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Abstract

Project Code : MRG5580142

Project Title : High-Temperature Corrosion Behaviors between Liquid Metal as

PWR Fuel Gap Filler and Stainless Steel and High-Density Concrete

Investigator : Asst. Prof. Dr. Doonyapong Wongsawaeng Chulalongkorn

University

E-mail Address : Doonyapong.W@Chula.ac.th

Project Period : 2 July 2012 to 2 July 2014

Abstract:

A liquid metal (LM) composing of an equal portion of lead, tin and bismuth has
been studied as a heat transfer material in nuclear fuel rods. The fuel pellets would
operate at a lower temperature resulting in an enhanced safety. Therefore, corrosion
between liquid metal and stainless steel and high-density concrete under accident
conditions must be studied. It was found that the LM in contact with 304 stainless steel
at 315°C in water chemistry of pressurized water reactor for 30 days resulted in no
observable corrosion. Moreover, the LM did not show any reaction with the coolant.
High-density concrete blocks were fabricated from type 1 Portland cement, coarse barite
and fine barite. Heating of the LM contained in the pit on the concrete block was done
by inductive heating using a 35 kW induction heater. The penetration depth of LM into
the concrete was measured using gamma radiography with Co-60 source. At 1,000°C
for as long as 12 hours, no penetration took place. At 1,200°C for 5 hours, the LM
penetrated a distance of ~ 1.3 cm, but the penetration appeared to stop. At 1,4000C the
LM penetrated a distance of ~ 2 cm in the duration of ~ 3 hours. This was translated
into a penetration rate of ~ 0.7 cm/hr. At 1,600°C, the LM penetrated a distance of ~ 2.9
cm in as little as 10 minutes. This was translated into a penetration rate of ~ 17 cm/hr.
This behavior, however, would be expected for other hot metals as well, if one were to

pour any hot metal onto a high-density concrete and continually supply heat to it.



Moreover, for as high as 1,600°C, the non-reactive LM did not show any chemical
reaction with air or moisture in the air. These experimental results confirmed that the
high-temperature LM will not corrode stainless steel, but will diffuse into high-density

concrete under sufficiently-high temperature.

Keywords : Liquid metal, nuclear fuel, corrosion, stainless steel, high-density concrete
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Parameter Value

Type 1 Portland cement 11 wt%

Coarse barite (1-2 cm size) 41 wt%
Fine barite (200 mesh size) 28.2 wt%

Water 5.5 wt%
Average density 3.43 g/cm3

Average compressive strength 3784 kg/cm2
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Cl 0.04 Cl 0.04
Zn 0.04 ZnO 0.05
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Zr 0.01 ZrO, 0.01
Ba 0.01 BaO 0.02
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ABSTRACT

In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the
fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because
helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid
metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because
of its high thermal conductivity (~100 times that of He), low melting point (~100 °C), and lack of chem-
ical reactivity with UO, and water. With the presence of LM, the temperature drop across the gap is vir-
tually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in
safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal
reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal
into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was
conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry
environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-
melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is
spread on a high-density concrete basement of the power plant, a small-scale experiment was performed
to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration.
At 1200 °C for 5 h, the LM penetrated a distance of ~1.3 cm, but the penetration appeared to stop. At
1400 °C the penetration rate was ~0.7 cm/h. At 1600 °C, the penetration rate was ~17 cm/h. No corrosion
based on chemical reactions with high-density concrete occurred, and, hence, the only physical interac-
tion between high-temperature LM and high-density concrete was from tiny cracks generated from ther-
mal stress. Moreover, for as high as 1600 °C, the non-reactive LM was experimentally confirmed not to
show any chemical reaction with air or moisture in the air. This experimental work confirmed the excel-
lent compatibility behaviors between the LM as a PWR fuel gap filler and stainless steel and high-density
concrete in the high-temperature regime.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

gap will eventually close down in the first cycle of operation
because of the effects discussed above.

In conventional nuclear fuel rods for light-water reactors, a
helium-filled as-fabricated gap between the fuel and the cladding
inner surface accommodates fuel swelling and cladding creep
down during operation. Fuel swelling is a result of (1) solid fission
product swelling, (2) fission gas bubble formation and (3) fuel ther-
mal expansion. Cladding creep down is a direct result of differen-
tial pressure between the reactor coolant (~150 atm in PWR and
~75 atm in BWR) and rod internal pressure (~10 atm of He gas
pressurization). Without this very-carefully-designed pellet-clad-
ding gap, the stress exerted on the cladding would be too high
and a catastrophic cladding rupture could not be avoided. The

* Corresponding author. Tel.: +66 080 4414509; fax: +66 02 2186780.
E-mail address: Doonyapong. W@Chula.ac.th (D. Wongsawaeng).

http://dx.doi.org/10.1016/j.jnucmat.2014.04.007
0022-3115/© 2014 Elsevier B.V. All rights reserved.

While the gap still exists, as helium gas exhibits a very low ther-
mal conductivity, it results in a large temperature rise in the gap,
causing the fuel pellets to operate hotter than if there was no ther-
mal resistance across the gap. Wright et al. proposed “bonding” the
gap with a liquid metal (LM) [1,2]. The LM is composed of 1/3
weight portion each of lead, tin, and bismuth. This ternary eutectic
compound exhibits low melting point (~100 °C), high thermal con-
ductivity (~100 times that of He) and negligible chemical reactiv-
ity with UO, and water. With the LM in place, the thermal
resistance across the gap is virtually zero regardless of the gap
thickness [2,1]. The reduction in fuel temperature offers several
obvious benefits. There would be less thermal energy stored in
the fuel pellets, resulting in a safer fuel. Moreover, as fission gas
release from fuel pellets into fuel rod interior follows a diffusion
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mechanism, it delays fission gas release from 1 to 2 days to about
1 year [3]. The presence of Pb, Sn and Bi in the gap does not affect
neutron economy because of their low thermal neutron absorption
cross-section.

Moreover, liquid metal in the gap can prevent massive second-
ary hydriding by impeding steam ingress into the gap following a
through-wall cladding failure from, for example, grid-to-rod fret-
ting. The LM in the gap above the breaching point would be blown
into the plenum by the incoming steam. The LM below the breach
would still be present and would protect this portion of the clad-
ding and below from secondary hydriding. The LM bond also pre-
vents fission fragment recoils and deleterious fission products
such as iodine from reaching the cladding inner surface.

Extensive material compatibility between LM and zircaloy was
conducted by Wright et. al. [2]. Alumina pellets were used as sur-
rogates of UO,. For specimen tested at 400 °C for 3500 h (to simu-
late standard operating conditions), the average loss in Zry wall
thickness was less than 0.3%. At 657 °C for 24 h (to simulate LOCA),
the average Zry wall thickness loss was less than 4%. These results
support the LM to be the pellet-cladding-gap filler. A reaction layer
attached to the Zry tube was observed under optical microscope.
Results from an electron beam microprobe indicated a ZrSn; inter-
metallic compound. The authors concluded that the compound
acts as a diffusion barrier against Zr or Sn or both.

The fuel rod design with a LM-bonded gap would have a top
plenum similar to that in a conventional fuel element. In addition
to the usual role as a repository for released fission gas, the plenum
collects LM which is squeezed out of the gap due to pellet swelling
and cladding creepdown. The plenum, however, must be designed
to have more space compared to that in conventional fuel rod in
order to accommodate the LM.

A full-scale fabrication of a 4-m long LM-bonded fuel rod was
successfully demonstrated [4,5]. As the LM does not wet UO, and
Zircaloy, one cannot simply push fuel pellets into a cladding tube
containing LM, as unfilled regions (voids) in the LM would develop,
which would lead to local fuel overheating. Voids were eliminated
by loading a fuel stack into a heated Zry cladding loaded with lig-
uefied LM under vacuum. Afterwards, a He overpressure of 5 atm
was applied to collapse any void formed. Application to commer-
cial fuel manufacturing should require only minor modifications
to the existing fuel rod fabrication lines.

As compatibility behaviors of LM under normal conditions have
already been studied by various researches in sufficient details,
compatibility behaviors under accident conditions should also be
assessed. During normal reactor operation, should there be a hypo-
thetical fuel rod failure resulting in ejection of LM into coolant,
which will eventually be deposited at the bottom of the reactor,
LM should not corrode the stainless steel lining of the reactor pres-
sure vessel (RPV). This present work conducted an experiment to
study any corrosion between LM and 304 stainless steel in the
PWR water chemistry environment at 315 °C for up to 30 days.
Moreover, during a hypothetical core-melt and, subsequently,
melt-out accident assuming that LM with temperature maintained
at 1000-1600 °C all the time is spread on a high-density concrete
basement of the nuclear power plant, this present work conducted
an experiment to study corrosion behaviors between LM and high-
density concrete in this temperature range.

2. Experimental
2.1. Preparation of the LM eutectic compound
The LM was prepared by weighting 1/3 weight portion each of

lead, tin and bismuth. The constituents were placed in a large cera-
mic container and heat was applied from a hot plate to melt all the

metals together to form a ternary eutectic compound. The correct-
ness of the composition of the LM can easily be verified by the fact
that the Pb-Sn-Bi eutectic compound required in this study solid-
ified at about 100 °C. All the metals were purchased from a local
company in Thailand and they all had a minimum purity level of
99.9%.

2.2. Experiment on LM-stainless steel corrosion

To simulate the in-reactor condition of LM-stainless steel corro-
sion, an apparatus was constructed as illustrated in Fig. 1. It con-
sisted of a small stainless steel chamber with a thermocouple
insertion from the top. PWR water chemistry was simulated by
adding 1500 ppm of boric acid to deionized water, and the pH
was adjusted to 6.9 by addition of an appropriate amount of LiOH.
All the chemicals were of analytical grade purchased from a local
company in Thailand. A 304 stainless steel boat containing LM
was placed in the chamber and the simulated PWR coolant was
added. The chamber was slowly heated to 315 °C using a heating
tape and the temperature was maintained by an electronic control-
ler for 30 days. At the end of the experiment, the temperature was
reduced to room temperature and the stainless steel boat was
removed for optical and SEM analysis.

2.3. Experiment on LM-high density concrete corrosion

2.3.1. Fabrication of high-density concrete

High-density concrete blocks with dimensions 10 x 10 x 10 cm
with an indentation on one side of 5 x 5cm and 2 cm deep to
accommodate liquid metal were fabricated from type 1 Portland
cement, coarse barite and fine barite. The composition and
mechanical properties of fabricated concrete blocks are listed in
Table 1. Fig. 2 shows examples of the cement, fine barite and coarse
barite used. X-ray fluorescent (XRF) technique was employed to
analyze elemental compositions of the cement and barite.

2.3.2. Experimental setup

In order to maintain the liquid metal at the temperature
between 1000 and 1600 °C all the time while not supplying heat
directly from the power source to the high-density concrete (in
other words, the concrete would be heated up only from thermal
energy transfer from the hot LM), inductively heating of the LM
was required. Fig. 3 demonstrates the experimental setup.

The copper induction coil with water circulation inside was
placed on top of the reservoir in the high-density concrete block
containing the LM. The coil was connected to a 35 kW Yueqing
Kexin induction heater model KX-5188A35. A thermocouple was
immersed into the LM with the tip in contact with the concrete
in order to measure the actual temperature at the LM-high density
concrete interface. For temperature up to 1200°C, a K-type

Thermocouple

insertion
Stainless steel Simulated
container PWR coolant
Stainless steel
Heater and boat containing
insulation LM

Fig. 1. Apparatus for testing LM-stainless steel corrosion at 315 °C in PWR coolant
environment.
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Table 1

Composition and mechanical properties of fabricated concrete blocks.
Parameters Values
Type 1 Portland cement 11 wt%
Coarse barite (1-2 cm size) 41 wt
Fine barite (200 mesh size) 28.2 wt%
Water 5.5 wt%
Average density 3.43 g/cm®

Average compressive strength

378.4 kg/cm?

Fig. 2. (From left to right) Examples of cement, fine barite and coarse barite used in

this study.
Thermocouple
Induction coil ——
High density
concrete

(a) Drawing of the experimental setup

(b) Actual experimental setup (White
insulating material on the copper cail

was removed for clarity of the heating
coil and the LM in the concrete pit)

z
I
LM \
Gammaray
<+ direction
G
X
D ——
Gammaray
direction /
Y <

Fig. 4. Planes on the concrete block subject to incident gamma ray.

the X-ray film and parallel to the gamma ray beam. The gamma-
ray source was Co-60 because the highly-penetrating 1.33 MeV
gamma ray photon can effectively penetrate through the 10-cm
thick high-density concrete block. An industrial X-radiography
machine proved useless in this work as the generated X-ray energy
was insufficient to penetrate the concrete block. Fig. 5 depicts a
setup of the gamma radiography.

3. Results
3.1. Results of LM-stainless steel corrosion

After 30 days in PWR coolant chemistry environment at 315 °C,
the stainless steel boat was removed from the chamber. The boat
was heated slightly above 100 °C to allow the LM to melt and to
be removed, revealing the stainless steel surface underneath. Upon
close eye inspection, no corrosion on the stainless steel surface was
found. The surface appeared to be shiny and almost indistinct from
the fresh surface before the experiment, with the only observable
difference in the change of color to a deeper tone. Observation
under optical microscope did not find any corrosion. The boat
was cut and the cross-sections were observed under SEM. Fig. 6
reveals the finding under SEM. The concave side (the bottom of
the pictures) was the LM-stainless steel interface.

3.2. Elemental composition of high-density concrete and its
appearance

Tables 2 and 3 show the elemental compositions of the cement
and barite using XRF technique. As expected, the cement composed

Co-60
gammaray
source

Outline of
gammaray

Fig. 3. Experimental setup for testing LM-high density concrete corrosion between
1000 and 1600 °C.

thermocouple was employed. At temperature higher than this, an
R-type thermocouple placed inside a protective alumina rod was
utilized. The power output of the induction heater was continually
adjusted in order to maintain the desired temperature. To non-
destructively determine the depth of corrosion, gamma radiogra-
phy was performed on XZ and YZ planes of the concrete block
(see Fig. 4) to determine the location of LM before heating and
the depth of penetration after the heating was completed. To be
able to capture images of LM penetration, the concrete block was
rotated so that the side with the LM reservoir was orthogonal to

beam
im

Concrete
block

LM

X-ray film

Fig. 5. Setup of gamma radiography.



Table 2

Elemental composition of the cement.
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LM residue

Fig. 6. Cross-sections of the stainless steel boat under SEM observation.

Element Concentration (%) Compound Concentration (%)
Ca 46.58 Cao 65.60
Si 9.72 Si0, 20.69
Fe 2.78 Fe,03 3.98
Al 1.91 Al,03 3.60
S 1.60 SO3 4.01
Mg 0.83 MgO 1.38
K 0.39 K,0 0.47
Mn 0.06 MnO 0.08
Cl 0.04 Cl 0.04
Zn 0.04 ZnO 0.05
Cu 0.03 CuO 0.04
Sr 0.03 SrO 0.04
Zr 0.01 Zr0O, 0.01
Ba 0.01 BaO 0.02
Table 3
Elemental composition of barite.
Element Concentration (%) Compound Concentration (%)
Ba 47.78 BaO 58.99
S 11.01 SO3 27.54
Si 343 SiO, 7.29
Fe 2.76 Fe,0; 3.94
Sr 0.88 SrO 1.04
Al 0.38 Al,03 0.72
K 0.13 K»0 0.15
Mn 0.12 MnO 0.16
As 0.05 As;03 0.07
Cu 0.04 CuO 0.05
Zn 0.04 Zn0 0.05

Fig. 7. Examples of fabricated high-density concrete blocks.

mainly of calcium and silicon, while barite composed mainly of

barium and sulfur.

Fig. 7 displays examples of the fabricated high-density concrete
blocks exhibiting a light pink color due to the color of the barite

constituent.

3.3. Results of LM-high density concrete corrosion

Fig. 8 displays the red-glowing liquid metal in the concrete
block due to eddy current generation from coupling with the
induction coil above. Small and large cracks in the concrete block
due to thermal stress can be seen in the figure. Fig. 9 illustrates
the temperature histories.

At 1000 and 1200 °C, constant temperature can be maintained
for at least 5 h. However, at 1400 °C and above, as will be revealed

Fig. 8. Red-glowing liquid metal in the concrete block.

Fig. 9. Temperature histories of LM-high density concrete corrosion experiment.
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in the next section, LM quickly penetrated into the concrete and
the alternating magnetic field from the induction coil could no
longer be effectively coupled with the LM because of the distance,
even with the output of the induction heater adjusted to the high-
est power setting. Thus, at 1400 °C, the temperature could be
maintained for about 3 h, while at 1600 °C, the temperature could
be maintained for only about 10 min.

After cooling down, each concrete block specimen was subject
to gamma radiography on XZ and YZ planes. Fig. 10 displays radio-
graphic images before and after the heating experiment.

Moreover, a dark yellow powder was also observed covering the
LM in the pit. Result of XRF analysis of the powder using Pu-238 X-
ray source is shown in Fig. 11. The composition of the powder was
identified to be mainly bismuth oxide with a small amount of lead
oxide.

(a) Before heating

~13cm

Diffusion front

(d) 1,200°C, XZ plane

~2cm

Diffusion front

Diffusion front

(9) 1,400°C, YZ plane

(b) 1,000°C, XZ plane

Diffusion front

(e) 1,200°C, YZ plane

(n) 1,600°C, XZ plane

4. Discussion
4.1. LM-stainless steel corrosion

Although SEM offers much higher magnifications than presently
used, it was clear from Fig. 6 that no corrosion took place as the sur-
face in contact with the LM did not show any type of corrosion and
as its thickness and surface curvature remained uniform through-
out the cross-section. No reaction layer of intermetallic compound
was observed either, unlike the case of ZrSn, intermetallic com-
pound formation when LM was in contact with Zry at elevated tem-
perature [2]. However, upon inspection with the phase diagrams
between Fe-Pb, Fe-Sn and Fe-Bi, FeSn, or FeSn intermetallic com-
pound should be observed. This suggested that a reaction layer of
FeSn, or FeSn could be present, but it was not experimentally

(c) 1,000°C, YZ plane

~1.3cm ~2cm

Diffusion front

(f) 1,400°C, XZ plane

~29cem ~29cm

Diffusion front

(i) 1,600°C, YZ plane

Fig. 10. Radiographic images on the XZ and YZ planes before and after the heating experiment at 1000, 1200, 1400 and 1600 °C.
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Fig. 11. XRF spectrum and identified peaks of the dark yellow powder.

observed. It could be too thin to be seen under the observed condi-
tions and, thus, would not pose any safety concern. Therefore, the
LM is highly compatible with stainless steel at 315 °C.

4.2. LM-high density concrete corrosion

After heating at 1000 °C for 24 h, the outline of the white LM in
the pit appeared almost indistinct from the one before application
of heat. No concrete penetration was observed from the images. At
1200 °C, however, the LM penetrated a distance of ~1.3 cm. But the
penetration appeared to stop as the temperature could be main-
tained at 1200 °C with a constant output of the induction heater
for at least 5h. At 1400 and 1600 °C, the LM quickly penetrated
into the concrete via tiny cracks generated from intense thermal
stress. For the 1400 °C case, from the radiographic images, the
LM appeared to penetrate a distance of ~2 cm in the duration of
~3 h. This could be translated into a penetration rate of ~0.7 cm/
h. For the 1600 °C case, the LM appeared to penetrate a distance
of ~2.9 cm in as little as 10 min. This could be translated into a
penetration rate of ~17 cm/h. The 1400 and 1600 °C were different
from the 1200 °C case in that the output of the induction heater
was continually increased until the maximum output was reached.
Afterwards, the temperature dropped from 1400 and 1600 °C. This
signified that the LM would continue its active penetration if a
higher-power induction heater was employed. Generation of these
tiny cracks and the resulting LM penetration would be expected for
other hot metals as well, if one were to pour any hot metal on a
high-density concrete floor and continually supply heat to it.

Oxide formation of LM constituent would be expected from
heating it in air. However, a more meaningful result from this anal-
ysis was that there was no observable chemical reaction between
LM and the constituent of high-density concrete, as there was no
identified peak corresponding to calcium, silicon, barium or sulfur.
Thus, no corrosion based on chemical reactions occurred, and,
hence, the only interaction between high-temperature LM and
high-density concrete would be from cracks generated from ther-
mal stress. Moreover, the inertness nature of the LM with air at
high temperature was experimentally confirmed because as high
as 1600 °C, the LM did not show any chemical reaction with air
or moisture in the air, unlike the case of reactive Zry. This experi-
mental work confirmed all the excellent compatibility behaviors
between the liquid metal as a PWR fuel gap filler and stainless steel
and high-density concrete in the high-temperature regime. Also, as
suggested by an unknown reviewer, the data obtained will be of
interest for reactors employing a Pb-Sn-Bi coolant.

The performed experiment on the interaction with concrete
was considered a small scale. For a large-scale demonstration,
one has to employ a high-power induction furnace and the LM
on the high-density concrete can be placed inside an induction
chamber to allow continuous coupling of the magnetic field with
the LM. This way, high temperature can be maintained for as long
as required.

As suggested by another unknown reviewer, in a severe acci-
dent, molten core is a complex mixture of many different struc-
tural and fuel materials, called corium. Corium properties are
known to change with impurities — even a small percentage of
new materials can change corium properties significantly. Thus,
the presence of Pb, Sn and Bi can and will alter the corium proper-
ties. Experiments on core-melt accident conducted under RASPLAV
and MASCA projects [6,7] clearly showed this dependence. For
example, it was found that stable stratification of the suboxidised
corium with ~0.3 mass% of carbon in two liquid layers was exper-
imentally observed, while for <0.01 mass% of carbon content
resulted in no observable stratification [8]. In addition, the differ-
ence in density, thermal conductivity and viscosity of dissimilar
corium compositions may significantly influence the nature of
stratification [8]. Furthermore, METCOR experiments under the
RASPLAV project found that the VVER vessel steel corrosion rate
was sensitive to corium composition [9].

Although experiments conducted under RASPLAV and MASCA
projects did not study addition of Pb, Sn and Bi into corium, the
enormous presence of Pb, Sn and Bi in the core will undoubtedly
alter physical and thermal properties of corium and this will result
in different corium-concrete interactions. Exactly on how the nat-
ure of concrete interaction will alter will only come from experi-
ments on core-melt accident specifically involving LM.

5. Conclusions

High-temperature compatibility between LM and stainless steel
and high-density concrete was evaluated. It was found that the LM
in contact with 304 stainless steel at 315 °C in PWR water chemis-
try for 30 days resulted in no observable corrosion both under opti-
cal and scanning electron microscopes. High-density concrete
blocks were fabricated from type 1 Portland cement, coarse barite
and fine barite. Heating of the LM contained in the pit on the con-
crete block was done by inductive heating using a 35 kW induction
heater. The LM was heated to 1000, 1200, 1400 and 1600 °C for
various durations, and the penetration behavior into concrete
blocks were visually observed from gamma radiography using
Co-60 source. At 1000 °C for as long as 12 h, no penetration took
place. At 1200°C for 5h, the LM penetrated a distance of
~1.3 cm, but the penetration appeared to stop. At 1400 °C the LM
penetrated a distance of ~2 cm in the duration of ~3 h. This was
translated into a penetration rate of ~0.7 cm/h. At 1600 °C, the
LM penetrated a distance of ~2.9 cm in as little as 10 min. This
was translated into a penetration rate of ~17 cm/h. This behavior,
however, would be expected for other hot metals as well, if one
were to pour any hot metal on a high-density concrete floor and
continually supply heat to it. No corrosion based on chemical reac-
tions with high-density concrete occurred, and, hence, the only
physical interaction between high-temperature LM and high-den-
sity concrete was from tiny cracks generated from thermal stress.
Moreover, for as high as 1600 °C, the non-reactive LM did not show
any chemical reaction with air or moisture in the air. This experi-
mental work confirmed the excellent compatibility behaviors
between the LM as a PWR fuel gap filler and stainless steel and
high-density concrete in the high-temperature regime.
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