บทคัดย่อ

รหัสโครงการ : MRG5580142

ชื่อโครงการ: การกัดกร่อนในสภาวะอุณหภูมิสูงระหว่างโลหะเหลวที่บรรจุในท่อบรรจุ เชื้อเพลิงสำหรับเครื่องปฏิกรณ์นิวเคลียร์แบบน้ำอัดความดันกับเหล็กกล้าไร้สนิมและ คอนกรีตมวลหนัก

ชื่อนักวิจัย : ผศ.ดร. ดุลยพงศ์ วงศ์แสวง จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address : Doonyapong.W@Chula.ac.th

ระยะเวลาโครงการ : 2 กรกฎาคม 2555 ถึง 2 กรกฎาคม 2557

บทคัดย่อ :

โลหะเหลว (Liquid metal) ซึ่งประกอบด้วยตะกั่ว ดีบุกและบิสมัตในอัตราส่วนเท่ากัน ได้ถูกศึกษาใช้เป็นตัวระบายความร้อนในท่อบรรจุเชื้อเพลิงนิวเคลียร์ ซึ่งจะทำให้เม็ดเชื้อเพลิงมี อุณหภูมิต่ำลงและมีความปลอดภัยมากขึ้น จึงมีความจำเป็นต้องศึกษาการกัดกร่อนระหว่าง โลหะเหลวที่อุณหภูมิสูงกับเหล็กกล้าไร้สนิมและคอนกรีตมวลหนักในสภาวะอุบัติเหตุ ผลที่ได้คือ โลหะเหลวที่สัมผัสกับเหล็กกล้าไร้สนิมเกรด 304 ในสภาวะน้ำหล่อเย็นของโรงไฟฟ้านิวเคลียร์ แบบปฏิกรณ์น้ำอัดความดันที่อุณหภูมิ 315°C เป็นเวลา 30 วันไม่เกิดการกัดกร่อนใดๆ และไม่ ทำปฏิกิริยากับน้ำหล่อเย็น ได้ทำการผลิตแท่งคอนกรีตมวลหนักจาก Type 1 Portland cement แบไรท์หยาบและแบไรท์ละเอียดและให้ความร้อนกับโลหะเหลวที่บรรจุในคอนกรีตมวลหนักโดย ใช้วิธี Inductive heating จากเครื่อง Induction heater ขนาด 35 kW และความลึกที่โลหะเหลว แพร่ไปในคอนกรีตมวลหนักถูกวัดด้วยเทคนิคการถ่ายภาพด้วยรังสีแกมมาโดยใช้ต้นกำเนิดรังสี Co-60 ซึ่งที่ 1,000°C เป็นเวลานานถึง 12 ชั่วโมงโลหะเหลวไม่แพร่ไปในคอนกรีตมวลหนัก ที่ 1,200°C เป็นเวลา 5 ชั่วโมง โลหะเหลวแพร่เป็นระยะทางประมาณ 1.3 ซ.ม. และก็ได้หยุดลง ที่ 1,400°C โลหะเหลวแพร่เป็นระยะทางประมาณ 2 ซ.ม. ในเวลาประมาณ 3 ชั่วโมง ซึ่งสามารถ คำนวณเป็นค่าการกัดกร่อนได้ที่ประมาณ 0.7 ซ.ม. ต่อชั่วโมง และที่ 1,600°C โลหะเหลวแพร่ เป็นระยะทางประมาณ 2.9 ซ.ม. ในเวลาประมาณ 10 นาทีเท่านั้น ซึ่งสามารถคำนวณเป็นค่า การกัดกร่อนได้ที่ประมาณ 17 ซ.ม. ต่อชั่วโมง ซึ่งการแพร่ลงไปในคอนกรีตมวลหนักเหล่านี้ ก็ จะเกิดขึ้นกับโลหะเหลวประเภทอื่นๆ เช่นกันหากทำการเทโลหะเหลวใดๆ ลงบนคอนกรีตมวล หนักและให้ความร้อนสูงตลอดเวลา นอกจากนี้ที่อุณหภูมิสูงถึง 1,600°C โลหะเหลวไม่ทำ ปฏิกิริยากับอากาศหรือความชื้นในอากาศ ดังนั้นผลการทดลองแสดงให้เห็นว่าโลหะเหลวใน สภาวะอุณหภูมิสูงจะไม่กัดกร่อนเหล็กกล้าไร้สนิมแต่จะแพร่เข้าไปในคอนกรีตมวลหนักหากมี อุณหภูมิสูงพอ

คำหลัก : โลหะเหลว เชื้อเพลิงนิวเคลียร์ การกัดกร่อน เหล็กกล้าไร้สนิม คอนกรีตมวลหนัก

Abstract

Project Code: MRG5580142

Project Title: High-Temperature Corrosion Behaviors between Liquid Metal as

PWR Fuel Gap Filler and Stainless Steel and High-Density Concrete

Investigator: Asst. Prof. Dr. Doonyapong Wongsawaeng Chulalongkorn

University

E-mail Address : Doonyapong.W@Chula.ac.th

Project Period: 2 July 2012 to 2 July 2014

Abstract:

A liquid metal (LM) composing of an equal portion of lead, tin and bismuth has been studied as a heat transfer material in nuclear fuel rods. The fuel pellets would operate at a lower temperature resulting in an enhanced safety. Therefore, corrosion between liquid metal and stainless steel and high-density concrete under accident conditions must be studied. It was found that the LM in contact with 304 stainless steel at 315°C in water chemistry of pressurized water reactor for 30 days resulted in no observable corrosion. Moreover, the LM did not show any reaction with the coolant. High-density concrete blocks were fabricated from type 1 Portland cement, coarse barite and fine barite. Heating of the LM contained in the pit on the concrete block was done by inductive heating using a 35 kW induction heater. The penetration depth of LM into the concrete was measured using gamma radiography with Co-60 source. At 1,000°C for as long as 12 hours, no penetration took place. At 1,200°C for 5 hours, the LM penetrated a distance of ~ 1.3 cm, but the penetration appeared to stop. At 1,400°C the LM penetrated a distance of ~ 2 cm in the duration of ~ 3 hours. This was translated into a penetration rate of ~ 0.7 cm/hr. At 1,600°C, the LM penetrated a distance of ~ 2.9 cm in as little as 10 minutes. This was translated into a penetration rate of ~ 17 cm/hr. This behavior, however, would be expected for other hot metals as well, if one were to pour any hot metal onto a high-density concrete and continually supply heat to it.

Moreover, for as high as 1,600°C, the non-reactive LM did not show any chemical reaction with air or moisture in the air. These experimental results confirmed that the high-temperature LM will not corrode stainless steel, but will diffuse into high-density concrete under sufficiently-high temperature.

Keywords: Liquid metal, nuclear fuel, corrosion, stainless steel, high-density concrete