำนวณที่สามารถใช้จำลองได้กับทุกกระบวนการ ดังนั้น การลองผิดลองถูกเพื่อหาแบบจำลองพลศาสตร์ของไฟล์เชิงคำนวณที่เหมาะสมก็ยังเป็นสิ่งจำเป็น

ในการศึกษานี้ ช่วงการไฟล์ในเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูงได้ถูกศึกษาด้วยการทดลองและการจำลองพลศาสตร์ของไฟล์เชิงคำนวณแบบจำลองพลศาสตร์ของไฟล์เชิงคำนวณจะทดสอบความถูกต้องและแม่นยำกับผลการทดลองจริง เครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติถูกใช้เพื่อให้สามารถสังเกตพฤติกรรมต่างๆ ภายในเครื่องปฏิกรณ์ และเปรียบเทียบกับเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนทั่วไป สำหรับผลการวิจัย อุทกพลศาสตร์ใหม่ๆ ภายในกระบวนการ คาดหวังว่าจะถูกค้นพบ และตัวแปรเชิงลึกต่างๆ จะถูกคำนวณ ช่วงการไฟล์ใหม่นี้จะเปลี่ยนรูปแบบการประยุกต์ใช้งานเครื่องปฏิกรณ์ สำหรับกระบวนการทางกายภาพและทางเคมี จากนั้น จะสรุปช่วงการไฟล์ต่างๆ ที่ค้นพบบนแผนภาพสรุปช่วงการไฟล์ และเสนอวิธีการดำเนินการเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติกับการประยุกต์ใช้งานต่างๆ

ผลการดำเนินงาน

เพื่อที่จะเปรียบเทียบผลจากการทดลองจริงและการจำลองผลศาสตร์ของไอลเชิงคำนวณ การทดลองทั้งสองจะทำในเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของอนุภาคของแข็งสูงด้วยภาวะดำเนินการเดียวกัน ผลการทดลองทั้งในเชิงคุณภาพ (ภาพถ่าย) และเชิงปริมาณ (ความดันสัมบูรณ์) ถูกนำมาใช้เปรียบเทียบ เพราะสามารถดำเนินการได้ง่าย สำหรับการเปรียบเทียบในเชิงคุณภาพ ภาพถ่ายการกระจายตัวของอนุภาคของแข็งภายในท่อไรเซอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติจะถูกเปรียบเทียบกับคอนทัวร์ของสัดส่วนของแข็งโดยปริมาตรจากการจำลองผลศาสตร์ของไอลเชิงคำนวณ ส่วนการเปรียบเทียบในเชิงปริมาณ การกระจายตัวในแนวแกนของความดันสัมบูรณ์ภายในท่อไรเซอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติจะถูกประเมิน ผลที่ได้จากการทดลองจริงและการจำลองผลศาสตร์ของไอลเชิงคำนวณมีค่าสอดคล้องกัน ซึ่งยืนยันความถูกต้องของช่วงการไอลที่คันพบเมื่อพิจารณาที่ช่วงการไอลใหม่ที่คันพบ ที่ความเร็วแก๊สป่อนเข้า 1.25 เมตรต่อวินาทีหรือช่วงการไอลแบบบันบวนหมุนเวียน ช่วงการไอลแบบนี้เป็นช่วงการไอลที่พบใหม่โดยไม่พบพื้นที่ของคอลัมน์ที่โปรดิ่งใสหรืออนุภาคของแข็งมีความหนาแน่นตลอดทั้งท่อไรเซอร์ของเครื่องปฏิกรณ์ทั้งในแนวรัศมีและแนวแกน อีกทั้งยังพบว่า สัดส่วนของแข็งโดยปริมาตรที่บริเวณผนังจะมีค่าสูงกว่าที่บริเวณกลางท่อไรเซอร์ และที่ความเร็วแก๊สป่อนเข้า 25.00 เมตรต่อวินาทีหรือช่วงการไอลแบบของผสมไอลเลียงหนาแน่น ที่เป็นช่วงการไอลใหม่แบบที่สองที่ถูกพบ จากคอนทัวร์สัดส่วนของแข็งโดยปริมาตร อนุภาคของแข็งเคลื่อนที่ขึ้นที่ตำแหน่งครึ่งหนึ่งของความกว้างท่อไรเซอร์ ใกล้กับทางเข้าของอนุภาคของแข็งจากหัวดาวเนอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ ขณะที่แก๊สเคลื่อนที่ขึ้นที่ตำแหน่งอีกครึ่งหนึ่งของห่อไรเซอร์ โดยผลกระทบของลักษณะของระบบทางออกจะมีค่าน้อยในช่วงการไอลนี้ เพราะความเร็วแก๊สป่อนเข้าที่สูง จากนั้นได้เคราะห์ตัวแปรเชิงลึกอีกหนึ่ง (ตัวแปรทางสถิติเชิงลึกต่างๆ ความเครียดเรย์โนลด์ และอุณหภูมิแกรนูลาร์) และเสนอแผนภาพสรุปช่วงการไอลต่างๆ ค่าเฉลี่ยของสัดส่วนของแข็งโดยปริมาตรมีค่าสูงสุดที่ช่วงการไอลแบบบันบวนหมุนเวียน ส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวรัศมีและแนวแกนมีค่าต่ำสุดและสูงสุดที่ช่วงการไอลแบบพองแก๊ส ตามลำดับ เมื่อความเร็วแก๊สป่อนเข้าเพิ่มขึ้น ส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรมีแนวโน้มถูกลดลงค่าคงที่ ผลที่ได้ของความเครียดเรย์โนลด์ และอุณหภูมิแกรนูลาร์มีแนวโน้มไปในทิศทางเดียวกัน โดยค่าอุณหภูมิแกรนูลาร์มีค่าต่ำและสูง ที่ช่วงการไอลแบบบันบวนหมุนเวียน (ต่ำเป็นอันดับที่สอง รองจากช่วงการไอลแบบพองแก๊ส) และ ช่วงการไอลแบบบันบวนหมุนเวียนตามลำดับ ส่วนเบี่ยงเบนมาตรฐานสูงสุดของสัดส่วนของแข็งโดยปริมาตรในแนวรัศมีถูกพบที่คากลางของค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตร ขณะที่ส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวแกนจะสูงขึ้นเมื่อค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรสูงขึ้น สำหรับแผนภาพช่วงการไอล เนื่องจากความแตกต่างระหว่างช่วงการไอลแบบบันบวนและช่วงการไอลแบบ

ปั้นป่วนหมุนเวียน คือ การเคลื่อนที่อนุภาคของแข็งภายในเครื่องปฏิกรณ์ (จากส่วนห่อไอซ์หรือไปยังท่อดาวเนอร์) ดังนั้น ช่วงการไหลแบบปั้นป่วนหมุนเวียนนี้จะอยู่ที่ตำแหน่งระหว่างความเร็วต่ำสุดของการเกิดช่วงการไหลแบบปั้นป่วน ความเร็วต่ำสุดของการลดอุณหภูมิของอนุภาคของแข็ง และความเร็วต่ำสุดของการขนส่งอนุภาคของแข็ง สำหรับช่วงการไหลแบบของผสมไอลเลี่ยงหนาแน่นจะเกิดที่ความเร็วแก๊สป้อนเข้าสูงกว่าความเร็วต่ำสุดของการเกิดช่วงการไหลแบบเบาบาง

สรุปผลการวิจัย

ในโครงการนี้ การตรวจสอบอุทกศาสตร์ภายในเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนที่มีความหนาแน่นอนุภาคของแข็งสูงจากการทดลองได้ถูกเปรียบเทียบความถูกต้องในเชิงคุณภาพและเชิงปริมาณกับผลจากการจำลองพลศาสตร์ของไอลเลี่ยงคำนวณ สำหรับการเปรียบเทียบเชิงคุณภาพ ภาพถ่ายการกระจายตัวของอนุภาคของแข็งภายในห่อไอซ์ถูกนำมาใช้ในการเปรียบเทียบกับค่าทั่วของสัดส่วนของแข็งโดยปริมาตร สำหรับการเปรียบเทียบเชิงปริมาณ จะพิจารณาการกระจายตัวตามแนวแกนของความดันสัมบูรณ์ภายในห่อไอซ์จากนั้น ได้อธิบายช่วงการไหล วิเคราะห์ตัวแปรเชิงลึกอีกหนึ่ง (ความเครียดเรย์โนลต์ และอุณหภูมิแกรนูลาร์) และเสนอแผนภาพสรุปช่วงการไหลต่างๆ ผลที่ได้สรุปอยู่บนพื้นฐานของตัวแปรทางสถิติเชิงลึก (ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรห้องแนวรัศมีและแนวแกน) ค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรมีค่าสูงสุดที่ความเร็วแก๊สป้อนเข้า 1.25 เมตรต่อวินาทีหรือช่วงการไหลแบบปั้นป่วนหมุนเวียน ส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวรัศมีและแนวแกนมีค่าต่ำสุดและสูงสุดที่ความเร็วแก๊สป้อนเข้า 0.25 เมตรต่อวินาทีหรือช่วงการไหลแบบฟองแก๊ส ตามลำดับ เมื่อความเร็วแก๊สป้อนเข้าเพิ่มขึ้น ส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรมีแนวโน้มลู่เข้าค่าคงที่ ทั้งช่วงการไหลแบบปั้นป่วนหมุนเวียนและช่วงการไหลแบบของผสมไอลเลี่ยงให้ระบบการผสมคงที่ตลอดทั้งห่อไอซ์ ความแตกต่างระหว่างช่วงการไหลแบบใหม่ที่คันพบนี้ คือ ค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรมีค่าสูงและต่ำ ตามลำดับ ดังนั้น ช่วงการไหลแบบปั้นป่วนหมุนเวียนจะเป็นช่วงการไหลในอุดมคติสำหรับการประยุกต์ใช้งานที่ต้องการพื้นที่ผิวสัมผัสถึงสูง ส่วนช่วงการไหลแบบของผสมไอลเลี่ยง จะเหมาะสมกับการประยุกต์ใช้งานที่ต้องการให้ปริมาณของอนุภาคของแข็งเคลื่อนที่ในระบบสูง นอกจากนี้ ความสัมพันธ์ระหว่างตัวแปรทางสถิติเชิงลึกทั้ง 3 ตัวแปรได้ถูกพิจารณา ส่วนเบี่ยงเบนมาตรฐานสูงสุดของสัดส่วนของแข็งโดยปริมาตรในแนวรัศมีถูกพบที่ค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตร ขณะที่ส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวแกนจะสูงขึ้นเมื่อค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรสูงขึ้น สุดท้าย ตำแหน่งของช่วงการไหลใหม่ที่คันพบทั้งสอง (ที่ใช้เฉพาะการฉีดแก๊สป้อนเข้าในขันแรก) บนแผนภาพช่วงการไหลแบบทั่วไปได้ถูกเสนอขึ้น

ข้อเสนอแนะ

ควรมีการทดสอบการประยุกต์ใช้งานเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนที่มีความหนาแน่นอนุภาคของแข็งสูงในสองช่วงการให้ลมใหม่ตามที่เสนอไว้ในโครงการนี้ ทั้งการทดลองจริงและการจำลองผลศาสตร์ของไอลเซิงคำนวณ

ผลงานทางวิชาการ

ผู้จัดมีงานวิจัยตีพิมพ์หัวข้อเรื่องที่เกี่ยวข้องกับเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนที่ได้รับการยอมรับ (Accepted Manuscript) ให้ตีพิมพ์ในวารสารวิชาการระดับนานาชาติ ในรอบ 2 ปีที่ผ่านมา จำนวน 9 หัวข้อเรื่อง ได้แก่

- Thatchai Samruamphianskun, Pornpote Piemsomboon, Benjapon Chalermsinsuwan, Computation of system turbulences and dispersion coefficients in circulating fluidized bed downer using CFD simulation, Chemical Engineering Research and Design, 90 (2012) 2164-2178.
- Benjapon Chalermsinsuwan, Dimitri Gidaspow, Pornpote Piemsomboon, Comparisons of particle cluster diameter and concentration in circulating fluidized bed riser and downer by using CFD simulations, The Korean Journal of Chemical Engineering, 30(4) (2013) 963-975.
- Benjapon Chalermsinsuwan, Yongyoot Prajongkan, Pornpote Piemsomboon, Three-dimensional CFD simulation of the system inlet and outlet boundary condition effects inside a high solid particle flux circulating fluidized bed riser, Powder Technology, 245 (2013) 80-93.
- Chanin Manchasing, Prapan Kuchonthara, Benjapon Chalermsinsuwan, Pornpote Piemsomboon, Experiment and computational fluid dynamics simulation of in-depth system hydrodynamics in dual-bed gasifier, International Journal of Hydrogen Energy, 38 (2013), 10417-10430.
- Benjapon Chalermsinsuwan, Theeranan Thummakul, Dimitri Gidaspow, Pornpote Piemsomboon, Fluidization regime characterization in high solid particle concentration circulating fluidized bed reactor: Investigation using computational fluid dynamics, The Korean Journal of Chemical Engineering, 31(2) (2014), 350-363.
- Benjapon Chalermsinsuwan, Dimitri Gidaspow, Pornpote Piemsomboon, In-depth system parameters of transition flow pattern between turbulent and fast fluidization regimes in high solid particle density circulating fluidized bed reactor, Powder Technology, 253 (2014), 522-536.
- Piriya Laiarpatorn, Pornpote Piemsomboon, Benjapon Chalermsinsuwan, Effect of Modeling Parameters on System Hydrodynamics of Air Reactor in Chemical Looping Combustion Using CFD Simulation, International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 5(1) (2014), 39-55.
- Or-ampai Jaiboon, Benjapon Chalermsinsuwan, Lursuang Mekasut, Pornpote Piemsomboon, Effect of regeneration temperature on the composition and carbon dioxide sorption ability of a K_2CO_3/Al_2O_3 solid sorbent in a bubbling fluidized bed reactor, Chemical Engineering Communications (2013), Accepted manuscript.
- Benjapon Chalermsinsuwan, Thatchai Samruamphianskun, Pornpote Piemsomboon, Effect of operating parameters inside circulating fluidized bed reactor riser with ring baffles using CFD simulation and experimental design analysis, Chemical Engineering Research and Design (2014), Accepted manuscript.

เนื้อหางานวิจัย

วัตถุประสงค์

วัตถุประสงค์ของโครงการศึกษาวิจัย มีดังต่อไปนี้

- เพื่อทำการทดลองและวิเคราะห์ช่วงการไฟลแบบต่างๆ ในเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง
- เพื่อทำการจำลองผลศาสตร์ของไฟลเชิงคำนวนและวิเคราะห์ช่วงการไฟลแบบต่างๆ ในเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง
- เพื่อทำการสรุปช่วงการไฟลแบบต่างๆ ที่คันพบอันจะนำไปสู่การเสนอรูปแบบวิธีการดำเนินการเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนที่มีความหนาแน่นของแข็งสูงสำหรับการประยุกต์ใช้ในอุตสาหกรรมต่างๆ

วิธีทดลอง

การดำเนินงานวิจัยของโครงการศึกษาวิจัยตามวัตถุประสงค์ มีดังต่อไปนี้

- การทบทวนวรรณกรรมที่เกี่ยวข้องเกี่ยวกับการทดลองและการจำลองผลศาสตร์ของไฟลเชิงคำนวนในเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนที่มีความหนาแน่นของแข็งสูง
- การออกแบบและสร้างเครื่องปฏิกรณ์ตันแบบฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง
- การทำการทดลองและวิเคราะห์ช่วงการไฟลในเครื่องปฏิกรณ์ตันแบบฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง
- การพัฒนาแบบจำลองผลศาสตร์ของไฟลเชิงคำนวนของเครื่องปฏิกรณ์ตันแบบฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง
- การทำการจำลองผลศาสตร์ของไฟลเชิงคำนวนและวิเคราะห์ช่วงการไฟลในเครื่องปฏิกรณ์ตันแบบฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง
- การสรุปช่วงการไฟลและเสนอวิธีการดำเนินการเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูงสำหรับการประยุกต์ใช้ในอุตสาหกรรมต่างๆ
- การเขียนบทความวิชาการและการนำเสนอผลงานวิชาการ

ผลงานวิจัยที่ได้รับ (ผลการทดลอง)

ผลงานวิจัยที่ได้รับสามารถอธิบายเป็นข้อๆ ตามขั้นตอนการดำเนินงานวิจัย ดังต่อไปนี้

- การทบทวนวรรณกรรมที่เกี่ยวข้องเกี่ยวกับการทดลองและการจำลองผลศาสตร์ของไหลเชิงคำนวนในเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนที่มีความหนาแน่นของแข็งสูง

ผู้วิจัยทบทวนวรรณกรรมที่เกี่ยวข้องเกี่ยวกับการทดลองและการจำลองผลศาสตร์ของไหลเชิงคำนวนในเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนที่มีความหนาแน่นของแข็งสูง ดังนี้

Circulating fluidized beds are a type of reactor devices that can be used to carry out a variety of multiphase flow processes. In this type of reactors, a fluid is passed through solid particles at high enough velocities to suspend the solid particles and cause them to behave as a fluid. As fluid velocity passing through the solid particles increases, a series of changes in the motion of solid particles could occur. These fluid-solid particles phenomena are called flow regime. In this study, the focus is purely on gas-solid particles fluidization. The circulating fluidized beds are now used in many applications such as petrochemical processes of crude oil, combustion/gasification of biomass residue, incineration of municipal wastes, calcinations of alumina, roasting of ores, drying of agriculture product (Feng and Tang, 1998; Rordprapat et al., 2005), coating of pharmaceutical drug and absorption or clean up of greenhouse gases from power generation. As already stated above, different gas-solid particles phenomena or flow regime could occur when the gas velocity passing through the solid particles increases. The conventional flow regimes, arranged in order of increasing velocities, are bubbling, turbulent, fast fluidization and pneumatic transport. Each flow regimes has distinct characteristics. However, the flow regime diagrams in the literature is major concerned with the low solid density or low flux system (Bi and Grace, 1995; Monazam et al., 2005).

One of the emerging system hydrodynamic problems in circulating fluidized beds is how to increase the solid holdup inside the reactor to be more uniforms both in the radial and axial system directions. The uniform distribution is believed to have a positive effect on the reactor efficiency or chemical reaction conversion (Bastos et al., 2008). To date, only few research studies have been done to solve this problem. The high solid density or high flux system operation is one of the alternative choices. In the literature, most of the related research studies are focused on the finding of new methodology to operate this reactor in

denser mode and the measurement of denser system hydrodynamics such as system pressure, velocity or solid volume fraction distributions. Various common techniques are employed for the measurement such as pressure transmitter and momentum probe (Kim et al., 2004; Kashyap et al., 2011). However, the obtained system hydrodynamics are still unsatisfied (Bastos et al., 2008; Zhu, 2010). The new system flow structures or new operating methodologies therefore are needed. In addition, the flow regimes of high solid density or high flux system is not formally studied and not yet well understood. This knowledge will enable scientists and engineers to design better and more efficient reactors that may effectively deal with the current problem and expand the range of circulating fluidized bed reactor application.

Most of the research studies in the literature review are conducted using experimental method. However, there is another method called computational fluid dynamics simulation which is gaining attention. It is one of the branches of fluid mechanics that uses numerical methods and algorithms to solve problems and analyze phenomena that involve fluid and chemically reacting flows. For multiphase flow systems, two different approaches might be used for the calculation, namely the Lagrangian and the Eulerian approaches. The Lagrangian approach should be used when the dispersed solid phase in the system occupies a low volume fraction while the Eulerian approach should be used when the volume fraction of dispersed solid phase cannot be occupied by the gas phase. For the circulating fluidized bed reactors, the Eulerian approach thus is suitable for the calculation. This approach separately solves the conservation equations for each phase. Among the various attempts to close the gas-solid flow, the kinetic theory of granular flow has found the widest use as a constitutive equation. This theory is basically an extension of the classical kinetic theory of gases, reviewed by Gidaspow and Jiradilok (2009), to dense gas-solid flows. However, there are currently no universal computational fluid dynamics models available to make appropriate selection of models with circulating fluidized bed reactor.

References:

Bastos JCSC, Rosa LM, Mori M, Marini F, Martignoni WP. Modelling and simulation of a gas-solids dispersion flow in a high-flux circulating fluidized bed (HFCFB) riser. *Catalysis Today* 2008; 130: 462-470.

Bi HT, Grace JR. Flow regime diagrams for gas-solid fluidization and upward transport. *International Journal of Multiphase Flow* 1995; 21: 1229-1236.

Feng H, Tang J. Microwave finish drying of diced apples in a spouted bed. *Journal of Food Science* 1998; 63: 679-683.

Gidaspow D, Jiradilok V. Computational Techniques: The Multiphase CFD Approach to Fluidization and Green Energy Technologies. New York: Nova Science Publishers Inc., 2009.

Kashyap M, Chalermsinsuwan B, Gidaspow D. Measuring turbulence in a circulating fluidized bed using PIV techniques. *Particuology* 2011; 9: 572-588.

Kim SW, Kirbas G, Bi H, Lim CJ, Grace JR. Flow behavior and regime transition in a high-density circulating fluidized bed riser. *Chemical Engineering Science* 2004; 59: 3955-3963.

Monazam ER, Shadle LJ, Mei JS, Spenik J. Identification and characteristics of different flow regimes in a circulating fluidized bed. *Powder Technology* 2005; 155: 17-25.

Rordprapat W, Nathakaranakule A, Tia W, Soponronnarit S. Comparative study of fluidized bed paddy drying using hot air and superheated steam. *Journal of Food Engineering* 2005; 71: 28-36.

Zhu J. Circulating turbulent fluidization - A new fluidization regime or just a transitional phenomenon. *Particuology* 2010; 8: 640-644.

- การออกแบบและสร้างเครื่องปฏิกรณ์ตันแบบฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง

ผู้จัดทำทำการออกแบบและสร้างเครื่องปฏิกรณ์ตันแบบฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง มีขั้นตอนการออกแบบ คือ

1) จากการทบทวนวรรณกรรมที่เกี่ยวข้องเกี่ยวกับการทดลองและการจำลองพลศาสตร์ของไหหลังคำนวณในเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนที่มีความหนาแน่นของแข็งสูง ทำการออกแบบเครื่องปฏิกรณ์ตันแบบโดยใช้แนวคิดที่ได้จากการทบทวนวรรณกรรม

2) ทำการจำลองกระบวนการพลศาสตร์ของไหหลังคำนวณเบื้องต้นเพื่อพิจารณาความเป็นไปได้ในการเกิดช่วงการไหใหม่และอุทกพลศาสตร์โดยรวมภายในเครื่องปฏิกรณ์ตันแบบที่ได้ออกแบบไว้

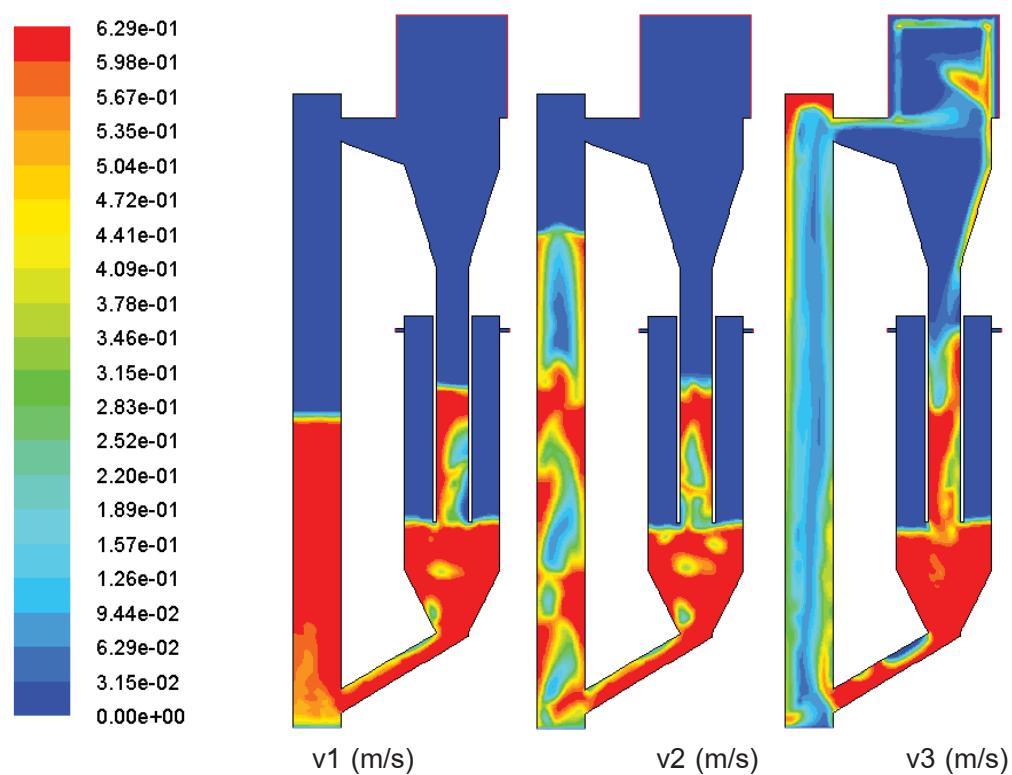
3) หากมีอุทกพลศาสตร์ที่ไม่เหมาะสมภายในเครื่องปฏิกรณ์ตันแบบ ทำการปรับปรุงการออกแบบเครื่องปฏิกรณ์ตันแบบ หากไม่มีอุทกพลศาสตร์ไม่เหมาะสมภายในเครื่องปฏิกรณ์ตันแบบ ทำการสร้างเครื่องปฏิกรณ์ตันแบบที่ได้ออกแบบไว้

สำหรับเครื่องปฏิกรณ์ตันแบบที่ออกแบบไว้สร้างขึ้นจากพลาสติกอะคริลิค (ดังรูปที่ 1) ประกอบด้วย 3 ส่วนหลัก คือ

- 1) ท่อไอเรชอร์ สูง 2.00 เมตร กว้าง 0.15 เมตร และหนา 0.05 เมตร
- 2) ท่อดาวเนอร์ สูง 1.00 เมตร กว้าง 0.30 เมตร และหนา 0.05 เมตร
- 3) ส่วนแยกและป้อนกลับ ที่ใช้ตะแกรงร่อน (200 mesh) ในการแยกแก๊สและของแข็งออกจากกัน

รูปที่ 1 เครื่องปฏิกรณ์ตันแบบฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง
จากการทดลองจริง

- การพัฒนาแบบจำลองพลศาสตร์ของไอลเซิงคำนวณของเครื่องปฏิกรณ์ตันแบบฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง


ผู้จัดทำทำการพัฒนาแบบจำลองพลศาสตร์ของไอลเซิงคำนวณของเครื่องปฏิกรณ์ตันแบบฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง มีขั้นตอนการพัฒนา คือ

- 1) จากการทบทวนวรรณกรรมที่เกี่ยวข้องเกี่ยวกับการทดลองและการจำลองพลศาสตร์ของไอลเซิงคำนวณในเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนที่มีความหนาแน่นของแข็งสูง ทำการ

สรุปแบบจำลองพลศาสตร์ของไอลเซิงคำนวนที่ใช้งานกันมากโดยใช้แนวคิดที่ได้จากการทบทวนวรรณกรรม

2) ทำการเขียนแบบเครื่องปฏิกรณ์ตันแบบฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูงจากการทดลองจริง

3) ทำการศึกษาผลของขนาดพื้นที่ช่องการคำนวน แบบจำลอง (แบบจำลองแรงต้านทานการเคลื่อนที่ของวัตถุ และ แบบจำลองความดันของแข็ง เป็นต้น) ตัวแปรการจำลอง (สัมประสิทธิ์ restitution และ สัมประสิทธิ์ specularity เป็นต้น) และ ตัวแปรดำเนินการ (ความเร็วแก๊สป้อนเข้ากระบวนการ) ต่างๆ ที่มีต่อผลการจำลองพลศาสตร์ของไอลเซิงคำนวนเพื่อหาขนาดพื้นที่ช่องการคำนวน แบบจำลอง ตัวแปรการจำลอง และตัวแปรดำเนินการที่เหมาะสมสำหรับการจำลองเครื่องปฏิกรณ์ตันแบบฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง (ดังรูปที่ 2)

รูปที่ 2 เครื่องปฏิกรณ์ตันแบบฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง
จากการจำลองพลศาสตร์ของไอลเซิงคำนวน

สำหรับขนาดพื้นที่ช่องการคำนวน แบบจำลอง ตัวแปรการจำลอง และตัวแปรดำเนินการที่เหมาะสมสำหรับการจำลองเครื่องปฏิกรณ์ตันแบบฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูงสามารถสรุปได้ดังตารางที่ 1 และ 2

ตารางที่ 1 แบบจำลองผลศาสตร์ของไอน้ำเชิงคำนวณที่ใช้ในโครงการศึกษาภูมิศาสตร์

A. Governing equations;

(a) Conservation of mass;

- Gas phase;

$$\frac{\partial}{\partial t}(\varepsilon_g \rho_g) + \nabla \cdot (\varepsilon_g \rho_g v_g) = 0$$

- Solid particle phase;

$$\frac{\partial}{\partial t}(\varepsilon_s \rho_s) + \nabla \cdot (\varepsilon_s \rho_s v_s) = 0$$

(b) Conservation of momentum;

- Gas phase;

$$\frac{\partial}{\partial t}(\varepsilon_g \rho_g v_g) + \nabla \cdot (\varepsilon_g \rho_g v_g v_g) = -\varepsilon_g \nabla P + \nabla \cdot \tau_g + \varepsilon_g \rho_g g - \beta_{gs} (v_g - v_s)$$

- Solid particle phase;

$$\frac{\partial}{\partial t}(\varepsilon_s \rho_s v_s) + \nabla \cdot (\varepsilon_s \rho_s v_s v_s) = -\varepsilon_s \nabla P + \nabla \cdot \tau_s - \nabla P_s + \varepsilon_s \rho_s g + \beta_{gs} (v_g - v_s)$$

(c) Conservation of solid particle fluctuating energy;

$$\frac{3}{2} \left[\frac{\partial}{\partial t}(\varepsilon_s \rho_s \theta) + \nabla \cdot (\varepsilon_s \rho_s \theta v_s) \right] = (-\nabla P_s \bar{I} + \tau_s) : \nabla v_s + \nabla \cdot (\kappa_s \nabla \theta) - \gamma_s + \varphi_{gs}$$

B. Constitutive equations;

(a) Gas phase stress;

$$\tau_g = \varepsilon_g \mu_g [\nabla v_g + (\nabla v_g)^T] - \frac{2}{3} \varepsilon_g \mu_g (\nabla \cdot v_g) I$$

(b) Solid particle phase stress;

$$\tau_s = \varepsilon_s \mu_s [\nabla v_s + (\nabla v_s)^T] - \varepsilon_s \left(\xi_s - \frac{2}{3} \mu_g \right) \nabla \cdot v_s I$$

(c) Collisional dissipation of solid particle fluctuating energy;

$$\gamma_s = 3(1-e^2) \varepsilon_s^2 \rho_s g_0 \theta \left(\frac{4}{d_p} \sqrt{\frac{\theta}{\pi}} \right)$$

(d) Radial distribution function;

$$g_0 = \left[1 - \left(\frac{\varepsilon_s}{\varepsilon_{s,\max}} \right)^{1/3} \right]^{-1}$$

(e) Solid particle phase pressure;

$$P_s = \varepsilon_s \rho_s \theta [1 + 2g_0 \varepsilon_s (1+e)]$$

(f) Solid particle phase shear viscosity;

$$\mu_s = \frac{4}{5} \varepsilon_s \rho_s d_p g_0 (1+e) \sqrt{\frac{\theta}{\pi}} + \frac{10 \rho_s d_p \sqrt{\pi \theta}}{96(1+e) g_0 \varepsilon_s} \left[1 + \frac{4}{5} g_0 \varepsilon_s (1+e) \right]^2$$

(g) Solid particle phase bulk viscosity;

$$\xi_s = \frac{4}{3} \varepsilon_s \rho_s d_p g_0 (1+e) \sqrt{\frac{\theta}{\pi}}$$

(h) Conductivity of the solid particle fluctuating energy;

$$\kappa_s = \frac{150 \rho_s d_p \sqrt{\theta \pi}}{384(1+e) g_0} \left[1 + \frac{6}{5} \varepsilon_s g_0 (1+e) \right]^2 + 2 \rho_s \varepsilon_s^2 d_p (1+e) g_0 \sqrt{\frac{\theta}{\pi}}$$

(i) Exchange of the solid particle fluctuating energy between phases;

$$\varphi_{gs} = -3 \beta_{gs} \theta$$

(j) Gas–solid particle phase interphase exchange coefficient;

- Gidaspow model;

when $\varepsilon_g > 0.80$;

$$\beta_{gs} = 150 \frac{(1-\varepsilon_g)^2 \mu_g}{\varepsilon_g d_p^2} + 1.75 \frac{(1-\varepsilon_g) \rho_g |v_g - v_s|}{d_p}$$

when $\varepsilon_g \leq 0.80$;

$$\beta_{gs} = \frac{3}{4} \frac{(1-\varepsilon_g) \varepsilon_g}{d_p} \rho_g |v_g - v_s| C_{D0} \varepsilon_g^{-2.65}$$

with

$$\text{Re} < 1000; \quad C_{D0} = \frac{24}{Re_k} \left(1 + 0.15 Re_k^{0.687} \right); \quad Re_k = \frac{\rho_g \varepsilon_g |v_g - v_s| d_p}{\mu_g}$$

$$\text{Re} \geq 1000; \quad C_{D0} = 0.44$$

ตารางที่ 2 ขนาดพื้นที่ช่องการคำนวณ ตัวแปรการจำลอง และตัวแปรดำเนินการที่ใช้ในโครงการ
ศึกษาวิจัยนี้

Description	Value
Width of circulating fluidized bed riser (m)	0.15
Height of circulating fluidized bed riser (m)	2.00
Depth of circulating fluidized bed riser (m)	0.05
Width of circulating fluidized bed downer (m)	0.30
Height of circulating fluidized bed downer (m)	1.00
Depth of circulating fluidized bed downer (m)	0.05
Gas density (kg/m^3)	1.20
Gas viscosity ($\text{kg}/(\text{m}\cdot\text{s})$)	2×10^{-5}
Solid particle density (kg/m^3)	2,650
Solid particle diameter (μm)	380
Gas inlet velocity (m/s)	0.25, 0.75, 1.25, 5.00, 10.00, 25.00
Initial solid particle inside the circulating fluidized bed reactor (kg)	21.00
Outlet system pressure (Pa)	101,325
Specularity coefficient (-)	0.01
Restitution coefficient between solid particle and wall (-)	0.90
Restitution coefficient between solid particles (-)	0.90
Computational cell (Cells)	8,000

- การทำการทดลองและวิเคราะห์ช่วงการไหลในเครื่องปฏิกรณ์ตันแบบฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง
- การทำการจำลองพลศาสตร์ของไหลเชิงคำนวณและวิเคราะห์ช่วงการไหลในเครื่องปฏิกรณ์ตันแบบฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง
- การสรุปช่วงการไหลและเสนอวิธีการดำเนินการเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูงสำหรับการประยุกต์ใช้ในอุตสาหกรรมต่างๆ

ผู้วิจัยทำการทดลอง ทำการจำลองพลศาสตร์ของไหลเชิงคำนวณและวิเคราะห์ช่วงการไหลในเครื่องปฏิกรณ์ตันแบบฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความหนาแน่นของแข็งสูง และสรุปช่วงการไหลและเสนอวิธีการดำเนินการเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มี

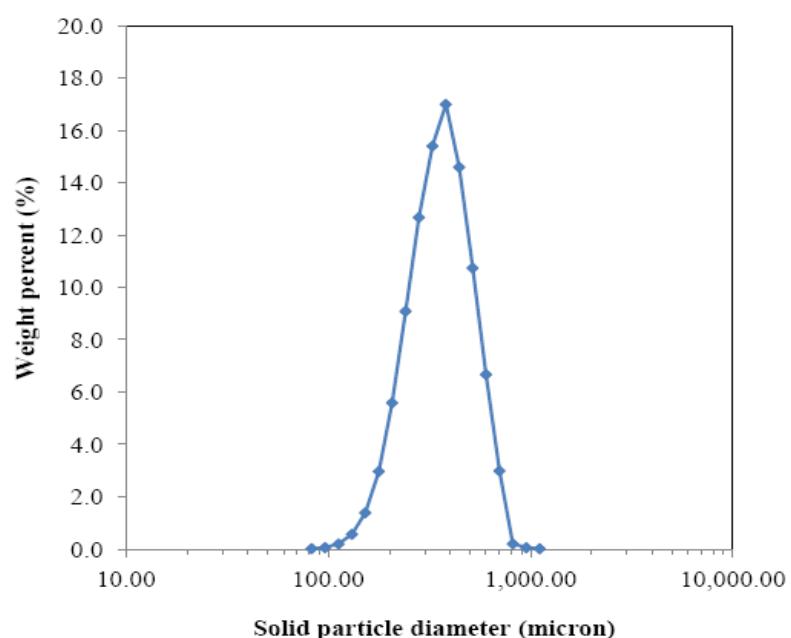
ความหนาแน่นของแข็งสูงสำหรับการประยุกต์ใช้ในอุตสาหกรรมต่างๆ มีผลการทดลองที่ได้ดังต่อไปนี้

การตั้งค่าการทดลอง

เครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียน

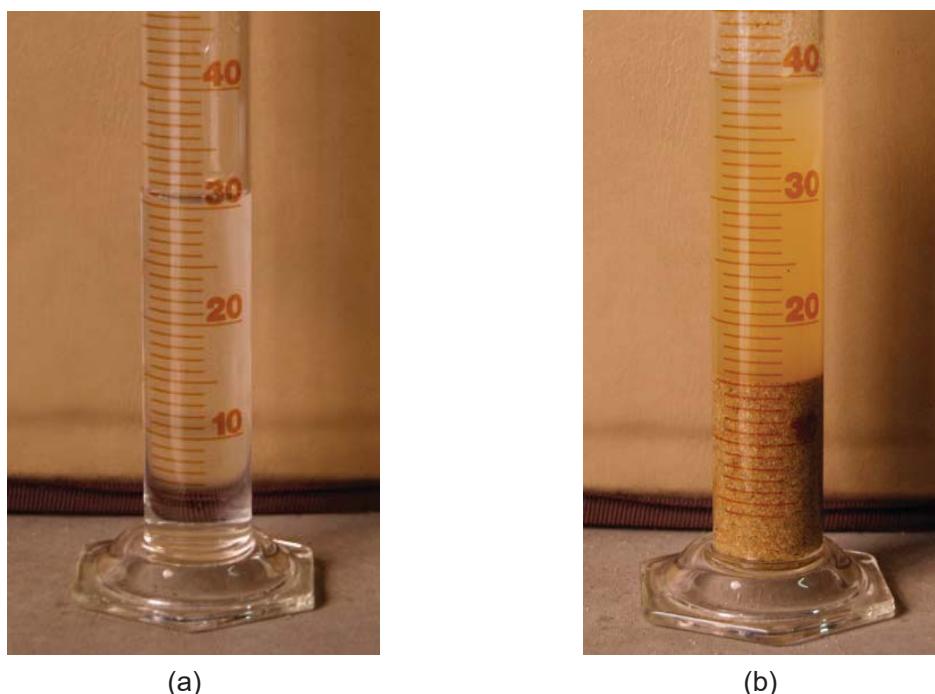
ในโครงการศึกษาวิจัยนี้ การทดลองถูกศึกษาในเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนแบบ 2 มิติ ที่ไม่มีปฏิกริยาเคมี แสดงดังรูป 1 เครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนแบบสองมิติ ประกอบด้วย อุปกรณ์หลัก 3 ส่วน คือ ท่อไเรเซอร์ ท่อดาวเนอร์ และส่วนแยกและป้อนกลับ อุปกรณ์จะผลิตจากวัสดุกระจากทนความร้อน (Plexiglas material) ท่อไเรเซอร์ มีความสูง 2.00 เมตร กว้าง 0.15 เมตร และหนา 0.05 เมตร ส่วนท่อ ดาวเนอร์ สูง 1.00 เมตร กว้าง 0.30 เมตร และหนา 0.05 เมตร สำหรับส่วนแยกและป้อนกลับจะใช้ตะแกรงร้อน (200 mesh) ในการแยกแก๊ส และของแข็งออกจากกันที่ส่วนบนของเครื่องปฏิกรณ์ นอกจากนี้ ที่ซ่องทางออกแก๊สขนาดเล็กด้านข้างท่อดาวเนอร์ทั้ง 2 ข้างและที่ตัวกระจายอากาศ (Gas distributor) จะติดตะแกรงร้อน (200 mesh) เพื่อให้อนุภาคของแข็งถูกดักจับไว้ภายในกระบวนการ แก๊สป้อนเข้าจะถูกปรับสภาพก่อนป้อนเข้าสู่เครื่องปฏิกรณ์ ขั้นแรก เครื่องควบคุมความดันจะควบคุมความดันของแก๊สป้อนเข้าหน่วยกำจัดความชื้นจะถูกใช้ในการกำจัดไอน้ำออกจากแก๊สที่ถูกอัด ขั้นสุดท้าย เครื่องควบคุมอัตราการไหลของแก๊ส (Rotameter) จะถูกใช้ปรับความเร็วแก๊สป้อนเข้ากระบวนการ

ผลการทดลองทั้งในเชิงปริมาณและเชิงคุณภาพจะถูกตรวจสอบความถูกต้องโดยเปรียบเทียบกับผลการจำลองกระบวนการผลิตสารตัวอย่างให้เชิงคำนวณ ผลการทดลองเชิงปริมาณจะวัดค่าความดันสัมบูรณ์ สำหรับอุปกรณ์ในการวัด มีอุปกรณ์วัดความดันทั้งหมด 16 จุด ติดตั้งตลอดทั้งความสูงของท่อไเรเซอร์ โดยจะแสดงปริมาณของความดันสัมบูรณ์ของระบบที่ตำแหน่งต่างๆ ดังนี้ 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.85 1.00 1.20 1.40 1.60 1.80 และ 1.90 เมตร เนื่องจากความต้องการของอุปกรณ์ที่ต้องติดตั้งที่ต้องติดตั้งตั้งแต่ 0.10 เมตร จนถึง 1.90 เมตร ให้สามารถตรวจสอบความถูกต้องของอุปกรณ์ที่ติดตั้งได้ ผลการทดลองเชิงคุณภาพจะวัดค่าที่อาจถูกชนโดยอนุภาคของแข็งจะมีการติดตะแกรงร้อน (200 mesh) สำหรับในเชิงคุณภาพ ผลที่จะนำมาเปรียบเทียบ คือ ภาพถ่ายแบบทันทีทันใดของอนุภาคของแข็งภายในเครื่องปฏิกรณ์ โดยกล้องดิจิตัลจะถูกนำมาถ่ายรูปเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียน


ในการศึกษานี้ ความเร็วแก๊สป้อนเข้าที่ค่าต่างๆ จะถูกนำมาทดสอบแต่ละลักษณะช่วงการให้ ช่วงความเร็วแก๊สป้อนเข้าที่ใช้ในการทดลองนี้จะอยู่ระหว่าง 0.25 และ 10.00 เมตรต่อวินาที แก๊สป้อนเข้าจะใช้อากาศที่อุณหภูมิห้อง 25 องศาเซลเซียส และความดัน 1 บรรยากาศ มีภาวะความหนาแน่นอากาศ 1.20 กิโลกรัมต่อมتر 5 และค่าความหนืดอากาศ 2.00×10^{-5} กิโลกรัมต่อมتر วินาที อนุภาคของแข็งคือรายซิลิกา คุณสมบัติของอนุภาคของแข็งจะแสดงใน

ส่วนถัดไป (หัวข้อ คุณสมบัติอนุภาคของแม็ง) ในตอนเริ่มต้น อนุภาคของแม็ง 21 กิโลกรัม ถูกบรรจุภายในเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียน ผลักด้วยมวลของอนุภาคของแม็งที่ต่ำที่สุดภายในระบบ คือ ประมาณ 300 กิโลกรัมต่ำตรางเมตร วินาที ส่วนภาวะของระบบอื่นๆ แสดงในตารางที่ 1

คุณสมบัติอนุภาคของแม็ง


จากที่กล่าวมาข้างต้น อนุภาคของแม็งที่ใช้คือ ทรายซิลิกาจาก Quality Sand Corporation Limited ซึ่งเป็นสารธรรมชาติที่ประกอบด้วยหินและแร่ต่างๆ ซิลิกาเป็นออกไซด์ของซิลิกอนมีสูตรทางเคมี คือ SiO_2 สำหรับสมบัติของอนุภาคของแม็ง มีค่าสำคัญ 2 ค่า ได้แก่ ขนาดเส้นผ่านศูนย์กลางและความหนาแน่น

เครื่องวิเคราะห์ขนาดเส้นผ่านศูนย์กลางของอนุภาค Malvern (Malvern Instruments Ltd., 2013) ถูกนำมาใช้หาขนาดอนุภาคของแม็ง ในระหว่างการวัดการเลี้ยวเบนของแสงเลเซอร์ อนุภาคของแม็งจะเคลื่อนที่ผ่านลำแสงเลเซอร์ อนุภาคของแม็งเหล่านี้ทำให้แสงเกิดการกระจายที่มุ่งซึ่งผกผันกับสัดส่วนของขนาดอนุภาคของแม็ง มุ่งของ การกระจายของแสงนั้นถูกวัดโดยตัวจับความไวแสง ความหนาแน่นจะถูกทำซ้ำ 3 ครั้งเพื่อให้ได้ผลแม่นยำถูกต้อง ผลการทดลองที่ได้ทั้งหมดแสดงแนวโน้มที่คล้ายกันของเบอร์เซ็นต์การกระจายน้ำหนักของอนุภาคของแม็ง รูปที่ 3 แสดงค่าเบอร์เซ็นต์การกระจายของน้ำหนักของขนาดอนุภาคของแม็ง จากผลการกระจายของน้ำหนักของขนาดอนุภาคของแม็ง ค่าเฉลี่ยขนาดเส้นผ่านศูนย์กลางของอนุภาคของแม็งได้เท่ากับ 380 ไมโครเมตร

รูปที่ 3 ค่าเบอร์เซ็นต์การกระจายของน้ำหนักของขนาดอนุภาคของแม็งที่ได้จากการศึกษาครั้งนี้

การวัดค่าความหนาแน่นอนุภาคของแม็งจะใช้หลักการของพิกโนมิเตอร์ (Pycnometer) (Dubrawski et al., 2013; Jaiboon et al., 2013) ซึ่งเป็นอุปกรณ์ที่สามารถวัดค่าความหนาแน่นของอนุภาคของแม็งได้อย่างถูกต้องโดยขึ้นอยู่กับความเหมาะสมของของไหลที่ใช้งานที่ใช้ วิเคราะห์ อนุภาคของแม็งจะถูกใส่เข้าไปในพิกโนมิเตอร์และซึ่งน้ำหนัก จากนั้น ของไหลที่ใช้งานจะถูกเติมเข้าไปในพิกโนมิเตอร์โดยอนุภาคของแม็งจะต้องไม่ล่อลายน้ำ ปริมาตรของของไหลที่ใช้งานจะสามารถหาได้และจะได้ค่าความหนาแน่นของอนุภาคของแม็ง รูปที่ 4 แสดงการวิเคราะห์ ความหนาแน่นของอนุภาคของแม็งด้วยหลักการแทนที่น้ำ เมื่อ (a) ก่อนที่จะใส่อนุภาคของแม็ง และ (b) หลังจากที่ใส่อนุภาคของแม็ง เช่นเดียวกับขนาดเส้นผ่านศูนย์กลางของอนุภาคของแม็ง การทดลองถูกทำขั้วหลายครั้งเพื่อความแม่นยำมากของผลการทดลอง จากผลที่ได้ มีค่าความหนาแน่นของอนุภาคของแม็ง เท่ากับ 2,650 กิโลกรัมต่อลูกบาศก์เมตร

รูปที่ 4 การวิเคราะห์ความหนาแน่นของอนุภาคของแม็งด้วยหลักการแทนที่น้ำ เมื่อ (a) ก่อนที่จะใส่อนุภาคของแม็ง และ (b) หลังจากที่ใส่อนุภาคของแม็ง

จากข้อมูลขนาดเส้นผ่านศูนย์กลางและความหนาแน่นของอนุภาคของแม็ง รายชิลิกาที่ใช้จัดอยู่ในอนุภาคของแม็ง Geldart กลุ่ม B (Basu, 2006) ชนิดอนุภาคของแม็งประเภทนี้มักจะนำมาใช้ในอุตสาหกรรมเคมีและปิโตรเคมี (Chalermsinsuwan et al., 2009)

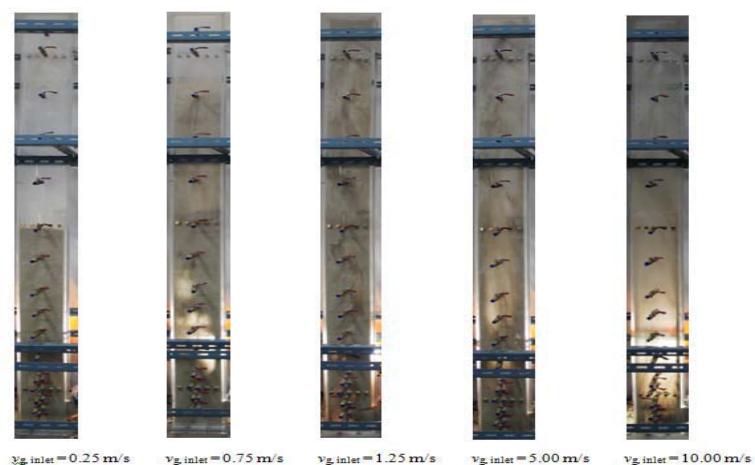
การตั้งค่าการจำลองพลศาสตร์ของไอลเซิงคำนวน

การตั้งค่าการจำลองพลศาสตร์ของไอลเซิงคำนวน วิธีการ Eulerian กับทฤษฎีจลน์การไอลของของแข็ง จะถูกกำหนดในโปรแกรมจำลองพลศาสตร์ของไอลเซิงคำนวนสำเร็จรูป ANSYS FLUENT (Gidaspow, 1994; Gidaspow and Jiradilok, 2010) รายละเอียดของสมการอนุรักษ์ และสมการเสริม แบบจำลองทางคณิตศาสตร์ วิธีการคำนวนหลัก ขอบเขตในการคำนวน และเงื่อนไขขอบเขต ได้สรุปไว้แล้วข้างต้น (ตารางที่ 1 และ 2) โดยมีสมมุติฐานความแตกต่างระหว่าง การจำลองพลศาสตร์ของไอลเซิงคำนวนและการทดลองจริง ดังนี้

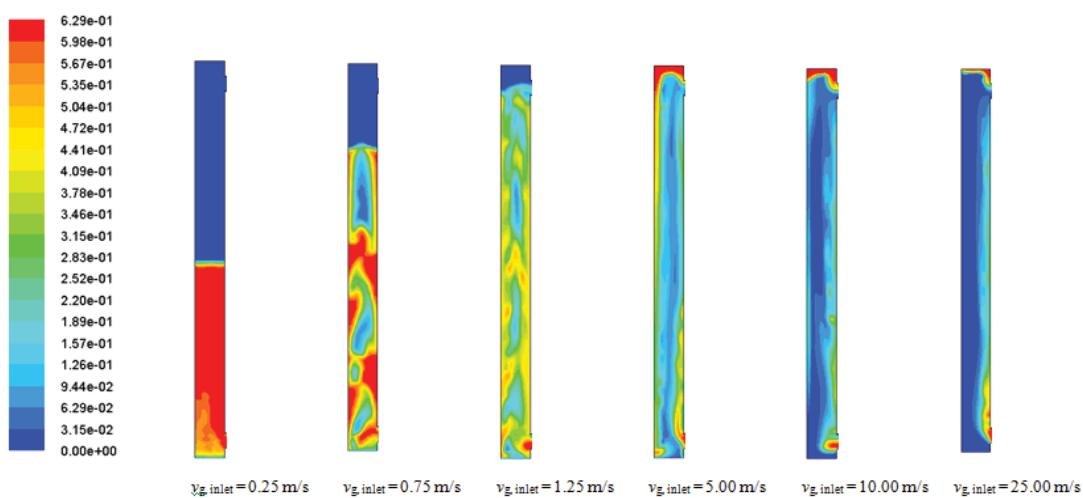
1) อนุภาคของแข็งในการจำลองพลศาสตร์ของไอลเซิงคำนวน จะสมมติให้มีขนาดเท่ากัน หมดทุกอนุภาค ในขณะที่อนุภาคของแข็งในการทดลองนั้นมีหลายขนาด โดยปัจจุบัน การจำลอง พลศาสตร์ของไอลเซิงคำนวนแบบมีการกระจายตัวของขนาดอนุภาคของแข็งอยู่ระหว่างการ พัฒนาแบบจำลองให้มีความถูกต้อง (Chew et al., 2011; You and Li, 2013)

2) ช่วงความเร็วแก๊สป้อนเข้าในการจำลองพลศาสตร์ของไอลเซิงคำนวนอยู่ระหว่าง 0.25-25.00 เมตรต่อวินาที ขณะที่ช่วงความเร็วแก๊สป้อนเข้าในการทดลองจริงอยู่ระหว่าง 0.25-10.00 เมตรต่อวินาที ทั้งนี้เนื่องจากความเร็วแก๊สป้อนเข้าสูงที่สุด (25.00 เมตรต่อวินาที) จะไม่สามารถ ทำได้จริงในอุปกรณ์การทดลองจริงด้วยปัญหาด้านความคงทนของอุปกรณ์การทดลอง

จากที่กล่าวมาข้างต้น ผลจากการทดลองจริงจะถูกตรวจสอบด้วยผลจากการจำลอง พลศาสตร์ของไอลเซิงคำนวนเพื่อทดสอบความถูกต้องแม่นยำของผลการทดลอง จากนั้น การ อธิบายและแผนภาพช่วงการไอลแบบต่างๆ จะถูกสรุป


ผลและวิจารณ์ผลการทดลอง

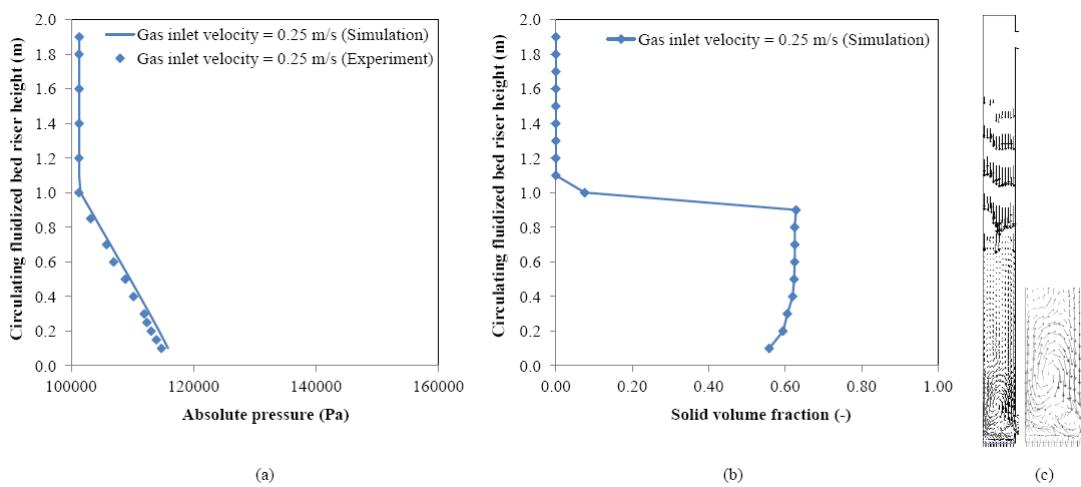
เพื่อที่จะเปรียบเทียบผลจากการจำลองพลศาสตร์ของไอลเซิงคำนวนและการทดลองจริง การทดลองทั้งสองจะดำเนินการในเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่มีความ หนาแน่นของอนุภาคของแข็งสูง ผลการทดลองทั้งในเชิงคุณภาพ (ภาพถ่าย) และเชิงปริมาณ (ความดันสัมบูรณ์) ถูกนำมาใช้เปรียบเทียบเพื่อสามารถดำเนินการได้ง่าย สำหรับการ เปรียบเทียบในเชิงคุณภาพ ภาพถ่ายการกระจายตัวของอนุภาคของแข็งภายในห้องไอลเซอร์ของ เครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติจะเปรียบเทียบกับค่าทั่วไปของสัดส่วนของแข็ง โดยปริมาตรจากการจำลองพลศาสตร์ของไอลเซิงคำนวน ส่วนการเปรียบเทียบในเชิงปริมาณ การกระจายตัวในแนวแกนของความดันสัมบูรณ์ภายในห้องไอลเซอร์ของเครื่องปฏิกรณ์ฟลูอิเดซ์เบด แบบหมุนเวียนสองมิติจะถูกประเมิน


การเปรียบเทียบเชิงคุณภาพ

รูปที่ 5 แสดงภาพอุกพลศาสตร์ของอนุภาคของแข็งภายในห้องไนท์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติโดยมีความเร็วแก๊สป้อนเข้า 5 ค่า จากรูป การกระจายตัวของอนุภาคของแข็งจะเห็นได้ชัดเจนจากสีของทราย (สีน้ำตาล) ส่วนบริเวณที่ไม่มีอนุภาคของแข็งจะเห็นห้องไนท์ของสัตดส่วนของแข็งโดยปริมาตรภายในห้องไนท์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติกับความเร็วแก๊สป้อนเข้า 6 ค่า (ช่วงการไหล 6 รูปแบบ) แสดงได้ดังรูปที่ 6 สีแดงและน้ำเงินในรูปแสดงค่าสัดส่วนของแข็งโดยปริมาตรที่สูงและต่ำตามลำดับ ผลที่ได้แสดงให้เห็นว่าผลจากการจำลองพลศาสตร์ของไหลเชิงคำนวนและการทดลองจริงมีความสอดคล้องกันเมื่อพิจารณาที่ความเร็วแก๊สป้อนเข้าค่าเดียวกัน ซึ่งจากผลในส่วนนี้ บ่งบอกว่าค่าที่ได้มีความถูกต้อง สำหรับความเร็วแก๊สป้อนเข้า 0.25 เมตรต่อวินาทีหรือช่วงการไหล Bubbling fluidization (ช่วงการไหลแบบฟองแก๊ส) ค่าความเร็วแก๊สป้อนเข้าจะมีค่าต่ำสุด ลักษณะเฉพาะของช่วงการไหลแบบนี้ คือ จะเกิดฟองแก๊สภายในระบบ (Basu, 2006) อย่างไรก็ตาม จะไม่พบฟองแก๊สอย่างชัดเจนในการศึกษานี้ เนื่องจากความเร็วป้อนเข้าที่เลือกใช้มีค่าใกล้เคียงกับความเร็วต่ำสุดในการเกิดฟลูอิไดเซชัน สำหรับความเร็วแก๊สป้อนเข้าที่ 0.75 เมตรต่อวินาทีหรือช่วงการไหล Turbulent fluidization (ช่วงการไหลแบบปั่นป่วน) ฟองแก๊สภายในระบบจะมีขนาดใหญ่ขึ้นที่บริเวณด้านล่างของห้องไนท์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ (Yang, 2003) และที่บริเวณด้านบนของห้องไนท์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิตินี้ ฟองแก๊สจะเกิดการแตกออก อนุภาคของแข็งที่อยู่เหนือฟองแก๊สจะถูกดันขึ้นมาบนอากาศเหนือผิวน้ำของอนุภาคของแข็งเกิดส่วนที่มีความหนาแน่นของอนุภาคของแข็งสูงและต่ำที่ด้านบนและด้านล่าง ตามลำดับ สำหรับความเร็วแก๊สป้อนเข้าที่ 1.25 เมตรต่อวินาทีหรือช่วงการไหล Circulating-turbulent fluidization (ช่วงการไหลแบบปั่นป่วนหมุนเวียน) ช่วงการไหลแบบนี้เป็นช่วงการไหลที่พบใหม่โดยไม่พบพื้นที่ของคลัมป์ที่ป่องใส หมายความว่าอนุภาคของแข็งมีความหนาแน่นตลอดทั้งห้องไนท์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ จากการจำลองพลศาสตร์ของไหลเชิงคำนวนและการทดลอง พบว่า มีค่าสัดส่วนของแข็งโดยปริมาตรใกล้เคียงกัน อีกทั้งยังพบว่า สัดส่วนของแข็งโดยปริมาตรที่บริเวณผนังจะมีค่าสูงกว่าที่บริเวณกลางห้องไนท์ สำหรับความเร็วแก๊สป้อนเข้าที่ 5 เมตรต่อวินาทีหรือช่วงการไหล Fast fluidization (ช่วงการไหลแบบฟลูอิไดเซชันความเร็วสูง) จะมีค่าความเข้มข้นของอนุภาคของแข็งสูงที่บริเวณผนังและต่ำที่บริเวณตรงกลาง ซึ่งเป็นเอกลักษณ์ของช่วงการไหลแบบนี้ที่เรียกว่า การไหลแบบ Core-annulus (Kunii and Levenspiel, 1991) ที่ด้านบนของห้องไนท์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ อนุภาคของแข็งมีการสะสมเพราะลักษณะของระบบทางออก สำหรับความเร็วแก๊สป้อนเข้าที่ 10.00 เมตรต่อวินาทีหรือช่วงการไหล Pneumatic transport fluidization (ช่วงการไหลแบบเบาบาง) จะพบการกระจายของอนุภาคของแข็งที่เบาบางมากทั้งจากการจำลองพลศาสตร์ของไหลเชิงคำนวนและจากการทดลองจริง ความเข้มข้นของอนุภาคของแข็งแตกต่างกันระหว่างที่ผนังและบริเวณตรงกลางเกิดเพียงเล็กน้อย

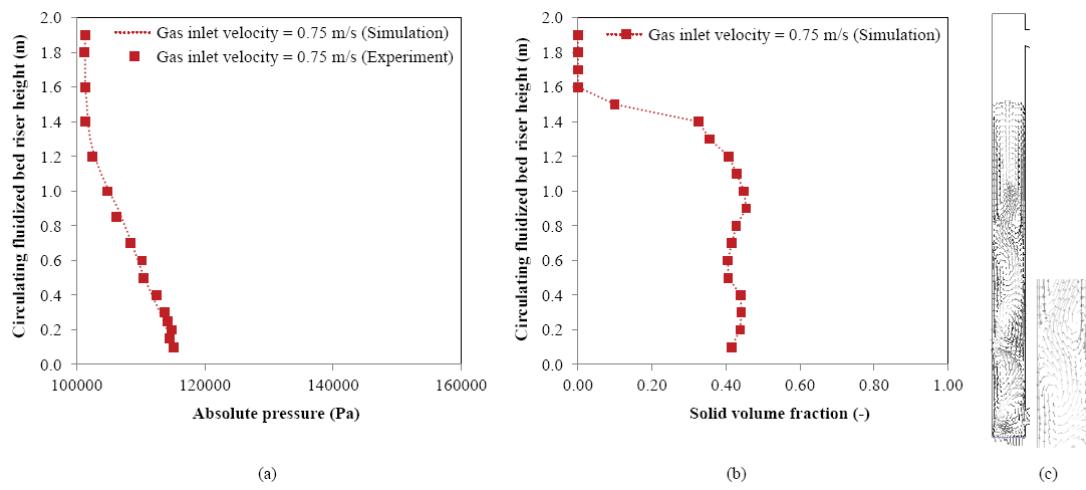
รูปแบบเฉพาะของการไหลแบบนี้คือ มีการกระจายของอนุภาคของแข็งเบาบางตลอดท่อไฮเซอร์ ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ (Das et al., 2004) ช่วงการไหลของอนุภาคของแข็งแบบสุดท้ายที่สามารถเกิดได้จริงภายใต้เงื่อนไขที่กำหนดความเร็วแก๊สป้อนเข้า 25.00 เมตรต่อวินาทีหรือช่วงการไหล Dense suspension bypassing fluidization (ช่วงการไหลแบบของผสมไฟลเลี่ยง) ที่เป็นช่วงการไหลใหม่แบบที่สองที่ถูกพบ จากค่อนทัวร์สัดส่วนของแข็งโดยปริมาตร อนุภาคของแข็งเคลื่อนที่ขึ้นที่ตำแหน่งครึ่งหนึ่งของความกว้างท่อไฮเซอร์ใกล้กับทางเข้าของอนุภาคของแข็งจากท่อดาวเนอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ ขณะที่แก๊สเคลื่อนที่ขึ้นที่ตำแหน่งอีกครึ่งหนึ่งของท่อไฮเซอร์ โดยผลกระทบของลักษณะของระบบทางออกจะมีค่าน้อยในช่วงการไหลนี้ เพราะความเร็วแก๊สป้อนเข้าที่สูง

รูปที่ 5 ช่วงการไหลของอนุภาคของแข็งภายในท่อไฮเซอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่ความเร็วแก๊สป้อนเข้า 5 ค่า จากการทดลองจริง



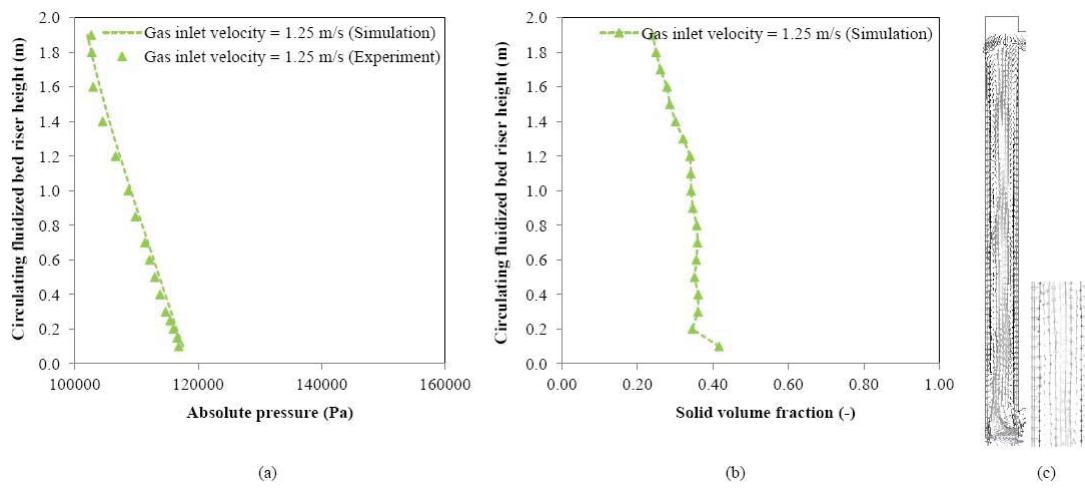
รูปที่ 6 ช่วงการไหลของอนุภาคของแข็งภายในท่อไฮเซอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติที่ความเร็วแก๊สป้อนเข้า 6 ค่า จากการจำลองพลศาสตร์ของไฟลเซิงคำนวณ

การเปรียบเทียบเชิงปริมาณ


สำหรับการเปรียบเทียบในเชิงปริมาณ พิจารณาการกระจายตัวในแนวแกนของความดันสัมบูรณ์ภายในห้องไนโตร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ โดยสัดส่วนของแข็งโดยปริมาตรและทิศทางความเร็วของอนุภาคของแข็งจากการจำลองพลศาสตร์ของไอลเชิงคำนวณจะถูกนำมาวิเคราะห์และใช้อธิบายปรากฏการณ์ที่เกิดขึ้น

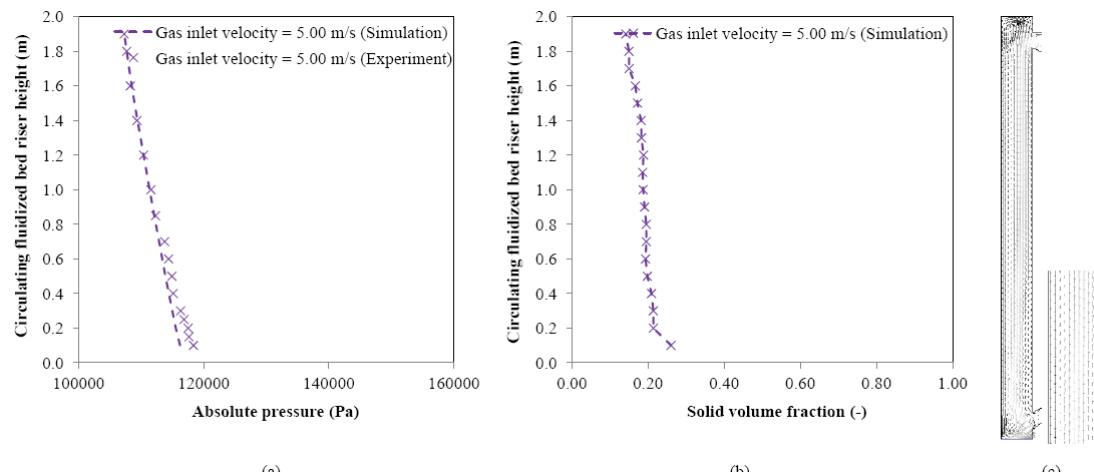
รูปที่ 7 แสดงการกระจายตัวในแนวแกนของ (a) ความดันสัมบูรณ์ (b) สัดส่วนของแข็งโดยปริมาตร และ (c) ทิศทางความเร็วของอนุภาคของแข็ง ภายในห้องไนโตร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ ที่ความเร็วแก๊สป้อนเข้า 0.25 เมตรต่อวินาที (ช่วงการไอล Bubbling fluidization) ความดันสัมบูรณ์จากการจำลองพลศาสตร์ของไอลเชิงคำนวณและจากการทดลองจริงมีค่าที่สอดคล้องกัน โดยสามารถแบ่งออกได้ 2 ส่วน ที่ตำแหน่งด้านล่าง ความดันสัมบูรณ์เพิ่มขึ้นอย่างคงที่ตามความสูงของห้องไนโตร์ที่เพิ่มขึ้น เพราะปริมาณของอนุภาคของแข็งคงที่ที่ด้านล่างของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียน (รูปที่ 7(b)) ส่วนที่ตำแหน่งด้านบนลักษณะความดันสัมบูรณ์มีค่าคงที่ที่ความดันบรรยากาศ เพราะในส่วนนี้จะพบแต่อนุภาคของแข็งที่มีปริมาณเพียงเล็กน้อยเท่านั้น (รูปที่ 7(b)) ที่ความเร็วแก๊สป้อนเข้านี้ ความสูงของผิวน้ำเบดจะมีค่าประมาณ 1.00 เมตร ทิศทางของความเร็วของอนุภาคของแข็งสามารถยืนยันลักษณะเฉพาะของระบบนี้ได้ โดยระบบมีการย้อนกลับสูงเกิดขึ้นที่บริเวณด้านล่าง ส่วนที่บริเวณด้านบน อนุภาคของแข็งจะเคลื่อนที่ได้น้อยลง เพราะความเร็วแก๊สป้อนเข้าค่านี้เป็นจุดเริ่มต้นของการเกิดช่วงการไอล Bubbling fluidization ส่วนบริเวณเหนือผิวน้ำเบด ความเร็วอนุภาคของแข็งจะมีค่าติดลบเนื่องจากความเร็วแก๊สป้อนเข้าที่ต่ำ อนุภาคของแข็งจะมีแรงไม่เพียงพอในการเคลื่อนที่ออกจากไอลเชิงคำนวณจะถูกดูดกลับไปยังบริเวณด้านล่าง

รูปที่ 7 การกระจายตัวในแนวแกนของ (a) ความดันสัมบูรณ์ (b) สัดส่วนของแข็งโดยปริมาตร และ (c) ทิศทางความเร็วของอนุภาคของแข็ง ภายในห้องไนโตร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ ที่ความเร็วแก๊สป้อนเข้า 0.25 เมตรต่อวินาที (ช่วงการไอล Bubbling fluidization)


การกระจายตัวในแนวแกนของ (a) ความดันสัมบูรณ์ (b) สัดส่วนของแข็งโดยปริมาตร และ (c) ทิศทางความเร็วของอนุภาคของแข็ง ภายใต้ท่อไอเรชอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ ที่ความเร็วแก๊สป้อนเข้า 0.75 เมตรต่อวินาที (ช่วงการไหล Turbulent fluidization) แสดงดังรูปที่ 8 ผลการจำลองพลศาสตร์ของไหลเชิงคำนวณสอดคล้องกับผลจากการทดลองจริงเมื่อเทียบกับที่ความเร็วแก๊สป้อนเข้า 0.25 เมตรต่อวินาทีโดยมีลักษณะของความดันสัมบูรณ์ 2 ช่วง อย่างไรก็ตาม ที่ตำแหน่งด้านล่าง ค่าความชันที่ได้จากการไหล Turbulent fluidization มีค่าต่ำกว่าค่าความชันที่ความเร็วแก๊สป้อนเข้า 0.25 เมตรต่อวินาทีซึ่งสอดคล้องกับสัดส่วนของแข็งโดยปริมาตร (รูปที่ 8(b)) ที่ตำแหน่งด้านบน พบว่า ลักษณะความดันสัมบูรณ์มีค่าคงที่ที่ความดันบรรยายกาศ ความสูงของผิวน้ำเบดมีค่าสูงขึ้น เพราะความเร็วแก๊สป้อนเข้าที่สูงขึ้น ที่ความเร็วแก๊สป้อนเข้านี้ ความสูงของผิวน้ำเบดจะมีค่าประมาณ 1.40 เมตร ทิศทางความเร็วของอนุภาคของแข็งแสดงดังรูปที่ 8(c) การไหลย้อนกลับมีการขยายตัวเพิ่มขึ้นไปถึงด้านบนของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ เมื่อพิจารณาช่วงการไหโลย่างละเอียด จะพบความปั่นปวนภายในระบบที่สูงขึ้น เนื่องจากผิวน้ำเบด อนุภาคของแข็งมีการเคลื่อนที่คล้ายกับน้ำพุเนื่องจากสมดุลแรงภายในระบบ (Gao et al., 2012) ที่ส่วนตรงกลางและผนังของท่อไอเรชอร์ มีค่าความเร็วของอนุภาคของแข็งค่อนข้างและลับ ตามลำดับ

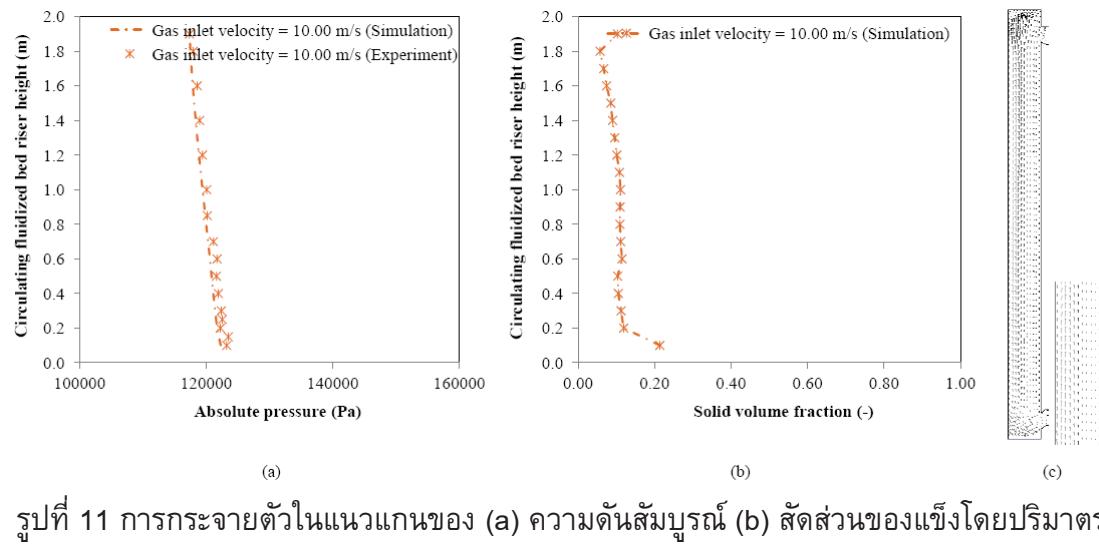
รูปที่ 8 การกระจายตัวในแนวแกนของ (a) ความดันสัมบูรณ์ (b) สัดส่วนของแข็งโดยปริมาตร และ (c) ทิศทางความเร็วของอนุภาคของแข็ง ภายใต้ท่อไอเรชอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ ที่ความเร็วแก๊สป้อนเข้า 0.75 เมตรต่อวินาที (ช่วงการไหล Turbulent fluidization)

รูปที่ 9 แสดงการกระจายตัวในแนวแกนของ (a) ความดันสัมบูรณ์ (b) สัดส่วนของแข็งโดยปริมาตร และ (c) ทิศทางความเร็วของอนุภาคของแข็ง ภายใต้ท่อไอเรชอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ ที่ความเร็วแก๊สป้อนเข้า 1.25 เมตรต่อวินาที (ช่วงการไหล Circulating-turbulent fluidization) ผลจากการจำลองและจากการทดลองจริงมีค่าเหมือนกันแต่

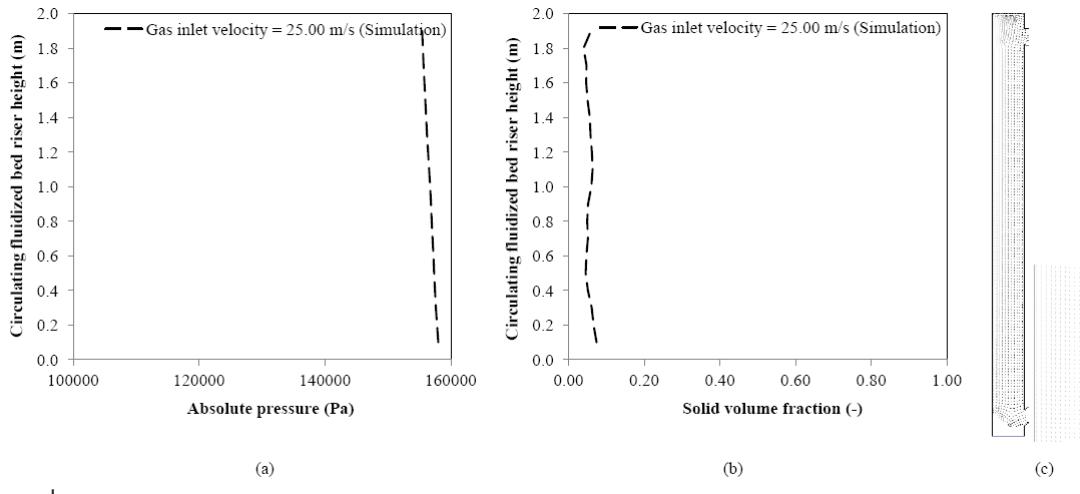

แตกต่างจากช่วงการไหลสองช่วงที่ผ่านมา ความดันสัมบูรณ์มีค่าลดลงเมื่อความสูงของห่อไอเซอร์เพิ่มขึ้น ลักษณะนี้สะท้อนว่ามีการกระจายของอนุภาคของแข็งในแบบเดียวกันตลอดทั้งห่อไอเซอร์ สัดส่วนของแข็งโดยปริมาตรในแนวแกนในรูปที่ 9(b) พิสูจน์ข้อความที่กล่าวมาข้างต้น สัดส่วนของแข็งโดยปริมาตรไม่เปลี่ยนแปลงตลอดคอมพิวเตอร์ จากทิศความเร็วของอนุภาคของแข็ง พบการผสมหรือปั่นป่วนตลอดห้องระบบ เพราะภาวะการดำเนินการที่มีปริมาณอนุภาคของแข็งที่สูงและความเร็วแก๊สป้อนเข้าที่ต่ำ ที่ความเร็วแก๊สป้อนเข้านี้ ความสูงของผิวน้ำเบดจะขยายตัวไปถึงบริเวณทางออกของห่อไอเซอร์ ในแนวซึ่งมี อนุภาคของแข็งแสดงโครงสร้างการไหลแบบ Core-annulus ที่ไม่รุนแรงเท่ากับในช่วงการไหลแบบ Fast fluidization (Rhodes, 2008; Chalermisinsuwan et al., 2009)

รูปที่ 9 การกระจายตัวในแนวแกนของ (a) ความดันสัมบูรณ์ (b) สัดส่วนของแข็งโดยปริมาตร และ (c) ทิศทางความเร็วของอนุภาคของแข็ง ภายใต้ห่อไอเซอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ ที่ความเร็วแก๊สป้อนเข้า 1.25 เมตรต่อวินาที (ช่วงการไหล Circulating-turbulent fluidization)

การกระจายตัวในแนวแกนของ (a) ความดันสัมบูรณ์ (b) สัดส่วนของแข็งโดยปริมาตร และ (c) ทิศทางความเร็วของอนุภาคของแข็ง ภายใต้ห่อไอเซอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ ที่ความเร็วแก๊สป้อนเข้า 5.00 เมตรต่อวินาที (ช่วงการไหล Fast fluidization) แสดงได้รูปที่ 10 ยกเว้นที่ส่วนด้านล่างของห่อไอเซอร์ ผลจากการจำลองมีค่าที่ตรงกันกับผลจากการทดลอง ที่ส่วนด้านล่าง ค่าจากการทดลองจริงมีค่าสูงกว่าค่าการจำลองเล็กน้อย แต่ก็ยังคงพบภาพรวมแนวโน้มที่เหมือนกัน เหตุผลของความแตกต่างที่เกิดขึ้นสามารถอธิบายได้จากสมมติฐานของโครงสร้างศึกษาวิจัย ระบบการทดลองแบบสามมิติมีพื้นที่ที่มากขึ้นสำหรับอนุภาคของแข็งในการหมุนเวียนตลอด ความดันสัมบูรณ์จึงมีค่าลดลง เมื่อเปรียบเทียบผลที่ได้กับผลที่ความเร็วแก๊สป้อนเข้า 1.25 เมตรต่อวินาทีหรือช่วงการไหล Circulating-turbulent fluidization ความซันของความดันสัมบูรณ์ที่ความเร็วแก๊สป้อนเข้า 5.00 เมตรต่อวินาทีหรือช่วงการไหล Fast


fluidization มีค่าต่ำกว่าที่ความเร็วแก๊สป้อนเข้า 1.25 เมตรต่อวินาที สรุปได้ว่า สัดส่วนของแข็งโดยปริมาตรมีค่าต่ำสำหรับความเร็วแก๊สป้อนเข้านี้ จากรูปที่ 10(b) สัดส่วนของแข็งโดยปริมาตรมีค่าเพิ่มขึ้นเล็กน้อยที่บริเวณด้านบนและบริเวณด้านล่างเพราะการไหลย้อนกลับของอนุภาคของแข็ง (จากท่อดาวเนอร์) โดยจะไม่พบความสูงของผิวน้ำเบดของแข็งที่ความเร็วแก๊สป้อนเข้านี้ เพราะระบบดำเนินการแบบต่อเนื่อง จากทิศทางความเร็วของอนุภาคของแข็งพบรักษณะการไหล Core-annulus เช่นเดียวกับในระบบที่มีความหนาแน่นของอนุภาคของแข็งต่ำ (Rhodes et al., 1998; Almuttahar and Taghipour, 2008; Chalermisinsuwan et al., 2009) ความปั่นป่วนภายในระบบจะพบมากที่บริเวณด้านบนและด้านล่าง

รูปที่ 10 การกระจายตัวในแนวแกนของ (a) ความดันสัมบูรณ์ (b) สัดส่วนของแข็งโดยปริมาตร และ (c) ทิศทางความเร็วของอนุภาคของแข็ง ภายใต้ท่อไอเสอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ ที่ความเร็วแก๊สป้อนเข้า 5.00 เมตรต่อวินาที (ช่วงการไหล Fast fluidization)


รูปที่ 11 แสดงการกระจายตัวในแนวแกนของ (a) ความดันสัมบูรณ์ (b) สัดส่วนของแข็งโดยปริมาตร และ (c) ทิศทางความเร็วของอนุภาคของแข็ง ภายใต้ท่อไอเสอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ ที่ความเร็วแก๊สป้อนเข้า 10.00 เมตรต่อวินาที (ช่วงการไหล Pneumatic transport fluidization) ค่าความดันสัมบูรณ์จากการจำลองมีความน่าเชื่อถือเมื่อนำมาเปรียบเทียบกับค่าจากการทดลอง ค่าความดันสัมบูรณ์ที่บริเวณด้านล่างและบนของท่อไอเสอร์มีค่าสูง ซึ่งสามารถอธิบายได้ด้วยสัดส่วนของแข็งโดยปริมาตรภายใต้ท่อไอเสอร์ รูปที่ 11(b) พิสูจน์ pragmatics ที่อธิบาย เมื่อเปรียบเทียบกับช่วงการไหลอื่นที่ผ่านมาพบว่า สัดส่วนของแข็งโดยปริมาตรมีค่าต่ำ ที่บริเวณด้านบนและด้านล่างซึ่งสอดคล้องกับลักษณะของความดันสัมบูรณ์ที่ความเร็วแก๊สเข้านี้ ไม่พบความสูงของผิวน้ำเบดของอนุภาคของแข็ง จากทิศทางความเร็วของอนุภาคของแข็ง ความเร็วของอนุภาคของแข็งมีค่าสูงสุดที่บริเวณใกล้ผนังและไม่สมมาตร นอกจากนี้ภายในระบบยังพบรูปแบบการไหลแบบ Core-annulus แต่ไม่ชัดเจน รูปแบบที่สังเกตได้มีความ

เหมือนกับข้อมูลในงานวิจัยภายในช่วงการไหลแบบ Pneumatic transport fluidization (Grace et al., 1997; Rabinovich and Kalman, 2011)

รูปที่ 11 การกระจายตัวในแนวแกนของ (a) ความดันสัมบูรณ์ (b) สัดส่วนของแข็งโดยปริมาตร และ (c) ทิศทางความเร็วของอนุภาคของแข็ง ภายใต้ท่อไอเซอร์ของเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติ ที่ความเร็วแก๊สป้อนเข้า 10.00 เมตรต่อวินาที (ช่วงการไหล Pneumatic transport fluidization)

การกระจายตัวในแนวแกนของ (a) ความดันสัมบูรณ์ (b) สัดส่วนของแข็งโดยปริมาตร และ (c) ทิศทางความเร็วของอนุภาคของแข็ง ภายใต้ท่อไอเซอร์ของเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติ ที่ความเร็วแก๊สป้อนเข้า 25.00 เมตรต่อวินาที (ช่วงการไหล Dense suspension bypassing fluidization) แสดงได้ดังรูปที่ 12 ช่วงการไหลแบบใหม่นี้ถูกพบภายใต้ระบบที่มีความหนาแน่นอนุภาคของแข็งสูง อย่างไรก็ตาม การทดลองจริงในอุปกรณ์การทดลองไม่สามารถดำเนินการกับความเร็วแก๊สป้อนเข้าได้ เนื่องจากข้อจำกัดของอุปกรณ์ ที่ช่วงการไหลนี้ ความดันสัมบูรณ์ลดลงทั้งท่อไอเซอร์จะสูงสุด ความแตกต่างระหว่างความดันสัมบูรณ์ที่ด้านบนและด้านล่างมีค่าต่ำ สัดส่วนของแข็งโดยปริมาตรที่มีค่าต่ำภายใต้ระบบเป็นเหตุที่ทำให้เกิดปรากฏการณ์ดังกล่าว (รูปที่ 12(b)) เนื่องจากสัดส่วนของแข็งโดยปริมาตรที่ต่ำและความเร็วแก๊สป้อนเข้าที่สูงทำให้การกระจายตัวของอนุภาคของแข็งในแนวแกนมีค่าค่อนข้างสม่ำเสมอ ความเหมือนกันกับช่วงการไหลสองรูปแบบที่ผ่านมา คือ ช่วงการไหลนี้ไม่แสดงความสูงของผิวน้ำเบดของแข็งได้อย่างชัดเจน เมื่อพิจารณาทิศทางความเร็วของอนุภาคของแข็ง ความเร็วของอนุภาคของแข็งทั้งหมดเคลื่อนที่ขึ้นด้านบน ซึ่งเป็นลักษณะเฉพาะของอุทกพลศาสตร์ของช่วงการไหลแบบใหม่เมื่อเปรียบเทียบกับช่วงการไหลอื่น

รูปที่ 12 การกระจายตัวในแนวแกนของ (a) ความดันสัมบูรณ์ (b) สัดส่วนของแข็งโดยปริมาตร และ (c) ทิศทางความเร็วของอนุภาคของแข็ง ภายใต้ท่อไอเรเชอร์ของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนสองมิติ ที่ความเร็วแก๊สป้อนเข้า 25.00 เมตรต่อวินาที (ช่วงการให้เล Dense suspension bypassing fluidization)

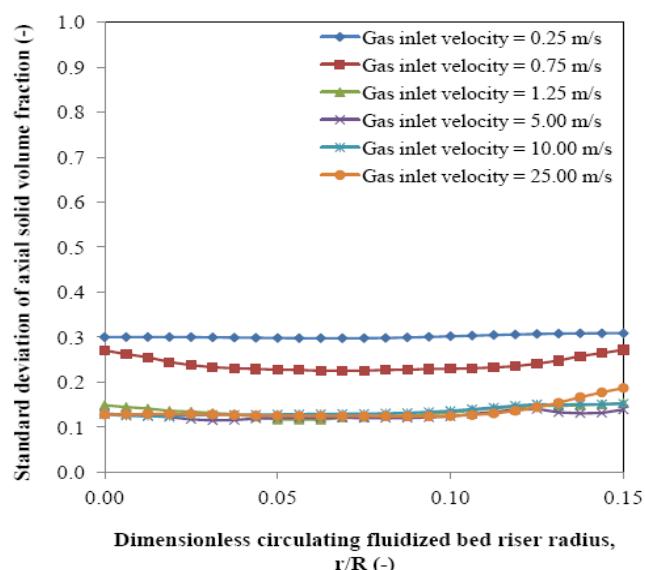
จากการเปรียบเทียบผลการทดลองทั้งในเชิงคุณภาพและเชิงปริมาณ ผลที่ได้มีความสอดคล้องกัน ซึ่งสามารถยืนยันการเกิดขึ้นของช่วงการให้เลใหม่ภายใต้เครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนที่มีความหนาแน่นอนุภาคของแข็งสูง ต่อไป จะทำการอธิบายช่วงการให้เลด้วยตัวแปรทางสถิติเชิงลึก (ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตร) รวมทั้งสร้างแผนภาพช่วงการให้เลภายใต้เครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนที่มีความหนาแน่นอนุภาคของแข็งสูง

อธิบายช่วงการให้เลด้วยตัวแปรทางสถิติเชิงลึก

รูปที่ 13 แสดงการกระจายตัวตามแนวรัศมีของค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรตามความสูงที่ความเร็วแก๊สป้อนเข้าหรือช่วงการให้เลที่แตกต่างกัน 6 ค่า ผลที่ได้คือ สัดส่วนของแข็งโดยปริมาตรตลอดความสูงของท่อไอเรเชอร์ที่ความเร็วแก๊สป้อนเข้า 0.25 เมตรต่อวินาทีหรือช่วงการให้เล Bubbling fluidization มีค่าคงที่ที่ประมาณ 0.27 ซึ่งสามารถอธิบายได้จากการตั้งค่าของความเร็วแก๊สป้อนเข้าที่ต่ำ ในความเป็นจริง สัดส่วนของแข็งโดยปริมาตรภายใต้ช่วงการให้เล Bubbling fluidization มีค่าคงที่ที่ประมาณ 0.27 แต่เนื่องจากไม่พบอนุภาคของแข็งที่บริเวณด้านบน เมื่อค่าสัดส่วนของแข็งโดยปริมาตรถูกนำมาเฉลี่ยจึงให้ค่าที่ต่ำลง สำหรับความเร็วแก๊สป้อนเข้าที่ 0.75 เมตรต่อวินาที (ช่วงการให้เล Turbulent fluidization) และที่ 1.25 เมตรต่อวินาที (ช่วงการให้เล Circulating-turbulent fluidization) มีลักษณะที่เหมือนกัน สัดส่วนของแข็งโดยปริมาตรค่าต่ำและสูงพบได้ที่บริเวณตรงกลางและผนังท่อไอเรเชอร์ ตามลำดับ โดยค่าสัดส่วนของแข็งโดยปริมาตรทั้งหมดตามแนวรัศมีของท่อไอเรเชอร์ยังคงมีค่าสูงกว่า 0.20 แสดงให้เห็นว่าระบบนี้มีความหนาแน่นของอนุภาคของแข็งสูง

(Issangya et al., 1999) สำหรับความเร็วแก๊สป้อนเข้าที่ 5.00 เมตรต่อวินาทีหรือช่วงการไหหล **Fast fluidization** โครงสร้างการไหแบบ **Core-annulus** ถูกยืนยันซึ่งสอดคล้องกับทิศทางความเร็วของอนุภาคของแข็ง ความแตกต่างระหว่างสัดส่วนของแข็งโดยปริมาตรที่บริเวณตรงกลางและที่ผนังสามารถเห็นได้อย่างชัดเจน สำหรับช่วงการไหหลที่เหลือทั้งสองรูปแบบ สัดส่วนของแข็งโดยปริมาตรภายในระบบจะมีค่าต่ำเมื่อเทียบกับช่วงการไหหลที่ผ่านมาทั้งหมด สำหรับความเร็วแก๊สป้อนเข้าที่ 10.00 เมตรต่อวินาทีหรือช่วงการไหหล **Pneumatic transport fluidization** จะพบเห็นโครงสร้างการไหแบบ **Core-annulus** เล็กน้อยและไม่สมมาตรซึ่งมีความสอดคล้องกับความเร็วของอนุภาคของแข็ง ส่วนความเร็วแก๊สป้อนเข้าที่ 25.00 เมตรต่อวินาทีหรือช่วงการไหหล **Dense suspension bypassing fluidization** สัดส่วนของแข็งโดยปริมาตรมีค่าสูงและต่ำที่อีกด้านของผนัง สัดส่วนของแข็งโดยปริมาตรมีค่าสูงบริเวณใกล้กับผนังที่อนุภาคของแข็งไหหลย้อนกลับจากหอดาวเนอร์ ลักษณะที่พบร่องช่วงการไหหลใหม่นี้ ช่วยพิสูจน์ลักษณะเฉพาะที่เกิดขึ้น

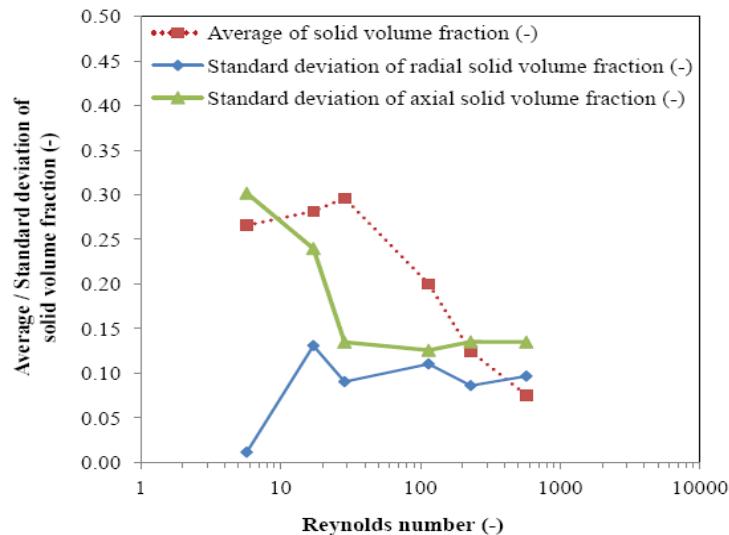
รูปสองรูปถัดไปแสดงค่าเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรภายในท่อไเรเชอร์ที่มีความหนาแน่นอนุภาคของแข็งสูง ตัวแปรทางสถิตินี้สามารถนำมาใช้ในแสดงการกระจายตัวของอนุภาคของแข็งของระบบที่เรานำไป (ทั้งในแนวแกนและแนวรัศมี) การกระจายตัวตามแนวแกนของค่าส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวรัศมีกับความเร็วแก๊สป้อนเข้าหรือช่วงการไหหลที่แตกต่างกัน 6 ค่า ถูกแสดงไว้ดังรูปที่ 14 ค่าส่วนเบี่ยงเบนมาตรฐานที่ค่าสูงและต่ำแสดงถึงสัดส่วนของแข็งโดยปริมาตรที่ต่างกันและเมื่อเทียบตามลำดับ ที่ความเร็วแก๊สป้อนเข้า 0.25 เมตรต่อวินาทีหรือช่วงการไหหล **Bubbling fluidization** ค่าส่วนเบี่ยงเบนมาตรฐานมีค่าสูงที่บริเวณด้านล่าง เพราะความเร็วแก๊สป้อนเข้า นอกจากนั้น การผสมที่สูงจะพบบริเวณใกล้กับผิวน้ำของเบดอนุภาคของแข็ง สำหรับความเร็วแก๊สป้อนเข้าที่ 0.75 เมตรต่อวินาทีหรือช่วงการไหหล **Turbulent fluidization** จะพบค่าส่วนเบี่ยงเบนมาตรฐานสูงตลอดเบดของแข็งอันเป็นลักษณะเฉพาะของช่วงการไหหลนี้แสดงถึงการผสมในแนวรัศมีที่มีค่าสูงภายในระบบ ซึ่งมีความสอดคล้องกับข้อมูลจากการวิจัยที่ฟองแก๊สจะเกิดจับตัวเป็นกลุ่มและแตกออก (Yang, 2003) สำหรับความเร็วแก๊สป้อนเข้าที่ 1.25 เมตรต่อวินาทีหรือช่วงการไหหล **Circulating-turbulent fluidization** การผสมในแนวรัศมีมีค่าคงที่ตลอดทั้งท่อไเรเชอร์ การเกิดปรากฏการณ์นี้เป็นข้อดีของรูปแบบการไหหลนี้ สำหรับความเร็วแก๊สป้อนเข้าที่ 5.00 เมตรต่อวินาทีหรือช่วงการไหหล **Fast fluidization** ค่าส่วนเบี่ยงเบนมาตรฐานที่สูงถูกพบที่บริเวณด้านบนและด้านล่าง เพราะผลของทางเข้าและทางออก สำหรับความเร็วแก๊สป้อนเข้าที่ 10.00 เมตรต่อวินาทีหรือช่วงการไหหล **Pneumatic transport fluidization** ค่าส่วนเบี่ยงเบนมาตรฐานที่สูงและต่ำจะพบที่บริเวณด้านล่างและด้านบน ตามลำดับ ที่เป็นเช่นนี้เนื่องจากการเปลี่ยนแปลงของสัดส่วนของแข็งโดยปริมาตรภายในระบบ สำหรับความเร็วแก๊สป้อนเข้าที่ 25.00 เมตรต่อวินาทีหรือช่วงการไหหล **Dense suspension bypassing fluidization** การผสมกันในแนวรัศมีมีค่าคงที่ตลอดท่อไเรเชอร์ เช่นเดียวกับการไหหลแบบ **Circulating-turbulent fluidization** ความแตกต่างระหว่างช่วงการไหหลใหม่ทั้งสองนี้คือ ค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรที่มีค่าสูงและต่ำ


รูปที่ 13 การกระจายตัวตามแนวรัศมีของค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรตามความสูงที่ความเร็วแก๊สป้อนเข้าหรือช่วงการไหลที่แตกต่างกัน 6 ค่า

รูปที่ 14 การกระจายตัวตามแนวแกนของค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรในแนวรัศมีที่ความเร็วแก๊สป้อนเข้าหรือช่วงการไหลที่แตกต่างกัน 6 ค่า

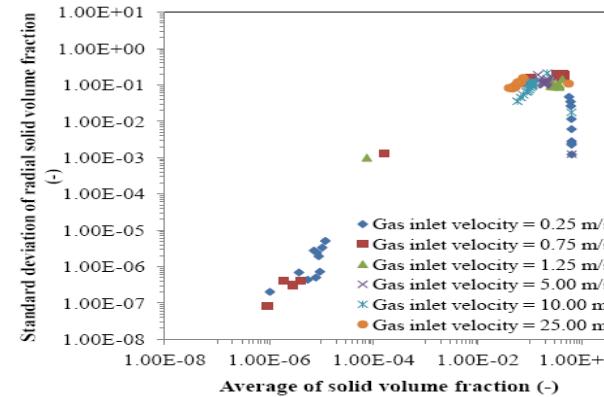
รูปที่ 15 แสดงการกระจายตามแนวรัศมีของส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวแกนที่ความเร็วแก๊สป้อนเข้าหรือรูปแบบการไหลที่แตกต่างกัน 6 ค่า ค่าส่วนเบี่ยงเบนมาตรฐานที่สูงและต่ำบ่งบอกถึงสัดส่วนของแข็งโดยปริมาตรที่แตกต่างกันและเหมือนกันตามลำดับ ผลจากช่วงการไหลแต่ละแบบแสดงค่าสัดส่วนเบี่ยงเบนมาตรฐานที่เหมือนกัน ส่วนเบี่ยงเบนมาตรฐานจะค่อนข้างคงที่ตลอดทั้งท่อไรเซอร์ สำหรับความเร็วแก๊สป้อนเข้าที่ 0.25 เมตรต่อวินาทีหรือช่วงการไหล Bubbling fluidization พบร่วมกับส่วนเบี่ยงเบนมาตรฐานมีลักษณะคงที่เหมือนกับการกระจายตามแนวแกน สำหรับความเร็วแก๊สป้อนเข้าที่ 0.75 เมตรต่อวินาทีหรือช่วง

การไหล Turbulent fluidization พบค่าส่วนเบี่ยงเบนมาตรฐานมีการเบี่ยงเบนสูง อย่างไรก็ตาม ค่าที่ได้มีค่าต่ำกว่าช่วงการไหล Bubbling fluidization เมื่อมีการพิจารณาอย่างละเอียด ส่วนเบี่ยงเบนมาตรฐานบริเวณใกล้ผนังจะมีค่าสูงกว่าบริเวณส่วนตรงกลางเล็กน้อย สรุปได้ว่าระบบมีความผันผวนที่สูงมากใกล้กับบริเวณผนัง สำหรับที่ความเร็วแก๊สป้อนเข้าอีนๆ (ความเร็วแก๊สป้อนเข้าที่ 1.25, 5.00 และ 10.00 เมตรต่อวินาที) ค่าสัดส่วนเบี่ยงเบนมาตรฐานมีค่าคงที่ตลอด แนวรัศมีของห่อไอซ์เซอร์ อย่างไรก็ตาม ค่าส่วนเบี่ยงเบนมาตรฐานที่ได้มีค่าต่ำกว่าช่วงการไหลทั้งสองที่ผ่านมา สะท้อนให้เห็นว่า ระบบมีความผันผวนเล็กน้อยภายในรูปแบบการไหลเหล่านี้ สำหรับความเร็วแก๊สป้อนเข้าที่ 25.00 เมตรต่อวินาทีหรือช่วงการไหล Dense suspension bypassing fluidization ส่วนเบี่ยงเบนมาตรฐานที่ผนังด้านหนึ่ง (ใกล้กับทางเข้าของอนุภาคของแข็งจากห้อดาวเนอร์) มีค่าสูงกว่าผนังอีกด้านเล็กน้อย ความผันผวนจากอนุภาคของแข็งที่ไหลย้อนกลับเข้าสู่ห่อไอซ์เซอร์เป็นเหตุผลของอุทกพลศาสตร์ที่เกิดขึ้นนี้

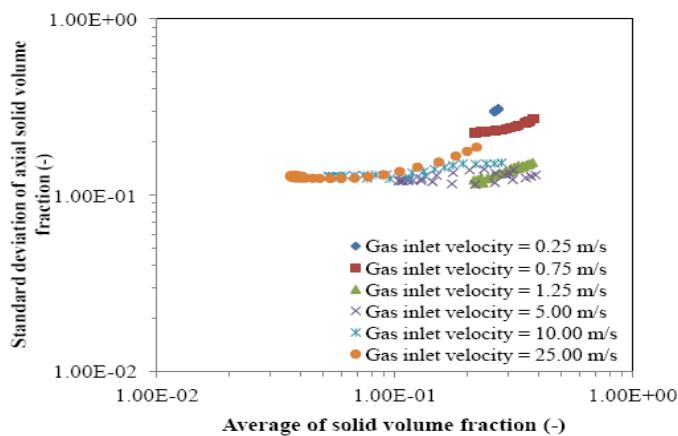


รูปที่ 15 การกระจายตามแนวรัศมีของส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวแกนที่ความเร็วแก๊สป้อนเข้าห่อไอซ์เซอร์ที่แตกต่างกัน 6 ค่า

แผนภาพช่วงการไหล


รูปที่ 16 แสดงผลของตัวเลข “รูหన่วยเรย์โนล์ดต่อค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานทั้งในแนวแกนและแนวรัศมีของสัดส่วนของแข็งโดยปริมาตร ตัวแปรทางสถิติเชิงลึกทั้ง 3 ตัวแปรสามารถนำมาใช้สรุปหากการดำเนินการที่เหมาะสมที่สุดของเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียน จากรูป ค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรมีค่าสูงสุด (ประมาณ 0.30) ที่ความเร็วแก๊สป้อนเข้า 1.25 เมตรต่อวินาทีหรือช่วงการไหล Circulating-turbulent fluidization สำหรับความเร็วแก๊สป้อนเข้าที่ 0.25 เมตรต่อวินาที (ช่วงการไหล Bubbling fluidization) และ 0.75 เมตร

ต่อวินาที (ช่วงการไอล ช่วงการไอล Turbulent fluidization) ค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรมีค่าเพิ่มขึ้น เมื่อความเร็วแก๊สป้อนเข้าเพิ่มขึ้น ซึ่งสามารถอธิบายโดยอุทกพลศาสตร์ในระบบ ช่วงการไอลทั้งสองนี้เป็นการไอลของของไอลแบบกะ อนุภาคของแข็งจะไอลย้อนกลับภายในระบบ ผิวน้ำเบดของแข็งจะพบที่ใต้ทางออกของห่อไรเซอร์ ทำให้ค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรมีค่าต่ำสำหรับความเร็วแก๊สป้อนเข้าที่ 5.00 เมตรต่อวินาที (ช่วงการไอล Fast fluidization) 10.00 เมตรต่อวินาที (ช่วงการไอล Pneumatic transport fluidization) และ 25.00 เมตรต่อวินาที (ช่วงการไอล Dense suspension bypassing fluidization) ค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรลดลงอย่างมากกับค่าความเร็วแก๊สป้อนเข้าที่เพิ่มขึ้น อัตราการไอลโดยปริมาตรของแก๊สที่เข้าสู่ระบบสูงขึ้นทำให้ระบบมีความเบาบางที่ภาวะนี้ กรณีส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวรัศมี จะพบค่าต่ำสุดที่ความเร็วแก๊สป้อนเข้า 0.25 เมตรต่อวินาทีหรือช่วงการไอล Bubbling fluidization เพราะความเร็วแก๊สป้อนเข้าที่ต่ำ อนุภาคของแข็งภายในระบบเพิ่งจะเริ่มเกิดการเปลี่ยนแปลง ค่าสูงที่สุดพบที่ความเร็วแก๊สป้อนเข้า 0.75 เมตรต่อวินาทีหรือช่วงการไอล Turbulent fluidization เพราะความผันผวนของระบบอุทกพลศาสตร์ที่มีค่าสูง สำหรับความเร็วแก๊สป้อนเข้าอีก ๑ ส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวรัศมีมีค่าโดยประมาณคงที่ มีการเปลี่ยนแปลงเพียงเล็กน้อยเท่านั้นที่พบในแนวรัศมีที่ความเร็วแก๊สป้อนเข้าเหล่านี้ กรณีส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวแกน จะพบค่าสูงสุดที่ความเร็วแก๊สป้อนเข้า 0.25 เมตรต่อวินาทีหรือช่วงการไอล Bubbling fluidization จากที่กล่าวมาข้างต้น ปรากฏการณ์นี้สามารถอธิบายได้จากการกระจายตัวของอนุภาคของแข็งในแนวแกน เมื่อความเร็วแก๊สป้อนเข้าเพิ่มขึ้น ส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวแกนจะมีค่าลดลง (ความเร็วแก๊สป้อนเข้าที่ 0.75 เมตรต่อวินาที) และลู่เข้าสู่ค่าคงที่ที่ 0.13 (ความเร็วแก๊สป้อนเข้าที่ 1.25 5.00 10.00 และ 25.00 เมตรต่อวินาที) ค่าคงที่ที่พบเกิดจากโครงสร้างการไอลสำหรับความเร็วแก๊สป้อนเข้าเหล่านี้เหมือนกัน จากผลการทดลองและการจำลองทั้งหมดช่วงการไอล Circulating-turbulent fluidization เป็นช่วงการไอลในอุดมคติสำหรับการใช้งานที่ต้องการพื้นที่ผิวสัมผัสที่สูง และช่วงการไอล Dense suspension bypassing fluidization จะเหมาะสมกับการใช้งานที่ต้องการปริมาณการเคลื่อนที่ของอนุภาคของแข็งที่สูง



รูปที่ 16 ผลของตัวเลข “รีหันวายเรย์โนลเด็ตต์” ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานทั้งในแนวแกน
และแนวรัศมีของสัดส่วนของแข็งโดยปริมาตร

ผลของค่าเฉลี่ยต่อส่วนเบี่ยงเบนมาตรฐานทั้งใน (a) แนวรัศมี และ (b) แนวแกนของสัดส่วนของแข็งโดยปริมาตรแสดงดังรูปที่ 17 ผลของความเร็วแก๊สป้อนเข้าแต่ละค่าหรือช่วงการไหลแต่ละแบบมีความสอดคล้องกันกับช่วงการไหลอื่นๆ โดยพบแนวโน้มที่ชัดเจนระหว่างค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานในแนวรัศมีของสัดส่วนของแข็งโดยปริมาตร ค่าสูงสุดจะพบที่ค่ากลางของค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตร ที่ค่านี้ อนุภาคของแข็งภายในระบบสามารถถูกลายเป็นอนุภาคของแข็งเดียวหรือเป็นกลุ่มก้อนทำให้ส่วนเบี่ยงเบนมาตรฐานของสัดส่วนโดยปริมาตรของอนุภาคของแข็งมีค่าสูง สำหรับค่าต่ำของค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตร อนุภาคของแข็งที่มีอยู่ในระบบมีจำนวนน้อย อนุภาคของแข็งจะเคลื่อนที่เมื่ออนุภาคของแข็งเดียว ความผันผวนของระบบจึงมีค่าน้อย สำหรับค่าสูงของค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตร อนุภาคของแข็งจะเกาะกันเป็นกลุ่มหรือจับเป็นก้อนเข้าด้วยกัน ดังนั้น อนุภาคของแข็งจะเคลื่อนที่อย่างจำกัด ความผันผวนของระบบจึงมีค่าน้อยด้วย สำหรับผลของค่าเฉลี่ยต่อส่วนเบี่ยงเบนมาตรฐานในแนวแกนของสัดส่วนของแข็งโดยปริมาตร แนวโน้มทั้งหมดของส่วนเบี่ยงเบนมาตรฐานในแนวแกนของสัดส่วนของแข็งโดยปริมาตรมีค่าเพิ่มขึ้นที่ค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรเพิ่มขึ้นในทุกช่วงการไหล เมื่อมีความเข้มข้นของอนุภาคของแข็งที่หนาแน่นขึ้น ความผันผวนภายในระบบก็จะมีค่าเพิ่มขึ้น สำหรับการเบรี่ยบเทียบระหว่างช่วงการไหลต่างๆ ช่วงการไหล Bubbling fluidization และ Turbulent fluidization ให้ค่าส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวแกนที่สูง ส่วนช่วงการไหลอื่นค่าที่ได้จะมีขนาดเท่าๆ กัน

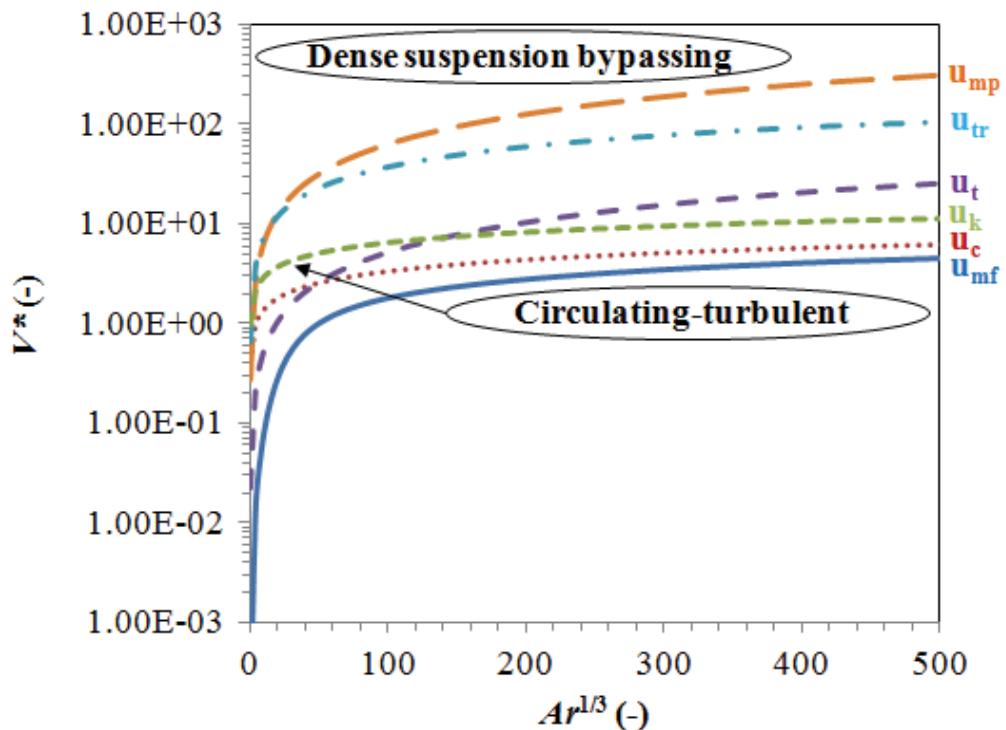
(a)

(b)

รูปที่ 17 ผลของค่าเฉลี่ยต่อส่วนเบี่ยงเบนมาตรฐานหง้าวใน (a) แนวรัศมี และ (b) แนวแกน ของสัดส่วนของแข็งโดยปริมาตร

จากผลที่ได้หง้าวทดสอบสามารถสรุปแผนภาพช่วงการไหลได้ สมการสำหรับการคำนวณความเร็วแก๊สป้อนข้าวที่ต่ำที่สุดของแต่ละช่วงการไหลแสดงในตารางที่ 3 สมการเหล่านี้หาได้จากข้อมูลจากการวิจัยที่ผ่านมา (Grace et al., 1997; Basu, 2006; Jaiboon et al., 2013) รูปที่ 18 แสดงแผนภาพช่วงการไหลต่างๆ ภายในห่อไอซ์ของเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนสองมิติที่ความหนาแน่นของอนุภาคของแข็งในกระบวนการสูง โดยแสดงในรูปของความเร็วไร้หน่วย (V^*) และตัวเลขไร้หน่วยของคิมิคิติส (Ar) ที่สามารถคำนวณได้จาก

$$V^* = \left[\frac{\rho_g^2}{g\mu_g(\rho_s - \rho_g)} \right]^{1/3} \left[V - \frac{G_s \varepsilon}{\rho_s(1-\varepsilon)} \right]$$


$$Ar = \frac{\rho_g(\rho_s - \rho_g)gd_p^3}{\mu_g^2}$$

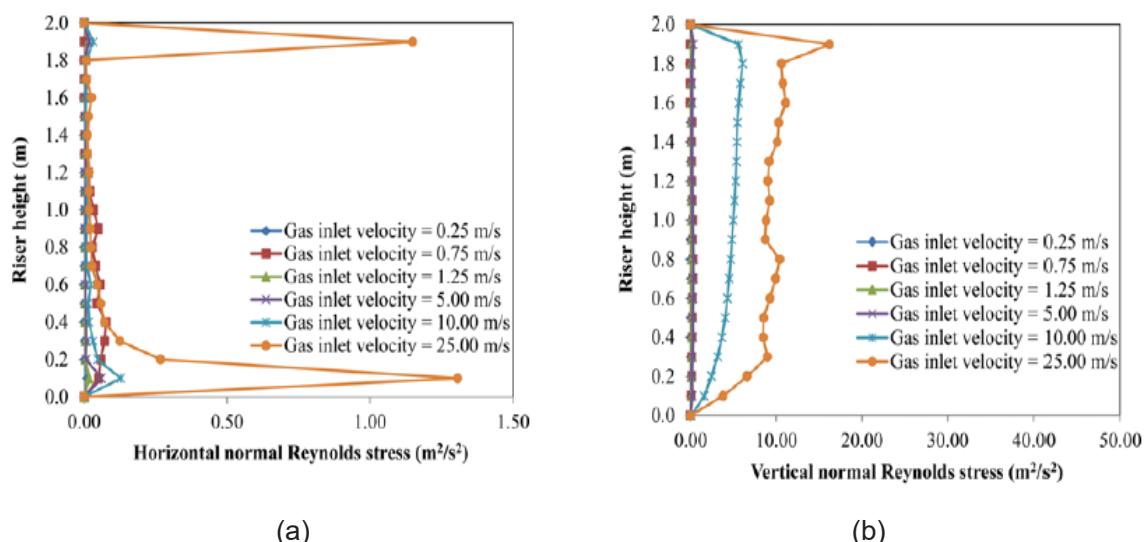
เมื่อ ρ_g คือ ความหนาแน่นของแก๊ส μ_g คือ ความหนืดของแก๊ส G_s คือ พลักซ์การไหลโดยมวลของอนุภาคของแข็ง d_p คือ เส้นผ่านศูนย์กลางของอนุภาคของแข็ง V คือ ความเร็วแก๊ส

ป้อนเข้า และ ε คือ สัดส่วนของช่องว่างโดยปริมาตร แผนภาพสำหรับช่วงการไหลจะถูกสร้างจากสมการที่ได้นี้โดยใช้ความเร็วแก๊สป้อนเข้าที่ความเร็ว Minimum fluidization (u_{mf}) ความเร็ว Minimum turbulent fluidization (u_c , u_k) ความเร็ว Minimum transport (u_{tr}) และความเร็ว Minimum pneumatic transport (u_{mp}) ในรูปยังได้แสดงความเร็ว Minimum terminal (u_t) ด้วย ความเร็ว Minimum terminal เป็นความเร็วที่ทำให้เกิดสมดุลระหว่างแรงดึงดูดตัวและแรงต้านทาน การเคลื่อนที่ของของไหลกับแรงโน้มถ่วง ที่ความเร็วที่น้อยกว่าความเร็ว Minimum terminal นี้ จะไม่มีการเคลื่อนย้ายของอนุภาคของแข็งออกจากระบบ ที่ความเร็วที่มากกว่าความเร็ว Minimum terminal นี้ จะมีการเคลื่อนย้ายของอนุภาคของแข็งออกจากระบบ เนื่องจากความแตกต่างระหว่าง ช่วงการไหล Turbulent fluidization และ Circulating-turbulent fluidization คือการเคลื่อนย้าย อนุภาคของแข็ง ดังนั้น ช่วงการไหล Circulating-turbulent fluidization ใหม่นี้จะอยู่ที่ตำแหน่ง ระหว่างความเร็ว Minimum turbulent fluidization ความเร็ว Minimum terminal และความเร็ว Minimum transport สำหรับช่วงการไหลใหม่ Dense suspension bypassing fluidization จะเกิด ที่ความเร็วสูงกว่าความเร็ว Minimum pneumatic transport

ตารางที่ 3 สมการสำหรับคำนวณความเร็วแก๊สป้อนเข้าต่ำสุดของแต่ละช่วงการไหล

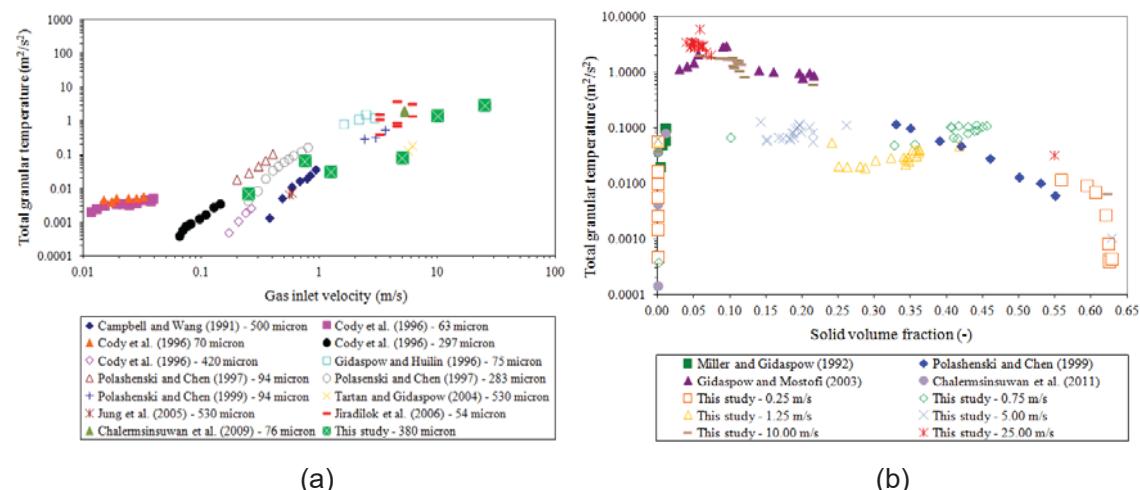
Description	Equation
Minimum fluidization velocity	$Re_{mf} = \frac{\rho_g d_p u_{mf}}{\mu_g} = [27.2^2 + 0.0408Ar]^{0.5} - 27.2$
Minimum turbulent fluidization velocity	$Re_c = \frac{\rho_g d_p u_c}{\mu_g} = 0.565Ar^{0.461}$
Minimum turbulent fluidization velocity	$Re_k = \frac{\rho_g d_p u_k}{\mu_g} = 1.310Ar^{0.450}$
Minimum transport velocity	$Re_{tr} = \frac{\rho_g d_p u_{tr}}{\mu_g} = 2.28Ar^{0.419}$
Minimum pneumatic transport fluidization velocity	$u_{mp} \approx 20u_t$
Minimum terminal velocity	$Re_t = \frac{\rho_g d_p u_t}{\mu_g} = \left(\frac{Ar}{7.5} \right)^{0.666}$

รูปที่ 18 แผนภาพช่วงการไหลต่างๆ ในท่อไเรเซอร์ของเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียน สองมิติที่ความหนาแน่นของอนุภาคของแข็งสูง


การวิเคราะห์ตัวแปรเชิงลึกอีนๆ เพิ่มเติม

การวิเคราะห์ตัวแปรเชิงลึกอีนๆ ภายในระบบได้ถูกพิจารณา อันได้แก่ ความเครียด เรย์โนล์ด์ และอุณหภูมิแกรนูลาร์ (การกวัดแก่วงของพลังงานจนภายในอนุภาคของแข็ง) โดยผลที่ได้ของตัวแปรเชิงลึกภายในระบบทั้งสองมีแนวโน้มไปในทิศทางเดียวกัน

ความเครียดเรย์โนล์ด์ คือ ตัวแปรที่ใช้แสดงผลของความเครียดที่เพิ่มขึ้นเนื่องจากการกวัดแก่วงของความเร็วแบบสุ่ม ซึ่งสามารถแสดงใช้ความปั่นป่วนในกระบวนการ คำนวณได้จากการส่องของผลต่างระหว่างความเร็วอนุภาคของแข็งที่เวลาต่างๆ กับความเร็วอนุภาคของแข็งเฉลี่ย ความเครียดเรย์โนล์ด์สามารถคำนวณได้ทั้งในทิศทางตามแนวแกนและแนวรัศมี Jiradilok et al. (2006) ได้ประสบความสำเร็จในการใช้วิธีนี้สำหรับคำนวณความเครียดเรย์โนล์ด์ของระบบการไหลแบบสองและสามสถานะ รูปที่ 19 (a) การกระจายตามแนวแกนของค่าเฉลี่ยความเครียดเรย์โนล์ด์ตามแนวรัศมีกับค่าความเร็วแก๊สป้อนเข้า 6 ค่าที่ต่างกัน สำหรับทุกความเร็วแก๊ส ป้อนเข้ายกเว้นความเร็วแก๊สป้อนเข้าที่ 0.75 เมตรต่อวินาทีหรือช่วงการไหลแบบบันบวน ค่าความเครียดเรย์โนล์ด์ตามแนวรัศมีจะสูงที่ส่วนบนกับส่วนล่างของกระบวนการนี้องมาจากการไหลของทางเข้าและทางออกกระบวนการ เมื่อเพิ่มความเร็วแก๊สป้อนเข้า ค่าความเครียดเรย์โนล์ด์ตามแนวรัศมีจะสูงขึ้น ที่ความเร็วแก๊สป้อนเข้า 0.75 เมตรต่อวินาทีหรือช่วงการไหลแบบบันบวน ค่าความเครียดเรย์โนล์ด์ตามแนวรัศมีจะสูงและต่ำที่ส่วนบนกับส่วนล่างของกระบวนการ ตามลำดับ


ด้วยเหตุที่ช่วงการไหลแบบปั้นป่วนเป็นช่วงการไหลฟลูอิไดเซชันแบบกະ อนุภาคของแข็งจะเกิดการวนกลับที่บริเวณด้านล่างของห้องไรเซอร์ ทำให้มีค่าความเครียดเรย์โนล์ด์ตามแนวรัศมีหรือความปั้นป่วนสูง อย่างไรก็ตาม ที่ความเร็วแก๊สป้อนเข้า 0.25 เมตรต่อวินาทีหรือช่วงการไหลแบบฟองแก๊ส จากความเร็วแก๊สป้อนเข้าที่เลือกมาเป็นตัวแทนช่วงการไหลมีการวนกลับน้อยและอนุภาคของแข็งมีความเร็วต่ำมาก ดังนั้น ช่วงการไหลแบบฟองแก๊สจึงมีค่าความเครียดเรย์โนล์ด์ตามแนวรัศมีต่ำกว่าช่วงการไหลแบบปั้นป่วน

รูปที่ 19 (b) แสดงการกระจายตามแนวแกนของค่าเฉลี่ยความเครียดเรย์โนล์ด์ตามแนวแกน กับค่าความเร็วแก๊สป้อนเข้า 6 ค่าที่ต่างกัน ค่าความเครียดเรย์โนล์ด์ตามแนวแกนจะมีค่าสูงขึ้นตามความเร็วแก๊สป้อนเข้าที่เพิ่มขึ้น จากกราฟที่ทุกค่าความเร็วแก๊สป้อนเข้า หรือ ความเร็วแก๊สป้อนเข้า เท่ากับ 0.25 0.75 1.25 5.00 10.00 และ 25.00 เมตรต่อวินาที ความเครียดเรย์โนล์ด์ตามแนวแกนจะมีค่าหรือแนวโน้มค่อนข้างคงที่ (ทั้งนี้เนื่องจากระดับขั้นของแกนนอนที่ค่อนข้างหยาบ โดยหากมีระดับขั้นของแกนนอนที่ค่อนละเอียดขึ้น คาดว่า ค่าความเครียดเรย์โนล์ด์ตามแนวแกนจะสูงและต่ำที่ส่วนบนกับส่วนล่างของกระบวนการ ตามลำดับ ในช่วงการไหลฟลูอิไดเซชันแบบกະ เช่นเดียวกับความเครียดเรย์โนล์ด์ตามแนวรัศมี) เพราะอุทกผลศาสตร์หรือรูปแบบการไหลที่เสถียรตลอดความสูงของกระบวนการ เมื่อเปรียบเทียบค่าที่ได้ระหว่างทิศทางความเครียดเรย์โนล์ด์ตามแนวแกนและความเครียดเรย์โนล์ด์แนวรัศมี ความเครียดเรย์โนล์ด์ตามแนวแกนจะมีค่ามากกว่าความเครียดเรย์โนล์ด์แนวรัศมี เพราะทิศทางตามแนวแกน คือ ทิศทางการไหลหลักของกระบวนการ

รูปที่ 19 การกระจายตามแนวแกนของค่าเฉลี่ยความเครียดเรย์โนล์ด์ (a) ตามแนวรัศมี และ (b) ตามแนวแกน กับค่าความเร็วแก๊สป้อนเข้า 6 ค่าที่ต่างกัน ภายใต้เงื่อนไขที่มีความหนาแน่นของแข็งสูง

ค่าอุณหภูมิแกรนูลาร์หรือการกวัดแก่วงของพลังงานจนน้ำภายในอนุภาคของแข็งมีค่าต่ำและสูง ที่ช่วงการไหล Circulating-turbulent fluidization (ตำแหน่งอันดับที่สอง รองจากช่วงการไหล Bubbling fluidization) และ ช่วงการไหล Dense suspension bypassing fluidization ตามลำดับ (รูปที่ 20 (a)) อุณหภูมิแกรนูลาร์มีค่าสูงสุดอยู่ที่สัดส่วนของแข็งโดยปริมาตรในระบบที่มีค่าเหมาะสม (ปานกลาง) โดยที่สัดส่วนของแข็งโดยปริมาตรในกระบวนการต่ำ จะมีปริมาณอนุภาคของแข็งในระบบห้อย ทำให้มีการกวัดแก่วงของพลังงานจนน้ำภายในอนุภาคของแข็งมีค่าต่ำ ส่วนที่สัดส่วนของแข็งโดยปริมาตรในกระบวนการสูง อนุภาคของแข็งจะรวมกลุ่มกันส่งผลให้มีการกวัดแก่วงของพลังงานจนน้ำภายในอนุภาคของแข็งที่ได้มีค่าต่ำเช่นกัน (รูปที่ 20 (b)) จากผลความเครียดเรย์โนลต์ และอุณหภูมิแกรนูลาร์ ช่วงการไหล Circulating-turbulent fluidization จะเป็นช่วงการไหลในอุดมคติสำหรับการใช้งานที่ต้องการพื้นที่ผิวสัมผัสที่สูง ส่วนช่วงการไหล Dense suspension bypassing fluidization จะเหมาะสมกับการใช้งานที่ต้องการให้ปริมาณของอนุภาคของแข็งเคลื่อนที่ในระบบสูง

รูปที่ 20 ผลของ (a) ความเร็วแก๊สป้อนเข้า และ (b) สัดส่วนของแข็งโดยปริมาตร ต่ออุณหภูมิแกรนูลาร์ เปรียบเทียบกับผลการทดลองจากงานวิจัยที่ผ่านมาภายใต้เครื่องปฏิกรณ์ตันแบบฟลูอิเดซ์เบดแบบหมุนเวียนที่มีความหนาแน่นอนุภาคของแข็งสูงจากการทดลองได้ถูกเปรียบเทียบความถูกต้องในเชิงคุณภาพและเชิงปริมาณกับผลจากการจำลองพลศาสตร์ของไหลเชิงคำนวณ สำหรับการเปรียบเทียบเชิงคุณภาพ ภาพถ่ายการกระจายตัวของอนุภาคของแข็งภายในท่อไฮเซอร์ถูกนำมาใช้ในการเปรียบเทียบกับค่าทั่วของสัดส่วนของแข็งโดยปริมาตร สำหรับการเปรียบเทียบ

สรุปผลการทดลอง

ในโครงการศึกษาวิจัยนี้ การตรวจสอบอุทกพลศาสตร์ภายในเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนที่มีความหนาแน่นอนุภาคของแข็งสูงจากการทดลองได้ถูกเปรียบเทียบความถูกต้องในเชิงคุณภาพและเชิงปริมาณกับผลจากการจำลองพลศาสตร์ของไหลเชิงคำนวณ สำหรับการเปรียบเทียบเชิงคุณภาพ ภาพถ่ายการกระจายตัวของอนุภาคของแข็งภายในท่อไฮเซอร์ถูกนำมาใช้ในการเปรียบเทียบกับค่าทั่วของสัดส่วนของแข็งโดยปริมาตร สำหรับการเปรียบเทียบ

เชิงปริมาณ จะพิจารณาการกระจายตัวตามแนวแกนของความดันสัมบูรณ์ภายในท่อไฮเซอร์จากนั้น ได้อธิบายช่วงการไฮโล วิเคราะห์ตัวแปรเชิงลึกอี่นๆ (ความเครียดเรย์โนลต์ และอุณหภูมิแกرنูลาร์) และเสนอแผนภาพช่วงการไฮโลต่างๆ ผลที่ได้สรุปอยู่บนพื้นฐานของตัวแปรทางสถิติเชิงลึก (ค่าเฉลี่ยและส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรทั้งแนวรัศมีและแนวแกน) ค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรมีค่าสูงสุดที่ความเร็วแก๊สป้อนเข้า 1.25 เมตรต่อวินาทีหรือช่วงการไฮโล Circulating-turbulent fluidization ส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวรัศมีและแนวแกนมีค่าต่ำสุดและสูงสุดที่ความเร็วแก๊สป้อนเข้า 0.25 เมตรต่อวินาทีหรือช่วงการไฮโล Bubbling fluidization ตามลำดับ เมื่อความเร็วแก๊สป้อนเข้าเพิ่มขึ้น ส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรมีแนวโน้มถูกลากเข้าค่าคงที่ ทั้งช่วงการไฮโล Circulating-turbulent fluidization และ Dense suspension bypassing fluidization ให้ระบบการผสมคงที่ตลอดทั้งท่อไฮเซอร์ ความแตกต่างระหว่างช่วงการไฮโลแบบใหม่ที่คันพบนี้ คือค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรมีค่าสูงและต่ำ ตามลำดับ ดังนั้น ช่วงการไฮโล Circulating-turbulent fluidization จะเป็นช่วงการไฮโลในอุดมคติสำหรับการใช้งานที่ต้องการให้ปริมาณของอนุภาคของแข็งเคลื่อนที่ในระบบสูง นอกจากนี้ ความสัมพันธ์ระหว่างตัวแปรทางสถิติเชิงลึกทั้ง 3 ตัวแปรได้ถูกพิจารณา ส่วนเบี่ยงเบนมาตรฐานสูงสุดของสัดส่วนของแข็งโดยปริมาตรในแนวรัศมีถูกพบที่ค่ากลางของค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตร ขณะที่ส่วนเบี่ยงเบนมาตรฐานของสัดส่วนของแข็งโดยปริมาตรในแนวแกนจะสูงขึ้นเมื่อค่าเฉลี่ยสัดส่วนของแข็งโดยปริมาตรสูงขึ้น สุดท้าย ตำแหน่งของช่วงการไฮโลใหม่ที่คันพบทั้งสอง (ที่ใช้เฉพาะการฉีดแก๊สป้อนเข้าในขันแรก) บนแผนภาพช่วงการไฮโลแบบทั่วไปได้ถูกเสนอขึ้น

ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

ควรมีการทดสอบการประยุกต์ใช้งานเครื่องปฏิกรณ์ฟลูอิไดซ์เบดแบบหมุนเวียนที่มีความหนาแน่นอนุภาคของแข็งสูงในสองช่วงการไฮโลใหม่ตามที่เสนอไว้ในโครงการนี้ ทั้งการทดลองจริงและการจำลองพลศาสตร์ของไฮโลเชิงคำนวณ

เอกสารอ้างอิง

Almuttahar A, Taghipour F. Computational fluid dynamics of a circulating fluidized bed under various fluidization conditions. Chemical Engineering Science 2008; 63(6): 1696-1709.

Basu P. Combustion and Gasification in Fluidized Beds. New York: CRC Press, 2006.

Campbell C, Wang D. Particle pressures in gas–fluidized beds. Journal of Fluid Mechanics 1991; 227: 495-508.

Chalermisinsuwan B, Piumsomboon P, Gidaspow D. Kinetic theory based computation of PSRI riser: Part I – Estimate of mass transfer coefficient. *Chemical Engineering Science* 2009; 64: 1195-1211.

Chalermisinsuwan B, Gidaspow D, Piumsomboon P. Two- and three- dimensional CFD modeling of Geldart A particles in a thin bubbling fluidized bed: Comparison of turbulence and dispersion coefficients. *Chemical Engineering Journal* 2011; 171: 301-313.

Chew JW, Hays R, Findlay JG, Knowlton TM, Karri SBR, Cocco RA, Hrenya CM, Impact of material property and operating conditions on mass flux profiles of monodisperse and polydisperse Group B particles in a CFB riser. *Powder Technology* 2011; 214(1): 89-98.

Cody G, Goldfarb D, Storch G, Norris A. Particle granular temperature in gas–fluidized beds. *Powder Technology* 1996; 87: 211-232.

Das AK, De Wilde J, Heynderickx GJ, Marin GB, Vierendeels J, Dick E. CFD simulation of dilute phase gas–solid riser reactors: Part I—a new solution method and flow model validation. *Chemical Engineering Science* 2004; 59(1): 167-186.

Dubrawski K, Tebianian S, Bi HT, Chaouki J, Ellis N, Gerspacher R, Jafari R, Kantzias A, Lim C, Patience GS, Pugsley T, Qi MZ, Zhu JX, Grace JR. Traveling column for comparison of invasive and non-invasive fluidization voidage measurement techniques. *Powder Technology* 2013; 235: 203-220.

Gao X, Wu C, Cheng YW, Wang LJ, Li X. Experimental and numerical investigation of solid behavior in a gas–solid turbulent fluidized bed. *Powder Technology* 2012; 228: 1-13.

Gidaspow D. *Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description*. Boston: Academic Press, 1994.

Gidaspow D, Huilin L. Collisional viscosity of FCC particles in a CFB. *AIChE Journal* 1996; 42: 2503-2510.

Gidaspow D, Mostofi R. Maximum carrying capacity and granular temperature of A, B, and C particles. *AIChE Journal* 2003; 49: 831-843.

Gidaspow D, Jiradilok V. *Computational Techniques: The Multiphase CFD Approach to Fluidization and Green Energy Technologies*. New York: Nova Science Publishers Inc., 2009.

Grace JR, Avidan AA, Knowlton TM. *Circulating Fluidized Beds*. London: Blackie Academic and Professional, 1997.

Issangya AS, Bai D, Bi HT, Lim KS, Zhu J, Grace JR. Suspension densities in a high-density circulating fluidized bed riser. *Chemical Engineering Science* 1999; 54: 5451-5460.

Jaiboon O, Chalermsinsuwan B, Mekasut L, Piumsomboon P, Effect of flow pattern on power spectral density of pressure fluctuation in various fluidization regimes. *Powder Technology* 2013; 233: 215-226.

Jiradilok V, Gidaspow D, Damronglerd S, Koves WJ, Mostofi R. Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser. *Chemical Engineering Science* 2006; 61: 5544-5559.

Jung J, Gidaspow D, Gamwo IK. Measurement of two kinds of granular temperatures, stresses, and dispersion in bubbling beds. *Industrial & Engineering Chemistry Research* 2005; 44: 1329-1341.

Kunii D, Levenspiel O *Fluidization Engineering*, Boston; Butterworth-Heinemann, 1991.

Malvern Instruments, Ltd., Mastersizer 2000. Resource Center, 2013.

Miller A, Gidaspow D. Dense, vertical gas–solids flow in a pipe. *AIChE Journal* 1992; 38: 1801-1813.

Polashenski W, Chen J. Normal solid stress in fluidized beds. *Powder Technology* 1997; 90: 13-23.

Polashenski W, Chen J. Measurement of particle stresses in fast fluidized beds. *Industrial & Engineering Chemistry Research* 1999; 38: 705-713.

Rabinovich E, Kalman H, Flow regime diagram for vertical pneumatic conveying and fluidized bed systems. *Powder Technology* 2011; 207(1–3): 119-133.

Rhodes MJ, Sollaart M, Wang XS. Flow structure in a fast fluid bed. *Powder Technology* 1998; 99(2): 194-200.

Rhodes M. *Introduction to Particle Technology*. West Sussex; John Wiley & Sons, Ltd., 2008.

Tartan M, Gidaspow D. Measurement of granular temperature and stresses in risers. *AIChE Journal* 2004; 50: 1760-1775.

Yang WC. *Handbook of Fluidization and Fluid–Particle Systems*. New York; Marcel Dekker, Inc., 2003.

You C, Li Y. Population balance for CFB–FGD systems. *Powder Technology* 2013; 235: 859-865.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ.

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติหรือผลงานที่คาดไว้ในสัญญาโครงการ

ผู้วิจัยมีงานวิจัยตีพิมพ์หัวข้อเรื่องที่เกี่ยวข้องกับเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนที่ได้รับการยอมรับ (Accepted Manuscript) ให้ตีพิมพ์ในวารสารวิชาการระดับนานาชาติ ในรอบ 2 ปี ที่ผ่านมา จำนวน 9 หัวข้อเรื่อง ได้แก่

Thatchai Samruamphianskun, Pornpote Piumsomboon, Benjapon Chalermsinsuwan, Computation of system turbulences and dispersion coefficients in circulating fluidized bed downer using CFD simulation, Chemical Engineering Research and Design, 90 (2012) 2164-2178. (ภาคผนวก)

Benjapon Chalermsinsuwan, Dimitri Gidaspow, Pornpote Piumsomboon, Comparisons of particle cluster diameter and concentration in circulating fluidized bed riser and downer by using CFD simulations, The Korean Journal of Chemical Engineering, 30(4) (2013) 963-975. (ภาคผนวก)

Benjapon Chalermsinsuwan, Yongyoot Prajongkan, Pornpote Piumsomboon, Three-dimensional CFD simulation of the system inlet and outlet boundary condition effects inside a high solid particle flux circulating fluidized bed riser, Powder Technology, 245 (2013) 80-93. (ภาคผนวก)

Chanin Manchasing, Prapan Kuchonthara, Benjapon Chalermsinsuwan, Pornpote Piumsomboon, Experiment and computational fluid dynamics simulation of in-depth system hydrodynamics in dual-bed gasifier, International Journal of Hydrogen Energy, 38 (2013), 10417-10430. (ภาคผนวก)

Benjapon Chalermsinsuwan, Theeranan Thummakul, Dimitri Gidaspow, Pornpote Piumsomboon, Fluidization regime characterization in high solid particle concentration circulating fluidized bed reactor: Investigation using computational fluid dynamics, The Korean Journal of Chemical Engineering, 31(2) (2014), 350-363. (ภาคผนวก)

Benjapon Chalermsinsuwan, Dimitri Gidaspow, Pornpote Piumsomboon, In-depth system parameters of transition flow pattern between turbulent and fast fluidization regimes in high solid particle density circulating fluidized bed reactor, Powder Technology, 253 (2014), 522-536. (ภาคผนวก)

Piriya Laiarpatorn, Pornpote Piumsomboon, Benjapon Chalermsinsuwan, Effect of Modeling Parameters on System Hydrodynamics of Air Reactor in Chemical Looping

Combustion Using CFD Simulation, International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 5(1) (2014), 39-55. (ภาคผนวก)

Or-ampai Jaiboon, Benjapon Chalermsinsuwan, Lursuang Mekasut, Pornpote Piumsomboon, Effect of regeneration temperature on the composition and carbon dioxide sorption ability of a K_2CO_3/Al_2O_3 solid sorbent in a bubbling fluidized bed reactor, Chemical Engineering Communications (2013), Accepted manuscript. (ภาคผนวก)

Benjapon Chalermsinsuwan, Thatchai Samruamphianskun, Pornpote Piumsomboon, Effect of operating parameters inside circulating fluidized bed reactor riser with ring baffles using CFD simulation and experimental design analysis, Chemical Engineering Research and Design (2014), Accepted manuscript. (ภาคผนวก)

หมายเหตุ: ทุกงานวิจัยที่ได้รับการยอมรับให้ตีพิมพ์ในวารสารวิชาการระดับนานาชาติมีการระบุกิตติกรรมประการ (Acknowledgement) ทุนพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ ประจำปีงบประมาณ 2555 รหัส MRG5580140

2. การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงพาณิชย์ (มีการนำไปผลิต/ขาย/ก่อให้เกิดรายได้ หรือมีการนำไปประยุกต์ใช้โดยภาคธุรกิจ/บุคคลทั่วไป)
ไม่มี
- เชิงนโยบาย (มีการกำหนดนโยบายอิงงานวิจัย/เกิดมาตรการใหม่/เปลี่ยนแปลงระเบียบข้อบังคับหรือวิธีทำงาน)
ไม่มี
- เชิงสาธารณะ (มีเครื่องข่ายความร่วมมือ/สร้างกระแสความสนใจในวงกว้าง)
การเชื่อมโยงทางวิชาการกับนักวิชาการในประเทศ – ผู้วิจัยได้เป็นหนึ่งในนักวิจัยของศูนย์วิจัยเชื้อเพลิง (ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์) ศูนย์ความเป็นเลิศด้านเทคโนโลยีบิโตรเคมีและวัสดุขั้นสูง (สำนักพัฒนาบัณฑิตศึกษาและวิจัยด้านวิทยาศาสตร์และเทคโนโลยี) และได้รับเชิญจากนักวิชาการท่านอื่นที่ทำงานเกี่ยวกับการจำลองพลศาสตร์ของไอลเซิงคำนวนในการเป็นอาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วมหรือกรรมการสอบวิทยานิพนธ์ของนิสิต จึงทำให้มีโอกาสในการแลกเปลี่ยนความคิดเห็นทางด้านวิชาการให้กันสมัยอยู่เป็นประจำ
การเชื่อมโยงทางวิชาการกับนักวิชาการต่างประเทศ – ผู้วิจัยมีความร่วมมือกับ Prof.Dimitri Gidaspow ซึ่งเป็นผู้เชี่ยวชาญเกี่ยวกับเครื่องปฏิกรณ์ฟลูอิเดซ์เบดแบบหมุนเวียนและการจำลองพลศาสตร์ของไอลเซิงคำนวน ทั้งในส่วนของการทำงานวิจัยหรือปรึกษาปัญหา

เกี่ยวกับการทำงานในภาพรวม ดังจะเห็นได้จากการมีบทความวิชาการระดับนานาชาติ ตีพิมพ์ร่วมกันอย่างส่วนมาก

- เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สร้างนักวิจัยใหม่)

ได้ใช้ความรู้ที่มีในการเรียนการสอนรายวิชาบรรยาย 2306514 Fluidization และได้มีส่วนร่วมในการสร้างนักวิจัยใหม่ 7 คน ซึ่งเป็นนิสิตระดับปริญญาโทและเอกในสาขาวิชาเคมีเทคนิคและสาขatechnology โดยเชื้อเพลิง

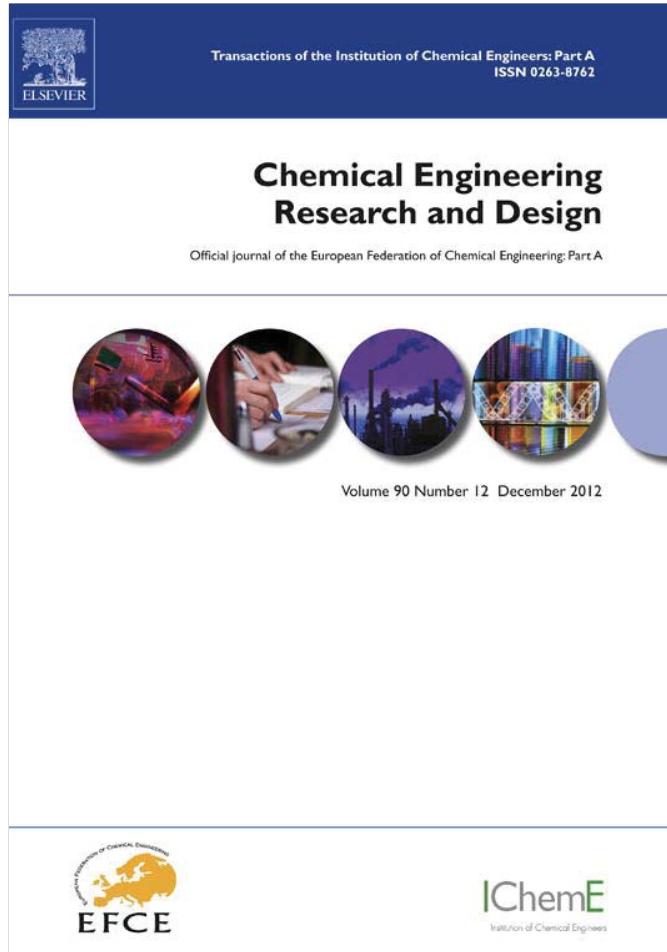
3. อีน ๆ เช่น การเสนอผลงานในที่ประชุมวิชาการ และ การได้รับเชิญไปเป็นวิทยากร

ผู้วิจัยมีการไปเสนอผลงานหัวข้อเรื่องที่เกี่ยวข้องกับเครื่องปฏิกรณ์ฟลูอิเดช์เบดแบบหมุนเวียน ในรอบ 2 ปีที่ผ่านมา จำนวน 4 หัวข้อเรื่อง ได้แก่

Benjapon Chalermsinsuwan, Thatchai Samruamphianskun, Pornpote Piumsomboon, Effect of ring baffle shape on system hydrodynamics and mixing in riser of circulating fluidized bed reactor using CFD simulation, The 2nd TICHE International Conference 2012, Nakornratchasima, Thailand (2012). (ภาคผนวก)

Piriya Laiarpatorn, Pornpote Piumsomboon, Benjapon Chalermsinsuwan, Effect of modeling parameters on system hydrodynamics of air reactor in chemical looping combustion using CFD simulation, TICHE International Conference 2013, Khon Kaen, Thailand (2013). (ภาคผนวก)

Nathphatsorn Jongartklang, Pornpote Piumsomboon, Benjapon Chalermsinsuwan, Correlation of kinetic parameter for CO_2 sorption using $\text{K}_2\text{CO}_3/\text{Al}_2\text{O}_3$ solid sorbents with various fluidization flow regimes, TICHE International Conference 2013, Khon Kaen, Thailand (2013). (ภาคผนวก)


Benjapon Chalermsinsuwan, Pornpote Piumsomboon, Revisited flow regime in circulating fluidized bed reactor with high solid density, The 11th International Conference on Fluidized Bed Technology, Beijing, China (2014). (ภาคผนวก)

หมายเหตุ: ทุกผลงานที่ได้รับการยอมรับให้นำเสนอ มีการระบุกิตติกรรมประกาศ (Acknowledgement) ทุนพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ ประจำปีงบประมาณ 2555 รหัส MRG5580140

สำหรับผลงานอื่นๆ ที่ผู้จัดได้ดำเนินการในรอบปีที่ผ่านมา ยกตัวอย่างเช่น

- เป็นผู้แต่งร่วมและได้รับรางวัลจากการนำเสนอผลงานแบบโปสเตอร์ดีเด่นในงาน The 2nd TIChE International Conference 2012 (ตุลาคม 2012)
 - เป็นผู้ช่วยวิทยากรอบรมหลักสูตร Mini ChE หัวข้อ Process Control and Simulation ของสมาคมวิศวกรรมเคมีและเคมีประยุกต์แห่งประเทศไทย (มีนาคม 2013)
 - เป็นกรรมการตัดสินผลงานในการประชุมวิชาการระดับนานาชาติ The 4th Research Symposium on Petrochemical and Materials Technology (เมษายน 2013)
 - เป็นอาจารย์ที่ปรึกษาโครงการและได้รับรางวัลชมเชยจากการประกวดความคิดริเริ่มทางวิทยาศาสตร์และเทคโนโลยีเพื่อการพัฒนาอย่างยั่งยืน ครั้งที่ 6 (มิถุนายน 2013)
 - เป็นผู้แต่งร่วมและได้รับรางวัลทุนความดีเด่นในงาน The 3rd TIChE International Conference 2013 (ตุลาคม 2013)
 - เป็นผู้แต่งร่วมและได้รับรางวัลจากการนำเสนอผลงานแบบปากเปล่าดีเด่นในงาน The 3rd TIChE International Conference 2013 (ตุลาคม 2013)
 - เป็นกรรมการตัดสินผลงานในการประชุมวิชาการระดับนานาชาติ The 5th Research Symposium on Petrochemical and Materials Technology (เมษายน 2014)

Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

<http://www.elsevier.com/copyright>

Contents lists available at SciVerse ScienceDirect

Chemical Engineering Research and Design

IChemE

journal homepage: www.elsevier.com/locate/cherd

Computation of system turbulences and dispersion coefficients in circulating fluidized bed downer using CFD simulation

Thatchai Samruamphianskun^a, Pornpote Piemsomboon^{a,b},
Benjapon Chalermsinsuwan^{a,b,*}

^a Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand

^b Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand

ABSTRACT

In this study, the Eulerian computational fluid dynamics model with the kinetic theory of granular flow model was effectively used to compute the system turbulences and dispersion coefficients in a circulating fluidized bed (CFB) downer. In addition, the obtained model was used to simulate all the system velocities.

The system turbulences, which were the granular temperatures and turbulent kinetic energies, and dispersion coefficients were investigated and employed as an explanation for the system hydrodynamics. The laminar granular temperatures were higher than the turbulent ones, which implies that an individual gas/solid particle oscillation dominates the flow structure in the CFB downer. There was a good agreement between the total granular temperature values in this study and those in the literature. The obtained turbulent kinetic energies varied within two orders of magnitude, but their values remained low. At increasing depths in the CFB downer, the turbulent kinetic energies were directly increased due to the formation of more gas bubble/solid particle clusters. The laminar and turbulent dispersion coefficients were significantly higher and lower, respectively, when compared to the previously reported ones. This shows the improper mixing of the gas bubble/solid particle cluster inside the CFB downer when compared to the individual movement ones.

© 2012 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Keywords: Circulating fluidized bed downer; Computational fluid dynamics; Dispersion; Hydrodynamics; Multiphase flow; Turbulence

1. Introduction

Fluidization refers to the condition in which solid materials are given free-flowing, fluid-like behavior. With increasing gas velocity, large amounts of solid particles can be carried out of the bed with the gas medium (Singer, 1991). When the entrained solid particles are collected by the cyclone and returned to the bed, this type of system is generally called a circulating fluidized bed (CFB). A CFB consists of four main components, which are the riser, downer, cyclone and return system. CFBs have found wide applications as both catalytic

and non-catalytic reactors in the chemical process industries because of several advantages, such as being a continuous process coupled with high throughput of gas and solid particles and being a highly effective reactor for fast multiphase chemical reaction systems with high heat and mass transfers. However, CFBs also has distinct disadvantages, such as non-uniform residence times of gas and solid particles, loss of fine solid particles by entrainment and a significant level of solid particles back-mixing, which can strongly decrease the chemical reaction conversion efficiency and selectivity (Bolkan et al., 2003). Because of these problems, the performance of this

* Corresponding author at: Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand. Tel.: +66 2218 7682; fax: +66 2255 5831.

E-mail address: benjapon.c@chula.ac.th (B. Chalermsinsuwan).

Received 10 January 2012; Received in revised form 2 April 2012; Accepted 12 June 2012
0263-8762/\$ – see front matter © 2012 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
<http://dx.doi.org/10.1016/j.cherd.2012.06.009>

General letters	
C_{D0}	drag coefficient
d_p	solid particle diameter (m)
D	dispersion coefficient (m^2/s)
e	restitution coefficient between solid particles
e_w	restitution coefficient between solid particle and wall
E	turbulent kinetic energy (m^2/s^2)
g	gravitational acceleration force (m/s^2)
g_0	radial distribution function
G_s	solid particle mass flux ($kg/m^2 s$)
I	unit tensor
n	unit vector
P	gas pressure (Pa)
P_s	solid particle pressure (Pa)
Re_k	Reynolds number
T_L	Lagrangian integral time scale (s)
t	time (s)
t'	time fluctuation (s)
v	velocity (m/s)
v'	velocity fluctuation (m/s)
$v_{s,slip}$	slip velocity of solid particle at the wall (m/s)
$v_{s,w}$	velocity of solid particle at the wall (m/s)
$v_{t,w}$	tangential velocity of solid particle at the wall (m/s)
x	radial distance (m)
Greek letters	
β_{gs}	gas–solid particle phase interphase drag coefficient ($kg/s\ m^3$)
ε	volume fraction
$\varepsilon_{s,max}$	solid volume fraction at maximum packing
ϕ	specularity coefficient
γ_s	collisional dissipation of solid particle fluctuating energy ($kg/m\ s^3$)
γ_w	collisional dissipation of solid particle fluctuating energy at the wall ($kg/m\ s^3$)
κ_s	conductivity of the solid particle fluctuating energy ($kg/m\ s$)
μ	viscosity ($kg/m\ s$)
θ	granular temperature (m^2/s^2)
θ_w	granular temperature at the wall (m^2/s^2)
ρ	density (kg/m^3)
τ	stress tensor (Pa)
ξ	bulk viscosity ($kg/m\ s$)
Subscripts	
g	gas phase
i	i direction
k	phase (gas or solid particle)
l	laminar
s	solid particle phase
t	turbulent
T	total
x	radial direction (x-direction)
y	axial direction (y-direction)
z	radial direction (z-direction)

reactor needs to be improved. There have been many research studies that have focused on the improvement of the riser component (Gidaspow et al., 2004; Chalermsinsuwan et al.,

2009a), but in contrast, only a limited number of research studies have been reported on the behavior of the downer.

In the CFB downer, the flow dynamics is that of a gravity-assisted flow structure. The gas and solid particles enter the system at the top section, allowing the gas and solids to mix whilst flowing co-currently downwards in the direction of gravity. This flow structure is claimed to have many advantages, such as a uniform gas–solid particle flow with less aggregation, reduced gas and solid particles back-mixing and a short system residence time (Zhu et al., 1995). These advantages make the CFB downer one of the potentially promising new technologies that can be applied to various areas, such as the catalytic cracking of residual oil (Deng et al., 2002) and the flash pyrolysis of coal (Yao et al., 2001) and biomass (Bassi et al., 1994). Some reports on the flow structure in the CFB downer have been made. By analyzing the axial pressure gradient and the forces imposed on the solid particles, Wang et al. (1992) divided the downer into three regions: the first and second acceleration regions and the constant velocity region. It has been demonstrated that the inlet structure and the mixing pattern of the gas and solid particles at the top of a CFB downer have a significant influence on the system flow structure in the entrance region (Cheng et al., 2001, 2008). However, the inlet structure has little effect on the flow pattern in the fully developed region, which rather is only dependent on the characteristics of the gas and solid particles and the operating conditions. In addition, the general picture of the radial flow structures in a CFB downer was reported to be a dilute core region with a uniform flow of solid particles and a dense annular region where there existed maximum solid holdup, velocity and flux (Zhu et al., 1995; Ropelato et al., 2005).

Since the performance of a CFB reactor is influenced by the mixing of gas and solid particles (Chalermsinsuwan et al., 2009b; Zhang et al., 2009), the mixing inside the CFB downer is of key interest. The quality of mixing can be measured by the turbulences/dispersion coefficients, which can be computed based on the kinetic theory of granular flow concept (Gidaspow, 1994; Chalermsinsuwan et al., 2011). This is a measure of the spread of gas and solid particles with reference to the spatial location. From the kinetic theory, there are two kinds of mixing; a “laminar” type that is due to the individual gas/solid particle oscillations and a “turbulent” type that is due to gas bubble/solid particle cluster oscillations (Chalermsinsuwan et al., 2009b, 2010). Many researchers have tried to compute this parameter for fluidized bed systems using other available methodologies (Avidan and Yerushalmi, 1985; Rhodes et al., 1991; Wei et al., 1995a,b; Westphalen and Glicksman, 1995; Wei and Zhu, 1996; Grasa and Abanades, 2007; Winaya et al., 2007), such as tracer injection and thermal inspection. Liu and Li (2010) studied the solid particle turbulence and dispersion in a CFB downer under different gravity environments. By observing the solid volume fraction, they found that the mixing of the heterogeneous solid particles was weakened as the gravity was decreased. However, these methodologies were mainly restricted to considering the mixing only in the axial direction, ignoring all other directions. The mixing in the radial direction thus still remains to be evaluated. The reported gas and solid particle dispersion coefficients from the available fluidized bed data vary by up to four orders of magnitude (Breault, 2006; Chalermsinsuwan et al., 2010), and so it is clear that a better understanding of this parameter is required for the CFB downer.

With respect to the study method, the computational fluid dynamics (CFD) approach is selected because it is easier, faster

Table 1 – A summary of the conservation and constitutive equations used in this study.

A. Governing equations:

(a) Conservation of mass:

- Gas phase:

$$\frac{\partial}{\partial t}(\varepsilon_g \rho_g) + \nabla \cdot (\varepsilon_g \rho_g v_g) = 0 \quad (1)$$

- Solid particle phase:

$$\frac{\partial}{\partial t}(\varepsilon_s \rho_s) + \nabla \cdot (\varepsilon_s \rho_s v_s) = 0 \quad (2)$$

(b) Conservation of momentum:

- Gas phase:

$$\frac{\partial}{\partial t}(\varepsilon_g \rho_g v_g) + \nabla \cdot (\varepsilon_g \rho_g v_g v_g) = -\varepsilon_g \nabla P + \nabla \cdot \tau_g + \varepsilon_g \rho_g g - \beta_{gs} (v_g - v_s) \quad (3)$$

- Solid particle phase:

$$\frac{\partial}{\partial t}(\varepsilon_s \rho_s v_s) + \nabla \cdot (\varepsilon_s \rho_s v_s v_s) = -\varepsilon_s \nabla P + \nabla \cdot \tau_s - \nabla P_s + \varepsilon_s \rho_s g + \beta_{gs} (v_g - v_s) \quad (4)$$

(c) Conservation of solid particle fluctuating energy:

$$\frac{3}{2} \left[\frac{\partial}{\partial t}(\varepsilon_s \rho_s \theta) + \nabla \cdot (\varepsilon_s \rho_s \theta v_s) \right] = (-\nabla P_s \bar{I} + \tau_s) : \nabla v_s + \nabla \cdot (\kappa_s \nabla \theta) - \gamma_s \quad (5)$$

B. Constitutive equations:

(a) Gas phase stress:

$$\tau_g = \varepsilon_g \mu_g [\nabla v_g + (\nabla v_g)^T] - \frac{2}{3} \varepsilon_g \mu_g (\nabla \cdot v_g) I \quad (6)$$

(b) Solid particle phase stress:

$$\tau_s = \varepsilon_s \mu_s [\nabla v_s + (\nabla v_s)^T] - \varepsilon_s \left(\xi_s - \frac{2}{3} \mu_g \right) \nabla \cdot v_g I \quad (7)$$

(c) Collisional dissipation of solid particle fluctuating energy:

$$\gamma_s = 3(1 - e^2) \varepsilon_s^2 \rho_s g_0 \theta \left(\frac{4}{d_p} \sqrt{\frac{\theta}{\pi}} \right) \quad (8)$$

(d) Radial distribution function:

$$g_0 = \left[1 - \left(\frac{\varepsilon_s}{\varepsilon_{s,\max}} \right)^{1/3} \right]^{-1} \quad (9)$$

(e) Solid particle phase pressure:

$$P_s = \varepsilon_s \rho_s \theta [1 + 2g_0 \varepsilon_s (1 + e)] \quad (10)$$

(f) Solid particle phase shear viscosity:

$$\mu_s = \frac{4}{5} \varepsilon_s^2 \rho_s d_p g_0 (1 + e) \sqrt{\frac{\theta}{\pi}} + \frac{10 \rho_s d_p \sqrt{\pi \theta}}{96(1 + e) g_0 \varepsilon_s} \left[1 + \frac{4}{5} g_0 \varepsilon_s (1 + e) \right]^2 \quad (11)$$

(g) Solid particle phase bulk viscosity:

$$\xi_s = \frac{4}{5} \varepsilon_s^2 \rho_s d_p g_0 (1 + e) \sqrt{\frac{\theta}{\pi}} \quad (12)$$

(h) Conductivity of the solid particle fluctuating energy:

$$\kappa_s = \frac{150 \rho_s d_p \sqrt{\theta \pi}}{384(1 + e) g_0} \left[1 + \frac{6}{5} \varepsilon_s g_0 (1 + e) \right]^2 + 2 \rho_s \varepsilon_s^2 d_p (1 + e) g_0 \sqrt{\frac{\theta}{\pi}} \quad (13)$$

(i) Gas-solid particle phase interphase exchange coefficient:

- Gidaspow model:

when $\varepsilon_g > 0.80$:

$$\beta_{gs} = 150 \frac{(1 - \varepsilon_g)^2 \mu_g}{\varepsilon_g d_p^2} + 1.75 \frac{(1 - \varepsilon_g) \rho_g |v_g - v_s|}{d_p} \quad (14)$$

when $\varepsilon_g \leq 0.80$:

$$\beta_{gs} = \frac{3(1 - \varepsilon_g) \varepsilon_g}{4 d_p} \rho_g |v_g - v_s| C_{D0} \varepsilon_g^{-2.65} \quad (15)$$

with

$$Re < 1000; C_{D0} = \frac{24}{Re_k} (1 + 0.15 Re_k^{0.687}) ; Re_k = \frac{\rho g \varepsilon_g |v_g - v_s| d_p}{\mu_g}$$

$$Re \geq 1000; C_{D0} = 0.44$$

(j) Wall tangential velocity of the solid particle phase (Jackson and Johnson boundary condition):

$$v_{t,W} = -\frac{6 \mu_s \varepsilon_{s,\max}}{\pi \rho_s \varepsilon_s g_0 \sqrt{3\theta}} \frac{\partial v_{s,W}}{\partial n} \quad (16)$$

(k) Wall granular temperature of the solid particle phase (Jackson and Johnson boundary condition):

$$\theta_W = -\frac{\kappa_s \theta}{\gamma_W} \frac{\partial \theta_W}{\partial n} + \frac{\sqrt{3\pi} \phi \rho_s \varepsilon_s v_{s,slip}^2 g_0 \theta^{3/2}}{6 \varepsilon_{s,\max} \gamma_W} \quad (17)$$

with

$$\gamma_W = \frac{\sqrt{3\pi} (1 - \varepsilon_W^2) \varepsilon_s \rho_s g_0 \theta^{3/2}}{4 \varepsilon_{s,\max}}$$

and cheaper than actual experimental approaches. CFD is a branch of fluid mechanics that uses numerical methods and algorithms to solve problems and analyze phenomena that involve fluid and chemically reacting flows (Fluent Inc., 2006). The model of CFD can be divided into two groups,

Lagrangian and Eulerian models. The Lagrangian model, or discrete particle model (DPM), calculates the path of each individual solid particle with the second law of Newton. The interaction between the solid particles can be described by a potential force, collision dynamics and their interaction. The advantage of this approach is that each particle trajectory, as well as other solid particle parameters, is known exactly. The results often give physical insight into the laws of nature. However, because a large number of solid particles are needed in order to determine the average behavior of the given system, the computational requirement is extremely high. In addition, the required computer time is increased further due to the difficulties associated with the description of "two-way" coupling between gas and solid particle velocity fields (Zhang et al., 2008; Zhao et al., 2010). In contrast, the Eulerian model, or two fluid model (TFM), treats the solid particle phase as a continuum and averages out the motion on the scale of individual solid particles, thus enabling the computation by this model to simulate the dense phase flows of a realistic size. Due to the assumption of the solid particle phase as a continuum, the predictive ability of the Eulerian model depends on the correctness of the closures proposed for the undefined terms. For this purpose, the kinetic theory of granular flow is often employed and becomes a general approach for performing dense fluidized bed or other dense gas–solid multiphase Eulerian simulations. With this theory, solid particle phase properties are described in a manner similar to the ones in the kinetic theory of dense gases. The pressure and viscosity of the solid particle phase depends on the solid particle collision and the magnitude of the solid particle velocity fluctuation, which is characterized by the granular temperature (Gidaspow, 1994; Chalermisinsuwan et al., 2011; Kim et al., 2011).

In this study, the hydrodynamics, turbulences and dispersion coefficients of the gas and solid particles in the CFB downer were explored using the Eulerian CFD model with the kinetic theory of granular flow. Both the axial and radial directions of all variables were computed. A better understanding of the dispersion coefficient in the CFB downer was obtained, with the key objective being to explain the system hydrodynamics in a CFB downer using the obtained turbulences and dispersion characteristics.

2. Eulerian computational fluid dynamics model

2.1. Mathematical model

This study used the commercial CFD program, ANSYS FLUENT 6.3.26, for modeling the CFB downer system. The employed governing or conservation equations were based on the Eulerian CFD model. Accordingly, the equations in each phase were solved separately. The constitutive or auxiliary equations for this gas–solid two-phase flow were obtained from the kinetic theory of granular flow, as reviewed by Gidaspow (1994). This model has already been validated by comparison with the CFB downer experimental data of Cao and Weinstein (2000), whereas a perfect agreement between the computational and experimental data was obtained (Chalermisinsuwan et al., 2012). Therefore, this model was selected to use for further analyzes of the system hydrodynamics, turbulences and dispersion coefficients. A summary of the conservation and constitutive equations is given in Table 1. Because the system hydrodynamics, turbulences and dispersion coefficients can be studied in an isothermal operation, the energy conserva-

tion equations for the gas and solid particle phases can be ignored.

2.2. System description and computational domain

As mentioned above, the experimental configuration of Cao and Weinstein (2000) was chosen as the reference case in this study. Their system used fluid cracking catalysts as the bed material with a solid particle diameter and density of 82 μm and 1480 kg/m^3 , respectively, and air as the fluidizing gas phase with a gas density and viscosity of 1.20 kg/m^3 and $2.00 \times 10^{-5} \text{ kg}/\text{m s}$, respectively. The CFB riser diameter and height were 0.127 m and 8.85 m, while their CFB downer diameter and height were 0.127 m and 5.00 m, respectively. According to the objective of this study, only the CFB downer side was considered as shown in Fig. 1(a).

For the system description, the gas was fed at the top of the CFB downer. The solid particles were fed from the two 0.127 m wide side-inlets at 0.303 m below the top of the CFB downer, at an angle of 45° with respect to the vertical axis of the system. The gas and solid particles exited the system through the outlet at the bottom of the CFB downer. The conditions at the inlet, which were the velocity magnitude, inlet angle and volume fraction for each phase, and the system pressure at the outlet were specified as inputs. The no-slip condition was applied to the wall condition for all velocities except for

the tangential velocity of the solid particle and the fluctuating kinetic energy of the solid particle or granular temperature. For these two parameters, Johnson and Jackson's condition (1987) was used as it has been successfully applied to many other kinetic theory of granular flow modeling cases (Vaishali et al., 2008; Chalermisinsuwan et al., 2009a,b; Liu and Li, 2010; Kim et al., 2011). At the initial condition, there were no gas and solid particles inside the system. All the specific model conditions and parameter values for this simulation are listed in Table 2. The employed modeling parameter values such as the restitution coefficients and specularity coefficient were selected from the suitable ones suggested in Chalermisinsuwan et al. (2012).

For the computational domain, a two-dimensional model was used for the simulation, as shown in Fig. 1(b), because of the shorter computation time that is required compared to that for the three-dimensional model. Here, a two inlet-outlet design was employed to approximate the two-dimensional computational CFB downer for simulating the three-dimensional experimental ones. This is because a one inlet-outlet design for the two-dimensional system cannot capture the realistic mixing throughout the system (Chalermisinsuwan et al., 2009b, 2012). In this study, the CFD model was solved with a total of 6000 computational cells, comprised of 30 non-uniform grids in the horizontal direction and 200 uniform grids in the vertical direction, using

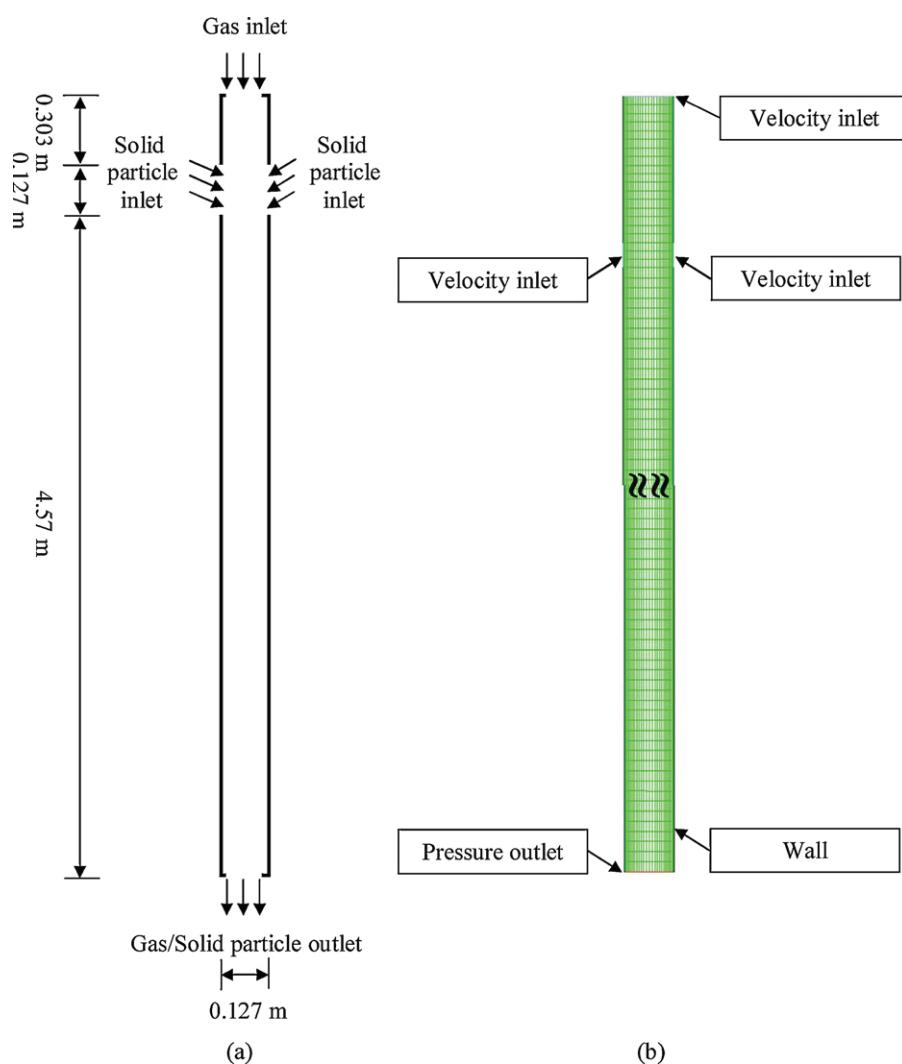
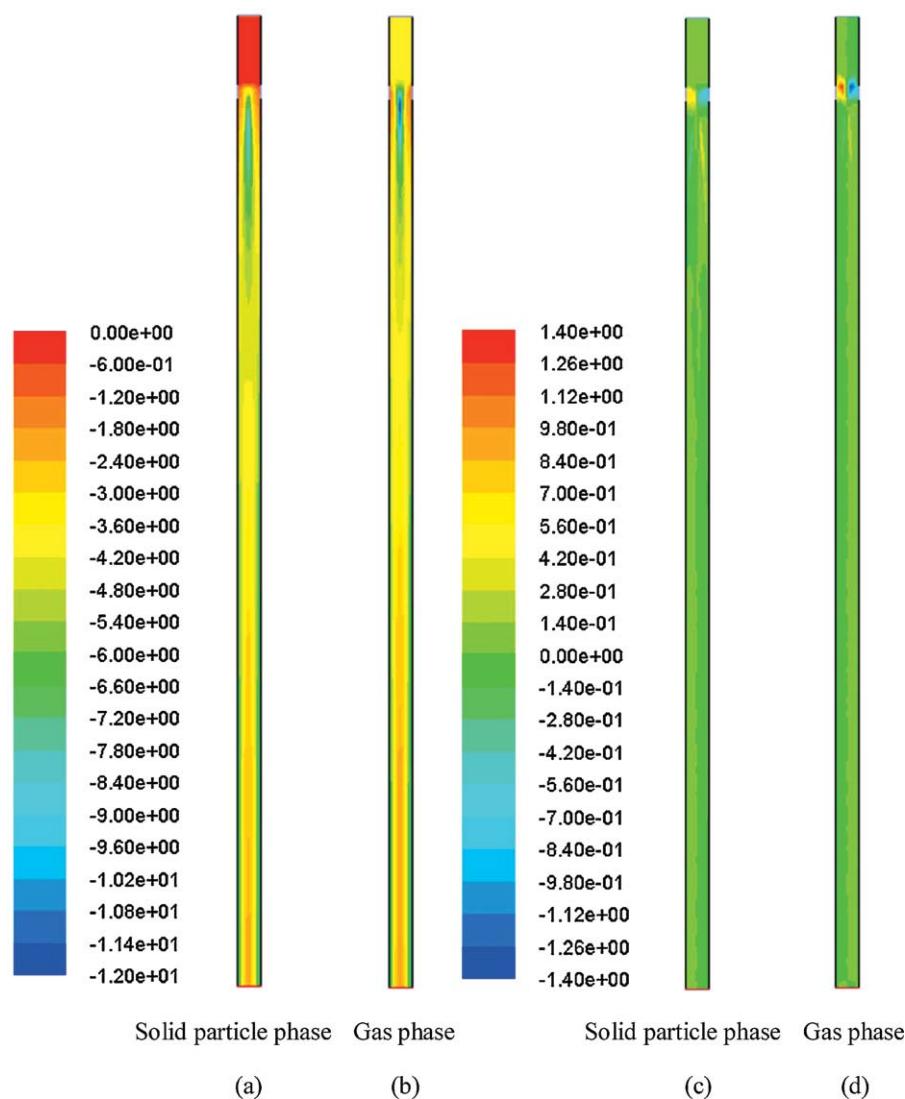



Fig. 1 – (a) Schematic drawing and (b) computational domain with their boundary conditions of the simplified CFB downer, as used in this study.

Fig. 2 – The instantaneous contour distributions of the computed (a) axial solid particle, (b) axial gas, (c) radial solid particle and (d) radial gas velocities in the CFB downer at 40 s simulation time.

a computer with a Pentium 1.80 GHz CPU and 2 GB RAM. Chalermisinsuwan et al. (2012) summarized that all the grid numbers after the 3450 computational cells were sufficiently fine for providing reasonably grid independence results in a similar system. The computational cell number used was evaluated in terms of when the computational result did not change with further increases in the number of computational

cell. Fifty seconds of simulation time took approximately 2 days of real computation time. The time-averaged results at the quasi steady state condition were calculated using the results from the simulation at 30–50 s simulation, as already tested in our previous study (Chalermisinsuwan et al., 2012). Also, a full discussion on the time-averaged topic is explained in Section 3.

Table 2 – A summary of the mathematical model conditions and parameter values used in this study.

No.	Symbol	Description	Value
1	–	Diameter of CFB downer	0.1270 m
2	–	Height of CFB downer	5.00 m
3	ρ_g	Gas density	1.2 kg/m ³
4	μ_g	Gas viscosity	2×10^{-5} kg/ms
5	ρ_s	Solid particle density	1480 kg/m ³
6	d_p	Solid particle diameter	82 μ m
7	v_g	Gas inlet velocity	3.70 m/s
8	v_s	Solid particle inlet velocity	1.11 m/s
9	ε_s	Solid particle inlet volume fraction	0.15
10	G_s	Solid particle mass flux	123 kg/m ² s
11	P	Gas/solid particle outlet pressure	116,325 Pa
12	e	Restitution coefficient between solid particles	0.999
13	e_w	Restitution coefficient between solid particles and wall	0.70
14	ϕ	Specularity coefficient	0.001

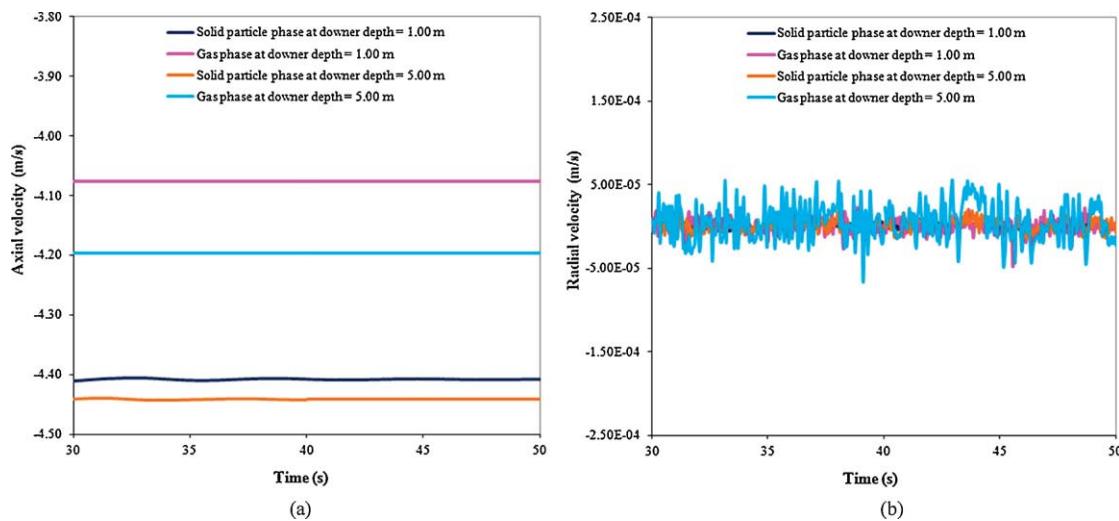


Fig. 3 – The typical time series of the (a) axial and (b) radial, solid particle and gas, velocities at 1.00 m and 5.00 m depths below the top of the CFB downer.

3. Results and discussion

In this section, the system hydrodynamics in the CFB downer are discussed based on the solid particle and gas velocities. Thus, both axial and radial velocities for the solid particle and gas phases were computed. Consequently, the dispersion coefficients and system turbulences, represented by the granular temperature and turbulent kinetic energy, were investigated. The obtained dispersion coefficients and system turbulences were compared with the information available in the literature for various fixed and fluidized bed systems. Finally, the system hydrodynamics were explained using the obtained characteristics for the dispersion and system turbulences.

3.1. Axial and radial velocities

Fig. 2 illustrates the instantaneous contour distribution of the computed velocities of (a) axial solid particle, (b) axial gas, (c) radial solid particle and (d) radial gas in the CFB downer at 40 s simulation time, respectively. This simulation time was selected as it is after the system had reached the quasi steady state condition, as was confirmed later (Fig. 3). The above four different velocities, the system hydrodynamics, are generally used to represent the system mixing. They can then be used for calculating the system turbulences and dispersion coefficients. The contour distributions are used to show the overall system characteristics from the system inlet through to the system outlet. From the contour scale color, the axial velocities of the solid particles and gas phases were higher than the corresponding radial velocities. Note that the axial velocities are negative due to the reference axis in this study, in that a negative velocity is assigned when the flow is downward. For the radial velocities, the values were both positive and negative, representing when the solid particles and gas flow to the left or to the right sides of the CFB downer, respectively. From the low magnitude values of the radial velocities it can be assumed that they have less of an effect on the system mixing compared to the axial ones. This is because the axial direction is in the main flow direction (Jiradilok et al., 2006; Chalermsinsuwan et al., 2009b, 2010).

To confirm the quasi steady state condition or the time-averaged range, the axial and radial velocities were plotted

against the simulation time. After the system reached the quasi steady state condition, both the velocities should be approximately constant or oscillate within a narrow (acceptable) range (Chalermsinsuwan et al., 2009b). Fig. 3(a) shows a typical time series (30–50 s of simulation time) of the axial solid particle and gas velocities at a 1.00 m and 5.00 m depth below the top of CFB downer. Similarly, a typical time series (30–50 s of simulation time) of radial solid particle and gas velocities at a 1.00 m and 5.00 m depth below the top of CFB downer are displayed in Fig. 3(b). Both of the figures are plotted with the simulation time between 30 and 50 s. The 1.00 m and 5.00 m depths were the system demonstration positions, and were located near the solid particle inlet (0.303 m depth) and outlet (5.00 m depth), respectively. The axial velocities were clearly higher than the radial ones as already observed in Fig. 2, and all the velocity graph lines showed broadly horizontal linear trends. Therefore, the quasi steady state condition was already obtained after a simulation time of 30 s and so verifies the time-averaged range as selected in this study. When compared to the time series of obtained velocities in the CFB

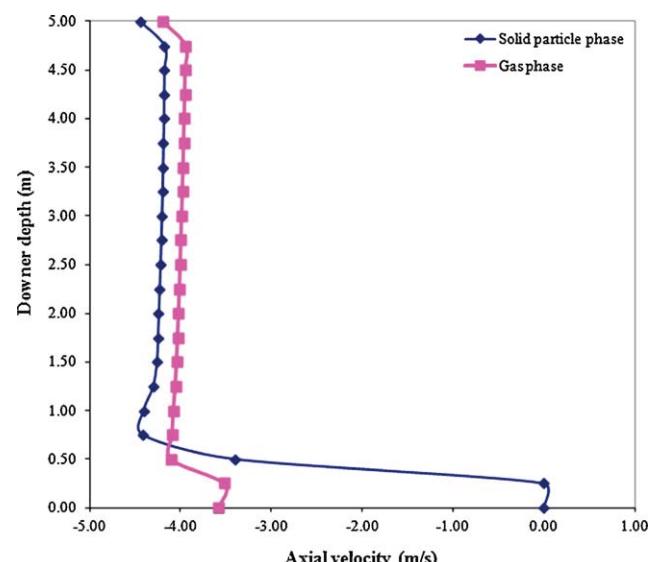


Fig. 4 – The axial distributions of the computed time-averaged and area-averaged axial velocities for the solid particle and gas phases.

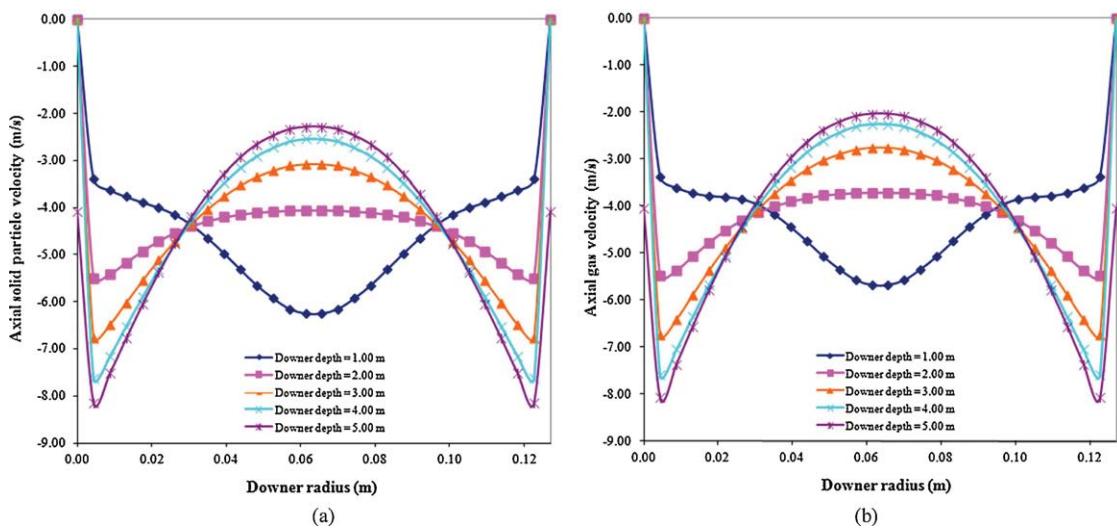


Fig. 5 – The radial distributions of the computed time-averaged axial (a) solid particle and (b) gas velocities at five different CFB downer depths.

riser reported by Jiradilok et al. (2007), their values in the riser drastically fluctuated around the steady state value. In contrast, those in the CFB downer reported here were more or less constant, since the flows took place along with the gravitational acceleration, and so less system fluctuation was observed (Jiradilok et al., 2007; Chalermisinsuwan et al., 2009b).

Fig. 4 shows the axial distributions of the computed time-averaged and area-averaged axial velocities for both the solid particle and gas phases. At the top of the CFB downer or near the inlet, there were minimum peaks of axial velocities. These minimum velocities occurred because the solid particles are fed in at those system positions. The gas and solid particle quantities, or the absence of solid particles, created these axial velocity profiles. At the bottom of the CFB downer near the outlet, the axial velocities were increased due to the effect of the outlet itself. Along the depth of the downer, the axial velocities were approximately constant since they had rapidly reached the fully developed condition after a certain system depth (Chalermisinsuwan et al., 2009b, 2012). Comparing the solid particle and gas phases, the axial velocities of the solid particle phase were higher than those of gas phase except near the gas inlet position. This is because the solid particles in

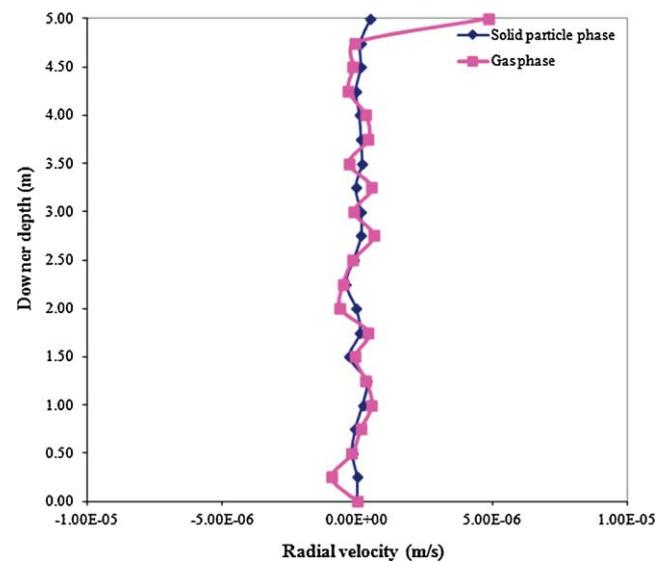


Fig. 6 – The axial distributions of the computed time-averaged and area-averaged radial velocities for the solid particle and gas phases.

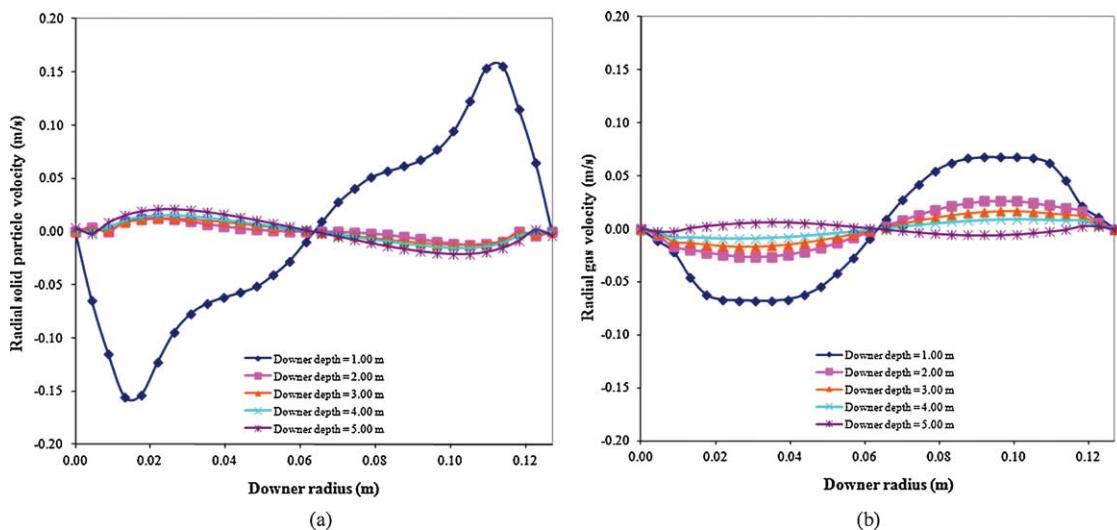


Fig. 7 – The radial distributions of the computed time-averaged radial (a) solid particle and (b) gas velocities at five different CFB downer depths.

the CFB downer flow in the same direction as gravity and so the force of gravity further accelerates the motion of the solid particles. Near the gas inlet position, the axial gas velocity was higher than the axial solid particle velocity since there were no solid particles in the vicinity.

Fig. 5 shows the radial distributions of computed time-averaged axial (a) solid particle and (b) gas velocities at five different CFB downer depths. These depths were 1.00 m, 2.00 m, 3.00 m, 4.00 m and 5.00 m. The obtained axial velocity results had a similar trend to the CFB downer results reported by Zhang et al. (2003), in that the axial velocities near the inlet position (1.00 m depth below the top of the downer) were high at the center region and low at the wall region. The downward inlet gas boundary condition creates these profiles and the wall boundary condition causes the axial velocities to drop at the wall region since both the solid particles and the gas phases have exchanged or lost their momentum to the system wall. The profiles near the center and outlet positions (2.00–5.00 m depths below the top of the downer) show the opposite patterns in that they were high at the wall and low at the center regions and their magnitudes increased with the increasing depth into the CFB downer. This can be explained by the granular temperature or the solid fluctuating kinetic energy results presented in the following section (Section 3.2), whereas the granular temperature increases, the axial velocity is also increased. At these positions, the system tends to adapt to the fully developed condition. The axial velocity profiles are then adjusted to balance with the other forces inside the system, which are mainly drag, buoyancy and gravitational forces. As discussed in Zhu et al. (1995), Ropelato et al. (2005) and Chalermisinsuwan et al. (2012), the flow structure in the CFB downer is a dilute core-annulus profile. At the region with a high solid volume fraction, gravitational acceleration plays an important role in the system hydrodynamics and creates a high axial velocity. This is because under gravity physical bodies are attracted with a force proportional to their mass. Thus, the presence of a core-annulus profile in the downer is supported. Comparing the solid particle and gas phases, the profiles showed similar trends since both of them are moving together. However, the axial velocities were slightly higher for the solid particle phase than the gas one due to the gravitational acceleration and the drag force. When the drag force decreases, the solid particles agglomerated as particle clusters which magnifies the gravity force and the axial velocity of the solid particles.

The axial distributions of the computed time-averaged and area-averaged radial velocities for the solid particle and gas phases are illustrated in Fig. 6, and support the previous results (Fig. 5) in that the axial velocities were higher than the radial velocities. Throughout the CFB downer, the radial velocity profiles slightly oscillated around a value of zero. The solid particles and gas then turbulently move inside the system. However, the movement was significantly lower than the ones reported for the CFB riser (Chalermisinsuwan et al., 2009a,b). The radial velocities near the inlet and outlet were slightly increased which implies a high system mixing in that area. The averaged radial velocities of the gas phase were slightly higher than those of solid particle phase, especially near the gas inlet and outlet positions. This is because the solid particles move alongside with the medium gas with some slip velocity between phases.

Fig. 7 shows the radial distributions of the computed time-averaged radial (a) solid particle and (b) gas velocities at five different CFB downer depths. These depths were the same

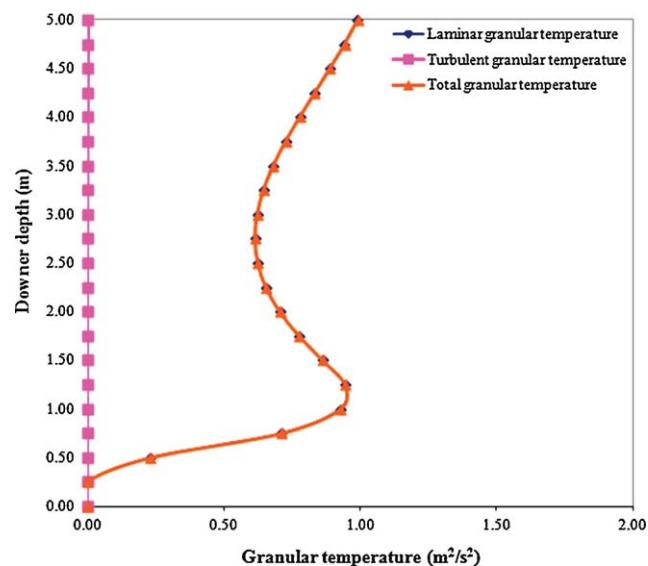


Fig. 8 – The axial distributions of the computed time-averaged and area-averaged laminar, turbulent and total granular temperatures.

ones as shown in Fig. 5. The radial velocities near the inlet position (1.00 m depth below the top of the CFB downer) were of a high negative value at one side of the wall and a high positive value at the other side of the wall, which shows that both phases are moving towards the wall region at this system position and leads to the core-annulus flow structure as the high system inlet velocity pushes the solid particles to the wall region. The solid particle and gas phases near the center (2.00–4.00 m depths below the top of the CFB downer) showed the opposite trend. Since the core-annulus flow structure was observed at these positions, the solid particle and gas phases then interchange from a high system concentration to a low system concentration. Therefore, the radial velocities tend to move the solid particles and the gas to the center and the near wall region, respectively. Moreover, both of the profiles near the outlet condition (5.00 m below the top of the CFB downer) showed the opposite direction to those near the inlet position, as the solid particles and gas move to the center (core) region of the CFB column. Similar to the axial velocity, the results can be explained by the granular temperature or the solid fluctuating kinetic energy results (Section 3.2).

3.2. Granular temperature

As already stated above, the granular temperature, or the fluctuating kinetic energy, of the solid particle is one of the parameters that can be used to demonstrate the system turbulence since it shows the internal energy inside the solid particles. Gidaspow (1994) and Chalermisinsuwan et al. (2009b, 2010) showed, using a kinetic theory based computation, that there are two kinds of granular temperature; a “laminar” one that is measured by the classical granular temperature, and a “turbulent” one that is measured by the normal Reynolds stress. These two kinds of granular temperature give rise to two kinds of mixing, one on the level of individual gas/solid particles and the other on the level of gas bubble/solid particle clusters.

For computing laminar granular temperature, the kinetic energy conservation equation due to solid particle fluctuation (Eq. (5)) and other related constitutive equations have to be programmed into the CFD model (Eqs. (7)–(13)). The accu-

mulation of the granular temperature is balanced by their convective terms and the related energy terms inside the system, which are the generation of fluctuating kinetic energy by the solid stress tensor, the diffusion of fluctuating kinetic energy and the collisional dissipation of fluctuating kinetic energy. After the iteration starts, the model then provides the classical laminar granular temperature (θ_l) for each simulation time step. For computing the turbulent granular temperature (θ_t), it is defined as the average of the normal Reynolds stresses ($\bar{v}_i'v_i'$) for the solid particle phase. The subscript "i" is to represent the system direction (x-, y- and z-directions). The normal Reynolds stresses are the average of the squares of the fluctuating velocities in the all three directions as shown in the following equation:

$$\theta_t(t, x) = \frac{1}{3} \bar{v}_x'v_x' + \frac{1}{3} \bar{v}_y'v_y' + \frac{1}{3} \bar{v}_z'v_z' \quad (18)$$

In this study, since only a two-dimensional CFB downer was simulated, the velocity fluctuation in the non-flow radial direction (z-direction) was assumed to be equal to the simulated ones (x-direction). Because these velocity fluctuations are a vector with an angle of 90°, the resultant horizontal velocity fluctuation in the x- and z-directions is also similar to the x-direction velocity fluctuation. The turbulent granular temperature then can be calculated as follows:

$$\theta_t(t, x) \cong \frac{2}{3} \bar{v}_x'v_x' + \frac{1}{3} \bar{v}_y'v_y' \quad (19)$$

The total granular temperature (θ_T) can be used to demonstrate the overall system oscillation, and can be obtained by the sum of the granular temperatures due to the individual gas/solid particle oscillations and due to the gas bubble/solid particle cluster oscillations as shown below:

$$\theta_T(t, x) \cong \theta_l(t, x) + \theta_t(t, x) \quad (20)$$

More details on the computation methodology have been explained in Chalermsinsuwan et al. (2011). Table 3 summarizes a comparison of the computed time-averaged and area-averaged laminar, turbulent and total granular temperatures at five different depths in the CFB downer, plus their average values. At all depths in the CFB downer, the granular temperatures evaluated for the laminar type were higher than those for the turbulent type, which suggests that the laminar granular temperature dominates the oscillations in the CFB downer system, and also implies that the main flow structure in the CFB downer is of an individual gas/solid particle flow. These results are different from those obtained in the CFB riser (Jiradilok et al., 2006; Chalermsinsuwan et al., 2009b), where the turbulent granular temperatures dominated the oscillations due to the gas bubble/solid particle cluster formation inside the system. In contrast, due to the pattern of the oscillations, the computed total granular temperature values in this study were close to the laminar ones.

To better understand the granular temperature distributions along the CFB downer height and diameter, the computed information was first plotted as the axial distribution of the computed time-averaged and area-averaged laminar, turbulent and total granular temperatures (Fig. 8). There are no solid particles near the inlet position inside the system and so the computed granular temperatures were equal to zero. Below the two side-inlet positions (0.303 m depth), the computed granular temperatures increased and, as

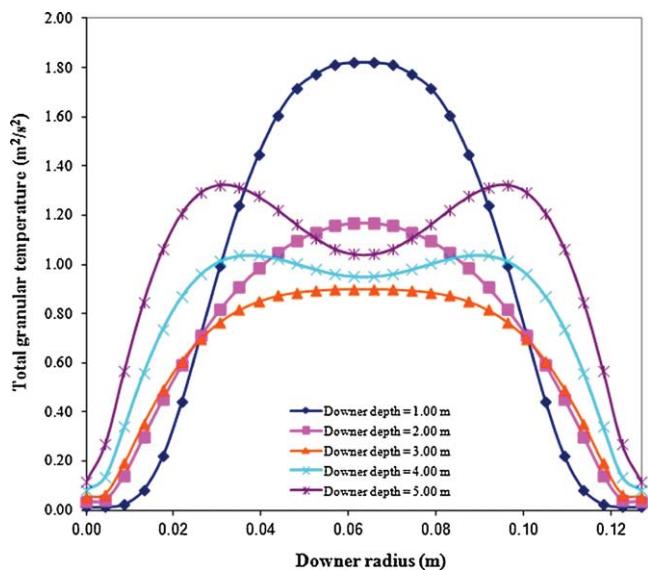
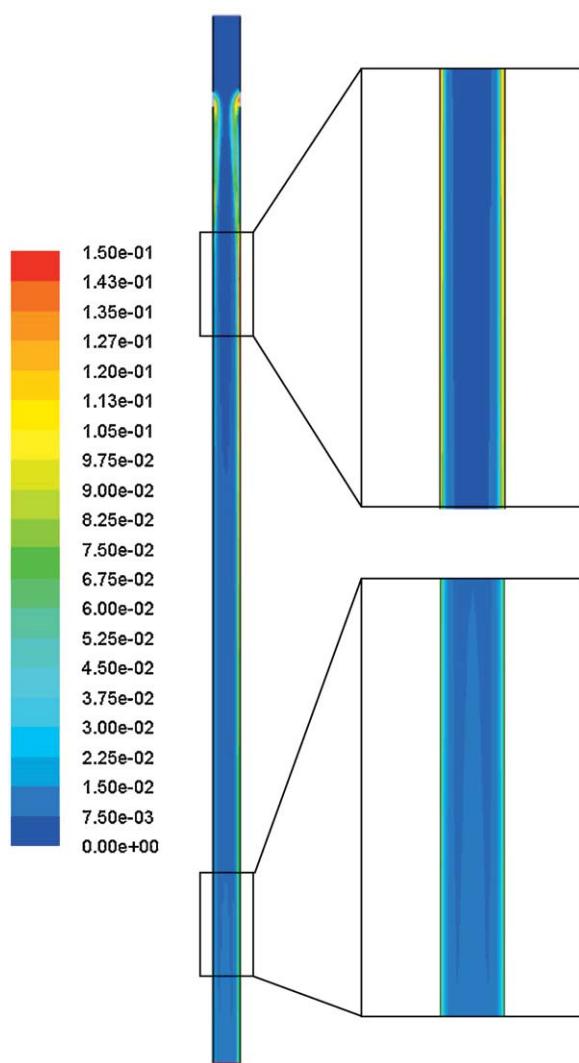



Fig. 9 – The radial distributions of the computed time-averaged total granular temperatures at five different CFB downer depths.

already mentioned, the turbulent granular temperature was much lower than the laminar and total granular temperatures that were of the same order of magnitude, due to the small fraction of solid particle cluster/gas bubble formation in the CFB downer. At greater depths into the CFB downer, the granular temperatures tended to oscillate but still remained within the same order of magnitude. The granular temperature decreased below a system depth of 1.25 m and reached a minimum value at a depth of 2.75 m and then increased again as the system depth increased up to 5.0 m. This can be explained by the system hydrodynamics where the decrease in the total granular temperature occurs because the system starts to set in the fully developed condition and has a lower solid volume fraction fluctuation. The increase in the total granular temperature then occurs due to the high solid volume fraction fluctuation near the system outlet. In general, the granular temperatures are low when the system has a high or a low quantity of bed material (Chalermsinsuwan et al., 2011). Simply, with a high quantity of bed material there is no space for the solid particles to oscillate, while with a low quantity of bed material there are also less solid particles to displace. From the obtained results, this infers that the solid volume fraction in the CFB downer has a moderate quantity of bed material. These results are similar to those obtained in the fully developed region of a fast fluidization regime in a CFB riser (Chalermsinsuwan et al., 2009b), in which the computed granular temperatures were also of the same order of magnitude. The oscillations or flow structures, therefore, were likely to be about the same throughout the CFB downer.

Next, the radial distributions of the computed time-averaged total granular temperatures at five different depths in the CFB downer are shown in Fig. 9. The total granular temperatures near the inlet position, at 1.00–3.00 m depths below the top of CFB downer, were high in the vicinity of the center (core) region and low in the wall region. This can be explained by the high system shear condition near the center region and the zero stress near the wall region. At the center region, the flow is dilute, and the mean free path between solid particles is high. Thus, the fluctuations in the motion of solid particles are increased and the total granular temperature grows, as previously reported by Gidaspow (2000). Conversely, the granular

Fig. 10 – The instantaneous contour distributions of the computed solid volume fraction in the CFB downer at 40 s simulation time.

temperature is low at the wall region where the solid volume fraction is dense. This clarification is validated by the instantaneous contour distributions of the computed solid volume fraction in CFB downer at 40 s simulation time (Fig. 10). However, the maximum values of the total granular temperatures near the outlet position, at 4.00 m and 5.00 m depths below the top of CFB downer, were shifted to the two-side wall region, which implies that there is a reduction in the fluctuations by the shear term in the solid particle phase fluctuating energy equation. Again, the obtained total granular temperature profiles were consistent with (but opposite in magnitude to) the

solid volume fraction profile. That is the solid volume fraction was minimal at the position with a maximum granular temperature. In addition, the situation near the solid particle inlet position is different from the ones observed in CFB riser (Chalermisinsuwan et al., 2009b), which may be explained by the system flow in the downward direction.

A comparison of the total granular temperatures at five different CFB downer depths and their average values with the previously reported experimental and computational values in fluidized bed systems (Campbell and Wang, 1991; Cody et al., 1996; Gidaspow and Huilin, 1996; Polashenski and Chen, 1997, 1999; Tartan and Gidaspow, 2004; Jung et al., 2005; Jiradilok et al., 2006; Chalermisinsuwan et al., 2009b) is displayed in Fig. 11. There is a good agreement between the results obtained here with those in the literature within the neighboring gas velocity range. This verifies the accuracy of the computational methodology and the computed total granular temperature values in this study.

3.3. Turbulent kinetic energy

The turbulent kinetic energy (E) is also another important parameter that can demonstrate the system turbulence. Analogous to turbulent granular temperature, the turbulent kinetic energy of the solid particle phase is the gross energy due to its motion, and can be calculated using the following formulae:

$$E(t, x) = \frac{1}{2} \overline{v'_x v'_x} + \frac{1}{2} \overline{v'_y v'_y} + \frac{1}{2} \overline{v'_z v'_z} \quad (21)$$

Similar to the granular temperature above, the velocity fluctuation in the z -direction was assumed to be equal to the simulated ones in the x -direction due to the simulation dimension, and so the relationship between the turbulent granular temperature and the turbulent kinetic energy becomes:

$$\theta_t(t, x) = \frac{2}{3} E(t, x) \quad (22)$$

Table 3 summarizes a comparison of the computed time-averaged and area-averaged turbulent kinetic energies at five different CFB downer depths, along with the average values. The turbulent kinetic energies varied within two orders of magnitude. The axial distribution of the computed time-averaged and area-averaged turbulent kinetic energies is plotted in Fig. 12. Similar to Fig. 8, there are no solid particles inside the system near the inlet position at the top, and so the computed turbulent kinetic energies are equal to zero. Below the two side-inlet positions, the computed turbulent kinetic energies increased directly with the CFB downer depth since there were more solid particle clusters/gas bubbles. The turbulent kinetic energy, which was calculated

Table 3 – A comparison of the computed time-averaged and area-averaged granular temperatures and turbulent kinetic energies at five different CFB downer depths and the average values.

Downer depth (m)	Granular temperature (m^2/s^2)			Turbulent kinetic energy (m^2/s^2)
	Laminar	Turbulent	Total	
1.00	0.9283	2.5183E-06	0.9283	3.7775E-06
2.00	0.7050	1.3037E-05	0.7051	1.9556E-05
3.00	0.6226	3.5056E-05	0.6226	5.2584E-05
4.00	0.7791	1.0500E-04	0.7792	1.5749E-04
5.00	0.9912	2.3416E-04	0.9915	3.5124E-04
Average	0.8053	7.7954E-05	0.8053	1.1693E-04

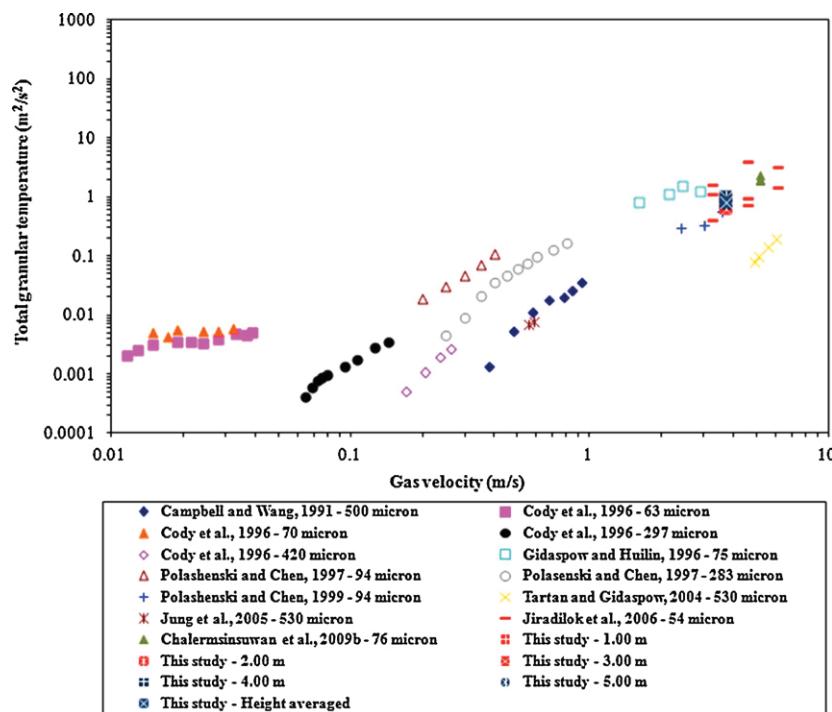


Fig. 11 – Comparison of the total granular temperatures at five different CFB downer depths and the average values with the previously reported experimental and computational derived values in fluidized bed systems.

from the turbulent granular temperature, thus reflects the motion of the solid particle clusters/gas bubbles. However, these results are different to those obtained in the fully developed region of the fast fluidization regime in a CFB riser (Chalermisinsuwan et al., 2009b). In the fast fluidization system, the computed turbulent kinetic energies are in the same order of magnitude because of the unchanged solid particle cluster/gas bubble flow behavior in the CFB riser.

Fig. 13 shows the radial distributions of the computed time-averaged turbulent kinetic energies at five different depths within the CFB downer. For all five system depths, the turbulent kinetic energies were low in the region between near the center and near the wall, consistent with the presence of a core-annulus flow structure inside the CFB downer

(Chalermisinsuwan et al., 2012). The turbulent kinetic energy gives an explanation for the solid particle cluster/gas bubble flow distribution in the CFB downer. The solid particle clusters/gas bubbles tend to move out from the region which has a high turbulent kinetic energy. In addition, the turbulent kinetic energy peak values increased at increasing depths in the CFB downer. A considerably higher amount of movement was observed near the outlet region.

3.4. Dispersion coefficient

Similar to the granular temperature, there are two kinds of dispersion coefficient: a “laminar” type that is due to individ-

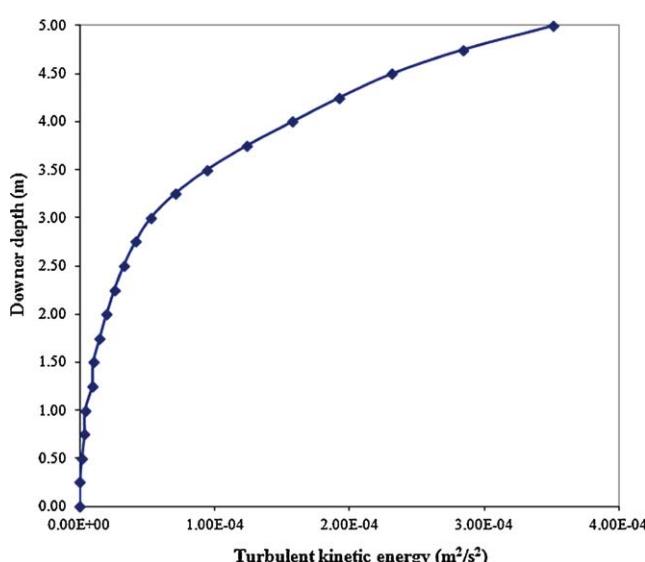


Fig. 12 – The axial distribution of the computed time-averaged and area-averaged turbulent kinetic energies.

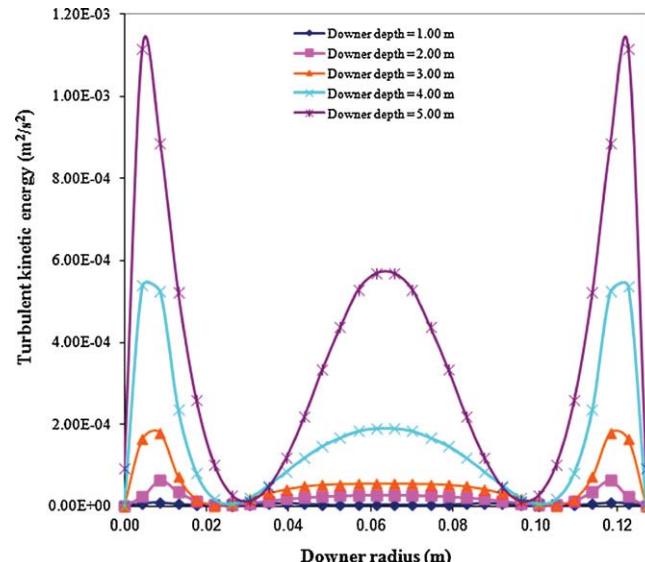


Fig. 13 – The radial distributions of the computed time-averaged turbulent kinetic energies at five different CFB downer depths.

ual gas/solid particle oscillations and a “turbulent” type that is due to gas bubble/solid particle cluster oscillations.

An estimate to within an order of magnitude of the dispersion coefficients due to individual gas/solid particle oscillations can be obtained from the laminar granular temperature, as shown in Jung et al. (2005) and Chalermisinsuwan et al. (2009b). The “laminar” type dispersion coefficient is calculated by dividing the laminar granular temperature with the system dominant frequency, which is the most frequently occurring frequency in a power spectrum of solid volume fraction fluctuations. However, the dominant frequency in this system was very low, as already computed in our previous study (Chalermisinsuwan et al., 2012), because there are no significant oscillations inside this low resident time system. Therefore, when dividing the obtained laminar granular temperature by the dominant frequency, the obtained dispersion coefficients due to individual gas/solid particles were extensively high. Similar to the granular temperature results, these results can be used to confirm the observed dilute gas/solid particle flow at the center (core) region of the CFB downer, as shown in Fig. 10.

The “turbulent” type dispersion coefficients (D_i) can be obtained as a function of the normal Reynolds stresses and the Lagrangian integral time scale (T_L), and can be expressed as shown below (Chalermisinsuwan et al., 2009b, 2011):

$$D_i = \overline{v'_i v'_i T_L} \quad (23)$$

$$T_L = \int_0^\infty \frac{\overline{v'_i(t)v'_i(t+t')}}{\overline{v'_i v'_i}} dt' \quad (24)$$

Table 4 shows a comparison of the computed time-averaged and area-averaged solid particle and gas turbulent dispersion coefficients in both the radial and axial directions at five different depths in the CFB downer plus the average values. In contrast to the laminar dispersion coefficient, the turbulent one focuses on the gas bubble/solid particle cluster dispersions. From most of the values including the averaged ones, the solid particle turbulent dispersion coefficients in axial direction were slightly lower than the gas turbulent dispersion coefficients. This can be explained by the fluctuating velocity in each phase. In the axial direction, the fluctuating solid particle velocity was slightly lower than the fluctuating gas velocity and so the solid dispersions were lower than the gas dispersions. However, the solid particle dispersions in the radial direction were much higher than the gas ones. The same explanation applies, in that the fluctuating radial solid particle velocity was higher than that of the gas velocity. The former dispersion is similar to the published experimental and computational results in the CFB riser (Chalermisinsuwan et al., 2009b). Between the five system depths, the dispersion coefficients varied within two orders of magnitude. However, the turbulent dispersion coefficient values were very low. The simulations also showed that the radial dispersions in the CFB downer were always lower than the axial dispersions, since the axial system flow is the main direction. From all the dispersion results, the gas bubble/solid particle cluster had drastically less dispersion than the individual gas/solid particle. The flow structure of the gas bubble/solid particle cluster can therefore be considered as essentially unchanging throughout the CFB downer.

The obtained dispersion coefficients were then compared with those previously reported in the experimental and com-

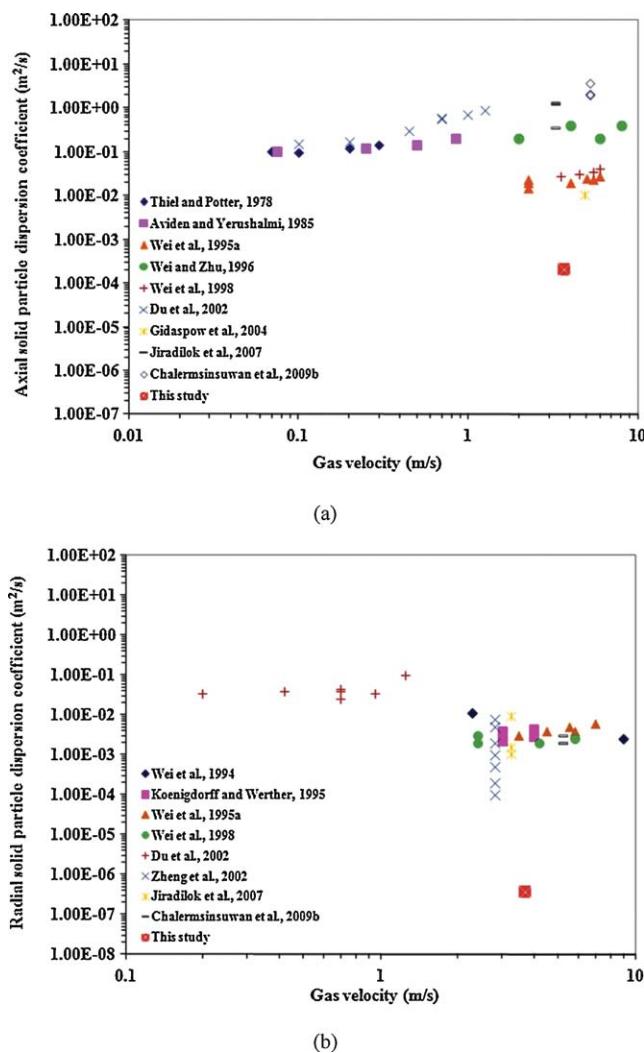
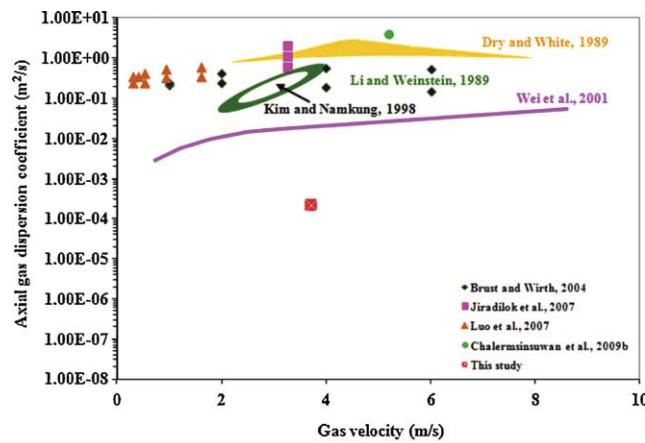



Fig. 14 – Comparisons of the computed height-averaged solid particle turbulent dispersion coefficients with those previously reported for (a) axial and (b) radial directions.

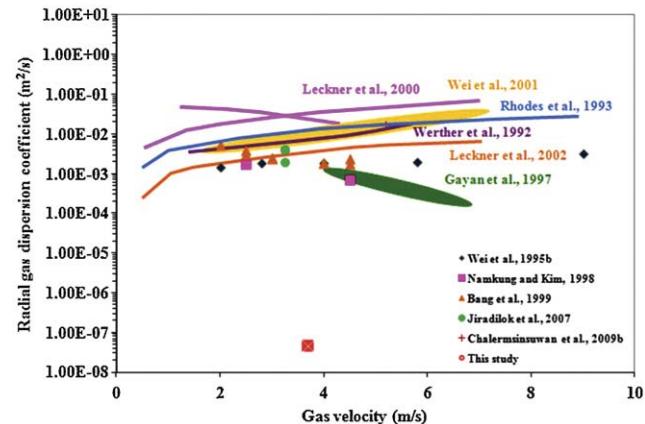

putational literature in fluidized bed systems, operating in the same gas velocity range. Fig. 14(a) and (b) shows the comparisons between the computed solid particle turbulent dispersion coefficients and the literature survey (Thiel and Potter, 1978; Avidan and Yerushalmi, 1985; Wei et al., 1994, 1995a, 1998; Koenigsdorff and Werther, 1995; Wei and Zhu, 1996; Du et al., 2002; Zheng et al., 2002; Gidaspow et al., 2004; Jiradilok et al., 2007; Chalermisinsuwan et al., 2009b) for both directions, axial and radial, respectively. The comparisons between the computed, (a) axial and (b) radial, gas turbulent dispersion coefficients and the literature survey (Dry and White, 1989; Li and Weinstein, 1989; Werther et al., 1992; Rhodes et al., 1993; Wei et al., 1995b, 2001; Gayan et al., 1997; Kim and Namkung, 1998; Namkung and Kim, 1998; Bang et al., 1999; Leckner et al., 2000, 2002; Brust and Wirth, 2004; Jiradilok et al., 2007; Luo et al., 2007; Chalermisinsuwan et al., 2009b) are shown in Fig. 15. The computations showed that both the solid particle and gas turbulent dispersion coefficients were significantly lower than the obtained values from the literature in the CFB riser and downer. The explanation for this observation can draw from two reasons. Firstly, all the reported literature values were the individual gas/solid particle dispersions which their values were normally higher than those of gas bubble/solid particle cluster. Secondly, the flow behavior of solid particle cluster/gas bubble in the CFB downer is quite

Table 4 – A comparison of the computed time-averaged and area-averaged turbulent dispersion coefficients at five different CFB downer depths and the average values.

Dowler depth (m)	Solid particle (turbulent) dispersion coefficient (m^2/s)		Gas (turbulent) dispersion coefficient (m^2/s)	
	Axial	Radial	Axial	Radial
1.00	4.5613E–06	9.6636E–07	6.7202E–06	7.0397E–08
2.00	3.5199E–05	4.8277E–07	3.6715E–05	2.2015E–08
3.00	8.1991E–05	2.6843E–07	7.5250E–05	3.1999E–08
4.00	2.5881E–04	3.6201E–08	2.6272E–04	7.0336E–08
5.00	6.3804E–04	1.3169E–07	6.9540E–04	3.4038E–08
Average	2.0372E–04	3.7709E–07	2.1536E–04	4.5757E–08

(a)

(b)

Fig. 15 – Comparisons of the computed height-averaged gas turbulent dispersion coefficients with those previously reported for (a) axial and (b) radial directions.

stable, as outlined above. Therefore, this implies the improper mixing of gas bubble/solid particle cluster inside the CFB downer system.

4. Conclusion

The Eulerian computational fluid dynamics model with the kinetic theory of granular flow was successfully used to compute the system turbulences and dispersion coefficients in a circulating fluidized bed downer using the kinetic theory concept. The obtained model was also used to calculate the system velocities. For all the obtained results, the axial and radial directions values were discussed both for the solid par-

ticle and gas phases. The system mixing was then employed as an explanation for the system hydrodynamics.

The axial velocities were higher than the radial ones because of the main axial system flow direction, which implies that the radial velocities have less effect on the system mixing. Due to the flow characteristics in the CFB downer, the axial velocities of the solid particle phase were higher than those of the gas phase while the opposite trend was obtained for the radial velocities. The fully developed axial velocities were approximately constant down the CFB downer depth, whilst the radial distributions of axial velocities were low at the center and high at the wall regions, because the system tries to balance momentum with the other forces. The fully developed radial velocities oscillated slightly around a value of zero.

The laminar granular temperatures were higher than the turbulent ones and so the individual gas/solid particle oscillation dominates the CFB downer flow structure. The computed total granular temperature values tend to agree with the literature data. The turbulent kinetic energies varied between two orders of magnitude, but were considerably low and directly increased with the increasing depth in the CFB downer. This is because of the formation of more solid particle clusters/gas bubbles. For the dispersion coefficients, the laminar and turbulent dispersions were significantly higher and lower, respectively, compared to the literature data, revealing the improper mixing of solid particle cluster/gas bubble inside the CFB downer when compared to the individual gas/solid particle.

Acknowledgments

This study was financially supported by the Thailand Research Fund (TRF) (MRG5580140), the Grants for Development of New Faculty Staff and the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), and also partially supported by the Grant from the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University.

References

- Avidan, A., Yerushalmi, J., 1985. Solids mixing in an expanded top fluid bed. *AIChE J.* 31, 835–841.
- Bang, J.H., Kim, Y.J., Namkung, W., Kim, S.D., 1999. Radial gas mixing characteristics in a downer reactor. *Korean J. Chem. Eng.* 16, 624–629.
- Bassi, A.S., Briens, C.L., Bergougnou, M.A., 1994. Short contact time fluidized reactors. In: Avidan, A.A. (Ed.), *Circulating Fluidized Bed Technology*, vol. IV. AIChE, New York, pp. 25–32.
- Bolkan, Y., Berruti, F., Zhu, J., Milne, B., 2003. Modeling circulating fluidized bed downers. *Powder Technol.* 132, 85–100.

Breault, R.W., 2006. A review of gas–solid dispersion and mass transfer coefficient correlations in circulating fluidized beds. *Powder Technol.* 163, 9–17.

Brust, H., Wirth, K.E., 2004. Residence time behavior of gas in a downer reactor. *Ind. Eng. Chem. Res.* 43, 5796–5801.

Campbell, C., Wang, D., 1991. Particle pressures in gas–fluidized beds. *J. Fluid Mech.* 227, 495–508.

Cao, C., Weinstein, H., 2000. Characterization of down flowing high velocity fluidized beds. *AIChE J.* 46, 515–522.

Chalermisinsuwan, B., Kuchonthara, P., Piumsomboon, P., 2009a. Effect of circulating fluidized bed reactor riser geometries on chemical reaction rates by using CFD simulations. *Chem. Eng. Process.: Process Intensification* 48, 165–177.

Chalermisinsuwan, B., Piumsomboon, P., Gidaspow, D., 2009b. Kinetic theory based computation of PSRI riser: Part I—estimate of mass transfer coefficient. *Chem. Eng. Sci.* 64, 1195–1211.

Chalermisinsuwan, B., Kuchonthara, P., Piumsomboon, P., 2010. CFD modeling of tapered circulating fluidized bed reactor risers: hydrodynamic descriptions and chemical reaction responses. *Chem. Eng. Process.: Process Intensification* 49, 1144–1160.

Chalermisinsuwan, B., Gidaspow, D., Piumsomboon, P., 2011. Two- and three-dimensional CFD modeling of Geldart A particles in a thin bubbling fluidized bed: comparison of turbulence and dispersion coefficients. *Chem. Eng. J.* 171, 301–313.

Chalermisinsuwan, C., Chanchuey, T., Buakhao, W., Gidaspow, D., Piumsomboon, P., 2012. Computational fluid dynamics of circulating fluidized bed downer: study of modeling parameters and system hydrodynamic characteristic. *Chem. Eng. J.*, <http://dx.doi.org/10.1016/j.cej.2012.02.020>.

Cheng, Y., Wei, F., Guo, Y., Jin, Y., 2001. CFD simulation of hydrodynamics in the entrance region of a downer. *Chem. Eng. Sci.* 56, 1687–1696.

Cheng, Y., Wu, C., Zhu, J., Wei, F., Jin, Y., 2008. Downer reactor: from fundamental study to industrial application. *Powder Technol.* 183, 364–384.

Cody, G., Goldfarb, D., Storch, G., Norris, A., 1996. Particle granular temperature in gas–fluidized beds. *Powder Technol.* 87, 211–232.

Deng, R.S., Wei, F., Liu, T.F., Jin, Y., 2002. Radial behaviors in riser and downer during FCC process. *Chem. Eng. Process.: Process Intensification* 41, 259–266.

Dry, R.J., White, C.C., 1989. Gas residence-time characteristics in a high-velocity circulating fluidized bed of FCC catalyst. *Powder Technol.* 58, 17–23.

Du, B., Fan, L.S., Wei, F., Warsito, W., 2002. Gas and solids mixing in a turbulent fluidized bed. *AIChE J.* 48, 1896–1909.

Fluent, Inc., 2006. Fluent 6.3 User's Guide. Fluent, Inc., Lebanon.

Gayan, P., de Diego, L.F., Adanez, J., 1997. Radial gas mixing in a fast fluidized bed. *Powder Technol.* 94, 163–171.

Gidaspow, D., 1994. Multiphase Flow Fluidization: Continuum Kinetic Theory Description. Academic Press, Boston.

Gidaspow, D., Huilin, L., 1996. Collisional viscosity of FCC particles in a CFB. *AIChE J.* 42, 2503–2510.

Gidaspow, D., 2000. Computation and measurement of structure and turbulence in risers and bubbling beds. Presented at Multiphase Fluid Dynamics Research Consortium, Albuquerque, New Mexico.

Gidaspow, D., Jung, J., Singh, R.K., 2004. Hydrodynamics of fluidization using kinetic theory: an emerging paradigm: 2002 Flour-Daniel lecture. *Powder Technol.* 148, 123–141.

Grasa, G.S., Abanades, J.C., 2007. Narrow fluidized bed arranged to exchange heat between a combustion chamber and CO₂ sorbent regenerator. *Chem. Eng. Sci.* 62, 619–626.

Jiradilok, V., Gidaspow, D., Damronglerd, S., Koves, W.J., Mostofi, R., 2006. Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser. *Chem. Eng. Sci.* 61, 5544–5559.

Jiradilok, V., Gidaspow, D., Breault, R.W., 2007. Computation of gas and solid dispersion coefficients in turbulent risers and bubbling beds. *Chem. Eng. Sci.* 62, 3397–3409.

Johnson, P.C., Jackson, R., 1987. Frictional-collisional constitutive relations for granular materials, with application to plane shearing. *J. Fluid Mech.* 176, 67–93.

Jung, J., Gidaspow, D., Gamwo, I.K., 2005. Measurement of two kinds of granular temperatures, stresses, and dispersion in bubbling beds. *Ind. Eng. Chem. Res.* 44, 1329–1341.

Kim, S.D., Namkung, W., 1998. Gas backmixing in a circulating fluidized bed. *Powder Technol.* 99, 70–78.

Kim, Y.N., Wu, C., Cheng, Y., 2011. CFD simulation of hydrodynamics of gas–solid multiphase flow in downer reactors: revisited. *Chem. Eng. Sci.* 66, 5357–5365.

Koenigsdorff, R., Werther, J., 1995. Gas and solids mixing and flow structure modeling of the upper dilute zone of a circulating fluidized bed. *Powder Technol.* 82, 317–329.

Leckner, B., Sterneus, J., Johnsson, F., 2000. Gas mixing in circulating fluidized bed risers. *Chem. Eng. Sci.* 55, 129–148.

Leckner, B., Sterneus, J., Johnsson, F., 2002. Characteristics of gas mixing in circulating fluidized bed. *Powder Technol.* 126, 28–41.

Li, J., Weinstein, H., 1989. An experimental comparison of gas backmixing in fluidized beds across the regime spectrum. *Chem. Eng. Sci.* 44, 1697–1705.

Liu, Y., Li, G., 2010. Numerical prediction of particle dispersions in downer under different gravity environments. *Chem. Eng. J.* 158, 281–289.

Luo, B., Dong, Y., Ying, L.M., Barghi, S., Zhu, J., 2007. Characteristics of gas–solid mass transfer in a concurrent downflow circulating fluidized bed reactor. *Chem. Eng. J.* 132, 9–15.

Namkung, W., Kim, S.D., 1998. Gas mixing characteristics in a fast fluidized bed. *Hwahak Konghak* 36, 797–803.

Polashenski, W., Chen, J., 1997. Normal solid stress in fluidized beds. *Powder Technol.* 90, 13–23.

Polashenski, W., Chen, J., 1999. Measurement of particle stresses in fast fluidized beds. *Ind. Eng. Chem. Res.* 38, 705–713.

Rhodes, M.J., Zhou, S., Hirama, T., Cheng, H., 1991. Effects of operating conditions on longitudinal solids mixing in a circulating fluidized bed riser. *AIChE J.* 37, 1450–1458.

Rhodes, M.J., Amos, G., Mineo, H., 1993. Gas mixing in gas–solids risers. *Chem. Eng. Sci.* 48, 943–949.

Ropelato, K., Meier, H.F., Cremasco, M.A., 2005. CFD study of gas–solid behavior in downer reactors: an Eulerian–Eulerian approach. *Powder Technol.* 154, 179–184.

Singer, J.G., 1991. Combustion: Fossil Power. Combustion Engineering, Inc., Windsor, CT.

Tartan, M., Gidaspow, D., 2004. Measurement of granular temperature and stresses in risers. *AIChE J.* 50, 1760–1775.

Thiel, W.J., Potter, O.E., 1978. The mixing of solids in slugging gas fluidized beds. *AIChE J.* 24, 561–569.

Vaishali, S., Roy, S., Mills, P.L., 2008. Hydrodynamic simulation of gas–solids downflow reactors. *Chem. Eng. Sci.* 63, 5107–5119.

Wang, Z., Bai, D., Jin, Y., 1992. Hydrodynamics of cocurrent downflow circulating fluidized bed (CDCFB). *Powder Technol.* 70, 271–275.

Wei, F., Wang, Z., Jin, Y., Yu, Z., Chen, W., 1994. Dispersion of lateral and axial solids in a cocurrent downflow circulating fluidized bed. *Powder Technol.* 81, 25–30.

Wei, F., Jin, Y., Yu, Z.Q., Chen, W., Mori, S., 1995a. Lateral and axial mixing of the dispersed particles in CFB. *J. Chem. Eng. Jpn.* 28, 506–510.

Wei, F., Jin, Y., Yu, Z., Liu, J., 1995. Gas mixing in the concurrent downflow circulating fluidized bed. *Chem. Eng. Technol.* 18, 59–62.

Wei, F., Zhu, J.X., 1996. Effect of flow direction on axial solid dispersion in gas–solids concurrent upflow and downflow systems. *Chem. Eng. J.* 64, 345–352.

Wei, F., Cheng, Y., Jin, Y., Yu, Z., 1998. Axial and lateral dispersion of fine particles in a binary-solid riser. *Can. J. Chem. Eng.* 76, 19–26.

Wei, F., Yang, Y., Jia, X., Yong, J., 2001. Hydrodynamics and lateral gas dispersion in a high density circulating fluidized bed reactor with bluff internals. *Chin. J. Chem. Eng.* 9, 291–296.

Werther, J., Hartge, E.U., Kruse, M., 1992. Radial gas mixing in the upper dilute core of a circulating fluidized bed. *Powder Technol.* 70, 293–301.

Westphalen, D., Glicksman, L., 1995. Lateral solids mixing measurements in circulating fluidized beds. *Powder Technol.* 82, 153–167.

Winaya, I.N.S., Shimizu, T., Yamada, D., 2007. A new method to evaluate horizontal solid dispersion in a bubbling fluidized bed. *Powder Technol.* 178, 173–178.

Yao, J.Z., Wang, X.Q., Lin, W.G., Li, J.H., Kwauk, M.S., 2001. Coal topping in fluidized bed system, Presented at 16th International Conference on Fluidized Bed Combustion, Nevada, United States.

Zhang, M., Qian, Z., Yu, H., Wei, F., 2003. The solid flow structure in a circulating fluidized bed riser/downer of 0.42-m diameter. *Powder Technol.* 129, 46–52.

Zhang, M.H., Chu, K.W., Wei, F., Yu, A.B., 2008. A CFD-DEM study of the cluster behavior in riser and downer reactors. *Powder Technol.* 184, 151–165.

Zhang, Y., Lu, C., Shi, M., 2009. Evaluating solids dispersion in fluidized beds of fine particles by gas backmixing experiments. *Chem. Eng. Res. Des.* 87, 1400–1408.

Zheng, Y., Cheng, Y., Wei, F., Yong, J., 2002. CFD simulation of hydrodynamics in downer reactors. *Chem. Eng. Commun.* 189, 1598–1610.

Zhao, Y., Ding, Y., Wu, C., Cheng, Y., 2010. Numerical simulation of hydrodynamics in downers using a CFD-DEM coupled approach. *Powder Technol.* 199, 2–12.

Zhu, J.X., Yu, Z.Q., Grace, J.R., Issangya, A., 1995. Cocurrent downflow circulating fluidized-bed (Downer) reactors—a state-of-the-art review. *Can. J. Chem. Eng.* 73, 662–677.

Comparisons of particle cluster diameter and concentration in circulating fluidized bed riser and downer using computational fluid dynamics simulation

Benjapon Chalermisinsuwan^{*,***,†}, Dimitri Gidaspow^{***}, and Pornpote Piumsomboon^{*,***}

^{*}Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University,
254 Phayathai Road, Patumwan, Bangkok 10330, Thailand

^{**}Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University,
254 Phayathai Road, Patumwan, Bangkok 10330, Thailand

^{***}Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, U.S.A.

(Received 28 July 2012 • accepted 16 December 2012)

Abstract—The information of particle cluster dynamics is necessary for improving the performance of a circulating fluidized bed system. The main objective of this study is to compare the particle cluster diameters and concentrations from computational fluid dynamics simulation results between circulating fluidized bed riser and downer. The calculation methodologies are based on the concept of kinetic theory of granular flow and statistics. The mathematical model was verified by using the experimental dataset from literature and used for computing the particle cluster dynamics. In the circulating fluidized bed riser and downer, a dense and dilute core-annulus flow structures were obtained, respectively. The particle cluster in the circulating fluidized bed riser possessed more heterogeneity movements than that in the circulating fluidized bed downer. This can be explained by the system flow direction. About the particle cluster dynamics, the particle cluster diameters and concentrations in the circulating fluidized bed riser were higher than the ones in the downer. The calculated values were comparable to the empirical correlations. This confirms the validity of the calculation methodologies. Particle cluster dynamics and its example application inside circulating fluidized bed riser and downer were also discussed.

Key words: Circulating Fluidized Bed, Computational Fluid Dynamics, Downer, Particle Cluster, Riser, Simulation

INTRODUCTION

The design of a circulating fluidized bed (CFB) reactor for use in various industrial scale applications, such as combustor and gasifier, requires knowledge of system hydrodynamics. Typically, the CFB consists of two major reaction components, riser and downer. For both risers and downers, a core-annulus system flow pattern was observed [1,2]. The solid particles are dense and dilute near the wall and center regions, respectively. At the annulus or wall region, the solid particles then agglomerate and form as particle clusters. One key feature of the system hydrodynamics behavior in CFB is the existence of particle clusters. The particle cluster flow structure is significantly different from the individual solid particles [3]. When particle clusters form in a CFB, they affect the overall gas-solid system flow behaviors. Therefore, information about the particle cluster characteristics is necessary. In the experiment, it is known that the particle cluster prohibits a good multiphase mixing inside the system [4]. This then has negative effect on the system chemical reaction conversion. By the computational fluid dynamics (CFD) simulation, the particle cluster information can be obtained and used for the calculation of drag or interphase exchange coefficient models. The particle cluster size was substituted in the correlations instead of the solid particle size until the correct system hydrodynamics were obtained [5-7]. In addition, it can be employed in computing

the mass transfer coefficient, which is then used as an input parameter for the conventional shrinking core chemical reaction model [8,9]. The mass transfer coefficient is one of the three resistances along with diffusion and chemical reaction. In the literature, the mass transfer coefficient is recognized to be much lower for small particles than that given by conventional correlations for large particles [10,11]. Chalermisinsuwan et al. [12] explained this situation by the formation of particle cluster inside their CFB riser. Still, no data is reported on the CFB downer.

The particle cluster or aggregate is a group of solid particles defined as regions with high solid particle concentration in relation to the mean concentration [13]. These groups of particles move as a single body with little internal relative movement [14]. These aggregates play a major role in all flow development length, axial and radial dispersions near the wall, heat and mass transfers near the wall, and thus affect the overall performance of a CFB reactor [15]. Nevertheless, the way to identify and characterize two important parameters of particle cluster for use in the CFD simulation aspects, which are diameter and concentration, is still in a development stage. Most of the previous literature studies are focused on the calculation of the other particle cluster dynamics, such as mean duration time, frequency of occurrence, existence time fraction and particle cluster number, which are the necessary parameters for use in the experiment aspects [16-18].

The study about the particle cluster was initiated by Yerushalmi et al. [19], who proposed a hypothesis on particle cluster formation. Gidaspow et al. [20] conducted both the experiment and simulation

[†]To whom correspondence should be addressed.
E-mail: benjapon.c@chula.ac.th

to visualize the trajectories of particle clusters near wall region of their CFB riser. Horio and Kuroki [21], Tartan and Gidaspow [22], Jung et al. [23] and Xu and Zhu [24] found the existence of particle clusters in the fluidized bed (FB) and CFB riser system operations. They observed the heterogeneity movements of particle clusters (downward, stagnant and upward). Zhang et al. [25] simulated the particle cluster behaviors in a CFB riser and downer. They stated that there were two types of particle cluster, one in the near wall region and the other one in the center region. As the formation of particle clusters is widely recognized, the information on how to identify and characterize them is mostly limited. For the parameters used in the experimental aspect, Soong et al. [26] developed criteria using a statistical methodology to identify particle cluster dynamics based on their experimental data in a CFB riser. As mentioned above, those dynamics were the mean duration time, frequency of occurrence and existence time fraction. Sharma et al. [27] used the same methodology as Soong et al. [26] to obtain the effects of operating conditions on those dynamics. In addition, the methodology was validated for use in the CFD simulation results as shown in Gómez et al. [28]. For the parameters used in the CFD simulation aspect, Chalermisinsuwan et al. [12] successfully calculated the particle cluster diameter and concentration in a CFB riser using the kinetic theory of granular flow [29] and statistical concepts [26]. Breault [30] analyzed the clustering flows in a CFB riser using Gibbs free energy. Their Gibbs free energy was related to the particle cluster size. The computed values of their particle cluster dynamics were in agreement with their previous experimental results [31]. Besides the above studies, only the empirical correlations of particle cluster diameter and concentration from the experimental data were proposed [32-35].

We used the kinetic theory of granular flow and statistical concepts to calculate the particle cluster diameters and concentrations

from CFD simulation results. This is the information still lacking in the literature. The methodology was applied to both the CFB riser and downer as experimented by Knowlton et al. [36] and Cao and Weinstein [37]. This is because the experimental validation was used as a method for verifying the results. Then, the obtained values were compared with each other and with the estimated values from the empirical correlations. In addition, the particle cluster dynamics and example application were discussed.

COMPUTATIONAL FLUID DYNAMICS SIMULATIONS

1. Mathematical Models

In this study, the CFD simulation was solved by using the commercial ANSYS FLUENT 6.3.26 program. There are two main mathematical models for multiphase flow available in the program: the Lagrangian model and the Eulerian model. In these CFB riser and downer systems, the Eulerian model was selected because the solid phase quantity cannot be occupied by the gas phase one [38]. With this model, conservation equations, mass and momentum, for each phase were considered to be continuous and fully inter-penetrating. Both phases were described in terms of separate sets of conservation equations with their appropriate interaction terms representing the coupling between the phases. The equations were closed by providing constitutive equations based on the kinetic theory of granular flow. The kinetic theory of granular flow is an extension of the conventional kinetic theory of gases by adding the effects of solid particle collision and solid fluctuating kinetic energy (or granular temperature). More information about this theory is provided in Gidaspow [29]. The verification of the employed model was already proved in our previous studies with the same CFB riser [12] and downer [39] systems. For the CFB riser, Chalermisinsuwan et al. [12] vali-

Table 1. A summary of the conservation equations and constitutive equations

A. Governing equations;

(a) Conservation of mass;

(a) Gas phase;

$$\frac{\partial}{\partial t}(\varepsilon_g \rho_g) + \nabla \cdot (\varepsilon_g \rho_g \vec{v}_g) = 0 \quad (1)$$

(b) Solid phase;

$$\frac{\partial}{\partial t}(\varepsilon_s \rho_s) + \nabla \cdot (\varepsilon_s \rho_s \vec{v}_s) = 0 \quad (2)$$

(b) Conservation of momentum;

(a) Gas phase;

$$\frac{\partial}{\partial t}(\varepsilon_g \rho_g \vec{v}_g) + \nabla \cdot (\varepsilon_g \rho_g \vec{v}_g \vec{v}_g) = -\varepsilon_g \nabla p + \nabla \cdot \tau_g + \varepsilon_g \rho_g g - \beta_{gs}(\vec{v}_g - \vec{v}_s) \quad (3)$$

(b) Solid phase;

$$\frac{\partial}{\partial t}(\varepsilon_s \rho_s \vec{v}_s) + \nabla \cdot (\varepsilon_s \rho_s \vec{v}_s \vec{v}_s) = -\varepsilon_s \nabla p + \nabla \cdot \tau_s - \nabla p_s + \varepsilon_s \rho_s g + \beta_{gs}(\vec{v}_g - \vec{v}_s) \quad (4)$$

(c) Conservation of solid phase fluctuating energy;

$$\frac{3}{2} \left[\frac{\partial}{\partial t}(\varepsilon_s \rho_s \theta) + \nabla \cdot (\varepsilon_s \rho_s \theta \vec{v}_s) \right] = (-\nabla p_s \vec{I} + \tau_s) : \nabla \vec{v}_s + \nabla \cdot (\kappa_s \nabla \theta) - \gamma_s \quad (5)$$

B. Constitutive equations;

(a) Gas phase stress;

$$\tau_g = \varepsilon_g \mu_g [\nabla \vec{v}_g + (\nabla \vec{v}_g)^T] - \frac{2}{3} \varepsilon_g \mu_g (\nabla \cdot \vec{v}_g) \mathbf{I} \quad (6)$$

Table 1. Continued

(b) Solid phase stress;

$$\tau_s = \varepsilon_s \mu_s [\nabla \vec{v}_s + (\nabla \vec{v}_s)^T] - \varepsilon_s \left(\xi_s - \frac{2}{3} \mu_s \right) \nabla \cdot \vec{v}_s \mathbf{I} \quad (7)$$

(c) Collisional dissipation of solid phase fluctuating energy;

$$\gamma_s = 3(1-e^2) \varepsilon_s^2 \rho_s g_0 \theta \left(\frac{4}{d} \sqrt{\frac{\theta}{\pi}} \right) \quad (8)$$

(d) Conductivity of the solid phase fluctuating energy;

$$\kappa_s = \frac{150 \rho_s d_p \sqrt{\theta \pi}}{384(1+e) g_0} \left[1 + \frac{6}{5} \varepsilon_s g_0 (1+e) \right]^2 + 2 \rho_s \varepsilon_s^2 d_p (1+e) g_0 \sqrt{\frac{\theta}{\pi}} \quad (9)$$

(e) Radial distribution function;

$$g_0 = \left[1 - \left(\frac{\varepsilon_s}{\varepsilon_{s,max}} \right)^{1/3} \right]^{-1} \quad (10)$$

(f) Solid phase shear viscosity;

$$\mu_s = \frac{4}{5} \varepsilon_s \rho_s d_p g_0 (1+e) \sqrt{\frac{\theta}{\pi}} + \frac{10 \rho_s d_p \sqrt{\pi \theta}}{96(1+e) g_0 \varepsilon_s} \left[1 + \frac{4}{5} g_0 \varepsilon_s (1+e) \right]^2 \quad (11)$$

(g) Solid phase bulk viscosity;

$$\xi_s = \frac{4}{3} \varepsilon_s \rho_s d_p g_0 (1+e) \sqrt{\frac{\theta}{\pi}} \quad (12)$$

(h) Solid phase pressure;

$$p_s = \varepsilon_s \rho_s \theta [1 + 2 g_0 \varepsilon_s (1+e)] \quad (13)$$

(i) Gas and solid phases interphase exchange coefficient;

- EMMS model;

when $\varepsilon_g < 0.74$;

$$\beta_{gs} = 150 \frac{(1-\varepsilon_g)^2 \mu_g}{\varepsilon_g d_p^2} + 1.75 \frac{(1-\varepsilon_g) \rho_g |\vec{v}_g - \vec{v}_s|}{d_p} \quad (14)$$

when $\varepsilon_g \geq 0.74$;

$$\beta_{gs} = \frac{3(1-\varepsilon_g) \varepsilon_g}{4} \rho_g |\vec{v}_g - \vec{v}_s| C_{D0} \omega(\varepsilon) \quad (15)$$

- Gidaspow model;

when $\varepsilon_g \leq 0.80$;

$$\beta_{gs} = 150 \frac{(1-\varepsilon_g)^2 \mu_g}{\varepsilon_g d_p^2} + 1.75 \frac{(1-\varepsilon_g) \rho_g |\vec{v}_g - \vec{v}_s|}{d_p} \quad (16)$$

when $\varepsilon_g > 0.80$;

$$\beta_{gs} = \frac{3(1-\varepsilon_g) \varepsilon_g}{4} \rho_g |\vec{v}_g - \vec{v}_s| C_{D0} \varepsilon_g^{-2.65} \quad (17)$$

with

$$\text{Re} < 1000; \quad C_{D0} = \frac{24}{\text{Re}_k} (1 + 0.15 \text{Re}_k^{0.687}); \quad \text{Re}_k = \frac{\rho_g \varepsilon_g |\vec{v}_g - \vec{v}_s| d_p}{\mu_g}$$

$$\text{Re} \geq 1000; \quad C_{D0} = 0.44$$

$$\text{when } 0.74 \leq \varepsilon_g \leq 0.82; \quad \omega(\varepsilon) = -0.5760 + \frac{0.0214}{4(\varepsilon_g - 0.7463)^2 + 0.0044}$$

$$\text{when } 0.82 \leq \varepsilon_g \leq 0.97; \quad \omega(\varepsilon) = -0.0101 + \frac{0.0038}{4(\varepsilon_g - 0.7789)^2 + 0.0040}$$

$$\text{when } \varepsilon_g > 0.97; \quad \omega(\varepsilon) = -31.8295 + 32.8295 \varepsilon_g$$

(j) Wall tangential velocity and granular temperature of the solid phase (Jackson and Johnson boundary condition);

$$\vec{v}_{t,W} = - \frac{6 \mu_s \varepsilon_{s,max}}{\pi \phi \rho_s \varepsilon_s g_0 \sqrt{3} \theta} \frac{\partial \vec{v}_{s,W}}{\partial n} \quad (18)$$

$$\theta_W = - \frac{\kappa_s \theta \partial \theta_W}{\gamma_W \partial n} + \frac{\sqrt{3} \pi \phi \rho_s \varepsilon_s \vec{v}_{s,slip}^2 g_0 \theta^{3/2}}{6 \varepsilon_{s,max} \gamma_W} \quad (19)$$

$$\text{with } \gamma_W = \frac{\sqrt{3} \pi (1 - e_w^2) \varepsilon_s \rho_s g_0 \theta^{3/2}}{4 \varepsilon_{s,max}}$$

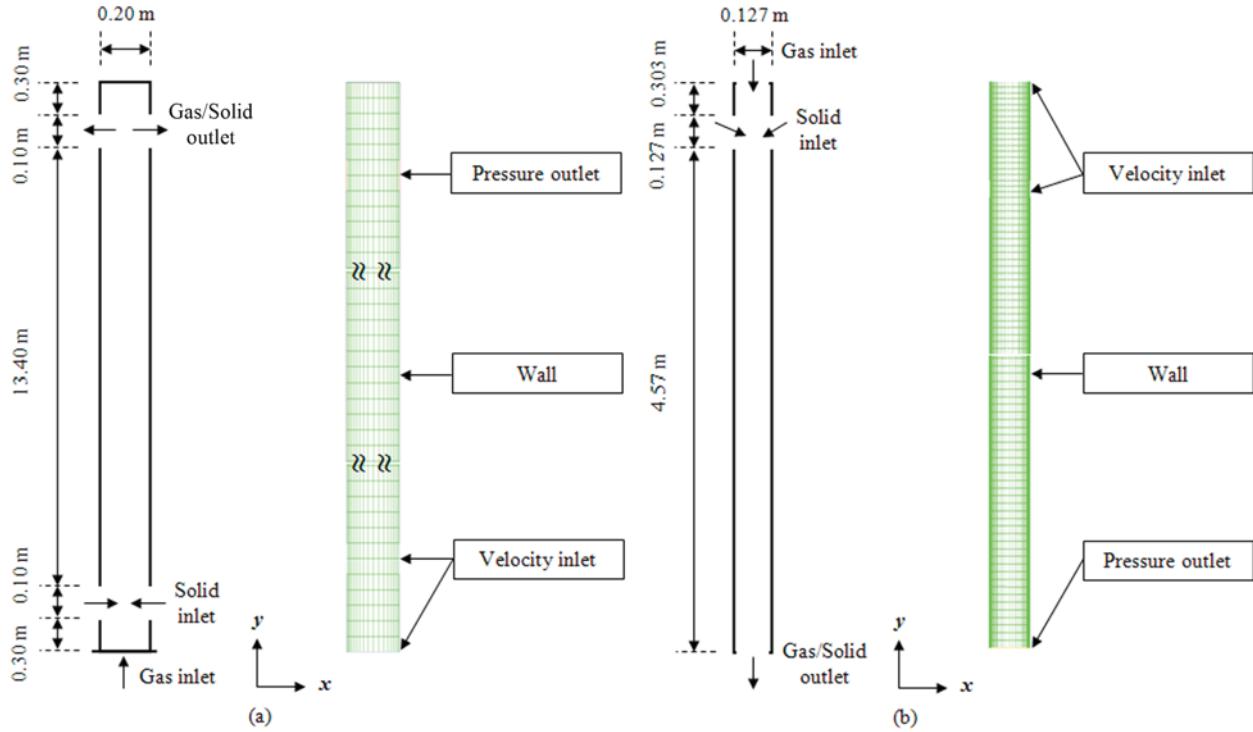


Fig. 1. Schematic drawing and computational domain with their boundary conditions of simplified CFB (a) riser and (b) downer.

dated the mathematical model with the solid mass flux, solid density and system pressure drop profiles. For the CFB downer, Chalermisinsuwan et al. [39] validated the mathematical model with the solid volume fraction, solid mass flux and gauge pressure profiles. Also, the effects of various modeling parameters were explained in their study, such as the restitution coefficient, specularity coefficient, interphase exchange coefficient model and turbulence model. The chosen models were the best appropriate ones with the literature experimental data [36,37]. Therefore, the verification steps were skipped and the mathematical models were used for further analyzing the particle cluster dynamics. A summary of the conservation equations and constitutive equations is given in Table 1. The main difference between the models of CFB riser and downer was the drag coefficient correlations. In case of high solid mass flux system/CFB riser, the energy minimization multi-scale (EMMS) drag coefficient model was suitable to employ, while in case of low solid mass flux system/CFB downer, the Gidaspow drag coefficient model was used [40-42]. For the CFB riser, the new additional code using VISUAL C++ programming language was added because the EMMS drag coefficient model was not provided in the program.

2. System Descriptions and Computational Domains

To compare the particle cluster diameters and concentrations, the experimental results by Knowlton et al. (for the CFB riser) [36] and Cao and Weinstein (for the CFB downer) [37] were chosen as the two reference cases. In the literature, there is little reported experimental data for both the riser and downer in the same CFB system. Therefore, two different experimental data with the same Geldart classification were selected as each CFB section's representative to simulate and explain in this study.

For the CFB riser condition, the gas in their system was pure air with 1.20 kg/m^3 in density and $2.00 \times 10^{-5} \text{ kg/m s}$ in viscosity. The

solid particles in their system were fluid catalytic cracking (FCC) with 76 mm in diameter and $1,712 \text{ kg/m}^3$ in density. The diameter and height of their CFB riser were 0.20 m and 14.20 m, respectively. Since the three-dimensional model requires long computation time, we used the two-dimensional model for the simulation. The schematic drawing of the CFB riser is depicted in Fig. 1(a). This schematic drawing is based on Benyahia et al. [43] and Chalermisinsuwan et al. [12], which was a two inlet-outlet design for the two-dimensional CFB riser. This is because a one inlet-outlet design for two-dimensional CFB riser cannot capture the system phenomena [12]. The gas was fed to the system at the bottom of the CFB riser. The solid particles were fed from the two side inlets at 0.30 m above the bottom of the system with a width of 0.10 m. The gas and solid particles exited the system through two side outlets at 0.30 m below the top of the CFB riser (similar width to the side inlets).

For the CFB downer condition, the gas was also air with 1.20 kg/m^3 in density and $2.00 \times 10^{-5} \text{ kg/m s}$ in viscosity. The solid particles in their system were FCC particles. However, their physical properties were slightly changed. The solid particle diameter and density were 82 mm and $1,480 \text{ kg/m}^3$. With these properties, the same group A in Geldart classification was still obtained. The diameter and height of their CFB downer was 0.127 m and 5.00 m, respectively. Similar to the CFB riser, this we used the two-dimensional model for the simulation. The schematic drawing of the CFB downer, depicted in Fig. 1(b), is based on Chalermisinsuwan et al. [39], which is a two inlet design for the two-dimensional CFB downer. The gas was fed to the system at the top of the CFB downer. The solid particles were fed from the 0.127 m width two side inlets at 0.303 m below the top of the system with the angle of 45° with respect to the system vertical (y) axis. The gas and solid particles exited through the system outlet at the bottom of the CFB downer.

The computational domains of the CFB riser and downer in this study with their corresponding boundary conditions are also illustrated in Figs. 1(a) and 1(b), respectively. For both the CFB systems, the computational domain consisted of 20 non-uniform grids in radial or horizontal direction and 300 uniform grids in axial or vertical direction, with a total of 6,000 computational cells. The CFD models were solved by using a personal computer with Pentium 1.80 GHz CPU 1 GB RAM. It took approximately 5 days of computation time for 50 s of simulation time. The time-averaged quasi-steady state results were calculated using the results with the simulation time in the range of 30 s to 50 s. For these two CFB systems, the grid independence study and time-averaged range checking were already tested [12,39]. The acceptable results should not depend on the grid size and simulation time. Chalermisinsuwan et al. [12,39] performed the CFD simulation with the increments of grid size and the simulation time in CFB riser and downer, respectively. They obtained satisfactory values for both the parameters, as already summarized above.

3. Initial and Boundary Conditions

Initially, no gas phase and solid phase were packed in the CFB system. Thus, there was no solid holdup or solid volume fraction inside the system. At the system inlets, the velocities and volume fractions for each phase were specified to be consistent with the solid mass flux in the CFB riser and downer of $489 \text{ kg/m}^2 \text{ s}$ and $123 \text{ kg/m}^2 \text{ s}$, respectively. Generally, the solid mass flux has a relationship with the solid density, solid volume fraction and solid velocity. For the selected CFB riser [36], this system was used for fluid catalytic cracking application. For the chosen CFB downer [37], the system was used only as a solid particle transportation part. The volume fraction and solid mass flux in the CFB downer were then lower than the CFB riser one. On the other hand, the system pressures were specified at the system outlets as input parameters for the CFD solving algorithm. At the system wall, no-slip boundary conditions were applied for all velocities, except the tangential velocity of solid phase and fluctuating kinetic energy of solid phase, which were used the boundary conditions of Johnson and Jackson [44]. All the used parameter values for the simulation are listed in Table 2. The employed modeling parameters were selected from the suit-

able ones in our previous studies [12,39].

RESULTS AND DISCUSSION

1. Calculation Methodology for Particle Cluster Diameter

As already stated, we used the methodology from Chalermisinsuwan et al. [12]. Based on the kinetic theory of granular flow concept [29], the description of particle cluster diameter is the radial characteristic length of solid particle, which can be obtained by dividing the radial solid dispersion coefficient at any radial system distance ($D_x(r)$) with the radial oscillating velocity:

$$\text{Particle cluster diameter} = \frac{D_x(r)}{\text{Radial oscillating velocity}} \quad (20)$$

The radial solid dispersion coefficient can be computed from a mathematical relation between the radial normal Reynolds stress ($\overline{v'_x v'_x(r)}$) and the Lagrangian integral time scale (T_L) [12,45]:

$$D_x(r) = \overline{v'_x v'_x(r)} T_L \quad (21)$$

$$T_L = \int_0^{\infty} \frac{v'(t)v'(t+t')}{\overline{v'^2}} dt' \quad (22)$$

With the radial normal Reynolds stress is the additional stress due to random velocity fluctuations (v') from its mean values in radial direction:

$$\overline{v'_x v'_x(r)} = \frac{1}{m} \sum_1^m (v_{x,k}(r,t) - \overline{v}_x(r))(v_{x,k}(r,t) - \overline{v}_x(r)) \quad (23)$$

$$\overline{v}_x(r) = \frac{1}{m} \sum_1^m v_{x,k}(r,t) \quad (24)$$

The radial oscillating velocity can be obtained from the square root of the radial normal Reynolds stress:

$$\text{Radial oscillating velocity} = \sqrt{\overline{v'_x v'_x(r)}} \quad (25)$$

2. Calculation Methodology for Particle Cluster Concentration

Similar to the particle cluster diameter, we used statistical methodology proposed by Soong et al. [26] and Chalermisinsuwan et al.

Table 2. The used parameter values for the CFD simulation

Symbol	Description	CFB riser	CFB downer
-	System diameter (m)	0.20	0.127
-	System height (m)	14.20	5.00
ρ_g	Gas density (kg/m^3)	1.2	1.2
μ_g	Gas viscosity (kg/m s)	2×10^{-5}	2×10^{-5}
ρ_s	Solid particle density (kg/m^3)	1,712	1,480
d_p	Solid particle diameter (mm)	76	82
v_g	Gas inlet velocity (m/s)	5.20	3.70
v_s	Solid inlet velocity (m/s)	0.476	1.11
ε_s	Solid inlet volume fraction (-)	0.60	0.15
G_s	Solid mass flux ($\text{kg/m}^2 \text{ s}$)	489	123
p	System outlet pressure (Pa)	101,325	116,325
e	Restitution coefficient between solid particles (-)	0.95	0.999
e_w	Restitution coefficient between solid particle and wall (-)	0.90	0.70
ϕ	Specularity coefficient (-)	0.50	0.001

[12] to identify and characterize the particle clusters. Their particle cluster definition is:

“The solid particle is accepted to be the particle cluster when the instantaneous solid volume fraction becomes higher than the time-averaged solid volume fraction plus two times the standard deviation (2σ).”

After the particle cluster is identified, the particle cluster concentration or volume fraction is computed as the sum of the time-averaged solid volume fractions ($\bar{\varepsilon}_{cl,i}$) for all the particle clusters over the total number of particle clusters (m) detected in the observation period:

$$\text{Particle cluster concentration} = \frac{\sum_i^m \bar{\varepsilon}_{cl,i}}{m} \quad (26)$$

3. Empirical Correlations for Particle Cluster Diameter and Concentration

Up to now, only a limited number of research studies have been reported about the methodology to compute or estimate the particle cluster diameter and concentration for using in the CFD simulation aspect.

The curve-fitting correlations from the experimental data for the particle cluster diameter (\bar{d}_{cl}) with various system parameters are summarized as shown below. In [33-35] they proposed that their correlations were in good agreement with the experimental measurements in the CFB riser.

$$\text{Zou et al. [33]; } \bar{d}_{cl} = 1.8543 d_p \left[\frac{\bar{\varepsilon}_s^{0.25} (1 - \bar{\varepsilon}_s)^{-1.5}}{(1 - \bar{\varepsilon}_s - \varepsilon_{mf})^{2.41}} \right]^{1.3889} + d_p \quad (27)$$

$$\text{Gu and Chen [34]; } \bar{d}_{cl} = d_p + (0.027 - 10d_p)\bar{\varepsilon}_s + 32\bar{\varepsilon}_s^6 \quad (28)$$

$$\text{Harris et al. [35]; } \bar{d}_{cl} = \frac{\bar{\varepsilon}_s}{40.8 - 94.5\bar{\varepsilon}_s} \quad (29)$$

where d_p is the solid particle diameter, $\bar{\varepsilon}_s$ is the solid volume fraction and ε_{mf} is the solid volume fraction at minimum fluidization velocity (which in this study was set roughly as 0.40 using theoretical/experimental results by Benyahia et al. [1,43]).

Similar to particle cluster diameter, Lints and Glicksman [32], Gu and Chen [34] and Harris et al. [35] presented correlations for predicting the particle cluster concentration/volume fraction. Their correlations were developed from experimental data published in CFB riser publication ranging from laboratory to industrial scale.

$$\text{Lints and Glicksman [32]; } \bar{\varepsilon}_{cl} = \bar{\varepsilon}_s^{0.50} \quad (30)$$

$$\text{Gu and Chen [34]; } \bar{\varepsilon}_{cl} = \varepsilon_{s,max} \left[1 - \left(1 - \frac{\bar{\varepsilon}_s}{\varepsilon_{s,max}} \right)^{3.4} \right] \quad (31)$$

$$\text{Harris et al. [35]; } \bar{\varepsilon}_{cl} = \frac{0.58\bar{\varepsilon}_s^{1.48}}{0.013 + \bar{\varepsilon}_s^{1.48}} \quad (32)$$

where $\varepsilon_{s,max}$ is the solid volume fraction at maximum packing condition (which in this study was set equals to 0.60 using theoretical/experimental results by Fluent Inc. [38] and Yang [46]).

Figs. 2(a) and 2(b) show the plot of estimated particle cluster diameter and concentration with time-averaged solid particle concentration/volume fraction, which were calculated from various empirical literature correlations, respectively. The graph line results were for the CFB riser condition and the symbol results were for the CFB downer condition. All the empirical correlations showed similar trends of estimated values. The particle cluster diameter and concentration were directly increased with the increasing of solid particle concentration/volume fraction. These tendencies were consistent with the experimental data observed by many researchers [32-35]. As the higher quantity of solid particle, the probability of agglomeration or accumulation of solid particles as particle clusters is increased. This explains the observed trends as shown in the figures.

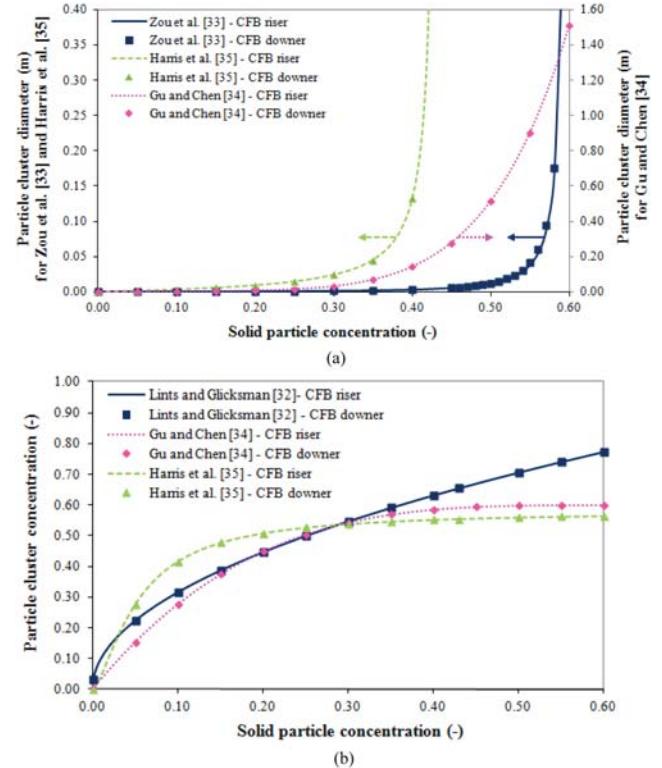
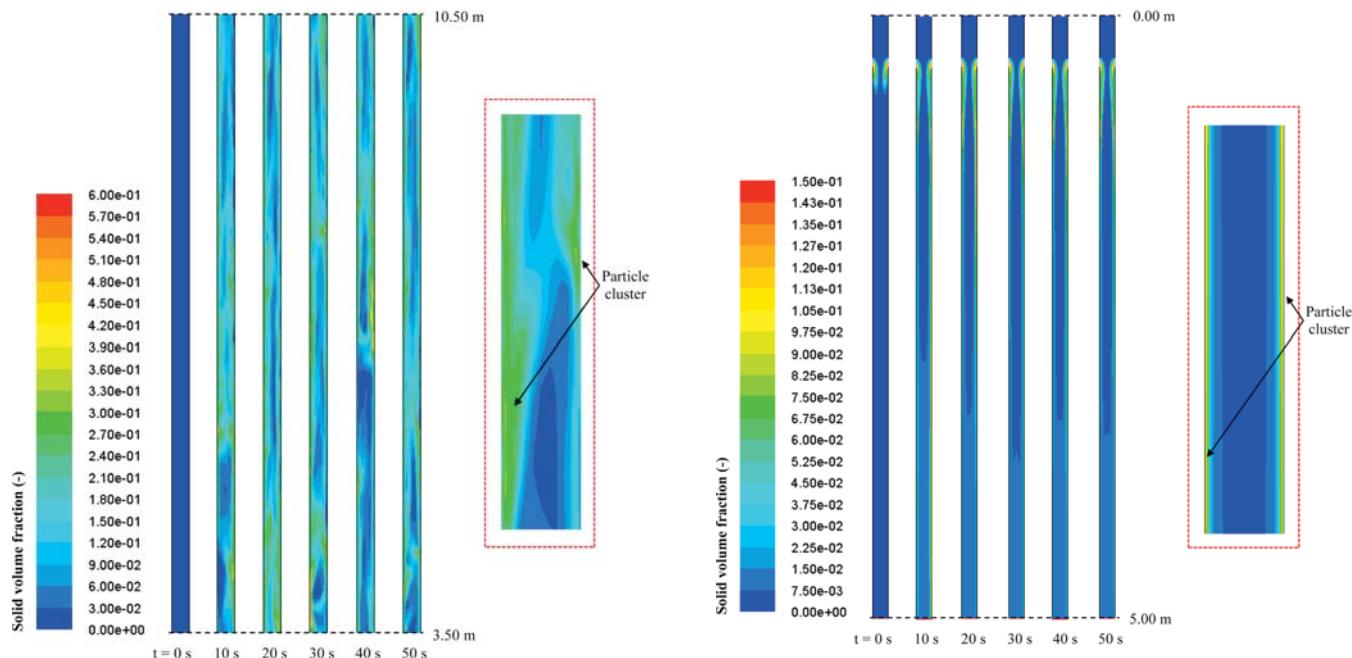


Fig. 2. Particle cluster (a) diameter and (b) concentration estimated from various empirical literature correlations.


centration were directly increased with the increasing of solid particle concentration/volume fraction. These tendencies were consistent with the experimental data observed by many researchers [32-35]. As the higher quantity of solid particle, the probability of agglomeration or accumulation of solid particles as particle clusters is increased. This explains the observed trends as shown in the figures.

4. Observation of Particle Cluster Inside CFB Riser and Downer

The CFD model, which was already verified in our previous studies [12,39], was used as a method for verifying the obtained results. It is then suitable for analyzing more information on CFB riser and downer systems. In this section, the system flow structures in both CFB riser and downer are shown. The calculation methodologies in the previous sections were then used to compute the particle cluster diameters and concentrations. Lastly, the computed results between the CFB riser and downer and with the estimated values from the literature empirical correlations were compared [32-35].

4-1. Demonstration of Particle Cluster Flow Structure

Fig. 3 illustrates the snapshots of computed instantaneous solid volume fraction distribution in the CFB riser at six different simulation times (which were 0 s, 10 s, 20 s, 30 s, 40 s and 50 s). The results were captured between the system heights of 3.50 m to 10.50 m. This CFB riser part is the center part in which the system is operated in the fully developed condition. At the top and bottom regions of the figure, the results thus were similar. From the contour color scale, the dense core-annulus flow structure was observed. The red color means high solid volume fraction condition, while the blue color means low solid volume fraction condition. More downward flow of solid particles can be seen near the wall region than at the center region of the CFB riser. This is similar to the results with this experi-

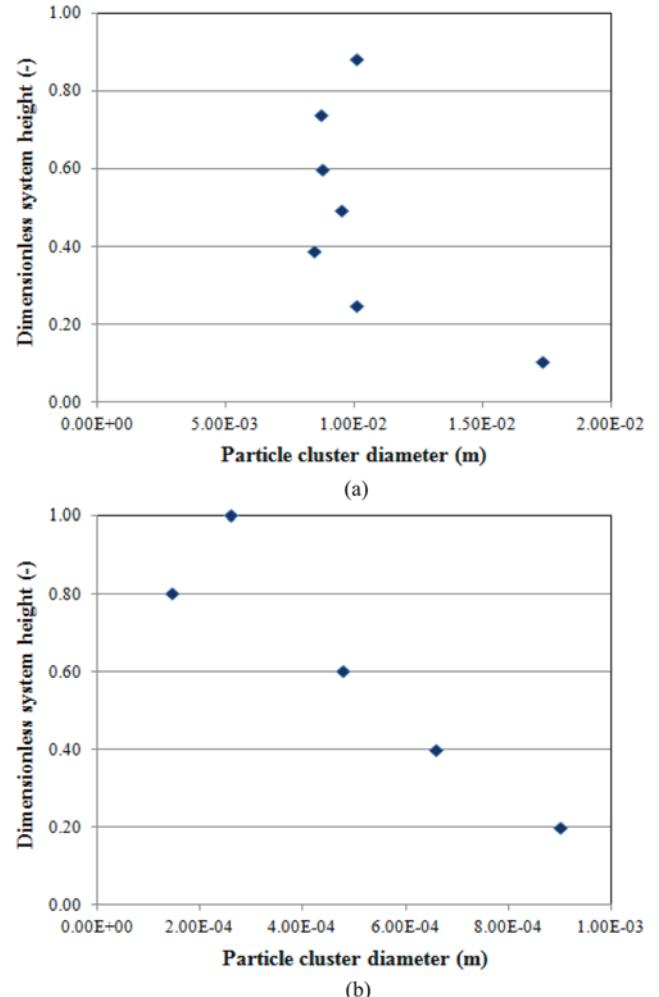
Fig. 3. Snapshots of computed instantaneous solid volume fraction distribution in the CFB riser at six different simulation times.

mental system condition [12,36]. About the particle cluster information, we observed that some system area had significantly stronger contour color than the other system area. This implies the occurrence of the particle cluster inside the system. The particle cluster had heterogeneity movements. It can fall down, move up, stagnate, break and agglomerate inside system, which is consistent with the previous

Fig. 4. Snapshots of computed instantaneous solid volume fraction distribution in the CFB downer at six different simulation times.

literature results [21-24]. However, from the expanded figure, it could be clearly seen that particle clusters occurred mostly near the wall region. The particle cluster concentration or volume fraction was about 0.40 with the particle cluster diameter of approximately 0.01 m. In the figure, the appropriate time-averaged range was also confirmed. The results after 30 s were not changed with the simulation

Table 3. The computed information on particle cluster diameters at various different heights of the CFB riser and downer


CFB riser				
Height (m)	Dimensionless system height (-)	Radial solid dispersion coefficient (m ² /s)	Radial oscillating velocity (m/s)	Particle cluster diameter (m)
1.50	0.11	5.28E-03	2.52E-01	1.73E-02
3.50	0.25	2.47E-03	2.24E-01	1.01E-02
5.50	0.39	2.73E-03	2.80E-01	8.43E-03
7.00	0.49	2.76E-03	2.59E-01	9.52E-03
8.50	0.60	2.25E-03	2.19E-01	8.75E-03
10.50	0.74	2.46E-03	2.43E-01	8.73E-03
12.50	0.88	1.61E-03	1.46E-01	1.01E-02
Averaged		2.79E-03	2.32E-01	1.04E-02
CFB downer				
Height (m)	Dimensionless system height (-)	Radial solid dispersion coefficient (m ² /s)	Radial oscillating velocity (m/s)	Particle cluster diameter (m)
1.00	0.20	9.66E-07	1.07E-03	9.02E-04
2.00	0.40	4.83E-07	7.31E-04	6.60E-04
3.00	0.60	2.68E-07	5.60E-04	4.80E-04
4.00	0.80	3.62E-08	2.48E-04	1.46E-04
5.00	1.00	1.32E-07	5.07E-04	2.60E-04
Averaged		3.77E-07	6.23E-04	4.90E-04

time. Therefore, the 30 s to 50 s was selected as the time-averaged range in the following sections.

The snapshots of computed instantaneous solid volume fraction distribution in the CFB downer at similar six different simulation times are displayed in Fig. 4. The results are shown throughout the system heights between 0.00 m to 5.00 m. At the top and bottom regions of the figure, the results thus were not the same. This is due to the inlet and outlet system configurations. At the center region, the fully developed distribution was approximately constant. From the contour color scale, the dilute core-annulus flow structure was observed in the CFB downer. This is in agreement with the experimental observation in this system [37,39]. The high downward flow of solid particles near the wall region was obtained because the system moved with the same direction as gravitational acceleration. Similar to the CFB riser results, the formation of particle clusters in the CFB downer was also observed. However, the particle cluster, formed as a thin sheet near the wall, had less movement when compared to the CFB riser. Therefore, it could be implied that the particle cluster in CFB downer possessed less heterogeneity movements than that in the CFB riser. No particle cluster was moving upward inside the system, as can be seen from the expanded figure. For the particle cluster dynamics, its diameter in the downer was two-times smaller than the one in CFB riser, around 0.005 m, and its concentration was about 0.08.

4-2. Computation of Particle Cluster Diameter in CFB Riser and Downer

After the simulation results were obtained, the radial normal Reynolds stresses, the Lagrangian integral time scale, the radial solid dispersion coefficient and radial oscillating velocity were computed. Then, the particle cluster diameters were calculated using the proposed methodology together with the kinetic theory of granular flow concept. Table 3 summarizes the computed information on particle cluster diameter at various different heights of the CFB riser and downer. The results consisted of the time-averaged and area-averaged radial solid dispersion coefficient, radial oscillating velocity and particle cluster diameter. For the CFB riser, seven system heights were selected to show, ranging between 1.50 m to 12.50 m above the system inlet. For the CFB downer, five system heights were chosen to represent the system characteristics which were 1.00 m to 5.00 m below the system inlet. In the table, the averaged values from all the system heights are also shown. As for the radial dispersion coefficients, the values for the CFB riser were higher than the ones for the CFB downer approximately four orders of magnitude. As already discussed, this is because of more system heterogeneities in CFB riser or more stable flow structure in CFB downer. For the radial oscillating velocities, the computed values were consistent with the obtained radial solid dispersion coefficients. For the particle cluster diameters, the values from the CFB riser were larger than the ones from the CFB downer. These are similar to the observed flow structures in Figs. 3 and 4. Near the system inlet (bottom region in CFB riser/top region in CFB downer), both the values from CFB riser and downer were high. This is due to the agglomeration of the solid particles. At the center region, the particle cluster diameters were varied and decreased with the system heights. At the top region, the solid particle cluster diameters were slightly increased due to the solid particle accumulation at the outlet system configuration. However, it could be inferred that the computed values were

Fig. 5. The axial distributions of computed time-averaged and area-averaged particle cluster diameter in the CFB (a) riser and (b) downer.

approximately constant after the system reached the fully developed condition. The observed flow structures are clearly seen in Fig. 5, which displays the axial distributions of computed time-averaged and area-averaged particle cluster diameter in the CFB (a) riser and (b) downer.

4-3. Computation of Particle Cluster Concentration in CFB Riser and Downer

In this section, the particle cluster concentration results are calculated based on the statistical methodology as already described. Fig. 6 illustrates the radial distributions of computed time-averaged and area-averaged (a) solid particle and (b) particle cluster concentrations at the same seven different CFB riser heights. The radial distributions of computed time-averaged and area-averaged (a) solid particle and (b) particle cluster concentrations at the same five different CFB downer heights are shown in Fig. 7. All the computation profiles showed a similar behavior to each other, but the particle cluster concentrations had higher values than the solid particle concentration. This is because the solid particles are combined together as the particle clusters. These results confirm the similar core-annulus flow structure in different system axial or vertical locations. For the radial distributions, both the solid particle and particle cluster con-

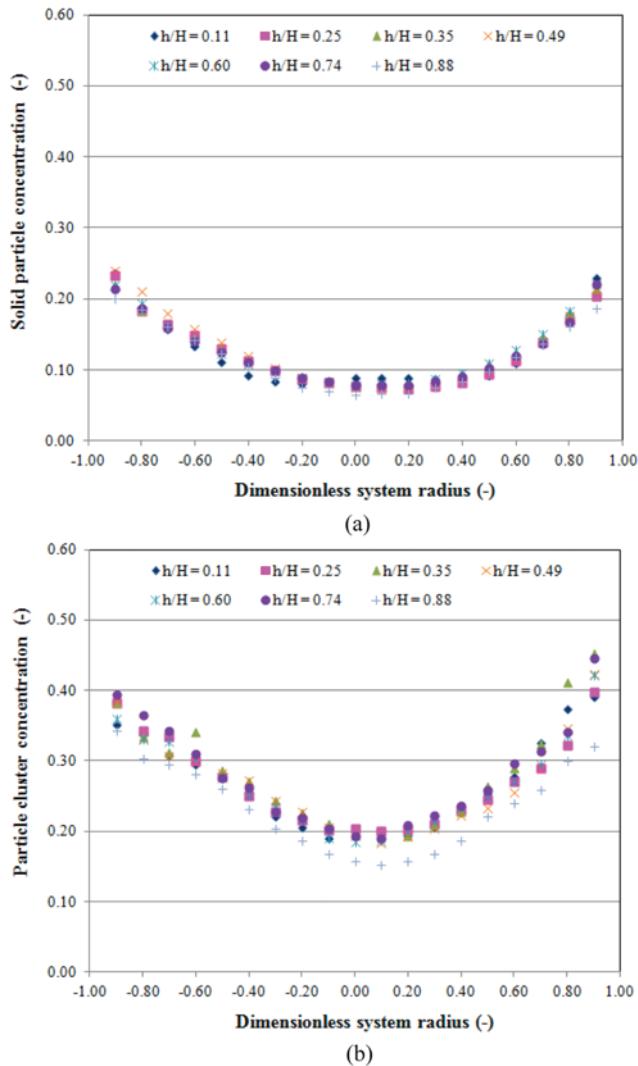


Fig. 6. The radial distributions of computed time-averaged and area-averaged (a) solid particle and (b) particle cluster concentrations at seven different CFB riser heights.

centrations near the wall region were larger than the ones at the center region. When comparing between the CFB riser and downer, the values for the CFB riser were much larger than the CFB downer. This is because dense and dilute core-annulus flow structures were obtained in the CFB riser and downer, respectively. For the CFB riser, the values of particle cluster concentration at the wall region were approximately 0.32 to 0.45 which matched with the extracted value from Fig. 3. For the CFB downer, the particle cluster concentrations at the wall region were about 0.05 to 0.10, which is also consistent with the contour color in Fig. 4. These phenomena can be explained by the direction of system flow structure when comparing with the other force inside the system.

Fig. 8 shows the axial distributions of computed time-averaged and area-averaged solid particle and particle cluster concentrations in the CFB (a) riser and (b) downer. The selected system heights were similar to the ones in the previous figures. As already discussed, the selected CFB riser height were assumed to operate in the fully developed condition. It can be seen that the obtained solid particle and particle cluster concentrations were approximately the

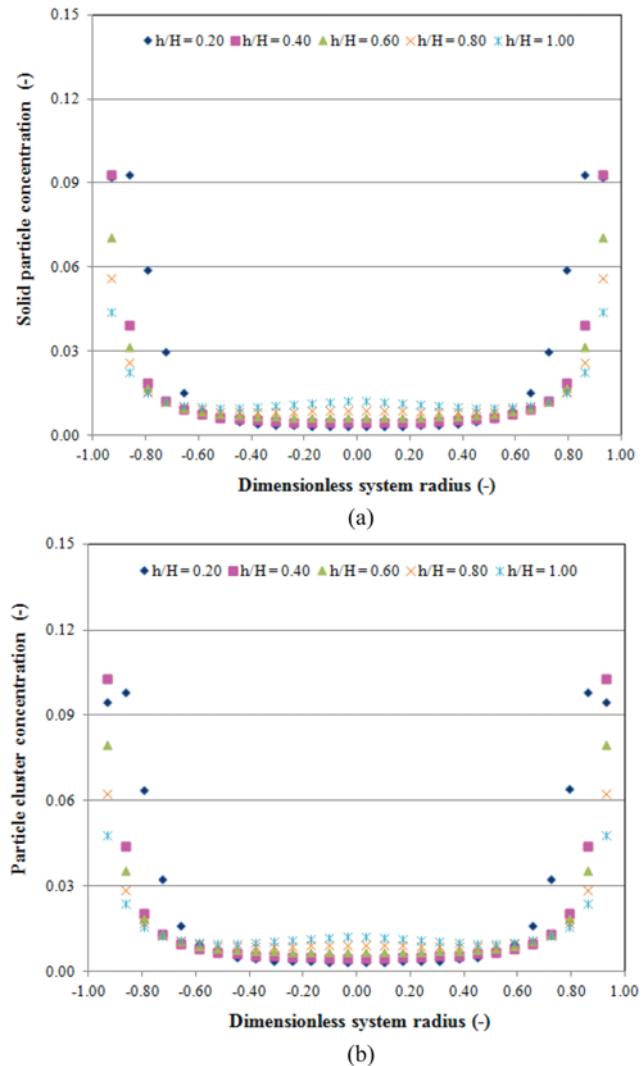
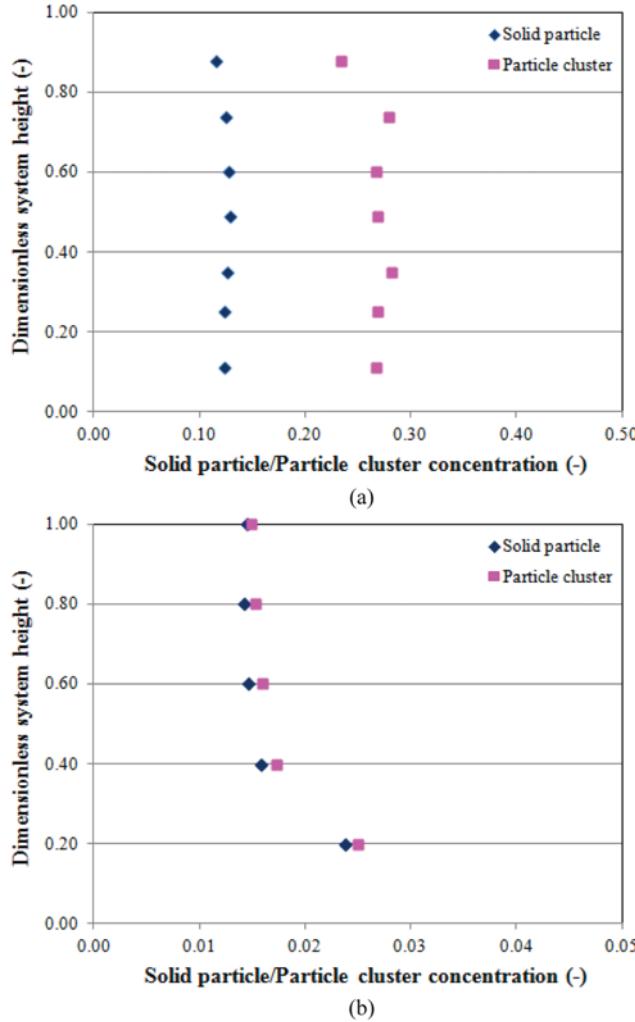



Fig. 7. Radial distributions of computed time-averaged and area-averaged (a) solid particle and (b) particle cluster concentrations at five different CFB downer heights.

same in each system height. Therefore, these verified the proposed assumption. Due to the selected system heights, the solid particle and particle cluster concentrations in the CFB downer were varied. Thus, near the system inlet (top region), the solid particle and particle cluster concentrations were high. Then, the values were considered as slightly decreased or approximately constant when the system heights were increasing. This situation can be explained by the inlet configuration and the force balance inside the CFB downer. As the system height is increasing, the acceleration force inside the system is increased. In addition, the solid particle concentrations were higher than the particle cluster ones, similar to the obtained results in Figs. 6 and 7.

4-4. Comparisons of Particle Cluster Dynamics with the Empirical Correlations

After we identified and characterized the particle cluster dynamics, the comparisons with the literature empirical correlations [32-35] were shown. Table 4 shows the comparisons between the computed time-averaged particle cluster diameters and the previous empirical correlations [33-35] for the CFB riser and downer. In the table, the averaged values over system diameter and height are shown.

Fig. 8. Axial distributions of computed time-averaged and area-averaged solid particle and particle cluster concentrations in the CFB (a) riser and (b) downer.

From the calculation methodology in this study, the minimum and maximum values of particle cluster diameter ranged from 0.0001 m

to 0.0173 m, respectively. As already discussed, the previous empirical correlations were only the curve fitting relation between the solid particle concentration/solid particle diameter and the particle cluster diameter. To get more precise information, the minimum and maximum values were computed. The minimum values were generally calculated based on the solid particle concentrations, while the maximum values were calculated based on the particle cluster concentrations. This was done because some previous researchers did not characterize the solid particle/particle cluster in their experiments. The measured concentrations then can both occur by individual solid particles and their agglomerate. Most of the calculated values in this study are in the range of the empirical correlations. This result can capture a realistic higher particle cluster diameter. Comparing between the CFB riser and downer, the values in CFB downer are more slightly deviated. This is because the experimental data, which were used to formulate the empirical correlations, were mostly operated in the CFB riser. However, the values were consistent with the roughly observed values in CFB downer by Bolkan et al. [47]; therefore, they are acceptable.

The comparisons between the computed time-averaged particle cluster concentrations and the previous empirical correlations [32,34, 35] for the CFB riser and downer are also summarized in Table 4. The averaged values are shown for both at the wall and at the overall system. The particle cluster concentrations at the wall are higher than the ones at the overall system. For the comparison with the empirical correlations, only the computed values at the wall were employed. All the values from the previous correlations were both quantitatively and qualitatively in agreement with the values of this study. Similar to particle cluster diameter, the values in the CFB riser were more accurate than in CFB downer due to the available experimental data. However, all the results in this table confirm the validity of the calculation methodologies for particle cluster dynamics.

5. Explanation of Particle Cluster Dynamics Inside CFB Riser and Downer

Fig. 9 displays the snapshots of computed instantaneous solid velocity vectors in the CFB (a) riser and (b) downer at simulation time of 40 s. The results are shown both at all the system height and at the specific center section (fully developed system condition). After the system reached the fully developed condition, the

Table 4. The comparisons between the computed time-averaged particle cluster diameters and concentrations and the previous empirical correlations for the CFB riser and downer

Method/Correlation	Particle cluster diameter (m)			Method/Correlation	Particle cluster concentration (-)	
	Minimum	Maximum	Averaged		Wall	Averaged
CFB riser						
This study	0.0084	0.0173	0.0104	This study	0.3891	0.2667
Zou et al. [33]	0.0031	0.0097	0.0060	Lints and Glicksman [32]	0.3532	-
Gu and Chen [34]	0.0031	0.0225	0.0106	Gu and Chen [34]	0.3283	-
Harris et al. [35]	0.0039	0.0200	0.0108	Harris et al. [35]	0.4519	-
CFB downer						
This study	0.0001	0.0009	0.0005	This study	0.0872	0.0220
Zou et al. [33]	0.0002	0.0002	0.0002	Lints and Glicksman [32]	0.1437	-
Gu and Chen [34]	0.0011	0.0013	0.0012	Gu and Chen [34]	0.0677	-
Harris et al. [35]	0.0005	0.0007	0.0006	Harris et al. [35]	0.1154	-

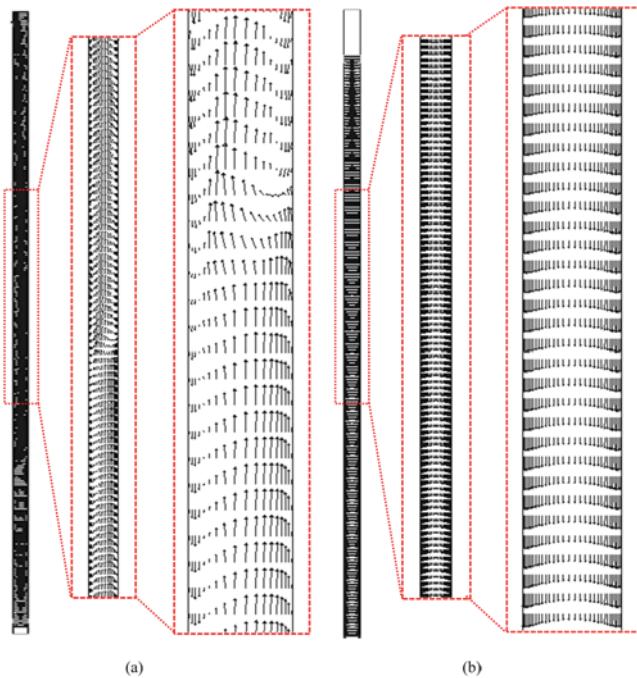


Fig. 9. Snapshots of computed instantaneous solid velocity vectors in the CFB (a) riser and (b) downer at simulation time of 40 s.

profiles were approximately constant. In the CFB riser, the results confirmed the heterogeneity movement as observed in this study and in other literature publications [21-24]. The solid velocity mostly moved up at the center and fell at the wall region. At the wall region, the solid velocity vectors were longer (higher velocity values) as the system height decreasing. This implies that accumulation of particle cluster had occurred. The breakage of particle cluster was also observed in the expanded figure. At that system point, the solid velocity vector changed its flow direction. This type of particle cluster is type I as proposed by Zhang et al. [25]. They proposed that there are two types of particle clusters in a CFB riser and downer. The particle cluster type I occurred at the near wall region where the solid velocities are low, and the particle cluster type II occurred in the center region where the solid velocities are high. However, the particle cluster type II can also be observed by the contour color in Fig. 3. In the CFB downer, the profiles were more stable. The particle cluster moved downward along with the gravitational acceleration. Similar to the CFB riser, both particle cluster types were observed with very low concentrations, though most of them were particle cluster type I with lower downward solid velocity than at the center region. About the difference between particle cluster behavior between CFB riser and downer, the velocities of some type I particle clusters in the CFB riser were downward and opposite to the main flow direction, but the velocities of all type I particle clusters in the CFB downer were downward and the same as the main flow direction. Therefore, back mixing due to particle cluster in the near wall region of a CFB downer did not occur. In addition, it can be implied that the duration time for the particle cluster in the CFB riser is longer than that in the CFB downer, which is qualitatively consistent with the experimental result by Zhang et al. [48]. About the explanation why the particle clusters were formed, it could be

clarified by the solid particle force balance inside each system [2, 49]. This phenomenon is probably due to the mixed effect of drag force, gravity force, wall resistance, solid particle properties and multiphase turbulence. For an example application of the computed particle cluster dynamics, the Sherwood numbers or dimensionless number describing mass transfer were computed using the particle cluster diameter with the methodology in Chalermisinsuwan et al. [12]. The obtained results confirmed the low Sherwood numbers, which were 0.01 in CFB riser and 0.33 in CFB downer. This is due to the particle cluster formation inside the system. Then, this knowledge can be further used as criteria for designing of CFB reactor application such as selecting the appropriate chemical reaction sides for each reaction in chemical looping.

CONCLUSION

The information of particle cluster diameters and concentrations is useful for improving the performance of a circulating fluidized bed (CFB) system. These aggregates play a major role in flow development length, axial and radial dispersions near the wall and mass and heat transfers near the wall as well. In the literature, the way to identify and characterize the important parameters of particle cluster, diameter and concentration, is in a development stage for use in the computational fluid dynamics simulation (CFD) aspect.

This study calculated the particle cluster diameters and concentrations from two-dimensional CFD simulation results by using the concepts of kinetic theory of granular flow and statistic. The mathematical models were already verified with the CFB riser and downer experimental data in our previous study and thus used for computing the particle cluster dynamics. In the CFB riser, a dense core-annulus flow structure was observed, while in the CFB downer, a dilute core-annulus flow structure was obtained. The particle cluster in the CFB riser had more heterogeneity movements than that in the CFB downer, which could be explained by the system flow direction. About the particle cluster dynamics, the particle cluster diameters and concentrations in the CFB riser were higher than in the CFB downer. The particle cluster dynamics were increased with decreasing system height, due to the accumulation of solid particles. Then, the obtained values were compared with the predicted values from the empirical correlations. Most of the values were in the range of the empirical correlations, which confirmed the validity of the calculation methodology. Finally, the particle cluster dynamics and example application inside the CFB riser and downer were discussed.

These simulation results reveal the power of the CFD simulation application. Still, the computer capacity remains the limitation for simulating a complex system. Although the two-dimensional model is proven to represent the three-dimensional system in this study, the three-dimensional model is more realistic than the two-dimensional model with higher computational effort.

NOMENCLATURE

General Letters

C_{D0}	: drag coefficient [-]
\bar{d}_{cl}	: particle cluster diameter [m]
d_p	: solid particle diameter [m]
D_x	: radial solid dispersion coefficient [m^2/s]

e	: restitution coefficient between solid particles [-]
e_w	: restitution coefficient between solid particle and wall [-]
g	: gravity force [m/s^2]
g_0	: radial distribution function [-]
G	: mass flux [$\text{kg/m}^2 \text{s}$]
h	: height of system [m]
H	: overall height of system [m]
I	: unit tensor [-]
m	: total number of particle clusters [-]
n	: unit vector [-]
p	: pressure [Pa]
r	: radial direction [-]
Re_k	: Reynolds number [-]
T_L	: lagrangian integral time scale [s]
t	: time [s]
v	: velocity vector [m/s]
v'	: velocity fluctuation [m/s]
$v_{s, \text{slip}}$: slip velocity of solid particle at the wall [m/s]
$v_{s, w}$: velocity of solid particle at the wall [m/s]
$v_{t, w}$: tangential velocity of solid particle at the wall [m/s]
x	: radial or horizontal distance [m]
y	: axial or vertical distance [m]

Greek Letters

β_{gs}	: drag or interphase exchange coefficient [$\text{kg/m}^3 \text{s}$]
$\varepsilon, \bar{\varepsilon}$: volume fraction [-]
$\bar{\varepsilon}_{cl}$: solid volume fraction of particle cluster [-]
ε_{mf}	: solid volume fraction at minimum fluidization velocity [-]
$\varepsilon_{s, \text{max}}$: solid volume fraction at maximum packing [-]
ϕ	: specularity coefficient [-]
γ_s	: collisional dissipation of solid fluctuating energy [kg/m s^3]
κ_s	: conductivity of the solid fluctuating energy [kg/m s]
μ	: viscosity [kg/m s]
θ	: granular temperature [m^2/s^2]
ρ	: density [kg/m^3]
σ	: standard deviation [-]
τ	: stress tensor [Pa]
ξ	: bulk viscosity [kg/m s]

Subscripts

g	: gas phase
s	: solid phase

ACKNOWLEDGEMENTS

This study was financially supported by grants from the Thailand Research Fund (TRF) and the Commission on the Higher Education for fiscal year 2012-2014 (MRG5580140), the Grant for Development of New Faculty Staff (Ratchadaphisek Somphot Endowment Fund) of Chulalongkorn University and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University.

REFERENCES

1. S. Benyahia, H. Arastoopour, T. M. Knowlton and H. Massah, *Powder Technol.*, **112**, 24 (2000).
2. Y. Cheng, C. Wu, J. Zhu, F. Wei and Y. Jin, *Powder Technol.*, **183**, 364 (2008).
3. B. Chalermisinsuwan, P. Kuchonthara and P. Piumsomboon, *Chem. Eng. Process.*, **49**, 1144 (2010).
4. B. Chalermisinsuwan, P. Piumsomboon and D. Gidaspow, *Chem. Eng. Sci.*, **64**, 1212 (2009).
5. T. McKeen and T. Pugsley, *Powder Technol.*, **129**, 139 (2003).
6. J. Wang, W. Ge and J. Li, *Chem. Eng. Sci.*, **63**, 1553 (2008).
7. M. T. Shah, R. P. Utikar, M. O. Tade, V. K. Pareek and G. M. Evans, *Chem. Eng. Sci.*, **66**, 3291 (2011).
8. D. Gidaspow and J. Veeraya, *J. Power Sources*, **166**, 400 (2007).
9. O. Levenspiel, *Chemical reaction engineering*, John Wiley & Sons, New York (1999).
10. R. W. Breault, *Powder Technol.*, **163**, 9 (2006).
11. M. Kashyap and D. Gidaspow, *Powder Technol.*, **203**, 40 (2010).
12. B. Chalermisinsuwan, P. Piumsomboon and D. Gidaspow, *Chem. Eng. Sci.*, **64**, 1195 (2009).
13. K. Tuzla, A. K. Sharma, J. C. Chen, T. Schiwe, K. E. Wirth and O. Molerus, *Powder Technol.*, **100**, 166 (1998).
14. E. Helland, R. Occelli and L. Tadrist, *Int. J. Multiphas. Flow*, **28**, 199 (2002).
15. J. X. Zhu, Z. Q. Yu, Y. Jin, J. R. Grace and A. Issangya, *Can. J. Chem. Eng.*, **73**, 662 (1995).
16. S. V. Manyele, J. H. Parssinen and J. X. Zhu, *Chem. Eng. J.*, **88**, 151 (2002).
17. R. W. Breault, C. J. Ludlow and P. C. Yue, *Powder Technol.*, **149**, 68 (2005).
18. J. W. Chew, R. Hays, J. G. Findlay, T. M. Knowlton, S. B. R. Karri, R. A. Cocco and C. M. Hrenya, *Chem. Eng. Sci.*, **68**, 72 (2012).
19. J. Yerushalmi, N. T. Cankurt, D. Geldart and B. Liss, *AICHE Symp. Ser.*, **74**, 1 (1976).
20. D. Gidaspow, Y. P. Tsuo and K. M. Luo, *Computed and experimental cluster formation and velocity profiles in circulating fluidized beds*, Fluidization IV, Alberta, Canada (1989).
21. M. Horio and H. Kuroki, *Chem. Eng. Sci.*, **49**, 2413 (1994).
22. M. Tartan and D. Gidaspow, *AICHE J.*, **50**, 1760 (2004).
23. J. Jung, D. Gidaspow and I. K. Gamwo, *Ind. Eng. Chem. Res.*, **44**, 1329 (2005).
24. J. Xu and J. X. Zhu, *Chem. Eng. J.*, **168**, 376 (2011).
25. M. H. Zhang, K. W. Chu, F. Wei and A. B. Yu, *Powder Technol.*, **184**, 151 (2008).
26. C. Soong, K. Tuzla and J. Chen, *Identification of particle clusters in circulating fluidized bed*, Circulating Fluidized Bed Technology Vol. IV, New York, USA (1995).
27. A. Sharma, K. Tuzla, J. Matsen and J. Chen, *Powder Technol.*, **111**, 114 (2000).
28. L. C. Gómez, R. C. da Silva, H. A. Navarro and F. E. Milioli, *Appl. Math. Model.*, **32**, 327 (2007).
29. D. Gidaspow, *Multiphase flow and fluidization: Continuum and kinetic theory description*, Academic Press, Boston (1994).
30. R. W. Breault, *Powder Technol.*, **220**, 79 (2012).
31. C. Guenther and R. Breault, *Powder Technol.*, **173**, 163 (2007).
32. M. Lints and L.R. Glicksman, *AICHE Symp. Ser.*, **89**, 35 (1993).
33. B. Zou, H. Li, Y. Xia and X. Ma, *Powder Technol.*, **78**, 173 (1994).
34. W. K. Gu and J. C. Chen, *A model for solid concentration in circulating fluidized beds*, Fluidization X., Durango, Colorado, USA (1998).

35. A. T. Harris, J. F. Davidson and R. B. Thorpe, *Powder Technol.*, **127**, 128 (2002).
36. T. Knowlton, D. Geldart, J. Masten and D. King, *Comparison of CFB hydrodynamic models*, PSRI Challenge Problem Presented at the Eighth International Fluidization Conference, Tours, France (1995).
37. C. Cao and H. Weinstein, *AIChE J.*, **46**, 515 (2000).
38. Fluent Inc., *Fluent 6.2 User's Guide*, Fluent Inc., Lebanon (2005).
39. B. Chalermisinsuwan, T. Chanchuey, W. Buakhao, D. Gidaspow and P. Piumsomboon, *Chem. Eng. J.*, **189-190**, 313 (2012).
40. B. Sun and D. Gidaspow, *Ind. Eng. Chem. Res.*, **38**, 787 (1999).
41. N. Yang, W. Wang, W. Ge and J. Li, *Chem. Eng. J.*, **96**, 71 (2003).
42. B. Chalermisinsuwan, P. Kuchonthara and P. Piumsomboon, *Chem. Eng. Process.*, **48**, 165 (2009).
43. S. Benyahia, H. Arastoopour and T. M. Knowlton, *Chem. Eng. Commun.*, **189**, 510 (2009).
44. P. C. Johnson and R. Jackson, *J. Fluid Mech.*, **176**, 67 (1987).
45. V. Jiradilok, D. Gidaspow and R. W. Breault, *Chem. Eng. Sci.*, **62**, 3397 (2007).
46. W. C. Yang, *Handbook of fluidization and fluid-particle systems*, Marcel Dekker, Inc., New York (2003).
47. Y. Bolkan, F. Berruti, J. Zhu and B. Milne, *Powder Technol.*, **132**, 85 (2003).
48. M. H. Zhang, Z. Qian, H. Yu and F. Wei, *Powder Technol.*, **129**, 46 (2003).
49. Y. Zhao, Y. Ding, C. Wu and Y. Cheng, *Powder Technol.*, **199**, 2 (2010).

Three-dimensional CFD simulation of the system inlet and outlet boundary condition effects inside a high solid particle flux circulating fluidized bed riser

Benjapon Chalermisinsuwan ^{a,b,*}, Yongyoot Prajongkan ^a, Pornpote Piomsomboon ^{a,b}

^a Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand

^b Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand

ARTICLE INFO

Article history:

Received 8 October 2012

Received in revised form 30 March 2013

Accepted 15 April 2013

Available online 27 April 2013

Keywords:

Circulating fluidized bed riser

Computational fluid dynamics

Hydrodynamics

Inlet boundary condition

Outlet boundary condition

Three-dimensional simulation

ABSTRACT

In this study, the effects of varying the system inlet and outlet boundary conditions were investigated based on three-dimensional computational fluid dynamics (CFD) simulation inside a high solid particle flux circulating fluidized bed riser. Four possible system inlet boundary conditions were considered with varying the gas inlet channel size at 25% (case 1), 50% (case 2), 75% (case 3) and 100% (case 4) of the maximal diameter compared to the system channel (0.050, 0.100, 0.150 and 0.200 m, respectively). The solid volume fraction inside the system decreased as the gas inlet channel size increased. Varying the system outlet boundary conditions by changing the outlet radius from 0.025 m to 0.050, 0.075 or 0.100 m revealed that the solid volume fraction inside the system increased with decreasing outlet radii. These results compare well to those experimental and two-dimensional CFD simulations. In addition, the effects of mesh sizes or computational cells, time-averaged ranges and computational fluid dynamics simulation dimensions were discussed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Currently, low solid particle flux circulating fluidized bed (CFB) reactors are widely applied in many industrial-scale operations, such as in combustion processes. The key advantage of CFB reactors over other multiphase reactors is the large contact area between the gas and solid particles that results in high system heat and mass transfers [1]. From theoretical determinations, when high solid particle flux CFB reactors are applied to fluid catalytic cracking, gasification and agricultural product drying, the reactor efficiency is expected to be high. In contrast, in some experimental cases a low efficiency was obtained [2,3]. The requirement to understand the causes of and to increase the efficiency of high solid particle flux CFB reactors is thus important. The hydrodynamics and mixing performance inside a high solid particle flux system in various applications have been reported previously [4–7], but an understanding of the complex hydrodynamics of gas and solid particle interaction behavior is still the major challenge for improving the system efficiency [8–11]. Although there have been advancements in the scale-up of the reactor [12,13], it is somehow still difficult to achieve this because of the lack of industrial-scale experimental information in the academic literature [14–16].

At present, computational fluid dynamics (CFD) based simulations have been commonly employed because of their various benefits,

such as a reduced time for designing or developing a system, being able to use it in otherwise extreme and/or unsafe experimental operating conditions and providing more comprehensive crucial information. For CFBs, CFD can be adopted as a methodology to investigate the complex system hydrodynamics and scale-up the reactor. There are two schemes for CFD-based simulations that can be used to model the multiphase flow system. These are the Eulerian–Eulerian [17–22] and the Eulerian–Lagrangian methods [17,18,23–26]. Many researchers [27–36] have predicted the hydrodynamics of gas and solid particle interactions using the Eulerian–Eulerian scheme coupled with the kinetic theory of granular flow (KTGF). This theory is used to define the properties of the solid particle phase through each specific constitutive equation [36]. The Eulerian–Eulerian scheme with the KTGF is, therefore, an interesting approach to use for analyzing the complex multiphase phenomena inside the CFB reactor system.

In the CFB reactor, the riser is an important section and is where the chemical reaction(s) mainly occur. Experimental and theoretical studies have reported that the inlet and outlet configurations of CFB risers strongly influence the overall system flow behaviors [37–50]. The inlet and outlet configuration effects can be separated into the limitation of solid circulation and the opening area arrangement where both configurations have significant influence on the axial and radial solid particle voidage distributions [37]. The mixing density of the gas and solid particles near the entrance region was found to change remarkably depending on the boundary condition of the solid particle returning section [38]. The solid particle inlet configuration was found to affect the system flow behavior in a low solid particle flux CFB riser, where feeding the solid particles in at the bottom of the riser hindered the radial mixing

* Corresponding author at: Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand. Tel.: +66 2218 7682; fax: +66 2255 5831.

E-mail address: benjapon.c@chula.ac.th (B. Chalermisinsuwan).

in the system but when the solid particles were fed at the side of the riser, the system radial mixing was increased due to a high gas bypassing effect [39]. Simulation of a two-dimensional CFB riser with a J-valve solid particle returning section concluded that the correct implementation of inlet conditions was critical for successful simulation of the hydrodynamics [40]. From different combinations of solid particle feeders and riser exit shapes, a highly dense solid circulation inside the CFB was found with an L-valve type solid particle feeder and a C-riser exit shape [41], where the acceleration zone was observed near the solid particle's recycling. Changes in the axial flow structure and heat transfer coefficient for different riser exit shapes under various different operating conditions have been predicted [42–44], where an abrupt exit was found to cause the solid particles to be knocked out of the gas flow to a much greater extent than with a curved exit. With respect to the flow asymmetry in the solid particle entrance region of a CFB, the back feeding particles were found to penetrate the flow near the entrance wall before reaching the opposite wall [45]. With the use of an abrupt T exit the solid particle concentration was found to be denser than that in a smooth exit type [46], whilst the use of an L-riser exit shape extensively decreased the vortex formation inside a low solid particle CFB [47]. In addition, various gas inlet distributors have been investigated using two-dimensional CFD-based simulations, where the flow profiles in the fully developed region were found to be governed by the inlet configuration [48–50]. From the above reported studies, most of the inlet and outlet effect studies have focused on the geometric configuration, especially for the solid particle ones, whilst the reactor systems were mainly operated in a low solid particle flux condition. In addition, two-dimensional CFD simulations were employed.

The aim of this study was then to develop a three-dimensional CFD simulation so as to more thoroughly explain the effects of the gas inlet and outlet boundary conditions on the behavior of the system hydrodynamics inside a high solid particle flux CFB riser using Geldart group A solid particles. Since no experimental observations describing the gas distribution for the inlet and outlet boundary conditions of the basic CFB riser was available, various possible system inlet (gas inlet channel opening size) and outlet (system outlet radii) boundary conditions were considered under similar inlet gas velocity and geometry configurations. The time-averaged system pressure drop, solid mass flux, solid volume fraction and granular temperature were summarized based on each three-dimensional numerical simulation results. In addition, the effects of the mesh size (number of computational cells), time-averaged ranges and CFD simulation dimensions were analyzed and compared to the available literature reports [32,51]. Although the results were based on Geldart group A solid particle, the obtained results also can be applied as a basis to explain the behavior in Geldart group B solid particle (e.g. [52–54]). Mahmoudi et al. [54] and Van de Velden et al. [55] found that Geldart group A and B solid particles behave similarly in the riser, especially within the operation regime in this study.

2. CFD simulation model

2.1. Computational domain description of the system

As stated above, evaluation of the validity of the CFD simulation model was performed by comparing the obtained results with the

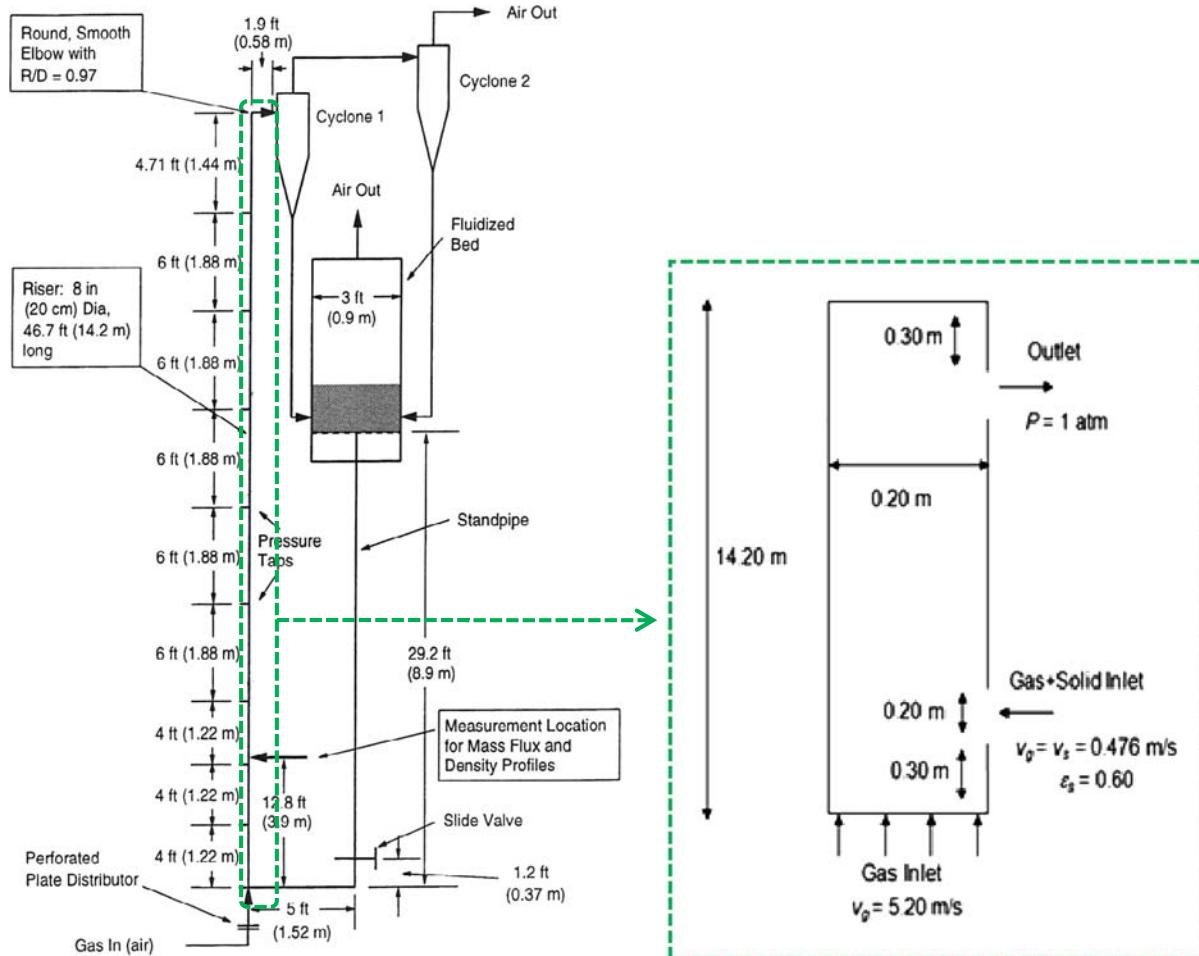


Fig. 1. Experimental setup and simplified schematic drawing of the CFB riser used in this study and the previously reported experimental and two-dimensional simulation studies [32,51].

previously reported experimental data of [32,51], where the CFB riser was cylindrical in shape with a 0.20 m internal diameter and 14.20 m height (Fig. 1). The gas phase was fed into the system at the bottom of the CFB riser, while, the solid particle phase entered the system from one side at 0.30 m above the bottom of the CFB riser and exited the system from the same side at 0.30 m below the top of the CFB riser. Since there were no actual experimental observations describing the inlet and outlet boundary conditions available, various possible system inlet and outlet boundary conditions were considered. In this study, the employed solid particles were FCC (fluid catalytic cracking) solid particles with a mean diameter of 76 μm and a density of 1712 kg/m^3 , whilst the employed gas was air.

The three-dimensional computational domain and expanded geometry of the CFB riser used in this study, which was comprised of 26,184, 51,789 or 98,005 cells computational cells, is shown in Fig. 2. A time step of 1×10^{-3} s with 100 iterations per time step was used throughout and the simulations were conducted for 30 s of simulation time (totalling approximately 2 weeks of computational time), using an Intel Core-i3 3.20 GHz with 8 GB RAM workstation. A summary of the CFB riser and model parameters used in this study is given in Table 1.

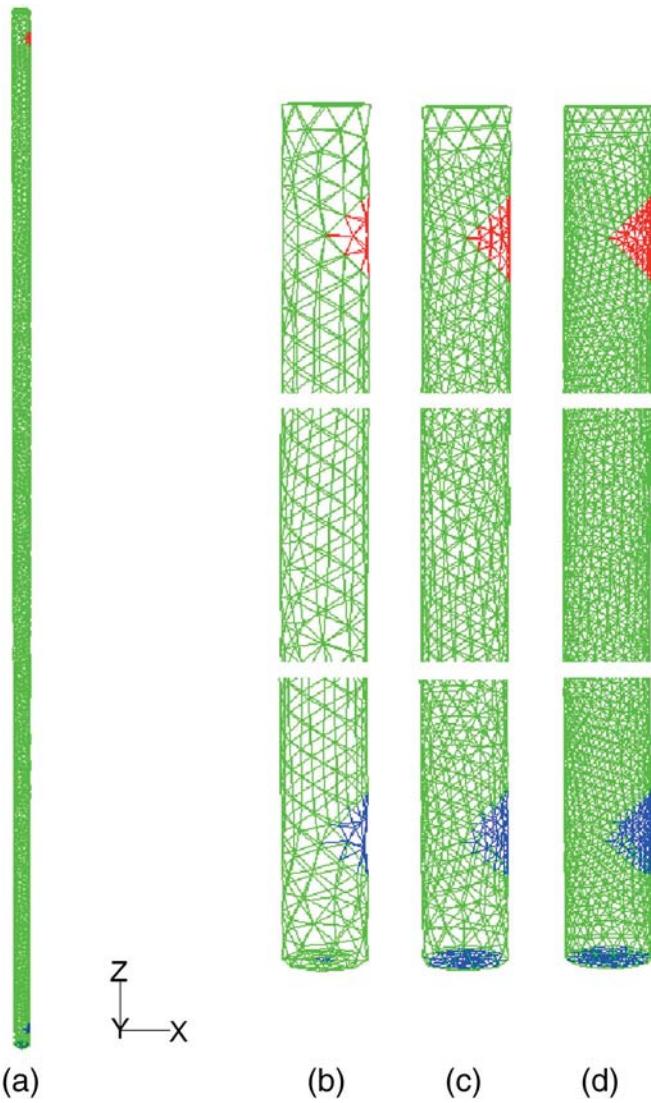


Fig. 2. (a) Computational domain, and (b-d) the expanded geometry of the CFB riser model used in this study with (b) 26,184, (c) 51,789 and (d) 98,005 computational cells.

Table 1
System and model parameters used in this study.

Number	Description	Value
1	Diameter of CFB riser (m)	0.20
2	Height of CFB riser (m)	14.20
3	Gas density (kg/m^3)	1.20
4	Gas viscosity (kg/m s)	2×10^{-5}
5	Solid particle density (kg/m^3)	1,712
6	Solid particle diameter (μm)	76
7	Inlet gas velocity (m/s)	5.20
8	Inlet gas temperature (K)	298.15
9	Inlet solid particle velocity (m/s)	0.48
10	Inlet solid particle temperature (K)	298.15
11	Inlet solid particle volume fraction (–)	0.60
12	Outlet system pressure (Pa)	101,325
13	Restitution coefficient between solid particles (–)	0.999
14	Restitution coefficient between solid particle and wall (–)	0.95
15	Specularity coefficient (–)	0.50

2.2. Mathematical model description

The Eulerian–Eulerian multiphase flow scheme with the KTGF was selected for use in this study for the numerical simulation. For the Eulerian–Eulerian scheme, both the gas and solid particle phases were treated as an interpenetrating continua. Therefore, each phase is calculated with its own set of equations. The mathematical models or equations were solved using the commercial ANSYS FLUENT program utilizing the finite volume method. Because the system was operated at an isothermal condition, the energy conservation equations were ignored. The first-order upwind numerical scheme was used for all terms except for the convection terms, where second-order upwind numerical schemes were employed. The conventional SIMPLE algorithm was used to define the relationship between the velocity and pressure corrections and to recast the continuity equation in terms of a pressure correction calculation. This numerical method has been successfully used before [19,56,57]. Details of each mathematical model or equation are expressed in Sections 2.2.1, 2.2.2 and 2.3.

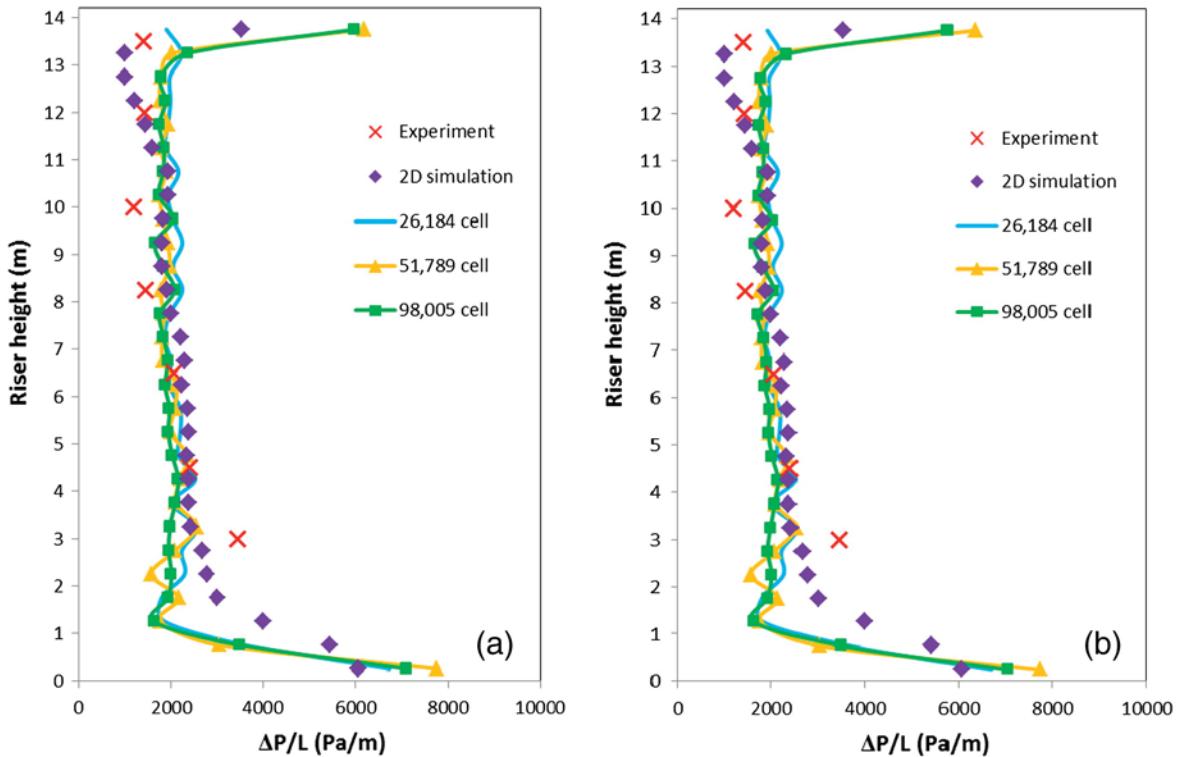
2.2.1. Conservation or governing equations

2.2.1.1. Mass conservation equations. The mass conservation equations for the gas and solid particle phases used are shown in Eqs. (1) and (2):

$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g) + \nabla \cdot (\varepsilon_g \rho_g v_g) = 0 \quad (1)$$

$$\frac{\partial}{\partial t} (\varepsilon_s \rho_s) + \nabla \cdot (\varepsilon_s \rho_s v_s) = 0 \quad (2)$$

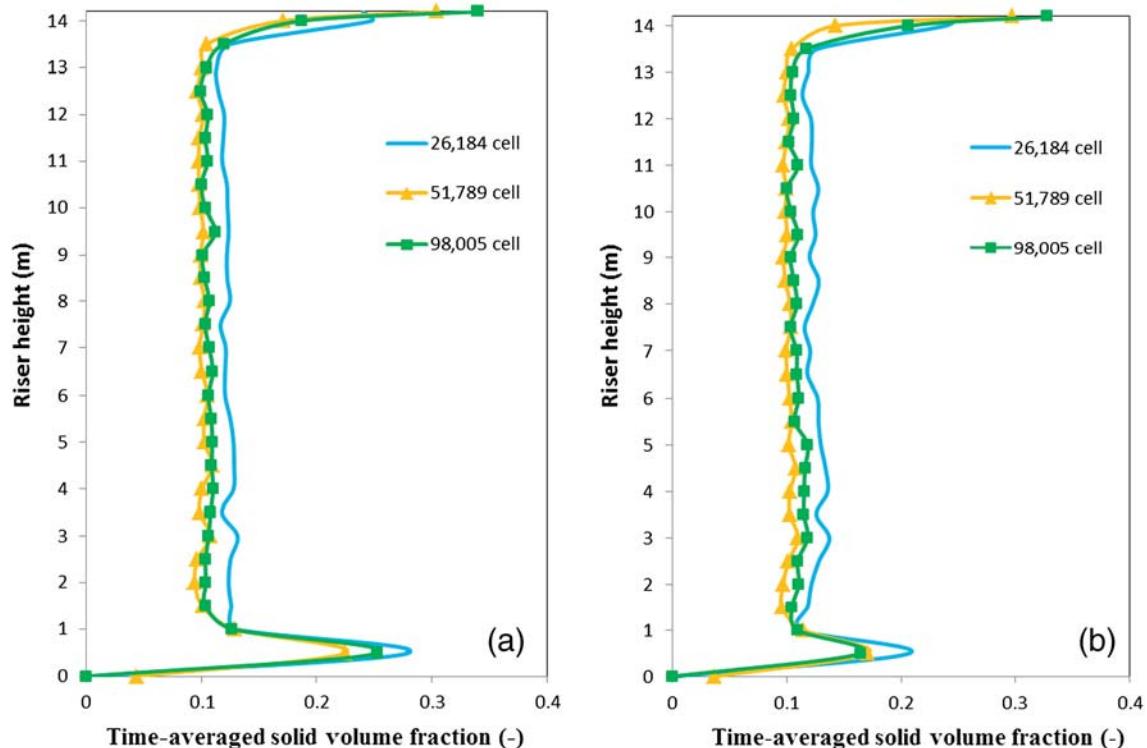
where ε_g and ε_s represent the volume fraction of the gas and solid particle phases, respectively, ρ_g and ρ_s represent the density of the gas and solid particle phases, respectively, v_g and v_s represent the velocity of the gas and solid particle phases, respectively, and t represents the time.

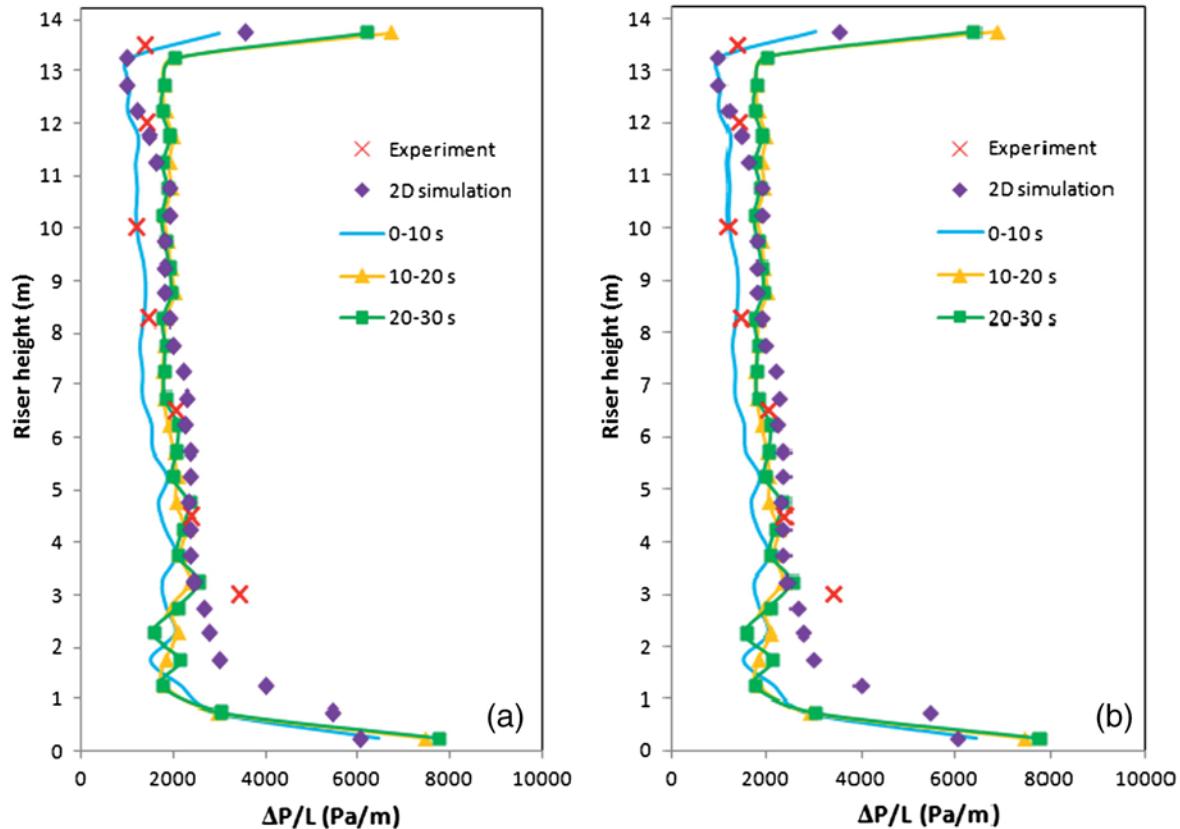

Each computational cell is shared by the inter-penetrating phases, so that the summation of all volume fractions is unity (Eq. (3)),

$$\varepsilon_g + \varepsilon_s = 1 \quad (3)$$

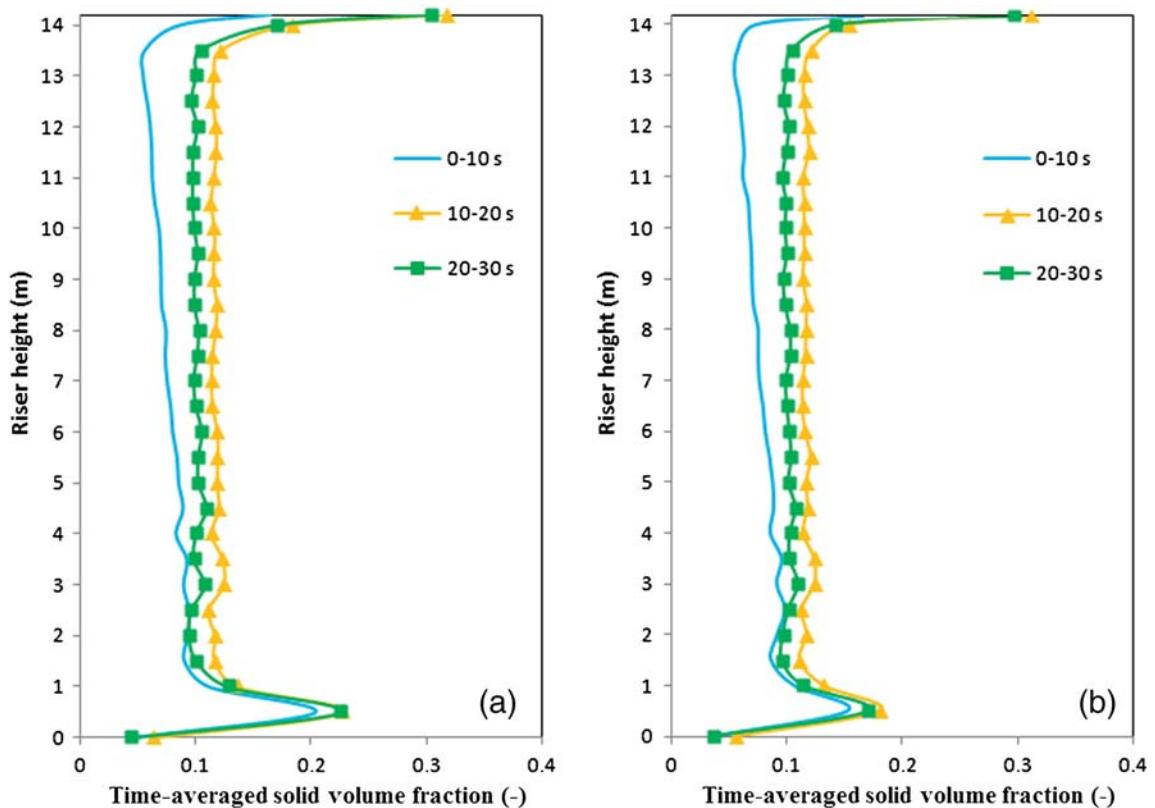
2.2.1.2. Momentum conservation equations. The momentum conservation equations for the gas and solid particle phases used are shown in Eqs. (4) and (5):

$$\begin{aligned} \frac{\partial}{\partial t} (\varepsilon_g \rho_g v_g) + \nabla \cdot (\varepsilon_g \rho_g v_g v_g) = & -\varepsilon_g \nabla P + \nabla \cdot \tau_g \\ & + \varepsilon_g \rho_g g - \beta_{gs} (v_g - v_s) \end{aligned} \quad (4)$$


$$\begin{aligned} \frac{\partial}{\partial t} (\varepsilon_s \rho_s v_s) + \nabla \cdot (\varepsilon_s \rho_s v_s v_s) = & -\varepsilon_s \nabla P + \nabla \cdot \tau_s - \nabla P_s + \varepsilon_s \rho_s g \\ & + \beta_{gs} (v_g - v_s) \end{aligned} \quad (5)$$


Fig. 3. The effect of the computational cell number on the axial distributions of the computed time-averaged system pressure drop in the (a) x-direction and (b) the y-direction, in comparison with the corresponding previously reported experimental and two-dimensional simulation results [32,51].

where P and P_s represent the system pressure of the gas and solid particle phases, respectively, τ_g and τ_s represent the stress tensor of the gas and solid particle phases, respectively, g


represents the gravity or gravitational acceleration force and β_{gs} represents the interphase exchange coefficient or drag force model.

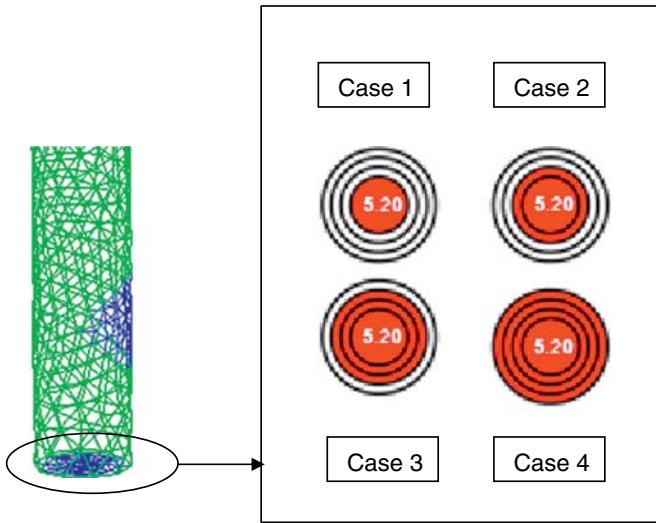

Fig. 4. The effect of the computational cell number on the axial distributions of the computed time-averaged solid volume fraction in the (a) x-direction and (b) y-direction.

Fig. 5. The effect of the time-averaged range on the axial distributions of the computed time-averaged system pressure drop in the (a) x-direction and (b) y-direction, in comparison with the corresponding previously reported experimental and two-dimensional simulation results [32,51].

Fig. 6. The effect of the time-averaged range on the axial distributions of the computed time-averaged solid volume fraction in the (a) x-direction and (b) y-direction.

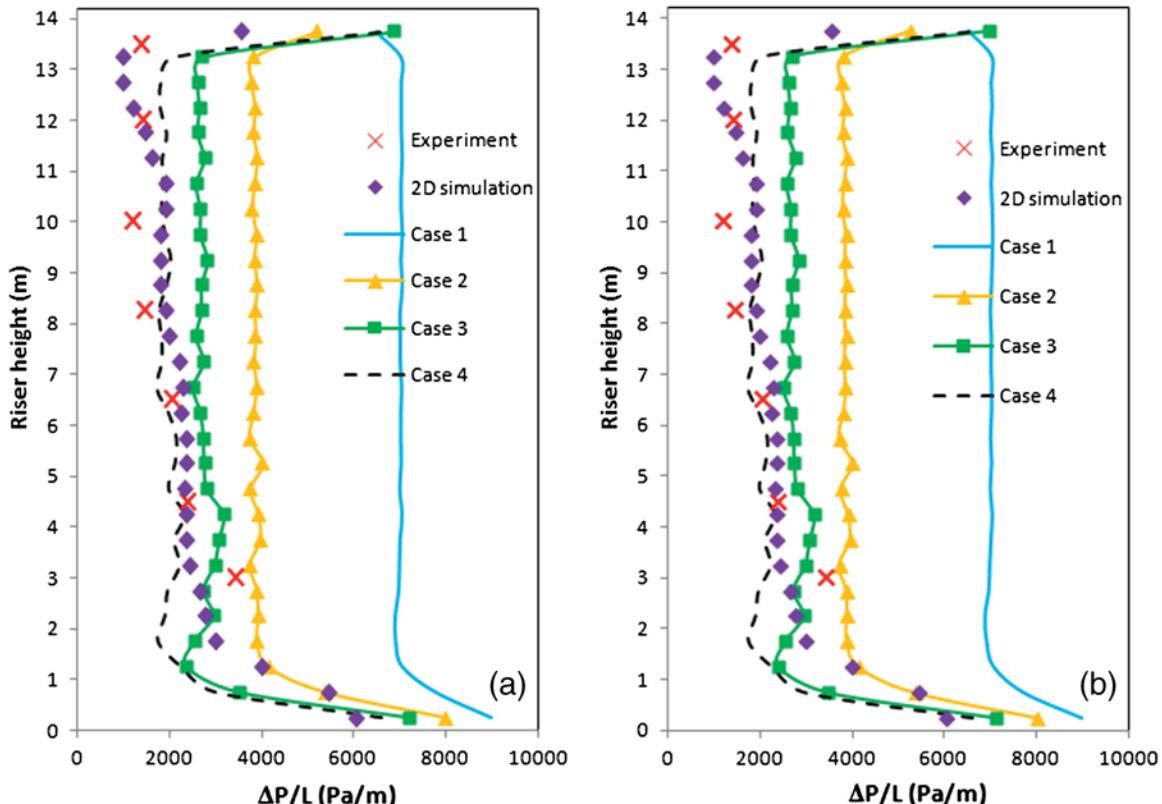


Fig. 7. Computational domain of the CFB riser used with four different gas inlet channel sizes of 25% (case 1), 50% (case 2), 75% (case 3) and 100% (case 4) of the maximum diameter of the system channel (or 0.050, 0.100, 0.150 and 0.200 m diameter, respectively).

2.2.1.3. Solid particle fluctuating kinetic energy conservation equation. The fluctuating kinetic energy conservation equation for the solid particle phase, as derived from the KTGF [19,36], is expressed in Eq. (6);

$$\frac{3}{2} \left[\frac{\partial}{\partial t} (\varepsilon_s \rho_s \theta) + \nabla \cdot (\varepsilon_s \rho_s \theta) v_s \right] = (-\nabla P_s \bar{I} + \tau_s) : \nabla v_s + \nabla \cdot (\kappa_s \nabla \theta) - \gamma_s \quad (6)$$

where the term θ is the solid particle fluctuating kinetic energy or granular temperature, κ_s and γ_s are the conductivity and the collisional dissipation of the solid particle fluctuating kinetic energy, respectively, and \bar{I} is the unit tensor.

Fig. 8. The axial distributions of the computed time-averaged system pressure drop for varying gas inlet channel opening levels (25% (case 1), 50% (case 2), 75% (case 3) and 100% (case 4) maximum diameter) in the (a) x-direction and (b) y-direction, in comparison with the corresponding previously reported experimental and two-dimensional simulation results [32,51].

2.2.2. Constitutive equations

Constitutive equations are needed to close the governing equations for solving the problem, and those used in this study are summarized as follows:

The stress tensor can be expressed as the sum of deviatoric and spherical stresses that tend to change the volume of the stressed body, and are described by Eqs. (7) and (8):

$$\tau_g = \varepsilon_g \mu_g \left[\nabla v_g + (\nabla v_g)^T \right] - \frac{2}{3} \varepsilon_g \mu_g (\nabla \cdot v_g) I \quad (7)$$

$$\tau_s = \varepsilon_s \mu_s \left[\nabla v_s + (\nabla v_s)^T \right] - \varepsilon_s \left(\xi_s - \frac{2}{3} \mu_s \right) (\nabla \cdot v_s) I \quad (8)$$

where μ_g and μ_s are the viscosity and shear viscosity of the gas and solid particle phases, respectively, and ξ_s is the bulk viscosity of the solid particle phase [19]. This is defined as the resistance of the solid particle to compression and expansion [36], and can be calculated using Eq. (9);

$$\xi_s = \frac{4}{3} \varepsilon_s \rho_s d_p g_0 (1+e) \sqrt{\frac{\theta}{\pi}} \quad (9)$$

where d_p and e represent the solid particle diameter and the restitution coefficient between solid particles, respectively, and g_0 is the radial distribution function and indicates the probability of collisions between solid particles when the solid particles become dense. It can be calculated from Eq. (10);

$$g_0 = \left[1 - \left(\frac{\varepsilon_s}{\varepsilon_{s,\max}} \right)^{1/3} \right]^{-1} \quad (10)$$

where the term $\varepsilon_{s,\max}$ is the volume fraction of the solid particle phase at the maximum packing condition.

The shear viscosity of the solid particle phase (μ_s) in Eq. (8) is composed of a kinetic and a collisional term that arise from the solid particle momentum exchange due to translation and collision, respectively [19,36]. It is formulated as shown in Eq. (11),

$$\mu_s = \frac{4}{5} \varepsilon_s \rho_s d_p g_0 (1+e) \sqrt{\frac{\theta}{\pi}} + \frac{10 \rho_s d_p \sqrt{\pi \theta}}{96(1+e) g_0 \varepsilon_s} \left[1 + \frac{4}{5} g_0 \varepsilon_s (1+e) \right]^2 \quad (11)$$

The solid particle pressure can be calculated from Eq. (12),

$$P_s = \varepsilon_s \rho_s \theta [1 + 2g_0 \varepsilon_s (1+e)] \quad (12)$$

The conductivity of the solid particle fluctuating kinetic energy is given by Eq. (13);

$$\kappa_s = \frac{150 \rho_s d_p \sqrt{\theta \pi}}{384(1+e) g_0} \left[1 + \frac{6}{5} \varepsilon_s g_0 (1+e) \right]^2 + 2 \rho_s \varepsilon_s^2 d_p (1+e) g_0 \sqrt{\frac{\theta}{\pi}} \quad (13)$$

The collisional dissipation of solid particle fluctuating kinetic energy is given by Eq. (14);

$$\eta_s = 3(1-e^2) \varepsilon_s^2 \rho_s g_0 \theta \left(\frac{4}{d_p} \sqrt{\frac{\theta}{\pi}} \right) \quad (14)$$

The interphase exchange coefficient or drag force model (β_{gs}) is defined as the resistance force of a solid particle, and has already been shown to have strong effect on the system hydrodynamics [58]. There are several interphase exchange coefficient models available, such as the Gidaspow [59], Syamlal & O'Brien [60], Wen & Yu [61] and energy minimization multi-scale (EMMS) [62] models that have been commonly used in theoretical studies on CFB risers. Among all of these coefficient models, the EMMS model, which was developed based on the particle cluster occurrence concept, has successfully been used to simulate the system with Geldart group A particles [32]. The other three different drag force models are more preferred for moderate and dilute systems. The EMMS model is presented following Eq. (15) for $\varepsilon_g \leq 0.74$, and in Eq. (16) for $\varepsilon_g > 0.74$:

$$\beta_{gs} = 150 \frac{(1-\varepsilon_g)^2 \mu_g}{\varepsilon_g d_p^2} + 1.75 \frac{(1-\varepsilon_g) \rho_g |v_g - v_s|}{d_p} \quad (15)$$

$$\beta_{gs} = \frac{3}{4} \frac{(1-\varepsilon_g) \varepsilon_g}{d_p} \rho_g |v_g - v_s| C_{D0} \omega(\varepsilon_g) \quad (16)$$

$$\text{with } 0.74 < \varepsilon_g \leq 0.82, \quad \omega(\varepsilon_g) = -0.5769 + \frac{0.0214}{4(\varepsilon_g - 0.7463)^2 + 0.0044}$$

$$\text{with } 0.82 < \varepsilon_g \leq 0.97, \quad \omega(\varepsilon_g) = -0.0101 + \frac{0.0038}{4(\varepsilon_g - 0.7789)^2 + 0.0040}$$

$$\text{with } \varepsilon_g > 0.97, \quad \omega(\varepsilon_g) = -31.8295 + 32.8295 \varepsilon_g$$

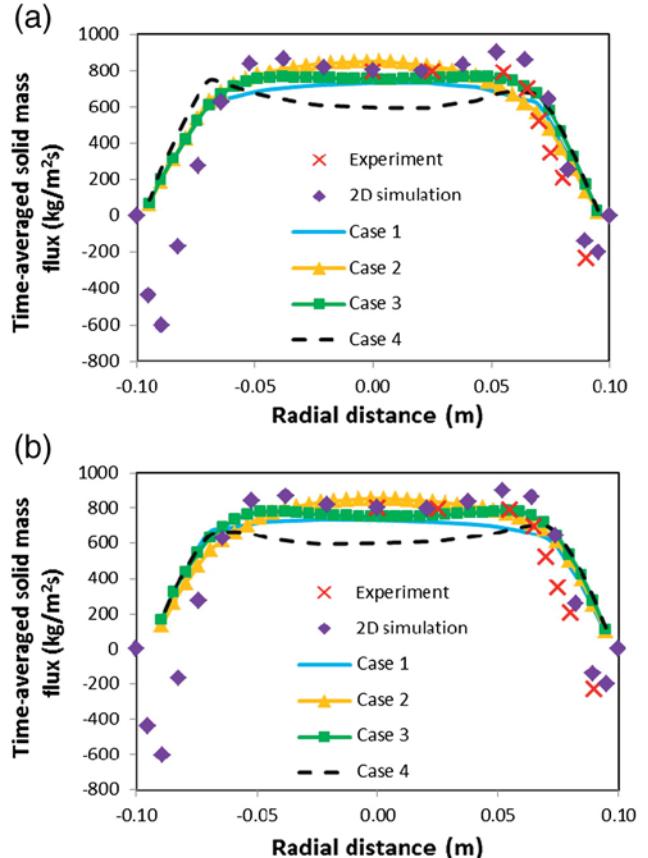
2.3. Initial and boundary condition descriptions

The necessary system initial and boundary conditions are presented. For the initial condition, the velocity and volume fraction for both the gas and solid particle phases were prescribed. Only the gas phase was filled inside the system at this condition. For the inlet boundary condition, the gas velocity was fixed constant at 5.20 m/s. A solid particle velocity of 0.476 m/s was used with a volume fraction of 0.60 and a solid particle mass flux of 489 kg/m² s. For the outlet boundary condition, atmospheric pressure was specified. For the wall boundary condition, the Johnson and Jackson [63] boundary condition, modified by Sinclair and Jackson [64], was used for the tangential velocity of the solid

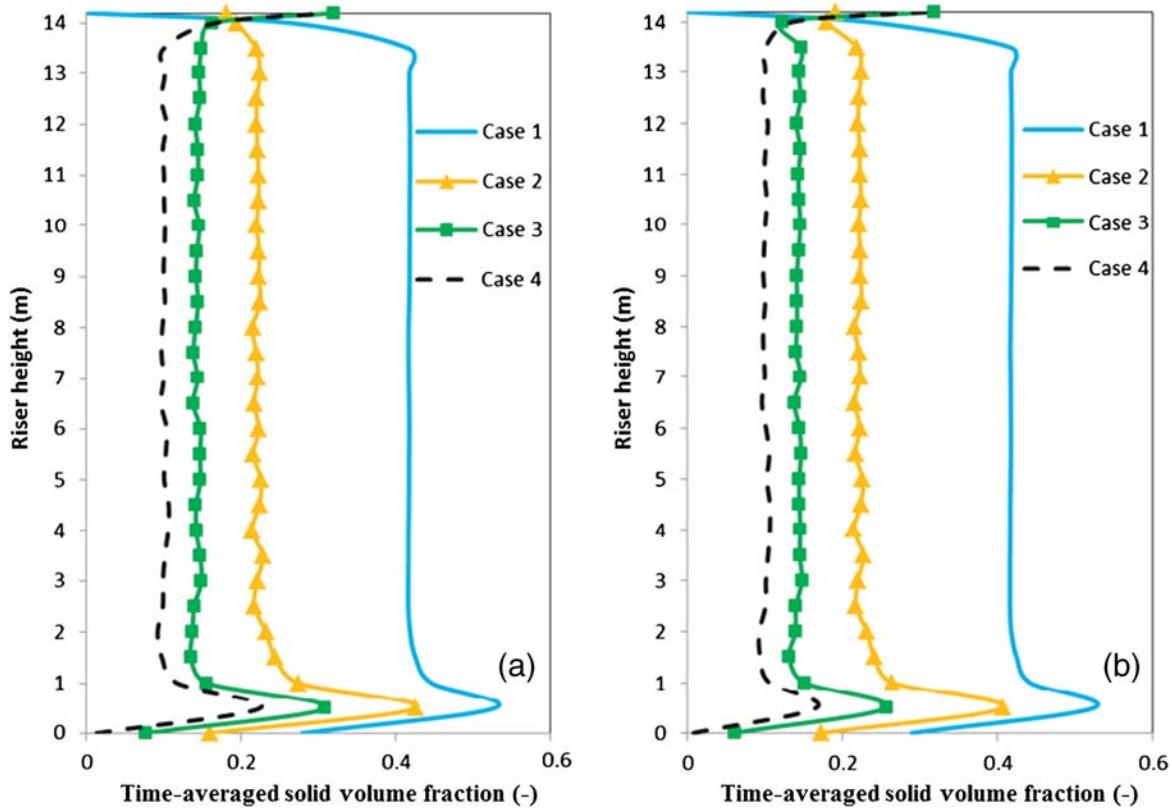
particle phase ($v_{t,W}$) and the granular temperature (θ_W). These can be written as shown in Eqs. (17) and (18):

$$v_{t,W} = - \frac{6 \mu_s \varepsilon_{s,\max}}{\pi \phi \rho_s \varepsilon_s g_0 \sqrt{3\theta}} \frac{\partial v_{s,W}}{\partial n} \quad (17)$$

$$\theta_W = - \frac{\kappa_s \theta \partial \theta_W}{\gamma_W \partial n} + \frac{\sqrt{3} \pi \phi \rho_s \varepsilon_s v_{s,slip}^2 g_0 \theta^{3/2}}{6 \varepsilon_{s,\max} \gamma_W} \quad (18)$$


$$\text{with } \gamma_W = \frac{\sqrt{3} \pi (1 - e_w^2) \varepsilon_s \rho_s g_0 \theta^{3/2}}{4 \varepsilon_{s,\max}}$$

The term $v_{s,W}$ represents the velocity of the solid particle phase at the wall, ϕ is the specularity coefficient, n is the unit vector, $v_{s,slip}$ is the slip velocity of the solid particle phase at the wall and e_w is the restitution coefficient between the solid particle and wall.


3. Results and discussion

3.1. Grid independency test

In every CFD simulation, to have any confidence in the obtained results, the effect of mesh sizes or computational cells has to be examined in a grid independency test. In this study, three different computational cell numbers (26,184, 51,789 and 98,005 cells) were used, as shown in Fig. 2. The effect of the computational cell number on the axial distributions of the computed time-averaged system pressure drop were essentially identical in the x- and y-directions and the

Fig. 9. The radial distributions of the computed time-averaged solid mass flux at a 3.90 m height in the CFB riser with varying gas inlet channel opening diameters (25% (case 1), 50% (case 2), 75% (case 3) and 100% (case 4) maximum diameter) in the (a) x-direction and (b) y-direction, in comparison with the corresponding previously reported experimental and two-dimensional simulation results [32,51].

Fig. 10. The axial distributions of computed time-averaged solid volume fraction with varying gas inlet channel diameters (25% (case 1), 50% (case 2), 75% (case 3) and 100% (case 4) maximum diameter) in the (a) x-direction and (b) y-direction.

predicted similar system pressure drop profiles were consistent with the corresponding experimental data and previous two-dimensional simulation results [32,51] (Fig. 3). However, with 26,184 computational cells the three-dimensional simulation results showed a somewhat higher pressure drop in both the x- and y-directions than with the other two simulations with larger numbers of computational cells. This was further supported by the axial distributions of the computed time-averaged solid volume fraction (Fig. 4), where the three-dimensional simulation results obtained with 51,789 and 98,005 computational cells were much lower compared to those with 26,184 computational cells in both the x- and y-directions, respectively. This indicates that the mesh size of 51,789 cells is

adequate for providing reasonable grid independency results and so was selected for use in the following CFD simulations.

3.2. Simulation time-averaged range test

For the quasi-steady state of the CFB riser, the flow hydrodynamics is required to be analyzed in terms of the time-averaged result. Thus, an adequate, but not excessive, simulation time is needed to be identified. The effect of the time-averaged range on the axial distributions of the computed time-averaged system pressure drop in the x- and y-directions are presented in Fig. 5, along with the corresponding experimental data and previous two-dimensional simulation result [32,51] for

Table 2

Comparison of the computed laminar, turbulent and total granular temperatures for four different system inlet boundary conditions at each of three different CFB riser heights (3.5 m, 7.0 m and 10.5 m) in the x-direction and y-direction.

Number	System inlet boundary condition case	CFB riser height (m)	Granular temperature (m^2/s^2)					
			x-direction			y-direction		
			Laminar	Turbulent	Total	Laminar	Turbulent	Total
1	Case 1	3.5	7.8130E-09	6.5226E-03	6.5226E-03	6.0785E-09	8.4878E-03	8.4879E-03
		7.0	2.7687E-09	1.6165E-03	1.6165E-03	2.8895E-09	2.2226E-03	2.2226E-03
		10.5	3.2856E-09	1.8670E-03	1.8670E-03	2.8845E-09	1.9167E-03	1.9167E-03
		Average	4.6224E-09	5.5270E-03	5.6128E-03	3.9508E-09	6.5941E-03	6.6651E-03
2	Case 2	3.5	4.64448E-07	4.4848E-02	4.4849E-02	5.1480E-07	5.6560E-02	5.6560E-02
		7.0	8.9758E-07	3.8743E-02	3.8743E-02	8.0325E-07	4.0554E-02	4.0555E-02
		10.5	8.4767E-07	4.1545E-02	4.1546E-02	8.5732E-07	4.2315E-02	4.2316E-02
		Average	7.3658E-07	4.1712E-02	4.1713E-02	7.2512E-07	4.6476E-02	4.6477E-02
3	Case 3	3.5	6.1808E-06	2.3507E-01	2.3508E-01	5.6672E-06	2.5178E-01	2.5178E-01
		7.0	5.6077E-06	1.4485E-01	1.4486E-01	5.0896E-06	1.4165E-01	1.4165E-01
		10.5	4.9447E-06	1.7399E-01	1.7399E-01	4.5502E-06	1.6160E-01	1.6161E-01
		Average	5.5777E-06	1.6901E-01	1.6913E-01	5.1023E-06	1.8270E-01	1.8281E-01
4	Case 4	3.5	3.5115E-05	3.3140E-01	3.3144E-01	6.4112E-05	3.2733E-01	3.2739E-01
		7.0	1.5518E-04	2.6642E-01	2.6658E-01	9.0431E-05	2.5608E-01	2.5617E-01
		10.5	2.0271E-04	4.5214E-01	4.5234E-01	1.8489E-04	4.3029E-01	4.3048E-01
		Average	1.3100E-04	3.0879E-01	3.0911E-01	1.1315E-04	3.2351E-01	3.2380E-01

comparison. The results obtained over a 0–10 s time-averaged range were different compared to those from the longer time-averaged ranges in both the x- and y-directions, whilst there was only a slight difference between the results over a 10–20 s and 20–30 s time-averaged ranges. The results were consistent with those seen for the time-averaged range of axial distributions for the computed time-averaged solid volume fraction in both directions (Fig. 6). This implies that the simulation time-averaged range had reached the quasi-steady state from a simulation time of 10 s. Consequently, to ensure the correctness of the results, the 20–30 s time-averaged range was selected for analyses and explaining the system hydrodynamics in this CFB riser system.

3.3. Effect of system inlet boundary condition

Three-dimensional CFD simulations in a high solid particle flux CFB riser have previously been conducted to investigate the system inlet boundary condition effect on the flow hydrodynamics [37,39]. From the literature studies, the effect of fully developed gas velocity profiles did not affect the predicted behavior [50,65,66]. Indeed, some research had found that different inlet velocity profiles gave slightly different results. For example, simulations using trapezoidal inlet profiles predicted little denser annulus flows than those using the uniform profiles [29,50]. Therefore, the shape of the fully developed gas velocity profile was not chosen to be investigated. Then, four various possible system inlet boundary conditions were considered, as displayed in Fig. 7, with varying the opening percentage of gas inlet channels at 25% (case 1), 50% (case 2), 75% (case 3) or 100% (case 4) of the diameter compared to the system channel (0.050, 0.100, 0.150 or 0.200 m diameter, respectively).

In this section, the EMMS model using 51,789 computational cells over a 20–30 s time-averaged range was used to predict the system hydrodynamics in terms of the time-averaged system pressure drop, solid mass flux, solid volume fraction and granular temperature (Figs. 8 to 10 and Table 2). No significant difference was observed between the x- and y-directions in each system, and the three-dimensional CFD simulation results were both qualitatively and quantitatively consistent with the two-dimensional ones (Figs. 8 to 9). However, the two-dimensional CFD simulation results were slightly more consistent with the experimental data than the three-dimensional ones. The pressure drop profiles for three-dimensional CFD simulation were more uniform in axial system direction. The simplified two inlet-outlet configuration using in two-dimensional CFD simulation to compensate the third system dimension will be the reason for this observed phenomena. In addition, it can be explained by the greater level of available space and sufficient force inside the computational domain of three-dimensional CFD simulation. Comparing to the two-dimensional CFD simulation, the solid particles then have more chance to reside in the third system dimension, making the solid mass flux at the center and wall regions to be slightly lower and higher, respectively. The obtained results were consistent with the previously reported results [67,68]. That the experimental system pressure drop results were slightly higher than the simulation ones at the bottom section of the CFB riser can be explained by potential variations in the position of the experimental measurement, the accuracy of the measurement technique, the simplified computational domain (between CFB riser in simulation and CFB loop in experiment) and the understanding of the complex system force model, since these were not clearly stated in those previous reports [32,51].

3.3.1. System pressure drop

The axial distributions of computed time-averaged system pressure drop for case 1 to case 4 system inlet boundary conditions with the corresponding experimental data from and previous two-dimensional simulation result [32,51] in x- and y-directions are shown in Fig. 8(a) and (b), respectively. The system pressure drop inside the CFB riser decreased as the gas inlet channel size. This is because as the gas inlet channel opening size increased the quantity of gas that passes through the system increased and the CFB riser then has a higher energy content

to carry solid particles out of the system. Consequently, there are less solid particles inside the system, which results in the lower system pressure drop.

3.3.2. Solid mass flux

Fig. 9(a) and (b) illustrates the radial distributions of computed time-averaged solid mass flux at 3.90 m circulating fluidized bed riser height for case 1 to case 4 system inlet boundary conditions with the corresponding experimental data and previous two-dimensional simulation result [32,51] in (a) x- and (b) y-directions. The CFB riser system with largest gas inlet channel opening (100% radius) had the lowest solid mass flux at the core region. This is because it has the highest energy content to carry the solid particles, as already discussed above, and so the solid mass flux at the core region increased as the gas inlet channel opening size decreased.

3.3.3. Solid volume fraction

Fig. 10(a) and (b) displays the axial distributions of computed time-averaged solid volume fraction for case 1 to case 4 system inlet

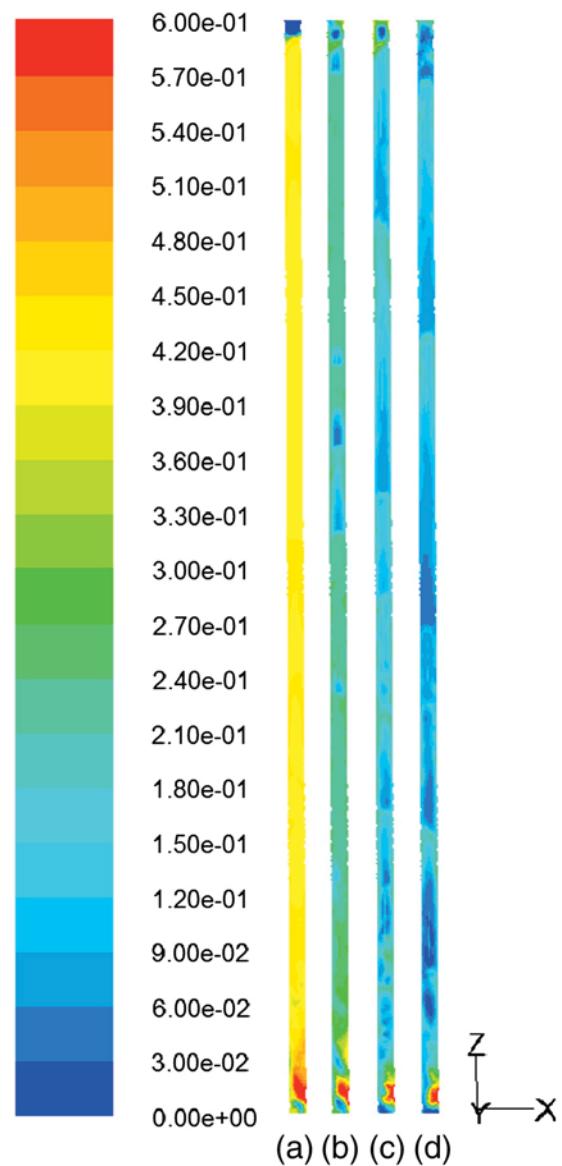


Fig. 11. Contour plots of the instantaneous solid volume fraction with varying gas inlet channel diameters (% maximum) of (a) 25%, (b) 50%, (c) 75% and (d) 100%.

boundary conditions in x- and y-directions, respectively. The solid volume fraction decreased as the gas inlet channel opening size increased. These results support the proposed explanation about the increasing amount of gas flow as the gas inlet channel size is increased.

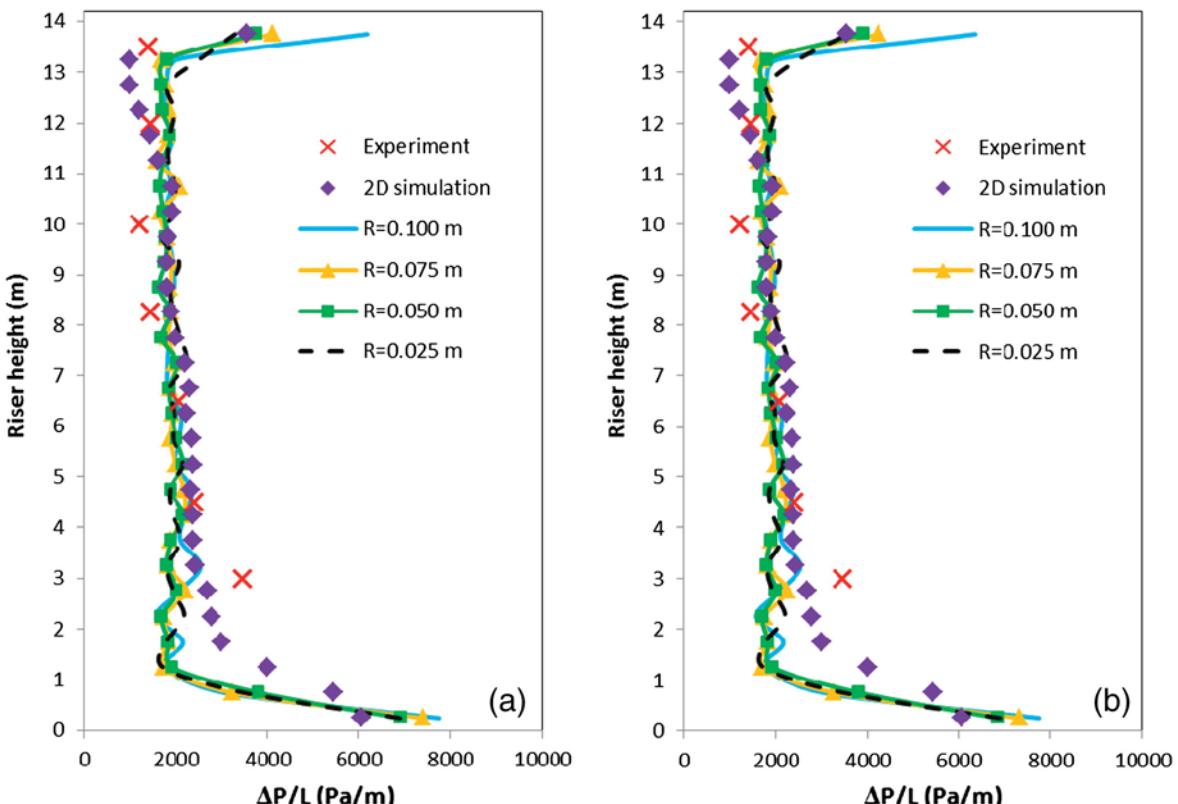
The contour plots of the instantaneous solid volume fraction for varying the gas inlet opening size and the fully developed gas velocity profile are shown in Fig. 11, where the red and blue contour colors represent a high and low solid volume fraction, respectively. The system with the smallest gas inlet channel opening size had the highest solid volume fraction.

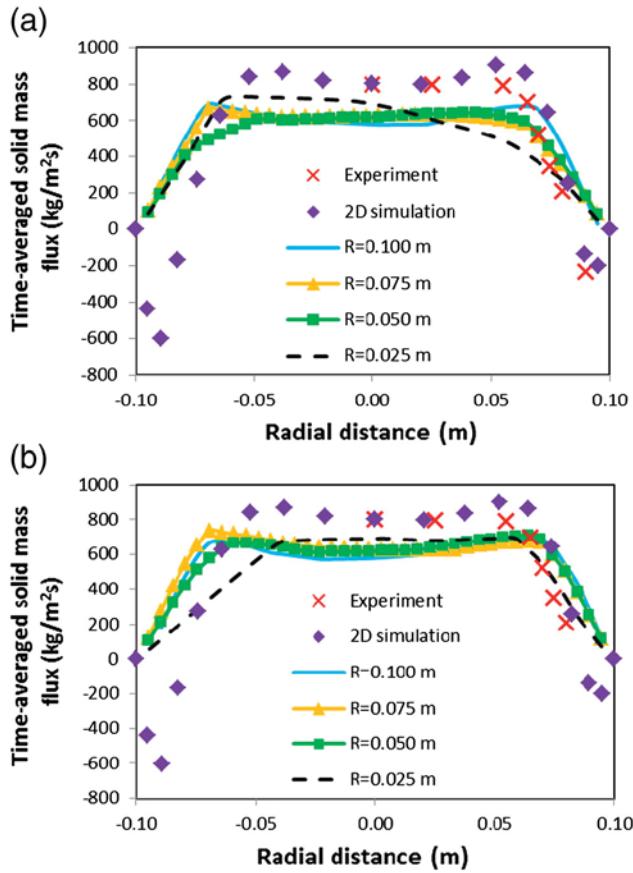
3.3.4. Granular temperature

Table 2 summarizes the comparison of the computed laminar, turbulent and total granular temperatures for the seven various system inlet boundary condition cases assayed (four different gas inlet opening sizes) at three different CFB riser heights (3.5 m, 7.0 m and 10.5 m) in the x-direction and y-direction. The granular temperature is defined as the energy of the solid particles or the solid fluctuating kinetic energy, which can explain the hydrodynamics in the system. There are two kinds of granular temperature based on the oscillation of solid particles; the (i) laminar and the (ii) turbulent granular temperature [32,67,69]. The laminar granular temperature is evaluated by considering the oscillation of an individual solid particle and can be calculated by the employed CFD program. The turbulent granular temperature (θ_t) is defined as the oscillation of particle clusters and was determined by computing the average of the normal Reynolds stresses ($\overline{v'v'}$) in a three-dimensional system domain, as expressed in Eq. (19);

$$\theta_t(t) = \frac{1}{3} \overline{v_x'v_x'} + \frac{1}{3} \overline{v_y'v_y'} + \frac{1}{3} \overline{v_z'v_z'} \quad (19)$$

The sum of the laminar and turbulent granular temperatures is the total granular temperature, which represents the overall system oscillations.




Fig. 12. The axial distribution of the computed time-averaged system pressure drop for different system outlet radii (R) in the (a) x-direction and (b) y-direction, in comparison with the corresponding previously reported experimental and two-dimensional simulation results [32,51].

The turbulent granular temperatures were higher than the computed laminar granular temperatures in all cases (Table 2), which is because there are a number of large solid particle clusters in this study. Therefore, the turbulent granular temperature dominates the system oscillations. With respect to the gas inlet opening size, the laminar, turbulent and total granular temperatures increased with increasing gas inlet channel sizes at all riser heights. This is attributed to the fact that oscillations in the dilute system condition are higher than those in the dense system condition. In all cases, the total granular temperatures decreased in the middle (7.0 m) and increased at the top (10.5 m) of the CFB riser, due to the effect of the system inlet and outlet at the bottom and top of the CFB riser, respectively.

Comparing the system hydrodynamics from all the different system inlet boundary conditions, the boundary condition with the opening percentage of gas inlet channels at 75% (case 3) or 100% (case 4) of the diameter compared to the system channel more closely matched that from the published experimental data [32,51].

3.4. Effect of system outlet boundary condition

As stated above, the system outlet boundary condition strongly affected the system hydrodynamics [33,57]. However, as with the system inlet boundary condition, there is currently no available experimental observations describing the outlet boundary conditions. Therefore, four different system outlet radii (0.025, 0.050, 0.075 and 0.100 m) were investigated. No significant changes in system hydrodynamics, in terms of the time-averaged system pressure drop (Fig. 12), solid mass flux (Fig. 13), solid volume fraction (Fig. 14) and granular temperature (Table 3), were observed between the different outlet radii. In addition, both the two- and three-dimensional CFD simulation results were consistent with each other (Figs. 12 and 13). From both the system inlet and outlet boundary conditions, the system dimensional results confirm that the two-dimensional

Fig. 13. The radial distributions of the computed time-averaged solid mass flux at a 3.90 m height in the CFB riser for different system outlet boundary radii (R) in the (a) x-direction and (b) y-direction, in comparison with the corresponding previously reported experimental and two-dimensional simulation results [32,51].

CFD simulation results are satisfactory enough for simulating the symmetrical system in previously used [34,35].

3.4.1. System pressure drop

Fig. 12 displays the axial distribution of computed time-averaged system pressure drop for different system outlet boundary conditions with the corresponding experimental data and previous two-dimensional simulation result [32,51] in (a) x- and (b) y-directions. No marked difference in the system pressure drop was observed when changing the system outlet boundary conditions or radii. However, the trend was that the system pressure drop at the top of riser system increased as the system outlet radius was increased. This can be explained as that the solid particles move out of the reactor system more easily with a large system outlet radius than the small one.

3.4.2. Solid mass flux

Fig. 13(a) and (b) shows the radial distributions of computed time-averaged solid mass flux at 3.90 m circulating fluidized bed riser height for different system outlet boundary conditions (radii) with the corresponding experimental data and previous two-dimensional simulation result [32,51] in x- and y-directions, respectively. The solid mass flux at the core of the CFB riser decreased with an increasing system outlet radius, which is because fewer solid particles fell down or remained inside the system when using a larger system outlet radius. However, at the wall of the CFB riser, the solid mass flux decreased with a decreasing system outlet radius. Given that the solid mass flux is calculated from the solid particle velocity, solid volume fraction and solid particle density, then the system with a smaller system outlet diameter has a larger solid volume fraction. However, the solid particle

velocity is low and dominates the calculated value. This results in a low solid mass flux at the wall of the CFB riser when using a smaller outlet radius. In addition, a slight asymmetry was observed with the smallest system outlet radius (0.025 m), which can be explained by the limited available space for the solid particles to move out of the system. Thus, the solid particles fell back at one side of the wall of the CFB riser resulting in a slightly asymmetric solid mass flux profile. This situation would not occur in a low solid particle flux system.

3.4.3. Solid volume fraction

The axial distributions of computed time-averaged solid volume fraction for different system outlet boundary conditions (radii) in x- and y-directions are illustrated in Fig. 14(a) and (b), respectively. The solid volume fraction increased as the system outlet radius decreased for both system directions. Similar to the results for the system hydrodynamics (Sections 3.4.1 and 3.4.2), this can be explained by the high quantity of solid particles inside the system when using a smaller system outlet radius, consistent with that previously reported [57].

The contour plots of the instantaneous solid volume fraction at the four different system outlet radii revealed clear differences at the top of the CFB riser (Fig. 15), supporting the above hydrodynamic results (Sections 3.4.1 and 3.4.2) that a higher solid volume fraction was observed with a larger system outlet radius. In addition, it was clearly observed that the solid particles fell back into the system at one side of the riser where the system outlet was located (Fig. 15(d)).

3.4.4. Granular temperature

Similar to the system inlet boundary conditions (Section 3.3), the turbulent granular temperatures were higher than the computed laminar granular temperatures (Table 3), which is because of the occurrence of particle clusters inside the system. The total granular temperature increased as the system outlet radius increased at all three riser heights (Table 3), which may reflect the reduced flow area with smaller system outlet radii, which then limits the oscillation of solid particles and decreases the total granular temperature. That the total granular temperatures were the highest at the top of the CFB riser can be explained by the system outlet effect at the top of the CFB riser.

Overall a 0.050 m outlet radius gave the most consistent results with the published experimental data [32,51].

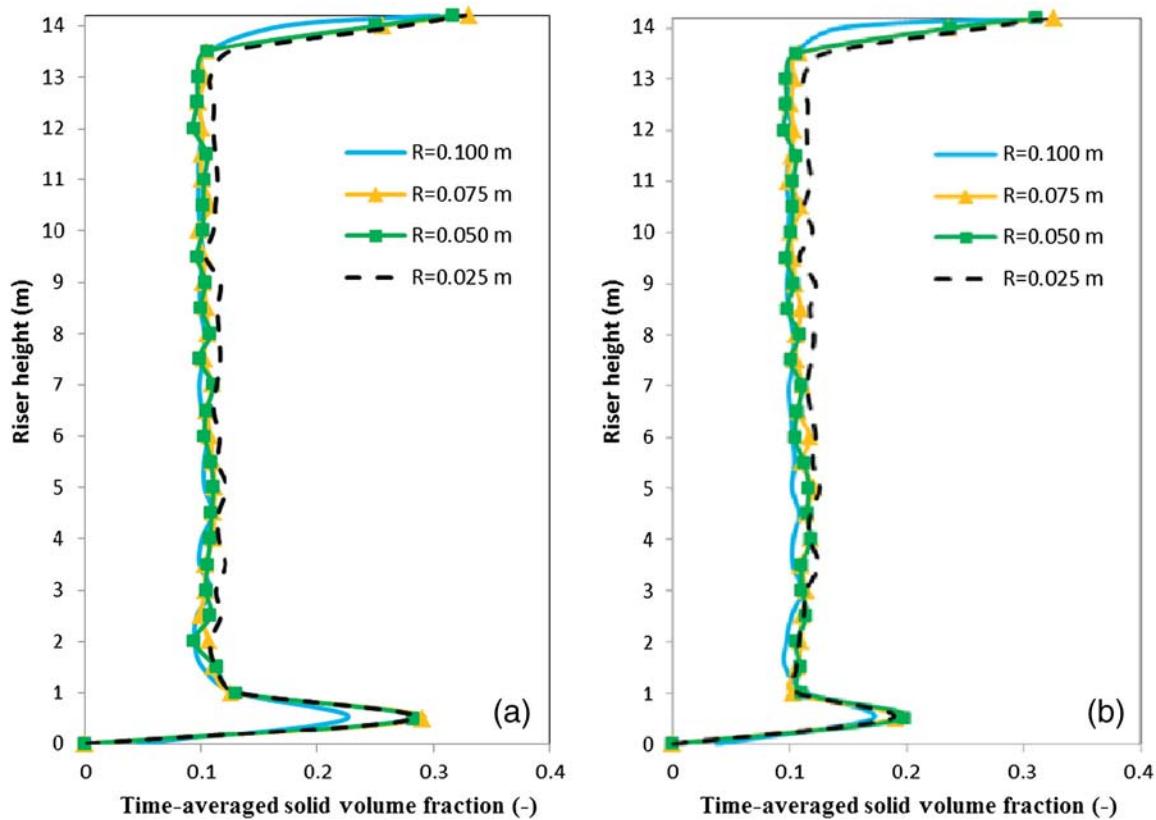
4. Conclusion

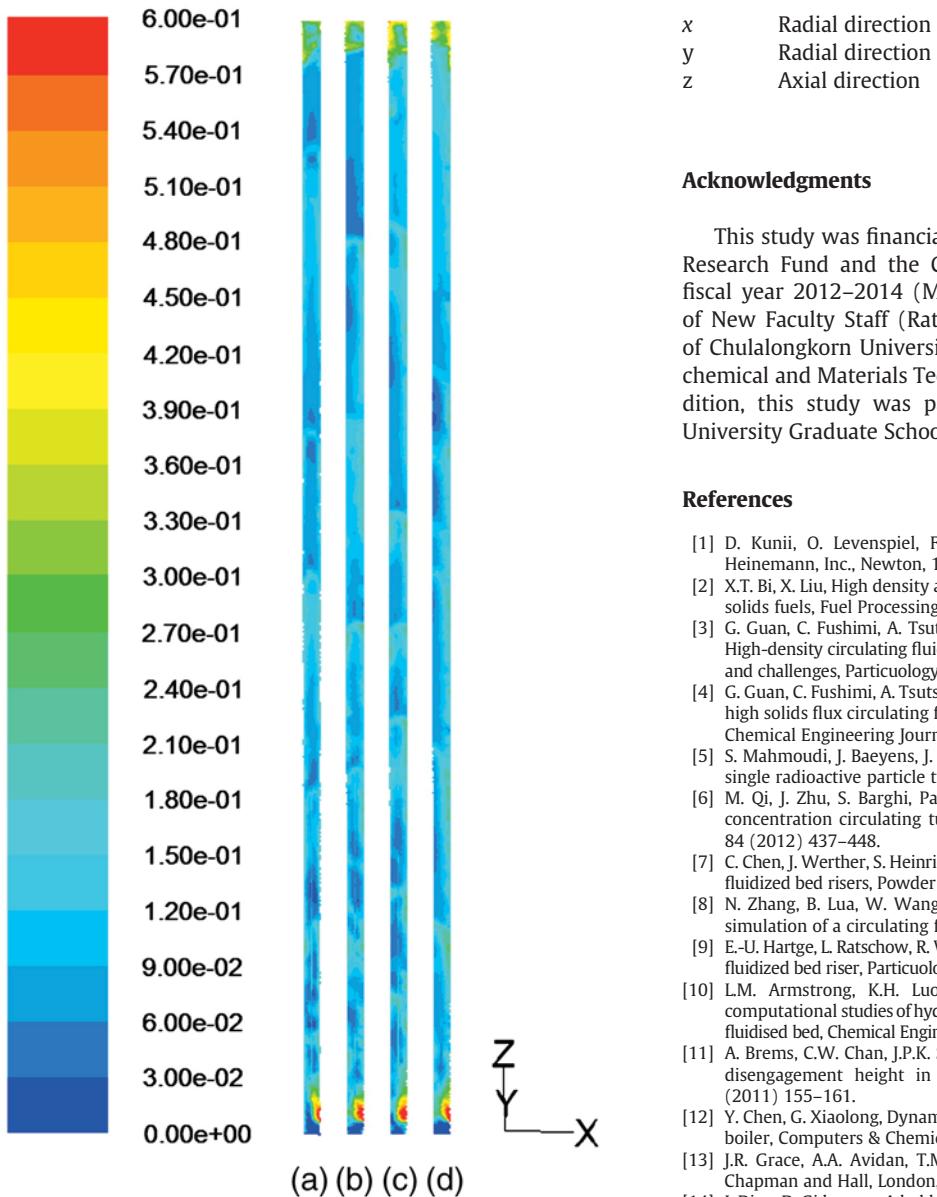
In this study, the effects of varying the system inlet and outlet boundary conditions were investigated based on three-dimensional CFD simulations inside a high solid particle flux CFB riser. From the obtained results, no significant variation was observed between the x- and y-directions in each system. The three-dimensional CFD simulation results were both qualitatively and quantitatively consistent with the two-dimensional ones, especially for this symmetrical system. For the system inlet boundary conditions, the solid volume fraction was increased as the gas inlet channel opening decreased. With respect to the system outlet boundary conditions, the solid volume fraction inside the system increased with a decreasing size of the outlet radius. In addition, the effects of mesh sizes or computational cells and time-averaged ranges were analyzed comparing to literature information.

Nomenclature

General letters

C_{D0}	Drag coefficient (–)
d_p	Solid particle diameter (m)
e	Restitution coefficient between solid particles (–)
e_w	Restitution coefficient between solid particle and wall (–)
g	Gravity or gravitational acceleration force (m/s^2)
g_0	Radial distribution function (–)




Fig. 14. The axial distributions of the computed time-averaged solid volume fraction for different system outlet radii (R) in the (a) x-direction and (b) y-direction.

I	Unit tensor (–)	$v_{t,W}$	Tangential velocity of solid particle phase at the wall (m/s)
n	Unit vector (–)	v'	Velocity fluctuation (m/s)
P	Gas pressure (Pa)	X	Radial direction (–)
P_s	Solid particle pressure (Pa)	Y	Radial direction (–)
R	CFB outlet riser radii (m)	Z	Axial direction (–)
Re	Reynolds number (–)		
t	Time (s)		
v	Velocity (m/s)		
$v_{r,s}$	Terminal velocity of solid particle phase (m/s)		
$v_{s,slip}$	Slip velocity of solid particle phase at the wall (m/s)		
$v_{s,W}$	Velocity of solid particle phase at the wall (m/s)		
			<i>Greek letters</i>
		β_{gs}	Interphase exchange coefficient or drag force model (kg/s m ³)
		ε	Volume fraction (–)
		$\varepsilon_{s,max}$	Solid volume fraction at maximum packing (–)

Table 3

Comparison of the computed laminar, turbulent and total granular temperatures for four different outlet radii ($R = 0.025, 0.050, 0.075$ and 0.100 m) at each of three different CFB riser heights (3.5 m, 7.0 m and 10.5 m) in the x-direction and y-direction.

Number	System outlet boundary condition case	CFB riser height (m)	Granular temperature (m ² /s ²)					
			x-direction			y-direction		
			Laminar	Turbulent	Total	Laminar	Turbulent	Total
1	R = 0.100 m	3.5	1.0413E-03	2.7193E-01	2.7298E-01	1.4014E-03	2.5073E-01	2.5213E-01
		7.0	9.1834E-04	2.5124E-01	2.5216E-01	7.7762E-04	2.3831E-01	2.3909E-01
		10.5	1.2111E-03	5.0493E-01	5.0614E-01	1.0475E-03	4.8126E-01	4.8230E-01
		Average	4.3934E-03	3.4653E-01	3.5092E-01	4.7041E-03	3.5987E-01	3.6457E-01
2	R = 0.075 m	3.5	4.8570E-06	1.4996E-01	1.4996E-01	5.6828E-06	1.6641E-01	1.6642E-01
		7.0	4.0865E-06	3.5532E-01	3.5532E-01	5.3549E-06	2.6796E-01	2.6797E-01
		10.5	4.3499E-06	3.6491E-01	3.6492E-01	4.3881E-06	3.4731E-01	3.4731E-01
		Average	7.2485E-05	2.6571E-01	2.6579E-01	3.2858E-05	2.5958E-01	2.5961E-01
3	R = 0.050 m	3.5	4.3243E-06	1.6879E-01	1.6880E-01	4.4429E-06	1.6249E-01	1.6249E-01
		7.0	3.5632E-06	1.9773E-01	1.9773E-01	4.6883E-06	1.7537E-01	1.7538E-01
		10.5	4.8737E-06	3.0233E-01	3.0233E-01	4.1557E-06	3.1328E-01	3.1328E-01
		Average	6.4278E-05	2.0948E-01	2.0954E-01	2.0016E-05	2.3746E-01	2.3748E-01
4	R = 0.025 m	3.5	4.1776E-06	1.0074E-01	1.0074E-01	4.8381E-06	1.2430E-01	1.2430E-01
		7.0	4.3393E-06	8.4107E-02	8.4112E-02	5.9249E-06	1.2299E-01	1.2300E-01
		10.5	5.1695E-06	1.2181E-01	1.2182E-01	6.7873E-06	1.6511E-01	1.6512E-01
		Average	2.8310E-05	1.1704E-01	1.1706E-01	1.6654E-05	1.5840E-01	1.5841E-01

Fig. 15. Contour plots of the instantaneous solid volume fraction for CFB risers with an outlet radius of (a) 0.025, (b) 0.050, (c) 0.075 and (d) 0.100 m.

ϕ	Specularity coefficient (—)
γ_s	Collisional dissipation of solid particle fluctuating energy (kg/m^3)
γ_w	Collisional dissipation of solid particle fluctuating energy at the wall (kg/m^3)
κ_s	Conductivity of the solid particle fluctuating energy ($\text{kg}/\text{m s}$)
μ	Viscosity ($\text{kg}/\text{m s}$)
θ	Granular temperature (m^2/s^2)
θ_t	Turbulent granular temperature (m^2/s^2)
θ_w	Granular temperature at the wall (m^2/s^2)
ρ	Density (kg/m^3)
τ	Stress tensor (Pa)
ξ	Bulk viscosity ($\text{kg}/\text{m s}$)

Subscripts

g	Gas phase
s	Solid particle phase

Acknowledgments

This study was financially supported by grants from the Thailand Research Fund and the Commission on the Higher Education for fiscal year 2012–2014 (MRG5580140), the Grant for Development of New Faculty Staff (Ratchadaphisek Somphot Endowment Fund) of Chulalongkorn University and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University. In addition, this study was partially supported by the Chulalongkorn University Graduate School Thesis Grant.

References

- [1] D. Kunii, O. Levenspiel, *Fluidization Engineering*, 2nd edition Butterworth-Heinemann, Inc., Newton, 1991.
- [2] X.T. Bi, X. Liu, High density and high solids flux CFB risers for steam gasification of solids fuels, *Fuel Processing Technology* 91 (2010) 915–920.
- [3] G. Guan, C. Fushimi, A. Tsutsumi, M. Ishizuka, S. Matsudab, H. Hatano, Y. Suzuki, High-density circulating fluidized bed gasifier for advanced IGCC/IGFC—advantages and challenges, *Particuology* 8 (2010) 602–606.
- [4] G. Guan, C. Fushimi, A. Tsutsumi, Prediction of flow behavior of the riser in a novel high solids flux circulating fluidized bed for steam gasification of coal or biomass, *Chemical Engineering Journal* 164 (2010) 221–229.
- [5] S. Mahmoudi, J. Baeyens, J. Seville, The solids flow in the CFB-riser quantified by single radioactive particle tracking, *Powder Technology* 211 (2011) 135–143.
- [6] M. Qi, J. Zhu, S. Barghi, Particle velocity and flux distribution in a high solids concentration circulating turbulent fluidized bed, *Chemical Engineering Science* 84 (2012) 437–448.
- [7] C. Chen, J. Werther, S. Heinrich, H.-Y. Qi, E.-U. Hertge, CFD simulation of circulating fluidized bed risers, *Powder Technology* 235 (2013) 238–247.
- [8] N. Zhang, B. Luu, W. Wang, J. Li, Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed, *Particuology* 6 (2008) 529–539.
- [9] E.-U. Hertge, L. Ratschow, R. Wischnewski, J. Werther, CFD-simulation of a circulating fluidized bed riser, *Particuology* 7 (2009) 283–296.
- [10] L.M. Armstrong, K.H. Luo, S. Gu, Two-dimensional and three-dimensional computational studies of hydrodynamics in the transition from bubbling to circulating fluidised bed, *Chemical Engineering Journal* 160 (2010) 239–248.
- [11] A. Brems, C.W. Chan, J.P.K. Seville, D. Parker, J. Baeyens, Modelling the transport disengagement height in fluidized beds, *Advanced Powder Technology* 22 (2011) 155–161.
- [12] Y. Chen, G. Xiaolong, Dynamic modeling and simulation of a 410 t/h Pyroflow CFB boiler, *Computers & Chemical Engineering* 31 (2006) 21–31.
- [13] J.R. Grace, A.A. Avidan, T.M. Knowlton, *Circulating Fluidized Beds*, 1st edition Chapman and Hall, London, 1997.
- [14] J. Ding, D. Gidaspow, A bubbling fluidization model using kinetic theory of granular flow, *AICHE Journal* 36 (1990) 523–538.
- [15] T.M. Knowlton, S.B.R. Karri, A. Issangya, Scale-up of fluidized-bed hydrodynamics, *Powder Technology* 150 (2005) 72–77.
- [16] A.M. Eaton, L.D. Smoot, S.C. Hill, C.N. Eatough, Components, formulations, solutions, evaluation, and application of comprehensive combustion models, *Progress in Energy and Combustion Science* 25 (1999) 387–436.
- [17] W.B.G.W. Wachem, A.E. Almstedt, Methods for multiphase computational fluid dynamics, *Chemical Engineering Journal* 96 (2003) 81–98.
- [18] J.S. Curtis, V.B. Wachem, Modeling particle-laden flows: a research outlook, *AICHE Journal* 50 (2004) 2638–2645.
- [19] D. Gidaspow, *Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description*, 1st edition Academic Press, Inc., London, 1994.
- [20] H. Enwald, E. Peirano, A.E. Almstedt, Eulerian two-phase flow theory applied to fluidization, *International Journal of Multiphase Flow* 22 (1996) 21–66.
- [21] J.A.M. Kuipers, W.P.M. van Swaaij, Application of computational fluid dynamics to chemical reaction engineering, *Reviews in Chemical Engineering* 13 (1997) 1–118.
- [22] B.G.W. van Wachem, J.C. Schouten, C.M. van den Bleek, R. Krishna, J.L. Sinclair, Comparative analysis of CFD models of dense gas–solid systems, *AICHE Journal* 47 (2001) 1035–1051.
- [23] B.P.B. Hoomans, J.A.M. Kuipers, W.J. Briels, V.W.P.M. Swaaij, Discrete particle simulation of bubble and slug formation in a two-dimensional gas–fluidized bed: a hard-sphere approach, *Chemical Engineering Science* 51 (1996) 99–118.
- [24] B. Xu, A. Yu, Numerical simulation of the gas–solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics, *Chemical Engineering Science* 52 (1997) 2785–2890.
- [25] C. Crowe, M. Sommerfeld, Y. Tsuji, *Multiphase Flows with Droplets and Particles*, 1st edition CRC Press, Inc., Boca Roca, 1998.
- [26] K.D. Kafui, C. Thornton, M.J. Adams, Discrete particle-continuum fluid modelling of gas–solid fluidized beds, *Chemical Engineering Science* 57 (2002) 2395–2410.

[27] M. Goldschmidt, Hydrodynamic Modelling of Fluidised Bed Spray Granulation, Twente University, The Netherlands, 2001., (Unpublished doctoral dissertation).

[28] B. Sun, D. Gidaspow, Computation of circulating fluidized-bed riser flow for the Fluidization VIII benchmark test, *Industrial and Engineering Chemistry Research* 38 (1999) 787–792.

[29] A. Neri, D. Gidaspow, Riser hydrodynamics: simulation using kinetic theory, *AIChE Journal* 46 (2000) 52–67.

[30] M.J.V. Goldschmidt, J.A.M. Kuipers, W.P.M. van Swaaij, Hydrodynamic modeling of dense gas-fluidized beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics, *Chemical Engineering Science* 56 (2001) 571–578.

[31] L. Huilin, Z. Yunhua, S. Zhiheng, J. Ding, J. Jiyong, Numerical simulations of gas–solid flow in tapered risers, *Powder Technology* 169 (2006) 89–98.

[32] B. Chalermisinsuwan, P. Piumsomboon, D. Gidaspow, Kinetic theory based computation of PSRI riser Part I: estimate of mass transfer coefficient, *Chemical Engineering Science* 64 (2009) 1195–1211.

[33] B. Chalermisinsuwan, P. Piumsomboon, D. Gidaspow, Kinetic theory based computation of PSRI riser Part II: computational of mass transfer coefficient with chemical reaction, *Chemical Engineering Science* 64 (2009) 1212–1222.

[34] B. Chalermisinsuwan, P. Piumsomboon, D. Gidaspow, Two- and three-dimensional CFD modeling of Geldart A particles in a thin bubbling fluidized bed: comparison of turbulence and dispersion coefficients, *Chemical Engineering Journal* 171 (2011) 301–313.

[35] B. Chalermisinsuwan, P. Piumsomboon, Computation of the mass transfer coefficient of FCC particles in a thin bubbling fluidized bed using two- and three-dimensional CFD simulations, *Chemical Engineering Science* 66 (2011) 5602–5613.

[36] D. Gidaspow, V. Jiradilok, Computational Techniques: The Multiphase CFD Approach to Fluidization and Green Energy Technologies, 1st edition Nova Science Publishers, Inc., New York, 2010.

[37] Y. Cheng, F. Wei, G.Q. Yang, Y. Jin, Inlet and outlet effects on flow patterns in gas–solid risers, *Powder Technology* 98 (1998) 151–156.

[38] S.C. Tsinontides, A theoretical investigation of gas–solid flow exiting a fluidized bed into a standpipe: Part 2. A complete numerical solution investigating importance of boundary conditions at bed inlet and standpipe exit, *Powder Technology* 127 (2002) 66–86.

[39] J. De Wilde, G.V. Engelandt, G.J. Heynderickx, G.B. Marin, Gas–solids mixing in the inlet zone of a dilute circulating fluidized bed, *Powder Technology* 151 (2005) 96–116.

[40] A. Almuttahar, F. Taghipour, Computational fluid dynamics of high density circulating fluidized bed riser: study of modeling parameters, *Powder Technology* 185 (2008) 11–23.

[41] J.S. Kim, R. Tachino, A. Tsutsumi, Effects of solids feeder and riser exit configuration on establishing high density circulating fluidized beds, *Powder Technology* 187 (2008) 37–45.

[42] N.V. Gnanapragasam, B.V. Reddy, Modeling of axial bed-to-wall heat transfer in a CFB combustor with abrupt riser exit geometry, *International Journal of Heat and Mass Transfer* 51 (2008) 6102–6109.

[43] X. Wu, F. Jiang, X. Xu, Y. Xiao, CFD simulation of smooth and T-abrupt exits in circulating fluidized bed risers, *Particuology* 8 (2010) 343–350.

[44] C.W. Chan, A. Brems, S. Mahmoudi, J. Baeyens, J. Seville, D. Parker, T. Leadbeater, J. Gargiuli, PEPT study of particle motion for different riser exit geometries, *Particuology* 8 (2010) 623–630.

[45] Z. Wang, S. Sun, H. Chen, Q. Deng, G. Zhao, S. Wu, Experimental investigation on flow asymmetry in solid entrance region of a square circulating fluidized bed, *Particuology* 7 (2009) 483–490.

[46] X. Wang, L. Liao, B. Fan, F. Jiang, X. Xu, S. Wang, Y. Xiao, Experimental validation of the gas–solid flow in the CFB riser, *Fuel Processing Technology* 91 (2010) 927–933.

[47] G. Van Engelandt, G.J. Heynderickx, Juray De Wilde, G.B. Marin, Experimental and computational study of T- and L-outlet effects in dilute riser flow, *Chemical Engineering Science* 66 (2011) 5024–5044.

[48] B. Peng, C. Zhang, J. Zhu, Numerical study of the effect of the gas and solids distributors on the uniformity of the radial solids concentration distribution in CFB risers, *Powder Technology* 212 (2011) 89–102.

[49] B. Peng, J. Xu, J. Zhu, C. Zhang, Numerical and experimental studies on the flow multiplicity phenomenon for gas–solids two-phase flows in CFB risers, *Powder Technology* 214 (2011) 177–187.

[50] B. Peng, C. Zhang, J. Zhu, Theoretical and numerical studies on the flow multiplicity phenomenon for gas–solids two-phase flows in CFB risers, *International Journal of Multiphase Flow* 37 (2011) 660–670.

[51] T. Knowlton, D. Geldart, J. Masten, D. King, Comparison of CFB Hydrodynamic Models: PSRI Challenge Problem, Presented at the Eighth International Fluidization Conference, Tour, France, 1995.

[52] X. Wu, Q. Wang, Z. Luo, M. Fang, K. Cen, Experimental investigation of interparticle collision in the upper dilute zone of a cold CFB riser, *International Journal of Multiphase Flow* 34 (2008) 924–930.

[53] J.W. Chew, R. Hays, J.G. Findlay, T.M. Knowlton, S.B.R. Karri, R.A. Cocco, C.M. Hrenya, Impact of material property and operating conditions on mass flux profiles of mono-disperse and polydisperse Group B particles in a CFB riser, *Powder Technology* 214 (2011) 89–98.

[54] S. Mahmoudi, C.W. Chan, A. Brems, J. Seville, J. Baeyens, Solids flow diagram of a CFB riser using Geldart B-type powders, *Particuology* 10 (2012) 51–61.

[55] M. Van de Velden, J. Baeyens, J.P.K. Seville, X. Fan, The solids flow in the riser of a Circulating Fluidised Bed (CFB) viewed by Positron Emission Particle Tracking (PEPT), *Powder Technology* 183 (2008) 290–296.

[56] T. Samruamphianskun, P. Piumsomboon, B. Chalermisinsuwan, Effect of ring baffle configurations in a circulating fluidized bed riser using CFD simulation and experimental design analysis, *Chemical Engineering Journal* 210 (2012) 237–251.

[57] J. De Wilde, G.B. Marin, G.J. Heynderickx, The effects of abrupt T-outlets in a riser: 3D simulation using the kinetic theory of granular flow, *Chemical Engineering Science* 58 (2003) 877–885.

[58] J. Li, J.A.M. Kuipers, On the origin of heterogeneous structure in dense gas–solid flows, *Chemical Engineering Science* 60 (2005) 1251–1265.

[59] D. Gidaspow, R. Bezburuh, J. Ding, Hydrodynamics of circulating fluidized beds, kinetic theory approach, Presented at the Seventh Engineering Foundation Conference on Fluidization, Brisbane, Australia, 1992.

[60] M. Syamlal, W. Rogers, T.J. O'Brien, MFIX Documentation: Theory Guide, Technical Note, DOE/METC-95/1013, West Virginia, 1993.

[61] C.Y. Wen, Y.H. Yu, Mechanics of fluidization, *Chemical Engineering Progress Symposium Series* 62 (1966) 100–111.

[62] N. Yang, W. Wang, W. Ge, J. Li, CFD simulation of concurrent-up gas–solid flow in circulating fluidized beds with structure-dependent drag coefficient, *Chemical Engineering Journal* 96 (2003) 71–80.

[63] P.C. Johnson, R. Jackson, Frictional–collisional constitutive relations for granular materials, with application to plane shearing, *Journal of Fluid Mechanics* 176 (1987) 67–93.

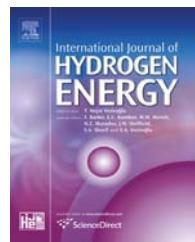
[64] J.L. Sinclair, R. Jackson, Gas-particle flow in a vertical pipe with particle–particle interactions, *AIChE Journal* 35 (1989) 1473–1486.

[65] G. Ferschneider, P. Mege, Eulerian simulation of dense phase fluidized beds, *Revue. Institut Français du Pétrole* 51 (1996) 301–307.

[66] T. McKeen, T. Pugsley, Simulation and experimental validation of a freely bubbling bed of FCC catalyst, *Powder Technology* 129 (2003) 139–152.

[67] B. Chalermisinsuwan, P. Kuchonthara, P. Piumsomboon, CFD modeling of tapered circulating fluidized bed reactor risers: hydrodynamic descriptions and chemical reaction responses, *Chemical Engineering and Processing* 49 (2010) 1144–1160.

[68] J.V. Briongos, J. Guardiola, New methodology for scaling hydrodynamic data from a 2D-fluidized bed, *Chemical Engineering Science* 60 (2005) 5151–5163.


[69] M. Tartan, D. Gidaspow, Measurement of granular temperature and stresses in risers, *AIChE Journal* 50 (2004) 1760–1775.

Available online at www.sciencedirect.com

SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/he

Experiment and computational fluid dynamics simulation of in-depth system hydrodynamics in dual-bed gasifier

Chanin Manchasing ^a, Prapan Kuchonthara ^{a,b},
Benjapon Chalermsinsuwan ^{a,b}, Pornpote Piemsomboon ^{a,b,*}

^a Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand

^b Center of Excellence on Petrochemicals and Material Technology, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand

ARTICLE INFO

Article history:

Received 17 January 2013

Received in revised form

8 June 2013

Accepted 9 June 2013

Available online 13 July 2013

Keywords:

Computational fluid dynamics

Eulerian approach

Fluidized bed

Gasifier

Kinetic theory of granular flow

ABSTRACT

Dual-bed gasifier is a new gasifier system with separated combustion and gasification zones. The two-zone separation makes it possible to increase calorific value of the producer gas. In order to develop and improve the process operation, understanding of system dynamics and parameters that describe the in-depth hydrodynamics are essential. Computational fluid dynamics is a tool that can be used to explain the complex multiphase system behavior. The considered dual-bed gasifier had 3.00 m height and the maximum width diameters of riser and downcomer were 0.14 and 0.40 m, respectively. Conservation equations of mass, momentum, energy and species for each phase were solved coupling with the kinetic theory of granular flow using ANSYS FLUENT version 12.1. Here, two-dimensional simulation had been successfully determined the flow pattern and chemical reaction corresponding with actual experimental and theoretical data. The calculated results of the solid volume fraction in the riser section showed the bubbling and slugging flow patterns. The product gas composition and gas temperature inside dual-bed gasifier reflected the advantages for this type of reactor over the other conventional gasifiers. The system turbulences were firstly explored in dual-bed system which were normal Reynolds stresses and granular temperatures. For the effect of interphase exchange coefficient model, the pressure-loop using drag force model proposed by Gidaspow was in good agreement with the experiment than the ones proposed by Wen-Yu and Syamlal-O'Brien. Copyright © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Currently, the world energy demand is apparently increased consistent with the world population [1,2]. However, the

energy resources or fuels are not sufficient to meet this high demand. The awareness of the limited availability of fuels leads to the increasing of attention to use biomass as an alternative fuel [3]. Because direct combustion of biomass

* Corresponding author. Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand. Tel.: +66 2 2187676; fax: +66 2 2555831.

E-mail address: Pornpote.p@chula.ac.th (P. Piemsomboon).

gives a low efficiency process [4], the study of the conversion processes of biomass to other useful products therefore is necessary. Gasification is one of the important technologies for converting biomass to gaseous product which yields high chemical reaction conversion and gives high system energy efficiency [5]. The gasification of biomass in fluidized beds has been widely employed because of the high heat and mass transfer rates, the numerous gas–solids mixing ability and the continuous mode of operation [3,6]. The gasification process in fluidized beds offers many advantages, but the calorific value of gaseous product is relative low as a result of the dilution by large amount of nitrogen from used air in a combustor [7]. Dual-bed gasifiers have been developed to overcome the above shortcoming by dividing the combustion zone and gasification zone separately [8–13]. To maintain the desired temperature, energy required for the endothermic biomass gasification in the gasification zone is provided by exothermic biomass combustion in the combustion zone [9,10]. The system bed material (such as silica sand) is acted as a heat carrier for transferring the heat between two reaction zones. The dual fluidized bed gasification technology has been recently demonstrated by some reports [10–15]. Karmakar and Datta [10], Nguyen et al. [11] and Seo et al. [12] studied the system hydrodynamics of a circulating fluidized bed gasification system with dual fluidized bed concept using experimental measurement and computational fluid dynamics simulation. The results from computational fluid dynamics model were consistent with their experimental data. The aeration flow, the secondary air flow and particle diameter were summarized to have the strongest influence on system pressure drop and solid circulation. With the same aeration flow, the maximum solid circulation rate was obtained at a loop-seal height/base line ratio of 2.5. The comparison of technical options to combine two different-type of bed was performed by Xu et al. [13]. A combination of a bubbling/turbulent fluidized bed gasifier and a pneumatic combustor facilitated gasification reactions and restrained tar evolution. Asadullah et al. [14] analyzed the syngas product from the gasification of various biomasses in a dual-bed gasifier system. The cedar wood was found to produce highest gas production rate due to less tar formation even at 823 K. Ngo et al. [15] investigated the effects of gasification temperature and steam to fuel ratio on product gas composition and yield in a bench-scale circulating fluidized bed gasifier of pine wood-chips. They suggested several effective operating conditions from the proposed performance criteria contour. Koppatz et al. [16] explored the influence of different bed inventory on the product gas composition. As the decreasing of bed inventory, carbon monoxide and carbon dioxide gases were decreased and increased, respectively.

Presently, computational fluid dynamics simulation has been performed to determine the multiphase flow behaviors, which then provide valuable information for understanding the system hydrodynamics and chemical reaction [17,18]. Two different modeling approaches can be used to describe the complex gas–solid flow behaviors which are Lagrangian and Eulerian approaches [19]. The Lagrangian approach calculates the path and motion of each solid particle. It thus can be simulated in a more consistent way than the Eulerian approach. However, the disadvantages of this method are the

requirement of large computational time and memory [20]. The Eulerian approach, so-called two-fluid model, treats gas and solid particle phases as interpenetrating continuum. Therefore, only a reasonable computational effort is required. In order to describe the solid particle properties, the kinetic theory of granular flow is used, for example, solid fluctuating kinetic energy or granular temperature, solid pressure and solid viscosities [21]. For the simulation of fluidized bed system which containing a large number of solid particles, the use of Eulerian approach is advantageous. The comparison of these two modeling approaches has been performed by Gera et al. [22].

In the present study, Eulerian approach including kinetic theory of granular flow was extended to simulate the hydrodynamics and chemical reaction of dual-bed gasifiers. The aim of this study is to find the suitable computational fluid dynamics model that matches the simulation results with the experimental results. The operating conditions were then the same ones. Two-dimensional simulation had been modeled by using commercial computational fluid dynamics software ANSYS FLUENT version 12.1. For the hydrodynamics results, the pressure profile, solid velocities and solid volume fraction were shown while, for the chemical reaction results, the product gas composition and gas temperature were illustrated. Then, the in-depth hydrodynamics parameters which were normal Reynolds stress and granular temperature were completely explained for the dual-bed gasifier. In addition, the effect of interphase exchange coefficient or drag force model was discussed.

2. Experiment

The actual dual-bed gasifier unit and the simulation dual-bed gasifier schematic diagram are shown in Fig. 1. The apparatus consisted of two interconnect fluidized bed systems, called a combustor (riser section) and a gasifier (downer section), which was similar to a circulating fluidized bed system [23]. At the return leg section, the riser and downer sections were connected via the screw-feeder. Both the combustor and gasifier were made of heat-resistant steel and were coated with Portland cement as thermal insulation inside the reactor. The cylindrical combustor riser was 3.00 m in height with a maximum diameter of 0.14 m while the cylindrical downer gasifier was 1.12 m in height with a maximum diameter of 0.40 m. Throughout the dual-bed gasifier unit, there were eight transmitters set up for measuring the pressure shown as the symbols P1–P8 in Fig. 1. Generally, a cyclone is installed in circulating fluidized bed system to separate the bed particles from fluidizing gas [23]. With high solid capture capability of the cyclone, very fine particles such as fly ash fall back to the gasifier and may lead to slag formation [23]. In order to prevent the gasifier blockage, the novel separating unit was designed as a large empty chamber at the top of the riser. Solid separating mechanism due to the sudden increasing of the pipe cross-sectional area resulted in the decreasing of solid velocity. Some of solids, which still had a velocity, collided with the wall and lost their energy. Then, large solid particles were attracted by gravity force and fallen to the gasifier zone while fluidizing gas and very fine particles were blown off towards the top of the

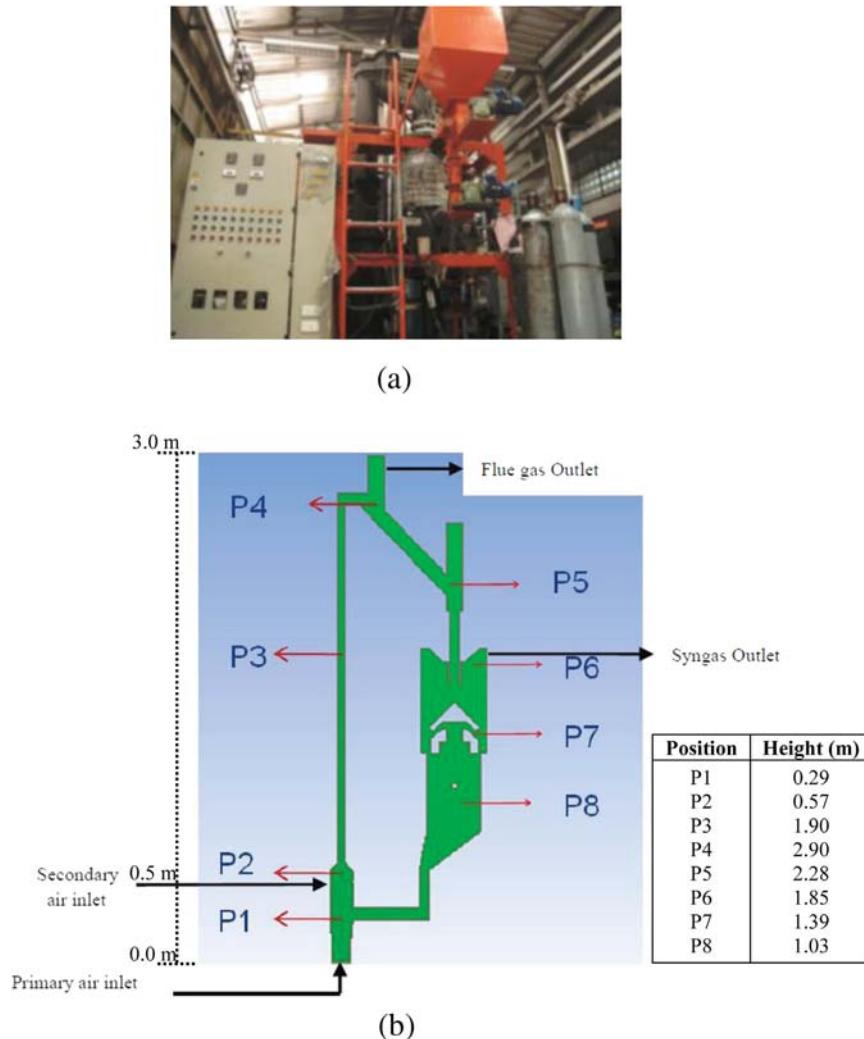


Fig. 1 – The (a) picture and (b) schematic diagram of the dual-bed gasifier.

riser. The bed material used in this study was silica sand with the density of 2600 kg/m^3 and diameter of $370 \mu\text{m}$. The material was classified to be group B in Geldart classification. The initial sand inventory was 110 kg. The other simulation parameters can be found in Tables 1 and 2 for cold flow (simulation without chemical reaction) and hot flow (simulation with chemical reaction), respectively. In addition, the employed biomass composition analysis is summarized in Table 3.

3. Computational fluid dynamics simulation

3.1. Modeling and computational domain descriptions

In this study, two-dimensional computational fluid dynamics simulation in the dual-bed gasifier was developed to determine hydrodynamic and chemical reaction characteristics inside the system. The details of the gasifier geometry and mathematical model were developed under commercial software environment, ANSYS DESIGN MODULER and ANSYS FLUENT version 12.1 [24]. As already stated in the

introduction, there are several models in the program for simulating the two-phase flow, such as the Lagrangian and the Eulerian models. The Eulerian model was selected since the disperse gas phase has low volume fraction. With this approach the governing equations in each phase were solved separately. For cold flow simulation, conservation equations of mass and momentum were solved coupling with kinetic theory of granular flow, where the conservation equations of each phase were linked by an interphase exchange term [25]. With this theory, the behavior of the solid phase is described by taking into account the energy associated with particles arising out of collisions and the fluctuating motions of the particles. For hot flow simulation, conservation of energy and species were added simultaneously with the combustion and gasification chemical reaction kinetics. Table 4 shows a summary of the governing equations and selected constitutive equations used in this study. More detail about the constitutive equations used in this study can be seen in Manchasing [26]. The computational domain was consisted of 6211 cells. With this computational domain, it had already given the independent results [26].

Table 1 – Summary of simulation parameters and boundary conditions (Cold model).

Parameters	Values	Boundary conditions	Values
Density		Velocity	
Silica sand	2600 kg/m ³	Gas (primary)	0.28882 m/s
Gas	1.225 kg/m ³	Gas (secondary)	4.81194 m/s
Diameter		Pressure	
Silica sand	370 μm	Syn gas outlet	0 Pascal
		Flue gas outlet	–800 Pascal
Gas viscosity	1.7894×10^{-5} kg/m s		
Restitution coefficient		Wall	
Particle–particle	0.9	Gas	No-slip condition
Particle–wall	0.9	Solid	Johnson–Jackson condition
Specularity coefficient	0.1		

3.2. Boundary and initial conditions

The boundary conditions for both the cold and hot flow simulations are summarized in Tables 1 and 2, respectively. These values were similar to the ones from the experiment. For cold flow simulation, the operating conditions of the gasifier, temperature and pressure, were set to be 300 K and 101,325 Pascal, respectively. The solid phase was bed material (silica sand) while the gas phase was air. For hot flow

simulation, the operating conditions of the gasifier, gas temperature, solid temperature and pressure, were set to be 400 K, 1000 K and 101,325 Pascal, respectively. The necessary steam used in gasification reaction was fed into center of the downer section together with biomass. The chemical reaction kinetics for combustion and gasification (as summarized in Table 2) then were added. The chemical reactions could be divided into two types: homogeneous and heterogeneous reactions [26]. The kinetic rate of chemical reactions were obtained from the

Table 2 – Summary of simulation parameters and boundary conditions (hot model).

Parameters	Values	Boundary conditions	Values
Density		Velocity	
Silica sand	2600 kg/m ³	Gas (primary)	0.19255 m/s
Biomass	1100 kg/m ³	Gas (secondary)	2.98340 m/s
Coal	1100 kg/m ³	Biomass	0.00116 m/s
Gas	1.225 kg/m ³	Coal	0.01023 m/s
		Steam	0.08023 m/s
Diameter		Volume fraction	
Silica sand	370 μm	Biomass	0.2
Biomass	1000 μm	Coal	0.2
Coal	1000 μm		
Viscosity		Pressure	
Gas	Mass weighted mixing law	Syn gas outlet	0 Pascal
Solid	1.72×10^{-5} kg/m s	Flue gas outlet	–800 Pascal
Restitution coefficient		Wall	
Particle–particle	0.9	Gas	No-slip condition
Particle–wall	0.9	Solid	Johnson–Jackson condition
Specularity coefficient	0.1		
Chemical reaction kinetics [27–30]			
Reaction (1)	$C + 0.8O_2 \rightarrow 0.4CO + 0.6CO_2$		$r_1 = \frac{6V_p k_1}{d_p} p_i, \quad k_1 = 596T_p \exp(-1800/T_p)$
Reaction (2)	$C + 1.2H_2O \rightarrow 0.8CO + 0.2CO_2 + 1.2H_2$		$r_2 = \frac{6V_p k_2}{d_p} p_i, \quad k_2 = 2082.7T_p \exp(-18,036/T_p)$
Reaction (3)	$C + 2H_2 \rightarrow CH_4$		$r_3 = \frac{6k_3}{d_p} [H_2], \quad k_3 = 2.08 \times 10^3 \exp(-230274/RT_p)$
Reaction (4)	$CO + 0.5O_2 \rightarrow CO_2$		$r_4 = k_4[CO][O_2], \quad k_4 = 8.83 \times 10^{11} \exp(-99,800/RT)$
Reaction (5)	$CO + H_2O \rightarrow CO_2 + H_2$		$r_5 = k_5[CO][H_2O], \quad k_5 = 5.4306 \times 10^7 \exp(-72,949.53/RT)$
Reaction (6)	$CH_4 + H_2O \rightarrow CO + 3H_2$		$r_6 = k_6[CH_4][H_2O], \quad k_6 = 3.106 \times 10^{15} \exp(-208,800/RT)$

Table 3 – Biomass composition analyses.

Proximate analysis	% Weight	Ultimate analysis	% Dry ash free
Humidity	9.10	C	43.14
Volatile matter	78.43	H	5.07
Fix carbon	8.51	O	51.79
Ash	3.96	N	0.00

literature study of Wang et al. [27] (Reactions 1 and 2), Mendes et al. (Reactions 3 and 4) [28], Liang and Jing (Reaction 5) [29] and Petersen and Werther (Reaction 6) [30]. The solid phase consisted of bed material (silica sand), coal and biomass while the gas phase comprised of oxygen, steam, carbon dioxide, hydrogen, carbon monoxide, methane and nitrogen. Here, the fast drying and devolatilization assumption were applied similar to the previous study by Nemtsov and Zabaniotou [31]. The fixed carbon and product gas from drying and devolatilization reactions were then used as the boundary condition according to the actual biomass composition analyses shown in Table 3.

The solid phase used in this study was assumed to have uniform size distribution and perfectly sphere shape with the sphericity equals to unity. To prevent the spacing between solid particles becoming zero, the maximum packing limit was 0.63. Initially, solids were packed with solid volume fraction of 0.60 in accordance with the system position in Fig. 2. For tuning parameters, the restitution coefficient between solid particles was chosen to be 0.90 while the specularity coefficient was set to be 0.10 which was adopted from the previous study by Myung et al. [12]. For the realistic simulation, thin layer was set and configured at the return leg section instead of the real experimental screw-feeder section. This thin layer was used to prevent the leaking of input gas from the combustion zone (riser section) to gasification zone (downer section).

For the calculation methodology, the time step used in this study was set to be 0.001 s. The maximum iterations per time step were set at 100 to ensure the stability of the calculation results. The governing equations were discretized to algebraic equations for the simplification of calculation. The phase coupled SIMPLE scheme was applied to solve for velocity and pressure corrections. The system had reached quasi-steady state after 20 s of simulation time. Because of the nonlinearity of the equation set being solved by ANSYS FLUENT, it is necessary to control the change of under-relaxation factor [24]. To prevent the computation divergence, the under-relaxation was used. In this study, an Intel Core™ i7 computer with the clock speed equal to 2.93 GHz and 16 GB of RAM memory was used for the calculation.

4. Results and discussion

4.1. Pressure profile

First, the cold flow simulation was validated. Fig. 3 shows the absolute pressure obtained from the computational fluid dynamics simulation at eight transmitters along the height of

the dual-bed gasifier with computation time. This figure is plotted for validating the system steady state condition. From the figure, it can be seen that the simulation system had reached the quasi-steady state after 20 s. The system absolute pressures were not changed with the increasing of simulation time. Therefore, in the following sections, only the calculated results after 20 s were time-averaged and analyzed. Furthermore, it was observed that the absolute pressures were highly oscillated at P1, P2 and P3 positions because of the fluidized bed flow pattern in that system area. The highest absolute pressure was at P1 position, where was the bottom of the riser section near the return leg. This maximum absolute pressure at this position is due to air pressure inlet from primary air feed and solid dynamics pressure from the return leg. The minimum absolute pressure was at P4 position which was at the gas outlet position.

In order to investigate the adequacy of the model, the simulation results were compared with the experimental results in the same system. Fig. 4 shows the absolute pressure-loop profiles using three different drag models which were Gidaspow, Syamlal–O’Brien and Wen–Yu models, with the experimental ones. It was observed that Gidaspow and Wen–Yu models gave the computation results in good agreement with the experiment, especially in the riser section, while the Syamlal–O’Brien model was slightly deviated because it had a different drag function compared with the other [32]. Nevertheless, Gidaspow model gave the prediction slightly better than Wen–Yu model for the absolute pressure in the downer because this model is a combination of the Wen–Yu model and the Ergun equation [33], which is derived from fixed-bed system, so that Gidaspow model is more appropriate for simulating dense fluidized beds systems such as the downer [24]. For this reason, Gidaspow model was selected to use as the interphase exchanged coefficient model in the following sections.

From the computational results, it also showed the relationship between system height and absolute pressure. The absolute pressure in the riser section decreased with the increasing of the riser height and reached the minimum value at the system outlet. On the other hand, in the downer section, the absolute pressure was higher with the decreasing of the downer height. The reason for this situation is due to the weight of the solid particle accumulation in the downer section.

4.2. Flow regime determination

The study of system hydrodynamics was performed to determine the flow pattern for clearly understanding the chemical reaction phenomena that will occur inside the system. Fig. 5 shows the instantaneous contour plots of the solid volume fraction at five different simulation times after the system reached the steady state condition. The solid volume fraction results obtained from the simulation predicted the dense bubbling fluidized bed flow regime in the lower riser section, slugging fluidized bed flow regime in the upper riser section and countercurrent gas-flowing solids-fixed in the downer gasifier section.

At lower combustor zone, the primary air inlet velocity had a value of two to three times of the minimum fluidization

Table 4 – A summary of the governing equations and selected constitutive equations.

Mass conservation

Gas phase:

$$\frac{\partial(\varepsilon_g \rho_g)}{\partial t} + \nabla \cdot (\varepsilon_g \rho_g v_g) = 0 \quad (1)$$

Solid phase:

$$\frac{\partial(\varepsilon_s \rho_s)}{\partial t} + \nabla \cdot (\varepsilon_s \rho_s v_s) = 0 \quad (2)$$

Momentum conservation

Gas phase:

$$\frac{\partial(\varepsilon_g \rho_g v_g)}{\partial t} + \nabla \cdot (\varepsilon_g \rho_g v_g v_g) = -\varepsilon_g \nabla P + \nabla \cdot \tau_g + \varepsilon_g \rho_g g - \beta_{gs} (v_g - v_s) \quad (3)$$

Solid phase:

$$\frac{\partial(\varepsilon_s \rho_s v_s)}{\partial t} + \nabla \cdot (\varepsilon_s \rho_s v_s v_s) = -\varepsilon_s \nabla P - \nabla P_s + \nabla \cdot \tau_s + \varepsilon_s \rho_s g + \beta_{gs} (v_g - v_s) \quad (4)$$

Energy conservation

Gas phase:

$$\frac{\partial(\varepsilon_g \rho_g h_g)}{\partial t} + \nabla \cdot (\varepsilon_g \rho_g v_g h_g) = -\varepsilon_g \frac{\partial P}{\partial t} + \tau_g : \nabla \cdot v_g \quad (5)$$

Solid phase:

$$\frac{\partial(\varepsilon_s \rho_s h_s)}{\partial t} + \nabla \cdot (\varepsilon_s \rho_s v_s h_s) = -\varepsilon_s \frac{\partial P}{\partial t} + \tau_s : \nabla \cdot v_s \quad (6)$$

Species conservation

Gas phase:

$$\frac{\partial(\varepsilon_g \rho_g Y_i)}{\partial t} + \nabla \cdot (\varepsilon_g \rho_g v_g Y_i) = -\nabla \cdot \varepsilon_g (-\rho_g D_{i,m} \nabla Y_i) + \varepsilon_g R_{i,ho} + R_{i,het} \quad (7)$$

Solid fluctuating kinetic energy

$$\frac{3}{2} \left[\frac{\partial}{\partial t} (\varepsilon_s \rho_s \theta) + \nabla \cdot (\varepsilon_s \rho_s v_s \theta) \right] = (-p_s I + \tau_s) : \nabla v_s + \nabla \cdot (\kappa_s \nabla \theta) - \gamma_s - \phi_s \quad (8)$$

Wen and Yu drag model

$$C_D = \frac{24}{Re_s} (1 + 0.15 Re_s^{0.687}), \quad \text{where } \beta = \frac{3}{4} C_D \frac{\varepsilon_s \varepsilon_g \rho_g |v_s - v_g|}{d_p} \varepsilon_g^{-2.65}; \quad Re_s = \frac{\rho_g \varepsilon_g |v_g - v_s| d_p}{\mu_g} \quad (9)$$

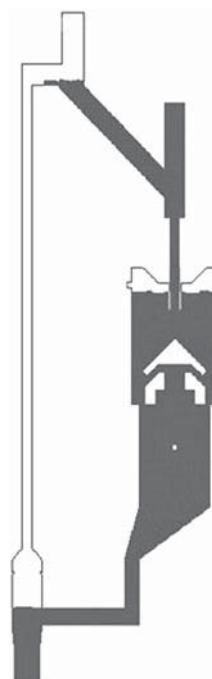
Gidaspow drag model

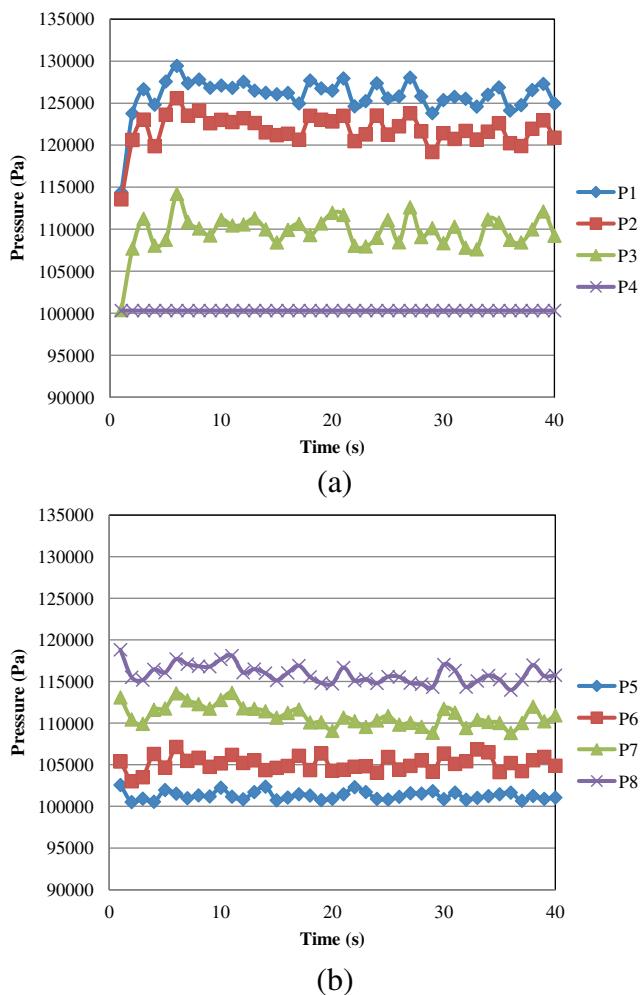
$$\begin{aligned} \varepsilon_g > 0.8, \quad \beta &= \frac{3}{4} C_D \frac{\varepsilon_s \varepsilon_g \rho_g |v_s - v_g|}{d_p} \varepsilon_g^{-2.65} \\ \varepsilon_g \leq 0.8, \quad \beta &\equiv 150 \frac{\varepsilon_s (1 - \varepsilon_g) \mu_g}{\varepsilon_g d_p^2} + 1.75 \frac{\rho_g \varepsilon_s |v_s - v_g|}{d_p} \end{aligned} \quad (10)$$

Syamlal–O’Brien drag model

$$\beta = \frac{3}{4} C_D \frac{\varepsilon_s \varepsilon_g \rho_g}{\nu_{r,s}^2 d_p} \left(\frac{Re_s}{\nu_{r,s}} \right) |v_s - v_g| \quad (11)$$

where


$$\nu_{r,s} = 0.5 \left(A - 0.06 Re_s + \sqrt{(0.06 Re_s)^2 + 0.12 Re_s (2B - A) + A^2} \right)$$


with

$$\begin{aligned} A &= \varepsilon_g^{4.14} \quad \text{and} \quad B = 0.8 \varepsilon_g^{1.28} \quad \text{for } \varepsilon_g \leq 0.85 \\ B &= \varepsilon_g^{2.65} \quad \text{for } \varepsilon_g > 0.85 \end{aligned}$$

velocity (U_{mf}). Therefore, it was observed that the input system gas formed together as gas bubbles in the bed. The bubble then grew mostly by coalescence and rose up to the bed surface. At the secondary air inlet, the diameter of the riser section decreased. The gas bubble size was expanded to the size of the riser cross-sectional area. Bubbles appeared to occupy the whole cross-section of the riser and the solid behaved like a piston in the cylinder. This phenomenon is called slug flow [34]. From Fig. 5, the bed can be observed as two distinct phases: the phase of solid and that of gas. Both solid and gas moved up along the riser together by the driving force of secondary air supply, which was 1.50 times the terminal velocity.

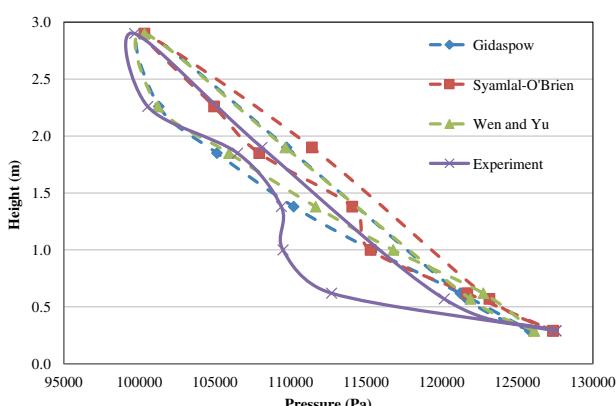

To affirm the simulated result, the values of parameters and operating conditions were collected for calculating a dimensionless particle size and dimensionless gas velocity. Then, the calculated values were plotted and were compared with the general flow regime diagram by Grace [35] as can be seen in Fig. 6. From the figure, the operating condition of primary air supply as 0.29 m/s was in the range of bubbling

Fig. 2 – Contours of initial solid volume fraction in the system.

Fig. 3 – Computed pressure profiles at different positions in (a) riser and (b) downer.

regime and the operating condition of secondary air inlet as 4.81 m/s was higher than the critical velocity (U_{se}) which is called the blow-out velocity [35]. This high velocity then provides the energy for circulating of bed material inside the system.

Fig. 4 – Computed pressure profile using three different drag models compared with experimental result.

The phenomenon occurred in the system affects the non-uniformity of solid density along the axial system direction with various instantaneous simulation times. Fig. 7a shows the time-averaged and instantaneous at 40 s of solid volume fraction profiles along the riser height of the dual-bed gasifier. It can be observed that the solid bed was accumulated at the bottom of the riser section where the solid bed was recirculated back from the gasifier zone to the combustor zone. This made the solid volume fraction in this region to be dense with the solid volume fraction of 0.60. Then, the solid volume fraction was suddenly decreased at the secondary air inlet and slightly accumulated as the increasing of the height of the riser section. At the top of the dual-bed gasifier system, the solid volume fraction again increased because the solid particles are falling back from the exit configuration. To verify the fluidization regimes from the solid volume fraction profiles, Fig. 7b illustrates the axial distributions of solid volume fraction with different fluidization regimes as reviewed by Amornsirirat et al. [36]. From both Fig. 7a and b, it can be seen that the flow pattern between bubbling and turbulent as observed in this study was slug flow [34].

In addition to the above cold flow validation with theory, two flow predictions which were the bubble size and bubble rise velocity were compared with the literature correlations as summarized by Lindborg et al. [37] and Di Carlo et al. [38]. The bubble, defining as an area where the solid volume fraction is below 20%, has been considered an important variable in bubbling fluidized beds, since it controls most of the rate phenomena in the bed. The bubble rise velocity is determined from the velocity at the center of the bubbles. For the bubble diameter, the obtained simulation and literature correlation values were in the ranges of 0.07–0.08 m and 0.05–0.08 m, respectively. For the bubble rise velocity, the obtained simulation and literature correlation values were in the ranges of 0.45–0.66 m/s and 0.44–0.63 m/s, respectively. Both the simulation results were in agreement with literature correlations with slight overestimated value due to the interaction between consecutive bubbles. Therefore, the employed computational fluid dynamics model was successfully validated using the results from cold flow simulation.

4.3. Solid velocity

Fig. 8a shows radial distribution of time-averaged axial solid velocities along the riser height. For the 0.25 m and 0.50 m height or the bottom of the riser section, the axial solid velocities had negative values at the right hand side of the system where the screw-feeder was interconnected. This means that the solid moving downward in that section. Then solid receives the driving force from secondary air feeder and increases their acceleration. The axial solid velocity reached fully developed condition at 1.25 m of riser height. After reached the fully developed state, the axial solid velocities were high at the center of the riser section, slightly decreased and reached zero at wall. For gasifier section, most of axial solid velocities had negative values as can be seen from Fig. 8b. The solid particles are fallen by gravity force and accumulated in this section. Thus, the reactor takes the form of fixed-bed operation.

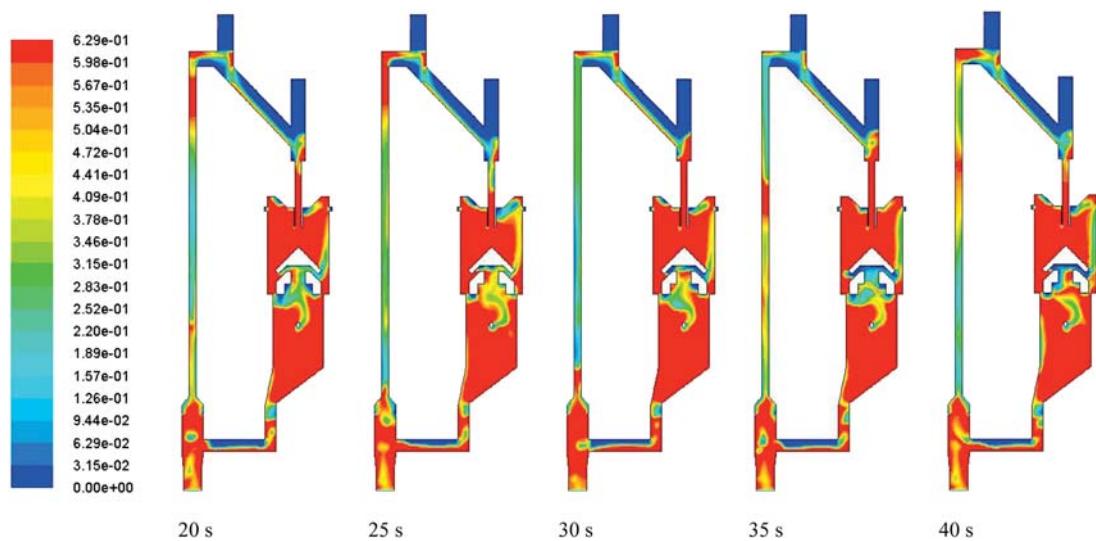


Fig. 5 – Instantaneous contour plots of the solid volume fraction at five different simulation times.

Fig. 9a shows radial distribution of time-averaged radial solid velocities along the riser height. It was observed that radial solid velocities below 0.75 m height of the riser were oscillated with the average value of about 0.10 m/s. This can be explained by the solid behavior or bubble coalescence and splitting in bubbling flow regime [23]. The solid velocities above 0.75 m height of the riser were quite uniform with less fluctuation. It was found that in upper riser section, slugging

flow pattern occurred above secondary air supply. With this flow regime, the solid concentration was uniformly dense in the radial direction. Amornsirirat et al. [36] found that solid volume fractions across the radial direction were quite uniform for the slugging system. Their solids were mainly pushed in the vertical direction. Only few particles thus had an ability to move in the horizontal direction. The explanation can be confirmed by the radial distribution of solid volume fraction as can be seen in Fig. 10. The complex design of the downer gasifier was attended in order to enhancing solid mixing. In Fig. 9b, one can observe higher fluctuation of radial solid velocity. This oscillation facilitates the solid mixing in radial direction.

4.4. Product gas composition and gas temperature

In this part, the hot flow simulation was verified with experimental measurement and literature information. Fig. 11 shows comparisons of (a) compositions of product gas at syngas outlet and (b) gas temperatures in the downer section between experimental and simulation results. All the simulated mole fraction and gas temperature were consistent with experimental measurement values. The employed computational fluid dynamics model was then successfully verified with the results from hot flow simulation. The slightly deviation between the results can be explained by the availability of complex chemical reaction kinetics.

From Fig. 11a, because there was no air in the gasification zone or downer section, the proportion of nitrogen in the product gas was very low, around 0.10 by mole, while the mole fraction of hydrogen, carbon monoxide, carbon dioxide and methane was 0.36, 0.18, 0.21 and 0.14 respectively. Comparing to the other type of gasification reactor, the amount of nitrogen gas in this dual-bed gasifier was considerably lower due to the design of system configuration. Li et al. [5] and Puig-Arnavat [7] summarized the nitrogen compositions from commonly used downdraft and bubbling fluidized bed gasifiers to be 50–54 percent by mole and 41.6–61.6 percent by

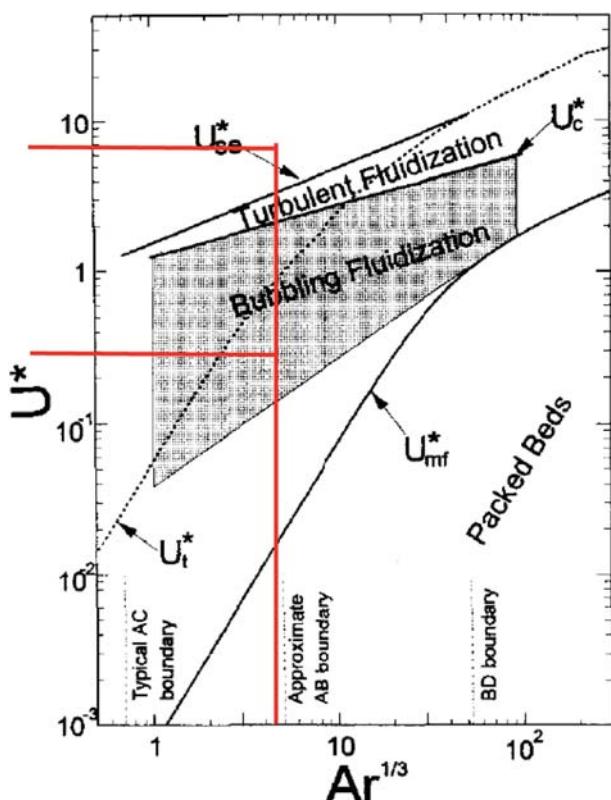


Fig. 6 – Generalized flow regime diagram; Grace [35].