

รายงานวิจัยฉบับสมบูรณ์

โครงการ การย่อส่วนระบบเคมีวิเคราะห์ด้วยหยด/ฟิล์มของเหลว

โดย ดร.ทินกร กันยานี และคณะ

มิถุนายน 2557

รายงานวิจัยฉบับสมบูรณ์

โครงการ การย่อส่วนระบบเคมีวิเคราะห์ด้วยหยด/ฟิล์มของเหลว

คณะผู้วิจัย

1. ดร. ทินกร กันยานี

2. ศาสตราจารย์ ดร. เกตุ กรุดพันธิ์

สังกัด

มหาวิทยาลัยเชียงใหม่ มหาวิทยาลัยเชียงใหม่

3. ศาสตราจารย์ ดร.เพอร์เนนดู เค. ดาสกุพต้า University of Texas at Arlington

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา สำนักงานกองทุนสนับสนุนการวิจัย และมหาวิทยาลัยเชียงใหม่

บทคัดย่อ

รหัสโครงการ : MRG5580216

ชื่อโครงการ : การย่อส่วนระบบเคมีวิเคราะห์ด้วยหยด/ฟิล์มของเหลว

ชื่อนักวิจัย : ดร.ทินกร กันยานี

อีเมลล์ : tkanyanee@gmail.com, tinakorn.kanyanee@cmu.ac.th

ระยะเวลาโครงการ : 2 ปี

บทคัดย่อ

การย่อส่วนระบบการวิเคราะห์ทางเคมีทำให้มีข้อดีหลายประการ เช่น ทำให้เป็นมิตรต่อ สิ่งแวดล้อม เหลือกากสารเคมีน้อยลง เวลาในการวิเคราะห์ที่สั้นลงและใช้พลังงานน้อยลง งานวิจัยนี้ ได้ ประสบความสำเร็จในการพัฒนาระบบเคมีวิเคราะห์ที่ย่อส่วนโดยการใช้หยดของเหลวขนาดเล็กที่มี ปริมาตรน้อยระดับไมโครลิตรควบคู่กับเทคนิคไฟฟ้าเคมีสำหรับประยุกต์ใช้งานวิเคราะห์ เช่น เทคนิคคู ลอมเมตริกไตเตรชั่นในหยดสารละลายพร้อมทั้งพัฒนาระบบการขับเคลื่อนหยดสารละลายขนาดเล็กที่ ราคาถูกและมีแนวโน้มพัฒนาต่อยอดเป็นระบบวิเคราะห์แบบอัตโนมัติได้และพัฒนาขั้วไฟฟ้าขนาดเล็ก สำหรับการวัดค่าการนำไฟฟ้าในหยดสารละลายที่ใช้ในการตรวจวัดไอออนที่สามารถเปลี่ยนเป็นแก็สได้ และได้ประยุกต์ใช้ระบบวิเคราะห์ที่พัฒนาขึ้นเพื่อวิเคราะห์ model analyte ทางเภสัชกรรม (กรดแอสคอร์ บิคในยาเม็ดวิตมินซี) ทั้งนี้ระบบวิเคราะห์ทางเคมีที่พัฒนาขึ้นมีค่าใช้จ่ายที่ถูกลง, อุปกรณ์ที่มีขนาดเล็กลง , และการใช้งานง่ายขึ้น

คำหลัก: Liquid drop, Coulometric titration, Conductometric detection, Micro analysis

Abstract

Project Code : MRG5580216

Project Title : Down-scaling in Chemical Analysis via Liquid drop/ film

Investigator : Dr. TINAKORN KANYANEE

E-mail Address : tkanyanee@gmail.com, tinakorn.kanyanee@cmu.ac.th

Project Period : 2 years

Abstract:

The down-scaling analytical system provides many advantages such as greener chemistry, lower amounts of waste, lower time and energy consumption in experimental processes. In this project, it was successfully developed the downscaling analytical systems through the use of small liquid drops coupled with electrochemical technique. Miniaturized systems with electrochemical detection such as micro coulometric titration in a liquid drop with low cost approach and has been developed for automation system. The micro conductometry have been developed to couple with small volume of liquid drop for detect the ion which change to be gas phase. The developed system has been demonstrated for pharmaceutical application with some model analyte. The developed down-scaling analytical system provide low cost and easy to use.

Keyword: Liquid drop, Coulometric titration, Conductometric detection, Micro analysis

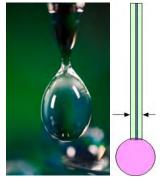
บทสรุปผู้บริหาร (Executive Summary)

การย่อส่วนระบบวิเคระห์ทำให้มีข้อได้เปรียบหลายประการ เช่น การเข้าถึงระบบเคมีสีเขียวมาก ขึ้น ใช้กากสารเคมีน้อยลง เวลาในการวิเคราะห์ที่สั้นลงและใช้พลังงานน้อยลง ค่าใช้จ่ายที่ถูกลง ในบาง เทคนิคสามารถทำให้มีประสิทธิภาพที่ดีขึ้นด้วยการย่อส่วนระบวิเคราะห์ เช่น การเก็บตัวอย่างและ วิเคราะห์แก๊ส การทำให้ระบบ Sampling interface ในการวิเคราะห์แก็สที่เล็กลงทำให้ได้สัญญาณที่ รวดเร็วขึ้นและอาจพัฒนาเป็นลักษณะ nearly real time analysis และมีความเป็นไปได้ที่พัฒนาเป็น ระบบภาคสนามได้ (on-site monitoring) การศึกษาก่อนหน้านี้ได้ประสบความสำเร็จในการใช้ฟิล์ม ของเหลวที่เป็นฟองสบู่ที่มีปริมาตรของสารละลายน้อยแต่มีความหนาของฟิล์มที่บางมากๆ ทำให้มีพื้นที่ ผิวสัมผัสมากในการเก็บตัวอย่างแก็สปริมาณน้อยๆได้ และนอกจากนั้นยังมีการโดปด้วยสาร chiral selector เพื่อใช้ในการแยกสารไครอลที่เป็นไอโซเมอร์ด้วย instrinsic permeability ที่ดีกว่า commercial liquid membrane

ในงานวิจัยนี้มุ่งเน้นการพัฒนาระบบเคมีวิเคราะห์ที่ย่อส่วนโดยการใช้หยดหรือฟิล์มของเหลว ขนาดเล็กสำหรับประยุกต์ใช้งานวิเคราะห์ที่หลากหลายมากขึ้น โดยพัฒนาทำระบบวิเคราะห์ที่ใช้เทคนิค ไฟฟ้าเคมีขนาดเล็กที่ควบคู่กับระบบหยด/ฟิล์มเพื่อให้ระบบวิเคราะห์ทางเคมีดังกล่าวใช้สารเคมีน้อยลง, อุปกรณ์ที่มีขนาดเล็กลง, มีค่าใช้จ่ายที่ถูกลง, และการใช้งานง่ายขึ้น การใช้งานรูปแบบของหยดของเหลว ถูกศึกษาเพื่อใช้ในทั้งตัวอย่างที่เป็นแก๊สหรือของเหลว โดยพัฒนาเป็นระบบ microelectrochemical cell เพื่อให้ใช้เป็น 1) microelectrochemical generating unit และพัฒนาต่อเป็น microcoulometric titration โดยใช้ศึกษา assay ของกรดแอสคอร์บิคในยาเม็ดวิตมินซีเป็น model analyte และ 2) ระบบการวัดค่า การนำไฟฟ้าในหยดสารละลายที่ใช้ในการวัดปริมาณไอออนได้

นอกจากนี้นวตกรรมเด่นของโครงการนี้คือระบบการ manipulate หยดสารละลายบนพื้นเอียงที่ เป็น hydrophobic ทำให้สามารถควบคุมการไหลเข้า และ/ หรือหยุด และ/ หรือเคลื่อนที่ออกจากจุดที่ เกิดปฏิกริยาเคมี (ไฟฟ้า)ได้ด้วยแรงโน้มถ่วงของโลกซึ่งผู้วิจัยเรียกระบบนี้ว่า "Moving Liquid Drop-MVD" ซึ่งคล้ายคลึงกับระบบการ manipulate หยดสารละลายในระบบ Electrowetting-on-Dielectric (EWOD) แต่ MVD ใช้ส่วนประกอบของเครื่องมือที่ง่ายกว่าและค่าใช้จ่ายถูกกว่ามาก นอกจากนั้น ลักษณะการเคลื่อนที่ของหยดสารละลาย aqueous บน hydrophobic path ดังกล่าวคล้ายคลึงกับระบบ ระบบการไหลแบบ mono-segmented flow ซึ่งจะเป็นลักษณะการไหลของสารละลายในท่อที่มีโซนของ อากาศมาคั่นระหว่างกระแสการไหลของสารละลาย ซึ่งการวิเคราะห์ด้วยระบบ mono-segmented flow ดังกล่าวมีข้อดีที่สามารถลดการกระจายตัวของโซนสารตัวอย่างในกระแสการไหลของสารละลายที่ทำ การวิเคราะห์ในระบบการไหลได้ดี แต่ระบบ Mono-segmented flow มักพัฒนาในระบบการไหลที่ต้องใช้ ปมั้ม, วาล์ว และการ manipulate ผ่าน computer interface แต่ระบบ Moving liquid drop หรือ MVD ที่พัฒนาขึ้นนี้ใช้อุปกรณ์ต่าง ๆที่ถูกกว่ามาก ๆ และลดการใช้ volumetric measuring tool บางชนิด ลงได้และสามารถใช้เป็นลักษณะ sequential manually operation ที่อาจพัฒนาต่อเป็นระบบ on-site analytical device ได้ง่ายกว่าระบบการไหลทั่วไป ทั้งนี้การพัฒนาระบบ fully automation ด้วยระบบ

flow analysis system ทั่วไป เช่น sequential injection system (SIA) นั้นต้องใช้เครื่องมือที่ต้องการ พลังงานในการควบคุมสูง (High power operation tool) เช่น syringe pump + selection valve ทำให้มี ข้อจำกัดในการพัฒนาเป็นระบบ on-site operation เนื่องจากต้องใช้ระบบสำรองไฟที่ใหญ่และน้ำหนัก มาก


วัตถุประสงค์งานวิจัย

เพื่อพัฒนาระบบการวิเคราะห์ทางเคมีที่ย่อส่วนด้วยการใช้หยด/ฟิล์มของเหลวสำหรับการพัฒนา เป็นระบบวิเคราะห์ขนาดเล็กร่วมกับระบบการตรวจวัดด้วยเคมีไฟฟ้า และความเป็นไปได้ในการใช้งาน แบบวิเคราะห์แบบ in-situ analysis

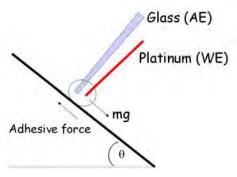
1. ที่มาและความสำคัญ

ในปัจจุบันกระบวนการต่างๆทางเคมี ทำให้เกิดสารเคมีที่เป็นของเสีย (chemical waste) เป็น จำนวนมาก เป็นภาระของหน่วยงานต่างๆที่เกี่ยวข้องในการกำจัดกากของเสียดังกล่าว ซึ่งนักเคมีทั่ว โลกได้ตระหนักถึงความสำคัญของการเกิดของเสียจากสารเคมี และได้มีความพยายามในการ ปรับเปลี่ยนกระบวนต่างๆในทางเคมีให้ใช้สารเคมีน้อยลง มีพิษหรืออันตรายให้น้อยลง หรือการใช้สาร จากผลิตภัณฑ์จากธรรมชาติมากขึ้น การปรับหรือย่อขนาดของการทดลองหรืออุปกรณ์ในกระบวนการ ทางเคมีให้มีขนาดเล็กลงในระดับไมโครสเกลล์ (micro scale chemistry) จึงเป็นทางออกหนึ่งที่ช่วย ลดปริมาณการใช้สารเคมีและกากของเสียจากสารเคมีลงได้ นอกจากนั้นการทดลองในห้องปฏิบัติการ ระดับ micro scale ยังช่วยลดอันตรายจากปฏิกิริยาเคมีที่ให้ผลรุนแรงได้อีกด้วย

การเกิดหยดของสารละลายเกิดจากการที่สารละลายในสถานะของเหลวมีแรงยึดเหนี่ยวระหว่างของเหลวด้วยกันเองที่มีค่ามากพอที่จะไม่ทำให้โมเลกุลของของเหลวแยกออกจากกันได้ แต่เมื่อของเหลวมารวมตัวกันมากขึ้นน้ำหนักของหยดสารละลายมากขึ้นจนสามารถเอาชนะแรงดึงดูดระหว่างโมเลกุลของของเหลวได้ เช่น การหยดสารละลาย (falling drop) จากปลายท่อ (drop head tube) ดังแสดงในรูป 1. แรงเนื่องมาจากน้ำหนักของสารละลายมากพอที่จะเอาชนะแรงดึงดูดของของเหลวกับปลายท่อของ drop head สารละลายจึงหยดตกลงมา ทำให้หยดสารละลาย (falling drop) มีคุณสมบัติที่น่าสนใจคือปริมาตรของแต่ละหยดคงที่ ทำให้สามารถนำคุณสมบัติดังกล่าวนี้มาใช้ในการวิเคราะห์เชิงปริมาณโดยไม่จำเป็นต้องมีระบบตวงวัดปริมาตรขนาดเล็กๆได้ ปริมาตรของ falling liquid drop จะขึ้นกับปัจจัยหลายประการ (เล่น ปริมาตรของหยดสารละลาย, รัศมีของปลายท่อ (Outer diameter),แรงตึงผิว ของสารละลาย, และความหนาแน่นของสารละลาย ดังนั้นถ้าให้สารละลายตัวอย่างที่เจือจางและมีความหนาแน่น = 1.000 g/mL ปริมาตรของสารละลายจะสามารถคำนวณได้จากการชั่งน้ำหนักของหยดสารละลายด้วยเครื่องชั่ง 4 ตำแหน่ง และถ้าสารละลายมีแรงตึงผิวคงที่ จะทำให้ปริมาตรของหยดสารละลายภัยจาดที่ด้วยเช่นกัน

รูป 1. หยดของสารละลายในรูปแบบของ Falling liquid drop

เนื่องจากธรรมชาติที่น่าสนใจของหยดสารละลายหรือของเหลวคือมีปริมาตรคงที่ ทำให้ใน ปัจจุบันมีการพัฒนาการใช้หยดของสารละลายเข้ามาประยุกต์ใช้ในลักษณะ microscale ในกระบวนการ ต่างๆทางเคมีวิเคราะห์ (analytical chemistry in liquid drop) หลายด้าน เช่น การไตเตรตด้วยการนับ หยดของสารละลาย การใช้หยดของสารละลายในการเก็บตัวอย่างและวิเคราะห์ก๊าช^[5,6,7] (interface system for gas sampling and analysis) การวิเคราะห์ด้วยเทคนิคเชิงแสง (spectrophotometric method)ในหยดของสารละลายที่พัฒนาเป็นเครื่องมือที่ออกขายในห้องตลาดแล้ว เป็นต้น การไต เตรตในหยดของสารละลายสามารถทำได้ง่ายและใช้สารเคมีที่เกี่ยวข้องปริมาณน้อยมาก ทำให้เทคนิค การไตเตรตในหยดของสารละลายถูกประยุกต์ใช้ในการหาปริมาณสารหลายๆด้าน เช่น การหาปริมาณ กรด-เบส การหาปริมาณแคลเซียมและน้ำกระด้าง การศึกษาการแพร่ของสารในหยดสารละลาย


เอกสารอ้างอิง

- [1] http://en.wikipedia.org/wiki/Microscale_chemistry (27 June 2014).
- [2] http://chemmovies.unl.edu/Chemistry/MicroScale/MScale00.html (27 June 2014).
- [3] http://www.practicalchemistry.org/experiments/acid-base-neutralisation-a-microscale-titration,171,EX.html (27 June 2014).
- [4] Yang W, Zhang Z, Hun X, Talanta, 62 (2004) 661-666.
- [5] Milani MR, Cadoso AA. Microchem. J 2003; 74: 75-82.
- [6] Cardoso AA, Dasgupta PK., Anal. Chem 1995; 67: 2562-2566.
- [7] Liu H, Dasgupta PK. Anal. Chem 1995; 67: 4221-4228.
- [8] http://www.nanodrop.com/ (27 June 2014)
- [9] Steele AW, Hieftje GM, Anal. Chem, 1984; 56:2884-2888.
- [10] Hui KY, Gratzl M, Anal. Chem, 1997; 69: 695-698.
- [11] Gratzl M, Anal. Chem, 1988; 60:2147-2152.

2. คูลอมเมตริกไตเตรชั่น (coulometric titration) ในหยดสารละลาย

คูลอมเมตรีเป็นเทคนิคที่สร้างไตแตรนต์ขึ้นมาจากปฏิกิริยาไฟฟ้าเคมีในสารละลายตัวอย่างที่ สนใจวิเคราะห์และให้สารไตแตรนต์เข้าทำปฏิกิริยากับสารตัวอย่างที่ต้องการวิเคราะห์แบบทันที สารไต แตรนต์บางชนิดที่ไม่เสถียรและมีความว่องไวในการเกิดปฏิกริยาเคมีกับอากาศหรือความชื้นซึ่งไม่ เหมาะสมในการนำมาใช้ไตเตรตโดยวิธีปกติ แต่สามารถนำมาประยุกตใช้ในระบบของคูลอมเมตริกไต เตรชั่นได้ อีกทั้งยังสามารถดำนวณหรือควบคุมปริมาณสารไตแตรนต์ได้จากปริมาณไฟฟ้าที่ให้แก่ เซลล์ไฟฟ้าเคมี นอกจากนั้นทำให้มีความง่ายในการกำหนดปริมาณไตแตรนต์ที่เข้าทำปฏิกิริยาการ วิเคราะห์กับสารตัวอย่าง นอกจากนั้นยังมีการนำเทคนิคคูลอมเมตริกไตเตรชั่นมาประยุกต์ใช้ในการหาปริมาณเพื่อตรวจสอบและควบคุมคุณภาพของยาในทางเภสัชกรรมอีกด้วย [12,13,14]

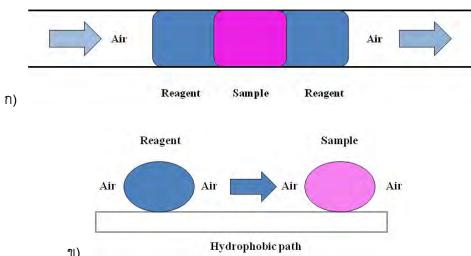
ดังนั้นการพัฒนาระบบของคูลอมเมตริกไตเตรชั่นให้เล็กลง (miniaturization) จึงเป็นการลด ระดับการใช้สารเคมีให้น้อยลง ใช้สารละลายตัวอย่างที่น้อยลงระดับไมโครลิตร การศึกษาคูลอมเมตริกไต เตรชั่นในหยดของสารละลายจึงเป็นแนวทางที่น่าสนใจมากในการพัฒนาเทคนิคทางเคมีวิเคราะห์ให้ สามารถวิเคราะห์ได้ง่ายและสะดวก อีกทั้งพัฒนาให้เป็นระบบอัตโนมัติโดยใช้ค่าใช้จ่ายน้อย ใช้วัสดุที่ ราคาถูกมาประยุกต์ใช้ในงานวิจัยโดยเริ่มตันศึกษาปฏิกริยาไฟฟ้าเคมีของการสร้างไอโอดีนเพื่อใช้ในการ หาปริมาณกรดแอสคอร์บิคในยาเม็ดวิตมินซีหรือสารละลายโซเดียมไธโอซัลเฟตในหยดสารละลายและ ได้นำเอาการ manipulation ของหยดสารละลายบนพื้นเอียงซึ่งเป็นวิธีการที่ง่ายแต่สามารถนำสารละลาย เข้าและออกจากขั้วไฟฟ้าหรือระบบวิเคราะห์ได้อย่างมีประสิทธิภาพโดยไม่ต้องมีอุปกรณ์อื่นที่ต้อง เคลื่อนที่ (moving part) อื่น เรียกการเคลื่อนที่ด้วยระบบหยดสารละลายดังกล่าวนี้ว่า "Moving liquid drop" ดังแสดงในรูป 2.

รูป 2. ระบบคูลอมเมตริกไตเตรชั่นในหยดสารละลายที่ใช้ระบบ Moving liquid drop

การศึกษา coulometric titration ในหยดสารละลายด้วย Moving liquid drop จึงใช้สารละลาย กรดแอสคอร์บิคและสารละลายมาตรฐานไธโอซัลเฟตเป็นระบบเคมีตันแบบ (chemical model) และ เปรียบเทียบความถูกต้อง (accuracy) ของการวิเคราะห์ด้วยผลการทดลองด้วยระบบไตเตรชั่นมาตรฐาน (2,6-DCIP method สำหรับกรดแอสคอร์บิค^[15] และไอโอโอเมตรีสำหรับสารละลายไธโอซัลเฟต) โดย ทำการศึกษาพารามิเตอร์ต่าง ๆที่เกี่ยวข้องกับการทดลองดังนี้คือ

- ลักษณะการเอียงของพื้นและการเกาะของหยุดสารละลายกับขั้วไฟฟ้า
- การจัดวางตำแหน่งของขั้วไฟฟ้าในระบบ moving liquid drop coulometric titration
- > การเลือกใช้กระแสไฟฟ้ากับระดับปริมาณสารตัวอย่าง
- 🗲 ระบบการกวนสารละลายภายในหยดสารละลายด้วยการใช้แก๊สในโตรเจน
- ความเข้มข้นของสารละลายไอโอดีน
- 🕨 ศึกษาการใช้ขั้วไฟฟ้าด้วยวัสดุที่ราคาถูก เช่น stainless steel เปรียบเทียบกับโลหะแพลตินัม

ผลการศึกษาได้ประสบความสำเร็จในการพัฒนาระบบไมโครคูลอมเมตริกไตเตรชั่นในหยด สารละลาย โดยสร้างไอโอดีนขึ้นเพื่อทำปฏิกิริยาไฟฟ้าเคมีกับกรดแอสคอร์บิคเพื่อหาปริมาณกรด แอสคอร์บิคในตัวอย่างยาเม็ดวิตมินซี ระบบดังกล่าวนี้จะเป็นองค์ความรู้ที่จะเป็นประโยชน์ในการ ประยุกต์ใช้เป็นระบบวิเคราะห์สารตัวอย่างอื่นๆต่อไป ซึ่งอยู่ในระหว่างการศึกษา เช่น การหาปริมาณ total antioxidant compound ใน human serum ซึ่งต้องการระบบที่ใช้สารตัวอย่างปริมาณน้อย [16,17] หรือการหาปริมาณแก็สบางชนิดที่สามารถเกิดปฏิกริยาได้ดีกับสารไตแตรนต์ที่ผลิตขึ้นจากระบบไมโครคู ลอมเมตรี เป็นต้น


เอกสารอ้างอิง

- [12] Mihajlovi'c R, Stani'Z, Antonijevi'c M, Anal. Chim. Acta., 2003; 497: 143-154.
- [13] Chateau-Gosselin M, Christian GD, Patriarche GJ, Microchim. Acta, 1979; 415-421.
- [14] Stock, JT, Anal. Chem., 1980; 52: 1R-9R.
- [15] W. Horwitz, W., Official Methods of Analysis of the Association of Official Analytical Chemists, 16th ed., Washington D.C., 1992, no. 967, pp 21.
- [16] Ziyatdinova GK, Budnikov HC, Pogorel VI, Ganeev TS, Talanta, 2006; 68; 800-805.
- [17] Ziyatdinova GK, Voloshin AV, Gilmutdinov A, Budnikov HC, Ganeev TS, *J. Pharm. Biomed. Anal.*, 2006; 40: 958–963

3. ระบบการไหล mono-segmented flow อย่างง่ายด้วยการใช้หยดสารละลาย

ระบบวิเคราะห์บนของเหลวปริมาตรน้อย เช่น ในหยดสารละลาย ได้ถูกศึกษาโดย P.K. Dasgupta ในการประยุกต์ใช้งานที่หลากหลาย เช่น ระบบ windowless optical cell และระบบขนาดเล็ก สำหรับ solvent extraction และระบบ single drop micro extraction ระบบการ injection อย่างง่ายของ ระบบอิเล็คโตรโฟรีซิส เป็นตัน เมื่อไม่นานนี้การใช้ปรากฏการณ์ electrowetting-on-dielectric ได้มีการ นำมาประยุกต์ใช้หยดสารละลายเป็นระบบที่ manipulate สารละลายปริมาตรน้อยๆ และนำไปสู่การ manipulate หยดสารละลายสำหรับงานเคมีวิเคราะห์และถูกประยุกต์ใช้งานในหลายด้าน เช่น สำหรับ การผสมสารละลาย การใช้งานในระบบคาปิลารี่อิเล็คโตรโฟรีซิส เป็นตัน แม้ว่า EWOD หรือ digital droplet manipulation จะทำให้ได้ระบบอัตโนมัติขนาดเล็ก แต่ต้องการอุปกรณ์อิเล็คทรอนิกส์อื่นๆเพื่อ ช่วยในการควบคุมหยดสารละลาย

ในโครงการนี้ได้ประสบความสำเร็จในการพัฒนาระบบ moving liquid drop ขึ้นแบบง่ายๆโดยใช้ การเคลื่อนที่ของหยดสารละลายบน hydrophobic path ที่ลาดเอียงด้วย gravity force ทำให้สามารถ ควบคุมหยดสารละลายให้หยุดและ/ หรือเคลื่อนที่เข้า/ ออกจากขั้วไฟฟ้าได้ เป็นแนวทางการวิเคราะห์ แบบใหม่ที่ไม่ต้องใช้อุปกรณ์ manipulate สารละลายเข้าและออกจากระบบวิเคราะห์ที่มีราคาแพงเหมือน การวิเคราะห์ในระบบการไหลโดยทั่วไป เช่น ปั้ม (peristaltic pump, syringe pump) หรือวาล์ว (selection valve, 6-port-2-position injection valve) และเมื่อพิจารณาระบบการเคลื่อนตัวของหยด สารละลายไปตามพื้นเอียงและการผสมกันของหยดสารละลายต่างชนิดกัน จึงมีความคล้ายคลึงกับระบบ การใหลแบบ mono-segmented flow ซึ่งจะเป็นลักษณะการใหลของสารละลายในท่อที่มีโชนของอากาศ มาคั่นระหว่างกระแสการใหลของสารละลายเพื่อทำให้มีข้อดีที่สามารถลดการกระจายตัวของโซนสาร ตัวอย่างในกระแสการไหลของสารละลายในการวิเคราะห์ในระบบการไหลได้ ดังนั้นระบบ moving liquid drop จึงเป็นระบบ mono-segmented flow แบบง่ายๆได้ เนื่องจากการเคลื่อนที่ของหยด สารละลายบน hydrophobic tile path ที่มีลักษณะที่คล้ายกับการใหลของสารละลายในระบบ monosegmented flow ในระบบ sequential injection แต่ระบบ Moving Liquid Drop ใช้อุปกรณ์ต่างๆที่ง่าย และค่าใช้จ่ายที่ถูกกว่า ระบบอุปกรณ์เล็กกว่า ดังแสดงการเปรียบเทียบทั้งสองระบบในรูป 3. ทำให้ สามารถพัฒนาเป็นระบบ sequential manually operation แบบง่ายๆได้และนำไปประยุกต์ใช้ร่วมกับ เทคนิคการวัดค่าการนำไฟฟ้าในหยดสารละลายกรดซัลฟิวริก มีแนวโน้มที่จะพัฒนาต่อยอดเป็นระบบ on-site analytical device ได้

ข) Hydrophobic path รูป 3. เปรียบเทียบระบบการใหล ก) แบบ mono-segmented flow โซนสารละลายที่ใหลในท่อโดยมี โซนของอากาศมาคั่นซึ่งใช้การ manipulation ด้วย syringe pump + selection valve ข)แบบ moving liquid drop ที่มีการเคลื่อนที่ของหยดสารละลายไปบน hydrophobic path

Output ที่ได้จากโครงการวิจัย

International publication

[1] **Tinakorn Kanyanee***, Pongwasin Fuekhad, Kate Grudpan, Micro coulometric titration in a liquid drop, Talanta 15 (2013) 258-262. doi: http://dx.doi.org/10.1016/j.talanta.2013.04.039

International conferences

[1] Jaikang Pheeraya., **Tinakorn Kanyanee***, Purnendu. K. Dasgupta, and Kate. Grudpan, Novel simple mono-segmented flow system with liquid drop and separation unit for the ammonium determination, 18th International Conference in Flow injection Analysis, September 15-20, 2013 Porto, Portugal.

National conferences

- [1] Tinakorn Kanyanee*, Tanapong Yapraserd, and Kate Grudpan, Time-based micro titration with redox reaction in liquid drop, Pure and Applied Chemistry International Conference (PACCON 2013), January 23-25, 2013, Chonburee, Thailand.
- [2] Tinakorn Kanyanee* and Kate Grudpan, Simple and low cost moving liquid drop for Down-scaling analysis system, Pure and Applied Chemistry International Conference (PACCON 2014), January 8-10, 2014, Centara Hotel and Convention center, Khon Kean, Thailand.

ภาคผนวก

FISEVIER

Contents lists available at SciVerse ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

Micro coulometric titration in a liquid drop

Tinakorn Kanyanee a,b,*, Pongwasin Fuekhad A, Kate Grudpan A,b

- ^a Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- ^b Center of Excellence for Innovation in Analytical Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand

ARTICLE INFO

Article history: Received 4 January 2013 Received in revised form 18 April 2013 Accepted 18 April 2013 Available online 3 May 2013

Keywords:
Liquid drop
Miniaturized coulometric titration
Flow without tubing
lodometry
Ascorbic acid
Thiosulfate

ABSTRACT

Miniaturized coulometric titration in a liquid drop has been investigated. Assays of ascorbic acid and thiosulfate with iodine titration were chosen as models. Constant volumes of falling liquid drops containing sample or reagent are manipulated via gravimetrical force to move along a slope hydrophobic path and directed to stop or to move out from an electrode. Such manipulation is useful for delivery of sample and reagents, in a way of flow without tubing. Electrochemical generation of titrant, in this case, iodine, is started at the electrode and micro coulometric titration can be performed in a drop by applying constant current. Timing in the titration can be made via naked eye with a stopwatch or via recording with a webcam camera connecting to a computer to detect the change due to the blue color complex of the excess iodine and starch.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Attention has been paid to decrease chemical waste in analytical process. This leads to downscaling chemical analysis [1,2]. An interesting property of a liquid drop may refer to constant volume which should be due to adhesive force among the liquid molecules. A liquid drop which poses around 3–50 μL in volume should be readily available for micro scale chemistry manipulation. There have been some reports for such purpose, such as using a liquid drop as interfacing system for gas sampling and analysis [3–5], and a windowless spectrophotometric system [6]. Moreover, a falling liquid drop has been proposed to function as a sample introduction to a capillary electrophoresis system [7]. In addition, titration in liquid drop has been explored for acid–base neutralization [8] and complexometric titration of calcium [9,10].

Coulometric titration has gained interest in that an active reagent may be in situ generated. The known amount of reagent that reacts with the analyte can be electrogenerated precisely by the system itself with current–time control under Faraday's Law. This type of titration has shown benefit without conventional standard reagent preparation. Various analytical techniques including potentiometry, amperometry, and spectrophotometry have been used for end-point detection [11]. There have been various applications exploiting coulometric titration including

E-mail address: tkanyanee@gmail.com (T. Kanyanee).

pharmaceutical analysis such as butyrolactone determination employing glass electrode for end-point detection [12]. Some organic and pharmaceutical compounds were analyzed by electrogenerating gold(III) and biamperometric end-point detection [13]. CO₂ in water could be rapidly determined by coulometric titration [14]. Coulometric titration has been incorporated in flow analysis, also with various end-point detection systems including spectrophotometric (for acid-base) [15], potentiometric (for ascorbic acid determination) [16,17]. Air transported flow system or monosegmented flow coulometric titration was developed for, aniline determination with bromine generation and amperometric end-point detection [18], and bromine number in some petrochemical samples can be determined [19]. Micro coulometric flow cell was developed for oil/water interface study [20], and bromine generation in micro flow system with chemilumiescence detection was developed for hydrazine and ammonium analysis [21]. Coulometric titration in non-aqueous medium for acid number of biodiesel [22] and ethanol [23] samples was reported.

Recently, electrowetting-on-dielectric (EWOD) phenomena have been investigated by applying voltage between electrode and liquid droplet, leading to the interfacial surface of liquid droplet and surface to be modified to suit applications, including microfluidics as a sampling device for capillary electropherograph [24,25].

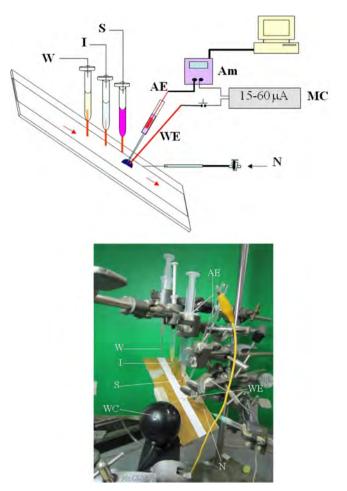
We present here micro coulometric titration in a liquid drop. With simple instrumentation, a drop of sample/reagent, via gravitation force, with practically precise constant volume can be handled for moving along a hydrophobic path or stop at an electrode system. Such manipulation leads to automation in

^{*}Corresponding author at: Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. Tel.: +66 53 941910; fax: +66 53 941910.

delivery for a sample and reagents in a way of flow without tubings. Downscaling in iodometric titration can be performed. Thiosulfate and ascorbic acid were chosen as the model study. The developed system has been demonstrated to assay ascorbic acid in real samples of vitamin C tablets.

2. Experimental

2.1. Reagents and solutions


All reagents in this work were prepared by dissolving in deionized (DI) water. A solution of KI (0.1 M, 100 mL) was prepared from 1.66 g KI (BDH, UK.) which was added with 2% w/v starch with a volume ratio of 5:1. A stock solution of thiosulfate (0.1 M) was fleshly prepared from 1.58 g Na₂S₂O₃ (Sigma-Aldrich, USA) and standardized using the iodometric method [26]. A stock standard solution (0.100 × M, 100 mL) of ascorbic acid was freshly prepared from 1.76 g of $C_6H_8O_6$ (MERCK, Germany) and standardized using the 2, 6-dichloro indolphenol (2,6-DCIP) method [27]. A sample solution was prepared by weighing 3 tablets of a sample and followed by grinding in ceramic mortar. Then a portion of known weight (0.0500 g) of the ground sample was dissolved in water with a final volume of 100.00 mL solution. The sample solution was then filtered with filter paper (# 1 Whatman, UK).

2.2. Manipulation of liquid drop on tilt sheet

Fig. 1 illustrates the setup of the instrument. An acrylic sheet is attached with Teflon tape that becomes platform of the system. This could be fabricated by using easily available and low cost materials. The hydrophobic surface of Teflon tape provides the high contact angle of aqueous liquid drop on surface, while the glass auxiliary electrode provides the good hydrophilic surface for aqueous liquid drop.

Falling liquid drop from a disposable syringe through the end of 1/16" O.D. peek tube (Upchurch scientific, WA) attached to the syringe, is manually dropped to the slope acrylic plane $(7 \times 13 \times 0.1 \text{ cm}^3)$ covered with Teflon tape $(1.9 \times 15 \times 0.1 \text{ mm}^3)$; normally used for plumbing). The end of the peek tube is set to have ~ 1 cm space above the Teflon plane. The liquid drop of sample, having a volume of $\sim 25 \,\mu\text{L}$, would move due to gravity force along this hydrophobic tape to the electrode system and would attach, due to adhesive force of aqueous drop and hydrophilic surface of glass, to the end of hydrophilic surface of disposable glass dropper of the auxiliary electrode which is set ~2 mm above Teflon tape. After a drop of the reagent (a mixture of iodide and starch) from another syringe falls down and moves along the path, it stops and merges with the sample drop. By this, the total volume would become $\sim 50 \,\mu L$. The whole drop still hangs on the glass auxiliary electrode. When, another drop (water from the third syringe) comes to merge, the gravitational force of the whole liquid drop becomes high enough to make the drop detach and moves out from the glass auxiliary electrode. One factor affecting manipulation of liquid drop in this format also involves the angle of tilt sheet. The tilt sheet in a higher slope position results in faster movement of the drop along the hydrophobic path. If it is in too high slope, it would not be easy to control the movement and also the drop will not be easy to stop at the electrode. The angle would be adjusted to meet the ability in manipulating the liquid drop. In this experiment, the suitable tile sheet angle was found to be $\sim 50^{\circ}$ from horizontal plane. The tilt sheet angle was estimated by applying basic trigonometry.

Positions of the syringe ends, for the sample and that for the reagent should be arranged to be above the Teflon plane for 3–

Fig. 1. Setup of micro coulometric titration of liquid drop on tilt sheet; W=DI water, I=iodide+starch, S=sample, WC=web camera, AE=auxiliary electrode, WE=working electrode, N=nitrogen gas through syringe needle, Am=digital ammeter. MC=micro coulometer.

4 mm to let liquid drop freely. The path for the liquid drop moving should not be too long. In this experiment, it was about 5–10 cm.

The positions of the auxiliary and working electrodes would also affect the attachment of the liquid drop cell and effective surface area of the electrode for electrochemical generation of iodine. If the auxiliary electrode was arranged to be on the upper position relatively to working electrode, effective surface area of the working electrode was found to be better, since liquid drop cell prefers to attach to the hydrophilic glass body of auxiliary electrode.

2.3. Micro coulometric titration system and procedure

A liquid drop can behave as a micro coulometric cell ("coulometric drop cell"). The electrode system is composed of a working electrode (WE) made of platinum wire (0.5 mm diameter) or stainless steel and an auxiliary electrode (AE) fabricated from a disposable glass dropper. The auxiliary electrode contained 2% agar in 3 M KCl which had been boiled for ~ 5 min and filled to set as gel at room temperature at the end of the disposable glass dropper. An internal solution was 3 M KCl and the spiral shape of stainless steel wire (0.5 mm diameter) was dipped in the 3 M KCl solution. It was connected to the constant current source as shown in Fig. 1.

The constant current source was fabricated in-house by using 3-terminal adjustable voltage regulator, LM317 (ST microelectronics, Singapore). The operating current was designed in the range of 15–

 $60~\mu A$. Number of moles of the electrogenerated iodine was calculated from the total charge through Faraday's constant. The total charge of coulometric operation (titration) was evaluated from the titration time (the time period when starting to apply the current until the appearing of blue color) and the current observed and recorded by a digital multimeter (UNI-T, model UT60A, China) interfacing to computer through serial port.

As described in the above section that a sample would drop and move along the hydrophobic Teflon path and would stop at the AE. A drop of the reagent (a mixture of KI and starch) would also fall down to the Teflon tape plane and would move along the plane before stopping at the AE to merge with the sample drop, previously stopped at the point. The sample and the reagents would blend to each other with the aids of nitrogen gas blowing ($\sim\!300~\text{mL/min})$ through a disposable hypodermic syringe needle (# 21, 0.8 mm O.D., Nipro Corporation, Japan). This would create coulometric drop cell as depicted in Fig. 1, and the VDO clip attached. By applying constant current, coulometric titration could be started.

The end point in the coulometric titration could be detected by the appearance of blue color due to excess iodine and starch. This could be observed by naked eye with a stopwatch or recording as VDO via computer through webcam camera (C200, Logitech, www.logitech.com) [28] of which driver and software are available for download on the website. The timing for the titration can be evaluated via the time appearing on the VDO recording. After the titration process completes, water from the third syringe (see Fig. 1) was dropped. It would move along the path to attach the coulometric drop cell at the AE, becoming a bigger drop and would leave out from the electrode system. The electrode system could be cleaned up in such a way.

3. Results and discussion

3.1. Falling liquid drop volume

As a liquid drop is formed by the adhesive force of liquid–liquid interface, the liquid prefers to interact themselves more than interacting with air. In case of the falling liquid drop which flows from, for example, end of tubing, it forms a pendant shape. The size expanding leads to increase in weight, and finally, it falls down. As a result, with the same tubing size, viscosity and liquid surface tension, the liquid mass which forms a falling drop would be the same for every falling liquid drop. Therefore, the falling liquid drop volume would be the same. This phenomenon is useful for miniaturizing an analytical system without the need for using complicate and/or expensive volume measuring device.

The volume of falling liquid drop from the end of tubing can be expressed through the Eq. (1) [29].

$$V = 2\pi r \sigma / \rho g \tag{1}$$

Where, V= volume of liquid drop, r= tubing radius, $\sigma=$ surface tension of liquid, $\rho=$ density of liquid, and g= gravitational force constant.

In this work, the volume of solution could be estimated from the average weight obtained by weighing 5 drops (with 5 replications) using 4-decimal balance. Then the average volume of drops was estimated via density of 1 g/mL. With the surface tension of falling drop solution was assumed to be constant, the volume of droplet can be adjusted by changing the drop head orifice guided by Eq. (1). In this experiment, the droplet volume, when using 1/16" O.D. capillary peek tube (or 1.588 mm), was found to be 25.8 μL (using the Eq. (1), the calculated volume would be 36.7 μL), while a falling drop volume will decrease to be 6.8 μL (the calculated value by the Eq. (1), being 8.33 μL), for using 0.35 mm O.D. fuse silica capillary.

3.2. Evaluation of some analytical parameters

There are 2 steps in coulometric titration, namely, (1) electrochemical generating for the titrant and (2) the chemical reactions of the generated titrant and sample. These 2 steps must be fast enough to provide the complete chemical reaction so that the end point can be observed easily and correctly. The operating current involves accuracy and precision of titration timing. Also the convection of sample and reagents in the coulometric drop cell is to be effective enough to provide such effective mixing and leading to complete reactions.

It was observed that employing higher operating current, such as $60\,\mu\text{A}$, would result in higher rate in producing the titrant and due to limitation in slower rate of mixing of the titrant with sample via convection, even applying nitrogen gas blowing to the drop. The not-yet reacted titrant in the drop would make the color change before reaching the equivalent point; leading to negative error result. Table 1 illustrates the effects of operating current and volumes of liquid drop (as a coulometric cell) to the time of color change of the indicator for a blank solution. The time for color change would take longer for the smaller operating current; the timing for the color change of indicator for the blank solution is taken into account for the blank value (or blank timing) in the analysis procedure.

It was observed that KI concentrations (0.01, 0.1 and 1.0 M) affected the indicator color change. The lower KI concentration (0.01 M) provides longer timing for change in indicator color, within \sim 2–3 sec, while 1 and 0.1 M KI provide faster timing (\sim 1–2 sec). Since the higher KI concentration, the higher mass transfer rate of iodide to working electrode, although mass transfer rate was promoted with convection from nitrogen gas blowing.

The nitrogen gas blowing through syringe needle was employed to promote better convection in the coulometric drop cell. The higher flow rate of nitrogen gas makes liquid drop cell detach and spin out of electrode. The longer time for purging nitrogen gas to the liquid drop cell also makes water evaporate. It was found that for a total volume of coulometric drop cell of \sim 20 μ L, blowing nitrogen gas longer than 5 min can make total volume of liquid drop cell decrease significantly. The decrease in coulometric drop cell would consequently affect the effective surface area of working electrode for electrochemical titrant generation. However, from previous investigation on using a liquid drop for gas sampling interface [30], it was found that the higher humidity atmosphere can decrease evaporation in coulometric drop cell. Therefore, purging of humidified nitrogen gas for convection in liquid drop cell would help to decrease the water evaporation from coulometric drop cell.

Hence, the suggested condition for further analysis should be 20– $60 \,\mu\text{A}$ of applied current for 0.1 M KI and 1 liquid drop (V=27 μL) sample volume, 300 mL/min of nitrogen gas flow rate.

Table 1Timing of color change of the indicator for a blank solution with different operating currents and volumes of the coulometric drop cells.

Volume of	Time of color change (s)							
coulometric drop cell (µL)	Operating current (µA)							
	20		30		40		60	
24 41 50	4.28	±0.44	2.27	$_{\pm}^{-}$ 0.19	2.00	± 0.14 ± 0.11 ± 0.09	0.88	±0.08

Triplicate results: mean \pm SD.

3.3. Thiosulfate determination

The standard thiosulfate solution which was standardized by using standard iodate in presence of iodide [26] was used for verifying the proposed micro-coulometric titration in a drop. A change of color due to complex of starch and excess iodine was monitored by using a simple webcam camera [28]. The constant current source provides a simple system in microampere level $(40 \,\mu\text{A})$. The results of the thiosulfate determination by using the developed micro coulometric titration agree with those by the standard iodine titration with KIO₃ as shown in Table 2, having the correlation: y = 1.014x and R being 0.9987.

3.4. Ascorbic acid determination

The ascorbic acid was determined by employing the proposed method compared to the standard method of ascorbic acid determination (the 2, 6-dichloroindolphenol titration) [27] for synthetic samples (Table 3) and real vitamin C samples (Table 4). Working electrodes of a platinum wire as well as a stainless steel wire (as to serve cost effective purpose) were employed. It could be observed that the results obtained by using the stainless steel having higher values than that using the platinum and that of the standard method. This could be due to the addition oxidation reactions of some components of the stainless steel producing higher charge.

It could be noted that webcam camera could be optional recording the change of the indicator color. Higher degrees for automation could be made by connecting the current source to the

Table 2Determination of thiosulfate using the micro coulometric titration in a liquid drop and the conventional iodometric titration.

Experiment number	Thiosulfate concentration (mM)					
	The proposed titration ^a	micro coulometric	Conven titration			
1.	1.0	± 0.0	0.98	± 0.01		
2.	1.9	± 0.1	1.92	± 0.01		
3.	2.9	±0.0	2.93	±0.08		
4.	4.0	± 0.1	3.86	±0.04		
5.	4.8	±0.0	4.80	±0.06		
6.	5.6	± 0.0	5.63	± 0.03		
7.	6.9	± 0.0	6.73	± 0.12		

Triplicate results: mean \pm SD.

Table 3Determination of ascorbic acid in synthetic sample solution employing both platinum and stainless steel as working electrode and the standard 2,6-DCIP titration method [27].

Synthetic sample	Ascorbic concentration (mM)						
	The pr	oposed me	2,6-DCIP method				
	Platinu electro				- memod		
1	0.5	±0.0	-	-	0.46	±0.01	
2	1.0	± 0.0	1.0	± 0.0	0.96	± 0.02	
3	1.4	± 0.1	1.6	± 0.1	1.49	± 0.01	
4	1.9	± 0.1	-	_	1.81	± 0.03	
5	2.6	±0.0	2.5	± 0.1	2.57	± 0.02	
6	-	_	3.2	\pm 0.1	2.92	±0.16	

Triplicate results: mean \pm SD.

Table 4Determination of ascorbic acid contents in commercial vitamin C tablet samples using the proposed and the 2, 6-DCIP titration [27] methods.

Sample	Ascorbic acid content (g/tablet)						
	The proposed method ^a				2,6-DCIP titration		
	Platinur	n electrode	Stainles	s steel electrode			
Brand 1. Brand 2.	0.95 0.98	$\begin{array}{l} \pm~0.02 \\ \pm~0.01 \end{array}$	0.95 1.00	$\pm 0.05 \\ \pm 0.10$	0.931 0.954	$\pm 0.002 \\ \pm 0.001$	
Brand 3. Brand 4.	0.97 1.02	$\begin{array}{l} \pm~0.01 \\ \pm~0.01 \end{array}$	1.49 1.28	$\begin{array}{l} \pm0.34 \\ \pm0.07 \end{array}$	0.968 0.954	$\begin{array}{l} \pm~0.002 \\ \pm~0.002 \end{array}$	

Triplicate results: mean + SD.

computer and employing automatic end point detection (such as potentionmetric, amperometric or optical detection). In such a way, the computer would be able to start the titration, to count the titration time and to continuously acquire the generated current and the detection signal (potential, current or absorbance, for instance), allowing the acquisition of titration curve (charge versus detection signal) and better precision would be obtained.

4. Conclusion

Micro coulometric titration in a liquid drop with electrochemical generation for iodine was proposed as an approach for downscaling analysis. Thiosulfate and ascorbic acid were chosen to be models to test the performance of the proposed systems. This system is simple and cost effective. It consumes very low sample and reagent(s) volumes, in microliter levels, with a simple falling drop phenomenon. This simple manipulation of liquid drop on a slope hydrophobic path by gravity provides a novel analytical system that is similar to a flow system but without tubing. The proposed system should be useful to various applications such as the total antioxidant compound determination in human serum which needs a low volume of sample solution [31,32], gas sampling interface on liquid drop [30]. Further development with some other types of detection and to provide higher degrees of automation has been in progress.

Acknowledgment

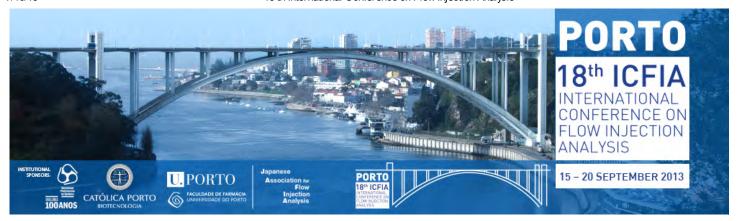
The authors thank the Thailand Research Fund (TRF), Center of Excellence for Innovation in Analytical Science and Technology, Chiang Mai University (I-ANALY-S-T), and Faculty of Science, Chiang Mai University for financial support.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.talanta.2013.04.039.

References

- [1] M.L. Magnuson, E.T. Urbansky, C.A. Kelty, Talanta 52 (2000) 285–291.
- [2] J. Wang, Talanta 56 (2002) 223–231.
- [3] M.R. Milani, A.A. Cardoso, Microchem. J. 74 (2003) 75-82.
- [4] A.A. Cardoso, P.K. Dasgupta, Anal. Chem. 67 (1995) 2562–2566.
- [5] H. Liu, P.K. Dasgupta, Anal. Chem. 67 (1995) 4221–4228.
- [6] H. Liu, P.K. Dasgupta, Anal. Chim. Acta 326 (1996) 13-22.
- [7] H. Liu, P.K. Dasgupta, Anal. Chem. 69 (1997) 1211–1216.
- [8] A.W. Steele, G.M. Hieftje, Anal. Chem. 56 (1984) 2884–2888.
- [9] K.Y. Hui, M. Gratzl, Anal. Chem. 69 (1997) 695–698.


^a Detection with the naked eye.

^a Detection with the naked eye.

^a Detection with the naked eye.

- [10] M. Gratzl, Anal. Chem. 60 (1988) 2147-2152.
- [11] J.T. Stock, Anal. Chem. 52 (1980) 1R-9R.
- [12] R. Mihajlovic, Z. Stanic, M Antonijevic, Anal. Chim. Acta 497 (2003) 143–154.
- [13] M. Chateau-Gosselin, G.D. Christian, G.J. Patriarche, Microchim. Acta 71 (1979) 415–421.
- [14] S. Chang, Y Lee, Geosci. J. 6 (2002) 277-280.
- [15] R.H. Taylor, J. Růžička, G.D. Christian, Talanta 39 (1992) 285–292.
- [16] E.V. Aquino, J.J.R. Rohwedder, C. Pasquini, Anal. Bioanal. Chem. 386 (2006) 1921–1930.
- [17] S.C.B. Oliveira, E.C.S. Coelho, T.M.G. Selva, F.P. Santos, M.C.U. Araújo, F.C. Abreu, V.B. Nascimento, Microchem. J. 82 (2006) 220–225.
- [18] A.D. Dakashev, V.T. Dimitrova, Talanta 51 (2000) 573-578.
- [19] C. Pasquini, E.V. Aquino, M.V. Reboucas, F.B. Gónzaga, Anal. Chim. Acta 600 (2007) 84–89.
- [20] S. Sawada, M. Taguma, T. Kimoto, H. Hotta, T. Osakai, Anal. Chem. 74 (2002) 1177–1181.

- [21] Z.K. He, B. Fuhrmann, U. Spohn, Anal. Chim. Acta 409 (2000) 83-91.
- [22] F.B. Gonzaga, S.P. Sobral, Talanta 97 (2012) 199-203.
- [23] F.B Gonzaga, M.A. Goncalves, S.P. Sobral, C.M. Ribeiro, Fuel 94 (2012) 70–74.
- [24] J. Gorbatsova, M. Jaanus, M. Kaljurand, Anal. Chem. 81 (2009) 8590–8595.
- [25] S.K. Chung, K. Rhee, S.K. Cho, Int. J. Precis. Eng. Manuf. 11 (2010) 991–1006.
- [26] G.D. Christian, Analytical Chemistry, 6th ed., Wiley, New York424.
- [27] W. Horwitz, AOAC Official Method 967.21 for Vitamin Preparation, 17th ed., Official Methods of Analysis of AOAC International, 2000, Chapter 45, p. 16.
- [28] W. Wongwilai, S. Lapanantnoppakhun, S. Grudpan, K. Grudpan, Talanta 81 (2010) 1137–1141.
- [29] W. Yang, Z. Zhang, X. Hun, Talanta 62 (2004) 661-666.
- [30] S. Lui, P.K. Dasgupta, Anal. Chem. 67 (1995) 2042–2049.
- [31] G.K. Ziyatdinova, H.C Budnikov, V.I. Pogorel, T.S Ganeev, Talanta 68 (2006) 800–805.
- [32] G.K. Ziyatdinova, A.V. Voloshin, A.K. Gilmutdinov, H.C. Budnikov, T.S. Ganeev, J. Pharm. Biomed. Anal. 40 (2006) 958–963.

WELCOME

VENUE

SCIENTIFIC PROGRAMME

COMMITTEES

REGISTRATION

ABSTRACT SUBMISSION

TALANTA SPECIAL ISSUE

ACCOMMODATION AND TRAVEL

SPONSORS AND EXHIBITORS

CONTACT US

WELCOME

It is our pleasure to announce that the 18th edition of the "International Conference on Flow Injection Analysis" will take place in Porto, Portugal, from 15 to 20 September, 2013.

We expect that this conference will continue to be a privileged forum to discuss novel ideas and instrumental advances in flow analysis, flow chemistry and biochemistry, and related subjects and techniques. This conference series has also established itself as a way to strengthen friendship among researchers in this area and also project future work, in a relaxed and informal atmosphere.

Hopefully, we also expect that young students and researchers involved in related fields will be interested to join us in Porto, so that the field of automation, miniaturisation, innovative ways in sample and reagents handling, will continue to be powerful tools not only to improve analytical methods, but also to study new chemistries. Flow analysis is a particularly attractive field of research as it involves both scientific knowledge and a great deal of human ingenuity.

You are very welcome to come to Porto, a city known for its hospitality, world heritage historical centre, fortified wine, some of the attributes that granted Porto the distinction of "Best European Destination 2012".

IMPORTANT DATES

Website Opening

January 31st, 2013

Registration and Abstract Submission Opening

March 1st, 2013

Deadline for Abstract Submission new

June 7th, 2013

Abstract Acceptance Notification

June 14th, 2013

Deadline for Early Bird Registration

June 28th, 2013

2013 © 18TH INTERNATIONAL CONFERENCE ON FLOW INJECTION ANALYSIS

icfia.eventos.chemistry.pt 1/1

NOVEL SIMPLE MONO-SEGMENTED FLOW SYSTEM WITH LIQUID DROP AND SEPARATION UNIT FOR THE AMMONIUM DETERMINATION

Patcharin Jaikang¹, **Tinakorn KANYANEE**^{1,2}, Purnendu K. Dasgupta³, Kate Grudpan^{1,2}

¹Department of Chemistry, Faculty of Science, Chiang Mai University, 50200, Thailand, ²Center of Excellence for Innovation in Analytical Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand,

Department of Chemistry and Biochemistry, The University of Texas at Arlington, Texas, 76019-0065, USA.

Discussion will be made on novel mono-segmented flow conductometric system employing moving liquid drop principle [1] for ammonium determination. With a simple conversion unit, the NH₃ gas ,converted from NH₄⁺ ion in solution, is collected in a liquid drop of gas absorbing solution and can be in-situ determined by using conductometry [2]. Instrumentation, optimization of the system, interference, analytical characteristics will be discussed ,together with the benefits obtained.

References

- [1] T. Kanyanee, P. Fuekhad, K. grudpan, Talanta, 115 (2013) 258-262.
- [2] K. Toda, J. Li, and P. K. Dasgupta, Anal. Chem., 78 (2006) 7284-7291.

January 23-25, 2013. The Tide Resort, Bangsaen Beach, Chon Buri, Thailand

Pure and Applied Chemistry International Conference 2013 "Global Chemical Sciences for Green Community"

Home

Welcome Message

Welcome Message

Invitation to PACCON 2013

Dear Colleagues,

On behalf of the organizing committee, it is my great honor and pleasure to invite you cordially to participate in the Pure and Applied Chemistry International Conference (PACCON 2013) which will be held during January 23-25, 2013 at Bangsaen, Chon Buri Thailand, with a theme of "Global Chemical Sciences for Green Community."

PACCON2013 aims to provide a timely forum and bring together researchers and developers in pure and applied chemistry from all over the world to review, discuss, and disseminate their ideas and research in diverse issues related to chemistry and technology applications in the context of sustainable development, and a novel global knowledge to promote the quality of life. Moreover, it passionately pursues the spirit of collaboration and exchanges the experience and knowledge at all levels.

The PACCON 2013 program covers all areas of chemistry and chemistry-related disciplines, which comprise the following:

Keynote Speaker/Plenary Lectures

Contributed Talks on the Following Topics:

Analytical Chemistry, Inorganic Chemistry, Organic Chemistry and Medicinal Chemistry, Physical and Computational Chemistry, Material Science and Nanotechnology, Industrial Chemistry and Innovation, Polymer Chemistry, Petroleum Chemistry and Catalysis, Environmental Chemistry, Chemical Education, Cosmetics, Biological/Biophysical Chemistry and Chemical Biology, Bioinformatics, Free radicals / Antioxidants, Food safety and Food Chemistry.

In this year we proudly present an exclusive symposium "Presidential Symposium of Thai-Korean Nanotechnology"

Important Dates:

Abstract submission deadline: October 15, 2012. Early Registration: until November 30, 2012.

Participants can find out all details about PACCON 2013 from the conference website at http://paccon2013.sci.buu.ac.th.

I hope that the conference will turn inspiration into fruitful scientific investigations, and the participants will enjoy a wealth of cultural landmarks and attractions in the east coast of Thailand.

I look forward to seeing you in Bangsaen Beach, Chon Buri, Thailand in coming January. Sincerely yours,

Usavadee Tuntiwaranuruk, Dean, Faculty of Science, Burapha University, Chonburi, Thailand

Pure and Applied Chenmistry International Conference 2013

TIME-BASED MICRO TITRATION WITH REDOX REACTION IN LIQUID DROP

108

088

Tinakorn Kanyanee, Tanapong Yapraserd, Kate Grudpan

Faculty of Science, Chiang Mai University, Thailand

A simple approach with time-based micro titration employing two liquid drops was developed. The self defined constant volume liquid drop containing a titrand was manipulated to drop, while the other liquid drop containing a self indicator titrant was manipulated to merge with the first liquid drop. This would results in changing of color of the drop solution. Time period for the color change will depend on both titrand and titrant concentration. The redox reaction titration of ascorbic acid and potassium permanganate was chosen as model redox couple. With using a calibration graph of time vs. concentration, unknown concentration of sample can be estimated with %RSD less than 10 %. Application for simple ascorbic acid termination will be demonstrated.

Keywords Micro liquid drop titration; Redox reaction; Ascorbic acid determination

ANC

Wednesday, 25 June 2014 02:15:00 PM HOME REGISTRATION & SUBMISSION LOCATION CORRESPONDENCE PURE AND APPLIED CHEMISTRY INTERNATIONAL CONFERENCE 2014 (PACCON2014) "Moving Towards Innovation in Chemists January 8-10, 2014 Centara Hotel and Convention Centre, Khon Kaen, Thailand

ANC-P-92 Analytical Chemistry

Simple and Low Cost Moving Liquid Drop for Down-Scaling Analysis System

Tinakorn Kanyanee^{1,2}*, Kate Grudpan^{1,2}

¹Center of Excellence for Innovation in Analytical Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand ²Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand *E-mail:tkanyanee@gmail.com

The simple and low cost "moving liquid drop" was successfully developed and applied for down-scaling analysis systems. Various applications of such moving liquid drop were successfully developed for micro coulometric titration in a drop, gas sampling and analysis, and migration micro titration. The result and advantages of the system will be discussed.

Keywords Moving liquid drop; micro titration; gas sampling and analysis (3-5 words)