บทคัดย่อ

รหัสโครงการ: MRG5580151

ชื่อโครงการ: การศึกษาวิถีการย่อยสลายของสารประกอบอะโรมาติก และความสัมพันธ์กับการ ดื้อยาปฏิชีวนะในเชื้อ Acinetobacter baumannii

ชื่อนักวิจัย และสถาบัน นายกิตติศักดิ์ ทศพร จุฬาลงกรณ์มหาวิทยาลัย

อีเมล์: Kittisak.Th@chula.ac.th

ระยะเวลาโครงการ: 2 ปี (2 กรกฎาคม 2555 – 1 กรกฎาคม 2557)

บทคัดย่อ: พาราไฮดรอกซีฟีนิลอะซีเตต (p-hydroxyphynylacetate, HPA) เป็นสารประกอบอะ โรมาติกที่พบได้จากการสลายของลิกนิก และพบวิถีการย่อยสลายสาร HPA ในเชื้อแบคทีเรีย หลายชนิด แต่ยังไม่มีใครศึกษาในเชื้อ Acinetobacter sp. ในการศึกษาวิจัยนี้ ได้ศึกษา operon ที่เกี่ยวข้องกับการย่อยสลาย HPA ในเชื้อ Acinetobaceter baumannii TH ด้วยเทคนิค genome walking และ PCR พบว่าใน operon การย่อยสลาย HPA นั้นประกอบไปด้วย ORF (Open Reading Frame) จำนวน 13 ORF และมีการเรียงตัวของยืนไม่เหมือนกับเชื้อแบคทีเรีย ชนิดอื่นที่มีรายงาน โดยเราได้ศึกษาที่ ORF 8 ถึง 12 แล้วพบว่ามีความต่างจากยีนที่มีรายงาน แล้วก่อนหน้านี้ในแบคทีเรียชนิดอื่นๆ โดยเฉพาอย่างยิ่ง ORF 9 ที่แสดงออกเป็นเอนไซม์ Succinate Semialdehyde Dehydrogenase (SSADH) ที่ไม่พบเลยในแบคทีเรียชนิดอื่นๆ ซึ่ง เป็นไปได้ว่า metabolite ตัวสุดท้ายในวิถีการย่อยจะสลาย HPA จะได้เป็น pyruvate และ succinate ซึ่งในวิถีการย่อยสลายของแบคทีเรียชนิดอื่นๆ จะได้เป็น pyruvate และ succinic semialdehyle. สำหรับ ORF 8, 10-12 นั้นได้ศึกษาการทำงานแล้วพบว่าเป็นเอ็นไซม์ aldolase, transporter, เอ็นไซม์ hydroxylase และเอ็นไซม์ reductase นอกจากนี้ได้ทำการวิเคราะห์ Sequence Similarity Network (SSN) ลำดับของกรดอะมิโนของ ORF 8-12 พบว่า gene ที่มี homolog เหมือน oxygenase component ของเอ็นไซม์ p-hydroxyphynylacetate hydroxylase นั้นต้องมีการกำหนดชื่อและหน้าที่ใหม่ เพราะ gene เหล่านั้นถูกกำหนดชื่อและหน้าที่เป็น acyl-CoA dehydrogenase.

คำหลัก: p-hydroxyphynylacetate, p-hydroxyphynylacetate degradation operon, p-hydroxyphynylacetate degradation enzyme, sequence similarity network, Acinetobacter baumannii TH

Abstract

Project Code: MRG5580151

Project Title: Investigation of aromatic catabolisms and their roles in antibiotic

resistance in Acinetobater baumannii

Investigator: Mr.Kittisak Thotsaporn, Chulalongkorn University

E-mail Address: Kittisak.Th@chula.ac.th

Project Period: 2 years (2 July 2012 - 1 July 2014)

Abstract: p-Hydroxyphenylacetate (HPA) can be derived from the biodegradation of lignin or from man-made compounds. The pathway involved for HPA degradation has been characterized for several species, but little is known on the degradation of HPA in Acinetobacter sp. In this report, the HPA degradation operon in A. baumannii TH was investigated using genome walking and PCR amplification to identify the genes encoded by the operon. The results showed that there are thirteen ORFs that are involved in this process and their arrangement in the operon of A. baumannii TH is different from that in the operons of other previously reported species. ORFs 8 -1 2 show clear variation compared to orthologous genes from other species, particularly at ORF9 which encodes for succinic semialdehyde dehydrogenase (SSADH) that is absent in other species. The ssadh gene was overexpressed and the results confirmed that this enzyme is indeed succinate semialdehyde dehydrogenase. The results suggest that the final metabolites in this pathway are pyruvate and succinate, different from other species which have pyruvate and succinic semialdehyde as final products. Functional studies of the proteins encoded by ORF 8 and 10-12 have confirmed their roles in the HPA degradation pathway as an aldolase, a transporter protein, a hydroxylase and a reductase. Analysis of the sequence similarity network of enzymes encoded by ORFs 8-12 has revealed several interesting features. The designation of enzymes homologous to the oxygenase component of p-hydroxyphenylacetate 3 -hydroxylase in the database should be reassigned, as they were mostly incorrectly assigned as acyl-CoA dehydrogenases. An understanding of the enzymatic reactions which convert aromatic compounds into pyruvate and succinate should be highly useful for future metabolic engineering for converting waste-derived aromatic compounds into useful biochemicals.

Keywords: *p*-hydroxyphynylacetate, *p*-hydroxyphynylacetate degradation operon, *p*-hydroxyphynylacetate degradation enzyme, sequence similarity network, *Acinetobacter* baumannii TH