## บทคัดย่อ

รหัสโครงการ : MRG5580187

ชื่อโครงการ : ไฮโดรเจลปรับแต่งด้วยอะพะทาเมอร์เพื่อใช้ในการควบคุมการปลดปล่อยโปรตีน

ชื่อนักวิจัย : อ.ดร.บุญช่วย สุนทรวรจิต

อีเมลล์ : sbooncho@tu.ac.th

ระยะเวลาโครงการ: 2 ปี

บทคัดย่อ:

การพัฒนาระบบปลดปล่อยโปรตีนมีบทบาทสำคัญในความสำเร็จของการรักษาอาการเจ็บป่วยหรือความผิดปกติของ ร่างกายเป็นต้นว่าการสร้างเนื้อเยื่อที่สึกหรอหรือการรักษาอวัยวะ ไฮโดรเจลเป็นวัสดุชนิดหนึ่งที่มีแนวโน้มในการนำมาใช้เป็น ระบบปลดปล่อยโปรตีนแต่ตัวไฮโดรเจลเองก็มีข้อจำกัดในการใช้งานเนื่องจากคุณสมบัติของไฮโดรเจลที่มีอัตรการแพร่ผ่านของ โมลกุลยาที่รวดเร็ว ดังนั้นโครงการวิจัยนี้จึงเสนอแนวทางแก้ปัญหาด้วยการเพิ่มส่วนที่จะใช้ยึดจับโมเลกุลโปรตีนเข้าไปในโครงสร้าง ของไฮโดรเจลเพื่อทำให้วัสดุที่เตรียมขึ้นมีความสามารถในการควบคุมการปลดโปรตีน โมเลกุลต้นแบบที่ใช้ในการศึกษาคือ โกรท แฟคเตอร์ชนิด PDGF-BB และ ชนิด VEGF โดยกิจกรรมการวิจัยจะประกอบไปด้วย 1) การศึกษาอันตรกิริยาระหว่างโมเลกุลอะพะ ทาเมอร์และโปรตีนในสภาวะที่มีโปรตีนชนิดอื่นรบกวน 2) การหาลำดับเบสของคอมพลีเมนทารีโอลิโกนิวคลีโอไทด์ (CO) เพื่อใช้ เร่งอัตราการปลดปล่อยโปรตีน 3) การเตรียมไฮโดรเจลที่ความสามารถในการปลดปล่อยโปรตีนในกรอบเวลาที่ต้องการได้ ผล การศึกษาอันตรกิริยาระหว่างโมเลกุลด้วยเทคนิคเซอเฟสพลาสมอนเรโซแนนซ์(surface plasmon resonance, SPR) พบว่าอะพะ ทาเมอร์ที่ใช้สามารถยึดจับกับโปรตีน PDGF-BB และโปรตีน VEGF ซึ่งเป็นโมเลกุลเป้าหมายได้ นอกจากนี้ยังสามารถคัดเลือก CO ้ที่สามารถรบกวนการยึดจับของอะพะทาเมอร์กับโปรตีนได้ หลังจากนั้นทำการเตรียมไฮโดรเจลให้มีอะพะทาเมอร์เป็นองค์ประกอบ โดยที่อะพะทาเมอร์จะถูกยึดลงบนผิวของอนุภาคพอลิสไตรีนก่อน หลังจากนั้นจึงผสมอนุภาคดังกล่าวกับเจลาตินเพื่อจะทำให้เกิด ไฮโดรเจลขึ้น ผลจากการวัดสัญญาณฟลูออเรสเซนต์ด้วยเทคนิคโฟลไซโตเมทรี (flow cytometry) สามารถยืนยันการยึดจับของอะ พะทาเมอร์บนอนภาคได้ การทดลองถัดมาคือการศึกษาอัตราการปลดปล่อยโปรตีน ซึ่งผลการทดลองแสดงให้เห็นว่าอัตราการ ปลดปล่อยโปรตีนจากไฮโดรเจลจะเร็วกว่าอัตราการปลดปล่อยโปรตีนจากไฮโดรเจลที่มีอะพะทาเมอร์เป็นองค์ประกอบ นอกจากนี้ อัตราการปลดปล่อยโปรตีนยังถูกกระตุ้นให้เร็วขึ้น จากผลการทดลองทั้งหมดแสดงให้เห็นถึงความสำเร็จในการพัฒนาระบบ ปลดปล่อยโปรตีนที่สามารถควบคุมอัตราการปลดปล่อยในกรอบเวลาที่ต้องการได้

คำหลัก: โกรทแฟคเตอร์, การปลดปล่อยโปรตีน, อะพะทาเมอร์

**Abstract** 

Project Code: MRG5580187

Project Title: Aptamer-Functionalized Hydrogels for Controlling Protein Release

Investigator: Dr.Boonchoy Soontornworajit

E-mail Address : sbooncho@tu.ac.th

Project Period: 2 years

Abstract:

The development of protein release systems is critical to the success of various medical treatments such as tissue repair or organ regeneration. Hydrogels demonstrate promising properties for the release system. However, the usage of the hydrogels is compromised due to their high permeability. Thus, this project aims to apply nucleic acid aptamers as binding sites for the hydrogels to achieve controlled-release kinetics. The model molecules used in our recent study were platelet-derived growth factor-BB (PDGF-BB) and vascular endothelial growth factor (VEGF). The research activities were: 1) investigation of aptamer-protein interactions in the presence of third-party molecules (e.g. the second protein-aptamer pairs), 2) sequence identification of complementary oligonucleotide (CO) used as molecular triggers, 3) preparation of a novel hydrogel for a sequential release of multiple proteins. The interaction between those target molecules was investigated by surface plasmon resonance (SPR). Based on the SPR analysis, model aptamers could demonstrate their binding functionality. In addition, COs that were capable of interrupting the binding interaction between aptamer and proteins were identified. The aptamers were then incorporated into gelatin hydrogel via a particle-gelatin composite. Based on flow cytometry measurement, the aptamer could be tethered onto the micro-particles. The protein release was further investigated through numerous in vitro release experiments. The results showed that the release rate of PDGF-BB from native hydrogel was virtually one order of magnitude faster than that of hydrogels functionalized with the aptamer of highest affinity. The release rates were also triggered by the addition of corresponding COs. Taken together; a novel hydrogel was developed for controlling protein release in a desired time window.

Keywords: growth factor, protein release, aptamer