

รายงานวิจัยฉบับสมบูรณ์

โครงการการกัดกร่อนในสภาวะอุณหภูมิสูงระหว่างโลหะ เหลวที่บรรจุในท่อบรรจุเชื้อเพลิงสำหรับเครื่องปฏิกรณ์ นิวเคลียร์แบบน้ำอัดความดันกับเหล็กกล้าไร้สนิมและ คอนกรีตมวลหนัก

โดย ผศ.ดร. ดุลยพงศ์ วงศ์แสวง

มิถุนายน 2557

สัญญาเลขที่ MRG5580142

รายงานวิจัยฉบับสมบูรณ์

โครงการการกัดกร่อนในสภาวะอุณหภูมิสูงระหว่างโลหะ เหลวที่บรรจุในท่อบรรจุเชื้อเพลิงสำหรับเครื่องปฏิกรณ์ นิวเคลียร์แบบน้ำอัดความดันกับเหล็กกล้าไร้สนิมและ คอนกรีตมวลหนัก

ผู้วิจัย

สังกัด

1. ผศ.ดร. ดุลยพงศ์ วงศ์แสวง จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

รหัสโครงการ : MRG5580142

ชื่อโครงการ: การกัดกร่อนในสภาวะอุณหภูมิสูงระหว่างโลหะเหลวที่บรรจุในท่อบรรจุ เชื้อเพลิงสำหรับเครื่องปฏิกรณ์นิวเคลียร์แบบน้ำอัดความดันกับเหล็กกล้าไร้สนิมและ คอนกรีตมวลหนัก

ชื่อนักวิจัย : ผศ.ดร. ดุลยพงศ์ วงศ์แสวง จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address : Doonyapong.W@Chula.ac.th

ระยะเวลาโครงการ : 2 กรกฎาคม 2555 ถึง 2 กรกฎาคม 2557

บทคัดย่อ :

โลหะเหลว (Liquid metal) ซึ่งประกอบด้วยตะกั่ว ดีบุกและบิสมัตในอัตราส่วนเท่ากัน ได้ถูกศึกษาใช้เป็นตัวระบายความร้อนในท่อบรรจุเชื้อเพลิงนิวเคลียร์ ซึ่งจะทำให้เม็ดเชื้อเพลิงมี อุณหภูมิต่ำลงและมีความปลอดภัยมากขึ้น จึงมีความจำเป็นต้องศึกษาการกัดกร่อนระหว่าง โลหะเหลวที่อุณหภูมิสูงกับเหล็กกล้าไร้สนิมและคอนกรีตมวลหนักในสภาวะอุบัติเหตุ ผลที่ได้คือ โลหะเหลวที่สัมผัสกับเหล็กกล้าไร้สนิมเกรด 304 ในสภาวะน้ำหล่อเย็นของโรงไฟฟ้านิวเคลียร์ แบบปฏิกรณ์น้ำอัดความดันที่อุณหภูมิ 315°C เป็นเวลา 30 วันไม่เกิดการกัดกร่อนใด ๆ และไม่ ทำปฏิกิริยากับน้ำหล่อเย็น ได้ทำการผลิตแท่งคอนกรีตมวลหนักจาก Type 1 Portland cement แบไรท์หยาบและแบไรท์ละเอียดและให้ความร้อนกับโลหะเหลวที่บรรจุในคอนกรีตมวลหนักโดย ใช้วิธี Inductive heating จากเครื่อง Induction heater ขนาด 35 kW และความลึกที่โลหะเหลว แพร่ไปในคอนกรีตมวลหนักถูกวัดด้วยเทคนิคการถ่ายภาพด้วยรังสีแกมมาโดยใช้ต้นกำเนิดรังสี Co-60 ซึ่งที่ 1,000°C เป็นเวลานานถึง 12 ชั่วโมงโลหะเหลวไม่แพร่ไปในคอนกรีตมวลหนัก ที่ 1,200°C เป็นเวลา 5 ชั่วโมง โลหะเหลวแพร่เป็นระยะทางประมาณ 1.3 ซ.ม. และก็ได้หยุดลง ที่ 1,400°C โลหะเหลวแพร่เป็นระยะทางประมาณ 2 ซ.ม. ในเวลาประมาณ 3 ชั่วโมง ซึ่งสามารถ คำนวณเป็นค่าการกัดกร่อนได้ที่ประมาณ 0.7 ซ.ม. ต่อชั่วโมง และที่ 1,600°C โลหะเหลวแพร่ เป็นระยะทางประมาณ 2.9 ซ.ม. ในเวลาประมาณ 10 นาทีเท่านั้น ซึ่งสามารถคำนวณเป็นค่า การกัดกร่อนได้ที่ประมาณ 17 ซ.ม. ต่อชั่วโมง ซึ่งการแพร่ลงไปในคอนกรีตมวลหนักเหล่านี้ ก็ จะเกิดขึ้นกับโลหะเหลวประเภทอื่นๆ เช่นกันหากทำการเทโลหะเหลวใดๆ ลงบนคอนกรีตมวล หนักและให้ความร้อนสูงตลอดเวลา นอกจากนี้ที่อุณหภูมิสูงถึง 1,600°C โลหะเหลวไม่ทำ ปฏิกิริยากับอากาศหรือความชื้นในอากาศ ดังนั้นผลการทดลองแสดงให้เห็นว่าโลหะเหลวใน สภาวะอุณหภูมิสูงจะไม่กัดกร่อนเหล็กกล้าไร้สนิมแต่จะแพร่เข้าไปในคอนกรีตมวลหนักหากมี อุณหภูมิสูงพอ

คำหลัก : โลหะเหลว เชื้อเพลิงนิวเคลียร์ การกัดกร่อน เหล็กกล้าไร้สนิม คอนกรีตมวลหนัก

Abstract

Project Code: MRG5580142

Project Title: High-Temperature Corrosion Behaviors between Liquid Metal as

PWR Fuel Gap Filler and Stainless Steel and High-Density Concrete

Investigator: Asst. Prof. Dr. Doonyapong Wongsawaeng Chulalongkorn

University

E-mail Address: Doonyapong.W@Chula.ac.th

Project Period: 2 July 2012 to 2 July 2014

Abstract:

A liquid metal (LM) composing of an equal portion of lead, tin and bismuth has been studied as a heat transfer material in nuclear fuel rods. The fuel pellets would operate at a lower temperature resulting in an enhanced safety. Therefore, corrosion between liquid metal and stainless steel and high-density concrete under accident conditions must be studied. It was found that the LM in contact with 304 stainless steel at 315°C in water chemistry of pressurized water reactor for 30 days resulted in no observable corrosion. Moreover, the LM did not show any reaction with the coolant. High-density concrete blocks were fabricated from type 1 Portland cement, coarse barite and fine barite. Heating of the LM contained in the pit on the concrete block was done by inductive heating using a 35 kW induction heater. The penetration depth of LM into the concrete was measured using gamma radiography with Co-60 source. At 1,000°C for as long as 12 hours, no penetration took place. At 1,200°C for 5 hours, the LM penetrated a distance of ~ 1.3 cm, but the penetration appeared to stop. At 1,400°C the LM penetrated a distance of ~ 2 cm in the duration of ~ 3 hours. This was translated into a penetration rate of ~ 0.7 cm/hr. At 1,600°C, the LM penetrated a distance of ~ 2.9 cm in as little as 10 minutes. This was translated into a penetration rate of ~ 17 cm/hr. This behavior, however, would be expected for other hot metals as well, if one were to pour any hot metal onto a high-density concrete and continually supply heat to it.

Moreover, for as high as 1,600°C, the non-reactive LM did not show any chemical reaction with air or moisture in the air. These experimental results confirmed that the high-temperature LM will not corrode stainless steel, but will diffuse into high-density concrete under sufficiently-high temperature.

Keywords: Liquid metal, nuclear fuel, corrosion, stainless steel, high-density concrete

วัตถุประสงค์

เนื่องจากหัวข้อเดิมของโครงการวิจัยนี้คือ "ความเร็วในการกัดกร่อนระหว่างคอเรียม จำลองของเชื้อเพลิงยูเรเนียมเซอร์โคเนียมไฮไดรด์ (เซอร์โคเนียมและเหล็ก) กับคอนกรีตภายใต้ สภาวะพื้นผิวแห้งและเปียก" แต่ได้ขออนุมัติเปลี่ยนหัวข้อและวัตถุประสงค์ของโครงการวิจัยนี้ เนื่องจากระหว่างทำการทดลองหลอมละลายโลหะเซอร์โคเนียมได้เกิดไฟไหม้ค่อนข้างรุนแรงขึ้น 2 ครั้งบริเวณที่ทำการทดลองและเซอร์โคเนียมที่หลอมละลายบางส่วนก็ได้สัมผัสกับ Induction coil ของเครื่อง Induction heater ทำให้ Coil ละลายบางส่วนด้วย เมื่อพิจารณาอย่างถี่ถ้วนกับที่ ปรึกษาแล้ว เห็นว่างานลักษณะนี้มีอันตรายจากการเกิดเปลวไฟ ซึ่งถ้าจะทำให้ปลอดภัยจริงต้อง ทำการทดลองใน Chamber ที่แข็งแรงสามารถรองรับความร้อนและแรงระเบิดที่อาจเกิดขึ้นได้ และระบบ Chamber ต้องสามารถควบคุมบรรยากาศภายในได้ด้วยเพื่อไม่ให้มีออกซิเจนอยู่ ภายในซึ่งเป็นส่วนหนึ่งที่ทำให้เกิดเปลวไฟ เมื่อพิจารณาอย่างรอบคอบและถี่ถ้วนแล้วเห็นว่า ควรศึกษากับโลหะประเภทอื่นแทนซึ่งจะไม่ก่อให้เกิดเปลวไฟอย่างแน่นอน เพื่อความปลอดภัย ของผู้ทำการวิจัยและผู้อื่นๆ ที่อาจอยู่ในห้องที่ทำการทดลองด้วย โดยโลหะประเภทอื่นที่ เหมาะสมนี้คือโลหะผสมระหว่าง ตะกั่ว ดีบุกและบิสมัต (โลหะเหลว) ซึ่งถ้าผสมในอัตราส่วนที่ เท่ากันโดยน้ำหนักของโลหะแต่ละประเภทแล้ว จะได้ Ternary eutectic compound ที่หลอม ละลายที่อุณหภูมิประมาณ 100°C โดยในการทำวิทยานิพนธ์ระดับปริญญาโทและเอก ผู้วิจัยได้ ศึกษาผลของการใช้โลหะเหลวนี้ในแท่งเชื้อเพลิงนิวเคลียร์ เพื่อช่วยนำความร้อนจากเม็ด เชื้อเพลิง ซึ่งจะทำให้เม็ดเชื้อเพลิงมีอุณหภูมิต่ำลง (ที่ระดับกำลังเท่าเดิม) และมีความปลอดภัย มากขึ้น

หากมีการนำโลหะเหลวนี้ไปใช้งานในแท่งเชื้อเพลิงจริง หากเกิดการรั่วของแท่ง เชื้อเพลิงทำให้โลหะเหลวออกมาและสัมผัสเป็นเวลานานกับแผ่น Stainless steel ที่เป็นตัว Liner ของถังปฏิกรณ์นิวเคลียร์ ก็อาจเกิดการกัดกร่อนของแผ่น Stainless steel ได้ จึงต้อง ทำการศึกษาการกัดกร่อนระหว่างโลหะเหลวนี้กับ Stainless steel ในสภาวะน้ำหล่อเย็นของ เครื่องปฏิกรณ์แบบน้ำอัดความดัน (Pressurized Water Reactor; PWR) ที่อุณหภูมิ 315°C เป็นเวลา 1 เดือน เพื่อศึกษาว่าจะเกิดการกัดกร่อนหรือไม่และและหากเกิด เกิดมากน้อยเพียงใด นอกจากนี้การที่โลหะเหลวสัมผัสกับน้ำหล่อเย็นของ PWR เป็นเวลานาน ก็อาจเกิดปฏิกิริยาขึ้น ได้ จึงต้องทำการศึกษาปฏิกิริยาระหว่างโลหะเหลวกับน้ำหล่อเย็นที่อุณหภูมิ 315°C เป็นเวลา 1 เดือนด้วย

นอกจากนี้ในกรณีเกิดอุบัติเหตุ Core melt accident ที่ทำให้โลหะเหลวนี้ตกไปอยู่บน พื้นคอนกรีตของโรงไฟฟ้านิวเคลียร์ และโลหะเหลวมีอุณหภูมิสูงเกิน 1,000°C ตลอดเวลาจาก ความร้อนที่ได้รับจากเชื้อเพลิงที่หลอมละลาย ก็จะต้องศึกษาความเร็วในการกัดกร่อนที่อุณหภูมิ สูงระหว่างโลหะเหลวนี้กับคอนกรีตมวลหนักด้วย เพื่อให้ได้ข้อมูลที่สามารถนำไปใช้ออกแบบ โรงไฟฟ้านิวเคลียร์อย่างเหมาะสมต่อไปได้ โดยทั้ง 2 การทดลองนี้ ยังไม่เคยมีใครทำและ

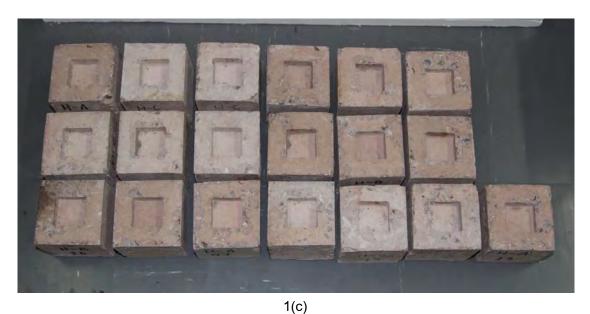
รายงานใน Literature มาก่อน เป็นงานใหม่ซึ่งจะให้ข้อมูลที่เป็นประโยชน์ต่ออุตสาหกรรม นิวเคลียร์ สามารถตีพิมพ์ในวารสารต่างประเทศได้อย่างแน่นอน

จากการเปลี่ยนแผนงานวิจัยนี้ จึงทำให้วัตถุประสงค์ของโครงการเปลี่ยนไปโดยมี วัตถุประสงค์ใหม่ดังต่อไปนี้

- 1. เพื่อผลิตคอนกรีตมวลหนักอย่างน้อย 20 ก้อน
- 2. เพื่อศึกษาการกัดกร่อนระหว่างโลหะเหลว (โลหะผสมระหว่างตะกั่ว ดีบุกและ บิสมัต) กับ Stainless steel ในสภาวะน้ำหล่อเย็นของเครื่องปฏิกรณ์แบบน้ำอัด ความดัน (Pressurized Water Reactor; PWR) ที่อุณหภูมิ 315°C เป็นเวลา 1 เดือน
- 3. เพื่อศึกษาปฏิกิริยาระหว่างโลหะเหลวกับน้ำหล่อเย็นของเครื่องปฏิกรณ์แบบน้ำอัด ความดัน (Pressurized Water Reactor; PWR) ที่อุณหภูมิ 315°C เป็นเวลา 1 เดือน
- 4. เพื่อศึกษาความเร็วในการกัดกร่อนระหว่างโลหะเหลวกับคอนกรีตมวลหนักที่ อุณหภูมิอย่างน้อย 1,000°C

วิธีทดลอง

ในช่วง 6 เดือนแรกของโครงการวิจัยนี้ ได้ดำเนินการตามวัตถุประสงค์เดิมโดยมี รายละเอียดดังต่อไปนี้


ได้ผลิต High-density concrete จำนวน 20 ชิ้นโดยใช้ Type-1 Portland cement แบ ไรท์หยาบและแบไรท์ละเอียดดังแสดงในรูปที่ 1(a) - 1(c) (ชิ้นที่ 20 วางอยู่ใน Furnace) โดยแต่ ละชิ้นผลิตเป็นรูปลูกเต๋าขนาด 10 ซ.ม. และมีเบ้าด้านบนลึกประมาณ 1 ซ.ม. เพื่อให้สามารถ บรรจุโลหะไว้ได้และเมื่อเวลาหลอมละลายจะได้ไม่ไหลออกมา High-density concrete นี้มี ส่วนผสมของแร่ Barite จึงมีลักษณะสีชมพูอ่อนๆ ตามสีของแร่นี้

1(a)

1(b)

รูปที่ 1(a) - 1(c) High-density concrete ที่ผลิตได้

ตารางที่ 1 แสดงองค์ประกอบของ High density concrete ค่าความหนาแน่นและค่า ความทนต่อแรงบีบอัด ส่วนตารางที่ 2 และ 3 แสดง % ธาตุองค์ประกอบของซีเมนต์และแบไรท์ ที่เป็นองค์ประกอบของ High-density concrete ซึ่งวิเคราะห์โดยเทคนิค X-ray fluorescence (XRF)

ตารางที่ 1 องค์ประกอบของ High density concrete ค่าความหนาแน่นและค่าความทน ต่อแรงบีบอัด

Parameter	Value
Type 1 Portland cement	11 wt%
Coarse barite (1-2 cm size)	41 wt%
Fine barite (200 mesh size)	28.2 wt%
Water	5.5 wt%
Average density	3.43 g/cm ³
Average compressive strength	378.4 kg/cm ²

ตารางที่ 2 เปอร์เซ็นต์ธาตุองค์ประกอบของซีเมนต์ที่เป็นองค์ประกอบของ High-density concrete

Element	Concentration (%)	Compound	Concentration (%)
Ca	46.58	CaO	65.60
Si	9.72	SiO_2	20.69
Fe	2.78	Fe_2O_3	3.98
Al	1.91	Al_2O_3	3.60
S	1.60	SO_3	4.01
Mg	0.83	MgO	1.38
K	0.39	K_2O	0.47
Mn	0.06	MnO	0.08
Cl	0.04	Cl	0.04
Zn	0.04	ZnO	0.05
Cu	0.03	CuO	0.04
Sr	0.03	SrO	0.04
Zr	0.01	ZrO_2	0.01
Ba	0.01	BaO	0.02

ตารางที่ 3 เปอร์เซ็นต์ธาตุองค์ประกอบของแบไรท์ที่เป็นองค์ประกอบของ High-density concrete

Element	Concentration (%)	Compound	Concentration (%)
Ba	47.78	BaO	58.99
S	11.01	SO_3	27.54
Si	3.43	SiO_2	7.29
Fe	2.76	Fe_2O_3	3.94
Sr	0.88	SrO	1.04
Al	0.38	Al_2O_3	0.72
K	0.13	K_2O	0.15
Mn	0.12	MnO	0.16
As	0.05	As_2O_3	0.07
Cu	0.04	CuO	0.05
Zn	0.04	ZnO	0.05

จากผลการวัดที่แสดงในตาราง High-density concrete มีความหนาแน่นประมาณ 2 เท่าของคอนกรีตทั่วไป ซึ่งก็เป็นไปตามที่ได้คาดคิดไว้ ส่วนธาตุองค์ประกอบหลักของซีเมนต์คือ Ca และ Si และธาตุองค์ประกอบหลักของแบไรท์คือ Ba และ S ซึ่งตรงตามที่ควรจะเป็น

ได้ซื้อ Thermocouple โลหะสำหรับสร้าง Thermocouple junction และ 8-channel data acquisition board ดังแสดงในรูปที่ 2 (แต่จะไม่มีการใช้งานเพราะจะใช้ Infrared pyrometer แทน แต่ก็สามารถนำไปใช้ในงานวิจัยอื่นๆ ให้เกิดประโยชน์ได้มากมาย)

รูปที่ 2 Thermocouple โลหะทำ Thermocouple junction และ 8-channel data acquisition board (ไม่ใช้ในงานนี้เพราะจะใช้ Infrared pyrometer แทน)

ได้ซื้อ Infrared pyrometer ซึ่งใช้งานได้ง่ายมาก โดยเล็งลำแสงเลเซอร์ไปยังจุดที่ ต้องการวัดอุณหภูมิ ก็จะสามารถทราบอุณหภูมิได้ในทันที ดังแสดงในรูปที่ 3(a) - 3(b) (เนื่องจากเครื่องนี้จัดเป็นเป็นครุภัณฑ์ จึงใช้งบประมาณส่วนตัวในการจัดซื้อ และเครื่องนี้ สามารถนำไปใช้ประโยชน์กับงานวิจัยอื่นให้เกิดประโยชน์ได้อีกมากมาย)

รูปที่ 3(a) - 3(b) Infrared pyrometer ที่จะใช้วัดอุณหภูมิของโลหะเหลว

ได้ซื้อโลหะเซอร์โคเนียมแบบแท่งและแบบเศษเล็กๆ เพื่อที่จะสามารถปรับน้ำหนักที่จะ ใส่ใน High-density concrete block ได้อย่างแม่นยำ โดยบางส่วนของแท่งเซอร์โคเนียมได้ทำ การตัดเป็นชิ้นเล็กๆ แล้ว เพื่อความสะดวกในการใส่ลงใน High-density concrete block ดัง แสดงในรูปที่ 4 ส่วนโลหะเหล็ก มีปริมาณเพียงพออยู่ในห้องปฏิบัติการวิจัยแล้ว

รูปที่ 4 โลหะเซอร์โคเหียมแบบแท่งและแบบเศษเล็ก ๆ

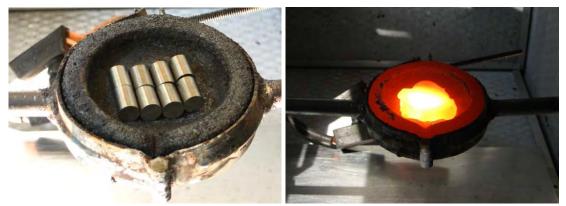
ได้ซื้อ Oxy-acetylene welding system ซึ่งประกอบด้วยถังก๊าซ Oxygen ถังก๊าซ Acetylene ตัว Regulator สำหรับแต่ละก๊าซ รถเข็นถังก๊าซ ท่อเชื่อมก๊าซ ตัวกันไฟไหลย้อนกลับ และชุดหัวตัด-เชื่อม-เผา ดังแสดงในรูปที่ 5(a) - 5(b)

5(a) 5(b) 5(b) Oxy-acetylene welding system

ได้สร้าง Furnace อย่างง่ายโดยด้านล่างสุดเป็นแผ่น Ceramic fiber 2 แผ่น ทนความ ร้อนได้ 1,400°C และด้านบนเป็นอิฐทนความร้อนเรียงซ้อนกันหลาย ๆ ก้อนอย่างเหมาะสม ดัง แสดงในรูปที่ 6(a) - 6(c) โดยอิฐแต่ละก้อนทนความร้อนได้ 1,200°C ซึ่งหากเกิดความเสียหาย ขึ้นก็สามารถเปลี่ยนก้อนใหม่ใส่ได้อย่างง่ายดายเพราะมีน้ำหนักเบาและมีราคาถูก

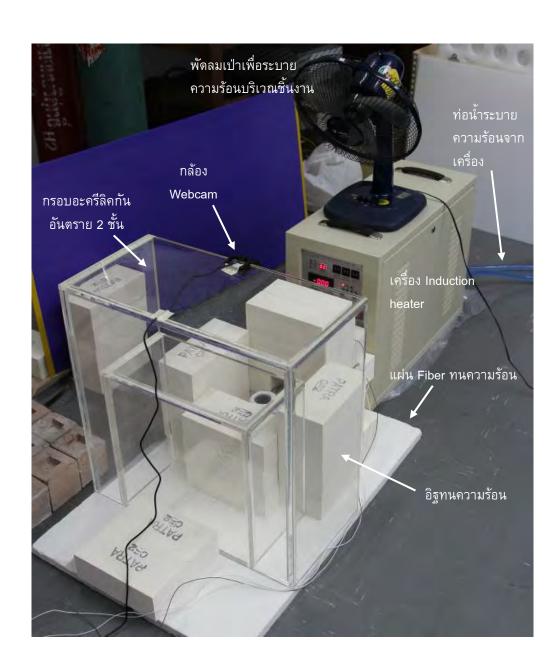
6(b)

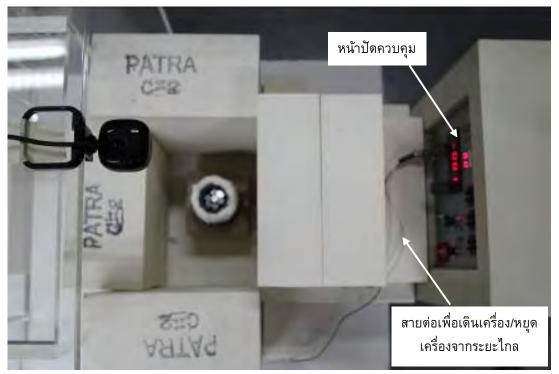
6(c) รูปที่ 6(a) - 6(c) Furnace อย่างง่ายที่ได้สร้างขึ้น ตรงกลางบรรจุ High-density concrete ซึ่งมีแท่ง Zirconium สั้น ๆ บรรจุอยู่หลายแท่ง

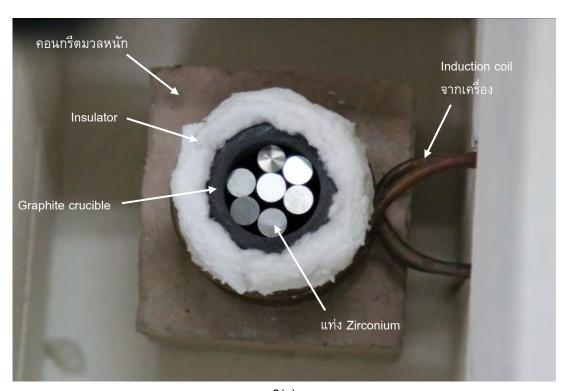

ท้ายสุดแล้วใด้ทดลองหลอมโลหะและเทลงใน High-density concrete block โดยใช้ เครื่อง Arc plasma ที่มีในห้องปฏิบัติการวิจัย (ได้ดำเนินการทดลองนี้ก่อนที่จะซื้อ Oxyacetylene welding system และสร้าง Furnace อย่างง่ายขึ้น) ซึ่งผลที่ได้เป็นที่น่าพอใจเพราะ คอนกรีตไม่แตกออกเป็นเสี่ยงๆ และสามารถรักษาโลหะเหลวไว้ในเบ้าได้ ดังแสดงในรูปที่ 7(a) - 7(d)

7(a) เครื่อง Arc plasma ที่ทดลองใช้หลอมโลหะ

7(b) ตัวอย่างการหลอมโลหะเหล็กใน Graphite crucible




7(c) ตัวอย่างการหลอมโลหะเซอร์โคเนียมใน Graphite crucible


7(d) โลหะเหลวที่เทลงใน High-density concrete (ในรูปได้กลายเป็นของแข็งแล้ว) รูปที่ 7(a) - 7(d) การทดลองหลอมโลหะและเทลงใน High-density concrete โดยใช้ เครื่อง Arc plasma

อย่างไรก็ตาม เมื่อพิจารณาอย่างถี่ถ้วนกับที่ปรึกษาแล้ว (รวมถึงได้ทำการปรึกษากับ Professor Donald Olander ศาสตราจารย์ในสหรัฐอเมริกาที่ผู้รับทุนทำวิจัยระดับปริญญาโท และเอกด้วย และเป็นผู้เชี่ยวชาญในด้านวัสดุนิวเคลียร์) ได้ข้อสรุปว่าใช้ Induction heater จะ เหมาะสมที่สุด เพราะจะส่งพลังงานให้โลหะร้อนขึ้นแต่เพียงอย่างเดียว ไม่ส่งพลังงานโดยตรงให้ คอนกรีตร้อนด้วย (คอนกรีตจะร้อนจากการสัมผัสกับโลหะที่ร้อน) ซึ่งก็เป็นสิ่งที่เกิดขึ้นจริงใน กรณีเกิดอุบัติเหตุนี้ ผู้รับทุนจึงซื้อเครื่อง Induction heater ขนาด 35 kW โดยออกค่าใช้จ่ายเอง เพื่อนำมาใช้ในงานวิจัยนี้ รูปที่ 8(a) - 8(c) แสดงการจัดวางสิ่งต่าง ๆ ในการทดลองใหม่นี้

8(b)

8(c) รูปที่ 8(a) - 8(c) การจัดวางสิ่งต่าง ๆ ในการทดลอง

ได้ต่อไฟ 3 เฟสเข้ากับเครื่อง Induction heater ผ่าน Circuit breaker ได้ต่อท่อนำน้ำ ระบายความร้อนสู่เครื่องและออกจากเครื่อง ส่วนบริเวณชิ้นงานประกอบด้วยก้อนคอนกรีตมวล หนักและ Graphite crucible ที่วางอยู่เหนือเบ้าโดยมีแท่ง Zirconium อยู่ใน Graphite crucible ส่วนรอบ ๆ Crucible มี Induction coil อยู่และช่องว่างระหว่าง Induction coil กับ Crucible มีใย แก้วทนความร้อนอยู่เพื่อเป็นฉนวนกันความร้อน นอกจากนี้เนื่องจากมีความกังวลอยู่แล้วว่าการ ทดลองอาจเกิดอันตรายได้เนื่องจากอุณหภูมิต้องสูงถึงอย่างน้อย 1,850°C จึงจะสามารถหลอม ละลาย Zirconium ได้ จึงได้ต่อ Webcam เพื่อดูภาพบริเวณชิ้นงานผ่านจอคอมพิวเตอร์ที่อยู่อีก ห้องหนึ่ง และได้ใช้กรอบอะคริลิค 2 ชั้นเพื่อป้องกันอันตรายด้วย

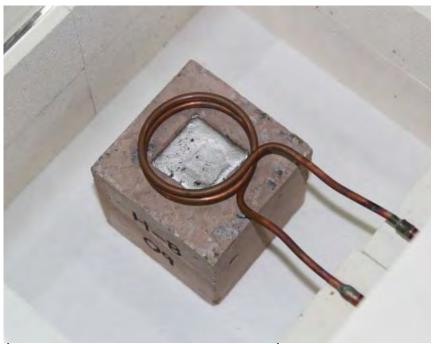
ได้ทำการทดลองครั้งแรกโดยเปิดเครื่อง Induction heater เต็มกำลัง แท่ง Zirconium ร้อนขึ้นเรื่อย ๆ จนสว่างจ้าไปทั่วจอมอนิเตอร์ หลังจากนั้นไม่กี่วินาทีก็สังเกตเห็นเปลวไฟติดขึ้น ค่อนข้างรุนแรงภายในกรอบอะคริลิค (จากการสังเกตด้วยตาจากระยะไกล) จึงทำการหยุดเครื่อง และหลังจากไม่เกิดอะไรขึ้นจึงเดินเครื่องต่ออีกครั้ง แท่ง Zirconium ก็ร้อนขึ้นเรื่อย ๆ จนสว่างจ้า ไปทั่วจอมอนิเตอร์อีกครั้งและก็เกิดเปลวไฟขึ้นอีก จึงทำการหยุดเครื่องและตรวจสอบดูว่าเกิด อะไรขึ้น รูปที่ 9(a) - 9(c) แสดงความเสียหายที่เกิดขึ้นบริเวณชิ้นงาน

9(b)

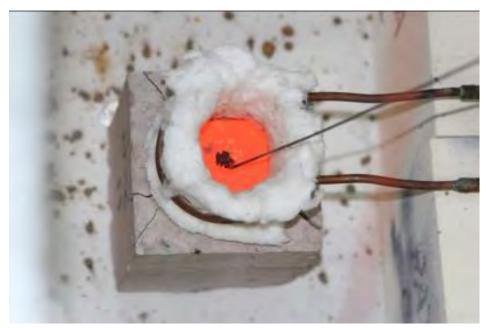
รูปที่ 9(a) - 9(c) ความเสียหายที่เกิดขึ้นบริเวณชิ้นงาน

จากการตรวจสอบ พบว่าแท่งเซอร์โคเนียมได้ละลายและออกมาสัมผัสกับ Induction coil ทำให้เกิดน้ำรั่วออกมาด้วย ทั้ง Coil และแท่งคอนกรีตเกิดความเสียหายและใช้งานต่อไม่ได้ ดังแสดงในรูปที่ 10(a) - 10(c)

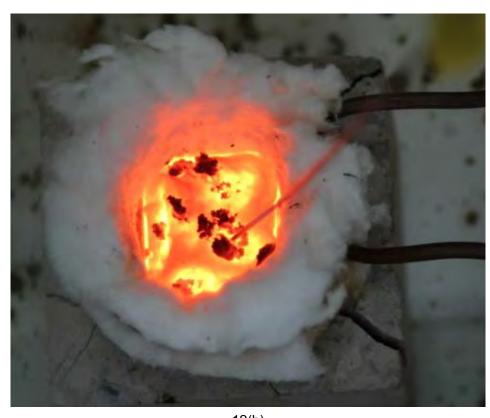
10(a)


10(b) บริเวณที่ Zirconium หลอมละลายออกมา (มองจากด้านล่าง)

10(c) Coil ที่เกิดความเสียหายละลายไปบางส่วน รูปที่ 10(a) - 10(c) ความเสียหายที่เกิดขึ้นบริเวณชิ้นงานและ Coil


เนื่องจากเกิดไฟใหม้ขึ้นบริเวณชิ้นงาน การวิจัยนี้จึงมีความเสี่ยงต่อการเกิดอุบัติเหตุ มาก ดังนั้นด้วยเหตุผลทางด้านความปลอดภัยจึงขอเปลี่ยนวัตถุประสงค์ของโครงการใหม่ดังที่ ได้ให้รายละเอียดไปแล้ว

ตามแผนการดำเนินการใหม่ ได้เตรียมโลหะเหลวโดยหลอมตะกั่ว ดีบุกและบิสมัตเข้า ด้วยกันที่อัตราส่วนที่เท่ากันโดยน้ำหนักของโลหะแต่ละประเภท และเทใส่ลงในเบ้าของ High density concrete และจัดวางใน Induction heater ดังแสดงในรูปที่ 11



รูปที่ 11 โลหะเหลวใน High density concrete ซึ่งมี Heating coil อยู่ด้านบน (ยังไม่ได้ใส่ฉนวนกันความร้อนรอบ ๆ Coil เพื่อให้สามารถเห็นโลหะเหลวได้อย่างชัดเจน)

หลังจากนั้นเปิดเครื่องโดยควบคุมระดับกำลังของเครื่องให้โลหะเหลวมีอุณหภูมิอยู่ ในช่วง 1,000 - 1180°C เป็นเวลา 14 ชั่วโมง ซึ่งจากคุณสมบัติของโลหะเหลวนี้ที่ไม่ทำปฏิกิริยา กับออกซิเจนในอากาศ จึงไม่เกิดไฟไหม้ขึ้นและไม่ได้เกิดการประทุขึ้นแต่อย่างใดด้วย รูปที่ 12(a) - 12(b) แสดงโลหะเหลวที่ร้อนขึ้นระหว่างการทดลอง

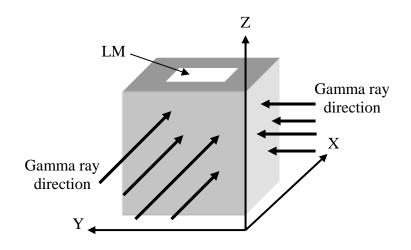
12(a)

12(b) รูปที่ 12(a) - 12(b) โลหะเหลวที่ร้อนขึ้นระหว่างการทดลอง

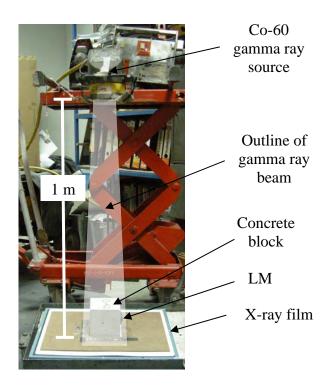
หลังทำการทดลองครบ 14 ชั่วโมงแล้ว ก็จะนำแท่งคอนกรีตออกมา สามารถสังเกตเห็น การฟอร์มตัวของวัสดุแข็งสีเหลืองสัมด้านบนของโลหะเหลวดังแสดงในรูปที่ 13 (สังเกตเห็น ตั้งแต่ในช่วง 1-2 ชั่วโมงแรกของการให้ความร้อนแล้ว) จากการวิเคราะห์เบื้องตันน่าจะเป็น Lead oxide เพราะมีสีเหลือง และก็น่าจะมีสารประกอบอื่นๆ จากปฏิกิริยาระหว่างองค์ประกอบ ของโลหะเหลวกับองค์ประกอบของ High density concrete ด้วย ซึ่งก็จะดำเนินการวิเคราะห์ โดยใช้เทคนิค XRF

รูปที่ 13 ตัวอย่างการฟอร์มตัวของวัสดุแข็งสีเหลืองสัมด้านบนของโลหะเหลว (ในความเป็นจริงแล้วได้ทำการทดลองเบื้องต้นในลักษณะนี้หลายครั้งเพื่อดูความเป็นไปได้ ของการทดลองใหม่นี้ ทำให้แต่ละรูปไม่ใช่มาจากการทดลองครั้งเดียวกัน)

หลังจากนำวัสดุแข็งสีเหลืองสัมออกและเทโลหะเหลวที่ยังละลายอยู่ออกจากเบ้า ก็ สามารถสังเกตเห็นภายในของเบ้าได้ดังแสดงในรูปที่ 14(a) - 14(b) ซึ่งสามารถสังเกตเห็นการ กัดกร่อนเกิดขึ้นเล็กน้อยและได้ทำการวัดความลึกของเบ้าในหลายๆ ตำแหน่งโดยใช้ไม้บรรทัด ผลที่ได้คือความลึกเพิ่มขึ้นอย่างมากไม่เกินประมาณ 4 ม.ม. เท่านั้น

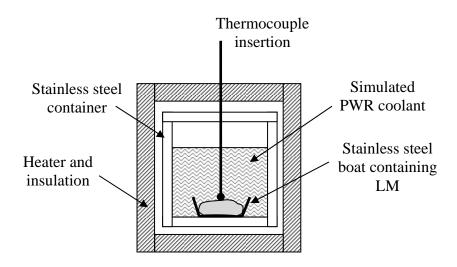


14(a)



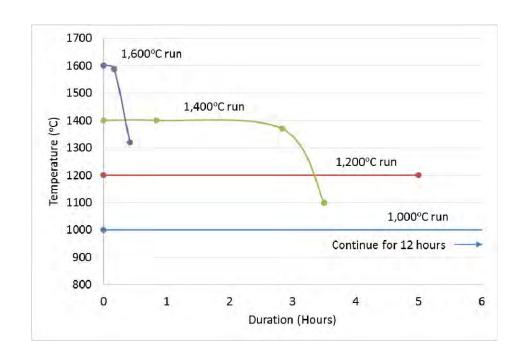
รูปที่ 14(a) - 14(b) ภายในของเบ้าใน High density concrete หลังการทดลองแล้วเสร็จ

ในการหาความเร็วในการกัดกร่อนระหว่างโลหะเหลวกับคอนกรีตมวลหนักนั้น จะใช้การ ถ่ายภาพด้วยรังสีแกมมาจาก Co-60 โดยใช้บริการที่สถาบันเทคโนโลยีนิวเคลียร์แห่งชาติ (องค์การมหาชน) เนื่องจากได้ทดลองใช้เครื่องฉายรังสีเอ็กซ์ที่ภาควิชาฯ แต่ไม่สามารถทะลุผ่าน คอนกรีตมวลหนักหนา 10 ซ.ม. ได้ รูปที่ 15 แสดงระนาบบนคอนกรีตที่ทำการฉายรังสี รูปที่ 16 แสดงการจัดวางคอนกรีตระหว่างการฉายรังสี


รูปที่ 15 ระนาบบนคอนกรีตที่ทำการฉายรังสี

รูปที่ 16 การจัดวางคอนกรีตระหว่างการฉายรังสี

ส่วนการทดสอบการกัดกร่อนระหว่างโลหะเหลวกับ Stainless steel ในสภาวะน้ำหล่อ เย็นของเครื่องปฏิกรณ์แบบน้ำอัดความดัน (Pressurized Water Reactor; PWR) และปฏิกิริยา ระหว่างโลหะเหลวกับน้ำหล่อเย็นที่อุณหภูมิ 315°C เป็นเวลา 1 เดือนตามวัตถุประสงค์ใหม่ข้อที่ 2 และ 3 นั้น ได้สร้าง Chamber อย่างง่ายขึ้นมาเพื่อให้สามารถทนแรงดันภายในได้หลายร้อย บรรยากาศ ซึ่งใน Chamber นี้จะสามารถทำการทดลองทั้ง 2 อย่างไปได้พร้อมๆ กัน รูปที่ 17 แสดงภาพวาดของ Chamber นี้ ซึ่งประกอบด้วย Stainless steel container ที่หนา ล้อมรอบ ด้วยแผ่น Heater และวัสดุ Insulator เพื่อรักษาความร้อน ส่วนภายในบรรจุด้วย น้ำหล่อเย็นของ เครื่องปฏิกรณ์แบบน้ำอัดความดัน ซึ่งสังเคราะห์โดยใส่กรดบอริกที่ความเข้มข้น 1,500 ppm ลง ใน Deionized water และปรับค่า pH ให้เป็น 6.9 โดยการเติม LiOH ในปริมาณที่เหมาะสม

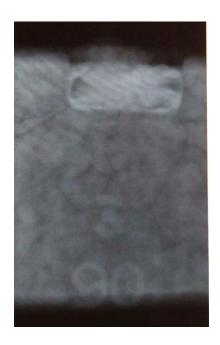

ส่วนที่บรรจุโลหะเหลว ทำจาก 304 Stainless steel และดัดเป็นรูปโค้งเพื่อให้สามารถ บรรจุโลหะเหลวได้ และมี Thermocouple สอดจากด้านบนลงมาและสัมผัสกับโลหะเหลวเพื่อวัด อุณหภูมิ โดย Thermocouple ต่อเข้ากับเครื่องควบคุมอุณหภูมิ ซึ่งจ่ายกระแสไฟฟ้าให้กับแผ่น Heater ที่ล้อมรอบ Stainless steel container

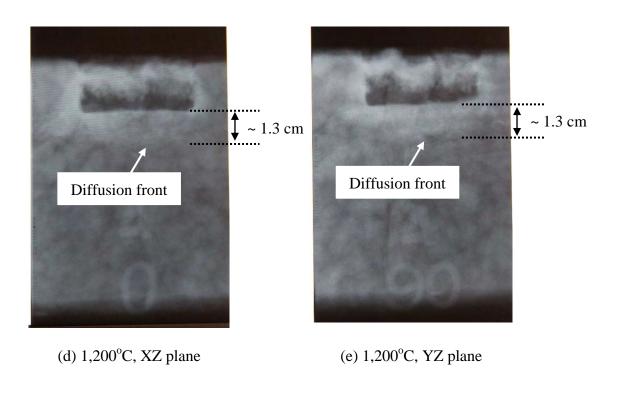
รูปที่ 17 ภาพวาดของ Chamber เพื่อทดสอบการกัดกร่อนระหว่างโลหะเหลวกับ Stainless steel ในสภาวะน้ำหล่อเย็นของเครื่องปฏิกรณ์แบบน้ำอัดความดัน และ ปฏิกิริยาระหว่างโลหะเหลวกับน้ำหล่อเย็นที่อุณหภูมิ 315°C

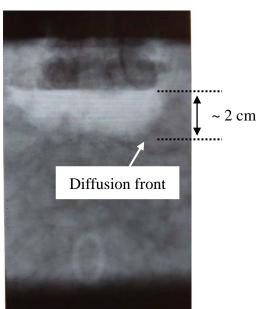
ผลการทดลอง

รูปที่ 18 แสดงผลการทดลองในส่วนของอุณหภูมิที่วัดได้ในการทดลองที่ประสบ ความสำเร็จ (ในการทดลองหลายครั้ง เนื่องจากเกิด Thermal stress ที่สูงมาก แท่งคอนกรีต หลายแท่งจึงเกิดการแตกร้าวอย่างมากส่งผลให้โลหะเหลวรั่วไหลออกมาและต้องหยุดการ ทดลอง) ซึ่งจะเห็นได้ว่าที่อุณหภูมิ 1,600°C และ 1,400°C สามารถรักษาอุณหภูมิไว้ได้แค่ ช่วงเวลาหนึ่งเท่านั้น โดยเมื่อโลหะเหลวแพร่ผ่านคอนกรีตลงไปจนหมดเบ้า อุณหภูมิก็จะลด ต่ำลงเนื่องจากไม่มีโลหะเหลวในการ Couple กับสนามแม่เหล็กจาก Induction coil อีกต่อไปโดยที่อุณหภูมิ 1,600°C โลหะเหลวได้แพร่ลงไปอย่างรวดเร็วทำให้สามารถรักษาอุณหภูมิไว้ได้ แค่ประมาณ 10 นาทีเท่านั้น ส่วนที่อุณหภูมิ 1,200°C และ 1,000°C สามารถคงอุณหภูมิได้นาน ตามที่ต้องการเนื่องจากโลหะเหลวไม่ได้แพร่ผ่านคอนกรีตลงไป

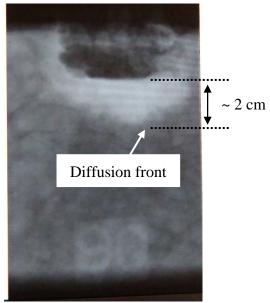
รูปที่ 18 อุณหภูมิของโลหะเหลวในการทดลองที่ประสบความสำเร็จ


รูปที่ 19(a) – 19(i) แสดงภาพ Gamma radiography เพื่อให้สามารถเห็นการแพร่ของ โลหะเหลวลงไปในคอนกรีตมวลหนัก

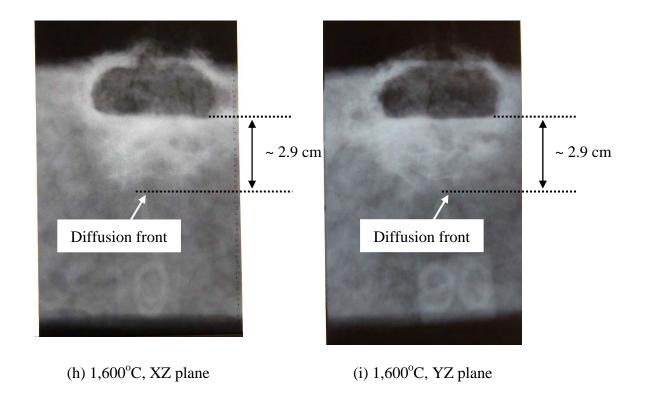

(a) Before heating



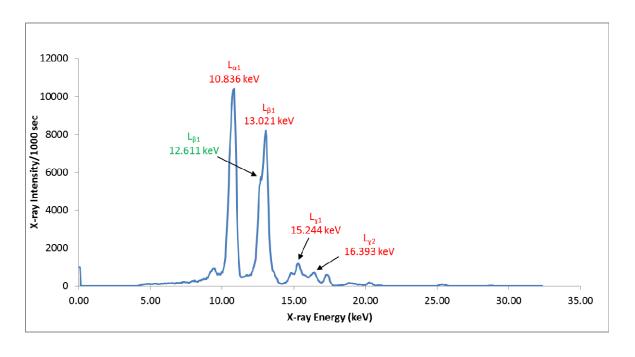
(b) 1,000°C, XZ plane



(c) 1,000°C, YZ plane

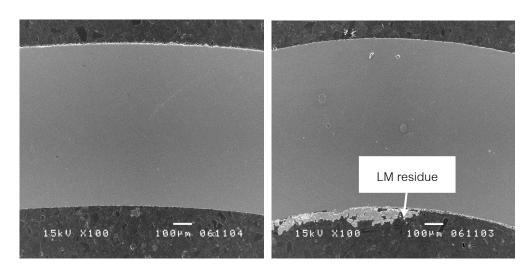


(f) 1,400°C, XZ plane


(g) 1,400°C, YZ plane

ฐปที่ 19 Radiographic images on the XZ and YZ planes before and after the heating experiment at 1,000, 1,200, 1,400 and 1,600°C

จากภาพ Gamma radiography จะเห็นได้ว่าที่ 1,000°C ถึงแม้ว่าจะคงอุณหภูมิไว้เป็น เวลานานถึง 12 ชั่วโมง แต่ก็ไม่เกิดการแพร่ของโลหะเหลวลงไปในคอนกรีตแต่อย่างใด ส่วนที่ 1,200°C เป็นเวลา 5 ชั่วโมง โลหะเหลวแพร่ลงไปเป็นระยะทางประมาณ 1.3 ซ.ม. แต่ก็หยุด ส่วนที่ 1,400°C โลหะเหลวแพร่ลงไปเป็นระยะทางประมาณ 2 ซ.ม. ในช่วงเวลาประมาณ 3 ชั่วโมง ซึ่งสามารถคำนวณเป็นค่าการกัดกร่อนได้ที่ประมาณ 0.7 ซ.ม. ต่อชั่วโมง ส่วนที่ 1,600°C โลหะเหลวแพร่ลงไปเป็นระยะทางประมาณ 2.9 ซ.ม. ในช่วงเวลาประมาณ 10 นาที เท่านั้น ซึ่งสามารถคำนวณเป็นค่าการกัดกร่อนได้ที่ประมาณ 17 ซ.ม. ต่อชั่วโมง


นอกจากนี้เมื่อนำวัสดุแข็งสีเหลืองสัมด้านบนของโลหะเหลวไปวิเคราะห์ด้วยเทคนิค XRF ผลที่ได้คือมีองค์ประกอบหลักเป็น Bismuth oxide และมี Lead oxide ปริมาณเล็กน้อย ซึ่ง แสดงให้เห็นว่าไม่เกิด Chemical reaction ระหว่างโลหะเหลวอุณหภูมิสูงกับคอนกรีตมวลหนัก ไม่เช่นนั้นก็ควรจะตรวจวัดออกไซด์ของธาตุที่เป็นองค์ประกอบของคอนกรีตมวลหนักได้ด้วย ดังนั้นการกัดกร่อนเกิดจากรอยร้าวเล็กๆ มากมายจาก Thermal stress ที่ทำให้โลหะเหลวแพร่ ลงไปในคอนกรีตมวลหนักได้ รูปที่ 20 แสดง XRF spectrum ที่วัดได้

รูปที่ 20 XRF spectrum ของวัสดุแข็งสีเหลืองสัมด้านบนของโลหะเหลว

ผลการศึกษาการกัดกร่อนของโลหะเหลวกับ Stainless steel เป็นดังนี้ เมื่อครบเวลา 1 เดือนแล้ว ก็ทำการตรวจสอบพื้นผิวของ Stainless steel ที่บรรจุโลหะเหลวระหว่างการทดลอง ซึ่งจากการสังเกตด้วยตาเปล่าและด้วยกล้องจุลทรรศน์แสดง ไม่พบการกัดกร่อนใด ๆ เนื่องจาก พื้นผิวยังเรียบมันเหมือนเดิม เพียงแต่มีสีเข้มขึ้นเท่านั้นจากการเกิด Oxidation ขึ้น หลังจากนั้น ได้ทำการตัดภาชนะบรรจุและถ่ายภาคตัดขวางด้วยกล้องจุลทรรศน์อิเล็กตรอน รูปที่ 21 แสดง ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอน ซึ่งจะเห็นได้ว่าไม่เกิดการกัดกร่อนใด ๆ ลงไปในเนื้อ Stainless steel เนื่องจากมีความหนาคงที่และมีความโค้งเท่ากันทุกที่

นอกจากนี้ไม่สามารถสังเกตเห็น Reaction layer ใด ๆ จาก Intermetallic compound บนพื้นผิวได้ อย่างไรก็ตามจากการวิเคราะห์ Phase diagram ระหว่าง Fe-Pb, Fe-Sn และ Fe-Bi ควรจะเกิด FeSn₂ หรือ FeSn Intermetallic compound ขึ้น แต่ก็ไม่สามารถสังเกตเห็นได้ ซึ่งเป็นไปได้ว่าชั้น Reaction layer นี้อาจบางเกินไปที่จะสังเกตได้หรืออาจไม่เกิดขึ้นเลย ดังนั้น โลหะเหลวจึงไม่กัดกร่อน 304 Stainless steel ที่อุณหภูมิ 315°C เป็นเวลานานอย่างน้อย 1 เดือน

รูปที่ 21 ภาพถ่ายจากกล้องจุลทรรศห์อิเล็กตรอน โดยแสดงภาคตัดขวางของ Stainless steel ที่บรรจุโลหะเหลวระหว่างการทดลอง

ผลการศึกษาปฏิกิริยาระหว่างโลหะเหลวกับน้ำหล่อเย็นของเครื่องปฏิกรณ์แบบน้ำอัด ความดันเป็นดังนี้ โลหะเหลวยังคงสภาพทางกายภาพเช่นเดียวกับก่อนเริ่มการทดลอง และน้ำ หล่อเย็นก็มีสภาพใสดังเดิม ดังนั้นจึงสรุปได้ว่าโลหะเหลวไม่ทำปฏิกิริยากับน้ำหล่อเย็นของ เครื่องปฏิกรณ์แบบน้ำอัดความดันที่อุณหภูมิ 315°C เป็นเวลาอย่างน้อย 1 เดือน

สรุปและวิจารณ์ผลการทดลอง

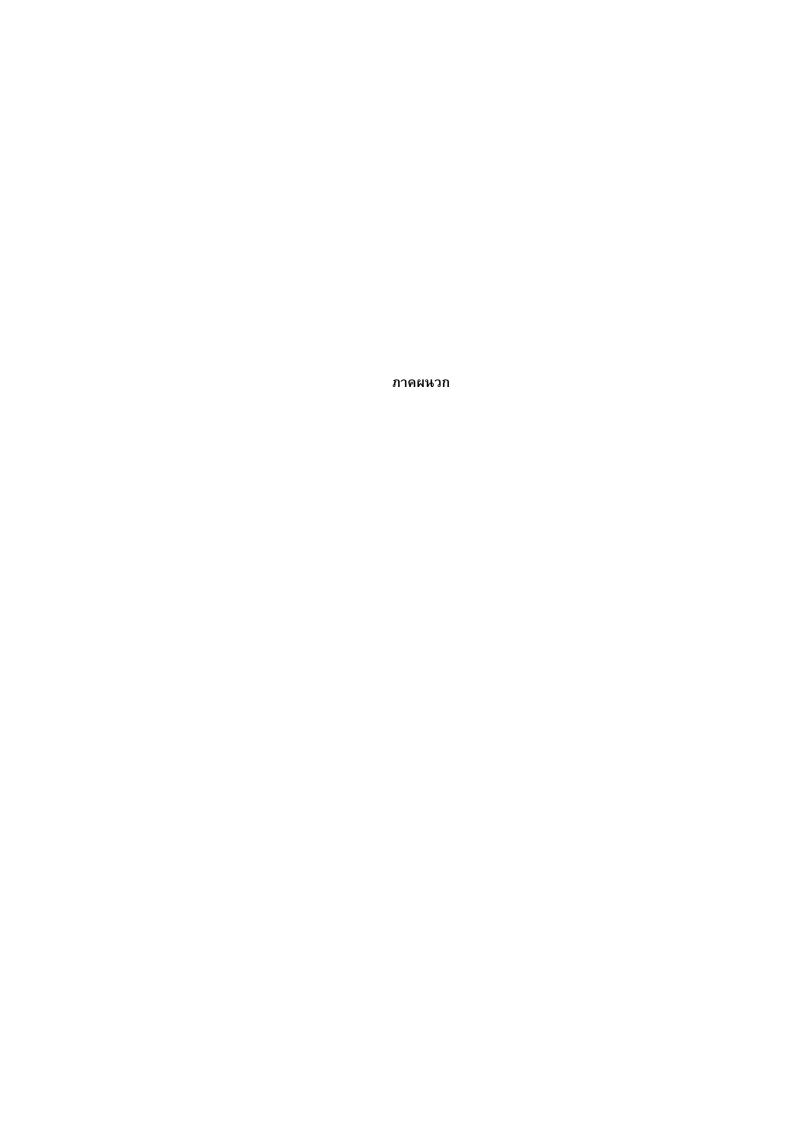
ได้ทำการศึกษาการกัดกร่อนระหว่างโลหะเหลว (ตะกั่ว ดีบุกและบิสมัต) ที่อุณหภูมิสูง กับเหล็กกล้าไร้สนิมและคอนกรีตมวลหนัก ผลที่ได้คือโลหะเหลวที่สัมผัสกับเหล็กกล้าไร้สนิม เกรด 304 ในสภาวะน้ำหล่อเย็นของโรงไฟฟ้านิวเคลียร์แบบปฏิกรณ์น้ำอัดความดันที่อุณหภูมิ 315°C เป็นเวลา 30 วันไม่เกิดการกัดกร่อนใดๆ และไม่ทำปฏิกิริยากับน้ำหล่อเย็น ได้ทำการ ผลิตแท่งคอนกรีตมวลหนักจาก Type 1 Portland cement แบไรท์หยาบและแบไรท์ละเอียดและ ให้ความร้อนกับโลหะเหลวที่บรรจุในคอนกรีตมวลหนักโดยใช้วิธี Inductive heating จากเครื่อง Induction heater ขนาด 35 kW และความลึกที่โลหะเหลวแพร่ไปในคอนกรีตมวลหนักถูกวัด ้ด้วยเทคนิคการถ่ายภาพด้วยรังสีแกมมาโดยใช้ต้นกำเนิดรังสี Co-60 ซึ่งที่ 1,000°C เป็น เวลานานถึง 12 ชั่วโมงโลหะเหลวไม่แพร่ไปในคอนกรีตมวลหนัก ที่ 1.200°C เป็นเวลา 5 ชั่วโมง โลหะเหลวแพร่เป็นระยะทางประมาณ 1.3 ซ.ม. และก็ได้หยุดลง ที่ 1,400°C โลหะเหลว แพร่เป็นระยะทางประมาณ 2 ซ.ม. ในเวลาประมาณ 3 ชั่วโมง ซึ่งสามารถคำนวณเป็นค่าการกัด กร่อนได้ที่ประมาณ 0.7 ซ.ม. ต่อชั่วโมง และที่ 1,600°C โลหะเหลวแพร่เป็นระยะทางประมาณ 2.9 ซ.ม. ในเวลาประมาณ 10 นาทีเท่านั้น ซึ่งสามารถคำนวณเป็นค่าการกัดกร่อนได้ที่ประมาณ 17 ซ.ม. ต่อชั่วโมง ซึ่งการแพร่ลงไปในคอนกรีตมวลหนักเหล่านี้ ก็จะเกิดขึ้นกับโลหะเหลว ประเภทอื่นๆ เช่นกันหากทำการเทโลหะเหลวใดๆ ลงบนคอนกรีตมวลหนักและให้ความร้อนสูง ตลอดเวลา นอกจากนี้ที่อุณหภูมิสูงถึง 1,600°C โลหะเหลวไม่ทำปฏิกิริยากับอากาศหรือ ความชื้นในอากาศ ดังนั้นผลการทดลองแสดงให้เห็นว่าโลหะเหลวในสภาวะอุณหภูมิสูงจะไม่กัด กร่อนเหล็กกล้าไร้สนิมแต่จะแพร่เข้าไปในคอนกรีตมวลหนักหากมีอุณหภูมิสูงพอ

ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

การศึกษาการกัดกร่อนระหว่างโลหะเหลวกับคอนกรีตมวลหนักนี้เป็นการทดลองขนาด เล็กระดับห้องปฏิบัติการ ในการทดลองระดับใหญ่ขึ้นจะต้องใช้เครื่อง Induction furnace ที่มี ระดับกำลังที่สูงขึ้น โดยบรรจุโลหะเหลวและคอนกรีตมวลหนักใน Induction chamber เพื่อให้ สามารถให้ความร้อนโละเหลวได้ตลอดเวลา ทำให้สามารถควบคุมอุณหภูมิได้ตามที่ต้องการ ตลอดเวลา

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

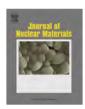
1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ


Doonyapong Wongsawaeng, Chayanit Jumpee and Manit Jitpukdee,
 "High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete," Journal of Nuclear Materials, 451 (2014) 276–282.

2. การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงวิชาการ โดยให้นิสิตมาช่วยทำการทดลองบางส่วน ซึ่งเป็นการช่วยสร้าง ความรู้และประสบการณ์การทำวิจัยโดยตรงให้กับนิสิต

3. อื่นๆ



ELSEVIER

Contents lists available at ScienceDirect

Journal of Nuclear Materials

journal homepage: www.elsevier.com/locate/jnucmat

High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

Doonyapong Wongsawaeng ^a,*, Chayanit Jumpee ^a, Manit Jitpukdee ^b

- ^a Nuclear Engineering Department, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- ^b Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

ARTICLE INFO

Article history: Received 22 November 2013 Accepted 7 April 2014 Available online 13 April 2014

ABSTRACT

In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (\sim 100 times that of He), low melting point (\sim 100 °C), and lack of chemical reactivity with UO₂ and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical coremelt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of \sim 1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was \sim 0.7 cm/h. At 1600 °C, the penetration rate was \sim 17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover, for as high as 1600 °C, the non-reactive LM was experimentally confirmed not to show any chemical reaction with air or moisture in the air. This experimental work confirmed the excellent compatibility behaviors between the LM as a PWR fuel gap filler and stainless steel and high-density concrete in the high-temperature regime.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down during operation. Fuel swelling is a result of (1) solid fission product swelling, (2) fission gas bubble formation and (3) fuel thermal expansion. Cladding creep down is a direct result of differential pressure between the reactor coolant (\sim 150 atm in PWR and \sim 75 atm in BWR) and rod internal pressure (\sim 10 atm of He gas pressurization). Without this very-carefully-designed pellet-cladding gap, the stress exerted on the cladding would be too high and a catastrophic cladding rupture could not be avoided. The

gap will eventually close down in the first cycle of operation because of the effects discussed above.

While the gap still exists, as helium gas exhibits a very low thermal conductivity, it results in a large temperature rise in the gap, causing the fuel pellets to operate hotter than if there was no thermal resistance across the gap. Wright et al. proposed "bonding" the gap with a liquid metal (LM) [1,2]. The LM is composed of 1/3 weight portion each of lead, tin, and bismuth. This ternary eutectic compound exhibits low melting point (~ 100 °C), high thermal conductivity (~ 100 times that of He) and negligible chemical reactivity with UO₂ and water. With the LM in place, the thermal resistance across the gap is virtually zero regardless of the gap thickness [2,1]. The reduction in fuel temperature offers several obvious benefits. There would be less thermal energy stored in the fuel pellets, resulting in a safer fuel. Moreover, as fission gas release from fuel pellets into fuel rod interior follows a diffusion

^{*} Corresponding author. Tel.: +66 080 4414509; fax: +66 02 2186780. E-mail address: Doonyapong.W@Chula.ac.th (D. Wongsawaeng).

mechanism, it delays fission gas release from 1 to 2 days to about 1 year [3]. The presence of Pb, Sn and Bi in the gap does not affect neutron economy because of their low thermal neutron absorption cross-section.

Moreover, liquid metal in the gap can prevent massive secondary hydriding by impeding steam ingress into the gap following a through-wall cladding failure from, for example, grid-to-rod fretting. The LM in the gap above the breaching point would be blown into the plenum by the incoming steam. The LM below the breach would still be present and would protect this portion of the cladding and below from secondary hydriding. The LM bond also prevents fission fragment recoils and deleterious fission products such as iodine from reaching the cladding inner surface.

Extensive material compatibility between LM and zircaloy was conducted by Wright et. al. [2]. Alumina pellets were used as surrogates of UO₂. For specimen tested at 400 °C for 3500 h (to simulate standard operating conditions), the average loss in Zry wall thickness was less than 0.3%. At 657 °C for 24 h (to simulate LOCA), the average Zry wall thickness loss was less than 4%. These results support the LM to be the pellet–cladding-gap filler. A reaction layer attached to the Zry tube was observed under optical microscope. Results from an electron beam microprobe indicated a ZrSn₂ intermetallic compound. The authors concluded that the compound acts as a diffusion barrier against Zr or Sn or both.

The fuel rod design with a LM-bonded gap would have a top plenum similar to that in a conventional fuel element. In addition to the usual role as a repository for released fission gas, the plenum collects LM which is squeezed out of the gap due to pellet swelling and cladding creepdown. The plenum, however, must be designed to have more space compared to that in conventional fuel rod in order to accommodate the LM.

A full-scale fabrication of a 4-m long LM-bonded fuel rod was successfully demonstrated [4,5]. As the LM does not wet $\rm UO_2$ and Zircaloy, one cannot simply push fuel pellets into a cladding tube containing LM, as unfilled regions (voids) in the LM would develop, which would lead to local fuel overheating. Voids were eliminated by loading a fuel stack into a heated Zry cladding loaded with liquefied LM under vacuum. Afterwards, a He overpressure of 5 atm was applied to collapse any void formed. Application to commercial fuel manufacturing should require only minor modifications to the existing fuel rod fabrication lines.

As compatibility behaviors of LM under normal conditions have already been studied by various researches in sufficient details, compatibility behaviors under accident conditions should also be assessed. During normal reactor operation, should there be a hypothetical fuel rod failure resulting in ejection of LM into coolant, which will eventually be deposited at the bottom of the reactor, LM should not corrode the stainless steel lining of the reactor pressure vessel (RPV). This present work conducted an experiment to study any corrosion between LM and 304 stainless steel in the PWR water chemistry environment at 315 °C for up to 30 days. Moreover, during a hypothetical core-melt and, subsequently, melt-out accident assuming that LM with temperature maintained at 1000-1600 °C all the time is spread on a high-density concrete basement of the nuclear power plant, this present work conducted an experiment to study corrosion behaviors between LM and highdensity concrete in this temperature range.

2. Experimental

2.1. Preparation of the LM eutectic compound

The LM was prepared by weighting 1/3 weight portion each of lead, tin and bismuth. The constituents were placed in a large ceramic container and heat was applied from a hot plate to melt all the

metals together to form a ternary eutectic compound. The correctness of the composition of the LM can easily be verified by the fact that the Pb–Sn–Bi eutectic compound required in this study solidified at about 100 °C. All the metals were purchased from a local company in Thailand and they all had a minimum purity level of 99.9%.

2.2. Experiment on LM-stainless steel corrosion

To simulate the in-reactor condition of LM-stainless steel corrosion, an apparatus was constructed as illustrated in Fig. 1. It consisted of a small stainless steel chamber with a thermocouple insertion from the top. PWR water chemistry was simulated by adding 1500 ppm of boric acid to deionized water, and the pH was adjusted to 6.9 by addition of an appropriate amount of LiOH. All the chemicals were of analytical grade purchased from a local company in Thailand. A 304 stainless steel boat containing LM was placed in the chamber and the simulated PWR coolant was added. The chamber was slowly heated to 315 °C using a heating tape and the temperature was maintained by an electronic controller for 30 days. At the end of the experiment, the temperature was reduced to room temperature and the stainless steel boat was removed for optical and SEM analysis.

2.3. Experiment on LM-high density concrete corrosion

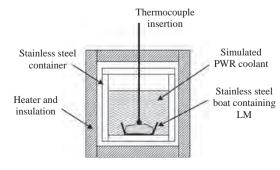
2.3.1. Fabrication of high-density concrete

High-density concrete blocks with dimensions $10 \times 10 \times 10$ cm with an indentation on one side of 5×5 cm and 2 cm deep to accommodate liquid metal were fabricated from type 1 Portland cement, coarse barite and fine barite. The composition and mechanical properties of fabricated concrete blocks are listed in Table 1. Fig. 2 shows examples of the cement, fine barite and coarse barite used. X-ray fluorescent (XRF) technique was employed to analyze elemental compositions of the cement and barite.

2.3.2. Experimental setup

In order to maintain the liquid metal at the temperature between 1000 and 1600 °C all the time while not supplying heat directly from the power source to the high-density concrete (in other words, the concrete would be heated up only from thermal energy transfer from the hot LM), inductively heating of the LM was required. Fig. 3 demonstrates the experimental setup.

The copper induction coil with water circulation inside was placed on top of the reservoir in the high-density concrete block containing the LM. The coil was connected to a 35 kW Yueqing Kexin induction heater model KX-5188A35. A thermocouple was immersed into the LM with the tip in contact with the concrete in order to measure the actual temperature at the LM-high density concrete interface. For temperature up to 1200 °C, a K-type



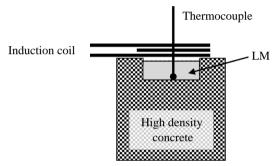

Fig. 1. Apparatus for testing LM-stainless steel corrosion at 315 $^{\circ}\text{C}$ in PWR coolant environment.

Table 1Composition and mechanical properties of fabricated concrete blocks.

Parameters	Values
Type 1 Portland cement	11 wt%
Coarse barite (1–2 cm size)	41 wt%
Fine barite (200 mesh size)	28.2 wt%
Water	5.5 wt%
Average density	3.43 g/cm ³
Average compressive strength	378.4 kg/cm ²

Fig. 2. (From left to right) Examples of cement, fine barite and coarse barite used in this study.

(a) Drawing of the experimental setup

(b) Actual experimental setup (White insulating material on the copper coil was removed for clarity of the heating coil and the LM in the concrete pit)

Fig. 3. Experimental setup for testing LM-high density concrete corrosion between 1000 and 1600 $^{\circ}\text{C}.$

thermocouple was employed. At temperature higher than this, an R-type thermocouple placed inside a protective alumina rod was utilized. The power output of the induction heater was continually adjusted in order to maintain the desired temperature. To non-destructively determine the depth of corrosion, gamma radiography was performed on XZ and YZ planes of the concrete block (see Fig. 4) to determine the location of LM before heating and the depth of penetration after the heating was completed. To be able to capture images of LM penetration, the concrete block was rotated so that the side with the LM reservoir was orthogonal to

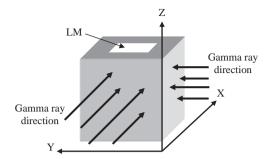


Fig. 4. Planes on the concrete block subject to incident gamma ray.

the X-ray film and parallel to the gamma ray beam. The gamma-ray source was Co-60 because the highly-penetrating 1.33 MeV gamma ray photon can effectively penetrate through the 10-cm thick high-density concrete block. An industrial X-radiography machine proved useless in this work as the generated X-ray energy was insufficient to penetrate the concrete block. Fig. 5 depicts a setup of the gamma radiography.

3. Results

3.1. Results of LM-stainless steel corrosion

After 30 days in PWR coolant chemistry environment at 315 °C, the stainless steel boat was removed from the chamber. The boat was heated slightly above 100 °C to allow the LM to melt and to be removed, revealing the stainless steel surface underneath. Upon close eye inspection, no corrosion on the stainless steel surface was found. The surface appeared to be shiny and almost indistinct from the fresh surface before the experiment, with the only observable difference in the change of color to a deeper tone. Observation under optical microscope did not find any corrosion. The boat was cut and the cross-sections were observed under SEM. Fig. 6 reveals the finding under SEM. The concave side (the bottom of the pictures) was the LM-stainless steel interface.

3.2. Elemental composition of high-density concrete and its appearance

Tables 2 and 3 show the elemental compositions of the cement and barite using XRF technique. As expected, the cement composed

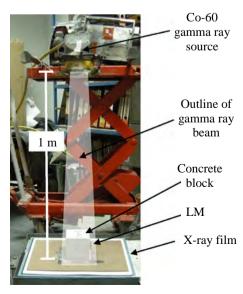
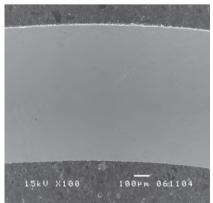



Fig. 5. Setup of gamma radiography.

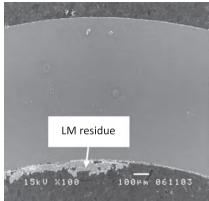


Fig. 6. Cross-sections of the stainless steel boat under SEM observation.

Table 2 Elemental composition of the cement.

Element	Concentration (%)	Compound	Concentration (%)
Ca	46.58	CaO	65.60
Si	9.72	SiO ₂	20.69
Fe	2.78	Fe_2O_3	3.98
Al	1.91	Al_2O_3	3.60
S	1.60	SO ₃	4.01
Mg	0.83	MgO	1.38
K	0.39	K ₂ O	0.47
Mn	0.06	MnO	0.08
Cl	0.04	Cl	0.04
Zn	0.04	ZnO	0.05
Cu	0.03	CuO	0.04
Sr	0.03	SrO	0.04
Zr	0.01	ZrO_2	0.01
Ba	0.01	BaO	0.02

Table 3 Elemental composition of barite.

Element	Concentration (%)	Compound	Concentration (%)
Ba	47.78	BaO	58.99
S	11.01	SO_3	27.54
Si	3.43	SiO ₂	7.29
Fe	2.76	Fe_2O_3	3.94
Sr	0.88	SrO	1.04
Al	0.38	Al_2O_3	0.72
K	0.13	K ₂ O	0.15
Mn	0.12	MnO	0.16
As	0.05	As_2O_3	0.07
Cu	0.04	CuO	0.05
Zn	0.04	ZnO	0.05

Fig. 7. Examples of fabricated high-density concrete blocks.

mainly of calcium and silicon, while barite composed mainly of barium and sulfur.

Fig. 7 displays examples of the fabricated high-density concrete blocks exhibiting a light pink color due to the color of the barite constituent.

3.3. Results of LM-high density concrete corrosion

Fig. 8 displays the red-glowing liquid metal in the concrete block due to eddy current generation from coupling with the induction coil above. Small and large cracks in the concrete block due to thermal stress can be seen in the figure. Fig. 9 illustrates the temperature histories.

At 1000 and 1200 °C, constant temperature can be maintained for at least 5 h. However, at 1400 °C and above, as will be revealed

Fig. 8. Red-glowing liquid metal in the concrete block.

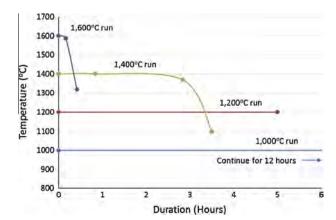


Fig. 9. Temperature histories of LM-high density concrete corrosion experiment.

in the next section, LM quickly penetrated into the concrete and the alternating magnetic field from the induction coil could no longer be effectively coupled with the LM because of the distance, even with the output of the induction heater adjusted to the highest power setting. Thus, at 1400 °C, the temperature could be maintained for about 3 h, while at 1600 °C, the temperature could be maintained for only about 10 min.

After cooling down, each concrete block specimen was subject to gamma radiography on XZ and YZ planes. Fig. 10 displays radiographic images before and after the heating experiment.

Moreover, a dark yellow powder was also observed covering the LM in the pit. Result of XRF analysis of the powder using Pu-238 X-ray source is shown in Fig. 11. The composition of the powder was identified to be mainly bismuth oxide with a small amount of lead oxide.

4. Discussion

4.1. LM-stainless steel corrosion

Although SEM offers much higher magnifications than presently used, it was clear from Fig. 6 that no corrosion took place as the surface in contact with the LM did not show any type of corrosion and as its thickness and surface curvature remained uniform throughout the cross-section. No reaction layer of intermetallic compound was observed either, unlike the case of ZrSn₂ intermetallic compound formation when LM was in contact with Zry at elevated temperature [2]. However, upon inspection with the phase diagrams between Fe–Pb, Fe–Sn and Fe–Bi, FeSn₂ or FeSn intermetallic compound should be observed. This suggested that a reaction layer of FeSn₂ or FeSn could be present, but it was not experimentally

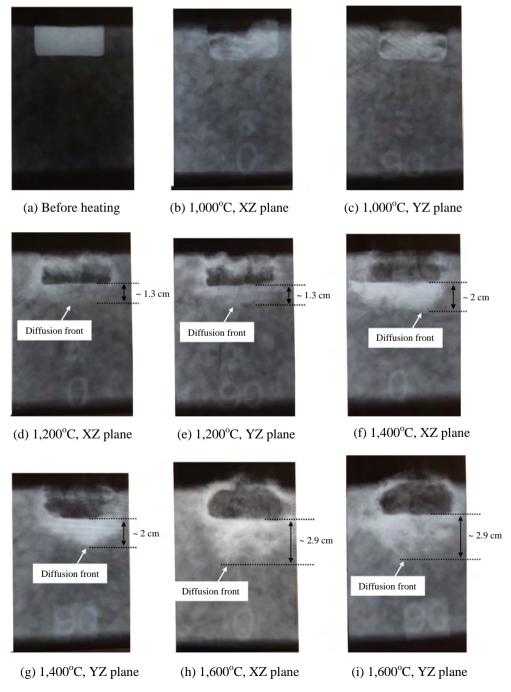


Fig. 10. Radiographic images on the XZ and YZ planes before and after the heating experiment at 1000, 1200, 1400 and 1600 °C.

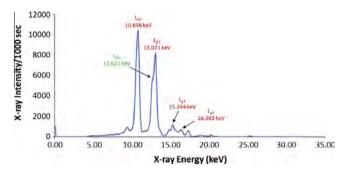


Fig. 11. XRF spectrum and identified peaks of the dark yellow powder.

observed. It could be too thin to be seen under the observed conditions and, thus, would not pose any safety concern. Therefore, the LM is highly compatible with stainless steel at 315 °C.

4.2. LM-high density concrete corrosion

After heating at 1000 °C for 24 h, the outline of the white LM in the pit appeared almost indistinct from the one before application of heat. No concrete penetration was observed from the images. At 1200 °C, however, the LM penetrated a distance of \sim 1.3 cm. But the penetration appeared to stop as the temperature could be maintained at 1200 °C with a constant output of the induction heater for at least 5 h. At 1400 and 1600 °C, the LM quickly penetrated into the concrete via tiny cracks generated from intense thermal stress. For the 1400 °C case, from the radiographic images, the LM appeared to penetrate a distance of \sim 2 cm in the duration of \sim 3 h. This could be translated into a penetration rate of \sim 0.7 cm/ h. For the 1600 °C case, the LM appeared to penetrate a distance of ~2.9 cm in as little as 10 min. This could be translated into a penetration rate of ~17 cm/h. The 1400 and 1600 °C were different from the 1200 °C case in that the output of the induction heater was continually increased until the maximum output was reached. Afterwards, the temperature dropped from 1400 and 1600 °C. This signified that the LM would continue its active penetration if a higher-power induction heater was employed. Generation of these tiny cracks and the resulting LM penetration would be expected for other hot metals as well, if one were to pour any hot metal on a high-density concrete floor and continually supply heat to it.

Oxide formation of LM constituent would be expected from heating it in air. However, a more meaningful result from this analysis was that there was no observable chemical reaction between LM and the constituent of high-density concrete, as there was no identified peak corresponding to calcium, silicon, barium or sulfur. Thus, no corrosion based on chemical reactions occurred, and, hence, the only interaction between high-temperature LM and high-density concrete would be from cracks generated from thermal stress. Moreover, the inertness nature of the LM with air at high temperature was experimentally confirmed because as high as 1600 °C, the LM did not show any chemical reaction with air or moisture in the air, unlike the case of reactive Zry. This experimental work confirmed all the excellent compatibility behaviors between the liquid metal as a PWR fuel gap filler and stainless steel and high-density concrete in the high-temperature regime. Also, as suggested by an unknown reviewer, the data obtained will be of interest for reactors employing a Pb-Sn-Bi coolant.

The performed experiment on the interaction with concrete was considered a small scale. For a large-scale demonstration, one has to employ a high-power induction furnace and the LM on the high-density concrete can be placed inside an induction chamber to allow continuous coupling of the magnetic field with the LM. This way, high temperature can be maintained for as long as required.

As suggested by another unknown reviewer, in a severe accident, molten core is a complex mixture of many different structural and fuel materials, called corium. Corium properties are known to change with impurities - even a small percentage of new materials can change corium properties significantly. Thus, the presence of Pb, Sn and Bi can and will alter the corium properties. Experiments on core-melt accident conducted under RASPLAV and MASCA projects [6,7] clearly showed this dependence. For example, it was found that stable stratification of the suboxidised corium with ~0.3 mass% of carbon in two liquid layers was experimentally observed, while for < 0.01 mass% of carbon content resulted in no observable stratification [8]. In addition, the difference in density, thermal conductivity and viscosity of dissimilar corium compositions may significantly influence the nature of stratification [8]. Furthermore, METCOR experiments under the RASPLAV project found that the VVER vessel steel corrosion rate was sensitive to corium composition [9].

Although experiments conducted under RASPLAV and MASCA projects did not study addition of Pb, Sn and Bi into corium, the enormous presence of Pb, Sn and Bi in the core will undoubtedly alter physical and thermal properties of corium and this will result in different corium-concrete interactions. Exactly on how the nature of concrete interaction will alter will only come from experiments on core-melt accident specifically involving LM.

5. Conclusions

High-temperature compatibility between LM and stainless steel and high-density concrete was evaluated. It was found that the LM in contact with 304 stainless steel at 315 °C in PWR water chemistry for 30 days resulted in no observable corrosion both under optical and scanning electron microscopes. High-density concrete blocks were fabricated from type 1 Portland cement, coarse barite and fine barite. Heating of the LM contained in the pit on the concrete block was done by inductive heating using a 35 kW induction heater. The LM was heated to 1000, 1200, 1400 and 1600 °C for various durations, and the penetration behavior into concrete blocks were visually observed from gamma radiography using Co-60 source. At 1000 °C for as long as 12 h, no penetration took place. At 1200 °C for 5 h, the LM penetrated a distance of \sim 1.3 cm, but the penetration appeared to stop. At 1400 °C the LM penetrated a distance of \sim 2 cm in the duration of \sim 3 h. This was translated into a penetration rate of \sim 0.7 cm/h. At 1600 °C, the LM penetrated a distance of \sim 2.9 cm in as little as 10 min. This was translated into a penetration rate of \sim 17 cm/h. This behavior, however, would be expected for other hot metals as well, if one were to pour any hot metal on a high-density concrete floor and continually supply heat to it. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover, for as high as 1600 °C, the non-reactive LM did not show any chemical reaction with air or moisture in the air. This experimental work confirmed the excellent compatibility behaviors between the LM as a PWR fuel gap filler and stainless steel and high-density concrete in the high-temperature regime.

Acknowledgements

The authors would like to thank Thailand Research Fund for the funding support of the research work, with funding support number MRG5580142. The authors would like to thank Prof. Donald Olander for recommendation on the use of induction heating to heat liquid metal and for all the advices and supports related to liquid metal. The authors appreciate Asst. Prof. Suvit Punnachaiya for his advices on the research work.

References

- D. Olander, Y. Kim, S. Yagnik, Nucl. Technol. 128 (1999) 300.
 R.F. Wright, J.S. Tulenko, G.J. Schoessow, R. Connell, M.A. Dubecky, T. Adams, Nucl. Technol. 115 (1996) 281–292.
 D. Wongsawaeng, D. Olander, Nucl. Technol. 146 (2004) 211–220.
 D. Wongsawaeng, D. Olander, Nucl. Technol. 159 (2007) 279–291.

- [5] Doonyapong Wongsawaeng, "Liquid-Metal-Bonded Gap for Light Water Reactor Fuel Rod", Ph.D. dissertation, University of California at Berkeley, 2006.
- [6] http://www.oecd-nea.org/jointproj/rasplav.html.
- [7] http://www.oecd-nea.org/jointproj/masca.html.
 [8] CSNI/NEA RASPLAV Seminar 2000, 14–15 November 2000, Munich, Germany.
 [9] S.V. Bechta et al., Nucl. Eng. Des. 239 (2009) 1103–1112.