

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาปริมาณแพตินัมบนเมมเบรนอิเล็กโทรดแอกซ์ิเจนส์เมมเบรน
สำหรับเซลล์เชื้อเพลิงชนิดพอลิเมอร์อิเล็กโทรไลท์เมมเบรน

A study of Pt loading on MEA (Membrane Electrode Assembly)
for PEMFCs (Polymer Electrolyte Membrane Fuel Cells)

โดย

อ.ดร. กลยุทธ์ ปัญญาวนิช

กรกฎาคม 2557

ลัญญาเลขที่ MGR5580194

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาปริมาณแพตินัมบนเมมเบรนอิเล็กโทรดและสมบัลล์
สำหรับเซลล์เชื้อเพลิงชนิดพอลิเมอร์อิเล็กโทรไลท์เมมเบรน

A study of Pt loading on MEA (Membrane Electrode Assembly)
for PEMFCs (Polymer Electrolyte Membrane Fuel Cells)

ผู้วิจัย

ลังกัด

1. นาย กลยุทธ์ ปัญญาภูติ ภาควิชาเคมีอุตสาหกรรม คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา สำนักงานกองทุนสนับสนุนการวิจัย
และมหาวิทยาลัยเชียงใหม่
(ความเห็นในรายงานนี้เป็นของผู้วิจัย ลก. และ สก. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

รหัสโครงการ : MGR5580194
ชื่อโครงการ : การศึกษาปริมาณแพตตินัมบนเมมเบรนอิเล็กโทรดแอสเสมบลีสำหรับเซลล์เชื้อเพลิงชนิดพอลิเมอร์อิเล็กโทรไลท์เมมเบรน
ชื่อนักวิจัย : กลยุทธ์ ปัญญาวุฒิ
อีเมลล์ : konlayutt.p@cmu.ac.th
ระยะเวลาโครงการ : 2 ปี

บทคัดย่อ:

เมมเบรนอิเล็กโทรดแอสเสมบลี (หรือ MEA) ได้รับการผลิตขึ้นมาโดยใช้เทคนิคการพ่นเคลือบด้วยความถี่ตัวคุณลักษณะอัลตราโซนิก ตัวเร่งปฏิกิริยาทางไฟฟ้าเคมีที่เป็นผงได้รับการพ่นลงบนอิเล็กโทรไลท์เมมเบรนโดยตรงด้วยเทคนิคข้างต้น สัดส่วนโดยมวลของ Nafion ต่อตัวเร่งปฏิกิริยา Pt/C ได้รับการศึกษา และพบว่าที่อัตราส่วนโดยมวลที่ประมาณ 50–62% wt ให้ค่าความหนาแน่นกระแสสูงที่สุด เมื่อปฏิกิริยาไฟฟ้าเคมีเกิดขึ้นในช่วงความต้านทานภายในและช่วงการถ่ายเทมวล ของราฟระหว่างศักย์ไฟฟ้าและความหนาแน่นกระแสสัมภาระ MEA ถูกนำมาตัดขวางและทำการวิเคราะห์ด้วยกล้องอิเล็กตรอนแบบส่องกล้อง (SEM) และแบบส่องผ่าน (TEM) ภาพจาก SEM สังเกตเห็นว่าอนุภาคของตัวรองรับคาร์บอนมีการเรียงตัวกันแบบ layer by layer ทำให้เกิดช่องว่างขึ้นมาในชั้นของตัวเร่งปฏิกิริยา (CL) จากภาพ TEM สามารถสังเกตเห็นชั้น ionomer layer ระหว่างชั้นตัวเร่งปฏิกิริยา (CL) และอิเล็กโทรไลท์เมมเบรน พื้นที่พิวของแพลตินัมได้รับการคำนวณโดยเทคนิคทางการคุณภาพว่าประมาณ 52% ของแพลตินัมสูญเสียไปเนื่องมาจากการถูก ionomer เคลือบอยู่ และจากการวิเคราะห์ด้วย Cyclic Voltammetry พบร้อย 28% ของแพลตินัมสูญเสียไปเนื่องจากการทำถูกปฏิกิริยาโดยเซลล์ออกด้วยน้ำและการสูญเสียเครื่องข่าย ionomer ในชั้นตัวเร่งปฏิกิริยา ทำให้ไม่สามารถเกิดปฏิกิริยาไฟฟ้าเคมีได้ทั่วถึง โดยรวมแพลตินัมสูญเสียพื้นที่ที่การทำปฏิกิริยาไปประมาณ 80% เมื่อตัวเร่งปฏิกิริยาได้รับการประกอบเป็นเมมเบรนอิเล็กโทรดแอสเสมบลีและเกิดปฏิกิริยาไฟฟ้าเคมี

คำหลัก: เมมเบรนอิเล็กโทรดแอสเสมบลี เชลล์เชื้อเพลิงชนิดพอลิเมอร์อิเล็กโทรไลท์เมมเบรน เซลล์เชื้อเพลิง การคุณภาพทางเคมีของโซเดียม และ การวิเคราะห์ทางโซคลิกโวลต์แกรมเมตทรี

Abstract

Project Code :	MGR5580194
Project Title :	A study of Pt loading on MEA (Membrane Electrode Assembly) for PEMFCs (Polymer Electrolyte Membrane Fuel Cells)
Investigator :	Konlayutt Punyawudho
E-mail Address :	konlayutt.p@cmu.ac.th
Project Period :	2 years

Abstract:

Membrane electrode assemblies (MEAs) were fabricated using a high frequency spraying technique. Electrocatalyst powders were directly sprayed onto an electrolyte membrane by ultrasonic spraying. The weight ratios of Nafion to Pt/C were studied, and the ratio about 50–62% yields the maximum current density at the ohmic and gas diffusion region of the polarization curve. Cross sections of the MEA were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM); images from SEM indicate that the supported catalysts are arranged in a layered manner and that pores in the catalyst coated layer (CCL) are formed. TEM images show the ionomer layer exists between the reaction zone and the electrolyte membrane. The concentration of Pt surface sites in the MEA was measured by selective H₂ chemisorption methods at dry conditions and by cyclic voltammetry (CV) for the electrochemical reaction. The chemisorption measurements indicate that ~52% of the active Pt surface are lost due to ionomer coverage and CV shows an additional 28% of the Pt surface are lost due to blockage by condensed water and the isolation of Pt sites from ionomer and electrical conduction. In total 80% of the Pt surface sites present on the 20 wt% Pt/C starting material are lost during preparation and at operating conditions. Thus, both mechanisms of activity loss are separately identified and quantified.

Keywords : Membrane Electrode Assembly (MEA), PEMFCs, fuel cells, H₂ chemisorption, cyclic voltammetry

บทสรุปผู้บริหาร (Executive summary)

โครงการวิจัยนี้เป็นการผลิตเมมเบรนอิเล็กโทรดแอลูมิโนบอร์ด (MEA) สำหรับเซลล์เชือกเพลิงชั้นนิดพอลิเมอร์อิเล็กโทรไลท์เมมเบรน ซึ่ง MEA เป็นส่วนประกอบที่สำคัญที่สุดในเซลล์เชือกเพลิง เพราะเป็นที่ที่มีการเกิดปฏิกิริยาไฟฟ้าเคมี (อ็อกซิเดชันและรีดักชัน) โดยมีตัวเร่งปฏิกิริยาเป็นตัวกระตุ้นให้เกิดปฏิกิริยา ดังนั้น การเคลือบตัวเร่งปฏิกิริยาลงบนพื้นผิวเมมเบรนจึงได้รับการวิจัยจากคณาจารย์วิจัย โดยใช้การเคลือบตัวเร่งปฏิกิริยาโดยตรงบนเมมเบรน โดยใช้เทคนิคการพ่นแบบความถี่สูง (Ultrasonic Spraying) แทนการพ่นด้วยความดันสูง หรือการระบายด้วยภูมิคุ้มกัน ดังที่เคยปฏิบัติกันมาในอดีต

MEA ที่ผลิตได้ จะได้รับการประกอบให้เป็นเซลล์เชือกเพลิงเพื่อนำมาทดสอบประสิทธิภาพ โดยการวัดประสิทธิภาพของ MEA ที่ใช้เปรียบเทียบอยู่ในสภาวะการทำงานเดียวกันทุกประการ ในการศึกษาเชิงลึกพบว่า MEA ที่ผลิตได้มีชั้นตัวเร่งปฏิกิริยา (Catalyst Layer : CL) ที่ได้รับการเคลือบจากเครื่องเคลือบฯ มีความเป็นรูพรุนค่อนข้างมาก และมีการจัดเรียงตัวกันที่เป็นระเบียบแบบ Layer by layer และมีความหนาของชั้นตัวเร่งปฏิกิริยาเพียง 15 ไมครอน ทำให้โอกาสการเข้าไปทำปฏิกิริยาของก๊าซ (ไฮdroเจนและอ็อกซิเจน) มีมากขึ้น และการถ่ายเทน้ำที่เกิดจากปฏิกิริยาดีขึ้น นอกจากนี้การเคลือบด้วยเครื่องนี้ทำให้เกิดชั้นบางขึ้น ระหว่างชั้นตัวเร่งปฏิกิริยาและเมมเบรน ทำให้ช่วยในการถ่ายเทไฮdroอน H^+ จากชั้นปฏิกิริยาไปยังเมมเบรนได้ดีขึ้น

อย่างไรก็ตามจากการศึกษาจำนวนพื้นผิวของแพลตินัมด้วยเทคนิคการดูดซับด้วยเคมี และเทคนิคทางไฟฟ้าเคมี พบว่าแพลตินัมสูญเสียพื้นที่ผิวมากถึง 80% เมื่อนำมาผลิตเป็น MEA ซึ่ง 52% มาจากการถูกไฮdroอนโนเมอร์ ($NaOH$) ปากลุม และถูก 28% มาจากการทำงานของเซลล์เชือกเพลิงในสภาวะที่มีความชื้นสูง และการถูกจำกัดการถ่ายเทไฮdroอน H^+ ในชั้นตัวเร่งปฏิกิริยา จะเห็นได้ว่าเรายังมีโอกาสที่จะสามารถศึกษาและวิจัยเพื่อที่จะลดความสูญเสียพื้นที่ผิวของแพลตินัมให้ดีขึ้นได้ในอนาคต เพื่อเพิ่มการใช้ประโยชน์ของแพลตินัมและการเพิ่มประสิทธิภาพของเซลล์เชือกเพลิงในที่สุด

1. วัตถุประสงค์งานวิจัย

- 1.1 ศึกษาสัดส่วนโดยมวลของ Nafion ต่อ ตัวเร่งปฏิกิริยา สำหรับเทคนิคการพ่นเคลือบโดยตรงด้วยเทคนิคการพ่นด้วยคลื่น Ultrasonic
- 1.2 วิเคราะห์ทางด้านกายภาพของเมมเบรนอิเล็กโทรดและสมบลีด้วยกล้องอิเล็กทรอนแบบส่องกล้องและส่องผ่าน
- 1.3 ศึกษาและคำนวณปริมาณแพลตินัมด้วยเทคนิคการดูดซับทางเคมีด้วยไฮโดรเจน และ ด้วยเทคนิคทางด้านไฟฟ้าเคมี
- 1.4 ศึกษาการสูญเสียพื้นที่ผิว (หรือพื้นที่ก่อกรรมมันต์) เมื่อตัวเร่งปฏิกิริยาถูกนำมาผลิตเป็นเมมเบรนอิเล็กโทรดและสมบลี

2. ระเบียบวิธีวิจัย

2.1 การผลิตเมมเบรนอิเล็ก trod แอกซ์เಸมบลี

ตัวเร่งปฏิกิริยาทางการค้า (Johnson Matthey) ที่มีสัดส่วนโดยมวล Pt/C ที่ 20%wt ถูกนำมาเป็นตัวเร่งปฏิกิริยาในการผลิตเมมเบรนอิเล็กโทรดแอลลอยด์ Pt/C ที่ 20%wt ถูกนำมาเป็นตัวเร่งปฏิกิริยาประกอบไปด้วย ตัวเร่งปฏิกิริยา Nafion solution 5% และ Ethanol ตามสัดส่วนที่เหมาะสม ผสมกันโดยใช้เครื่องเขย่าแบบอัลตราโซนิกประมาณ 15 นาที แผ่นอิเล็กโทรลایท์เมมเบรน (Nafion XL จาก DuPont) ถูกนำมาตีรังสัยในเครื่องพ่นเคลือบอนุภาคนาโนด้วยหัวพ่น Ultrasonic Spraying (สร้างขึ้นมาเอง โดยได้รับรางวัลสิ่งประดิษฐ์แห่งชาติ จาก วช. ประจำปี พ.ศ. 2556) หมึกตัวเร่งปฏิกิริยาได้รับการพ่นด้วยระบบ Ultrasonic spraying เพื่อให้ได้พื้นที่ทำปฏิกิริยา 23 ตารางเซนติเมตร และมี Pt loading ที่ 0.3 mg/cm^2 ณ อุณหภูมิขณะพ่นที่ 80°C แผ่นเมมเบรนที่พ่นเสร็จจะได้รับการอบที่อุณหภูมิ 75°C เป็นเวลา 2 ชั่วโมง จากนั้นอีกด้วยหนึงของอิเล็กโทรลایท์เมมเบรนก็จะได้รับการพ่นด้วยวิธีเดียวกันข้างต้น จึงได้เมมเบรนอิเล็กโทรดแอลลอยด์ที่สมบูรณ์จากกระบวนการพ่นตรงจากนั้นนำไปประกอบเป็นเซลล์เชื้อเพลิง

2.2 การทดสอบประสิทธิภาพเซลล์เชื้อเพลิง และการทดสอบทางไฟฟ้าเคมีด้วยเทคนิค Cyclic Voltammetry

MEA ที่ผลิตได้จะนำไปประกอบเป็นเซลล์เชือเพลิง และทำการ Conditioning MEA ก่อนเป็นเวลา 2 ชั่วโมง ด้วยการแก่ของศักยไฟฟ้าที่ 30 วินาที ระหว่าง OCV (Open circuit voltage)–0.6 V และ OCV–0.4 V แล้วจึงนำไปทดสอบประสิทธิภาพเซลล์เชือเพลิง โดยเทคนิคความดันไฟฟ้าคงที่ โดยใช้ไฮเล็กโทรอนิกโอลด (Model 830e, Scribner Association Inc.) โดยที่อุณหภูมิขณะทำการทดสอบที่ 75 °C ความชื้นที่ 90% และค่าโภดที่ 95%–95% RH ความดัน 1 ความดันบรรยากาศทั้งสองฝั่ง และมีอัตราส่วนการเข้าทำปฏิกิริยาของไฮโดรเจนและออกาซ ที่ 1.2/2.0 เท่าของอัตราส่วนการเข้าทำปฏิกิริยา (Stoichiometry) ทางทฤษฎี การดึง

กระแสและการป้อนกําชไชโดยเรณและอาการควบคุมโดยการโปรแกรมจากคอมพิวเตอร์ เพื่อให้การทำงาน เชลล์เชือเพลิงเป็นไปอย่างอัตโนมัติ

การทดสอบทางไฟฟ้าเคมีด้วยเทคนิค Cyclic Voltammetry กําชไนโดยเรณจะถูกป้อนที่ขั้วคาดด้วย อัตราความเร็ว 300 sccm (standard cubic centimeter per minute) เพื่อเป็น working electrode และกําชไชโดยเรณจะถูกป้อนที่ขั้วภายในด้วยอัตราความเร็ว 300 sccm เพื่อใช้เป็น Reference electrode โดยการสแกน จะใช้อัตราการสแกนศักย์ไฟฟ้าที่ 25 mV/sec จาก OCV ไปยัง 1.14 V และย้อนกลับมาที่ OCV เป็นจำนวนอย่าง น้อย 10 รอบ ด้วยเครื่อง Potentiostat/Galvanostat (Princeton Applied Research, รุ่น 263A) โดยที่ความชื้นทั้ง อาโนดและคาดจะถูกความคุมให้เท่ากันที่ 95%RH, และความดันทางออกมีค่าเท่ากันทั้งสองด้าน คือ 1 ความ ดันบรรยากาศ จะทำให้ได้กราฟความสัมพันธ์ระหว่างความหนาแน่นกระแส และความต่างศักย์ เพื่อใช้ในการ คำนวณหาปริมาณแพลตินัมที่เกิดจากปฏิกิริยาไฟฟ้าเคมี

2.3 การวิเคราะห์ MEA ทางกายภาพ โดย Electron microscopy

MEA ได้รับการวิเคราะห์ทางกายภาพ โดยการนำไปส่องกล้องจุลทรรศน์อิเล็กตรอนทั้งแบบส่องกราด (SEM) และ แบบส่องผ่าน (TEM)

กล้องอิเล็กตรอนแบบส่องกราด (JEOL JSM-6335F) ทำงานที่พลังงาน 15kV ประกอบไปด้วย Energy Dispersive X-ray analysis (EDX) ถูกนำมาขยายภาพตัดขวางของ MEA และทำการวิเคราะห์ธาตุพื้นฐานของ บริเวณที่ทำการพ่นตัวเร่งปฏิกิริยา เรียกว่า Catalyst layer โดย MEA ที่ผลิตได้จะถูกนำมาตัดภายใต้บรรยากาศ ของในโดยเรณเหลว ก่อนจะถูกนำไปวิเคราะห์ด้วยเทคนิคนี้

กล้องอิเล็กตรอนแบบส่องผ่าน (JEOL JEM-2010) ทำงานที่พลังงาน 200 kV พร้อมด้วยอุปกรณ์ Energy Dispersive X-ray analysis ถูกนำมาขยายเพื่อวิเคราะห์รอยต่อระหว่าง Catalyst layer และ อิเล็กโทร ไลท์เมมเบรน เพื่อคุณลักษณะของ การพ่นเคลือบด้วยเทคนิค Ultrasonic spraying โดยชิ้นงานจะได้รับการ เตรียมด้วยวิธี Cryo-microtome เพื่อเนื่องชั้นงานในลักษณะภาคตัดขวางที่มีความบางมากจนกระทั่งสำ อย่างที่อิเล็กตรอนสามารถทะลุผ่านไปได้

2.4 การวิเคราะห์ปริมาณแพลตินัมโดยเทคนิค Chemisorption

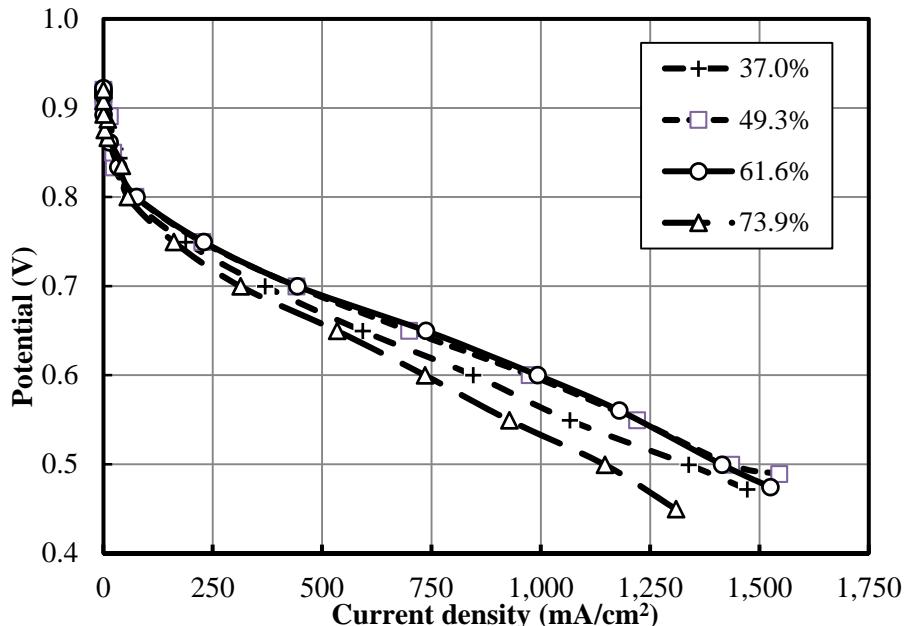
MEA ถูกตัดในส่วนที่พ่นเคลือบให้เป็นชิ้น ชิ้นละขนาด 0.5 cm x 5.0 cm นำทั้งหมดใส่ลงไปใน reactor ที่มีขนาดเส้นผ่าศูนย์กลาง 1.0 cm ในเครื่อง Micromeritics AutoChem 2920 Automated Analyzer จากนั้นก็ทำการ pre-treat MEA ด้วยการป้อนกําช 10% H₂ ใน Ar เป็นเวลา 4 ชั่วโมง ที่อุณหภูมิ 75 °C เพื่อทำการกำจัด ออกซิเจนที่เกาะอยู่บนพื้นผิวแพลตินัมของตัวเร่งปฏิกิริยา Pt/C ของ MEA จากนั้นลดอุณหภูมิลงมาที่ 40 °C จากนั้นก็ป้อนกําช 10% O₂ ใน He แก่ MEA เป็นเวลา 30 นาที และ purge ด้วย Ar เป็นเวลา 30 นาที แล้วเริ่ม titrate Pt-O ด้วย 10% H₂ ใน Ar เป็น pulse และเปลี่ยนการ adsorption เป็น Pt-H ปริมาณของ H₂ titration

ทั้งหมดจะถูกนำมาคำนวณเพื่อหาปริมาณพื้นผิวตัวเร่งปฏิกิริยา และ reaction Pt sites โดย 1.0 มิลลิกรัมของ Pt–H จะมีค่าเท่ากับ 1.5 มิลลิกรัมของ H_2 จากนั้นเมনเบรนเปล่าที่ไม่ได้รับการพ่นเคลือบตัวเร่งปฏิกิริยา ก็ได้รับการวิเคราะห์ทาง Chemisorption ด้วย เพื่อศึกษาการ adsorption ของเมมเบรนกับ H_2

3. ผลการวิจัยและอภิปรายผล

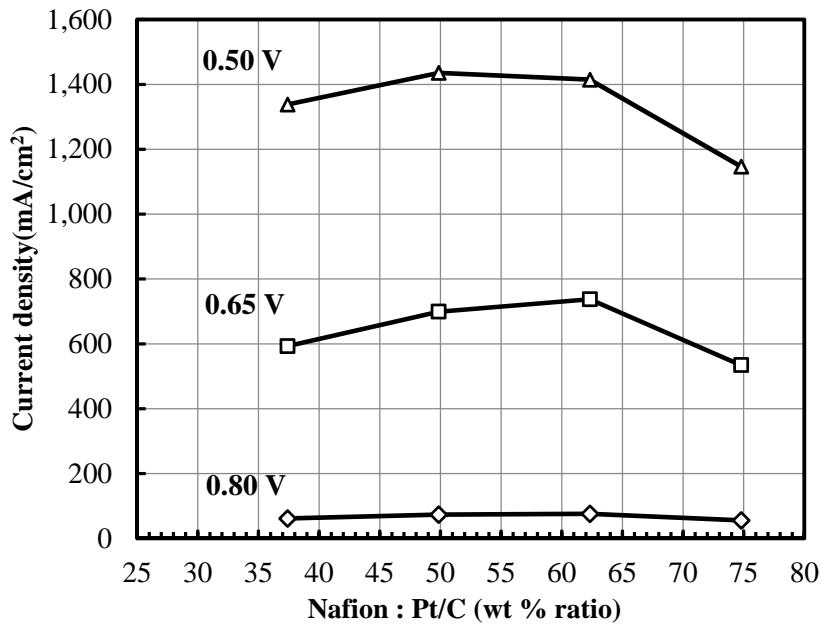
3.1 ผลของการใช้ปริมาณ Nafion

Nafion solution 5%wt ที่ใช้เป็นส่วนหนึ่งของ catalyst ink ได้รับการศึกษาโดยการใช้ปริมาณที่แตกต่างกัน 4 ค่า ดังแสดงในตารางที่ 1 ซึ่งถูกคำนวณของมาให้อยู่ในอัตราส่วนโดยมวลของ Nafion ต่อหน่วยน้ำหนักของตัวเร่งปฏิกิริยา Pt/C ที่ใช้


ตารางที่ 1 แสดงปริมาณการใช้ Nafion solution 5% ที่แตกต่างกันใน catalyst ink และอัตราส่วนเป็น percent โดยมวลของ Nafion ต่อ หน่วยน้ำหนักของตัวเร่งปฏิกิริยา Pt/C

Nafion solution 5% wt added in catalyst inks (μ L)	Dry Nafion weight (mg)	Pt/C catalyst weight (mg)	Percent weight of Nafion per Pt/C (%)
300	12.7	34.5	37.0%
400	17.0	34.5	49.3%
500	21.2	34.5	61.6%
600	25.5	34.5	73.9%

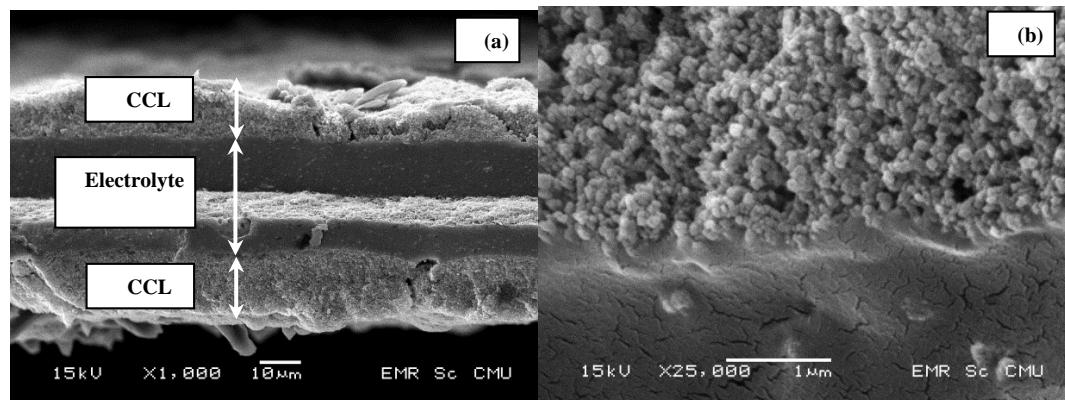
MEA ได้รับการผลิตจากการใช้ปริมาณ Nafion solution ที่แตกต่างกัน แล้วทำการพ่นเคลือบด้วย Ultrasonic spraying เมื่อนำมาประจุกับเป็นเซลล์เชื้อเพลิง และผลการทดสอบประสิทธิภาพ ได้แสดงในรูปที่ 1 โดยอัตราส่วนโดยมวลของ Nafion ต่อตัวเร่งปฏิกิริยา Pt/C ที่ใช้คือ 37.0%, 49.3%, 61.6% และ 73.9% เมื่อ MEA เกิดปฏิกิริยาไฟฟ้าเคมีในช่วง Kinetic region (ความต่างศักย์อยู่ระหว่าง OCV – 0.8 V) พบว่าทุก MEA ให้ค่า Polarization ที่คล้ายกัน คือความต่างศักย์ต่ำลงอย่างรวดเร็ว เนื่องมาจากข้อจำกัดของการเกิดปฏิกิริยา รีดักชันของอุอกซิเจนทางฝั่งคาดหด และไม่ขึ้นอยู่กับปริมาณ Nafion ที่ใช้


เมื่อปฏิกิริยาเกิดขึ้นในช่วงศักย์ไฟฟ้าที่ 0.80 – 0.45 เป็นช่วงของ Ohmic region และ Mass transfer region ซึ่งเป็นผลมาจากการต้านทานภายในของ MEA และ การเข้าไปทำปฏิกิริยาไฟฟ้าเคมีของก้าชตั้งตั้น (ไฮดรเจน และ อุอกซิเจน/ออกาซ) จะเห็นความแตกต่างของประสิทธิภาพของ MEA โดยที่ สัดส่วน Nafion 49.3% และ 61.6% โดยมวล ให้ค่าความหนาแน่นกระแสที่ใกล้เคียงกันและสูงกว่าสัดส่วน Nafion ที่ 37.0%

และ ที่ลดลง 73.9% ให้ค่าความหนาแน่นกระแสที่น้อยที่สุด ความแตกต่างของประสิทธิภาพที่ได้ขึ้นอยู่กับปริมาณของ Nafion ที่ใช้ใน MEA

รูปที่ 1 Polarization curve ของ MEA ที่ใช้ปริมาณ Nafion ที่แตกต่างกัน โดยเปอร์เซ็นต์โดยมวลของ Nafion ต่อ มวลของตัวเร่งปฏิกิริยา คือ 37.0%, 49.3%, 61.6% และ 73.9%

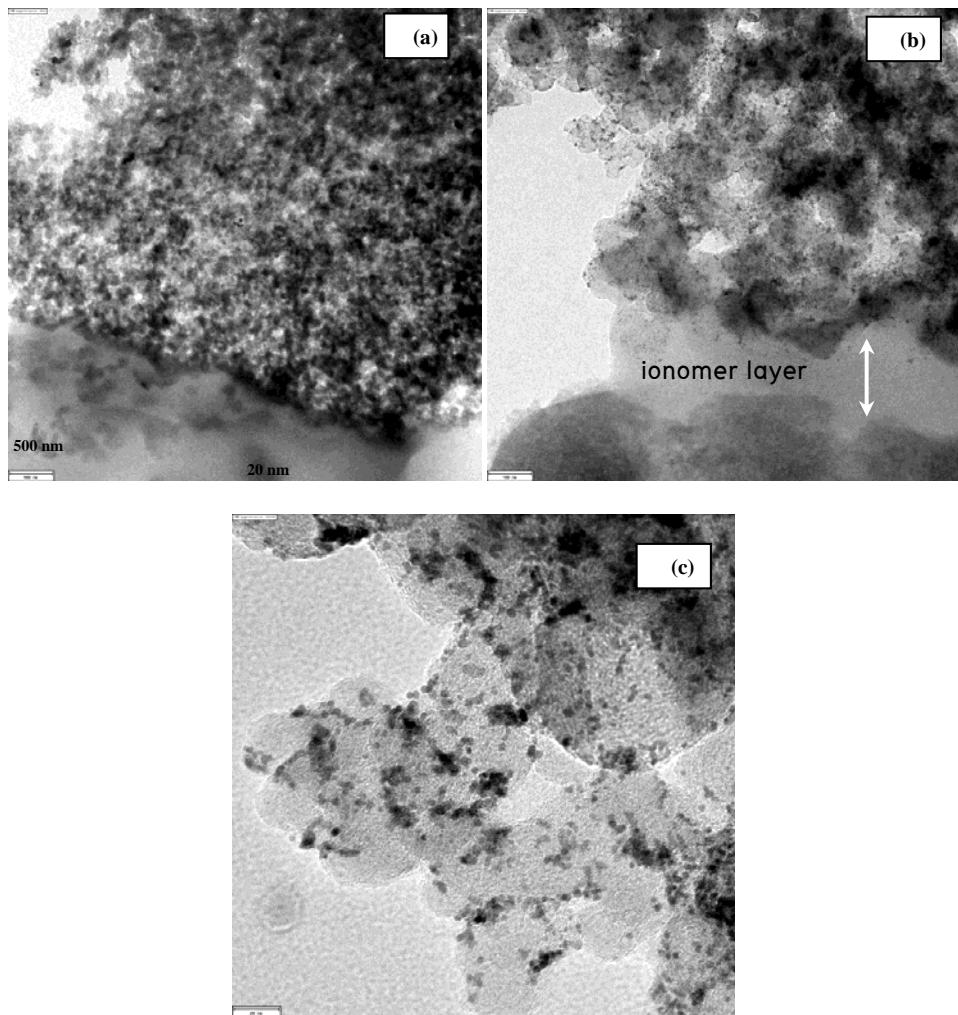
เพื่อให้การวิเคราะห์ได้ดีขึ้น จึงได้นำค่าความหนาแน่นกระแสจากกราฟรูปที่ 1 ที่คักย์ไฟฟ้า 0.80, 0.65 และ 0.50 โกรลต์ มาพล็อตกราฟระหว่างอัตราส่วนโดยมวลของ Nafion กับความหนาแน่นกระแส ดังแสดงในรูปที่ 2

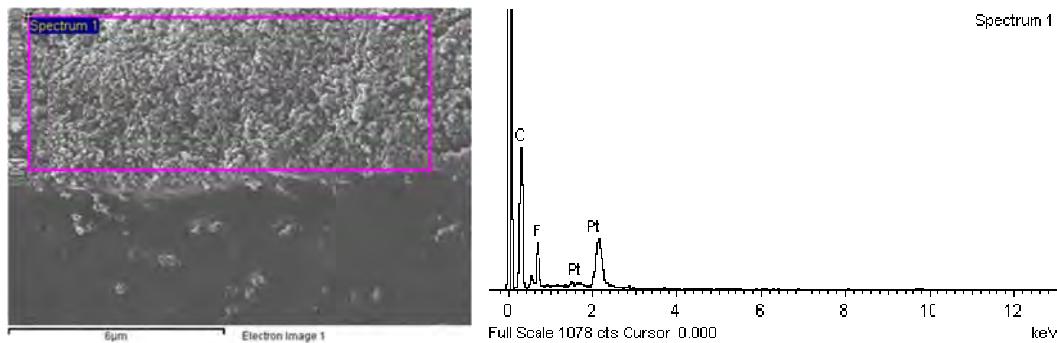

รูปที่ 2 กราฟความสัมพันธ์ระหว่าง %wt Nafion กับความหนาแน่นกระแสที่ได้ขึ้นของ MEA ณ ค่าอัตราไฟฟ้าของเซลล์เชื้อเพลิงที่ 0.80, 0.65, และ 0.55 โวลต์

จากข้อมูลในรูปที่ 2 จะเห็นว่าความหนาแน่นกระแสจะมีค่าสูงสุดอยู่ที่ปริมาณ Nafion ที่เหมาะสมค่าหนึ่ง ค่า Nafion ที่เหมาะสมควรจะมีสัดส่วนโดยมวลของ Nafion ต่อตัวเร่งปฏิกิริยาที่ประมาณ 50–62%wt เพราะถ้าปริมาณ Nafion ที่มากเกินไปจะทำให้ Nafion เคลือบตัวเร่งปฏิกิริยามากเกินไปทำให้ไปขัดขวางการเข้าไปทำปฏิกิริยาของก้าชตั้งตัน ส่งผลถึงการถ่ายเทมวลโดยตรง นอกจากนี้ Nafion มีคุณสมบัติ Hydrophilic ทำให้ที่ปริมาณ Nafion มากเกินจะทำให้มีน้ำละสมภายใน Catalyst layer และขัดขวางการเข้าทำปฏิกิริยาของสารตั้งตัน โดยเฉพาะช่วงความหนาแน่นกระแสสูงๆ จะเห็นว่าประสิทธิภาพของ Nafion 73.9% ลดลงอย่างมีนัยสำคัญที่ความหนาแน่นกระแสสูง ในทางตรงข้ามถ้าปริมาณ Nafion น้อยเกินไปจะทำให้การถ่ายเทไฮโดรเจนออกอน (H^+) ได้ไม่ดี ทำให้การเกิดปฏิกิริยาไฟฟ้าเคมีซ้ำทำให้ประสิทธิภาพเซลล์เชื้อเพลิงลดลงตั้งเช่น Nafion 37.0%wt

ตั้งนั้นปริมาณของ Ionomer (Nafion) จึงเป็นตัวแปรที่สำคัญหนึ่งที่กระทบต่อการเกิดปฏิกิริยาไฟฟ้าเคมีสำหรับเซลล์เชื้อเพลิงชนิดนี้ ซึ่งทำหน้าที่ให้ H^+ เคลื่อนที่จาก reaction zone ที่อยู่ในดามอยอิเล็กโทรไลท์ เมมเบรนและเคลื่อนที่เข้าไปยัง reaction zone ที่คาดว่า เพื่อให้เกิดปฏิกิริยาไฟฟ้าเคมีที่สมบูรณ์ได้ และจากเทคนิคการพ่นเคลือบด้วย Ultrasonic spraying นี้ ปริมาณที่เหมาะสมของ Nafion ที่ควรจะใช้ในการเตรียม MEA คือประมาณ 50 – 62%wt

3.2 การวิเคราะห์ MEA ด้วยกล้องจุลทรรศน์อิเล็กตรอน


MEA ที่ใช้ปริมาณ Nafion ที่ 49.3%wt ได้รับการนำมาวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอน เพื่อศึกษาดูปัจจุบันร้อยต่อระหว่างอิเล็กโทรไลท์เมมเบรนและชั้น Catalyst layer ที่ได้รับการพ่นเคลือบด้วยเทคนิค Ultrasonic spraying รูปที่ 3(a) แสดงถึงภาพถ่ายจากกล้อง SEM ในรูปภาพตัดขวางของ MEA จะเห็นว่าชั้น catalyst layer ทั้งสองฝั่งมีความหนาประมาณ 15 ไมโครเมตร และยึดติดกับพื้นผิวของอิเล็กโทรไลท์เป็นอย่างดี ดังแสดงในรูปข้ายก รูปที่ 3(b) ที่กำลังขยาย 25,000 เท่า และเมื่อพิจารณาในชั้นของ catalyst layer จะเห็นว่าอนุภาคของตัวรองรับคาร์บอนวางเรียงตัวกันแบบ layer by layer ยังเป็นผลมาจากการพ่นเคลือบด้วย Ultrasonic spraying โดยมีช่องว่างที่เป็นทางเข้าและออกของก๊าซที่จะเข้าทำปฏิกิริยา และน้ำจากปฏิกิริยาสามารถออกໄปได้ MEA ที่ได้จึงมีประสิทธิภาพที่ดีในแง่ของการถ่ายเทนิวัลของทั้งสารตั้งต้นที่จะเข้าทำปฏิกิริยา และสารผลิตภัณฑ์ที่ได้จากการเกิดปฏิกิริยา ซึ่งจะเป็นผลดีโดยเฉพาะการทำงานที่ความหนาแน่นกระแสสูงๆ


รูปที่ 3 ภาพตัดขวางของ MEA ที่มีปริมาณ Nafion 49.3%wt วิเคราะห์จากกล้อง SEM (a) Catalyst layer/electrolyte membrane/catalyst layer ที่กำลังขยาย 1,000 เท่า, (b) ร้อยต่อระหว่าง Catalyst layer และ electrolyte membrane ที่กำลังขยาย 25,000 เท่า

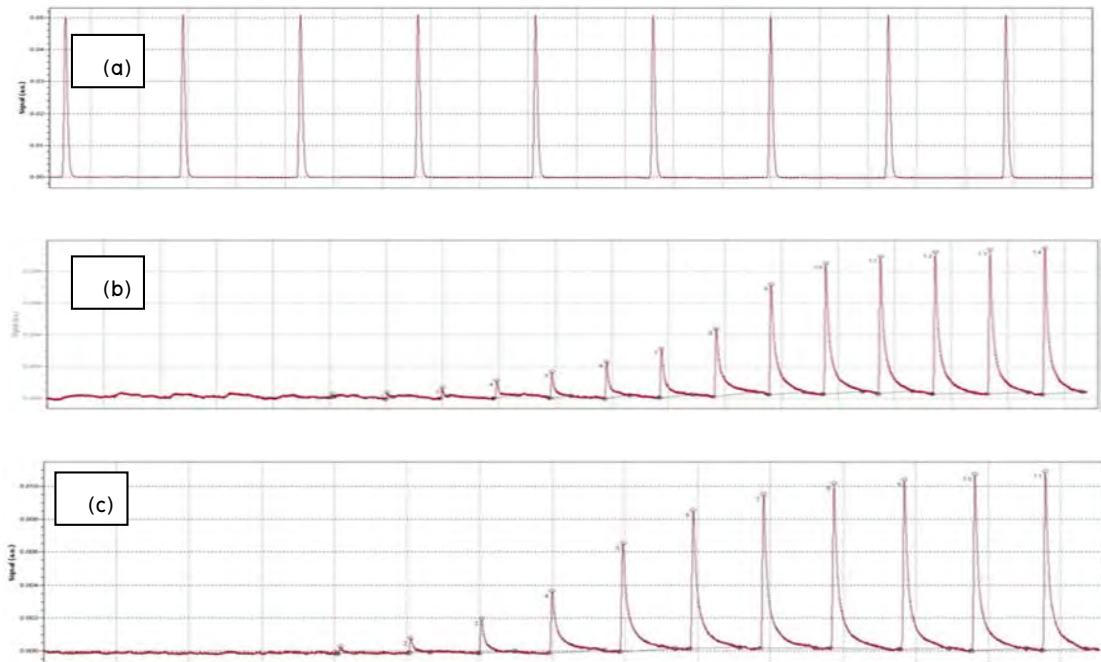
เมื่อนำ MEA มาวิเคราะห์ด้วยกล้อง TEM ดังแสดงในรูปที่ 4 จะเห็นว่าที่กำลังขยาย 4,000 เท่า (รูปที่ 4(a)) จะเห็นว่าชั้นร้อยต่อระหว่าง catalyst layer และ อิเล็กโทรไลท์เมมเบรน อย่างชัดเจนและมีตัวเร่งปฏิกิริยาบางส่วนอยู่ในอิเล็กโทรไลท์เมมเบรน ที่กำลังขยายมากขึ้นดังรูปที่ 4(b) จะเห็นว่าที่ร้อยต่อของ catalyst layer และ อิเล็กโทรไลท์เมมเบรนจะมีชั้นฟิล์มบางๆ ของ ionomer (Nafion) ประสานอยู่ ซึ่งแสดงให้เห็นถึง Nafion ที่ใช้ไปในการเชื่อมต่อเพื่อเพิ่มการเคลื่อนที่ของไฮดรเจนออกอ่อนจาก reaction zone ที่ชั้น catalyst layer ไปยังอิเล็กโทรไลท์เมมเบรน เพื่อให้เกิดปฏิกิริยา redox (reduction – oxidation reaction) ที่สมบูรณ์

เมื่อเพิ่มกำลังขยายเพิ่มขึ้นและพิจารณาที่ชั้น catalyst layer ตั้งแสดงในรูปที่ 4(c) จะเห็นว่าตัวเร่งปฏิกิริยา (ลีเช็ม) กระจายตัวอยู่บนอนุภาคของคาร์บอนที่เป็นตัวรองรับ (ลีเทา) ซึ่งภาพที่ได้จาก MEA ไม่แตกต่างจากภาพที่ได้จากการวิเคราะห์ตัวเร่งปฏิกิริยาอย่างเดียว จากกล้อง TEM แสดงให้เห็นว่าเทคนิคการพ่นเคลือบด้วย Ultrasonic spraying ไม่ได้ทำให้โครงสร้างหรือแร่ยึดเหนี่ยวของอนุภาคแพลตินัมบนคาร์บอนเปลี่ยนแปลงไป อย่างไรก็ตามการวิเคราะห์ด้วย TEM ในชั้น catalyst layer นี้ไม่สามารถที่จะมองเห็นโครงข่ายของ Nafion ในชั้น catalyst layer อย่างชัดเจน เนื่องมาจากการวิเคราะห์ Nafion ฝีลักษณะไปร่วงแสง ตั้งนั้นการวิเคราะห์หา Nafion ในชั้น catalyst layer จึงต้องใช้เทคนิค EDX เข้ามาช่วย

รูปที่ 4 ภาพจาก TEM ของ MEA ที่ปริมาณ Nafion 49.3%wt ที่ชั้นรอยต่อระหว่าง Catalyst layer และ ชิลล์กไทร์โลห์เมมเบรน (a) ที่กำลังขยาย 4,000 เท่า, (b) ที่กำลังขยาย 20,000 เท่า, และ (c) ปริมาณชั้น catalyst layer ของ MEA ที่กำลังขยาย 100,000 เท่า โดยที่อนุภาคเล็กด้วยตัวเร่งปฏิกิริยาแพลตินัม

รูปที่ 5 ผลการวิเคราะห์ MEA (49.3%wt of Nafion) ด้วย EDX โดยสารที่ทำการวิเคราะห์คือ แพลตินัม คาร์บอน และ พลูอูโรน์ จากชั้น catalyst layer

เมื่อนำชั้น catalyst layer ของ MEA 49.3%wt Nafion มาวิเคราะห์ ดังแสดงในรูปที่ 5 จะสังเกตเห็น สัญญาณจากการขึ้นของพลูอูโรน์ในชั้น catalyst layer (CL) ซึ่งบ่งบอกถึงการกระจายตัวของ Nafion (พลูอูโรน์ เป็นองค์ประกอบหลักของ Nafion) ไปทั่วทั้งชั้น Catalyst layer (CL) ทำให้เกิดโครงข่ายของ Nafion ทั่วทั้งชั้นและเป็นทางเดินของไฮดรเจนออกอนจากปฏิกิริยา oxidation จากออกาโนด ไปยังคาก็อกเพื่อให้เกิดปฏิกิริยา reduction จากการคำนวณเชิงปริมาณทำให้ทราบถึงสัดส่วนโดยมวลของพลูอูโรน์มีอยู่ประมาณ 26.6% อยู่ในชั้น CL ดังแสดงในตารางที่ 2 และเมื่อพิจารณาสัดส่วนโดยมวลเฉพาะ Pt และ C (คอลัมน์ที่ 3 ตาราง 2) จะพบว่ามี Pt อยู่ประมาณ 17% ซึ่งใกล้เคียงกับปริมาณ Pt ที่ใช้จากตัวเร่งปฏิกิริยาคือ 20%wt Pt/C


ตารางที่ 2 แสดงผลจากการวิเคราะห์ EDX ของชั้น catalyst layer MEA โดยวิเคราะห์รัตุ แพลตินัม คาร์บอน และ พลูอูโรน์ จากรูปที่ 5

Element	Weight %	C, Pt Weight %
C	60.9	83.07
F	26.6	-
Pt	12.5	17.0

3.3 การวิเคราะห์ด้วย Chemisorption

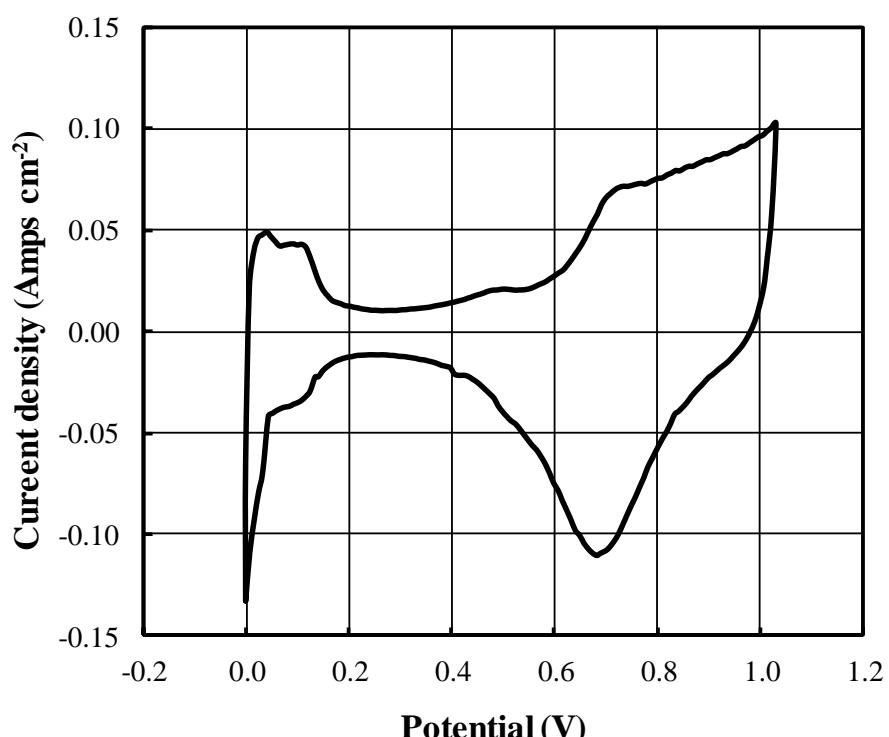
ผลการ uptake ไฮดรเจนบนชิ้นงาน เมมเบรนเปล่า ผงตัวเร่งปฏิกิริยา และ MEA ได้แสดงในรูปที่ 6 โดย MEA ที่ใช้ในการทดสอบนี้เป็น MEA ที่มีปริมาณ Nafion : Pt/C อยู่ 49.3% โดยมวล จากสเปกตัมที่ได้ของ เมมเบรนเปล่าในรูปที่ 6 (a) จะเห็นว่า ไม่มีการดูดซับของไฮดรเจนลงบนพื้นผิวของเมมเบรนเปล่าแต่อย่างใด ซึ่งปริมาณของไฮดรเจนที่วัดได้ที่ทางออกมีค่าไม่เปลี่ยนแปลงและคงที่ตลอดทั้ง 8 ลูปตัว ด้วยเหตุนี้จึงสรุปได้ว่า Nafion ® solution หรือ ออกอนโนเมอร์ ที่อยู่ในชั้น CL ของ MEA ไม่มีผลต่อการดูดซับทางเคมี เห็นได้ชัด ดังนั้นการดูดซับทางเคมีใน MEA จึงเป็นผลจากการตัวเร่งปฏิกิริยาอย่างเดียว

เมื่อพิจารณาการคูดซับทางเคมีของผงตัวเร่งปฏิกิริยา รูปที่ 6 (b) ที่อยู่ในรูปอนุภาคตัวเร่งปฏิกิริยา บนตัวรองรับคาร์บอน พบร่วมกับสเปกตรัมของไฮโดรเจนค่อนข้างแบนราบในช่วง 5 รอบของการ uptake บ่งบอกถึงการคูดซับไฮโดรเจนของตัวเร่งปฏิกิริยาที่สมบูรณ์ และสเปกตรัมก็ค่อนข้างมีความซับซ้อนขึ้น จนมีค่าใกล้เคียงกันใน 3 สเปกตรัมสุดท้าย ซึ่งเป็นการคูดซับที่อิมตัวและไม่สามารถคูดซับไฮโดรเจนของตัวเร่งปฏิกิริยาอีกต่อไป ในทำงดเดียว กัน เมื่อซึ่งงานเป็น MEA ไฮโดรเจนก็มีการถูกคูดซับที่สมบูรณ์ในสเปกตรัมแรก และเริ่มเข้าสู่สภาวะการอิมตัว จนกระทั่งไม่สามารถคูดซับได้อีก ดังแสดงในรูปที่ 6 (c)

รูปที่ 6 การ uptake H_2 ลงบนชิ้นงานสำหรับการวิเคราะห์พื้นผิวการดูดซับทางเคมีของ (a) เมมเบรนเปล่า (b) ผงตัวเร่งปฏิกิริยา Pt/C 20% โดยมวล (c) เมมเบรนอิเล็กทรอนิกส์สมบลี Pt loading = 0.3 mg/cm² ทั้ง仨อนด์ และแคร์บอน

ปริมาตรโดยรวมของการดูดซับไฮดรเจนจะได้รับการบันทึกและทำการคำนวณและเปลี่ยนเป็น มิลลิโมลต่อกรัม ของ แพลตินัม ดังแสดงในตารางที่ 3 ในคอลัมน์ที่ 3 ค่าเบี่ยงเบนมาตรฐาน มาจากการทดลอง จำนวน 2 ครั้ง เพื่อทำให้ความถูกต้องของผลการทดสอบ

สำหรับตัวเร่งปฏิกิริยา Pt/C 20% ปริมาณไฮโดรเจนที่ uptake มีปริมาณ 1.98 มิลลิโมลต่อหนึ่งกรัมแพลตินัม ซึ่งมีค่า dispersion (จำนวนพื้นผิว Pt อะตอม ต่อ จำนวน Pt อะตอมทั้งหมด) ที่คำนวณได้คือ 25.8% ทำให้สามารถคำนวณหาค่าเลี้นผ่าศูนย์กลางเฉลี่ยของอนุภาคแพลตินัมได้ที่ประมาณ 4.4 นาโนเมตร (โดยการกำหนดลักษณะแบบทรงกลมและกึ่งทรงกลม)


ตารางที่ 3 ข้อมูลจากการทดสอบการดูดซับทางเคมีจากรูปที่ 6 และการคำนวณปริมาณดูดซับไฮดروเจนเป็น มิลลิโมลต่อกรัมแพลตินัม ที่ผงตัวเร่งปฏิกิริยา Pt/C 20% พบว่าอนุภาคมีเส้นผ่าศูนย์กลางเฉลี่ยที่ 4.4 นาโน เมตร และมีปริมาตรการกระจายตัวอยู่ที่ 25.8%

Samples	Pt weight in samples (mg)	H_2 uptake (millimoles g_{Pt}^{-1})		No. of Pt surface sites g_{Pt}^{-1}	
		Average	Standard Dev.	Average	Standard Dev.
Blank membrane	0.0	0.00	0.00	0.00	0.00
Catalyst particles (20wt% Pt/C)	9.9	1.98	±0.01	8.0×10^{20}	$\pm 2.8 \times 10^{18}$
Coated membrane (MEA)	13.8	0.96	±0.05	3.8×10^{20}	$\pm 1.8 \times 10^{19}$

การคำนวณหาปริมาณจำนวนพื้นผิวของแพลตินัมต่อกรัมของแพลตินัม ที่แสดงในตารางที่ 3 ใน คอลัมน์สุดท้าย การคำนวณนี้ไม่ถูกคำนวณจากมีลั่นฐานแบบไหนหรือการกระจายตัวแบบใดก็สามารถหาค่าของ พื้นที่ผิวได้ ซึ่งเป็นข้อดีของการวิเคราะห์แบบดูดซับทางเคมี ปริมาณพื้นผิวของอนุภาคตัวเร่งปฏิกิริยาแพลตินัม มีค่าประมาณ 8.0×10^{20} ไซต์ต่อกรัมแพลตินัม ในขณะที่ ปริมาณพื้นผิวของตัวเร่งปฏิกิริยาของ MEA มี ค่าเฉลี่ยประมาณ 3.8×10^{20} ไซต์ต่อกรัมแพลตินัม นั่นหมายความว่าพื้นผิวของแพลตินัมจะสูญเสียไป ประมาณ 52% เมื่อตัวเร่งปฏิกิริยาที่เป็นอนุภาคได้รับการนำมาเคลือบเป็น MEA และการวิเคราะห์ชนิดนี้ถือว่า เป็นครั้งแรกของโลกที่มีการหาค่าการสูญเสียพื้นผิวการทำปฏิกิริยาของแพลตินัมจากอนุภาคมาผลิตเป็น MEA ด้วยการวิเคราะห์แบบดูดซับทางเคมี ด้วยความแม่นยำในการวิเคราะห์ที่มากกว่าเมื่อเทียบกับการวิเคราะห์ ด้วยเทคนิคอื่นๆ (จากผลงานก่อนหน้านี้ของคณะผู้วิจัย: K. Punyawudho et.al. J. of Electrochim. Acta., Vol. 55(39), 2010, pp. 5349–5356) การประยุกต์ใช้การดูดซับทางเคมีสำหรับพื้นผิวแพลตินัมจึงสามารถช่วยในการพัฒนาและวิเคราะห์เพื่อที่จะเพิ่มประสิทธิภาพเซลล์เชื้อเพลิงได้มากก็น้อย โดยปกติแล้วการสูญเสีย พื้นที่การทำปฏิกิริยาของแพลตินัมเกิดจาก การถูกเคลือบด้วย Nafion solution หรือ ไออกอนโนเมอร์ ซึ่งผลก ล ล ของกับการวิเคราะห์ด้วยกล้องอิเล็กตรอนแบบส่องกราดและล่องผ่าน อย่างไรก็ตามมีโอกาสเป็นไปได้ ถ้าเราสามารถลดการสูญเสียพื้นที่การเข้าทำปฏิกิริยาของแพลตินัม ที่สามารถที่จะเพิ่มประสิทธิภาพของเซลล์ เชื้อเพลิงได้ การลดการสูญเสียพื้นที่การทำปฏิกิริยาแพลตินัมในระหว่างการผลิต MEA จึงจะเป็นช่องทางการทำวิจัยสำหรับการพัฒนาเซลล์เชื้อเพลิงได้ในอนาคต และการใช้การวิเคราะห์โดยการดูดซับทางเคมีก ล ล เป็นเครื่องมือหนึ่งที่ช่วยในการหาพื้นที่ผิวของ MEA ที่ได้รับการพัฒนา

3.4 พื้นที่ผิวทางด้านไฟฟ้าเคมี (Electrochemical Surface Area : ESA)

การวิเคราะห์ทางไฟฟ้าเคมีใช้ MEA ที่มีอัตราส่วน Nafion : Pt/C ที่ 49.3% โดยมวล โดยใช้เทคนิค Cyclic Voltammetry เพื่อทำการคำนวณหาปริมาณแพลตินัมที่ทำปฏิกิริยาไฟฟ้าเคมี ซึ่งเป็นปฏิกิริยาที่เกิดขึ้น ใกล้เคียงกับการเกิดปฏิกิริยาในเซลล์เชือกเพลิง เนื่องจากมีการถ่ายเทประจุและการถ่ายเทอิเล็กตรอน และสามารถตรวจสอบประจุและจำนวนเพื่อหาปริมาณที่แท้จริงสำหรับการทำปฏิกิริยาไฟฟ้าเคมีของแพลตินัมได้ ศักย์ไฟฟ้าของเซลล์เชือกเพลิงได้รับการทดสอบในช่วง Open Circuit Voltage (OCV) ถึง 1.14 V ดังแสดงในรูปที่ 7

รูปที่ 7 แสดงผลการวิเคราะห์ด้วย Cyclic Voltammetry ของ MEA ที่มีปริมาณ Nafion : Pt/C 49.3% โดยอัตราการสแกนที่ 25 mV/sec โดย MEA มีปริมาณแพลตินัมทั้งองค์ประกอบที่ 0.3 mg/cm^2 เท่ากันทั้งสองด้าน ขณะวิเคราะห์ใช้ความดันบารอยากาศ (A/C), $T_{\text{cell}} = 75^\circ\text{C}$, ความชื้นสัมพัทธ์ = 95/95% RH (A/C) อัตราการให้อксиไดรเจน 300 sccm ที่อานิด และ ไนโตรเจน 300 sccm ที่แคโรไอด

การเกิดปฏิกิริยาไฟฟ้าเคมีของไฮไดรเจนจะเกิดขึ้นที่บริเวณตั้งแต่ OCV ถึง 0.2 V และช่วงการเกิดปฏิกิริยาอีกชิ้นเดือน (ความหนาแน่นกระแสที่เป็นบวก) จะได้รับการนำมาพิจารณาหาพื้นที่ผิวของแพลตินัม เพราะว่าในช่วงการเกิดปฏิกิริยาเริ่ดักชัน (ความหนาแน่นกระแสที่เป็นลบ) จะมีค่าที่ไม่คงที่ ขึ้นอยู่กับค่าศักย์ไฟฟ้าสุดท้าย (จากผลของการศึกษาที่ผ่านมากของคณะวิจัย: K. Punyawudho et.al. J. of Electrochim. Acta., Vol. 55(39), 2010, pp. 5349–5356)

ในขณะเกิดปฏิกิริยาขึ้นก็เดชันของไฮโดรเจน (ความหนาแน่นกระแสเป็นนาว) ในช่วง OCV ถึง 0.2 V เป็นช่วงที่ไฮโดรเจนเกิดการ Desorption กล่าวคือ ไฮโดรเจนที่อยู่บนพื้นผิวของแพลตินัมจะกล้ายเป็นก๊าซไฮโดรเจน ดังสมการข้างล่าง

ดังนั้นประจุของไฮโดรเจนในอน 2 มิลลิกรัม จะทำให้เกิดก๊าซไฮโดรเจน 1 มิลลิกรัม ผลการทดสอบจะทำการแปลงค่าประจุทางไฟฟ้าในหน่วยคูลอมบ์ ให้เป็นจำนวนมิลลิของไฮโดรเจนด้วยอัตราส่วน 2:1 ซึ่งจาก การวัดประจุทางไฟฟ้าจากรูปที่ 7 จะได้ค่าทางประจุไฟฟ้าของไฮโดรเจนขึ้นก็เดชันที่ 0.183 คูลอมบ์ ดังแสดง ในตารางที่ 4 ค่าเบี่ยงเบนมาตรฐานเกิดจากการทำการทดลองซ้ำอย่างน้อย 3-4 ครั้ง เพื่อยืนยันผลการ ทดลอง ซึ่งจากการทดลองที่ได้สามารถคำนวณหาปริมาณพื้นที่ผิวของแพลตินัมที่ใช้ทำปฏิกิริยาไฟฟ้าเคมีมี ค่าประมาณ 1.6×10^{20} ไซต์ต่อกรัมแพลตินัม

ตารางที่ 4 ผลของการวัดพื้นที่ผิวแพลตินัมจากปฏิกิริยาไฟฟ้าเคมี ด้วยเทคนิค Cyclic Voltammetry ที่อัตราการสแกน 25 mV/sec น้ำหนักของแพลตินัมประมาณ 6.9 mg (0.3 mg/cm² จาก 23 cm² ของ MEA ทั้งชานodeและแอดจูด) โดยค่าความหนาแน่นประจุของแพลตินัมมีค่าประมาณ 2.1 C/m²

Description	Electric charge (Coulomb)		Pt surface area (m ² g _{Pt} ⁻¹)		No. of Pt surface sites g _{Pt} ⁻¹	
	Average	Standard Dev.	Average	Standard Dev.	Average	Standard Dev.
Electrochemical Surface Area (ESA)	0.183	±1.10 × 10 ⁻³	12.63	±0.08	1.6 × 10 ²⁰	±9.5 × 10 ¹⁷

ค่าแพลตินัมไซต์ของ MEA ที่คำนวณได้จากปฏิกิริยาไฟฟ้าเคมี มีค่าเพียง 42% เมื่อเทียบกับค่าที่ได้จากการวิเคราะห์ด้วยการคุณภาพด้วยไฟฟ้าเคมี (3.8×10^{20} ไซต์ต่อกรัมแพลตินัม) หรือในอีกแห่งหนึ่งก็คือ 80% ของพื้นที่ผิวของแพลตินัมจากอนุภาคตัวเร่งปฏิกิริยาสูญเสียไปเมื่อถูกนำมาระบายน้ำ MEA และเกิดปฏิกิริยาไฟฟ้าเคมี อย่างไรก็ได้การวิเคราะห์ด้วยการคุณภาพด้วยไฟฟ้าเคมีเป็นการทดสอบที่กระทำในสภาพที่แห้ง (ไม่มีน้ำ) และอยู่ในสถานะก้าวอย่างเดียว ซึ่งปฏิกิริยาที่ไม่ซับซ้อนเหมือนปฏิกิริยาไฟฟ้าเคมี ซึ่งเป็นการวิเคราะห์ในสภาพที่มีความชื้นสูง และมีโอกาสที่จะเกิดการควบแน่นของน้ำและไปบล็อกการเข้าทำปฏิกิริยาของไฮโดรเจน นอกจากนี้ผลของการถูกจำกัดการถ่ายเทประจุที่ภายใน CL อันเนื่องมาจากการมีระบบเครือข่ายตัวนำประจุที่ไม่เพียงพอ ที่เป็นสาเหตุหนึ่งที่ทำให้ผลของ Cyclic voltammetry ให้ค่าประจุที่น้อยกว่าที่ควรจะเป็น ทั้งๆ ที่พื้นที่ผิวของแพลตินัมอาจจะใกล้เคียงกัน เพราะการวัดพื้นที่ผิวแพลตินัมด้วย Cyclic voltammetry ต้องอาศัยการวัดประจุเป็นหลัก ซึ่งเป็นการวัดโดยอ้อม ถ้าประจุถูกจำกัดจากการถ่ายเทประจุที่ไม่สอดคล้อง ก็อาจจะส่งผลให้ผลของการวัดค่าดัดแปลงได้ ถึงแม้วิธีนี้จะเป็นวิธีการวิเคราะห์ที่ใกล้เคียงกับการเกิดปฏิกิริยาไฟฟ้าเคมีมากที่สุดก็ตาม ดังนั้นการวิเคราะห์ด้วย Cyclic voltammetry จึงให้ค่าพื้นที่ผิวของแพลตินัมที่น้อยกว่าอยู่แล้ว

ดังนั้นพื้นที่ผิวของแพลตินัมที่ทำปฏิกิริยาไฟฟ้าเคมีจึงลดลงเมื่อแพลตินัมถูกนำมาระบายน้ำ MEA เนื่องมาจากการถูกเคลือบด้วยไออกอนโนเมอร์ (Nafion ® solution) ความชื้นในการทำงานของเซลล์เชือเพลิง และการถูกจำกัดการถ่ายเทประจุของเครือข่ายไออกอนโนเมอร์ ในงานวิจัยนี้ 52% ของแพลตินัมสูญเสียไปกับการถูกเคลือบด้วยไออกอนโนเมอร์ และอีก 28% (80 – 52%) สูญเสียไปกับการนำไบโอดีเซลล์เชือเพลิง (ถูกบล็อกด้วยน้ำ หรือ การถูกจำกัดการถ่ายเทประจุ H^+) การสูญเสียพื้นที่การทำปฏิกิริยาของแพลตินัมทั้งสองกระบวนการนี้สามารถเป็นข้อมูลเพื่อนำไปสู่การต่อยอดการค้นคว่างานวิจัยเพื่อพัฒนาเซลล์เชือเพลิงที่มีประสิทธิภาพที่ดีขึ้นได้ ในงานวิจัยนี้เราได้พบว่าการวิเคราะห์ร่วมกันของการคุณภาพด้วยไฟฟ้าเคมีและทางไฟฟ้าเคมีได้อธิบายและแยกแยะถึงกลไกการสูญเสียแพลตินัมที่แตกต่างกัน ซึ่งสามารถนำไปเป็นมาตรฐานในการวิเคราะห์หากการเข้าทำปฏิกิริยาของแพลตินัมและพัฒนาเพื่อให้เซลล์เชือเพลิงสูญเสียแพลตินัมที่น้อยลงได้

4. สรุปผล

MEA ที่ได้จากการพ่นเคลือบด้วยเทคโนโลยี Ultrasonic spraying ที่อัตราส่วนโดยมวลระหว่าง Nafion : Pt/C ได้รับการตีกษากา และพบว่าอัตราส่วนโดยมวลระหว่าง 50 – 60% จะให้ประสิทธิภาพดีที่สุด เมื่อทำการวิเคราะห์ทางด้านกายภาพ พบว่าอนุภาคของตัวเร่งปฏิกิริยาและตัวรองรับมีการจัดวางกันแบบชั้นต่อชั้น (Layer by layer) และมีรูปรุนค่อนข้างมาก ส่งผลถึงการเข้าทำปฏิกิริยาของก๊าซได้ดี และเกิดการถ่ายเทน้ำเข้าออกจากชั้นตัวเร่งปฏิกิริยา (CL) ได้ดี นอกจากนี้ยังพบ Ionomer Layer Film ระหว่างชั้นตัวเร่งปฏิกิริยา (CL) และ อิเล็กโทรโลท์เมมเบรน ทำให้การถ่ายเทประจุ H^+ จาก reaction zone ไปยังเมมเบรนมีประสิทธิภาพดียิ่งขึ้น

จากการวิเคราะห์จำนวนพื้นผิวแพลตินัม โดยเมื่อนำแพลตินัมมาผลิตเป็น MEA แล้ว พบร่วม 52% สูญเสียไปกับการถูกไออกอนโนเมอร์ (Nafion) ปกคลุม และอีก 18% (80 – 52%) เกิดจากสภาพการทำงานของเซลล์เชือเพลิง ทั้งในสภาพที่ความชื้นสูงและการถูกจำกัดการถ่ายเท H^+ ภายใน CL ซึ่งการสูญเสียพื้นที่ผิว

ของแพลตินัมนี้เป็นผลมาจากการใช้เทคนิคการวิเคราะห์ที่แตกต่างกัน คือ การดูดซับทางเคมี และการศึกษาทางด้านไฟฟ้าเคมี และการสูญเสียพื้นที่ผิวของแพลตินัมโดยรวมถึง 80% นี้ ทำให้มีโอกาสที่เป็นไปได้ในการที่จะทำการศึกษาในอนาคต เพื่อลดการสูญเสียพื้นที่ผิวแพลตินัม เพื่อนำมาผลิตเป็น MEA สำหรับเซลล์เชื้อเพลิง สำหรับการเพิ่มประสิทธิภาพเซลล์เชื้อเพลิง และลดปริมาณการใช้แพลตินัมเพื่อต้นทุนการผลิตที่ต่ำลง

5. ภาคผนวก

5.1 Output

มีผลงานตีพิมพ์ ในวารสารนานาชาติ 1 เรื่อง คือ

วารสาร International Journal of Hydrogen Energy มี Impact Factor = 4.086 (เฉลี่ย 5 ปี)
โดยผู้วิจัย เป็น 1st author และ เป็น Co-corresponding author

K. Punyawudho, N. Vorayos, Y. Zhang, S. Shimpalee, and J. R. Monnier, “Identification and quantification of performance losses for PEM fuel cells as determined by selective chemisorption and ESA measurements”, Int. J. Hydrogen Energy, Accepted, DOI:10.1016/j.ijhydene.2014.04.187

- [Home](#)
- [Products](#)
- [User Resources](#)
- [About Us](#)
- [Support & Contact](#)
- [Elsevier Websites](#)

[Search](#) [Advanced Product Search](#)

[Author's Home](#) > Track your accepted article

TRACK YOUR ACCEPTED ARTICLE

Welcome! [Login](#) to get personalized options. New user? [Register](#) | [Why register?](#)

[Help](#)

Your article's details and status are shown in the following table:

Article status

Article title:	Identification and quantification of performance losses for PEM fuel cells as determined by selective chemisorption and ESR measurements
Reference:	HE13887
Journal title:	International Journal of Hydrogen Energy
Corresponding author:	Dr. J. R. Monnier
First author:	Dr. K. Punyawudho
Received at Editorial Office:	14 Feb 2014
Article revised:	21 Apr 2014
Article accepted for publication:	25 Apr 2014
Received at Elsevier:	26 Apr 2014
Journal publishing agreement sent to author:	1 May 2014
Offprint order form sent to author:	1 May 2014
PDF offprint:	Yes
Proofs available:	13 May 2014
Proofs returned:	14 May 2014
Journal publishing agreement returned:	1 May 2014
DOI information:	10.1016/j.ijhydene.2014.04.187
Status comment:	No further corrections can now be made. At this moment it is not yet possible to give you information about the publication date. This depends on the number of articles lined up for publication in the journal. Citation information will be shown when available.

[Track another article](#)

[Home](#) | [Elsevier Sites](#) | [Privacy Policy](#) | [Terms and Conditions](#) | [Feedback](#) | [Site Map](#) | [A Reed Elsevier Company](#)

Cookies are set by this site. To decline them or learn more, visit our [Cookies](#) page.

Copyright © 2014 **Elsevier B.V.** All rights reserved.

Identification and quantification of performance losses for PEM fuel cells as determined by selective chemisorption and ESA measurements

K. Punyawudho^{1,†}, N. Vorayos², Y. Zhang³, S. Shimpalee³, and J. R. Monnier^{3,*}

¹ Department of Industrial Chemistry, Chiang Mai University, Chiang Mai, 50002, Thailand

² Department of Mechanical Engineering, Chiang Mai University, Chiang Mai, 50002, Thailand

³ Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States

Abstract

Membrane electrode assemblies (MEAs) were fabricated using a high frequency spraying technique. Electrocatalyst powders were directly sprayed onto an electrolyte membrane by ultrasonic spraying. The weight ratios of Nafion to Pt/C were studied, and the ratio about 50-62% yields the maximum current density at the ohmic and gas diffusion region of the polarization curve. Cross sections of the MEA were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM); images from SEM indicate that the supported catalysts are arranged in a layered manner and that pores in the catalyst coated layer (CCL) are formed. TEM images show the ionomer layer exists between the reaction zone and the electrolyte membrane. The concentration of Pt surface sites in the MEA was measured by selective H₂ chemisorption methods at dry conditions and by cyclic voltammetry (CV) for the electrochemical reaction. The chemisorption measurements indicate that ~52% of the active Pt surface are lost due to ionomer coverage and CV shows an additional 28% of the Pt surface are lost due to blockage by condensed water and the isolation of Pt sites from ionomer and electrical conduction. In total 80% of the Pt surface sites present on the 20 wt% Pt/C starting material are lost during preparation and at operating conditions. Thus, both mechanisms of activity loss are separately identified and quantified.

Key words: membrane electrode assembly; MEAs; PEMFCs; fuel cells; H₂ chemisorption; cyclic voltammetry

*Corresponding author. Tel.: +1 803 777 6813; fax: +1 803 777 8265, E-mail address: monnier@cec.sc.edu

†Co-corresponding author. Tel +66 53 943 405; fax +66 53 892 262, E-mail address: konlayutt.p@cmu.ac.th

1. Introduction

Polymer Electrolyte Membrane Fuel Cells (PEMFCs) have received the most attention among the various types of fuel cells because of their ability to function at low temperatures and to generate high current densities. Furthermore, the compactness and light weight coupled with rapid start-up and commercialization potential have added to their appeal [1–5]. Fuel for these cells is generally gaseous H₂ or H₂ mixed with other gases (i.e., CO₂, H₂O and traces of CO) resulting from reforming of hydrocarbon fuels. Alcohols, such as ethanol and methanol, have also been used as fuels and such fuel cells are denoted as Direct Alcohol Fuel Cells (DAFC). Thus, PEMFCs have been widely studied and developed for powering various applications ranging from small electronic devices to electrical vehicles [6,7]. Consequently, interest continues in development of PEM fuel cell technology.

In PEM fuel cells, the most important part is the Membrane Electrode Assembly (MEA), where the electrochemical reactions occur at both anode and cathode. Electrocatalysts, typically Pt supported on conductive carbon, are coated onto the electrolyte membrane to catalyze the oxidation and reduction reactions at the anode and cathode, respectively. The two main methods for the fabrication of MEA are generally known as indirect and direct methods [1,2]. The indirect method is where the particulate Pt/C catalysts are applied to the Gas Diffusion Layer (GDL) prior to assembly with the electrolyte membrane. The direct method is when the particulate Pt/C catalysts are coated directly onto the electrolyte membrane. The direct method has also been called the thin film process or Catalyst Coated Membrane (CCM) process. Cheng et al. [8] has claimed that Pt utilization (where Pt utilization is defined as the concentration of surface Pt sites per gram Pt determined from cyclic voltammetry divided by the concentration of surface Pt sites per gram Pt determined by either selective chemisorption or transmission electron microscopy) was approximately 45% for the direct method, compared to 22% Pt utilization when the MEA was prepared by the indirect method. In agreement, Chun et al. [9] showed that for similar cell potentials, direct fabrication yielded current densities about twice those for an MEA fabricated by an

indirect method. Consequently, the direct method of MEA fabrication has become generally accepted and has steadily replaced different indirect methods [2,4,10,11].

Several techniques for direct MEA fabrication have been developed, including the methods of painting/spreading [12,13], decaling of catalysts [14], and spraying at high pressures [15,16]. With the painting/spreading and decaling methods it is difficult to control either Pt loadings or the uniformity of the coatings, and high pressure spraying also results in excessive production cost due to the loss of Pt/C particles during spraying. Consequently, electrodeposition [17,18] and a modified thin film method [19] have been proposed to control Pt loadings between $0.1 - 0.5 \text{ mg}_{\text{Pt}}/\text{cm}^2$ as well as uniformity of coating. However, with the modified, thin film method it is still difficult to control Pt particle sizes, and the Cl^- ions from the electrodeposition process (PtCl_6^{2-} is the usual Pt source) can poison Pt surfaces and reduce catalytic activity [5]. Another emerging technique has been sputtering [20,21], which is able to lower Pt loadings between 0.01 and $0.04 \text{ mg}/\text{cm}^2$ and to control the uniformity of the Catalyst Layer (CL) with thicknesses between 5-10 nm. However, this technique gives relatively low Pt surface/volume ratios since the Pt exists as a continuous film and not discrete particles and has a poor adherence of Pt to the electrolyte membrane. Finally, sputtering requires vacuum conditions for deposition of the electrocatalyst (i.e., Pt, Ru or Co) onto the membrane; thus, cost and scalability become issues for commercial production.

More recently, high frequency spraying techniques have been developed for MEA fabrication, since they overcome many of the limitations of the previous methods. Millington [22] has reported the use of ultrasonic frequency (120 kHz) with a commercial spraying apparatus (Sono-Tek "Exacta-coat") to prepare coated assemblies using the indirect method, where GDLs were sprayed with electrocatalyst prior to hot pressing with the electrolyte membrane. For fuel cell performance with H_2 and O_2 , the maximum power was about 11% higher than the value of $0.47 \text{ W}/\text{cm}^2$ for the hand painting technique; Pt loadings were $0.4 \text{ mg}/\text{cm}^2$ at the anode and $0.5 \text{ mg}/\text{cm}^2$ at the cathode. For direct MEA fabrication, the spraying technique was first reported by Huang [23], who also used a Sono-Tek "Exacta-coat" instrument

operating at a frequency of 48 kHz to coat a Pt/C electrocatalyst onto Nafion® 212 membrane. The Pt loading at the cathode was varied and compared to other direct fabrication methods. The minimum Pt loading at the cathode was lowered from $0.4 - 0.5 \text{ mg/cm}^2$ to $0.155 \text{ mg}_{\text{Pt}}/\text{cm}^2$ and was compared to $0.08 \text{ mg}_{\text{Pt}}/\text{cm}^2$, obtained from the dual ion beam technique. Similarly, Zheng et al. [24] used an identical protocol to coat carbon-supported Ru catalysts onto Nafion® 212 membrane as the cathode. The maximum power of 127 mW/cm^2 for the H₂-Air system was obtained for a Ru loading of $0.14 \text{ mg}_{\text{Ru}}/\text{cm}^2$. While the work of Huang [23] and Zheng [24] focused mainly on the effect of lower Pt and Ru loadings for fuel cell performance, their efforts provided only limited fundamental information of MEA using both physical and chemical characterization methods.

The above summary suggests that in order to improve MEA fabrication, particularly using the ultrasonic spraying method, fundamental information is still required for optimal deposition of the active electrocatalyst onto the electrolyte membrane. In this communication, we report the results of MEA characterization fabricated by ultrasonic spraying using both electron microscopy and selective chemisorption methods. This marks the first time chemisorption has been conducted on actual Pt/C-coated membranes and provides the ability to compare with Pt site densities determined from electrochemical surface area (ESA) measurements. TEM was used primarily to investigate the physical bond between the conductive layer and electrolyte membrane prepared using this fabrication technique.

2. Experimental

2.1. MEA fabrication

An ultrasonic spraying apparatus operating at 20 kHz was used for the fabrication of all MEAs in this work. Figure 1 shows a diagram of the ultrasonic spraying apparatus. The spraying nozzle was perpendicularly positioned above the membrane at a fixed distance of approximately 2 centimeters. Commercially-obtained 20 wt% Pt/C catalysts from Johnson Matthey was used as the electrochemical catalyst for all MEAs. The catalyst inks were prepared in batch by using different Nafion contents, where

Nafion solutions of 5%wt (DuPont) of 300, 400, 500 and 600 μL were used, as shown in the first column of Table 1. The Pt loading of MEAs was maintained at 0.3 mg/cm^2 and the coated area on the electrolyte membrane was 23 cm^2 (4.8 cm x 4.8 cm). At this Pt loading, approximately 34.5 mg of the 20 wt% Pt/C catalyst was used for each MEA. From this, the weight percent of Nafion per Pt/C was calculated and is shown in the last column of Table 1, where the density of 5%wt Nafion solution is 0.85 g/cm^3 . The catalyst inks for each percent weight of Nafion : Pt/C in Table 1 were made using 3 ml of tetrahydrofuran (THF) [AR grade, RCI Labscan Limited] and 1 ml of DI water as the solvent. The inks were dispersed in an ultrasonic bath for 25 minutes before coating. Nafion[®] XL from DuPont was used as the electrolyte membrane for all MEAs. The membranes were sprayed directly at 70°C to form the Catalyst Layer (CL). During spraying, the catalyst inks were fed into the ultrasonic nozzle at a rate of 0.3 ml/min using a motor-driven syringe pump (NE-300, New Era, Inc.). After spraying, the coated membrane was heated at 70°C at ambient pressure and air for 2 hours to evaporate the remaining solvent. The second side of the membrane was sprayed using the same ink composition and protocol. Thus, both sides of MEA should have similar compositions and properties.

2.2. Fuel cell performance

The non-hot-pressed MEA was placed into a single cell hardware using carbon cloth as the gas diffusion layer (GDL) having a one sided micro-porous layer (MPL) from CeTech (W1S1005). The single cell was assembled by tightening the bolts to 50 lb/in^2 and a fiberglass-silicone composite as the gasket. Cell temperature was maintained at 75°C and the relative humidity was about 95% at both anode and cathode. The back pressure of anode and cathode was ambient pressure (101.1 kPa absolute). The reactive gases were hydrogen and air for the anode and cathode, respectively. The stoichiometries of H_2 and Air were maintained at 1.2 and 3.0 times excess concentrations, which corresponding to the flow rate determined under current of 8.4 $\text{cm}^3/\text{min}/\text{amp}$ and 50.0 $\text{cm}^3/\text{min}/\text{amp}$ for H_2 and Air respectively. For open circuit voltage (OCV) measurements, the flow rate for H_2 was set at 50 cm^3/min , and that for air at 100 cm^3/min . An electronic load (890e, Scribner Associates, Inc.) was used to evaluate fuel cell

performance and to obtain the polarization curves. Before fuel cell tests, each MEA was conditioned by voltage oscillation from OCV to 0.6 V and then OCV to 0.45 V for two hours, retaining each potential for 30 seconds. Fuel cells were tested using the constant voltage mode; currents were measured at random, but constant, cell potentials. For each cell potential, the value was kept constant for 5 minutes before the current was recorded.

Cyclic voltammetry (CV) was applied to investigate the electrochemical reaction using the H₂ pump technique. The CV measurements were made while feeding humid N₂ to the cathode which functioned as the working electrode and humid H₂ to the anode that functioned as the counter/reference electrode. A Princeton Applied Research potentiostat/galvanostat model 263A was used to obtain CV measurements. The potential was examined from OCV to 1.14 V at a scan rate of 25 mV/sec and the current was recorded. The potential-current density profiles were recorded until reproducible profiles were obtained (typically after the second cycle).

2.3. Electron microscopy analysis

SEM images were taken using a model JEOL JSM-6335F operated at 15kV equipped with Energy Dispersive X-ray analysis (EDX). Cross-section images of the MEA were obtained and data for Pt, C, and F were recorded. The cross-sectioned samples were broken cleanly at liquid nitrogen conditions.

TEM images were taken using a JEOL JEM-2010 200 kV instrument equipped with Energy Dispersive X-ray analysis. An MEA was prepared using the Cryo-Microtome technique, where the temperature was reduced below the glass-transition temperature using liquid nitrogen. It was then cross-sectioned to give slices sufficiently thin to permit an electron beam to pass through the samples and gather images.

2.4. Chemisorption

Chemisorption of Nafion membranes coated on both sides with 20 wt% Pt/C was conducted by H₂ titration of O-precovered Pt using a Micromeritics AutoChem 2920 Automated Analyzer. The coated portion of the Nafion membrane was approximately 23 cm² (4.8 cm × 4.8 cm) on each side of the membrane for a total of 46 cm² surface. In order to fit into the 10 mm ID Pyrex chemisorption cell, the coated Nafion was cut (with 316 stainless steel scissors) into six strips that were approximately 8 mm in width × 5 cm in length and loaded into the tubular Pyrex chemisorption cell. Because the upper temperature limit for Nafion was ~130°C, the samples were pretreated at 75°C in flowing 10% H₂/balance Ar for 4 hrs before being cooled in flowing Ar to 40°C. The pretreatment temperature of 75°C in flowing 10% H₂ was sufficient to remove the passivation layer of O from the Pt surface for the samples that had been pre-reduced by Johnson-Matthey. Previous temperature programmed reduction studies of these samples showed facile reduction of the Pt-O surface passivation layer at 40°C. The sample was then exposed to flowing 10% O₂/balance He for 30 minutes before purging with flowing Ar for 30 minutes to remove residual gas phase O₂ from the chemisorption cell. The exposure to O₂ saturated the Pt surface sites to form Pt-O species. After the Ar purge, the sample was dosed with 0.518 cm³ of 10% H₂/balance Argon until all Pt-O surface sites had been reacted to form H₂O and Pt-H species. Following three doses of no further H₂ uptake, the chemisorption was ceased. A second H₂ titration was then conducted by repeating the sequence of flowing 10% O₂/balance He for 30 minutes, flowing Ar for 30 additional minutes, and then H₂ titration of the Pt-O surface. Hydrogen consumption was quantitatively determined by means of a high sensitivity, thermal conductivity detector downstream from the sample cell. By conversion of H₂ uptake in (STP) ml to µmoles H₂ and the stoichiometry factor of 1.0 surface Pt/1.5 H₂ molecules (3/2 H₂ + Pt-O → H₂O + Pt-H), the concentration of surface Pt sites was readily achieved. Finally, a similar (blank) chemisorption sequence was conducted to ensure that no H₂ titration occurred on a Nafion-coated, Nafion membrane. To determine the concentration of Pt surface sites on the 20 wt%

Pt/C before coating on the Nafion membrane, 0.049 g of a powdered sample was subjected to the same pretreatment as the Nafion-coated sample and the concentration of active Pt surface sites was determined.

3. Results and discussions

3.1. Nafion loading

The Nafion : Pt/C percent weights were determined for optimal Nafion content in the catalyst ink for high-frequency spraying technique at constant platinum loadings of $0.3 \text{ mg}_{\text{Pt}}/\text{cm}^2$. The polarization curves in Figure 2 demonstrate four samples using Nafion : Pt/C of 37.0%wt, 49.3%wt, 61.6%wt, and 73.9%wt. This shows that the performance of MEAs with Nafion : Pt/C at 49.3%wt and 61.6%wt yielded almost similar profiles. The Nafion : Pt/C of 37.0%wt and 73.9%wt provide lower and the lowest performance, respectively.

From the above plots, constant cell voltages of 0.80, 0.65, and 0.50 Volt were selected for a plot of current density as a function of percent weight Nafion : Pt/C. The curves in Figure 3 indicate that the current density of all Nafion contents do not change significantly at a cell potential of 0.80 V, which represents the kinetic region. In the ohmic region (cell potential of 0.65 V), the current density of Nafion : Pt/C of 61.6%wt yields the highest current density of about 760 mA/cm^2 . In the mass transport region (cell potential of 0.50 V), the maximum current density is about 1420 mA/cm^2 for a Nafion : Pt/C of 49.3%wt. These results indicate the overall best performance for Nafion : Pt/C between 49.3%wt and 61.6%wt. This result agrees with Millington et al. [22], who also used an ultrasonic spraying technique and found that a Nafion : Pt/C catalyst with weight ratio of 50% gave the highest current density. Compared to other methods of coating, Nafion : Pt/C ranging from 43 – 53 wt% for the painting [25,26] and high pressure spraying techniques [27] have been reported to give good performance.

The broad maxima in Figure 3 show that current density increases until the Nafion content reaches an optimal range of 50 – 62 %wt Nafion : Pt/C, indicating the importance of Nafion as an ion conductor to improve ion transportation in the CCL. At higher Nafion contents (i.e., 73.9%wt Nafion :

Pt/C), the current density decreases because the additional Nafion restricts access of Pt surface sites to reactant gases and hydrophilic Nafion likely entraps water in the CCL. Therefore, the Nafion content is one of the key factors that control fuel cell performance.

3.2. SEM and TEM images

An MEA with 49.3 wt% Nafion : Pt/C was analyzed by electron microscopy to examine the interface between the CCL and electrolyte membrane of the MEA. Figure 4(a) shows a cross section of MEA with a CCL thickness of approximately 15 μm on both sides of the electrolytic membrane. And the electrolytic membrane (i.e., Nafion XL from DuPont) has three layers, where the middle layer is the mechanical reinforcement with enhanced chemical stability, enabling improved membrane durability. The higher magnification shown in Figure 4(b) shows the CCL is highly porous because the Pt-supported carbon particles were highly and uniformly dispersed during high frequency spraying by the atomizer; this fabrication method built the CCL in a “layer by layer” methodology until the Pt loading reached 0.3 mg/cm^2 . It is inferred that this fabrication technique enhances the diffusion of reactant gases (i.e. H_2 and O_2) to the Pt surface sites. Further, the pores should facilitate the transportation of the reaction product (water) out of the CCL to the GDL, which would alleviate electrode flooding at higher current densities.

Transmission electron microscopy was also used to analyze the interface between the CCL and electrolyte membrane in a more detailed manner, as shown in Figure 5. The images show the strong attachment between the electrolyte membrane and CCL as shown in Figures 5(a,b). These images also show that the carbon-supported Pt particles (dark spots on the carbon support) are located in the CCL (upper portions of Figure 5(a,b)). At the higher magnification in Figure 5(b), the Ionomer Layer Film (ILF) is observed with a thickness of 100 - 200 nm. The ILF not only binds the CCL and electrolyte membrane, but also facilitates transfer of H^+ ions from the reaction zone to electrolyte membrane. Figure 5(b) also indicates that some of Pt/C catalyst particles are encapsulated in the ILF and are thus not able to

catalyze either the reduction or oxidation reaction. This blockage of Pt particles by the ionomer layer represents an activity loss mechanism of PEM fuel cells.

The high resolution TEM image in figure 5(c) shows the CCL of the membrane assembly. This image looks much like those of conventional Pt/C catalyst particles from previous work [28]. It is difficult to distinguish the ionomer in the CCL because of its transparent property to the electron beam of TEM. Thus, the EDX mode of analysis in Figure 6 was used during the SEM investigation to characterize the CCL images. Platinum, carbon, and fluorine (which represented the Nafion ionomer) were quantitatively analyzed and the results are shown in Table 2, where the first column is the observed element (i.e., carbon, fluorine, and platinum), the second column is the weight percentage of all observed elements, and the third column is the weight percentage of carbon and platinum only. The fluorine content was 26.6 wt% and was larger than that for platinum (12.5 wt%), which implies that the Nafion ionomer was spread throughout the CCL to assist transportation of H^+ ions at the Pt reaction sites to the electrolyte membrane. However, it also means that ionomers can cover and block platinum sites, preventing access to both H_2 and O_2 at the anode and cathode, respectively, to lower fuel cell performance. Therefore, the proper amounts of ionomers (Nafion) must be considered; in this work approximately 49 - 62 wt% Nafion : Pt/C gives the maximum power density. Finally, the EDX analysis in column 3 shows that the composition of carbon and platinum only are 83.0 wt% and 17.0 wt%, respectively, which agrees closely with the composition of the commercial 20 wt% Pt/C used in this work.

3.3. Chemisorption analysis

Pulse chemisorption spectra from H_2 uptake on a coated Nafion membrane, 20 wt% Pt/C powder, and an MEA (49.3 wt% Nafion: Pt/C), both before and after use, are shown in Figure 7. The spectrum for the Nafion membrane coated with 400 μ L of 5% Nafion in Figure 7(a) shows no H_2 adsorption since even the first H_2 pulse exhibits the same height and peak area as all successive pulses. Conversely, the first seven H_2 pulses for the 20 wt% Pt/C (Figure 7(b)) were completely adsorbed before any H_2 was detected;

the first five H₂ pulses for the fresh MEA assembly (Figure 7(c) and used MEA assembly (Figure 7(d)) were completely adsorbed before H₂ was detected. The chemisorption of H₂ on Pt is considered complete when three consecutive H₂ pulses show no change in peak area. The cumulative volumes of H₂ uptake were quantified and converted to millimoles H₂ per gram of Pt as shown in third column of Table 3, where the standard deviation is calculated from 2 different analyses. For the 20 wt% Pt/C catalyst, the H₂ uptake is 1.98 millimole per gram of Pt from which a dispersion value (number of surface Pt atoms/total number of Pt atoms) was calculated to be 25.8%, corresponding to an average Pt particle diameter of 4.4 nm (assuming either hemispherical or spherical geometry).

Determination of the number of Pt surface sites per gram Pt is also shown in Table 3; these calculations require no assumption regarding Pt particle shapes or particle size distributions. The average concentration of Pt surface sites for catalyst particles is approximately 8.0×10^{20} sites per gram of Pt, while the concentration of accessible Pt sites for the fresh MEA is 3.8×10^{20} sites per gram of Pt, which means that 52% of potential Pt surface sites were lost when the Pt/C catalyst was fabricated onto the Nafion membrane. To the best of our knowledge, this marks the first time Pt surface sites in fabricated MEAs have been measured by chemisorption methods. The concentration of Pt surface sites after approximately 4 h of use is very similar to the concentration of Pt sites for the fresh sample, indicating that neither sintering of Pt particles nor poisoning by irreversible oxidation has occurred during this time period. Because of the inherent accuracy of chemisorption relative to other methods of measuring surface Pt site concentrations [28], the application of chemisorption for Pt-based fuel cells marks a significant improvement in helping to analyze the performance of such fuel cells. Intuitively, the loss of Pt surface sites is primarily due to the coverage of Pt by ionomer, which is consistent with the TEM micrographs in Figure 5. It is also obvious that further improvements and modifications are needed to minimize loss of Pt surface sites in the fabrication of MEAs. Minimization of the loss of Pt surface sites during MEA fabrication is just as important as ongoing studies to reduce Pt particle sizes in newer generation PEM fuel cells. The chemisorption process detailed in this study is an excellent analytical tool for these efforts.

Moreover, chemisorption analysis is advantageous for the measurement of active Pt sites for MEAs that are not fabricated from carbon-supported Pt catalysts, such as those resulting from ion beam, sputtering, or chemical vapor deposition methods.

3.4. Electrochemical surface area (ESA)

An MEA with 49.3 wt% Nafion : Pt/C catalyst was tested using cyclic voltammetry to measure the number of Pt surface sites from the electrochemical reaction. The cycling voltage ranged from open circuit voltage to 1.14 V (SHE), as shown in Figure 8. The adsorption and desorption of H^+ are calculated from potentials between 0.0 and 0.25 V for negative and positive current density, respectively [28,29]. The coulombic charges of H_2 adsorption (i.e. reduction reaction) increase as the upper potential increases [28]. Thus, desorption profiles (i.e. oxidation reaction) were used to evaluate Pt surface sites. Note that there are two partial peaks observed in the oxidation region at approximately 0.04 V and 0.12 V due to different Pt surface orientations as described in previous work [28].

The coulombic charge of positive current density was obtained by integrating current density with respect to cell potential from 0.0 V to 0.25 V. The double layer of positive current density (Figure 8) was also integrated with respect to the potential from 0.0 V to 0.25 V. The area under this profile is the coulombic charge of the double layer. After subtraction of charge associated with the double layer, the charge of the desorption profile was approximately 0.183 coulomb, as indicated in Table 4. The mole ratio of H coulombic charge to H_2 was 2 : 1 for a two electron transfer ($2H^+ + 2e \rightarrow H_2$). The number of Pt surface sites from cyclic voltammetry was then calculated by assuming one H^+ per Pt surface site to give 1.6×10^{20} Pt surface sites per gram of Pt. The standard deviation values were calculated from 5 CV cycles of the MEA.

The Pt surface site concentration calculated from ESA is only 42% as large as the value of 3.8×10^{20} Pt sites g_{Pt}^{-1} determined from H_2 chemisorption. In fact, 80% of the potential Pt surface sites are lost when compared to the Pt surface site concentration for the 20 wt% Pt/C powder. However, H_2

chemisorption is a gas phase measurement done at dry conditions, where there are no complications from H_2O vapor. For the electrochemical reaction, the CV technique was conducted in a humid condition, likely resulting in condensation of vapor water in porous regions of the catalyst-coated layer (Kelvin condensation) which blocked access of H_2 to the Pt surface. In addition to potential water condensation, poor charge transfer in the CCL due to insufficient ionomer linkage between the Pt surface and the Nafion membrane can further limit the electrochemical reaction. Thus, the CV results are basically an implied measurement of Pt surface sites, depending on the extents of both charge transfer limitations and water condensation in the pores of the CCL. Therefore, Pt surface site concentrations of an MEA examined by CV are expected to be lower than those determined by H_2 chemisorption. In summary, electrochemical Pt catalysts lose active sites when they are fabricated as MEAs due to both coverage of the Pt surface by ionomer and the humid conditions and charge transfer limitations during operation of the MEA. In this study, 52% of the active Pt surface is lost by coverage with the ionomer and an additional 28% of the active Pt surface (80% - 52%) is lost due to conditions of fuel cell operation. Both of these Pt site loss mechanisms represent important areas of research for improvement of fuel cell operation. The combination of H_2 chemisorption and cyclic voltammetry have been identified and separated for these two mechanisms of activity loss. Future studies should address both issues, and H_2 chemisorption should be an integral component of these efforts.

4. Conclusions

Membrane electrode assemblies were fabricated directly onto an electrolyte membrane using a high frequency spraying technique developed in our laboratories. Fuel cell performance was dependent on Nafion content; maximum current densities at the ohmic and mass transport regions were found for compositions between 50 and 62 wt% of Nafion per Pt/C catalyst. Physical properties were also analyzed using electron microscopy to image cross sections of the MEA. From SEM analysis, the thickness of CCL was about 15 μm for both anode and cathode. The CCL was fabricated layer by layer, which generated pores for facilitating reactant gas (i.e. hydrogen and oxygen) diffusion. These pores also

improve water transport in the CCL and reduce cell flooding at higher current densities. From TEM analysis, the ionomer film layer between the CCL and electrolyte membrane was clearly observed. This supports the importance of Nafion content for H⁺ transport in the reaction zone. However, higher Nafion loadings per Pt/C catalyst lowered fuel cell performance due to coverage of the Pt sites by Nafion. Platinum activities were quantified in term of site concentrations using H₂ chemisorption and cyclic voltammetry. At dry gas phase conditions, approximately 52% of the Pt surface sites in the MEA were lost due to coverage by the ionomer. For the electrochemical reaction (by cyclic voltammetry), an additional 28% loss of Pt surface sites occurred due to pore blockage by condensed water and the isolation of Pt to electronic and ionic conduction. Thus, in total 80% of the Pt sites present in the 20 wt% Pt/C electrocatalyst were lost during fabrication and operation of the membrane electrode assembly. Minimization of the loss of Pt surface sites by these two mechanisms is just as important as ongoing studies to reduce Pt particle sizes in newer generation PEM fuel cells. The chemisorption process detailed in this study is an excellent analytical tool for these efforts.

Acknowledgement

The authors would like to acknowledge the financial support from the Thailand Research Fund (TRF) (Project MGR5580194), and the Research, Development and Engineering (RD&E) Fund through National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand (Project P-10-11377). The authors also would like to thank Prof. John W. Weidner and Dr. Visarn Lilavivat from Department of Chemical Engineering, University of South Carolina for their help with the electrochemical analysis.

References

- [1] Mehta V, Cooper JS. Review and analysis of PEM fuel cell design and manufacturing. *J Power Sources* 2003;114:32–53.
- [2] Litster S, McLean G. PEM fuel cell electrodes. *J Power Sources* 2004;130:61–76.
- [3] Tawfik H, Hung Y, Mahajan D. Metal bipolar plates for PEM fuel cell - A review. *J Power Sources* 2007;163:755–67.
- [4] Shao YY, Yin GP, Wang ZB, Gao YZ. Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges. *J Power Sources* 2007;167:235–42.
- [5] Wee JH. Applications of proton exchange membrane fuel cell systems. *Renew Sust Energ Rev* 2007;11:1720–38.
- [6] Hamrock SJ, Yandrasits MA. Proton exchange membranes for fuel cell applications. *Polym Rev* 2006;46:219–44.
- [7] Erdinc O, Uzunoglu M. Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches. *Renew Sust Energ Rev* n.d.;14:2874–84.
- [8] X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao, Yu J. Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells. *J Power Sources* 1999;79:75–81.
- [9] Y.-G. Chun, C.-S. Kim, D.-H. Peck, D.-R. Shin. Performance of a polymer electrolyte membrane fuel cells at ultra-low platinum loading. *J Power Sources* 1998;71:174–8.
- [10] A. Lindermeir, G. Rosenthal, U. Kunz, U. Hoffmann. On the question of MEA preparation for DMFCs. *J Power Sources* 2004;129:180–7.
- [11] Liu C-Y, Sung C-C. A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies. *Journal of Power Sources* 2012;220:348–53.
- [12] S. Gottesfeld, M. Wilson. Hign performance catalyzed membrane of ultra-low Pt loading for polymer electrolyte fuel cells. *J Electrochem Soc* 1992;139:L28–30.

[13] S. Gottesfeld, T. Zawodzinski. Polymer electrolyte fuel cells. *Adv Electrochem Sci Eng* 1997;5:195–301.

[14] Gottesfeld S, Wilson M. Thin film catalyst layers for polymer electrolyte fuel cell electrodes. *J Appl Electrochem* 1992;22:1.

[15] GÜLZOW E, SCHULZE M, WAGNER N, KAZ T, REISSNER R, STEINHILBER G, et al. Dry layer preparation and characterization of polymer electrolyte fuel cell components. *Journal of Power Sources* 2000;86:352–62.

[16] Th. Frey, M. Linardi. Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance. *Electrochim Acta* 2004;50:99–105.

[17] Kim H, Subramanian NP, Popov BN. Preparation of PEM fuel cell electrodes using pulse electrodeposition. *Journal of Power Sources* 2004;138:14–24.

[18] Wei ZD, Chan SH, Li LL, Cai HF, Xia ZT, Sun CX. Electrodepositing Pt on a Nafion-bonded carbon electrode as a catalyzed electrode for oxygen reduction reaction. *Electrochimica Acta* 2005;50:2279–87.

[19] Xiong L, Manthiram A. High performance membrane-electrode assemblies with ultra-low Pt loading for proton exchange membrane fuel cells. *Electrochimica Acta* 2005;50:3200–4.

[20] O’Hayre R, Lee S-J, Cha S-W, Prinz FB. A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading. *Journal of Power Sources* 2002;109:483–93.

[21] Tang Z, Poh CK, Chin KC, Chua DHC, Lin J, Wee ATS. Cobalt coated electrodes for high efficiency PEM fuel cells by plasma sputtering deposition. *Journal of Applied Electrochemistry* 2009;39:1821–6.

[22] B. Millington, V. Whipple, Pollet BG. A novel method for preparing proton exchange membrane fuel cell electrodes by the ultrasonic-spray technique. *J Power Sources* 2011;196:8500–8.

[23] T.-H. Huang, H.-L. Shen, T.-C. Jao, F.-B. Weng, Su A. Ultra-low Pt loading for proton exchange membrane fuel cell by catalyst coating technique with ultrasonic spray coating machine. *Int J Hydrogen Energ* 2012;in press:doi:10.1016/j.ijhydene.2012.04.108.

[24] Zheng Q, Cheng X, Jao T-C, Weng F-B, Su A, Chiang Y-C. Fuel cell performances at optimized Nafion and Ru85/Se15 loadings in cathode catalyst layer. *Journal of Power Sources* 2012;201:151–8.

[25] Z. Qi, Kaufman A. Low Pt loading high performance cathodes for PEM fuel cells. *J Power Sources* 2003;113.

[26] S. Gamburzev, Appleby AJ. Recent progress in performance improvement of the proton exchange membrane fuel cell. *J Power Sources* 2002;107:5–12.

[27] E. Passalacqua, F. Lufrano, G. Squadrato, A. Patti, Giorgi L. Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. *Electrochim Acta* 2001;46:799–805.

[28] K. Punyawudho, D. A. Blom, J. W. Van Zee, Monnier JR. Comparison of different methods for determination of Pt surface site concentrations for supported Pt electrocatalysts. *Electrochim Acta* 2010;55:5349–56.

[29] Marković NM, Grgur BN, Ross PN. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. *Journal of Physical Chemistry B* 1997;101:5405–13.

List of tables

Table 1. The volumes of 5% wt of Nafion solutions were added to catalyst inks, and the amount of 20 wt% Pt/C catalysts was kept constant at 34.5 mg (Pt loading of 0.3 mg/cm², and reactive area of 23 cm²). The density of 5%wt Nafion solution is 0.85 g/cm³; thus, the percentage of Nafion : Pt/C catalyst was calculated as weight ratio.

Table 2. Mass fraction analysis of C, F, and Pt from the EDX analysis shown in Figure 6.

Table 3. Summary of chemisorption data. No chemisorption activity observed for Nafion-coated Nafion membrane. For the 20 wt% Pt/C powdered catalyst, average Pt particle size is calculated to be 4.4 nm diameter to give a Pt dispersion of 25.8%. Dispersion is defined as the fraction of total Pt atoms in a particle that are present on the surface. Coated membrane was analyzed by chemisorption before (fresh) and after electrochemical surface area determined (used).

Table 4. Summary of Electrochemical Surface Area (ESA) for an MEA of 49.3 wt% of Nafion : Pt/C by cyclic voltammetry using a scanning rate of 25 mV/sec. The mass of Pt was approximately 6.9 mg (0.3 mg_{Pt}/cm² for 23 cm² surface area for both anode and cathode); the Pt charge per surface area Pt = 2.1 C/m².

List of figures

Figure 1. Schematic of ultrasonic spraying system used to fabricate MEAs in this study.

Figure 2. Polarization curves of four MEAs with percentages of Nafion : Pt/C catalyst at 37.0% (+) , 49.3% (□), 61.6% (○) , and 73.9% (Δ). The cell temperature was 75 °C, the humidity was 95%RH at both anode and cathode, the stoichiometric ratio of H₂/air was set at 1.2/3.0, and back pressure was ambient pressure at both anode and cathode.

Figure 3. Current density versus Nafion : Pt/C catalyst ratio at cell potential of 0.50, 0.65, and 0.80 V (from Figure 2).

Figure 4. Cross sectional SEM images of MEA with 49.3% of Nafion : Pt/C; (a) CCL/electrolyte membrane/CCL at a magnification of 1,000 times, and (b) CCL/Electrolyte membrane interface at a magnification of 25,000 times.

Figure 5. The TEM image of MEA (49.3% of Nafion : Pt/C) at the interface between CCL and electrolyte membrane (a) at a magnification of 4,000 and (b) magnification of 20,000. Figure 5(c) shows the catalyst-coated layer of the MEA at a magnification of 100,000. The black Pt particles are clearly visible in (c).

Figure 6. Electron Diffraction X-Ray analysis (EDX) of a cross section of the MEA (49.3% of Nafion : Pt/C). Platinum, carbon, and fluorine (from Nafion) peaks from the highlighted portion of the SEM image are shown in the EDX spectrum.

Figure 7. Chemisorption spectra of (a) electrolyte membrane coated with 400 μL of 5% Nafion, (b) powdered 20%wt Pt/C catalyst, (c) 49.3 wt% Nafion : Pt/C, fresh MEA , and (d) 49.3 wt% Nafion : Pt/C, used MEA.

Figure 8. Cyclic voltammetry of MEA (49.3% Nafion : Pt/C) with surface area of 23 cm² scanned from open circuit voltage (OCV) to 1.14 V with scanning rate of 25 mV/sec, cell temperature of 75 °C, H₂/N₂ (A/C) at 300/300 sccm, ambient pressure, and 95% RH both anode and cathode.

Table 1. The volumes of 5% wt of Nafion solutions were added to catalyst inks, and the amount of 20 wt% Pt/C catalysts was kept constant at 34.5 mg (Pt loading of 0.3 mg/cm², and reactive area of 23 cm²). The density of 5%wt Nafion solution is 0.85 g/cm³; thus, the percentage of Nafion : Pt/C catalyst was calculated.

Nafion solution 5% wt added in catalyst inks (μ L)	Dry Nafion weight (mg)	Pt/C catalyst weight (mg)	Percent weight of Nafion per Pt/C (%)
300	12.7	34.5	37.0%
400	17.0	34.5	49.3%
500	21.2	34.5	61.6%
600	25.5	34.5	73.9%

Table 2. Mass fraction analysis of C, F, and Pt from the EDX analysis shown in Figure 6.

Element	Weight %	C, Pt Weight %
C	60.9	83.07
F	26.6	-
Pt	12.5	17.0

Table 3. Summary of chemisorption data. No chemisorption activity observed for Nafion-coated Nafion membrane. For the 20 wt% Pt/C powdered catalyst, average Pt particle size is calculated to be 4.4 nm diameter to give a Pt dispersion of 25.8%. Dispersion is defined as the fraction of total Pt atoms in a particle that are present on the surface. Coated membrane was analyzed by chemisorption before (fresh) and after electrochemical surface area determined (used).

Samples	Pt weight in samples (mg)	H ₂ uptake (millimoles/g _{Pt})		No. of Pt surface sites/g _{Pt}	
		Average	Standard Dev.	Average	Standard Dev.
Blank membrane	0.0	0.0	0.0	0.0	0.0
Catalyst particles (20 wt% Pt/C)	9.9	1.98	± 0.01	8.0 × 10 ²⁰	± 2.8 × 10 ¹⁸
Coated membrane, fresh (49.3 wt% Nafion : Pt/C)	13.8	0.96	± 0.05	3.8 × 10 ²⁰	± 1.8 × 10 ¹⁹
Coated membrane, used (49.3 wt% Nafion : Pt/C)	13.8	0.99	± 0.05	3.9 × 10 ²⁰	± 1.8 × 10 ¹⁹

Table 4. Summary of Electrochemical Surface Area (ESA) for an MEA of 49.3 wt% of Nafion : Pt/C by cyclic voltammetry using a scanning rate of 25 mV/sec. The mass of Pt was approximately 6.9 mg (0.3 mg_{Pt}/cm² for 23 cm² surface area for both anode and cathode); the Pt charge per surface area Pt = 2.1 C/m².

Description	Electric charge (Coulomb)		Pt surface area (m ² /g _{Pt})		No. of Pt surface sites/g _{Pt}	
	Average	Standard Dev.	Average	Standard Dev.	Average	Standard Dev.
Electrochemical Surface Area (ESA)	0.183	$\pm 1.10 \times 10^{-3}$	12.63	± 0.08	1.6×10^{20}	$\pm 9.5 \times 10^{17}$

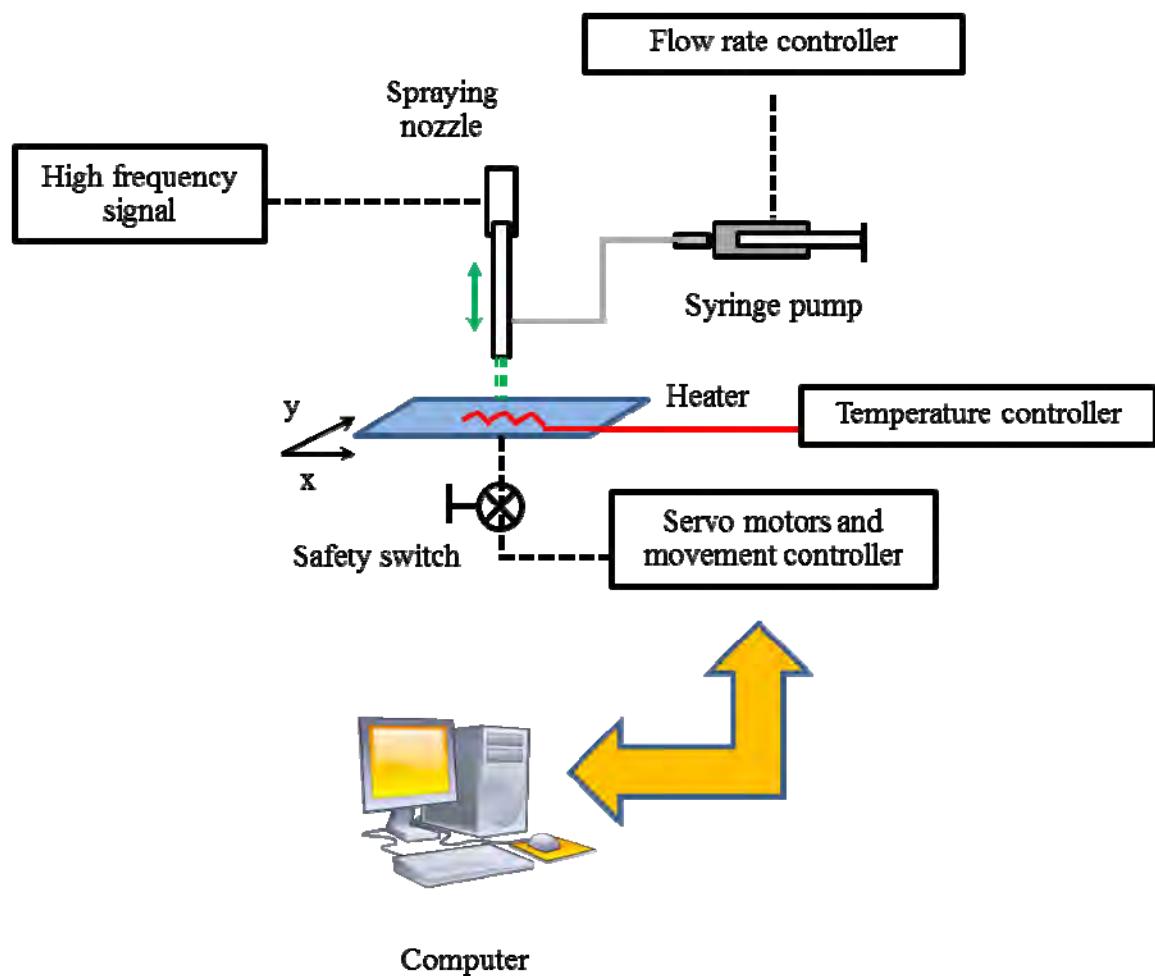


Figure 1. Schematic of ultrasonic spraying system used to fabricate MEAs in this study.

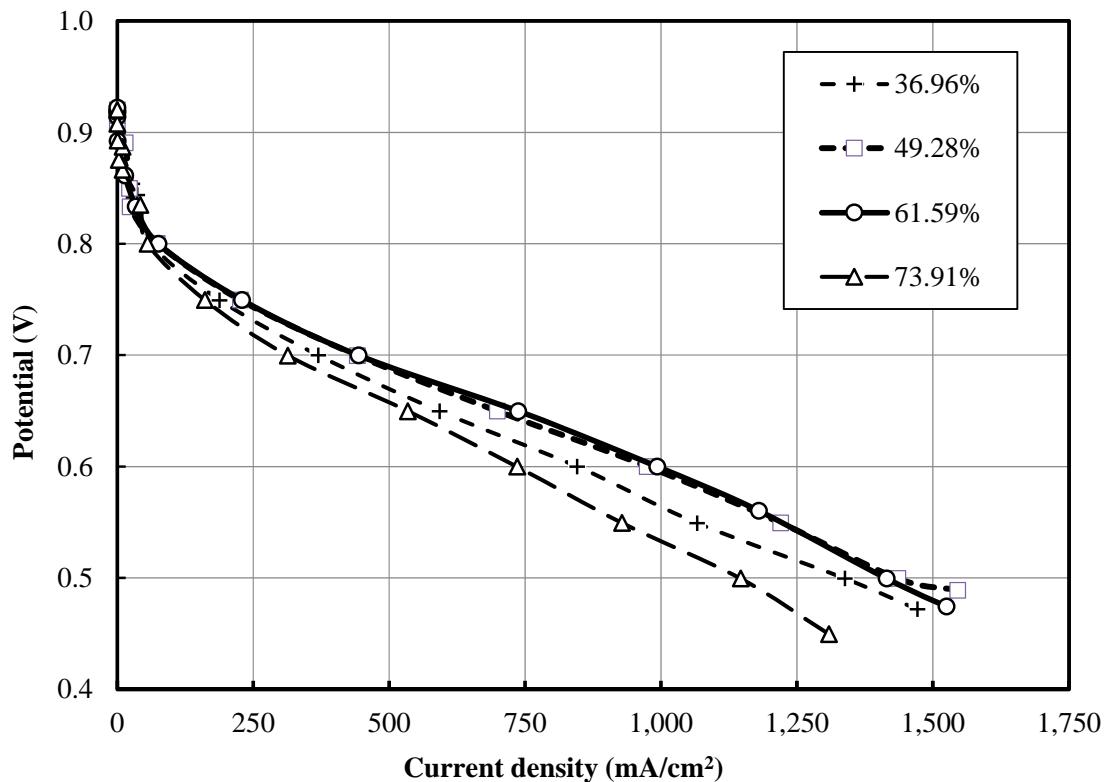


Figure 2. Polarization curves of four MEAs with percentages of Nafion : Pt/C catalyst at 37.0% (+), 49.3% (□), 61.6% (○), and 73.9% (△). The cell temperature was 75 °C, the humidity was 95%RH at both anode and cathode, the stoichiometric ratio of H₂/air was set at 1.2/3.0, and back pressure was ambient pressure at both anode and cathode.

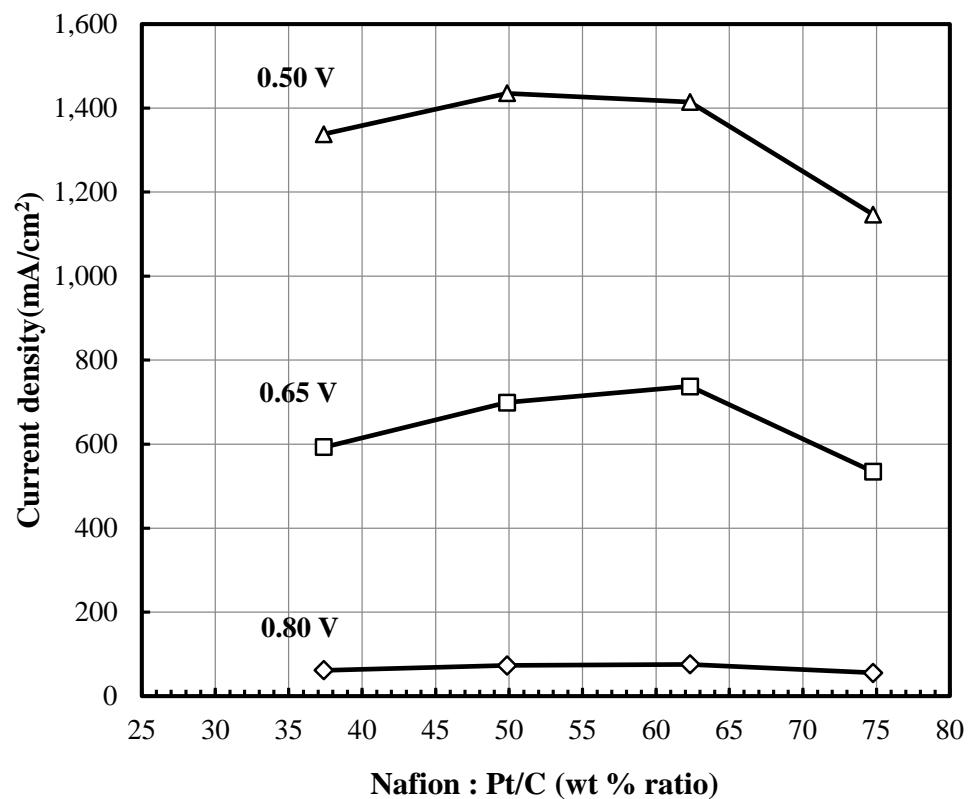


Figure 3. Current density versus Nafion : Pt/C catalyst ratio at cell potential of 0.50, 0.65, and 0.80 V (from Figure 2).

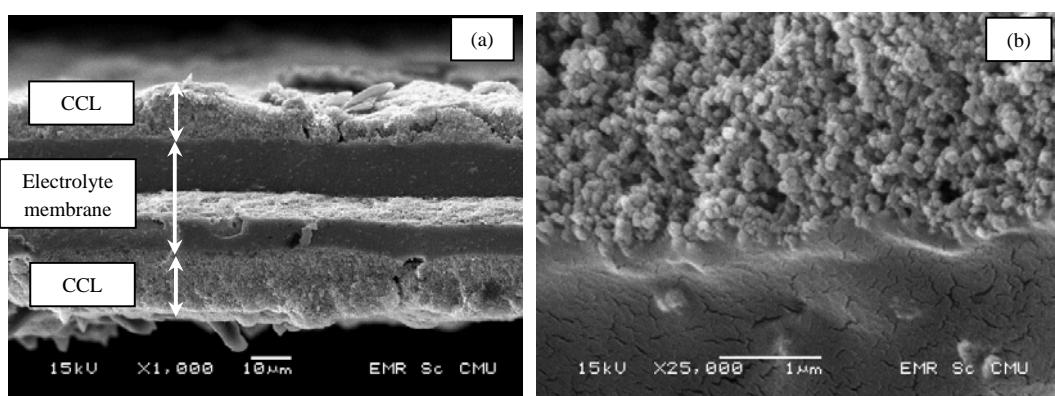


Figure 4. Cross sectional SEM images of MEA with 49.3% of Nafion : Pt/C; (a) CCL/electrolyte membrane/CCL at a magnification of 1,000 times, and (b) CCL/Electrolyte membrane interface at a magnification of 25,000 times.

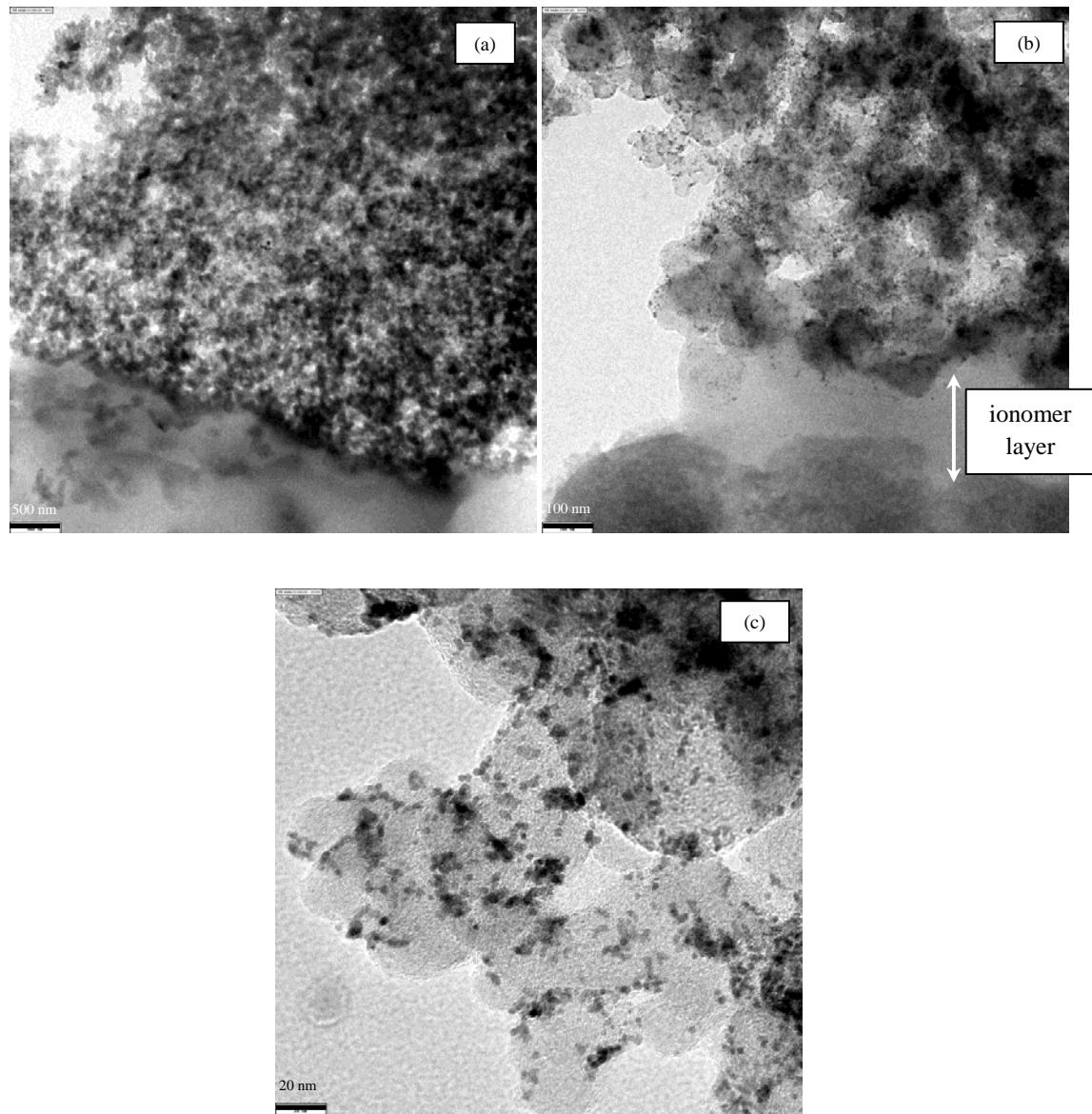


Figure 5. The TEM image of MEA (49.3% of Nafion : Pt/C) at the interface between CCL and electrolyte membrane (a) at a magnification of 4,000 and (b) magnification of 20,000. Figure 5(c) shows the catalyst-coated layer of the MEA at a magnification of 100,000. The black Pt particles are clearly visible in (c).

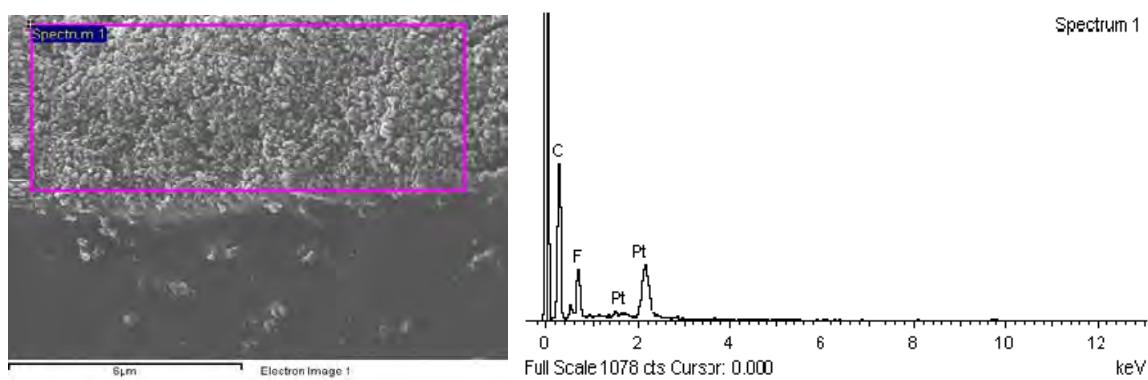


Figure 6. Electron Diffraction X-Ray analysis (EDX) of a cross section of the MEA (49.3% of Nafion : Pt/C). Platinum, carbon, and fluorine (from Nafion) peaks from the highlighted portion of the SEM image are shown in the EDX spectrum.

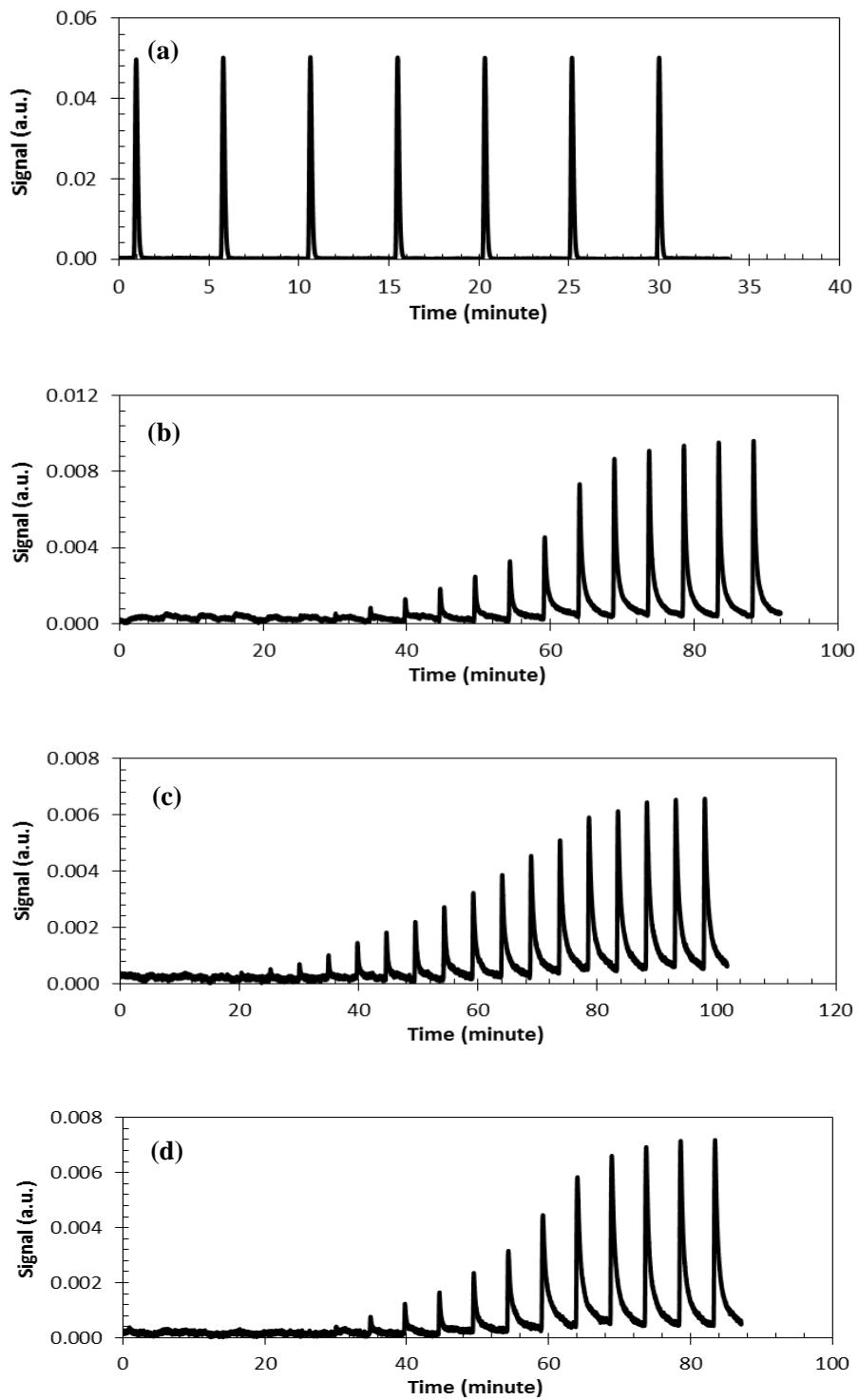


Figure 7. Chemisorption spectra of (a) electrolyte membrane coated with 400 μ L of 5% Nafion, (b) powdered 20%wt Pt/C catalyst, (c) 49.3 wt% Nafion : Pt/C, fresh MEA , and (d) 49.3 wt% Nafion : Pt/C, used MEA.

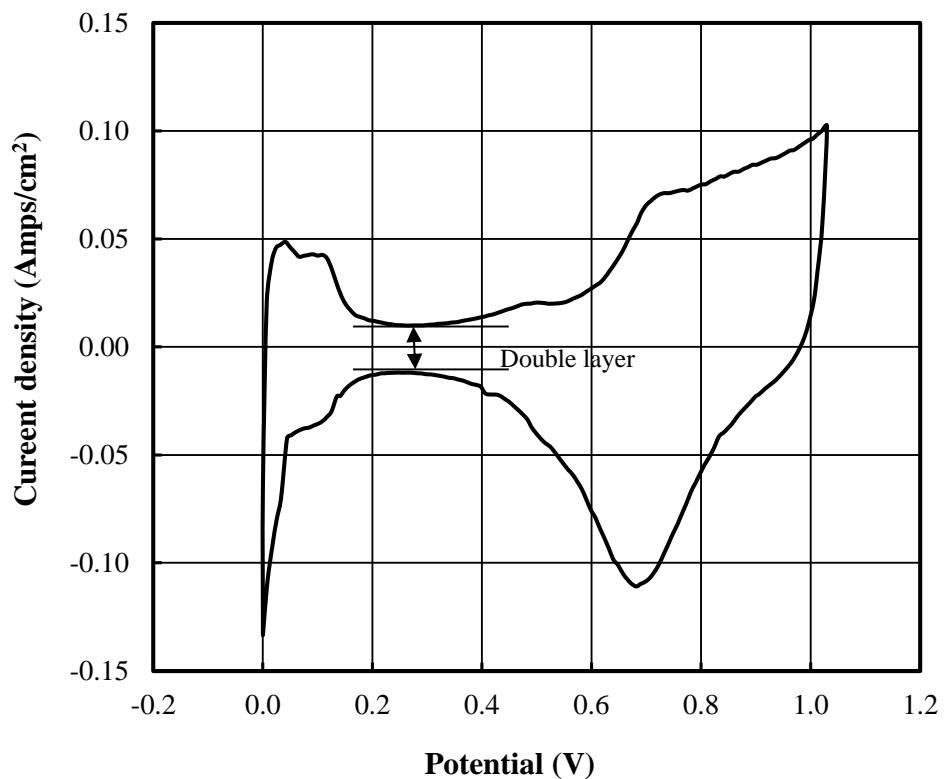


Figure 8. Cyclic voltammetry of MEA (49.3% Nafion : Pt/C) with surface area of 23 cm² scanned from open circuit voltage (OCV) to 1.14 V with scanning rate of 25 mV/sec, cell temperature of 75 °C, H₂/N₂ (A/C) at 300/300 sccm, ambient pressure, and 95% RH both anode and cathode.