เอกสารแนบหมายเลข 2

รูปแบบ Abstract (บทคัดย่อ)

รหัสโครงการ: MRG5580195

Project Title: The phosphorus solubilizing PGPR, Bacillus subtilis strain CaSUT007 and its role on cassava growth promotion and induced resistance against cassava leaf blight disease (ชื่อโครงการ) การใช้เชื้อจุลินทรีย์ Bacillus subtilis สายพันธุ์ CaSUT007 ที่มีคุณสมบัติ phosphorus solubilizing ในการกระตุ้นการเจริญเติบโตและชักนำความต้านทานต่อโรคใบไหม้มันสำปะหลัง

ชื่อหักวิจัย: ผศ. ดร. ณัฐธิญา เบือนสันเทียะ มหาวิทยาลัยเทคโนโลยีสุรนารี

E-mail Address: natthiya@sut.ac.th

ระยะเวลาโครงการ: 2 ปี

บทคัดย่อ

การทดลองนี้มีวัตถุประสงค์เพื่อใช้เชื้อจุลินทรีย์ Bacillus subtilis สายพันธุ์ CaSUT007 ที่มีคุณสมบัติ phosphorus solubilizing ในการกระตุ้นการเจริญเติบโตและชักนำความต้านทานต่อโรคใบไหม้มันสำปะหลัง จากคัดเลือกจุลินทรีย์ที่มีประสิทธิภาพละลายหินฟอสเฟต และยับยั้งการเจริญของเชื้อแบคทีเรีย X. axonopodis pv. manihotis สาเหตุโรคใบไหม้มันสำปะหลัง พบว่าเชื้อไอโซเลต CaSUT007 มีบริเวณยับยั้ง เชื้อสาเหตุโรคเท่ากับ 8.0±0.058 มม. และประสิทธิภาพการละลายฟอสเฟตเฉลี่ยสูงสุด 209.91 ไมโครกรัมต่อ มล. และเมื่อทดสอบประสิทธิภาพการควบคุมโรคใบไหม้ของมันสำปะหลังในสภาพเรือนทดลองในมัน สำปะหลังพันธุ์ระยอง 72 วางแผนการทดลองแบบ randomized complete block design (RCBD) พบว่า การ แช่ท่อนพันธุ์หรือฉีดพ่นเชื้อไอโซเลต CaSUT007 สามารถควบคุมโรคใบไหม้ของมันสำปะหลังได้อย่างมี ประสิทธิภาพ โดยโดยมีระดับความรุนแรงของโรคใบไหม้มันสำปะหลัง เท่ากับ 1 เทียบเท่ากับการใช้สารเคมี คอปเปอร์ใฮดรอกไซด์ จากนั้นเก็บตัวอย่างเพื่อศึกษาเกี่ยวกับกลไกความต้านทาน พบว่ามีการสะสมของสาร ในกระบวนการชีวเคมีที่เกี่ยวข้องกับกลไกการส่งเสริมการเจริญเติบโตโดยใช้เทคนิค FTIR microspectroscopy พบกลุ่มไขมันชนิด C-H stretching (~3,000- 2,800 cm⁻¹) กลุ่มไขมันชนิด C=O ester (~1,740 cm⁻¹) และกลุ่ม amide I (~1,700- 1,600 cm⁻¹) กลุ่มคาร์โบไฮเดรตชนิด C-H bonding, C-O stretching และ polysaccharide (~1,450-1350 cm⁻¹, ~1,246 cm⁻¹ และ ~1,200-900 cm⁻¹) เพิ่มสูงขึ้น ซึ่ง สารเหล่านี้มีความสำคัญในการส่งสัญญาณการทำงานของเอนไซม์ ทั้งยังช่วยให้ผนังเซลล์พืชมีความแข็งแรง เพื่อปกป้องตนเองให้ต้านทานจากการเข้าทำลายของเชื้อสาเหตุโรคพืช จากผลการศึกษาครั้งแสดงให้เห็นว่า การใช้เชื้อไอโซเลต CaSUT007 สามารถช่วยส่งเสริมการเจริญเติบโต และกระตุ้นให้มันสำปะหลังต้านทานโรค ใบไหม้ที่เกิดจากเชื้อแบคทีเรีย X. axonopodis pv. manihotis ได้

คำหลัก : มันสำปะหลัง, *Bacillus subtilis*, การเจริญเติบโต, FTIR – microspectroscopy, caโรคใบไหม้มัน สำปะหลัง

Abstract

The objective of this study was to investigate the phosphorus solubilizing PGPR, Bacillus subtilis strain CaSUT007 and its role on growth promotion and induced resistance against leaf blight disease in cassava. Therefore, this rhizobacteria was isolated and screened for antagonistic bacteria (BCA) that has high inhibiting activity to X. axonopodis pv. manihotis, the causal agent cassava bacterial leaf blight disease and then screen for phosphate solubilizing bacteria (PSB) that high phosphate solubilizing activity, and then determine for the effects of rhizobacteria on the bacterial leaf blight disease control and its mode of action under the green house condition. The results showed that 12 isolates were obtained. Among of there, isolates CaSUT007 exhibited high antagonistic activity of X. axonopodis pv. manihotis at 8.0±0.058 mm and showed high phosphate solubilizing activity at concentration from 209.91 µg/ml. Bacterial leaf blight disease control was done by cassava stake treating and spraying of CaSUT007 using the Randomized Complete Block Design (RCBD). Our result was found that cassava treated by CaSUT007 gave the significantly lowest averaged disease score at level 1. Analysis of biochemical composition changes in cassava tissue using FTIR microspectroscopy, cassava treated by CaSUT007 gave the higher increase significantly of C-H stretching (~3,000- 2,800 cm⁻¹), C=O ester (~1,740 cm⁻¹), amide I (~1,700- 1,600 cm⁻¹), C-H bonding, C-O stretching, polysaccharide (~1,450-1350 cm⁻¹, ~1,246 cm⁻¹ และ ~1,200-900 cm⁻¹), the accumulation of these biochemical composition involve in plant defense mechanism. This result indicated that increase content of plant biochemical composition in treated plant when compared with healthy plant, suggesting that strain CaSUT007 might be inhibited X. axonopodis pv. manihotis infection process might activate or suppress these elements accumulation for signaling transduction, defense enzyme activities and cell wall construction in plant defense mechanism process. Results of this study initial indicated that the strain CaSUT007 could be used to reduce bacterial leaf blight disease severity in cassava plant.

Key words: cassava, *Bacillus subtilis*, growth promotion, FTIR – microspectroscopy, cassava bacterial leaf blight