

บทคัดย่อ

การประเมินประสิทธิภาพของเครื่องมือทำลายเชื้อโรค (Sterilants) สารฟ้าเชื้อโรคที่ใช้กับอุปกรณ์ทางการแพทย์ (Disinfectants) และสารฟ้าเชื้อโรคที่ใช้ภายในห้องร่างกาย (Antiseptics) ต่อการทำลายไบโอดิฟิล์มของเชื้อก่อโรคที่พบบ่อยในโรงพยาบาล

ภูมิหลัง: ปัญหาการติดเชื้อในโรงพยาบาลเป็นปัญหาสำคัญระดับนานาชาติ เนื่องจากส่งผลต่อการดูแลรักษาชีวิตของผู้ป่วยรวมทั้งต่อเศรษฐกิจเนื่องจากการจัดการปัญหาดังกล่าวต้องใช้ค่าใช้จ่ายที่สูง ปัญหาการติดเชื้อในโรงพยาบาลนั้นส่วนใหญ่เกิดจากการติดเชื้อแบคทีเรียซึ่งมีความทนทานต่อการทำลายโดยยาปฏิชีวนะ โดยเชื้อแบคทีเรียก่อโรคที่พบบ่อยว่าเป็นสาเหตุในโรงพยาบาลได้แก่ *Staphylococcus aureus* (ทั้งสายพันธุ์ Methicillin-sensitive *S. aureus* และ Methicillin-resistant *S. aureus*), *Staphylococcus epidermidis*, *Escherichia coli*, *Acinetobacter baumannii* และ *Pseudomonas aeruginosa* เป็นต้น เชื้อเหล่านี้สามารถพบได้ในสิ่งแวดล้อมโรงพยาบาลรวมถึงภายในร่างกายของผู้ป่วยและบุคคลากรทางการแพทย์ โดยพบว่าการเจริญเติบโตของเชื้อนั้นเกิดขึ้นในรูปแบบจำเพาะที่เรียกว่า ไบโอดิฟิล์ม (Biofilm) ซึ่งการเจริญเติบโตในลักษณะดังกล่าวทำให้เชื้อมีความทนทานต่อการถูกทำลายมากยิ่งขึ้น เป็นที่ทราบกันดีว่าเชื้อที่ก่อโรคในโรงพยาบาล (Nosocomial pathogens) มีความดื้อต่อยาปฏิชีวนะสูงกว่าเชื้อที่ดัดมาจากชุมชน แต่ปัจจุบันยังไม่มีข้อมูลเกี่ยวกับความทนทานของเชื้อเมื่อเจริญในรูปแบบไบโอดิฟิล์มต่อการถูกกำจัดโดยเครื่องมือทำลายเชื้อโรค เช่น หม้อนึ่งอัดไอน้ำ (Steam Sterilization or Autoclave) เครื่องกำนันดรังสีอัลตราไวโอเลต (Ultraviolet Irradiation) สารฟ้าเชื้อที่ใช้กับอุปกรณ์ทางการแพทย์ เช่น สารกำจัดไบโอดิฟิล์ม (Biofilm Removal Multi-Enzyme Cleaner; 3M™) ซึ่งเครื่องมือและสารเคมีเหล่านี้เป็นวิธีการที่ใช้ในการกำจัดเชื้อในโรงพยาบาล

วัตถุประสงค์: การวิจัยนี้มีวัตถุประสงค์เพื่อประเมินประสิทธิภาพของเครื่องมือที่ใช้ในการกำจัดเชื้อก่อโรค ต่อการทำลายไบโอดิฟิล์มที่สร้างขึ้นโดยเชื้อก่อโรคที่พบบ่อยในโรงพยาบาล

วัสดุและวิธีการ: เพาะเลี้ยงเชื้อ *Staphylococcus aureus*, Methicillin-resistant *S. aureus* (MRSA), *Streptococcus epidermidis*, *Escherichia coli*, ESBL-producing *E. coli*, *Pseudomonas aeruginosa* และ *Acinetobacter baumannii* ให้เจริญในรูปแบบไบโอดิฟิล์มใน Calgary Biofilm Device และในโถเดลการเลี้ยงไบโอดิฟิล์มที่พัฒนาขึ้นมาใหม่ แล้วนำเชื้อที่เจริญในรูปแบบไบโอดิฟิล์มไปทดสอบกับ รังสีอัลตราไวโอเลต หม้อนึ่งอัดไอน้ำ และ Biofilm Removal Multi-Enzyme Cleaner (3M™) โดยวัดความสามารถในการกำจัดเชื้อของเครื่องมือด้วยวิธีเพาะเลี้ยงเชื้อบนอาหารเลี้ยงเชื้อ และวัดความสามารถในการทำลายไบโอดิฟิล์มของเครื่องมือด้วยวิธีการย้อมไบโอดิฟิล์มด้วย crystal violet

ผลการศึกษา: ภายใต้การทดสอบด้วยรังสีอัลตราไวโอเลตจากเครื่อง Biosafety cabinet with UV เชื้อ *A. baumannii* ถูกทำลายที่ 1 นาที เชื้อ *S. aureus*, *S. epidermidis*,

MRSA, ESBL-producing *E. coli* ถูกทำลายที่ 5 นาที ในขณะที่ *E. coli* ถูกทำลายที่ 20 นาที และ ต้องใช้เวลาถึง 30 นาทีในการทำลายเชื้อ *P. aeruginosa* ที่เจริญในรูปแบบใบโอฟิล์ม ส่วน ใน UV sterilizer เชื้อ *A. baumannii* และ MRSA ถูกทำลายที่ 1 นาที เชื้อ *S. aureus*, *S. epidermidis*, และ ESBL-producing *E. coli* ถูกทำลายที่ 5 นาที ในขณะที่ต้องใช้เวลาถึง 20 นาทีในการทำลายเชื้อ *E. coli* และ *P. aeruginosa* ที่เจริญในรูปแบบใบโอฟิล์มได้หมด อย่างไร ก็ตามปริมาณใบโอฟิล์มจากการวัดด้วย crystal violet และลักษณะของใบโอฟิล์มภายใต้กล้อง จุลทรรศน์อิเล็กตรอนระหว่างตัวอย่างที่ได้รับการฉายรังสีไม่แตกต่างกับตัวอย่างที่ไม่ได้รับการ 照射 ภายนอกได้จากการทดสอบด้วยหม้อนึ่งอัดไอน้ำ หรือ Autoclave ที่ 121 องศาเซลเซียส 15 นาที 15 psi พบว่าเชื้อถูกทำลายทั้งหมด แต่ไม่สามารถกำจัดใบโอฟิล์มได้ และภายนอกได้ การทดสอบด้วย Biofilm Removal Multi-Enzyme Cleaner (3MTM) พบว่าวิธีนี้มีความสามารถในการกำจัดใบโอฟิล์มได้ดี แต่ไม่สามารถผ่าเชื้อได้

สรุป: เครื่องมือที่ใช้ในการทำลายเชื้อในโรงพยาบาลที่สำคัญคือ หม้อนึ่งอัดไอน้ำ และ เครื่องมือที่ใช้ในการกำจัดเชื้อในสิ่งแวดล้อมโรงพยาบาลที่สำคัญคือ เครื่องกำเนิดรังสี อัลตราไวโอลेट การศึกษานี้แสดงให้เห็นว่าหม้อนึ่งอัดไอน้ำและการใช้รังสีอัลตราไวโอลेटมี ประสิทธิภาพในการทำลายเชื้อในใบโอฟิล์ม แต่ไม่ได้กำจัดใบโอฟิล์มให้หมดไป ในขณะที่ Biofilm Removal Multi-Enzyme Cleaner (3MTM) ซึ่งเป็นสารเคมีที่ใช้ในการล้างทำความสะอาด สะอาดอุปกรณ์ทางการแพทย์สามารถกำจัดใบโอฟิล์มได้ดีแต่ไม่สามารถผ่าเชื้อได้ ข้อมูลที่ได้นี้ มีความสำคัญสำหรับการนำมาใช้เพื่อการควบคุมและกำจัดเชื้อก่อโรคในโรงพยาบาล

คำสำคัญ: ใบโอฟิล์ม, การติดเชื้อในโรงพยาบาล, การกำจัดเชื้อ, การใช้รังสีอัลตราไวโอลेट, การใช้หม้อนึ่งอัดแรงดันไอน้ำ

Abstract

Biofilms Decontamination: Measurements of the Effectiveness of Decontamination Agents and Methods against Biofilms Formed by Common Nosocomial Pathogens

Background: Healthcare-associated infection (HAI), or nosocomial infection, has been an urgent problem globally. It is a significant cause of morbidity and mortality among people who receive hospital or healthcare services, and over millions of patients are affected by HAI every year worldwide. It also creates a significant economic burden as the overall costs arising from HAI are very high. HAI is usually resulted from infections by bacterial pathogens. Common causative pathogens include *Staphylococcus aureus* (both methicillin-sensitive and methicillin-resistant strains), coagulase negative *Staphylococci* (such as *Staphylococcus epidermidis*), *Escherichia coli*, *Acinetobacter baumannii*, and *Pseudomonas aeruginosa*. These pathogens dwell in the hospital environment as well as colonize on the human skin, nasal cavity or in the gastrointestinal tract. There is a growing body of evidence showing that the growth of bacteria in nature is in the form of biofilms. Bacteria growing within biofilms are more resistant to treatment with antimicrobial agents than planktonic cells of the same species. Biofilms are involved in a variety of infectious conditions such as catheter-associated infections, urinary tract infections, infections of prostheses and heart valves, bacterial endocarditis, dental plaque and gingivitis, and infections in people with cystic fibrosis. In healthcare facilities, biofilms can be commonly found on various surfaces and settings. Such biofilms serve as a possible source of transmission, contributing to the increasing incidence of hospital-acquired infections. While hospitals generally have sanitation protocols regarding surface bio-decontamination and equipment sterilization, they are not created specifically to deal with biofilms. There is limited available data concerning the true efficacy of such sterilization methods as well as for the use of disinfectants or detergents against biofilms.

Objectives: The main objective of this study was to measure the efficacy of decontamination agents and methods against biofilms formed by common nosocomial pathogens. We tested the efficacy of UV Irradiation, Steam Sterilization (Autoclave) in adjunct with the usage of multi-enzymes biofilm removal (3MTM). A novel model supporting the growth of biofilms was also developed to aid the tests against Autoclave decontamination.

Results: When tested biofilms with Biosafety cabinet with UV irradiation, it was found that *A. baumannii* was completely destroyed within 1 minute, *S. aureus*, *S. epidermidis*, MRSA, ESBL-producing *E. coli* were destroyed within 5 minutes, *E. coli* was destroyed within 20 minutes and it took up to 30 minute to eliminate all vital *P. aeruginosa* that grew in biofilms. For UV sterilizer, it was found that *A. baumannii* and MRSA were completely destroyed within 1 minute, *S. aureus*, *S. epidermidis* and ESBL-producing *E. coli* were destroyed within 5 minutes, and it took up to 20 minute to eliminate all vital *P. aeruginosa* and *E. coli* that grew in biofilms. However, the biofilms of each pathogen were not removed by these instruments. The microscopic characteristics of biofilms were no change between samples that exposed to UV and that did not expose. When tested biofilm against the steam sterilization (Autoclave), all pathogens were completely destroyed. However, the biofilms were not eliminated. When pre-treated biofilm samples with Biofilm Removal Multi-Enzyme Cleaner (3MTM) prior to the steam sterilization, the complete removal of biofilms was observed. However, using Biofilm Removal Multi-Enzyme Cleaner alone could not destroy the bacteria.

Conclusion: Two common and important methods of decontamination within the healthcare facilities are Autoclave and UV irradiation. This study demonstrated that the two methods can eliminate the bacterial pathogen commonly causing nosocomial infections. However, they cannot eliminate biofilms of those pathogens. Combined usage of chemicals such as Biofilm Removal Multi-Enzyme Cleaner (3MTM) can improve the effectiveness of these decontamination methods.

Keywords: Biofilms, Nosocomial Infections, Decontamination, UV Irradiation, Steam

Sterilization