

รายงานวิจัยฉบับสมบูรณ์

การศึกษาทรานสคริปโตมิกส์และไมโครอาร์เอ็นเอในสาหร่ายเซลล์เดียว Chlamydomonas reinhardtii ในสภาวะเครียดจากความเค็ม

Transcriptomic and genome-wide profiling of microRNAs in

Chalmydomonas reinhardtii under salinity stress

โดย

ผศ. ดร. โชติกา หยกทองวัฒนา

หัวหน้าโครงการวิจัย

ภาควิชาชีวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

ถ. พหลโยธิน แขวงลาดยาว เขตจตุจักร กรุงเทพฯ 10900

รศ. ดร. จรัญญา ณรงคะชวนะ หักวิจัยที่ปรึกษา

ภาควิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

ถ. พระราม 6 แขวงทุ่งพญาไท เขตราชเทวี กรุงเทพฯ 10400

สิงหาคม 2556

รายงานวิจัยฉบับสมบูรณ์

การศึกษาทรานสคริปโตมิกส์และไมโครอาร์เอ็นเอในสาหร่ายเซลล์เดียว

Chlamydomonas reinhardtii ในสภาวะเครียดจากความเค็ม

Transcriptomic and genome-wide profiling of microRNAs in

Chalmydomonas reinhardtii under salinity stress

โดย

ผศ. ดร. โชติกา หยกทองวัฒนา หัวหน้าโครงการวิจัย

ภาควิชาชีวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ถ. พหลโยธิน แขวงลาดยาว เขตจตุจักร กรุงเทพฯ 10900

รศ. ดร. จรัญญา ณรงคะชวนะ นักวิจัยที่ปรึกษา

ภาควิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ถ. พระราม 6 แขวงทุ่งพญาไท เขตราชเทวี กรุงเทพฯ 10400

สนันสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษาและสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

ACKNOWLEDGEMENT

This work was conducted with financial support by Thailand Research Fund grant # MRG5580171 and Kasetsart University Research and Development (KURDI) grant number m-v 9.55.

Abstract

Title: Transcriptomic and genome-wide profiling of microRNAs in

Chalmydomonas reinhardtii under salinity stress

Investigator: Chotika Yokthongwattana

E-mail Address: fscicks@ku.ac.th

Project Period: 2 years

Salinity stress is one of the major problem for agriculture in Thailand and worldwide. Plants response to the saline condition by various mechanisms in order for them to survive under an unsuitable growth condition. The response of plant to salt stress was address here using *Chlamydomonas reinhardtii* as a plant model. An alga cells were induced to adapt to saline condition by culturing them in salt containing media. The salt-adapted cells were able to grow in the medium supplemented with relatively high salt concentration as 300 mM NaCl. The alteration of genes expression was assessed by transcriptomic analysis. About 1,261 genes were up-regulated and 664 genes were down-regulated genes more than 2-fold. These genes fall into various metabolic pathway as well as in the stress and defense mechanism. Deep analysis of the transcriptomic sequences displayed 2,098 SNPs in the salt-adapted compared to the wild type as well as the sequences in the database. In addition, the microRNAs of both wild type and the salt-adapted were examined. 50 potential microRNAs which matched to the MIRBASE were obtained.

Keywords: salinity stress, transcriptome, microRNA, Chlamydomonas reinhardtii

บทคัดย่อ

รหัสโครงการ : MRG5580171

ชื่อโครงการ: การศึกษาทรานสคริปโตมิกส์และไมโครอาร์เอ็นเอในสาหร่ายเซลล์เดียว

Chlamydomonas reinhardtii ในสภาวะเครียดจากความเค็ม

ชื่อนักวิจัย: นางโชติกา หยกทองวัฒนา

E-mail Address: fscicks@ku.ac.th

ระยะเวลาโครงการ: 2 ปี

ปัญหาดินเค็มเป็นปัญหาสำคัญที่ส่งผลกระทบต่อการเกษตรกรรมทั้งในประเทศไทยและในต่างประเทศ พืชมี การตอบสนองต่อสภาวะดินเค็มผ่านกระบวนการต่างๆ หลากหลายกระบวนการด้วยกันเพื่อให้พืชสามารถ ดำรงชีวิตอยู่ได้ภายใต้สภาวะแวดล้อมที่ไม่เหมาะสมต่อการเจริญเติบโต ในการศึกษาวิจัยครั้งนี้ได้ศึกษา กระบวนการตอบสนองของพืชต่อสภาวะเครียดจากความเค็มโดยอาศัยสาหร่ายสีเขียวเซลล์เดียว Chlamydomonas reinhardtii เป็นพืชโมเดล สาหร่าย Chlamydomonas reinhardtii ได้รับการเหนี่ยวนำให้ โดยการเลี้ยงสาหร่ายในอาหารเลี้ยงที่มีการเติมเกลือเป็นระยะเวลาหนึ่ง สามารถทนเค็มได้ สาหร่ายสามารถทนต่ออาหารที่มีเกลือความเข้มข้นสูงถึง 300 มิลลิโมลาร์ NaCl ได้ การเปลี่ยนแปลงการ แสดงออกของยืนในสาหร่ายทนเค็มนี้ได้รับการศึกษาโดยเทคนิคทรานสคริปโตมิกส์ 1,261 ยีน ที่มีการแสดงออกสูงขึ้นและมียีน 664 ยีนที่มีการแสดงออกลดลงกว่าในสาหร่ายสายพันธุ์ปกติถึง 2 เท่า เมื่อจัดจำแนกยืนเหล่านี้แล้ว พบว่ายืนเหล่านี้มีหน้าที่เกี่ยวข้องในกระบวนเมแทบอลิซึมต่างๆ รวมไป ถึงการตอบสนองต่อความเครียดอีกด้วย เมื่อทำการศึกษาเพื่อหาลำดับเบสที่เปลี่ยนแปลงไป (SNP) ใน สาหร่ายทนเค็ม พบว่ามีทั้งสิ้น 2,098 SNPs ในสาหร่ายทนเค็ม นอกจากนี้ยังมีการวิเคราะห์เพื่อหา microRNAs ในสาหร่ายทนเค็ม โดยจากการศึกษาพบไมโครอาร์เอ็นที่มีการรายงานในฐานข้อมูลไมโครอาร์ เอ็นเอ MIRBASE อยู่ทั้งสิ้น 50 ชนิดด้วยกัน

Keywords: salinity stress, transcriptome, microRNA, Chlamydomonas reinhardtii

Literature review

Introduction

About 20% of agriculture area is salt effected (Munns, 2005). One of the major problem for agriculture is the saline soil which are classified when it contains approximately 40 mM NaCl (ECe is 4 dS/m). This concentration can generate osmotic pressure of about 0.2 mPa (Munns & Tester, 2008). While most of the crop plants are not salt tolerance. Salt effect plants by two distinct ways. The first and rapid effect of salt is the hyperosmotic stress followed by the hyperionic stress caused by toxicity of Na+ and Cl-. The change in osmotic pressure cause the reduction of water absorption by roots. The responses of plants to salinity stress including reduction of leaf expansion, stomata closure, impairment of photosynthetic activity, reduction of nitrogen assimilation, biomass loss (Zhang and Shi, 2013; Munns et al., 2006). During salinity stress, the production of reactive oxygen species (ROS) is increased causing oxidative damage to various cellular components. Sodium can also enter via KUP/HAK/KT potassium transporters, cyclic-nucleotide-gated channels, glutamate-activated channels, LCT transporters, and HKT transporters.

Salt tolerance

Some halotypes i.e. *S. salsa*, *Aeluropus littoralis* have been studied in order to understand the mechanisms that plants utilized to survive under high salt condition. Many pathways have been identified to be involved in the stress tolerance including (1) regulation of ion homeostasis, (2) ion uptake and transport, (3) synthesis of osmoprotectants/ compatible solutes, (4) synthesis of antioxidant enzymes. Alteration of membrane lipid composition is involved in the salt tolerance (Zhou et al., 2014). Proteomic analysis displays change in protein profiles in many plants in response to salt stress. Many up-regulated protein have been found such as chloroplastic ATP synthase, V-ATPase, nucleoside diphosphate kinase 1, chlorophyll a/b-binding protein, and ABC transporter I family (เพิ่ม ref Li et al., 2011)

Regulation of ion homeostatsis

Plants usually have to balance the ratio of Na+/K+ within the cell. In general, these ions are kept at a low concentration in cytoplasm. Concentration of K+ are roughly 100 mM in the cytosol and ranging between 10-200

mM in the vacuole (Binzel et al., 1988). While the Na+ ions are kept at 1 mM in the cytoplasm. High salt condition perturb the balance ratio of Na+/K+ ion in the cells. In addition, the salt stress causes the accumulation of Ca²⁺ ions within cytoplasm. Many transport proteins have been identified to function in the K+/Na+ homeostasis and salt tolerance for instance histidine kinase transporter (HKT), Na+/H+ antiporters (NHXs), Ca²⁺ ATPases (Schroeder et al., 2013; Chinnusamy et al., 2005; Hasegawa et al., 2000; Horie et al., 2009). The evidence that AtHKT is involved in salt stress came from genetic screen for mutants that cause the hyperaccumulation of Na+ leading to the conclusion that AtHKT1 functions in Na+ influx (Rus et al., 2001; Berthomieu et al., 2003; Rus et al., 2006; Horie et al., 2007). There are two class of HKT transporters, class I and class II HKT (Horie et al., 2001; Garciadebla et al., 2003; Platten et al., 2006; Horie et al., 2007). The class I HKT generally selectively transport Na+ while the class II HKT can transport both Na+ and K+ but preferentially K+ over other cations (Uozumi et al., 2000; Maser et al., 2002). In rice, there are 9 predicted HKT in Japonica rice (Garciadeblás et al., 2003). Similarly the Indica rice have also been studied. The salt-tolerance strain, Pokkali, displayed the down-regulation of OsHKT1;2 compared to the salt-sensitive strain, cv. BRRI Dhan29 (Kader et al., 2006; Horie et al., 2007).

Na+ sequestration into vacuole

Successful generation of salt-tolerance plants involved the sequestration of toxic ions into vacuole. Na+ is uptakes and transport into vacuole through Na+/H+ antiporter. And the H+ pump will further transport the Na+ ion into vacuole via an energy-dependent transport system. There are two types of H+ pumps. The first one is vacuolar type H+-ATPase (V-H+-ATPase) and the second type is vacuolar pyrophosphatase (V-H+-PPase) (Gupta and Huang, 2014; Apse and Blumwald, 2007; Gaxiola et al., 2007). The dominant H+ pump in plants is V-H+-ATPase. S. salsa, a salt-tolerance plant, contain 2 low-affinity Na+ transporters. The Na+/H+ antiporter is regulated by H+ gradient generated by V-H+-ATPase and V-H+-PPase (Wang et al., 2001). The first V-H+-PPase was cloned from Arabidopsis (Sarafian et al., 1992) followed by the cloning of its homolog from other plants such as Barley (Tanaka et al., 1993), rice (Sakakibara et al., 1996), and wheat (Brini et al., 2005). In addition to the function of H+ pump, another transport protein, NHX, has been found to function in the sequestration of Na+ into the vacuole (Hasegawa P, 2013). The first NHX1 was cloned from Arabidopsis (Gaxiola et al., 1999). By overexpressing AtNHX1 in Arabidopsis, tomato and Brassica, the transgenic plants showed more tolerance to saline condition and accumulated higher level of Na+ in the vacuole (Apse et al., 1999; Zhang and Blumwald, 2001; Zhang et al., 2001). The NHX1 homologs in other plants have shown to be function in Na+ sequestration

to vacuole similar to that of Arabidopsis homolog such as in wheat (Cuin et al., 2009), rice OsNHX1 (Fukuda et al., 1999), Barley (Fukuda et al., 2004), citrus (Porat et al., 2002) as well as in the halotype *S. salsa* (Song and Wang, 2015).

Plant signaling

The signaling of salt stress is involved in the over accumulation of Ca2+ in the cytoplasm. Isolation of the protein kinases involved in the salt stress signaling came from the genetic complementation of the yeast mutant that are salt-hypersensitive leading to the discovery of several Mitogen-Activated Protein Kinases (MAPKs), MAPKKs and MAPKKKs (Piao et al., 1999).

SOS signaling pathway

The Salt Overly Sensitive (SOS) pathway have been studied to play role in signaling during salt stress in plants. The SOS3 is a myristoylated EF hand type Ca+-binding protein (Ishitani et al., 2000). When the plants expose to salt stress, cytoplasmic Ca+ level is increased. The SOS3 protein binds to Ca+ ion and further activates the function of SOS2, a serine/threonine kinase (Guo et al., 2004). SOS2 contains kinase domain at its N-terminal and regulatory domain at the C-terminal (Lui et al., 2000). SOS3 as positive regulator binds to SOS2 through the NAF domain (also known as FISL) on SOS2 protein (Halfter et al., 2000). In addition, the SOS2 is negatively regulated by type 2C protein phosphatase ABI2 (Guo et al., 2001; Sanchez-Barrena et al., 2007). Activated SOS2-SOS3 complex will then phosphorylated SOS1, a plasma membrane Na+/H+ antiporter protein (Shi et al., 2000; Qui et al., 2002). The activity of phosphorylated SOS1 is increased (Quintero et al., 2002). The Na+ is transported out of the cell thus the ionic effect of Na+ is decreased.

SOS1 is a Na+/H+ antiporter protein containing a large C-terminal domain (Shi et al., 2000). A cyclic nucleotide-binding motif (residue 764-849) and an auto-inhibitory domain (residue 998-1146) are presented at its carboxyl-terminal. Without salt stress, the activity of SOS1 protein is inhibited through the interaction of cyclic nucleotide-binding motif and an auto-inhibitory domain. Activation of SOS1 occurs through phosphorylation at the cyclic nucleotide-binding motif by SOS2 (Quintero et al., 2011). Expression of SOS1 gene is observed in both shoot and root of the plants. Not only is the conformation of SOS1 protein regulated under salt stress, but also its transcription. The SOS1 genes is up-regulated under saline condition (Shi et al., 2000). The protein which has

highest similarity to SOS1 is AtNHX8. This protein lacks the long C-terminal domain. AtNHX8 plays roles in LiCl₂ tolerance but not NaCl suggesting the functional different in their C-terminal domain (An et al., 2007). In salt-tolerant plants, *Thellungiella halophila*, inhibition of ThSOS1 gene by RNAi techniques resulted in salt-sensitive phenotype (Oh et al., 2009).

Production of compatible solutes

The compatible solutes or osmoprotectants are produced in higher plants under salinity stress. These osmolytes are usually hydrophilic and non-toxic. The compatible solutes are accumulated in the cytoplasm to balance the osmotic potential in the cell (Hall et al., 1978; Gagneul et al., 2007). They are groups of organic compound such as amino acids (proline), quaternary ammonium compounds (glycine betaine, alanine betaine, proline betaine), sugars (sucrose and fructose) sugar alcohols (glycerol, mannitol, sorbitol, inositol, methylated inositol), and complex sugars (trehalose, raffinose, fructans) and polyols. Proline is hyper-accumulated in the plants under saline stress (Kavi Kishor et al., 2005). Biosynthesis of proline in higher plants exist in two pathways; the "ornithine" or "glutamate" pathway (Delauney et al., 1993). The main pathway in plants is the synthesis of proline from glutamate (Szabados and Savoure', 2010). The pyrroline carboxylic acid synthetase (P5CS) and pyrroline carboxylic acid reductase (P5CR) are the key enzymes involving in production of proline in plants. For biosynthesis of glycine betaine, choline monooxygenase (CMO) uses choline as substrate and converts it to betaine aldehyde which further catalyzed by betaine aldehyde dehydrogenase (BADH) to be glycine betaine (Fitzgerald et al., 2009; Park et al., 2009; Turkan and Demiral, 2009). Accumulation of glycine betaine and the up-regulation of CMO as well as BADH genes are observed in various organisms under salinity stress including the halophytes (Ashraf et al., 2007; Khan et al., 2000). Other quaternary ammonium compounds such as alanine betaine, proline betaine are suggested to be a better osmoprotectant than glycine betaine as they required ubiquitous primary metabolites (Hanson et al., 1991).

Synthesis of antioxidant enzymes

Some plants develop anti-oxidant enzymes to scavenge Reactive Oxygen Species (ROS) in order to protect the importants biomolecules from being destroyed such as glutathione peroxidase, glutathione S-transferase, Cu/Zn-SOD, and a cytosolic APX. These enzymes are found to be up-regulated in the salt stress plants (Zhang et. al., 2005; Mallik et al., 2011).

Table 1. List of transformed genes in salt-tolerance transgenic plants

Over-expressed genes	Reference
Arginine decarboxylase, ADC	Review in Flower, TJ 2004
Betaine aldehyde dehydrogenase, BADH; betB, choline dehydrogenase (CDH);	Review in Flower, TJ 2004
15 choline oxidase, codA (glycinebetaine)	
Ca2+-dependent protein kinase, CDPK,	Review in Flower, TJ 2004
Ca/H antiporter, CAX1,	Review in Flower, TJ 2004
Ca protein kinase, OsCDPK7	Review in Flower, TJ 2004
Glutathione S-transferase, GST and glutathione peroxidase, GP	Review in Flower, TJ 2004
Glyceraldehyde-3-phosphate dehydrogenase	Review in Flower, TJ 2004
Glutamine synthetase	Review in Flower, TJ 2004
Heat shock protein, DnaK/HSP70 1	Review in Flower, TJ 2004
High-affinity potassium transporter, HKT1	Apse et al., 1999; Møller et al., 2009
Late embryo abundant protein	Review in Flower, TJ 2004
Myo-inositol O-methyltransferase	Review in Flower, TJ 2004
Delta (1)-pyrroline-5-carboxylate synthetase	Review in Flower, TJ 2004
Proton sodium exchanger, HNX1	Fukuda et al., 2004, Chen et al., 2007
S-adenosylmethionine decarboxylase, SAMDC (spermine, spermidine)	Review in Flower, TJ 2004
Serine/threonine kinase	Review in Flower, TJ 2004
Sorbitol-6-phosphate dehydrogenase, SPD (sorbitol) 1	Review in Flower, TJ 2004
SOS1 overexpression	Shi et al., 2003
SR-like, putative splicing protein 1	Review in Flower, TJ 2004
Trehalose-6-phosphate synthase/phosphatase, TPSP (trehalose) 1	Review in Flower, TJ 2004
superoxide dismutase, Mn-SOD 1	Review in Flower, TJ 2004
Vacuolar H+-pyrophosphatase, AVP1	Gaxiola et al., 2001; Li et al., 2005

Photosynthesis of plants under salt stress

In general, the proteins involve in the photosynthesis are largely effected by salt stress (Chaves et al., 2009). The genes in photosynthesis and energy productions are slightly down-regulated at the transcription level (Chaves et al., 2009; Kilian et al., 2007). Genes in Calvin cycle and photorespiration are affected. Fructose-bisphosphatase, fructose-bisphosphate aldolase, phosphoribulokinase, transketolase, ribose-5-phosphate

isomerase, phosphoglycolate phosphatase and glycine hydroxymethyltransferase are down-regulated except some genes in the family are found to be up-regulated such as one gene in glycine hydroxymethyltransferase family, AT1G36370 (Chaves et al., 2009). As the photosynthesis rate is dropped, the production of ROS is increased. Therefore, the plants need to develop the detoxifying enzymes to prevent the oxidative damage.

Transcription regulation of genes under salt stress

Genes are altered their expression under saline condition. Several works have been carried out on the transcriptomic analysis in order to identify the salt-responsive genes. One group of the genes that are important for gene expression is transcription factor. Many of these transcription factor are stress-regulated such as AP2, bZIP, DREB, NAC, WRKY and zinc finger families (Ito et al., 2006; Nakashima et al., 2007; Song et al., 2011; Mizoi et al., 2012; Fujita et al., 2013). The AtbZIP17 is degraded when the plants were cultured under high salt concentration and the up-regulation of salt-responsive genes were observed (Lui et al., 2007). Some transcription factors are induced under salt stress in a tissue specific manner. The salt-responsive ERF1 in rice has been reported to be induced in the roots of salt-treated plants. The down-regulation of this transcription factor resulted in the reduction in expression of its down-stream genes such as MAPK cascade (Schmidt et al., 2013).

Some transcription factors are also play roles in the salt-adaptation. Arabidopsis overexpressed WRKY25 and WRKY33 were more tolerant to saline condition (Jiang and Deyholos, 2009). These proteins function in both oxidative as well as osmotic stress response (Miller et al., 2008).

MicroRNAs

MicroRNAs are evolutionary conserved small non-coding RNAs. The microRNAs are present in various organisms from green algae to land plants (Floyd et al., 2004: Arazi et al., 2005: Griffiths-Jones et al., 2008: Kozomara et al., 2011). Several classes of 21-24 nucleotide small non-coding RNAs are present in plants based on their biogenesis and functions including short interfering RNAs (siRNAs), microRNAs (miRNAs), trans-acting siRNAs (ta-siRNAs), natural antisense siRNAs (nat-siRNAs) and repeat-associated siRNAs (rasiRNAs) (Vaucheret et al., 2006). The siRNAs and miRNAs are the major classes of small RNAs. Both types of RNAs function to control gene expression at the transcriptional and post-transcriptional level (Vaucheret et al., 2006; Voinnet et al., 2009). MicroRNAs are a conserved class of small regulatory RNAs. In plant, endogenous MIR

genes are encoding for microRNAs that are 20-24 nucleotide in length. The MIRNA loci can be several kilobases in length. In plant, MIRNA loci are located in the intergenic region. These microRNA precursors are transcribed by RNA Pol II producing primary microRNAs (pri-miRNAs). The pri-miRNAs are further processed in a nucleus to stem-loop intermediates called pre-microRNAs by Dicer-like 1 (DCL1) together with Hyponastic leave1 (HYL1) and Serrate (SE) proteins (Kurihara et al., 2004; Kurihara et al., 2006; Lobbe et al., 2006). Before exporting to cytoplasm by a plant exportin 5 and HASTY (HST1), pre-microRNAs are methylated at the 3' terminus by Hua Enhancer1 (HEN1) (Park et al., 2002). The microRNAs bind to Agonaute (AGO) guiding RNA-induced silencing complex (RISC) to the target transcripts (Baumberger et al., 2005). The perfectly or near-pefectly binding of microRNAs to their target sequences bring about specific cleavage of the target mRNAs. MicroRNAs can also cause translational inhibition when the binding of microRNAs is imperfect to the cognate sequence. Moreover, microRNAs modulate gene expression by inducing an alteration of epigenetic modifications such as DNA methylation and histone modifications (Jones-Rhoades et al., 2006, Voinnet et al., 2009; Sun et al., 2011). The specific degradation of the target mRNA is the main mechanism in plants.

In an attempt to study plant small RNAs, more than a hundred microRNAs were firstly identified in Arabidopsis by three independent group in a year 2002 (Llave et al., 2002; Park et al., 2002; Reinhart et al., 2002). Afterward more microRNAs have been identified from various plant species through computational prediction, forward genetic, direct cloning and genome-wide analysis in Arabidopsis thailiana (Sunkar et al., 2004; Fahlgren et al., 2007; Zhou et al. 2011), Brassica napus (Xie et al., 2007), Oryza sativa (Sunkar et al., 2005; Sunkar et al., 2008; Sanan-Mishra et al., 2009; Zhou et al., 2011), cotton (Zhang et al., 2007; Pang et al., 2009), soybean (Subramanian et al., 2008), tomato (Yin et al., 2008; Zhang et al., 2008b), wheat (Wei et al., 2009), Populus (Lu et al., 2008; Li et al., 2009, Li et al., 2011, Zhou et al., 2011), Nicotiana tabacum (Frazier et al., 2010), switchgrass (Matts et al., 2010), apple (Yu et al., 2011), barley (Schreiber et al., 2011), maize (Wang et al., 2011), and Sorghum (Zhang et al., 2011; Zhou et al., 2011). According to the microRNA database Release 17 April 2011, 3,362 plant microRNA sequences were deposited (Griffiths-Jones et al., 2008; Kozomara et al., 2011). MicroRNAs are highly conserved among plant species indicating their functional significance. It has been reported that microRNAs play vital roles in plant growth and development (Lui et al., 2009; Nonogaki et al., 2010), flowering time (Chen et al., 2004; Schwab et al., 2005; Wu et al., 2006; Wang et al., 2008), hormonal response (Guo et al., 2005; Mallory et al., 2005; Li et al., 2010), nutrient limitation and adaptation to various environmental stimuli (Sunkar et al., 2004; Fujii et al., 2005; Arenas-Huertero et al., 2009; Li et al., 2010). Many gene targeted by microRNA are transcription factors which are the key components that modulate an adaptation of plant to environmental stresses (Jones-Rhoades et al., 2006; Lui et al., 2007, Reyes et al., 2007; Chen et al.,

2009; Golldack et al., 2011). By regulating the function of the transcription factors, microRNAs therefore regulate diverse downstream genes. For example, accumulation Arabidopsis AtMYB33 and AtMYB101 transcription factors are controlled by microRNA miR159 (Reyes et al., 2007).

MicroRNAs and stress response

It has been shown that microRNAs function in stress response by regulating different biological and metabolic pathways (Sun et al., 2011). A number of stress-regulated microRNAs have been cloned and identified in plants grown under various stress conditions including salinity (Sunkar et al., 2004; Liu et al., 2008; Sunkar et al., 2008; Ding et al., 2009), drought (Sunkar et al., 2004; Reyes et al., 2007; Zhao et al., 2007; Lui et al., 2008; Zhao et al., 2010), cold (Sunkar et al., 2004; Lui et al., 2008; Zhou et al., 2008; Lv et al., 2010), and nutrient deficiency (Fujii et al., 2005). For instance, 17 out of 117 microRNAs were induced under salinity, drought and cold stresses (Lui et al., 2008). The miR159 is increased under dehydration indicating the link between microRNA and drought stress (Reyes et al., 2007). Moreover Arabidopsis mutants of genes involved in microRNA biogenesis and metabolism shown altered phenotypes under diverse stresses. The dicer-like, hen1 and hasty mutants exhibit hypersensitivity to salt and osmotic stresses (Zhang et al., 2008a).

MicroRNAs and salinity stress

Numbers of genes are differentially expressed under salt stress. The alterations of gene expression are specifically controlled by microRNAs. Zhou and colleagues were the first to identify microRNA during salinity and drought stress (Sunkar et al., 2004). A number of microRNA families responsive to salinity stress have been characterized afterward (Covarrubias et al., 2010). Recently microRNAs responsive to salt stress are intensively reviewed (Khraiwesh et al., 2011). Several works have been reported on changes of microRNA profiles under salinity stress (Jung et al., 2007; Liu et al., 2008; Lu et al., 2008; Jagadeeswaran et al., 2009; Jia et al., 2009; Jian et al., 2010; Shen et al., 2010; Qin et al., 2011). In response to salt stress, some microRNAs are upregulated for example Arabidopsis miR156, miR158, miR159, miR165, miR167, miR168, miR169, miR171, miR319, miR393, miR394, miR396, and miR397 were up-regulated. In contrast the miR169a miR169c and miR398 were down-regulated (Li et al., 2008; Lui et al., 2008). Similar result was observed in *Nicotiana tabacum* treated with various concentration of NaCl. The miR159, miR167, and miR169 were down regulated while miR172 and miR396 were up-regulated in salt-treated tobacco (Frazier et al., 2011). The changes of microRNA

expression were dose-dependent. The change of microRNA expression results in an alteration of target genes expression. Reduction of miR169a and miR196c resulted in an over-accumulation of its targets, NFYA5 (Li et al., 2008). NFYA5 is a subunit of the nuclear factor Y transcription factor. Alteration of NFYA5 abundance indicates that expression of many downstream genes might be changed as well. However the diverse effect of microRNAs is observed. Under salinity and drought stress, the transcripts of NFYA are reduced as a result of over-expression of rice microRNA miR169g and miR169n/o (Zhao et al., 2009). Apart from NFYA5 protein other transcription factors belonging to growth-regulating factor (GRL), scarecrow-like (SCL), squamosa promoter binding protein (SBP), APETALA2 (AP2) and TCP are targeted by salt-inducible microRNA (Lui et al., 2008).

One interesting work has been carried out on studying microRNA profile in maize. MicroRNAs were isolated from salt-sensitive and salt-tolerance maize lines. From this work many microRNA families have been identified (Ding et al., 2009). Interestingly induction of zma-miR168 was observed in the salt-tolerant line. On the contrary zma-miR168 was repressed in the salt-sensitive line (Ding et al., 2009). The osa-MIR393 and osa-MIR396c was reduced when growing under salt containing medium (Gao et al., 2010; Gao et al., 2011). Over-expression of osa-MIR393 resulted in the reduction of salinity tolerance in rice (Gao et al., 2011). In an independent experiment, transgenic rice over-expressing osa-MIR396c was also more sensitive to salinity stress (Gao et al., 2010). Both microRNAs target abiotic stress related genes suggesting their roles in abiotic stress response (Gao et al., 2010; Gao et al., 2011). The miR396 from maize root is reduced under salt stress. This microRNA targets cytochrome oxidase and is thought to protect photosynthesis in the cells leading to metabolic adaptation (Ding et al., 2009).

Changes of microRNA expression might be due to the effect to modulation in genes or proteins involved in microRNA biogenesis and metabolism. The AGO1 expression was decreased in salt-tolerance but increased in salt-sensitive lines (Ding et al., 2009). This indicates that the metabolism of microRNA might be different in dissimilar plant backgrounds. It is also showed that plants might utilize microRNAs in order to response to salinity stress ultimately leading to its resistance. Stress-responsive microRNAs have been identified by sequencing libraries of small RNAs isolated from sample subjected to stress conditions (Sunkar et al., 2004; Khraiwesh et al., 2011).

MicroRNAs in Chlamydomonas

The existence of RNA silencing system in *C. reinhardtii* was first reported by an experiment carried out by Cerutti and team. The *aadA* gene conferring spectinomycin resistance was transform into *C. reinhardtii*. After culturing transformed cells under nonselective condition, the transformed cells became sensitive to the drug. Analysis of *aadA* transcripts showed that the transcripts were degraded suggesting that the silencing was occurred post-transcriptionally. Components in the RNA silencing system were then suggested to be present in *C. reinhardtii* genome. Three Dicer-like proteins and two AGO proteins were found by bioinformatics analysis suggesting that *C. reinhardtii* could employ microRNA system to regulate gene expression (Schroda et al., 2006).

The presence of microRNAs in *C. reinhardtii* was first published only recently. In 2007 Zhoa and colleague were the first to report the existence of microRNAs in this single cell green alga. Using parallel pyrosequencing technology the authors identified 4,182 unique small RNA sequences which were mapped to nuclear genome (Zhao et al., 2007). These small RNA sequences mostly matched to the intergenic regions similar to those found in higher plants (Zhao et al., 2007; Zhou et al., 2011). Interestingly some small RNA cognate sequences were found to locate within intronic region. Further bioinformatics analysis predicted that 200 small RNAs could form hairpin structure, a signature for microRNA. The expression of some predicted microRNAs were examined and the corresponding microRNAs were cloned from vegetative cells. The cloned microRNAs can direct cleavage of target mRNA in vitro indicating that the microRNAs might be indeed functional in *C. reinhardtii* (Zhao et al., 2007). In the same year Baulcombe and coworkers constructed small RNAs library and identified 68 microRNA candidate loci (Molnar et al., 2007).

As mentioned earlier, microRNA functions in a large number of biological processes in plants including development, flowering time, hormonal response, and response to various environmental stresses. MicroRNA expressions are altered under different developmental and environmental conditions, even to a very specific developmental program such as nodulation (Yu et al., 2008). These changes of microRNA production modulate the target gene expression. In *C. reinhardtii*, microRNA expressions were found to be under developmental program similar to those found in higher plants. Differentially expressed microRNAs were observed in vegetative compared to gametes indicating that microRNAs are involved in gametogenesis (Zhao et al., 2007). Light-induced microRNAs were also discovered. No detectable expression of these microRNAs was observed in culture growing under dark condition (Molnar et al., 2007). Therefore it is certain that there must be microRNAs responsive to other cellular processes including microRNAs responsive to different environmental conditions.

Methods

Strain and culture conditions

C. reinhardtii strain CC503 (mt+) was used throughout this study. The culture was maintained on Tris-acetate-phosphate (TAP) medium (Harris et al., 1978). For the CC503 salt-adapted culture, the cells were maintained in Tris-acetate-phosphate (TAP) medium supplement with 300 mM NaCl. All samples were cultured under 16-h light and 8-h dark with cool-white fluorescent bulbs at 22-25°C.

Result

Generation of salt-acclimated Chlamydomonas reinhardtii cells

The project has been designed to investigate differentially expressed transcripts and microRNAs in Chlamydomonas reinhardtii during the responses to salinity stress under short-term as well as long-term saline treatments. Generally C. reinhardtii can grow under very low concentration of NaCl. Only as low as 50 mM NaCl could already inhibit the growth of C. reinhardtii. In addition, the salt concentration at 150 mM NaCl was the maximum reported level tested with C. reinhardtii (Hema et al., 2007). Therefore, in order to study long-term responses to salinity stress in C. reinhardtii, salt-acclimated C. reinhardtii cells have to be constructed. During the first year after receiving MRG grant, the salt-acclimated cells were generated by culturing C. reinhardtii and challenged the cells under various concentrations of NaCl beyond the previously maximum reported concentration of NaCl. Figure 1 illustrates an experimental set up to generate the salt-acclimated cells of C. reinhardtii. The cells were cultured in Tris-Acetate-Phosphate (TAP) medium (Harris et al. 1989) containing 0 mM NaCl. The log-phase cells were transferred into new culture medium containing 0 mM, 50 mM, 100 mM and 200 mM NaCl, respectively. As expected, when the C. reinhardtii cells were firstly exposed to salt, the growth of the algae was inhibited compared to the cells cultured in a medium without any supplement of NaCl. The cells were cultured for 14 days prior to next sub-culturing. Initially the cells in the medium containing 200 mM NaCl could not grow which was consistent to previously report by Herma et al. (2007). However, to our surprise, after 10

days of culturing, the culture medium began to turn green; indicating that populations of cells were successfully adapted to the high salt concentration (Figure 2).

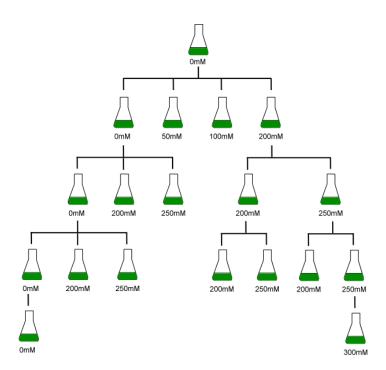


Figure 1. Experimental outline for generation of salt-acclimated cells. Initially *C. reinhardtii* cells were cultured in TAP medium containing 0 mM NaCl. The cells were transferred into new culture medium containing 0 mM, 50 mM, 100 mM, and 200 mM NaCl. After 14 days the cells were further transferred into new TAP medium containing 0 mM, 200 mM and 250 mM. The sub-culturing was repeated for another time. Lastly the cells were transferred and maintained in TAP medium containing 300 mM NaCl (salt-acclimated cells).

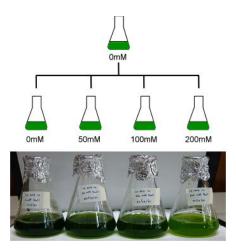


Figure 2. Growth inhibition of *Chlamydomonas reinhardtii* by the presence of NaCl in the culture medium.

C. reinhardtii cell were grown in TAP liquid medium in the presence of 0 mM, 50 mM, 100 mM and 200 mM NaCl. Photo was taken 14 days after inoculation.

The cells cultured in 0 mM and 200 mM NaCl were chosen for further experiment. These cells were subcultured into new culture medium containing 0 mM, 200 mM and 250 mM NaCl as shown in figure 1. After subculturing, if there is an adaptation of cells to the presence of salt in the culturing medium, the adaptation might occur with the cells which were pre-exposed to salt. The cells should show a better growing rate than the cells that are treated with NaCl for the first time. As expected, the growths of cells transferred from 0 mM to 200 mM NaCl and 0 mM to 250 mM NaCl were retarded when compared with the cells transferred from 200 mM to 200 mM NaCl and 200 mM to 250 mM NaCl, respectively (Figure 3). The cells were sub-cultured under these conditions for 2 more generations. Subsequently the cells which were pre-exposed to 250 mM NaCl were then transferred to TAP medium containing 300 mM NaCl to further challenge the cells. These pre-exposed cells could be able to grow in 300 mM NaCl. The cells were maintained in TAP liquid medium with 300 mM NaCl. By comparing the cells which have not been exposed to salt before (0 mM->300 mM NaCl) with the cells that were maintained in 300 mM (300->300 mM NaCl), the drastic growth retardation was observed in the cells freshly transferred to NaCl. In contrast, the salt pre-treated cells could be able to grow perfectly in the presence of salt (Figure 4). Therefore these cells were considered as "salt-acclimated" cells and represented the long-term salinity stress responses.

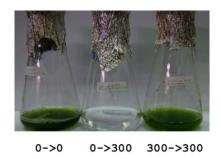



Figure 3. Adaptation of *Chlamydomonas reinhardtii* to salinity stress. A. *C. reinhardtii* cells were transferred from TAP medium containing 0 mM to 0 mM NaCl (0->0), from TAP medium containing 0 mM to 200 mM NaCl (0->200) and from TAP medium containing 200 mM to 200 mM NaCl (200->200). B. The cells were transferred from TAP medium containing 0 mM to 0 mM NaCl (0->0), from TAP medium containing 0 mM to 250 mM NaCl (0->250) and from TAP medium containing 200 mM to 200 mM NaCl (200->250).

Figure 4. Salt-acclimated *Chlamydomonas reinhardtii* cells. *C. reinhardtii* cells were transferred from TAP medium containing 0 mM to 0 mM NaCl (0->0), from TAP medium containing 0 mM to 300 mM NaCl (0->300) and from TAP medium containing 300 mM to 300 mM NaCl (300->300).

The salt-acclimated cells appear to have no significant difference in term of its phenotype compared to that of wild type (Figure 5). However, they tend to show more sensitivity to higher light intensity than the wild type control.

Figure 5. Salt-acclimated cells. The salt-acclimated cells were grown in liquid TAP medium containing 200 mM NaCl compared to wild type (WT).

Purification and transcriptomic analysis

Total RNA was extracted from vegetative cells growing under normal growth (wild type) and salt-acclimated (SA) culture using TriReagent in accordance with the manufacturer's instructions. The mRNA was purified using Megnosphere™ UltraPure mRNA Purification Kit (Takara) following manufacturer's instructions. In collaboration with Dr. Sithichoke Tangphatsornruang, Head of Sequencing Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology (BIOTEC), the purified mRNA was submitted to the Genome Institute and the transcriptomes of both cells grew under normal condition as well as salt-acclimated cells were analyzed using Ion Torrent (Life technologies) high-throughput sequencing.

The RNA sequence data was analyzed by mapping it either with Chlamydomonas genome (CDS and the corresponding UTR) and CDS sequences based on phytozome (http://www.phytozome.net/chlamy.php) as a Chlamydomonas sequence reference. Approximate 96% of the RNA-Seq data were mapped with the genome, which contains 54 scaffolds (110 Mbp). The data obtained from the run was 86,468,286 reads which the number of reads ranged from 16,762,915 to 26,198,408. The mean read length was ranging from 73-81 bp for each sample (Table 2). Of these 85% of total bases can be aligned to the reference sequences (Figure 6).

Table 2 Summary of high-throughput sequencing of salt-treated *C. reinhardtii* cells mapped with Chlamydomonas genome reference sequence. WT: cells grew under normal growth condition; SA: salt-acclimated cells. The sequencing was carried out on 2 biological replicates.

Condition	>=Q20 Bases	Number of read	Mean read Length
			(bp)
WT1	1,682,672,367	26,198,408	73
WT2	1,352,807,487	20,686,243	74
SA1	1,182,764,052	16,762,915	81
SA2	1,428,683,862	21,940,868	75

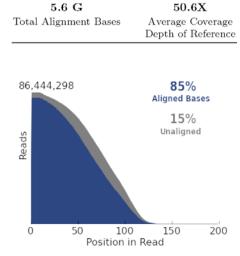


Figure 6. The RNA-Seq data mapped with Chlamydomonas genome sequence reference.

When analyzed the sequenced data by mapping the sequences with CDS of Chlamydomonas, the mapped sequences contain 19,526 contigs (42.5 Mbp). The data obtained from the run was 86,465,885 reads which the number of reads ranged from 16,764,917 to 26,200,387. The mean read length was also ranging from 73-81 bp for each sample (Table 3). Of these 49% of total bases can be aligned to the reference sequences (Figure 7).

Table 3 Summary of high-throughput sequencing of salt-treated *C. reinhardtii* cells mapped with Chlamydomonas CDS reference sequence. WT: cells grew under normal growth condition; SA: salt-acclimated cells. The sequencing was carried out on 2 biological replicates.

Condition	>=Q20 Bases	Number of read	Mean read Length
			(bp)
WT1	1,680,005,379	26,200,387	73
WT2	1,350,776,336	20,685,421	74
SA1	1,181,221,583	16,764,917	81
SA2	1,426,927,992	21,937,775	75

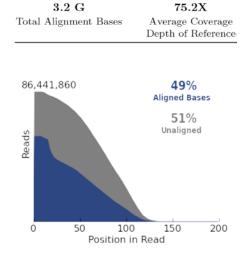


Figure 7. The RNA-Seq data mapped with Chlamydomonas CDS sequence reference.

Gene expression between Chlamydomonas grew under normal condition and under long-term salinity stress was compared by using Cuffdiff software. With the cut-off at more than 2-fold difference, we found that there were 1,261 up-regulated gene and 664 down-regulated genes in salt-acclimated cells compared to those in wild type cells. Out of these 1,925 genes, 9 of them were exclusively expressed in the WT while the other 8 genes were expressed only in the salt-adapted cells.

Figure 8 shows the genes that were more than 4-fold up-regulated in the SA compared to WT consisting of 303 genes. The genes with 4-fold changes in expression level were selected, annotated and classified into

various biological functional groups such as carbohydrate and energy metabolism, cell division, membrane and transport as well as stress and defense etc. While about 102 genes showed 4-fold down-regulated compared to the expression in WY background. These genes are annotated and classified as shown in figure 9. Interestingly most of the annotated genes were fall into signaling group. This might mean that some proteins involved in signaling were to be repressed while some proteins in signaling can be activated under saline stress. The gene list that show differentially expression level are shown in the appendix 1.

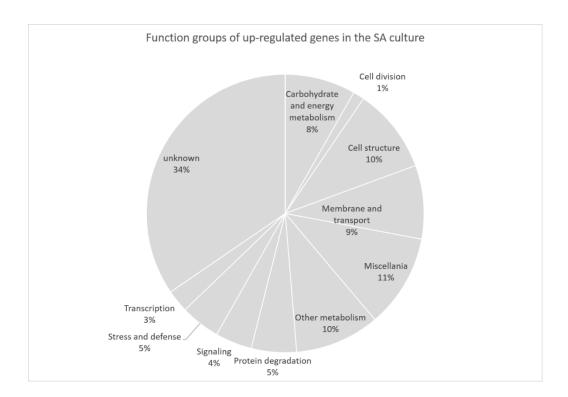


Figure 8. Functional group of genes that showed 4-fold upregulation in the salt-acclimated Chlamydomonas reinhardtii.

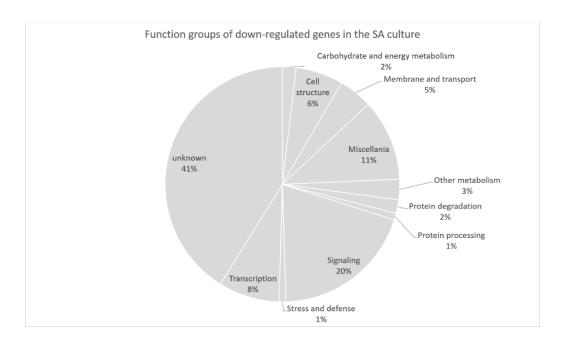


Figure 9. Functional group of 4-fold down-regulated genes in the salt-acclimated *Chlamydomonas* reinhardtii.

Conservation between Chlamydomonas genes with the higher plant genes

Even though the genome of Chlamydomonas has been fully sequenced but the genes have not yet been fully annotated. Therefore, the gene sequences were search against Arabidopsis genome and other gene ontology program such as Pfam, Panther, KOG, KEGG ec, KEGG Orthology in order to further annotate the genes. Here we report the genes that have homology to the Arabidopsis genome. As shown in table 4, the genes from Chalmydomonas matched to the same function of proteins in Arabidopsis.

Table 4. List of orthologue genes in Arabidopsis

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis	Expression
		TAIR number	level (log2
			FC)
Glycerol-3-phosphate dehydrogenase/	NAD-dependent glycerol-3-phosphate	AT5G40610.1	7.7
dihydroxyacetone-3-phosphate reductase	dehydrogenase family protein		
Glycerol-3-phosphate dehydrogenase/	NAD-dependent glycerol-3-phosphate	AT5G40610.1	6.9
dihydroxyacetone-3-phosphate reductase 2	dehydrogenase family protein		
Fe-assimilating protein 2	-	-	6.1
Peroxisomal membrane protein MPV17	Peroxisomal membrane (Mpv17/PMP22)	AT4G03410.2	5.9

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis TAIR number	Expression level (log2
			FC)
	family protein		
Sodium/phosphate symporter PTB6b/a	Phosphate transporter 2;1	AT3G26570.2	5.9
Glycosyltransferase family 92	Zinc finger (C3HC4-type RING finger) family protein	AT3G27330.1	5.9
Flagellar Associated Protein FAP211	-	-	5.5
Expansin	Expansin A1	AT1G69530.1	5.4
Carbonic anhydrase	Alpha carbonic anhydrase 4	AT4G20990.1	5.4
Unknown protein	-	-	5.2
Zygote-specific protein ZYS3 ZYS3-1	XBAT31/XB3 ortholog 1 in A. thaliana	AT2G28840.2	5.2
Gametolysin peptidase M11	-	-	4.9
Predicted protein -	-	-	4.6
Gametolysin peptidase M11	-	-	4.6
CHRD domain containing protein	-	-	4.5
C-type lectin CTL3	-	-	4.5
Hypothetical protein	-	-	4.5
predicted protein	-	-	4.5
Low-CO ₂ response regulator, Myb-like transcription factor LCR1 SNT domain	Myb domain protein 115	AT5G40360.1	4.5
Glyoxal oxidase GOX1	Glyoxal oxidase-related protein	AT1G19900.1	4.4
Predicted membrane protein/ peptidase	Protein of unknown function (DUF2012)	AT2G25310.1	4.4
superfamily			
Mitochondrial carnitine-acylcarnitine carrier protein	Mitochondrial substrate carrier family protein	AT4G11440.1	4.4
Glutamate 5-kinase	Delta 1-pyrroline-5-carboxylate synthase P5CS2	AT3G55610.1	4.4
Proprotein convertase subtilsin/kexin - (peptidase)/ VLE gene	-	-	4.2
Fasciclin-like protein FAS2	-		4.1
Gametolysin peptidase M11	-	-	4.1
Expansin A- related	Expansin A24	AT5G39310.1	4.1
CGI-141-related/ lipase containing protein -	alpha/beta-Hydrolases superfamily protein	AT2G44810.1	4.1
Lipase (class 3)TGL21	(DAD1)		
Glucan endo-1,3-beta-D-glucosidase /	-	-	4.1
Laminarinase			
Pherophorin	-	-	4.1
Lipoxygenase	Lipoxygenase 1 ATLOX1,LOX1	AT1G55020.1	4.0
Predicted protein with ankyrin repeats ANK20	Ankyrin repeat family protein	AT2G03430.1	3.9
Predicted protein	-	-	3.9
Hypothetical protein (similar to 23 kDa-	-	-	3.9

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis	Expression
		TAIR number	level (log2
			FC)
Jasmonate induced protein-like)			
SARS coronavirus main proteinase / Severe	-	-	3.9
acute respiratory syndrome coronavirus main			
protease			
Pherophorin	-	-	3.8
Glyoxal oxidase GOX2	Glyoxal oxidase-related protein	AT3G57620.1	3.8
Pherophori	-	-	3.8
Xaa-Pro dipeptidase	Metallopeptidase M24	AT4G29490.1	3.8
Urate oxidase II UO UOX UOX1	uricase / urate oxidase / nodulin 35, putative	AT2G26230.1	3.8
GTP-BINDING PROTEIN 6-RELATED	-	-	3.7
Cell wall protein pherophorin-C21 PHC21	-	-	3.7
Dynamin family	-	-	3.7
hypothetical protein CHLREDRAFT_194760	-		3.7
Predicted protein CHLREDRAFT_189957	-		3.7
Predicted protein CHLREDRAFT_169044	-	-	3.6
predicted protein, partial	-	-	3.6
CHLREDRAFT_95982			
Metallophosphoesterase	Purple acid phosphatase 29	AT5G63140.1	3.5
Expansin A1 related	Expansin A15	AT2G03090.1	3.5
Hydroxyproline-rich cell wall protein	-	-	3.5
Equilibrative nucleotide transporter 1	Equilibrative nucleotide transporter 1	AT1G70330.1	3.4
Predicted protein CHLREDRAFT_175752	-	-	3.4
contain ARC105 or Med15 subunit of Mediator			
complex			
Hypothetical protein CHLREDRAFT_188455	-	-	3.4
Glyoxal oxidase GOX17	Glyoxal oxidase-related protein	AT1G67290.1	3.4
Predicted protein CHLREDRAFT_184100	-	-	3.4
3-oxo-5-alpha-steroid 4-dehydrogenase	3-oxo-5-alpha-steroid 4-dehydrogenase	AT2G38050.1	3.3
	family protein ATDET2,DET2,DWF6		
Hypothetical protein CHLREDRAFT_179453	-	-	3.3
Hypothetical protein CHLREDRAFT_167236	-	-	3.3
Non-specific serine/threonine protein kinase /	-	-	3.3
Threonine-specific protein kinase			
Gametolysin peptidase M11			3.3
Predicted protein CHLREDRAFT_182549	-	-	3.3
Lactonase	-	-	3.3
Gamma-glutamyl hydrolase GGH1	Gamma-glutamyl hydrolase 3	AT1G78670.1	3.2
Low-CO ₂ -inducible membrane protein	-	-	3.2
Predicted protein CHLREDRAFT_143757	-	-	3.2

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis TAIR number	Expression level (log2 FC)
"Chlamydomonas specific protein, induced by iron deficiency			,
Hypothetical protein CHLREDRAFT_167236	_	_	3.1
Lactonase		_	3.1
Predicted protein CHLREDRAFT_171678	_	_	3.1
Calcium dependent MEKK	MAP kinase 10 ATMPK10,MPK10	AT3G59790.1	3.0
Cytochrome P450 gene CYP744C1, CYP3	Cytochrome P450 superfamily protein	AT3G53730.1	3.0
superfamily	CYP97C1,LUT1	A13G33130.1	3.0
C-type lectin CTL2	-	-	3.0
Hypothetical protein CHLREDRAFT_167880	-	-	
Hypothetical protein CHLREDRAFT_115272	-	-	3.0
Hypothetical protein CHLREDRAFT_149776	-	-	3.0
Iron permease, membrane protein FTR1	-	-	3.0
Nucleotide-diphospho-sugar transferase	-	-	3.0
Predicted protein CHLREDRAFT_185442	-	-	3.0
Rieske iron-sulfur cluster 55 kDa protein of	Pheophorbide a oxygenase family protein	AT3G44880.1	3.0
chloroplast inner membrane translocon	with Rieske [2Fe-2S] domain ACD1, LLS1, PAO		
RNA exonuclease EXN11	Small RNA degrading nuclease 2 SDN2	AT5G05540.2	3.0
Gamma-interferon inducible lysosomal thiol	-	-	2.9
reductase (GILT)			
Hypothetical protein CHLREDRAFT_187842	-	-	2.9
Hypothetical protein CHLREDRAFT_170956	-	-	2.9
Hypothetical protein CHLREDRAFT_194245 (similar to acyltranferase)	-	-	2.9
Predicted protein CHLREDRAFT 193913	-	-	2.9
Putative UDP-glucuronate 5'-epimerase NAD-	UDP-D-glucuronate 4-epimerase 2 GAE2	AT1G02000.1	2.9
dependent epimerase/dehydratase			
Pherophorin	-	-	2.9
Transmembrane protein 2-related	-	-	2.9
WSC domain containing protein	-	-	2.9
Ankyrin repeat	-	-	2.8
Cysteine-rich secretory protein-related, PR-related	Basic pathogenesis-related protein 1 ATPRB1, PRB1	AT2G14580.1	2.8
Endothelin-converting enzyme 1 / ECE-1	-	-	2.8
Glutathione S-transferase GST12		- AT2G02930.1	
Giutatiilolle G-traibleidse GST12	Glutathione S-transferase F3 ATGSTF3, GST16, GSTF3	A12G02930.1	2.8
Heparan sulfate 3-O sulfotransferase	-	-	2.8
Hypothetical protein CHLREDRAFT_192823	-	-	2.8

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis TAIR number	Expression level (log2
contain CTD synthesis (UTD commonis lyses)			FC)
contain CTP synthase (UTP-ammonia lyase) MLD1 MLDP1			
Hypothetical protein CHLREDRAFT_205652	_	_	2.8
Hypothetical protein CHLREDRAFT_186807	_	_	2.8
Hypothetical protein CHLREDRAFT_183905	_	_	2.8
Hypothetical protein CHLREDRAFT_175013	_	_	2.8
Hypothetical protein CHLREDRAFT_193137	-	-	2.8
similar to Low CO ₂ indicible protein			
Low-CO ₂ -induced aldose reductase LCI28	NAD(P)-linked oxidoreductase superfamily protein	AT2G37770.2	2.8
Low CO ₂ inducible protein LCI6	-	-	2.8
CHLREDRAFT_184094			
Pherophorin	-	-	2.8
Sugar transporter sweet1 RAG1-ACTIVATING PROTEIN 1	Nodulin MtN3 family protein	AT4G10850.1	2.8
Transmembrane protein 2-related, PHD-finger	Methyl-CPG-binding domain 9 ATMBD9, MBD9	AT3G01460.1	2.8
Ammonium transporter AMT4	Ammonium transporter 1;2 AMT1;2, ATAMT1;2	AT1G64780.1	2.7
DNA polymerase epsilon subunit 4	-	-	2.7
Glyoxal oxidase GOX3	Glyoxal oxidase-related protein	AT3G57620.1	2.7
Guanine deaminase	-	-	2.7
Hypothetical protein CHLREDRAFT_150931	-	-	2.7
Hypothetical protein CHLREDRAFT_189378	-	-	2.7
Long-chain-alcohol O-fatty-acyltransferase / Wax synthase domain	Acyl-CoA sterol acyl transferase 1 ASAT1, ATASAT1, ATSAT1	AT3G51970.1	2.7
NAD(P)-binding Rossmann-fold superfamily	NAD(P)-binding Rossmann-fold superfamily	AT3G20790.1	2.7
protein Oxidoreductase	protein		
Predicted protein CHLREDRAFT_190468	-	-	
protein kinase catalytic domain			2.7
Stress-related chlorophyll a/b binding protein 2	Chlorophyll A/B binding protein 1 AB140,	AT1G29930.1	2.7
LHCSR2 LHCSR3.1	CAB1, CAB140, LHCB1.3		
Stress-related chlorophyll a/b binding protein 3	Chlorophyll A/B binding protein 1 AB140,	AT1G29930.1	2.7
LHCSR3 LHCSR3.2	CAB1, CAB140, LHCB1.3		
Unknown protein	RING/U-box superfamily protein	AT3G26730.1	2.7
Alpha-amylase AMA3	Alpha-amylase-like 3 AMY3,ATAMY3	AT1G69830.1	2.6
GCC2 and GCC3	-	-	2.6
Glucosyl/ Glucuronosyltransferases	UDP-Glycosyltransferase superfamily protein	AT3G02100.1	2.6
Hydroxyproline-rich glycoprotein component of	-	-	2.6

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis TAIR number	Expression level (log2
the outer cell wall-			FC)
Hypothetical protein CHLREDRAFT_189638	-	-	2.6
Hypothetical protein CHLREDRAFT_145397	_		2.6
Lectin C-type domain (Lectin C) //	_	_	2.6
Pherophorin			2.0
Pherophorin	_	_	2.6
Predicted protein CHLREDRAFT_160684			2.6
Sodium-dependent phosphate transporter	Phosphate transporter 4;5 PHT4;5	AT5G20380.1	2.6
PHT6	Priospirate transporter 4,5 Prin4,5	A13G20300.1	2.0
Tyrosine kinase specific for activated (GTP-	Protein kinase superfamily protein with	AT3G46920.1	2.6
bound) p21cdc42Hs	octicosapeptide/Phox/Bem1p domain		
Ubiquitin UBQ1	Polyubiquitin 10 UBQ10	AT4G05320.2	2.6
Vegetative cell wall protein gp1	-	-	2.6
12-oxophytodienoate reductase	12-oxophytodienoate reductase 2	AT1G76690.1	2.5
Arylsulfatase ARS18	-	-	2.5
Carbonic anhydrase, alpha type, periplasmic	Alpha carbonic anhydrase 4 ACA4, ATACA4	AT4G20990.1	2.5
Cathepsin B / Cathepsin B1	Cysteine proteinases superfamily protein	AT1G02300.1	2.5
Copper transport accessory protein CTR3	-	-	2.5
Cytochrome P450, CYP55 superfamily	Cytochrome P450, family 88, subfamily A, polypeptide 3	AT1G05160.1	2.5
Ferric-chelate reductase/ oxidoreductase FRE1	Ferric reduction oxidase 2 ATFRO2, FRD1, FRO2	AT1G01580.1	2.5
Flagellar Associated Protein FAP102	-	-	2.5
His(2)-Cys(2) zinc finger (zf-H2C2)	Methyl-CPG-binding domain 9 ATMBD9, MBD9	AT3G01460.1	2.5
Hypothetical protein CHLREDRAFT_176878	-	-	2.5
Hypothetical protein CHLREDRAFT_189257 RING FINGER PROTEIN 10	-	-	2.5
Lipid-phosphate phosphatase / Soluble epoxide hydrolase	soluble epoxide hydrolase ATSEH, SEH	AT2G26740.1	2.5
Multicopper ferroxidase FOX1	-	-	2.5
Pirin Transcription co-activator	RmlC-like cupins superfamily protein	AT2G43120.1	2.5
Predicted extracellular protein similar to	Pathogenesis-related gene 1 ATPR1, PR 1,	AT2G14610.1	2.5
pathogenesis-related protein 1 gene PRL10	PR1		
Serine/threonine protein kinase STK23 STPK23	MAP kinase 9 MPK9	AT3G18040.1	2.5
9-O-Acetylneuraminic acid deacetylase-related	Protein containing Domain of unknown function (DUF303)	AT3G53010.1	2.4

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis	Expression
		TAIR number	level (log2
			FC)
Amino acid transporter AOT4	Amino acid transporter family protein	AT2G41190.1	2.4
Beta-galactosidase	-	-	2.4
Calpain	Calcium-dependent protein kinase 34 CPK34	AT5G19360.1	2.4
Flagellar membrane protein, paralog of AGG2	PLAC8 family protein	AT3G18470.1	2.4
detergent resistant membrane protein-2			
PLAC8 domain			
His(2)-Cys(2) zinc finger (zf-H2C2)	Methyl-CPG-binding domain 9 ATMBD9, MBD9	AT3G01460.1	2.4
HVA22-like protein (Stress, ABA-induced protein)	HVA22 homologue E ATHVA22E, HVA22E	AT5G50720.1	2.4
Hypothetical protein CHLREDRAFT_191760	-	-	2.4
Hypothetical protein CHLREDRAFT_192689	-	-	2.4
Low-CO ₂ -inducible protein LCI12	-	-	2.4
CHLREDRAFT_160482			
Non-specific serine/threonine protein kinase /	-	-	2.4
Threonine-specific protein kinase			
NUDIX domain containing protein	-	-	2.4
Pherophorin-C2 PHC2	-	-	2.4
Predicted protein CHLREDRAFT_194524	-	-	2.4
Protein similar to proteosome assembly	Clast3-related protein	AT3G18940.1	2.4
chaperon 2			
Sterol esterase / Triterpenol esterase	-	-	2.4
Stress-related chlorophyll a/b binding protein 1	Chlorophyll A/B binding protein 1 AB140,	AT1G29930.1	2.4
LHCSR1	CAB1, CAB140, LHCB1.3		
Arylsulfatase ARS5	-	-	2.3
Cysteine-rich secretory protein-related	CAP (Cysteine-rich secretory proteins,	AT4G33730.1	2.3
	Antigen 5, and Pathogenesis-related 1		
	protein) superfamily protein		
Cytochrome c oxidase assembly factor,	Electron transport SCO1/SenC family protein	AT3G08950.1	2.3
SCO1/SenC			
Gametolysin peptidase M11	-	-	2.3
Glyoxal oxidase GOX4	Glyoxal oxidase-related protein	AT1G19900.1	2.3
Glyoxal oxidase GOX5	Glyoxal oxidase-related protein	AT1G67290.1	2.3
Hypothetical protein CHLREDRAFT_141138	-	-	2.3
Hypothetical protein CHLREDRAFT_185746	-	-	2.3
Hypothetical protein CHLREDRAFT_149209	-	-	2.3
Hypothetical protein CHLREDRAFT_19457	-	-	2.3
Hypothetical protein CHLREDRAFT_187963	-	-	2.3
Hypothetical protein CHLREDRAFT_194668	Phloem protein 2-B8 AtPP2-B8, PP2-B8	AT2G02340.1	2.3

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis	Expression
		TAIR number	level (log2
			FC)
Hypothetical protein CHLREDRAFT_159875	-	-	2.3
similar to Low-CO2 inducible protein			
Hypothetical protein CHLREDRAFT_205597	-	-	2.3
Hypothetical protein CHLREDRAFT_195183	-	-	2.3
IAA-amino acid hydrolase ILR1-LIKE 3 PTHR	Peptidase M20/M25/M40 family protein	AT1G51760.1	2.3
Leucine carboxyl methyltransferase SOM4	-	-	2.3
Lysine carboxypeptidase / Lysine (arginine)	ฉarboxypeptidase D, putative	AT1G71696.2	2.3
carboxypeptidase			
Monooxygenase	-	-	2.3
MAPK	MHK protein kinase superfamily protein	AT4G13020.1	2.3
Pherophorin-C8		-	2.3
Predicted protein CHLREDRAFT_175081	-	-	2.3
Predicted protein CHLREDRAFT_172805	-	-	2.3
Programmed cell death protein 2 PCDC2	Ubiquitin-specific protease 16 UBP16	AT4G24560.1	2.3
Proton gradient regulation 5	Proton gradient regulation 5 PGR5	AT2G05620.1	2.3
Serine/threonine phosphatases, family 2C	Protein phosphatase 2C family protein	AT5G53140.1	2.3
Sodium/potassium-exchanging ATPase /	Endoplasmic reticulum-type calcium-	AT1G10130.1	2.3
Sodium/potassium-transporting ATPase	transporting ATPase 3		
Transmembrane protein 2-related	-	-	2.3
Unknown protein	Methyltransferases	AT5G01710.1	2.3
Zeaxanthin epoxidase	zeaxanthin epoxidase (ZEP) (ABA1)	AT5G67030.2	2.3
Cytochrome P450 CYP197 superfamily CYP20	Cytochrome P450, family 97, subfamily A	AT1G31800.1	2.2
CYP743B1			
Dehydrogenases	NAD(P)-binding Rossmann-fold superfamily	AT4G23430.2	2.2
	protein		
Exostosin-like glycosyltransferase ELG8	Exostosin family protein	AT3G57630.1	2.2
Histidine phosphatase	-	-	2.2
Ionotropic glutamate receptor	Glutamate receptor 3.4	AT1G05200.1	2.2
FAD NAD oxidoreductase	-	-	2.2
Fasciclin-like protein FAS3	-	-	2.2
dTDP-glucose 4,6-dehydratase SNE5 NAD-	Rhamnose biosynthesis 1 ATRHM1, RHM1,	AT1G78570.1	2.2
dependent epimerase/dehydratase	ROL1		
Glycosyltransferase family 92	Zinc finger (C3HC4-type RING finger) family	AT3G27330.	2.2
	protein		
Hypothetical protein CHLREDRAFT_169394	-	-	2.2
Hypothetical protein CHLREDRAFT_148896	-	-	2.2
MAPK	Protein kinase superfamily	AT1G71530.1	2.2
Nitrogen-starved gametogenesis 13	-	-	2.2
P-type ATPase/cation transporter	H(+)-ATPase 1	AT2G18960.1	2.2

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis	Expression
		TAIR number	level (log2
			FC)
Pherophorin	-	-	2.2
Predicted protein with mechanosensitive ion	Mechanosensitive channel of small	AT5G12080.1	2.2
channel domain MSC4 MSCL1	conductance-like 10 ATMSL10, MSL10		
Pyrazinamidase/ nicotinamidase	-	-	2.2
RAG1	AtVEX1 Nodulin MtN3 family protein	AT5G62850.1	2.2
Sulfate anion transporter SUL2 SULTR2	Sulfate transporter 4;2 SULTR4;2	AT3G12520.1	2.2
Uncharacterized membrane protein	Saccharopine dehydrogenase	AT5G39410.1	2.2
Allantoate deiminase	Allantoate amidohydrolase	AT4G20070.1	2.1
Ankrin repeat and protein kinase domain	XBAT31 XB3 ortholog 1 in Arabidopsis	AT2G28840.1	2.1
containing protein	thaliana		
Dicarboxylate/amino acid cation sodium	-	-	2.1
transporter DAT1			
EGF-like domain containging protein	-	-	2.1
Endothelin-converting enzyme 1	-	-	2.1
Exostosin –like glycosyltransferase	Exostosin family protein	AT3G57630.1	2.1
Flagellar Associated Protein FAP233	-	-	2.1
Gametolysin peptidase M11	-	-	2.1
Glycosyltransferase 14 family	-	-	2.1
Glyoxalase	-	-	2.1
Granule-bound starch synthase I GBBSI	UDP-Glycosyltransferase superfamily protein	AT1G32900.1	2.1
GBS1 STA2			
Heparan sulfate 3-O sulfotransferase	-	-	2.1
Histone-lysine N-methyltransferase	-	-	2.1
Hydroxyproline-rich glycoprotein, cell wall	-	-	2.1
protein VSP4			
Hypothetical protein CHLREDRAFT_177730	-	-	2.1
Hypothetical protein CHLREDRAFT_152521	-	-	2.1
Hypothetical protein CHLREDRAFT_175108	-	-	2.1
Hypothetical protein CHLREDRAFT_150030	-	-	2.1
Matrix metalloproteinase	-	-	2.1
PDDEXK-like family of unknown function	Protein of unknown function (DUF506)	AT1G77145.1	2.1
(PDDEXK_6)	,		
Phosphate metabolism protein RSN1	ERD (early-responsive to dehydration stress)	AT4G02900.1	2.1
	family protein		
Predicted protein CHLREDRAFT_146582,	Protein with domain of unknown function	AT1G70480.1	2.1
. ==,	(DUF220)		
Scavenger receptor cysteine rich (SRCR)	-	_	
protein			2.1

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis	Expression
		TAIR number	level (log2
			FC)
SGNH hydrolase	-	-	2.1
Starch phosphorylase PHO2 PHOA	Alpha-glucan phosphorylase 2 ATPHS2, PHS2	AT3G46970.1	2.1
Thioesterase superfamily TEH3	-	-	2.1
Transient receptor potential ion channel protein	-	-	2.1
Zygote-specific protein EZY9	chloroplast signal recognition particle component (CAO) CAO, CPSRP43	AT2G47450.1	2.1
Arylsulfatase ARS11	-	-	2.0
Ascorbate peroxidase APX1	SAPX stromal ascorbate peroxidase	AT4G08390.1	2.0
Beta-galactosidase	-	-	2.0
BLZ20	-	-	2.0
Defense protein L(2)34F	Auxin-responsive family protein	AT3G25290.1	2.0
ERD4-related membrane protein ERM1	ERD (early-responsive to dehydration stress) family protein	AT4G02900.1	2.0
Ferredoxin FDX2 Apoferredoxin	A 2Fe-2S ferredoxin-like superfamily protein ATFD2, FED	AT1G60950.1	2.0
Similar to Flagellar Associated Protein FAP16 (FAL9)	-	-	2.0
Gamma-interferon inducible lysosomal thiol reducatse (GILT)	-	-	2.0
Gametolysin peptidase M11	-	-	2.0
Hydroxyproline-rich cell wall protein ISG-C4 ISG4 FAP137	-	-	2.0
Hypothetical protein CHLREDRAFT_153310	-	-	2.0
Hypothetical protein CHLREDRAFT_171687 contain replication factor A domain	-	-	2.0
Hypothetical protein CHLREDRAFT_171614	-	-	2.0
Hypothetical protein CHLREDRAFT_167623	-	-	2.0
Hypothetical protein CHLREDRAFT_192903	-	-	2.0
Hypothetical protein CHLREDRAFT_171678	-	-	2.0
Hypothetical protein CHLREDRAFT_156911	Conserved expressed chloroplast protein	AT2G36145.1	2.0
Hypothetical protein CHLREDRAFT_192467	-	-	2.0
Hypothetical protein CHLREDRAFT_171176	-	-	2.0
Hypothetical protein CHLREDRAFT_190404	-	-	2.0
Interferon-inducible GTPase 5	-	-	2.0
L-threonine 3-dehydrogenase	Elicitor-activated gene 3-2 ATCAD8, CAD- B2, ELI3, ELI3-2	AT4G37990.1	2.0
Leucine-rich repeat containing protein	-	-	2.0

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis	Expression
		TAIR number	level (log2
			FC)
Metalloproteinase of VMP family	-	-	2.0
Pheophorbide a oxygenase, Rieske iron-sulfur	ACD1-LIKE PTC52, TIC55-IV	AT4G25650.2	2.0
cluster protein TIC55-2 PAO2			
Pherophorin	-	-	2.0
Phosphate-repressible alkaline phosphatase	-	-	
PHO5 PHOX			2.0
Protein contain domain of DNA polymerase III	-	-	2.0
subunits gamma and tau			
Xyloglucan fucosyltransferase	-	-	2.0
Hypothetical protein CHLREDRAFT_193324	-	-	-2.0
Hypothetical protein CHLREDRAFT_18339	-	-	-2.0
Leucine-rich repeat containing protein	-	-	
Non-specific serine/threonine protein kinase /	-	-	2.0
Threonine-specific protein kinase			
Predicted protein CHLREDRAFT_194317	-	-	-2.0
Predicted protein CHLREDRAFT_186300	-	-	-2.0
Predicted protein CHLREDRAFT_173298	-	-	-2.0
Ribonuclease III	-	-	-2.0
Squamosa promoter binding protein-like 10-	Squamosa promoter binding protein-like 10	AT1G27370.1	-2.0
related	SPL10		
Tam3-transposase (Ac family) Transcription	-	-	-2.0
3',5'-cyclic-nucleotide phosphodiesterase	-	-	-2.1
PDE25			
Ankrin repeat-containing protein	Ankrin repeat-containing protein	AT5G14230.1	-2.1
Cation antiporter NAH1	-	-	-2.1
Exostosin-like glycosyltransferase ELG3	Exostosin family protein	AT3G57630.1	-2.1
Flagellar Associated Protein with ankyrin	Ankyrin repeat family protein	AT2G03430.1	-2.1
repeats FAP33 ANK17			
Gametolysin / Lysin MMP19	-	-	-2.1
Hypothetical protein CHLREDRAFT 181385	-	-	-2.1
Hypothetical protein CHLREDRAFT 188532	-	-	-2.1
Hypothetical protein CHLREDRAFT 145844	-	-	-2.1
Lactosylceramide 4-alpha-	alpha 1,4-glycosyltransferase family protein	AT2G38152.1	-2.1
galactosyltransferase]		
Leucine-rich repeat containing protein	Leucine-rich receptor-like protein kinase	AT4G36180.1	-2.1
. 51	family protein		
Non-specific protein-tyrosine kinase	Protein kinase superfamily protein AtCTR1,	AT5G03730.1	-2.1
•	CTR1, SIS1		
Predicted protein CHLREDRAFT_149697	-	-	-2.1

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis	Expression
		TAIR number	level (log2
			FC)
Predicted protein CHLREDRAFT_19519	-	-	-2.1
WD40 repeat protein	Transducin family protein TOZ / WD-40	AT5G16750.1	-2.1
	repeat family protein		
Hypothetical protein CHLREDRAFT_173908	-	-	-2.2
Hypothetical protein CHLREDRAFT_195218	-	-	-2.2
Las17-binding protein actin regulator (Ysc84)		-	-2.2
Nitrogen network kinase	AGC kinase 1.5	AT3G12690.1	-2.2
Phosphate transporter	Phosphate transporter 2;1 ORF02, PHT2;1	AT3G26570.1	-2.2
Predicted protein CHLREDRAFT_167259	-	-	-2.2
Protein E03H4.4-related	Protein of unknown function (DUF288)	AT3G57420.1	-2.2
Protein kinase superfamily protein with	-	-	-2.2
octicosapeptide/Phox/Bem1p domain			
centriole proteome protein			
Pyroglutamyl-peptidase I / Pyrrolidone-	Pyroglutamyl peptidase I-like peptidase C15	AT1G56700.1	-2.2
carboxylate peptidase			
Ribonuclease III	-	-	-2.2
Serine threonine protein kinase	Protein kinase	AT3G24715.1	-2.2
Tumor Necrosis factor receptor super family	-	-	-2.2
member			
Calcium/calmodulin dependent protein kinase	-	-	-2.3
II association domain (CaMKII_AD)			
Cytochrome C1 heme lyase	-	-	-2.3
Hypothetical protein CHLREDRAFT_181385	-	-	-2.3
Non-specific protein-tyrosine kinase /	Protein kinase superfamily protein with	AT3G46920.1	-2.3
Cytoplasmic protein tyrosine kinase	octicosapeptide/ Phox/ Bem1p domain		
Predicted protein CHLREDRAFT_18659			-2.3
Adenylate/guanylate cyclas CYG12	-	-	-2.4
Chitin binding domain containing protein	-	-	-2.4
Guanylate cyclase	-	-	-2.4
Hypothetical protein CHLREDRAFT_152091	-	-	-2.4
Hypothetical protein CHLREDRAFT_158973		-	-2.4
Predicted protein CHLREDRAFT_186626	-	-	-2.4
Predicted protein CHLREDRAFT_166201	-	-	-2.4
Predicted protein CHLREDRAFT_190755	-	-	-2.4
Putative transposase DNA-binding domain	-	-	-2.4
Aryl sulfotransferase / Sulfokinase	P-loop containing nucleoside triphosphate	AT2G03770.1	-2.5
	hydrolases superfamily protein		
lon transport protein KCN7	Gated outwardly-rectifying K+ channel	AT5G37500.1	-2.5
	GORK		

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis	Expression
		TAIR number	level (log2
			FC)
Serine-threonine protein kinase	ACT-like protein tyrosine kinase family protein	AT4G35780.1	-2.5
Serine-threonine protein kinase	PAS domain-containing protein tyrosine kinase family protein	AT5G49470.3	-2.5
Serine-threonine protein kinase	Protein kinase superfamily protein	AT5G50000.1	-2.5
12-oxophytodienoate reductase 1-related NADH oxidoreductase related	12-oxophytodienoate reductase 1 ATOPR1, OPR1	AT1G76680.1	-2.6
Cellulase / Endoglucanase	Glycosyl hydrolase 9C3 AtGH9C3, GH9C3	AT4G11050.1	-2.6
Flagellar Associated Protein similar to calmodulin FAP272	Calmodulin 4 ACAM-4, CAM4	AT1G66410.1	-2.6
Hydroxyproline-rich cell wall protein ISG-C3 ISG6	-	-	-2.6
Hypothetical protein CHLREDRAFT_195055	-	-	-2.6
Polyketide cyclase / dehydrase and lipid transport	-	-	-2.6
Protein kinase domain (Pkinase) // Protein tyrosine kinase (Pkinase_Tyr)	Protein kinase superfamily protein ATMRK1	AT3G63260.1	-2.6
Cathepsin H / N-benzoylarginine-beta- naphthylamide hydrolase cysteine endopeptidase	Cysteine proteinases superfamily protein	AT3G45310.1	-2.7
Hypothetical protein CHLREDRAFT_146760	-	-	-2.7
Hypothetical protein CHLREDRAFT_187136	-	-	-2.7
Hypothetical protein CHLREDRAFT_205951	-	-	-2.7
Hypothetical protein CHLREDRAFT_174438	-	-	-2.7
Tiny microcysts protein B-related	-	-	-2.7
Adenylate and Guanylate cyclase catalytic domain	Histidine kinase 1 AHK1, ATHK1, HK1	AT2G17820.1	-2.8
Lactosylceramide 4-alpha- galactosyltransferase / Histo-blood group P(k) UDP-galactose	alpha 1,4-glycosyltransferase family protein	AT2G38152.1	-2.8
Hypothetical protein CHLREDRAFT_188752	-	-	-2.8
3',5'-cyclic-nucleotide phosphodiesterase PDE23	-	-	-2.9
Protein of unknown function (DUF1524)	-	-	-2.9
Tyrosine kinase specific for activated (GTP-bound) p21cdc42Hs MEKK	-	-	-2.9
5'-nucleotidase and Flagellar Associated Protein FAP215 FPN1	-	-	-3.0
Peptide-methionine (S)-S-oxide reductase /	-	-	-3.0

Chlamydomonas gene name	Arabidopsis ortholog	Arabidopsis	Expression
		TAIR number	level (log2
			FC)
Peptide methionine sulfoxide reductase			
RWP-RK transcription factor RWP6	RWP-RK domain-containing protein	AT4G35590.1	-3.0
Serine-threonine protein kinase	PAS domain-containing protein tyrosine	AT1G67890.1	-3.0
	kinase family protein		
Sodium/phosphate symporter PTB5	Phosphate transporter 2;1 ORF02, PHT2;1	AT3G26570.1	-3.1
Cytochrome C1 heme lyase	-	-	-3.2
Hypothetical protein CHLREDRAFT_175676	-	-	-3.2
Predicted PWR protein PWR4	Protein of unknown function (DUF506)	AT3G54550.1	-3.2
Adenylate cyclase / ATP pyrophosphate-lyase	-	-	-3.3
// Guanylate cyclase / Guanylyl cyclase			
CYG65			
Transposase family tnp2	-	-	-3.3
Hypothetical protein CHLREDRAFT_188531	-	-	-3.4
FAL11 Similar to Flagellar Associated Protein	-	-	-3.5
FAP154			
Hypothetical protein CHLREDRAFT_143129	-	-	-3.5
Reverse transcriptase	-	-	-3.5
Hydroxyproline-rich glycoprotein HRP3	-	-	-3.9
Protein of unknown function	-	-	-4.0
RWP-RK transcription factor/minus dominance	RWP-RK domain-containing protein	AT4G35590.1	-4.1
protein MID RWP5Transcription			
Cell wall protein pherophorin-C21 PHC21	-	-	-4.2
Sodium/phosphate symporter PTB4	Phosphate transporter 2;1 ORF02, PHT2;1	AT3G26570.1	-4.4
Calcium-binding EGF domain	WAK3 wall associated kinase 3	AT1G21240.1	-5.7

Genetic variation of the salt-adapted Chlamydomonas

The polymorphism between salt-adapted and wild type were analyzed. The sequences of differentially expressed genes were analyzed by matching the sequences with 2 types of sequences on the databases. The first one was the sequences about 1,500 bp upstream of the coding region. These sequences were assigned as "genomic sequence". The second SNP identification was carried out by matching the differentially expressed genes with the CDS sequences from the database. From the search with the genomic sequences, 23 SNPs were observed between wild type and the salt-adapted cells. The wild type sequences were identical to the sequence from the database only the sequences obtained from the salt-adapted cells displayed the changes. Table 5 shows the SNPs found on the genomic sequences. While the comparison of sequences between salt-

adapted cells to the WT and the CDS sequences on the database. Altogether 2,098 SNPs which caused the amino acid changes were observed (data not shown). Similar to the comparison to genomic sequences, only the sequences obtained from the salt-adapted cells displayed SNPs when compared to the database sequences. The 2,098 SNPs represented in 1,636 genes.

Table 5. The single nucleotide polymorphisms observed in the salt-adapted cells when blast against the UTR.

Gene function	Chromosome	Log 2 fold
	number	chnage
Cell wall protein pherophorin-C21 PHC21	4	-4.17
Hydroxyproline-rich glycoprotein HRP3	10	-3.88
Cation antiporter NAH1	6	-2.13
Zinc finger (C3HC4-type RING finger) family protein	12	1.10
Glutamate receptor 3.4	13	1.10
SET domain group 37	9	1.10
RNA-binding (RRM/RBD/RNP motifs) family protein	12	1.10
Photosystem II light harvesting complex gene 2.2	12	1.11
Arabidopsis thaliana protein of unknown function (DUF821) KDEL LYS-ASP-GLU-LEU	12	1.14
CONTAINING - RELATED		
Starch branching enzyme 2.2	10	1.18
Gamma-tubulin complex protein 2	3	1.18
Xyloglucanase 113	7	1.27
Cryptococcal mannosyltransferase 1	2	1.28
Unknown protein	8	1.53
Nucleotide-sugar transporter family protein	11	1.55
Cinnamyl-alcohol dehydrogenase / CAD ADH8	3	1.64
Serinc-domain containing serine and sphingolipid biosynthesis protein	7	1.8
Glyoxal oxidase-related protein GOX17	16	1.9
Glyoxal oxidase-related protein GOX17	16	1.9
L-threonine 3-dehydrogenase	3	2.0
Glyoxal oxidase-related protein GOX4	17	2.3
Predicted protein CHLREDRAFT_184100	12	3.4
GTP binding protein 6-related contain ADP-ribosylglycohydrolase contain	7	3.7

Alteration of sequences in glyoxal-oxidase genes

From the transcriptome analysis, one group of proteins, glyoxal oxidases, were observed to be upregulated. Six genes encoding for the glyoxal oxidase proteins were up-regulated from 5 fold to 21 fold. These genes displayed the SNPs in both UTR and CDS. Glyoxal oxidase is enzyme catalyzing the formation of H2O2 using glyoxal as substrate which might serve as stress signalling molecule for the salt-adapted cells.

The expression of some glyoxal oxidase genes were analyzed by semi-quantitative RT-PCR. The expression of *GOX17* gene were observed only in the salt-adapted cells but not in the wild type sample. Figure 10 shows gradient RT-PCR for the *GOX17* transcript detection in the salt-adapted cells. This is consistent to the result obtained from the transcriptome analysis which we found very low amount of expression in the wild type and up-regulation about 4 fold in the salt-adapted cells.

Figure 10. Expression of GOX17 genes in the salt-adapted cells detected by semi-quantitative RT-PCR.

Cloning and profiling of MicroRNA

According to the proposal, we were to prepare mRNA as well as microRNA sample for the whole-genome analysis within the first year after receiving MRG grant. The microRNA was prepared from the *C. reinhardtii* wild type as well as salt-acclimated cultures. Total RNA was extracted using TRI reagent (MRC, USA) in accordance with the manufacturer's instructions. The quality of total RNA was estimated by running the RNA in a Urea PAGE gel containing 15% polyacrylamide with 7 M urea (Figure 11).

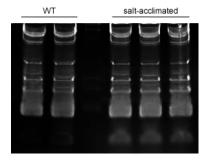


Figure 11. Total RNA profile from wild type (WT) and salt-acclimated cells.

The cloning of microRNA will be carried out using miRCat, microRNA cloning kit (Integrated DNA Technologies, Inc.) following the manufacturer's instructions (Figure 12). In brief, 100 µg of total RNA from wild type as well as salt-adapted cells were used for fractionation and purification of microRNA. Total RNA was run in a Urea PAGE gel containing 15% polyacrylamide with 7 M urea and the RNA with the size of 18-26 nucleotide were excised from the gel and purified. The purified small RNAs were then ligated to 3'-linker (Figure 7). Prior the next steps, the ligated small RNA have to be purified from the non-ligated RNA. The 3'-linked small RNAs were size fractionated by running in 15% denaturing polyacrylamide gel. The 3'-linked small RNAs were about 40 nucleotides long while the 3'-linker was 19 nucleotide in length. The 3'-linked small RNAs were cut from the gel and purified. Afterward, the small RNA was ligated to 5'-linker (Figure 7) and the 5'-linked small RNA was further purified by PAGE gel purification.

The small RNA with both 3' and 5' linker was further used as template to convert into cDNA by reverse transcription and amplification by PCR (Figure 13). The quality of PCR amplification was determined by gel electrophoresis (Figure 13). Currently the cloned microRNA is under the process of sequencing in collaboration with Dr. Sithichoke Tangphatsornruang, Head of Sequencing Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology (BIOTEC).

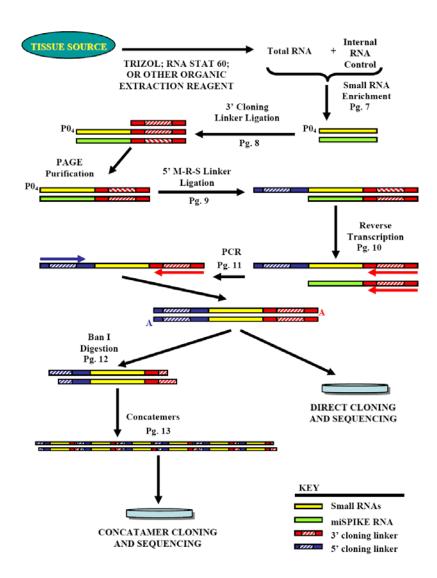


Figure 12. MicroRNA cloning procedure using the miRCat kit microRNA cloning kit (Integrated DNA Technologies, Inc.).

Figure 13. PCR product of cloned microRNA. M = GeneRuler™ Ultra Low Range DNA Ladder (ThermoScientific), WT = PCR product of cloned microRNA from wild type cells, SA = PCR product of cloned microRNA from salt-adapted cells.

Mapping of the microRNA to the genome of Chlamydomonas

The microRNA sequences were analyzed. We found 43 potential microRNA location which mapped on the Chlamydomonas genome (Chlre v3.0) (Table 6). However, no positive correlation between the expression level of microRNA and the transcript level of the target genes were observed. In addition, the microRNA sequences obtained from the analysis were BLAST against the microRNA database (MIRBASE). We found 50 microRNA hits to our sequences (Table 7). Further verification of the presence of microRNA and the expression of the target genes will be further analyzed.

Table 6. Genomic location of the microRNA found in the Chlamydomonas cells.

	Expression level WT:
locus	SA (log 2 fold change)
scaffold_10:1077584-1077788	-3.20486
scaffold_45:95143-95376	-2.54499
scaffold_1:496160-496308	1.1352
scaffold_36:313052-313072	1.19368
scaffold_6:555575-555628	1.29518
scaffold_9:244106-244356	1.31203
scaffold_22:1026657-1026683	1.5446
scaffold_2:1049124-1049365	1.55195
scaffold_7:2772397-2772682	1.57086
scaffold_20:231834-231931	1.59006
scaffold_78:198478-198578	1.63407
scaffold_4:2979413-2979492	1.69942
scaffold_5:1288236-1288444	1.77161
scaffold_54:536790-536859	1.87389
scaffold_83:240641-240840	1.90518
scaffold_93:192313-192517	1.94086
scaffold_1661:1505-1744	2.20414
scaffold_76:316388-316459	2.23975
scaffold_1:2712757-2712910	2.43722
scaffold_6:2466408-2466540	2.47354

scaffold_33:631036-631102 scaffold_78:228031-228251 scaffold_1:3891225-3891242	2.54216 2.65903 2.69338 2.77804
_	2.69338
scaffold_1:3891225-3891242	
	0.77004
scaffold_46:102144-102218	2.77804
scaffold_10:1980847-1980993	3.85719
scaffold_1:6411286-6411395 (-inf)	
Scaffold_10:540965-540979 (-inf)	
scaffold_10:1776310-1776324 (-inf)	
scaffold_106:94873-94956 (-inf)	
scaffold_15:1759844-1760085 (-inf)	
scaffold_16:1808214-1808384 (-inf)	
scaffold_21:1696928-1697064 (-inf)	
scaffold_23:42282-42348 (-inf)	
scaffold_25:1292815-1292829 (-inf)	
scaffold_4:948471-948481 (-inf)	
scaffold_43:525524-525533 (-inf)	
scaffold_5:1111861-1111874 (-inf)	
scaffold_670:99-708 (-inf)	
scaffold_81:61130-61270 (-inf)	
scaffold_83:163746-163916 (-inf)	
scaffold_94:161193-161359 (-inf)	
scaffold_45:792362-792464 (+inf)	

Table 7. Identification of the known microRNA in the Chlamydomonas cell under salt stress

Micro_ID	
cre_MIR905_MI0005698	
cre_MIR906_MI0005699	
cre_MIR907_MI0005700	

cre_MIR908_MI0005701
cre_MIR909_MI0005702
cre_MIR910_MI0005703
cre_MIR911_MI0005704
cre_MIR912_MI0005705
cre_MIR913_MI0005706
cre_MIR914_MI0005707
cre_MIR915_MI0005708
cre_MIR916_MI0005711
cre_MIR917_MI0005710
cre_MIR918_MI0005697
cre_MIR919_MI0005709
cre_MIR1142_MI0006203
cre_MIR1143_MI0006204
cre_MIR1144a_MI0006205
cre_MIR1144b_MI0006235
cre_MIR1145_MI0006206
cre_MIR1146_MI0006207
cre_MIR1147_MI0006208
cre_MIR1148_MI0006209
cre_MIR1149_MI0006210
cre_MIR1150_MI0006211
cre_MIR1151a_MI0006212
cre_MIR1151b_MI0006213
cre_MIR1152_MI0006214
cre_MIR1153_MI0006215
cre_MIR1154_MI0006216
cre_MIR1155_MI0006217
cre_MIR1156_MI0006218
cre_MIR1157_MI0006219
cre_MIR1158_MI0006220
cre_MIR1159_MI0006236
cre MIR1160 MI0006221
cre MIR1161a MI0006222
cre MIR1161b MI0015964

cre_MIR1162_MI0006223

cre_MIR1163_MI0006224

cre_MIR1164_MI0006225

cre_MIR1165_MI0006226

cre_MIR1166_MI0006227

cre_MIR1167_MI0006234

cre_MIR1168_MI0006228

cre_MIR1169_MI0006229

cre_MIR1170_MI0006230

cre_MIR1171_MI0006231

cre_MIR1172_MI0006233

cre_MIR1173_MI0006232

Reference

- An R., Chen QJ., Chai MF., Lu PL., Su Z., Qin ZX., Chen J., and Wang XC. (2007) AtNHX8, a member of the monovalent cation: proton antiporter-1 family in *Arabidopsis thaliana*, encodes a putative Li/H antiporter. Plant J. 49: 718–728.
- Apse MP., Aharon GS., Snedden WA., and Blumwald E. (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science. 285: 1256–1258.
- Arazi T., Talmor-Neiman M., Stav R., Riese M., Huijser P., and Baulcombe DC. (2005) Cloning and characterization of micro-RNAs from moss. Plant J. 43: 837–848.
- Arenas-Huertero C., Perez B., Rabanal F., Blanco-Melo D., De la Rosa C., Estrada-Navarrete G., Sanchez F., Covarrubias AA. and Reyes JL. (2009) Conserved and novel miRNAs in the legume *Phaseolus vulgaris* in response to stress. Plant Mol Biol. 70: 385–401.
- Ashraf M. and Foolad MR. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany. 59: 206–216.
- Baumberger N. and Baulcombe DC. (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. ProcNatl Acad Sci USA. 102: 11928–11933.
- Berthomieu P., Conejero G., Nublat A., Brackenbury WJ., Lambert C., Savio C., Uozumi N., Oiki S., Yamada K., Cellier F., Gosti F., Simonneau T., Essah PA., Tester M., Very AA., Sentenac H., and Casse F. (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J. 22: 2004–2014.

- Binzel ML., Hess FD., Bressan RA., and Hasegawa PM. (1988) Intracellular compartmen tation of ions in salt adapted tobacco cells. Plant Physiol. 86: 607-614.
- Bonnet E., He Y., Billiau K., and Van de Peer Y. (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics. 26: 1566–1568.
- Brini F., Gaxiola RA., Berkowitz GA., and Masmoudi K. (2005) Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiol Bioch. 43: 347–354.
- Chaves MM., Flexas J., and Pinheiro C. (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Anal Bot. 103(4): 551–560.
- Chen H., An R., Tang JH., Cui XH., Hao FS., Chen J., and Wang XC. (2007) Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breed. 19: 215–225.
- Chen X. (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science. 303: 2022–2025.
- Chen X. (2009) Small RNAs and their roles in plant development. Annu. Rev. Cell Dev. Biol. 25: 21-44.
- Chinnusamy V., Jagendorf A., and Zhu JK. (2005) Understanding and improving salt tolerance in plants.

 Crop Science 45: 437–448.
- Covarrubias AA. and Reyes JL. (2010) Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant, Cell and Environment. 33: 481–489.
- Cuin TA., Bose J., Stefano G., Jha D., Tester M., Mancuso S., and Shabala S. (2009) Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ. 34: 947–961.
- Delauney AJ. and Verma DPS. (1993) Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215-223.
- Ding D., Zhang L., Wang H., Liu Z., Zhang Z. and Zheng Y. (2009) Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany. 103: 29–38.
- Fahlgren N., Howell MD., Kasschau KD., Chapman EJ., Sullivan CM., Cumbie JS., Givan SA., Law TF., Grant SR., Dangl JL., and Carrington JC. (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One. 2: e219.
- Fitzgerald TL., Waters DL., and Henry RJ. (2009) Betaine aldehyde dehydrogenase in plants. Plant Biology 11: 119–130.
- Flowers TJ. (2004) Improving crop salt tolerance. J Exp Bot 55: 307–319.
- Floyd SK. and Bowman JL. (2004) Gene regulation: ancient microRNA target sequences in plants.

 Nature. 428: 485–486.

- Frazier TP., Xie FL., Freistaedter A., Burklew CE., and Zhang BH. (2010) Identification and characterization of microRNAs and their target genes in tobacco (*Nicotiana tabacum*). Planta. 232: 1289–1308.
- Frazier TP., Sun G., Burklew CE., and Zhang B. (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol. 49: 159-165.
- Fujii H., Chiou TJ., Lin Sl., Aung K., and Zhu JK. (2005) A miRNA involved in phosphate starvation response in Arabidopsis. Curr. Biol. 15: 2038–2043.
- Fukuda A., Nakamura A., and Tanaka Y. (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in *Oryza sativa*. BBA Gene Struct Exp. 1446: 149–155.
- Fukuda A., Chiba K., Maeda M., Nakamura A., Maeshima M., and Tanaka Y. (2004) Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. J Exp Bot. 55: 585–594.
- Gagneul D., Ainouche A., Duhaze' C., Lugan R., Larher FR., and Bouchereau A. (2007) A reassessment of the function of the so-called compatible solutes in the halophytic Plumbaginaceae *Limonium latifolium*. Plant Physiology 144: 1598–1611.
- Gao P., Bai X., Yang L., Lv D., Pan X., Li Y., Cai H., Ji W., Chen Q., and Zhu Y. (2011) osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep. 38: 237-242.
- Gaxiola RA., Rao R., Sherman A., Grisafi P., Alper SL., and Fink GR. (1999) The *Arabidopsis thaliana* proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA. 96: 1480–1485.
- Gaxiola RA., Li JS., Undurraga S., Dang LM., Allen GJ., Alper SL., and Fink GR. (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA. 98: 11444–11449.
- Gaxiola RA., Palmgren MG., and Schumacher K. (2007) Plant proton pumps. FEBS Lett. 581: 2204–2214.
- Garciadeblas B., Senn ME., Banuelos MA., and Rodriguez-Navarro A. (2003) Sodium transport and HKT transporters: the rice model. Plant J. 34: 788–801.
- Golldack D., Lu"king I., and Yang O. (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep. 30: 1383–1391.
- Griffiths-Jones S., Saini HK., van Dongen S., and Enright AJ. (2008) miRBase: tools for microRNA genomics. Nucl Acids Res. 36: D154-D158.

- Guo HS., Xie Q., Fei JF., and Chua NH. (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell. 17: 1376–1386.
- Guo Y., Halfter U., Ishitani M., and Zhu JK. (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell. 13: 1383–1400.
- Guo Y., Qiu Q.-S., Quintero F. J. et al. (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in *Arabidopsis thaliana*. Plant Cell .16(2): 435–449.
- Gupta B. and Huang B. (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. 2014. Article ID 701596. 18 pages
- Halfter U., Ishitani M., and Zhu JK. (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA. 97: 3735–3740.
- Hall JL., Harvey DMR., and Flowers TJ. (1978) Evidence for the cytoplasmic localization of betaine in leaf cells of *Suaeda maritima*. Planta 140: 59–62.
- Hasegawa PM. (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany. 92: 19–31.
- Harris EH. (1989) The Chlamydomonas Sourcebook- A comprehensive guide to biology and laboratory use. San Diego: Academic Press.
- Hema R., Senthil-Kumar M., Shivakumar S., Chandrasekhara Reddy P., and Udayakumar M. (2007) Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes. Planta. 226: 655-670.
- Horie T., Yoshida K., Nakayama H., Yamada K., Oiki S., and Shinmyo A. (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in *Oryza sativa*. Plant J. 27: 129–138
- Horie T., Costa A., Kim TH., Han MJ., Horie R., Leung HY., Miyao A., Hirochika H., An G., Schroeder JI. (2007) Rice OsHKT2; 1 transporter mediates large Na+ influx component into K+ starved roots for growth. EMBO J. 26: 3003–3014.
- Horie T., Hauser F., and Schroeder JI. (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci. 14: 660–668.
- Ishitani M., Liu J., Halfter U., Kim CS., Shi W., and Zhu JK. (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium-binding. Plant Cell 12: 1667–1677.

- Ito Y., Katsura K., Maruyama K. et al. (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold responsive gene expression in transgenic rice. Plant and Cell Physiology. 47(1): 141–153.
- Jagadeeswaran G., Saini A., and Sunkar R. (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta. 229: 1009–1014.
- Jia X., Wang W-X., Ren L., Chen Q-J., Mendu V., Willcut B., Dinkins R., Tang X., and Tang G. (2009)

 Differential and dynamic regulation of miR398 in response to ABA and salt stress in *Populus tremula* and *Arabidopsis thaliana*. Plant Mol Biol. 71: 51–59.
- Jian X., Zhang L., Li G., Zhang L., Wang X., Cao X., Fang X., and Chen F. (2010) Identification of novel stress-regulated microRNAs from *Oryza sativa* L. Genomics. 95: 47–55.
- Jiang Y. and Deyholos MK. (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol. 69: 91–105.
- Jones-Rhoades MW., Bartel DP., and Bartel B. (2006) MicroRNAs and their regulatory roles in plants.

 Annu. Rev. Plant Biol. 57: 19–53.
- Jung HJ. and Kang H. (2007) Expression and functional analyses of microRNA417 in *Arabidopsis* thaliana under stress conditions. Plant Physiology and Biochemistry. 45: 805-811.
- Kader MA., Seidel T., Golldack D., and Lindberg S. (2006) Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (*Oryza sativa* L.) cultivars. J Exp Bot. 57: 4257–4268.
- Kader MA. and Lindberg S. (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav. 5: 233–238.
- Kavi Kishor PB., Sangam S., Amrutha RN., et al. (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science. 88: 424–438.
- Khan MA., Ungarl A., and Showalter AM. (2000) The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, *Suaeda fruticosa* (L.) Forssk. Journal of Arid Environments. 45: 73–84.
- Khraiwesh B., Zhu JK., and Zhu J. (2011) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta. doi:10.1016/j.bbagrm.2011.05.001
- Kozomara A. and Griffiths-Jones S. (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucl. Acids Res. 39: D152-D157.

- Kurihara Y. and Watanabe Y. (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA. 101: 12753–12758.
- Kurihara Y., Takashi Y., and Watanabe Y. (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA. 12: 206–212.
- Laurie S., Feeney KA., Maathuis FJ., Heard PJ., Brown SJ., and Leigh RA. (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J. 32(2): 139-149.
- Li B., Yin W., and Xia X. (2009) Identification of microRNAs and their targets from *Populus euphratica*.

 Biochemical and Biophysical Research Communications. 388: 272–277.
- Li B., Qin Y., Duan H., Yin W., and Xia X. (2011) Genome-wide characterization of new and drought stress responsive microRNAs in *Populus euphratica*. J. Experimental Botany. 62: 3765–3779.
- Li J., Yang H., Peer WA., Richter G., Blakeslee J., Bandyopadhyay A., Titapiwantakun B., Undurraga S., Khodakovskaya M., Richards EL., Krizek BA., Murphy AS., Gilroy S., and Gaxiola RA. (2005)

 Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science. 310: 121–125.
- Li W., Zhang C., Lu Q., Wen X., and Lu C. (2011) The combined effect of salt stress and heat shock on proteome proiling in *Suaeda salsa*. J Plant Physiol . 168: 1743-1752.
- Li WX., Oono Y., Zhu J., He XJ., Wu JM., Iida K., Lu XY., Cui X., Jin H. and Zhu JK. (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. The Plant Cell. 20: 2238–2251.
- Li Y-F., Zheng Y., Addo-Quaye C., Zhang L., Saini A., Jagadeeswaran G., Axtell MJ., Zhang W. and Sunkar R. (2010) Transcriptome-wide identification of microRNA targets in rice. The Plant Journal. 62: 742-759.
- Liu D., Song Y., Chen Z. and Yu D. (2009) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiologia Plantarum. 136: 223–236.
- Liu HH., Tian X., Li YJ., Wu CA., and Zheng CC. (2008) Microarray-based analysis of stress-regulated microRNAs in *Arabidopsis thaliana*. RNA. 14: 836–843.
- Liu J., Ishitani M., Halfter U., Kim CS., and Zhu JK. (2000) The *Arabidopsis thaliana SOS2* gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA. 97: 3730–3734.
- Liu JX., Srivastava R., Che P., and Howell SH. (2007) Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J. 51: 897–909.
- Liu PP., Montgomery TA., Fahlgren N., Kasschau KD., Nonogaki H. and Carrington JC. (2007)
 Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. The Plant Journal. 52: 133–146.

- Llave C., Kasschau KD., Rector MA., and Carrington JC. (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell. 14: 1605–1619.
- Lobbes D., Rallapalli G., Schmidt DD., Martin C. and Clarke J. (2006) SERRATE: a new player on the plant microRNA scene. EMBO Rep. 7: 1052–1058.
- Lu S., Sun Y-H., and Chiang VL. (2008) Stress-responsive microRNAs in Populus. The Plant Journal. 55: 131–151.
- Lv D-K., Bai X., Li Y., Ding X-D., Ge Y., Cai H., Ji W., Wu N., and Zhu Y-M. (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene. 459: 39–47.
- Mallik S., Nayak M., Sahu BB., Panigrahi AK., and Shaw BP. (2011) Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. Biologia Plantarum. 55(1): 191-195.
- Mallory AC., Bartel DP., and Bartel B. (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell. 17: 1360–1375.
- Matts J., Jagadeeswaran G., Roe BA., and Sunkar R. (2010) Identification of microRNAs and their targets in switchgrass, a model biofuel plant species. J Plant Physiol.167: 896–904.
- Mäser P., Hosoo Y., Goshima S., Horie T., Eckelman B., Yamada K., Yoshida K., Bakker EP., Shinmyo A., Oiki S., Schroeder JI, and Uozumi N. (2002) Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. PNAS. 99(9): 6428–6433.
- Miller G., Shulaev V., and Mittler R. (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant. 133: 481–489.
- Mizoi J., Shinozaki K., and Yamaguchi-Shinozaki K. (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta—Gene Regulatory Mechanisms. 1819(2): 86–96.
- Molnar A., Schwach F., Studholme DJ., Thuenemann EC., and Baulcombe DC. (2007) miRNAs control gene expression in the single-cell alga *Chlamydomonas reinhardtii*. Nature. 447: 1126-1130.
- Moxon S., Schwach F., Dalmay T., MacLean D., Studholme DJ., and Moulton V. (2008) A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics. 24: 2252–2253.
- Møller IS., Gilliham M., Jha D., Mayo GM., Roy SJ., Coates JC., Haseloff J., and Tester M. (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell. 21: 2163–2178.
- Munns R. (2005) Genes and salt tolerance: bringing them together. New Phytologist 167: 645–663

- Munns R. and Tester M. (2008) Mechanism of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681.
- Nakashima K., Tran L.-S.P., VanNguyen D. et al., (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant Journal. 51(4): 617–630.
- Nonogaki H. (2010) MicroRNA gene regulation cascades during early stages of plant development. Plant & Cell Physiology. 51: 1840-1846.
- Oh DH., Leidi E., Zhang Q., Hwang SM., Li Y., Quintero FJ., Jiang X., D'Urzo MP., Lee SY., Zhao Y., Bahk JD., Bressan RA., Yun DJ., Pardo JM., and Bohnert HJ. (2009) Loss of halophytism by interference with *SOS1* expression. Plant Physiol. 151: 210–222.
- Pang MX., Woodward AW., Agarwal V., Guan XY., Ha M., Ramachandran V., Chen XM., Triplett BA., Stelly DM., Chen ZJ. (2009) Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (*Gossypium hirsutum L.*). Genome Biol. 10: R122.
- Park J., Okita TW., and Edwards GE. (2009) Salt tolerant mechanisms in single-cell C4 species Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae). Plant Science. 176: 616–626.
- Park W., Li J., Song R., Messing J., and Chen X. (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in *Arabidopsis thaliana*. Curr. Biol. 12: 1484–1495.
- Piao HL., Pih KT., Lim JH., Kang SG., Jin JB., et al. (1999) An Arabidopsis GSK3/ shaggy-like gene that complements yeast salt stress-sensitive mutants is induced by NaCl and abscisic acid. Plant Physiol. 119: 1527–1534.
- Platten J.D., Cotsaftis O., Berthomieu P., et al. (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends in Plant Science. 11: 372–374.
- Porat R., Pavoncello D., Ben-Hayyim G., and Lurie S. (2002) A heat treatment induced the expression of a Na+/H+ antiport gene (cNHX1) in citrus fruit. Plant Sci. 162: 957–963.
- Qin Y., Duan .Z, Xia X. and Yin W. (2011) Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in *Populus euphratica*. Plant Cell Rep. 30: 1893-1907.
- Qiu QS., Guo Y., Dietrich MA., Schumaker KS., and Zhu JK. (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in *Arabidopsis thaliana*, by SOS2 and SOS3. Proc Natl Acad Sci USA. 99: 8436–8441.
- Quintero FJ., Ohta M., Shi H., Zhu JK., and Pardo JM. (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA. 99: 9061–9066.

- Quintero FJ., Martinez-Atienza J., Villalta I., Jiang X., Kim WY., Ali Z., Fujii H., Mendoza I., Yun DJ., Zhu JK., and Pardo JM. (2011) Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci USA. 108: 2611–2616.
- Reinhart BJ., Weinstein EG., Rhoades MW., Bartel B., and Bartel DP. (2002) MicroRNAs in plants. Genes & Dev. 16: 1616–1626.
- Reyes JL. and Chua NH. (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant J. 49: 592–606.
- Rus A., Yokoi S., Sharkhuu A., Reddy M., Lee BH., Matsumoto TK., Koiwa H., Zhu JK., Bressan RA., and Hasegawa PM. (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA. 98: 14150–14155.
- Rus A., Baxter I., Muthukumar B., Gustin J., Lahner B., Yakubova E., and Salt DE. (2006) Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLOS Genet. 2: e210.
- Sanchez-Barrena MJ., Fujii H., Angulo I., Martinez-Ripoll M., Zhu JK., and Albert A. (2007) The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Mol Cell 26: 427–435.
- Sakakibara Y., Kobayashi H., and Kasamo K. (1996) Isolation and characterization of cDNAs encoding vacuolar H+ pyrophosphates pyrophosphates isoforms from rice (*Oryza sativa* L.). Plant Mol Biol. 31: 1029–1038.
- Sanan-Mishra N., Kumar V., Sopory SK., and Mukherjee SK. (2009) Cloning and validation of novel miRNA from basmati rice indicates cross talk between abiotic and biotic stresses. Mol Genet Genomics. 282: 463-474.
- Sarafian V., Kim Y., Poole RJ., and Rea PA. (1992) Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of *Arabidopsis thaliana*. Proc Natl Acad Sci USA. 89: 1775–1779.
- Schmidt R., Mieulet D., Hubberten H.-M. et al. (2013) "SALTRESPONSIVE ERF1 regulates reactive oxygen species dependent signaling during the initial response to salt stress in rice. The Plant Cell. 25(6): 2115–2131.
- Schreiber AW., Shi B-J., Huang C-Y., Langridge P., and Baumann U. (2011) Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics. 12: 129.
- Schroda, M. (2006) RNA silencing in Chlamydomonas: Mechanisms and tools. Curr. Genet. 49: 69–84.

- Schroeder J. I., Delhaize E., Frommer W. B. et al. (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497: 60–66.
- Schwab R., Palatnik JF., Riester M., Schommer C., Schmid M., and Weigel D. (2005) Specific effects of microRNAs on the plant transcriptome. Dev. Cell. 8: 517–527.
- Schwach F., Moxon S., Moulton V., and Dalmay T. (2009) Deciphering the diversity of small RNAs in plants: the long and short of it. Briefings in Functional Genomics and Proteomics. 8: 472-481.
- Shen J., Xie K. and Xiong L. (2010) Global expression profiling of rice microRNAs by one-tube stemloop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Genet Genomics. 284: 477-488.
- Shi H., Ishitani M., Kim CS., and Zhu JK. (2000) The *Arabidopsis thaliana* salt tolerance gene *SOS1* encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA. 97: 6896–6901.
- Shi H., Lee BH., Wu SJ., and Zhu JK. (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in *Arabidopsis thaliana*. Nat Biotechnol 21:81–85
- Song J. and Wang B. (2015) Using euhalophytes to understand salt tolerance and to develop saline agriculture: *Suaeda salsa* as a promising model. Annals of Botany. 115: 541–553.
- Song S-Y., Chen Y., Chen J., Dai X.-Y., and Zhang W.-H. (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta. 234(2): 331–345.
- Subramanian S., Fu Y., Sunkar R., Barbazuk WB., Zhu JK., and Yu O. (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics. 9: 160.
- Sun G. (2011) MicroRNAs and their diverse functions in plants. Plant Mol Biol. DOI 10.1007/s11103-011-9817-6.
- Sunkar R. and Zhu JK. (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 16: 2001-2019.
- Sunkar R., Girke T., Jain PK., and Zhu JK. (2005) Cloning and characterization of microRNAs from rice. Plant Cell. 17: 1397–1411
- Sunkar R., Zhou X., Zheng Y., Zhang W., and Zhu JK. (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol. 8: 25.
- Tanaka Y., Chiba K., Maeda M., and Maeshima M. (1993) Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in *Hordeum vulgare*. Biochem Biophys Res Commun. 190: 1110–1114.
- Turkan I. and Demiral T. (2009) Recent developments in understanding salinity tolerance. Environmental and Experimental Botany. 67: 2–9.

- Uozumi N., Kim EJ., Rubio F., Yamaguchi T., Muto S., Tsuboi A., Bakker EP., Nakamura T., and Schroeder JI. (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in *Xenopus laevis* oocytes and Na+ uptake in *Saccharomyces cerevisiae*. Plant Physiol. 122: 1249–1259.
- Vaucheret H. (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations.

 Genes & Development 20: 759-771.
- Voinnet O. (2009) Origin, biogenesis, and activity of plant microRNAs. Cell. 136: 669–687.
- Wang B., Luttge U., and Ratajczak R. (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte *Suaeda salsa*. J. Exper Bot. 52(365): 2355–2365.
- Wang JW., Schwab R., Czech B., Mica E., and Weigel D. (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell. 20: 1231–1243.
- Wang L., Liu H., Li D., and Chen H. (2011) Identification and characterization of maize microRNAs involved in the very early stage of seed germination. BMC Genomics. 12: 154.
- Wei B., Cai T., Zhang R., Li A., Huo N., Li S., Gu YQ., Vogel J., Jia J., Qi Y., and Mao L. (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (*Triticum aestivum L.*) and *Brachypodium distachyon* (L.) Beauv. Funct Integr Genomics. 9: 499–511.
- Wu G. and Poethig RS. (2006) Temporal regulation of shoot development in *Arabidopsis thaliana* by miR156 and its target SPL3. Development. 133: 3539–3547.
- Xie FL., Huang SQ., Guo K., Xiang A.L, Zhu YY., Nie L., and Yang ZM. (2007) Computational identification of novel microRNAs and targets in *Brassica napus*. FEBS Lett. 58: 1464–1474.
- Yin Z., Li C., Han X., and Shen F. (2008) Identification of conserved microRNAs and their target genes in tomato (*Lycopersicon esculentum*). Gene. 414: 60–66.
- Yu H.P, Song CN., Jia QD., Wang C., Li F., Nicholas KK., Zhang XY., and Fang JG. (2011) Computational identification of microRNAs in apple expressed sequence tags and validation of their precise sequences by miR-RACE. Physiol Plant. 141: 56–70.
- Zhang BH., Wang QL., Wang KB., Pan XP., Liu F., Guo TL., Cobb GP., and Anderson TA. (2007b) Identification of cotton microRNAs and their targets. Gene. 397: 26–37.
- Zhang HX. and Blumwald E. (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol. 19: 765–768.
- Zhang HX., Hodson JN., Williams JP., and Blumwald E. (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA. 98: 12832–12836.

- Zhang JF., Yuan LJ., Shao Y., Du W., Yan DW. and Lu YT. (2008a) The disturbance of small RNA pathways enhanced abscisic acid response and multiple stress responses in Arabidopsis. Plant Cell and Environment. 31: 562–574.
- Zhang JG., Zeng R., Chen JS., Liu X., and Liao QS. (2008b) Identification of conserved microRNAs and their targets from *Solanum lycopersicum* Mill. Gene. 423: 1–7.
- Zhang L., Zheng Y., Jagadeeswaran G., Li Y., Gowdu K., and Sunkar R. (2011) Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum. Genomics. doi:10.1016/j.ygeno.2011.08.005
- Zhang QF., Li YY., Pang CH., Lu CM., and Wang BS. (2005) NaCl enhances thylakoid-bound SOD activity in the leaves of C-3 halophyte Suaeda salsa L. Plant Sci. 168: 423–430.
- Zhang YJ. (2005) miRU: an automated plant miRNA target prediction server. Nucleic Acids Res. 33: W701–W704.
- Zhao B., Liang R., Ge L., Li W., Xiao H., Lin H., Ruan K., and Jin Y. (2007) Identification of drought-induced microRNAs in rice. Biochem. Biophys. Res. Commun. 354: 585–590.
- Zhao B., Ge L., Liang R., Li W., Ruan K., Lin H. and Jin Y. (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Molecular Biology. 10: 29.
- Zhao T., Li G., Mi S., Li S., Hannon GJ., Wang X-J., and Qi Y. (2007) A complex system of small RNAs in the unicellular green alga *Chlamydomonas reinhardtii*. Genes & Dev. 21: 1190-1203.
- Zhou JC., Fu TT., Sui N., et al. (2014) The role of salinity in seed maturation of the euhalophyte *Suaeda* salsa. Plant Biosystems (in press).
- Zhou L., Liu Y., Liu Z., Kong D., Duan M., and Luo L. (2010) Genome-wide identification and analysis of drought-responsive microRNAs in *Oryza sativa*. J. Exp. Bot. 61: 4157–4168.
- Zhou M., Sun J., Wang Q-H., Song L-Q., Zhao G., Wang H-Z., Yang H-X. and Li X. (2011) Genome-wide analysis of clustering patterns and flanking characteristics for plant microRNA genes. FEBS Journal. 278: 929–940.
- Zhou X., Wang G., Sutoh K., Zhu JK., and Zhang W. (2008) Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim. Biophys. Acta. 780–788.

Appendix 1 List of the genes that were 4x change in expression level

Up-regulated genes	Down-regulated genes
--------------------	----------------------

Carbohydrate and energy metabolism	Carbohydrate and energy metabolism
9-O-ACETYL-N-ACETYLNEURAMINIC ACID DEACETYLASE-	CYTOCHROME C1 HEME LYASE
RELATED	
Alpha-amylase AMA3	
Beta-galactosidase	
Cytochrome c oxidase assembly factor, SCO1/SenC	
Dehydrogenases with different specificities (related to short-	
chain alcohol dehydrogenases)	
dTDP-glucose 4,6-dehydratase SNE5 NAD-dependent	
epimerase/dehydratase	
fucosyltransferase	
Glycerol-3-phosphate dehydrogenase/dihydroxyacetone-3-	
phosphate reductase Glycerol-3-phosphate	
dehydrogenase/dihydroxyacetone-3-phosphate reductase 2	
GLYCOSYLTRANSFERASE 14 FAMILY MEMBER	
Glycosyltransferase family 92	
GOX1	
GOX3	
GOX4	
GOX5	
Granule-bound starch synthase I GBBSI GBS1 STA2	
HEPARAN SULFATE 3-O SULFOTRANSFERASE	
Lactonase	
NAD(P)-BINDING ROSSMANN-FOLD SUPERFAMILY	
PROTEIN PROTON GRADIENT REGULATION 5	
L-THREONINE 3-DEHYDROGENASE	
UDP-glucuronate 5'-epimerase NAD-dependent Xyloglucan	
Cell division	Cell division
Metallophosphoesterase, phosphate-repressible gene MPA1	-
Leucine carboxyl methyltransferase SOM4 regulated by the	
PSR1 transcription factor	
Zygote-specific protein EZY9	
ZYS3-2	
ZYS4	
Zygote-specific protein ZYS3 ZYS3-1	
Cell structure	Cell structure
Cell wall protein pherophorin-C8	Cell wall protein pherophorin-C21 PHC21
Cell wall protein pherophorin-C2 PHC2	Flagellar Associated Protein FAL11
Cell wall protein pherophorin-C21 PHC21	Flagellar Associated Protein with ankyrin repeats FAP33
EXPANSIN-A1-RELATED	ANK17
EXPANSIN-A1-RELATED PF03330 - Rare lipoprotein A	Flagellar Associated Protein FAP215 FPN1
(RlpA)-like double-psi beta-barrel	Hydroxyproline-rich cell wall protein ISG-C3 ISG6
Flagellar Associated Protein FAP102	Hydroxyproline-rich glycoprotein HRP3

Flagellar Associated Protein FAP137 Las17-binding protein actin regulator (Ysc84) Flagellar Associated Protein FAP211 Flagellar Associated Protein FAP233 Flagellar membrane protein, paralog of AGG2 detergent resistant membrane protein-2 [Chlamydomonas reinhardtii] Hydroxyproline-rich cell wall protein ISG-C4 ISG4 Hydroxyproline-rich glycoprotein, cell wall protein VSP4 Hydroxyproline-rich glycoprotein component of the outer cell wall Lectin C-type domain Sterol esterase / Triterpenol esterase Vegetative cell wall protein gp1 Membrane and transport Membrane and transport Amino acid transporter AOT4 Cation antiporter NAH1 Ammonium transporter AMT4 KCN7 Ion transport protein C-type lectin CTL2 PHOSPHATE TRANSPORTER C-type lectin CTL3 Sodium/phosphate symporter PTB4 Copper transport accessory protein CTR3 Sodium/phosphate symporter PTB5 Dicarboxylate/amino acid cation sodium transporter DAT1 ERD4-related membrane protein ERM1 HVA22-LIKE PROTEINS (Stress, ABA-induced protein) IONOTROPIC GLUTAMATE RECEPTOR Iron permease, membrane protein FTR1 Mechanosensitive ion channel domain MSC4 MSCL1 Mitochondrial carnitine-acylcarnitine carrier protein Multicopper ferroxidase FOX1 Nucleoside transporter Nucleotide-diphospho-sugar transferase P-type ATPase/cation transporter, plasma membrane, Low Co2 inducible Peroxisomal membrane protein MPV17 and related proteins RAG1 (recombination-activating gene 1)-ACTIVATING **PROTEIN** Sodium/potassium-exchanging ATPase / Sodium/potassiumtransporting ATPase alpha subunit Sodium/phosphate symporter PTB6b/a SODIUM-DEPENDENT PHOSPHATE TRANSPORTER SUGAR TRANSPORTER SWEET1 RAG1-ACTIVATING PROTEIN 1 Sulfate anion transporter SUL2 SULTR2 Transient receptor potential ion channel protein TRP7 Miscellania Miscellania ANKYRIN REPEAT AND PROTEIN KINASE DOMAIN-12-OXOPHYTODIENOATE REDUCTASE 1-RELATED NADH CONTAINING PROTEIN OXIDOREDUCTASE-RELATED

Arylsulfatase ARS5 ANKYRIN REPEAT-CONTAINING PROTEIN ARYLSULFATASE ARS11 Aryl sulfotransferase / Sulfokinase ARYLSULFATASE ARS18 Cellulase / Endoglucanase CGI-141-RELATED/LIPASE CONTAINING PROTEIN - Lipase Chitin binding domain (class 3)TGL21 Gametolysin / Lysin MMP19 FAD NAD BINDING MONOOXYGENASE LEUCINE-RICH REPEAT-CONTAINING PROTEIN Polyketide Fe-assimilating protein 2 cyclase / dehydrase and lipid transport Ferric-chelate reductase/ oxidoreductase FRE1 PWR protein PWR4 TINY MACROCYSTS PROTEIN B-RELATED Gametolysin peptidase M11 (Peptidase_M11) WD40 REPEAT PROTEIN His(2)-Cys(2) zinc finger LEUCINE-RICH REPEAT-CONTAINING PROTEIN Low-CO2-inducible protein Low-CO2-induced aldose reductase LCI28 Low-CO2-inducible membrane protein Pheophorbide a oxygenase, Rieske iron-sulfur cluster protein **RING FINGER PROTEIN 10** SARS coronavirus main proteinase / Severe acute respiratory syndrome coronavirus main protease hypothetical protein Other metabolism Other metabolism 3-OXO-5-ALPHA-STEROID 4-DEHYDROGENASE Exostosin-like glycosyltransferase ELG3 12-oxophytodienoate reductase Lactosylceramide 4-alpha-galactosyltransferase ALLANTOATE DEIMINASE Carbonic anhydrase, alpha type, periplasmic Cytochrome P450 gene CYP744C1, CYP3 superfamily Cytochrome P450, CYP197 superfamily CYP20 CYP743B1 Cytochrome P450, CYP55 superfamily, CYP55A family CYP2 CYP55B1 EXOSTOSIN-LIKE GLYCOSYLTRANSFERASE Exostosin-like glycosyltransferase ELG8 Fasciclin-like protein FAS2 Fasciclin-like protein FAS3 Ferredoxin FDX2 Apoferredoxin Gamma-glutamyl hydrolase GGH1 Glucan endo-1,3-beta-D-glucosidase / Laminarinase GLUCOSYL/GLUCURONOSYL TRANSFERASES Glutamate 5-kinase Guanine deaminase HEPARAN SULFATE 3-O SULFOTRANSFERASE LIPOXYGENASE Long-chain-alcohol O-fatty-acyltransferase / Wax synthasedomain

PHOSPHATE METABOLISM PROTEIN RSN1 (YEAST)-

RELATED

PYRAZINAMIDASE/NICOTINAMIDASE	
rieske iron-sulfur cluster 55 kDa protein of chloroplast inner	
membrane translocon	
SGNH hydrolase	
Starch phosphorylase PHO2 PHOA	
Thioesterase superfamily TEH3	
Urate oxidase II UO UOX UOX1	
Protein degradation	Protein degradation
CALPAIN	Cathepsin H / N-benzoylarginine-beta-naphthylamide hydrolase
Endothelin-converting enzyme 1 / ECE-1	cysteine endopeptidase
	Pyroglutamyl-peptidase I / Pyrrolidone-carboxylate peptidase
GAMMA-INTERFERON INDUCIBLE LYSOSOMAL THIOL	
REDUCTASE (GILT)	
IAA-AMINO ACID HYDROLASE ILR1-LIKE 3	
Lysine carboxypeptidase / Lysine(arginine) carboxypeptidase	
matrix metalloproteinase PF11617	
Metalloproteinase of VMP family	
PEPTIDASE M20 FAMILY MEMBER	
Phosphate-repressible alkaline phosphatase PHO5 PHOX	
PROPROTEIN CONVERTASE SUBTILISIN/KEXIN	
(peptidase)/ VLE gene	
Scavenger receptor cysteine rich (SRCR) protein	
TUMOR NECROSIS FACTOR SUPERFAMILY, MEMBER 5-	
INDUCED PROTEIN 1 (CLAST3)	
Ubiquitin UBQ1	
Xaa-Pro dipeptidase	
Protein processing	Protein processing
-	centriole proteome protein, partial
Signalling	Signalling
CALCIUM-DEPENDENT PROTEIN KINASE	Calcium-binding EGF domain
Dynamin family CHLREDRAFT_187905 contain ATPase	Adenylate cyclase / ATP pyrophosphate-lyase // Guanylate
GTP-BINDING PROTEIN 6-RELATED	cyclase / Guanylyl cyclase CYG65
Histidine phosphatase	SERINE-THREONINE PROTEIN KINASE
INTERFERON-INDUCIBLE GTPASE 5	Tyrosine kinase specific for activated (GTP-bound)
Lysosomal & prostatic acid phosphatases	p21cdc42Hs // MEKK and related serine/threonine protein
MITOGEN-ACTIVATED PROTEIN KINASE	kinases
Serine/threonine phosphatases, family 2C, catalytic domain	3',5'-cyclic-nucleotide phosphodiesterase PDE23
Non-specific serine/threonine protein kinase / Threonine-	3',5'-cyclic-nucleotide phosphodiesterase PDE25
specific protein kinase	Adenylate and Guanylate cyclase catalytic domain
Serine/threonine protein kinase STK23 STPK23	Protein kinase domain (Pkinase) // Protein tyrosine kinase
Tyrosine kinase specific for activated (GTP-bound)	(Pkinase_Tyr)
p21cdc42Hs	Flagellar Associated Protein similar to calmodulin FAP272
MEKK and related serine/threonine protein kinases // Mitogen-	guanylate cyclase
mark and rolated connectine protein kindses // Willogen-	guarriato oyotaoo

activated protein kinase kinase (MAP2K)	Adenylate/guanylate cyclas CYG12
	Non-specific protein-tyrosine kinase / Cytoplasmic protein
	tyrosine kinase // Non-specific serine/threonine protein kinase /
	Threonine-specific protein kinase
	Calcium/calmodulin dependent protein kinase II association
	domain .
	TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY
	MEMBER
	NITROGEN NETWORK KINASE 1
Stress and defense	Stress and defense
Ascorbate peroxidase APX1	Peptide-methionine (S)-S-oxide reductase / Peptide methionine
CYSTEINE-RICH SECRETORY PROTEIN-RELATED	sulfoxide reductase
DEFENSE PROTEIN L(2)34F	
Glutathione S-transferase GST12	
Glyoxalase	
GOX2	
GOX17	
Lipid-phosphate phosphatase / Soluble epoxide hydrolase	
similar to pathogenesis-related protein 1 gene PRL10	
nitrogen-starved gametogenesis 13 NSG13	
Stress-related chlorophyll a/b binding protein 1 LHCSR1	
Stress-related chlorophyll a/b binding protein 2 LHCSR2	
LHCSR3.1	
Stress-related chlorophyll a/b binding protein 3 LHCSR3	
LHCSR3.2	
zeaxanthin epoxidase	
Transcription	Transcription
DNA POLYMERASE EPSILON SUBUNIT 4	RWP-RK transcription factor/minus dominance protein MID
Histone-lysine N-methyltransferase / Protein-lysine N-	RWP5
methyltransferase	RWP-RK transcription factor RWP6
Low-CO2 response regulator, Myb-like transcription factor	Reverse transcriptase (RNA-dependent DNA polymerase) //
LCR1 SNT domain	Endonuclease/Exonuclease/phosphatase
PCDC2 (PROGRAMMED CELL DEATH PROTEIN 2)-	Transposase family tnp2 (Transposase_21)
RELATED	Putative transposase DNA-binding domain
PIRIN Transcription co-activator	RIBONUCLEASE III
TRANSMEMBRANE PROTEIN 2-RELATED PF00628 - PHD-	SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN 10-
finger	RELATED
RNA EXONUCLEASE NEF-SP-RELATED EXONUCLEASE	Tam3-transposase (Ac family)
EXN11	