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Abstract

In this project, we propose and analyze the numerical methods for the
approximation of axisymmetric flows as well as algorithms suitable for the solution of
fluid structure. This work deals with the three-dimensional axisymmetric fluid problem
based on the incompressible Navier-Stokes equations (NSEs) which are solved on the
two-dimensional problem. We then introduce a new form of the NSEs for axisymmtric
flow derived according to Aristov and Pukhnachev (2004). The new function is
introduced that is related to the pressure and a system similar to the vorticity-stream
function formulation is derived. The new form of the NSEs for the axisymmetric motion
of a viscous incompressible fluid offers the possibility to create a different numerical
model. Because of the physical nature of the coupling function, the model may have
different mathematical properties than the vorticity-stream function formulation. We
account for large deformations of the fluid structure and we show how existing
algorithms may be improved to reduce the computational time. Moreover, the developed
method can be applied to numerical simulation for more complicated flow problems.
Further investigation of developed methods is encouraged. The success can be

attributed to the adequate physical nature of the auxiliary function.
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Introduction to the research problem and its significance:

Axisymmetric-rotating flows have been studied for a variety of reasons. Their
technological applications are many (e.g., centrifugal pumps, cyclone separators and so
on). Their importance to geophysical flows is indicated over a large range of scales
(e.g., tornadoes, hurricanes, ocean circulations).

These flows have been treated by representing the Navier-Stokes equations in
cylindrical coordinates. The stream function or the velocity and pressure field is used to
numerical simulation in many researches. Methods of the approximate solutions of the
Navier-Stokes equations have been investigated rather extensively in the past.

The practical estimation of any scheme can be rather different from the
theoretical estimation because of the nonlinearity of the Navier-Stokes equations and
the implicit nature of the continuity condition. This is correct specifically for very high
Reynolds numbers. Different schemes perform better in different situations. There is no
single scheme can be best in every aspects. The above reason causes the creation of
new methods in the past several years.

In 2003, Aristov and Pukhnachev [1] proposed new form of the Navier-Stokes
equations. The advantage of the new form of the equations is the following:

a) The system is weakly coupled system of two parabolic second-order
equations, for which the first initial boundary value problem is stated, and one linear
elliptic fourth-order equation, for which a Neumann-type problem is stated.

b) The boundary conditions for unknown functions are uncoupled, in contrast to
the traditional approach, where the proper derivation of the boundary values for the
vorticity is a difficult computational problem.

The Navier-Stokes equations for a viscous incompressible fluid are

dv 1

— =—=Vp+vV¥ (1)

dt P

V-v=0 (2)
where p is the pressure, p is the density, and v the kinematic viscosity (v = lal where

is dynamic viscosity). The density and the kinematic viscosity are assumed constant.

In two-dimensional flow, the incompressible Navier-Stokes equations can be
formulated by introducing two scalar variables, the vorticity @ stream function v, in
place of the primitive variables, the velocity V and pressure p. For fluid motions
parallel to the plane Xy, the scalar vorticity @ is the z -component of the vorticity
vector @ =V xV , normal to the plane, namely,

@=VxV-K (3)



where @ =V xV is the unit vector normal to the plane Xy.
In two-dimensional, the condition of incompressibility V-V =0 can be satisfied
by expressing V in term of stream function y according to
V=Vyx k.
In conclusion, taking the curl of the momentum equation (1) and make use of the fact
that the curl of a gradient of a scalar is zero (so that the pressure terms go away) leads

to the vorticity transport equation

" vV
ot ox oy oy oX

On the other hand, substituting the expression V =V x k in to the vorticity definition
(3) gives the following Poisson equation for the stream function

Viy=-o.
The vorticity-stream function formulation of the Navier-Stokes equations for two-

dimentional flow are
%+J(w,y/)=vvzw, (4)

—Vzl//=a), (5)
8((0,1//)_
o(x.y)

Substitution @ = —Vzl// into the vorticity transport equation (4) gives the following time-

where J(w,y) =

dependent bi-harmonic problem

oViy
ot

+J (Vzl//, l//) =vViy. (6)
The Navier-Stokes equations for a viscous incompressible fluid can be written as
v NV, oV v v2?: 19

+V £ Yo 2R 1{

r r r r
_+ —_

ot "eor roo o por

aVH av@ r
+v, =2+ +v, L4t l=— — 4y

YO Ny Ny L [ Yy 20
“or roe0 ‘oz r pr oo

ot
aVz+vr aVZ+V—"’6V2+VZ », =—1@+vv2vz, (9)
ot o r 06 oz p 0L
o(rv
r or rog oz
where the Laplace operator in cylindrical coordinates takes the form
2 2

volof o) 18 o

ror\ or) r°o06° oz

0, (10)



and r, @ and z denote the radial, azimuthal and axial coordinates respectively and
V., V, and v, the respective components of the velocity vector.

Axisymmetric flow is most conveniently described in terms of cylindrical
coordinates (r,@, Z) . The assumption of axisymmetry implies that the velocity
components and pressure are functions only of rand z. Therefore, the Navier-Stokes
equations for a viscous incompressible fluid in case of axisymmetric flow can be written

as

r 8VI’ r
+V, —+v, - =—— 4y
ot or o r p or

+_
o ror rr" oz°

v, v,2  1op {azvr+;avr 1 azvr} 1)

0 (12)

Ny Mo Ny ViV _ oV, o, 1 +82v9
8r rar r? o0z? |

Z4y z4y ¢ z = z z

v v ov 16pV2v 18v+62v
o or o por or* ror ot

1M+%:O. (14)
r or 0z

The stream function is defined such that the continuity equation is identically

satisfied, which gives
1
vV, = ——8—W and = la—l// .
r oz r or

The stream function is related only to the radial and axial velocity components and

(15)

z

independent of azimuthal velocity component. The vorticity vector in axisymmetric flow
is given by @ =(w,,®,,®,) such that
ave aVr aVz 1a(rV¢9) %_'_V_H

0, =-—, w, = -, w, =— = .
0z oz or r or or r

Now, we introduce the function I'=rv,. Using Eq.(15) vorticity vector can be

represented in the following form

lor 1 lor
o=(———,—=-Ey,——),
( roz r v r@r)

where
@_2_12 52
or® ror az

and the velocity vector is

1 81// 1 loy

r oz r ‘roor o

The association between stream function y and vorticity function @, is -Ey =ra,.

V=(V,,V,,V,)=

Interm of v, w,, and I, the axisymmetric Navier-Stokes equations become



DI =vET, (16)

2
o) ({22 4l)
r r ror\r oz\r

By =ra,, (18)
where
0 1oy o 1dwo

ot rozor roror
The substitution of Eq.(15) into Eq.(13) provides

2
g[a_w_za_wa_w_ijg rgpg(a_wj o, (19)
or\ ot ror oz oz p r\or
Therefore, there is a function @ satisfying the relations
1 1(oy) 1o@
_p:__z(_‘//j +==, (20)
o, or ror

v 1oy oy o®_ g, 1)
ot ror o oz

The substitution of Eq. (15) into Eq. (12) provides

X Iowdt 1w _ gr. (22)

ot r oz or r@r@z

Differentiating Eq. (20) and Eq. (21) with respect to r and z, respectively, and
substituting the resulting expressions into Eq.(11), where v, and V, are expressed in
term of , we obtain

Ed=—|T2+ [a://j 2y, (23)
r’ oz r or

Since, we do not know boundary conditions for the function @, which is needed to Eq.
(23). Aristov and Pukhnachev [1], are shown that if apply operator E to Eq. (23) the
boundary condition for new fourth-order equation can be derived easily. So, applying the

operator E into Eq.(23) we get a fourth-order equation
1 0 2 0
E2D=F| —| 2+ AR Vel (24)
r’ 0z r or
In term of new variables v, ®, and I, the axisymmetric Navier-Stokes equations
become Egs. (21), (22) and (24).
A typical boundary condition consists in prescribing the value of the velocity V

on the boundary
V|, =b(X,t), te[0,T], (25)



where S is the boundary of the domain V occupied by the fluid, b is given function
and X; € S. When the boundary is a solid wall in contact with the fluid, the velocity
boundary value b is equal to the velocity of the wall. The condition on the tangential
components of velocity is known as the no-slip condition.
The initial condition consists in the specification of the velocity field V, at the
initial time, t =0, namely,
V|, =%(X). (26)

The boundary velocity b must satisfy, for all t >0, the global condition
$n-bds=0, (27)
which follows from integrating the continuity equation over V and using the divergence
theorem. The vector N denotes the outward unit normal to the boundary S . To
determine the pressure uniquely additional requirement is needed
p(X, 1)=0, Vte[0,T], X eV.

The boundary conditions supplementing the vorticity-stream function formulation
of the Navier-Stokes problem for two-dimensional flow are deduced by separating the
normal and tangential components of the velocity boundary condition \7|S = B(YS ).
Here S represents the boundary of the two-dimensional domain V . Let N denotes the
outward unit vector normal to the boundary S and 7 is the unit vector tangential to S .
Finally, let S be the curvilinear coordinate along the boundary S . Then, the boundary

condition for the normal component

n V(//Xk‘ =kxN-Vy=7 Vl//=a—l’// =n-b,
s 0S |

and for the tangential component

T V!//XE‘ =k x7-Vy=-n Vl//=—a—l// =7-b.
s on g

The first boundary condition, after integrating its right-hand side, provides a Dirichlet
condition fory . So that the two conditions can be written as follows

oy

=b
N (28)

vl =a,

S

S
where a= J.ﬁ-EdS'and b=-7-b . The initial data ¥ and the boundary data a(s,t)
S
are assumed to satisfy the conditions
oa(s,0)
0os
The initial condition for the system of equations governing @ and y is concerned, the

V-V, =0, =A-V,. (29)

initial velocity field V,, provides the following initial condition for the vorticity



o), =Vx(]_)-k =Vx¥,-k. (30)
Let R™ be the r >0 half-plane of the (r,z) plane, Q be the bounded domain
in R", X be the boundary of Q, Q, =Q><(O,T), and S; =Z><(0,T). Assume the
closure Q of domain Q does not contain points lying on the z axis.
The boundary conditions for the system of Egs. (21), (22), and (24) are
considered only in the case where v, =V, =V, =0 are satisfied at the boundary of the

flow domain. In term of the functions v and I, these conditions are represented in the

form
W_o,  (rnzbes,, (31)
on
w=0,I=0, (r,z,t)eS,, (32)

0
where 8_ means differentiation with respect to the normal to the X . The boundary
n

condition (32) can be used for Egs. (21) and (22), respectively. The initial conditions for
the system of Egs. (21), (22), and (24) are

w=w,(r,z), (r,2)eQ, t=0, (33)

=r,(r,z), (r,2)eQ, t=0. (34)
Boundary conditions for the function @ which is redundant for Eq. (21) is derived by
using condition (31). To this end, by using operator E apply into Eq. (23) provides a
fourth-order equation (24). One boundary condition for Eq. (24) follows immediately from
Egs. (23), (31), and (32)

E® =0, (r,z,t)esS;. (35)

0
Applying the operator 8_ to Eq. (23) and using Egs. (31) and (32), then the second
n

condition for Eq. (24) is following

5 2 6 (op
—Eb=——| — |[Evy, r,z,t)eS. . 36
on ran(arj v (nzhes, (30)

Concluding this section, Eq. (31) follows from Eqs.(23) and (36) under the additional

condition

10 (oy o (1 .
— | - |cosp+—| =Ey |sinp =0, rzt)esS;,
r’ an(az] 4 8n(r V/j v (rzhes

where @ is the angle between the z axis and the normal to the X . If the last condition is
valid for t =0, it is satisfied at least for small T >0.

This new form of Navier-Stokes equations can attributed to the adequate
physical nature of several phenomenon such as: axisymmetric rotating flows (For

example, the hard disk drive (HDD) is one of the most important components in many



computers these days and it is the primary device, which provides storages space for
software and data. In today’s Thailand hard disk drive industry, the demand for higher
recording density and higher rotating speed has become more and more stringent and
this requires a good understanding of the airflow characteristics to achieve a highly

accurate head positioning).

Literature review:

Couette flow (the flow between two concentric rotating cylinders) is simplest
example of axisymmetric flow can be find in any handbook of fluid mechanics (see for
example [2-3]). Axisymmetric flow is a subject of much interest in many areas of
engineering and has been investigated by many researchers. There have been a

number of experimental and numerical studies of these flow (e.g.,[4-28]).

Escudier [11] observe the flow produced in a cylindrical container by a rotating
endwall. Observations made using the laser-induced fluorescence technique are
presented of the steady swirling flow produced in a closed cylindrical container
completely full of fluid by rotating one endwall. The oscillatory motion in certain swirling
flows is observed by Chanaud [11]. A descriptive experimental study was made in both
air and water of the temporally periodic motion that occurs in the vortex whistle and
cyclone separator. A comparison between the experimental visualization and numerical
simulations of the occurrence of vortex breakdown in laminar swirling flows is presented
by Lopez [13]. The physical mechanisms for vortex breakdown is studied by Brown and

Lopez [14]

A viscous incompressible fluid flow in cylindrical container with a rotating disk at
the fluid surface is numerically investigated by [4,13-18,24-28]. Inamuro, Yamaguchi,
and Ogino [4] solve the axisymmetric Navier-Stokes equations using a finite-volume
method. The effect of the relative directions and magnitudes of disk and container
rotations are studied. The numerical simulation for solving the axisymmetric unsteady
incompressible Navier-Stokes equations using vorticity-velocity variables and a
staggered grid is presented by Dexun and Yanwen [16]. The numerical results are also
compared with experimental data. Lopez and Shen [17], studied about an efficient and
accurate numerical scheme for the axisymmtric Navier-Stokes equations in primitive
variables in a cylinder. Numerical solutions of the axisymmetric flow are used to study
over a range of Reynolds numbers [10° —4x10°] where the flow is observed to remain

axisymmetric (e.g., [5,8,17-19]). The numerical simulation of the incompressible fluid



flows the appropriate mathematical formulation of the Navier-Stokes equations may be

advantageous if the choice is according to the problem domain and boundary condition.
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Objectives:

® To derive a numerical method for approximate solutions of the NSEs in new
variables proposed by Aristov and Pukhnachev (2004).

® The proposed technique can be used in the future for in-depth investigations of
the phenomena in rotating flows.

® The developed method can be applied to a numerical simulation of more
complicated flow problem such as, two-dimensional flow past circular cylinder.

® The success can be attributed to the adequate physical nature of the auxiliary
function.

Methodology:

® | jterature search and survey and study on the methodology used in this
research.

® Problem formulation and construct of the mathematical model.

® Developed computer codes (FORTRAN code).

°

Numerical solution of the particular problem.

Scope of research:

In this project, there are limitations on

The fluid is viscous and incompressible.
The axisymmetric flow problems are considered.

Using the numerical methods for approximation solution.
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Numerical Implementation for New Form of the Navier-Stokes Equations

Kanyuta Poochinapan®*, Nikolay Moshkin

*Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

In this project, we propose and analyze a numerical method for the approximation of flows as well
as algorithms suitable for the solution of fluid structures. This work deals with fluid problems based
on the incompressible Navier-Stokes equations which are solved on the two-dimensional problem. We
then introduce a new form of the Navier-Stokes equations for flow derived according to Aristov and
Pukhnachev (2003). A new function related to the pressure and a system similar to the vorticity-
stream function formulation are derived. The new form of the Navier-Stokes equations for the motion
of a viscous incompressible fluid offers the possibility to create a different numerical model. Because
of the physical nature of the coupling function, the model may have different mathematical properties
than the vorticity-stream function formulation. We account for large deformations of fluid structures.
Moreover, the developed method can be applied to numerical simulation for more complicated flow
problems. The success can be attributed to the adequate physical nature of the auxiliary function.

Keywords: Navier-Stokes equations, Incompressible flow, Finite difference method

1. Introduction

It may be worthwhile to briefly mention why the 2D flow is important. It has applications in
the industry (e.g. progressive cavity pumps) and importance to the scientific world, specifically in
fluid mechanics. In general, a viscous fluid flow inside a driven cavity has been a common experiment
approach used to check or improve numerical techniques (see for example, Ghia et. al. 1982; Botella
and Peyret, 1998; Spotz 1998; Christov and Marinava, 2001; Moshkin and Poochinapan, 2010).

Traditionally, the viscous incompressible flow has been treated by representing the NSEs in the
Cartesian coordinates. The stream function, stream function/vorticity, or (alternatively) the velocity
and pressure field can be used. First, we write the viscous incompressible flow in the Cartesian
coordinate system (z,y),

1
Ut + Uly +VUy = —;px + V(uacac + uyy)a (1)
1
Vi + Uvy + 00y = —;py + V(Uacac + 'Uyy)a (2)
Uy +vy, = 0, (3)

where u and v are the velocity components in x— and y—directions, respectively; p is the pressure,
p is the fluid density, and v is the kinematic viscosity. The fluid is subjected to potential external
forces. In 2D, the constraint of incompressibility V - v = 0 can be satisfied exactly by expressing the
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velocity vector in terms of the stream function v according to

_oy O
Yoy VT o )

The aim of the present work is to develop and validate a finite-difference scheme for the approximate
solution of governing equations (1)—(3) proposed in Pukhnachev (2004):

¢t - ¢xwy + (I)x = VAlb, (5)
Ad = 2, A, (6)
def 02 0? . . .
where A = — 4+ —— and a function ® satisfies the relations
0x?  Oy?
1
;p == —¢Z + q)y.

The case of the no-slip conditions satisfied at the boundary of the flow domain will be considered only.
In terms of the function v only, boundary conditions are

oY

=0, % :b(xvy)7 (7)

0
where _lb means the derivative in the direction of the normal vector to the boundary. To complete

n
the formulation of the problem, it is necessary to specify the initial conditions

¢:¢0({L‘,y), (I):(I)O(xvy)v t=0. (8)

The main difficulty in solving the system of equations for 1) and ® is that two boundary conditions are
specified for v while none is available for ®. This difficulty is similar to the vorticity—stream function
equations in two dimensions.

A schematic of the flow geometry is shown in the figure where parameters are defined: L, is the
width of the cavity, L, is the height of cavity, and U is velocity of wall motion.

YA U YA U
e e
L L
y y
L “X > L “X
X X

Figure 1: The flow geometry.



The non-dimensional parameters of the problem are

L L
U and T'= =%

R p—
¢ v L,’

where Re is the Reynolds number and I' is the aspect ratio. The system of equations (1)-(3) is
rendered dimensionless as follows:

V=7 9)

2. Numerical method

The domain @ = {0 <z <1, 0 <y < I'} is covered with a uniform staggered grid

Qh = {(xlvy])‘xl - (’L - 15)h:v7 Y = (] - 15)hy7 1= 17 7N:v7 J = 17 7Ny}

with spacings h, = Nx1_2 and h, = ﬁ in the z— and y—directions, respectively. Such grid

allows one to use the central differences to approximate boundary conditions with the second-order
on two-point stencils.

The essential element of the proposed algorithm is that equations (5) and (6) for ¢ and ® are
considered as a coupled system. Note that ¢ and ® are evaluated on the full-time steps. This
formulation is based on the idea of considering the two boundary conditions for ¢ as actual conditions
for the 1—® system. The second-order central-difference approximations for the operators in equations
(5) and (6) are employed. The system of difference equations is

Vi -l Ro Vs — )it et e (W, = i) W — )
T 8hxhy 8hxhy
<(I>n+1 _ gnt! )
i+1,1 i—1,75 n+1 n )
= AP 1
+ Re 2, ( ¢ + sz)z,j , (10)
n 1 n n n n n
Aq}i,;rl = 2hy |:(¢i,j+l ¢z,j 1)A¢ Jrl (¢Z.:r117] - @Z)zjl{j)A@Z)z,]} ’

i=2...,Ny—1, j=2,...,N,—1. (11)

The boundary conditions are written in the following form

wn—i—l wn—i—l Ly wn—i—l 113—1 o
2 ’ Dy ' i1 N
+1 +1 +1 +1 T
UNpy T VN1 0 UNej ™ YNe-1j 0
2 o ha -
¢n+1 +¢TL+1 Q,Z)nJrl ¢n+1 (12)
- & - 07 - 4 ]-7
2 hy =1 N,
i1=1,... .
+1 +1 +1 +1 e
Vi, T YN, -1 0 Vi, — Vin,—1 1
2 - hy, 7

To combine equations as a single linear system with a banded matrix, two new indices are introduced
as follows:

kij) = 20— DNy +2i—1, i=1,...,N,,
ma;y = 20— 1)Ne+2i=kgj+1, j=1,...,N,.

3



Now, the new grid function oy is introduced. It is defined on the composite grid where o represents
i ; and op(= op41) represents ®; ;. Substituting oy, instead of 1;; and o, instead of ®;; into
equations (10)—(11), the algebraic system can be recast as the following form

024—1 — oy Re o i . o
n n n n n n n n
- + 8hyh, [(0k+2 - Uk:—2) (%+2Nm - O-k72Nz) + (0k+2 - kaz) (O-k:—f—QNx - Uk—sz)]
Re +1 +1 1 11
~ o, i —0is) = 5 (Ao + Adg), (13)
on —oh O_n+1 - O_n+1
Aoﬁjl _ ( m+2N;—1 m72Nm71)AU;L::11 + ( m+2N,—1 miQNzil)AO'gl,l, (14)
2h,, 2h,
where

Aoy, = (Ok+2 — 20% + O)—2) n (0k+on, — 201 + Uk72Nz)'
h? B2
v y

We applied the developed numerical tool for investigating the mechanisms of the 2-sided lid driven
cavity flow by using different values of the governing parameters. If the steady flow is needed then the
algorithm can be considered as an iterative procedure. Iterations are terminated at the certain time
n = N when the following criterion is satisfied:

max; O'TN»Jrl —O'N»
2y 2,7 1,] _8
<107°.
max; ; vaj"'l‘

Note that the linear system for the coupled formulation of the ¢» — ® problem can be written as the
following multi-diagonal system for the composite grid function o

1 1 1 1
Bi_an,-10]"5n, -1 + Bi—an, 0] 5N, + Bi—30)"5 + Bi20]"

+1 +1 +1 +1
+ Bio10)") + Bio)"™" + Bip10)y + Biryao)ll

n+1 n+1 n+1 _
+ Bl+2Nm710-l+2Nx_1 + Bl+2Nmal+2Nx + Bl+2Nz+10—l+2Nx+1 = I, (15)

where [ = 1,...,2N,N,. The matrix of the linear system (15) is banded with 2N, 4 1 lower and
upper bandwidths. The standard routings DGBSV and DGBSVX of the LAPACK routine are used
to compute the solution of equation (15).

3. Results and comparisons

In this section we applied the developed numerical tool for investigating the mechanisms of the
2-sided lid driven cavity flow for different values of the governing parameters.

The dynamic of the flow when driven by the top and bottom lids was investigated for Re € [50, 1700]
and I' € [2,3]. For Re = 100 and small to moderate I', the flow consists of two-eddy symmetrical to
each other, created essentially by the parallel motion of the walls. As the relative length I' increases,
the two-eddy stationary flow is eventually replaced by the four-eddy structure. The further increase of
the aspect ratio to I' = 2.5 leads to the vortex of the secondary streaming and I' = 3 marks the actual
transition to a four-eddy structure, when the small two-eddy structure occurs between the two vortices
and spans with the increase of I', the entire breath of the gap. As it should have been expected (see
Fig. 6), the further increase of I" allows the secondary vortices to grow and to become commensurate
with the other two-eddy structure.



Figure 4: Stream function, Gamma 3: (a) Re = 50 (b) Re =85 (c¢) Re = 100 (d) Re = 200 (e) Re = 300.

In order to understand better the role of nonlinearity in the process of transition from a four-
eddy to a six-eddy, we chose I' = 5 and Re € [100,1500] which lies securely inside the region of
parameters where the six-eddy structure is to be expected. After the flow is established for a particular
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Figure 6: Stream function, Re=100: (a) I' =

Reynolds number (say, Reg), we increase Re in small increments according to the formula Re =
Rep(1 — exp(—0.05(n — 1)))), where n = 1,2,3,...,ny is the time step. The number of n; defines the
value of Re, which has to be reached. Then we continue the time steps n > n; with the last value of
Reynolds number until stationary regime is attained. Thus, we are able to proceed from one Reynolds
number to another without imposing discontinuous initial condition. These precautions are needed
in order to avoid artificial jumps that can make the solution end up in another bifurcated state. The
steady states that we were able to reach with this algorithm are shown in Fig. 7. By slowly increasing
Re reached Re = 1500 for which Reynolds number the flow changed from a four-eddy structure to a
six-eddy structure.
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Figure 7: Stream function, Gamma 5: (a) Re = 100 (b) Re = 200 (c) Re = 500 (d) Re = 600 (e) Re = 700 (f) Re = 1500.
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ARTICLE INFO ABSTRACT
Key_WOTdS-‘ A mass-preserving scheme, a nonlinear algorithm based on modification of a finite differ-
Solitary wave ence method to the Rosenau-RLW equation, is proposed subject to homogeneous boundary

Shallow water
Rosenau-RLW equation
Compact finite difference method

conditions. The key feature of the method for improving the accuracy of approximate solu-
tions is to develop a compact higher-order scheme together with an iterative algorithm for
solving the nonlinear implicit scheme. The derivatives for space discretization are approx-
imated by using the algorithm dealing with a five-point stencil. In addition, a three-level
average difference technique is used to perform time discretization. The conservation of
mass and both the existence and uniqueness of the numerical solution are proved. The
stability and convergence of the numerical solution with order O(z* + 72h? + h*) are also
confirmed. For efficiency analysis, numerical results show that the computational efficiency
of the compact scheme is much higher than that of non-compact schemes. Moreover, long-
time behavior is also used to validate the capability of the present method.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

An ocean surface disturbance generally resulted from undersea earthquakes that shift the seafloor generating tsunami
wave and ocean acoustic fields has been severe topics of scientists for a long time [1,2]. Tsunami is nearshore propagating
waves which have enormous amplitudes and long wavelengths. Then, the possibility for migration into land and devastation
to properties are substantial. In the past, the observation of wave forms and wave trains, with either leading elevated waves
or leading depressed waves has been performed. In terms of producing any catastrophes for humans, the amplitude and
wavelength range of these types of wave are very considerable. That is, climate changes and global warming are several
examples of such very huge natural disasters seen previously. Nowadays, heat waves, flooding, earlier spring arrival, sea-
level rising, melting glaciers, coral reef bleaching, and the spread of disease are obvious signs of climate changes. However,
alternative energy sources for the near future can be generated by utilizing these giant waves if essential technology is
applied.

A natural phenomenon is the interesting field of scientific study, which in the past many researchers have investigated
in mathematical models by using various nonlinear evolution equations. In the learning internal mechanism of dynamic of
nonlinear phenomena, finding of the exact traveling wave solution to nonlinear evolution equations plays an important role.
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Various potent methods create analytical and approximate solutions of these nonlinear evolution equations. Furthermore,
with the assistance of analytical solutions, nonlinear evolution equations have been used to approximate, to comprehend
better, and to criticize such wave behaviors. Nevertheless, analytical solutions of these equations are barely feasible while
nonlinear terms are implicated. Hence, a numerical solution of these nonlinear evolution equations is significantly essential
because only limited types of the equations are solvable by analytical methods.

The mathematical models of water wave have drawn attention for a long time. These models aim to describe from
smaller-scale waves, such as ripples on the water surface to larger-scale waves, such as tsunami waves. The examples of
mathematical models that explain the dynamic of waves are the KdV equation (Korteweg-de Vries equation) [3], the RLW
equation (Regularized Long-Wave equation) [4,5], and the Rosenau equation [6,7]. Boussinesq and Korteweg & de Vries
applied the KdV equation to investigate shallow waves, ion sound waves, and longitudinal astigmatic waves [8-10]. Although
the KdV equation has an analytical solution, but it is numerically unstable. On the other hand, the KdV equation has been
numerically solved by various techniques, such as the finite difference method (FDM), the collocation method, the finite
element method, the Galerkin method, and the spectral method.

Initially suggested by Peregrine [4,5], the RLW equation provides a presentation on a different situation of a nonlinear
dispersive wave from the more classical KdV equation. The RLW equation is one of models which are used to study in many
areas, e.g. ion-acoustic plasma waves, magnetohydrodynamic plasma waves, and shallow water waves. Shallow water wave
that is observed at the beach is generally applied in oceanography and atmospheric science. Besides, the RLW equation
can also explain soliton motion through optical fibers in a telecommunication system. The equation cannot explain the
interaction between wave-wave and wave-wall, but it is suitable for modeling a small-amplitude long wave in a channel.
For the dynamic of dense discrete systems, the interaction between wave-wave and wave-wall can be explained by the
Rosenue equation. Early studies attempted to find both theoretical and numerical techniques on the equation [6,7,11-15].
The results from Park [11,12] showed the existence and uniqueness of the solution for the Rosenau equation. In the field,
the solitary wave’s behavior of the equation has been well numerically studied for the past years.

For an additional examination of nonlinear behaviors of waves, a viscous term uyy needs to be included in the Rosenau
equation. The equation is commonly called the general Rosenau-RLW

Ut + Ut — Usxe + Uy + 2 (UP)x = 0, (1)

where p>2 is an integer and « is a constant. If p=2 and o = % then Eq. (1) is called the usual Rosenau-RLW equation.
If p=3, then Eq. (1) is called the modified Rosenau-RLW equation. It is to be decorated that such type of the equation
frequently arises in various branches of physics and applied sciences. In the recent period, many methods were settled
and proposed for finding the exact solution of the Rosenau-RLW equation, such as the sech ansatz method and sine-cosine
method. However, solutions of the Rosenau-RLW equation are not analytically solved in general. For this reason, numerical
techniques are important to be developed in order to get much more understanding solution behaviors.

Most of numerical methods for solving the usual Rosenau-RLW and general Rosenau-RLW are based on the FDM [16-
24]. In [16], Zuo et. al. have proposed the Crank-Nicolson FDM for the generalized Rosenau-RIW and also discussed its
convergence and stability of the proposed scheme. Later, Pan and Zhang [17] developed and studied an average three-level
linearized conservative FDM. Very recently, Wang et. al. [18] presented a three-level finite difference scheme (FDS) by intro-
ducing two weighted parameters appeared on a first order derivative in both time and space variables. A critical review of
using finite difference techniques shows that several approaches have been developed for the structure-preserving schemes
with an order of accuracy O(t2 + h%). However, Hu et. al. [24] attempted to provide a linear there-level higher-order FDM
by using the Richardson extrapolation idea, but it is a non-compact scheme due to the number of grid stencils.

A method to conquer the conflict among stability, accuracy, and computational cost is the improvement of a high-order
compact difference scheme since the stability, accuracy, and computational cost, which are in conflict with each other, are
the desired properties of the FDS. Implicit approximation is required in order to reach the stability of the FDS. The stencil
becomes wider with increasing order of accuracy for a high-order method of a conventional scheme. Furthermore, the solu-
tion of an algebraic system for equations with extensive bandwidth is resulted by using an implicit method. It is supposed
to improve schemes that have a broad range of stability and high order of accuracy.

Generally, previous research highlights that the higher-order compact difference method performs better solutions when
compared with non-compact or low-order methods on the same grid stencils (see [21,22,25-29]). At present, there are
few results on a higher-order compact FDM for solving the Rosenau-RLW type equation. In [21], the authors proposed a
linear three-level compact FDM for the generalized Rosenau-RLW equation derived via standard Taylor expansion, where the
method achieves the truncation error of order O(z2 + h*). Moreover, a compact conservative nonlinear FDS is considered by
Wang et. al. [18]. The recent work of Li [23] analyzed a compact conservative FDM for solving the 3D Rosenau-RLW equation.
There are currently detailed studies of an iterative algorithm for solving the nonlinear system generated by the scheme.

The benefit of characterizing order of accuracy in time is that quite strong statement can be made on how the order
of accuracy ultimately evolves. It appears obvious that there are other important factors for improving the efficiency and
reducing the computation cost of a finite difference technique. However, most past studies have correlated with the second-
order of accuracy in time. Therefore, a new compact finite difference technique with order of accuracy O(z* + t2h2 + h%)
is applied to the solution of the generalized Roseanu-RLW equation in this research. Then, we consider the generalized
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Rosenau-RLW equation with an initial condition

u(x,0) =up(x), x <x=<xr, (2)
and boundary conditions

u(x;, t) = ux(x;,t) = g (x;,t) =0, u(xr,t) = ux (X, t) = Uy (xr,t) =0, 0 <t <T. (3)

When x; and x; are large enough, the initial-boundary value problem (1)-(3) is consistent, so the boundary conditions (3) are
reasonable.

The main purpose of this paper is to create a compact FDS for the Rosenau-RLW equation with initial and boundary
conditions. Some preliminary lemmas and discrete norms are given, and the invariant property Q" is proved in Section 2. We
discuss about the priori estimate and boundedness of the solution in Section 3. The solvability of the FDS and the existence
and uniqueness of the solution are also proved in Section 4. Section 5 presents complete proofs on the convergence and
stability of the proposed method with convergence rate O(t* + t2h% + h*). Within this study, the iterative algorithm for
solving the nonlinear implicit scheme is described in Section 6. The outcomes of the numerical experiments are presented
in Section 7, where we make a detailed comparison with available data to confirm and illustrate our theoretical analysis.
Finally, conclusions are drawn in Section 8.

2. Compact finite difference scheme

This section is devoted to a complete description of how the compact structure-preserving method can be developed for
the Rosenau-RLW equation. Here, the description about a computational domain will be discovered. First, we introduce the
solution domain to be

Q={x0|x<x<x, 0<t<T}
which is covered by a uniform grid
Qn={(x.tp)| xi=x,+ih, ty=nt, i=0,....M, n=0,...,N}.

We discretize the time domain uniformly identified by t, = nt, here t is a time increment. In addition, the spatial domain
[x;, %] is discretized by using function values on a finite set of the points {xi}ﬁo C [x1, xr], where the grid size h = (x, — x;)/M
is a uniform distance between two points. Points can be located according to values of i and n, so difference equations
are usually written in term of the point (i, n). Then, u will be called, in this paper, the grid function of u at the point
(x; +ih,nt), and the space Z,? is introduced:

Z={u=W)luq=up=u =ty =uy=1uUyy =0,i=-1,01,....M-1,MM+1}.

For completeness, the following notations will be used:

u{H—] _ un un _ uzj—l n+1 _ uzj—l
=" =N =
(Ul)y = u?+1 — u? (uh); = ulTl — u?—l (UM, = uln+1 — u?—l

G O T
_ uﬂ“—i—uf‘fl M-1
u? = %’ ", ") = hZu?v?, ||Un||2 = (", u"),

i=1
and |[u"]|» = ; mﬁ/)l( ) [u?|. Now, we give a description of a finite difference scheme and an algorithm for the formulation of
<i<M-—

the problem (15.7By setting w = —uy — o (uP),, Eq. (1) can be written as w = U — Uxxr + Uxxxxe. Using the Taylor expansion in
the variable t, we obtain

n n T2 3 \n 2,n T2 o0 \m 4,n T2 h4a3\n 4
wi = | (uf); — 5 (@0u); | - | (02uf); — 5 (807w); | + | (0up); — 5 (807w, | +0(%). (4)
From definition of w, Eq. (4) may be arranged as
2
Wi S (@2w)] = (), — (03ur), + (0ul) + O(xY). (5)

The standard central difference approximations are used in order to obtain corresponding higher order convergence rates,
which imply

n T2 2.0\ n n h? 4,n n h? 6,1 4 4
o+ T 0] = 0 = | ()~ Ty O30, + | ) g 0800, | 00 1. ©
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Unless additional terms in the Taylor expansion are included, this approach is at most the fourth-order accurate in time and
space. Moreover, using the Taylor expansion in the variable x, we obtain

n n h? 3.\ n\p h? 3,,p\" 4
Wi = — (ui)i—g(axu)i —af [ ]Q—E(Bxu ), | +0*). (7)
Inspection of Eq. (5) shows that the higher-order derivative term can be eliminated by presenting
(30uf), = (ul), — (Ru), - (Bfu)," - a(&ful’)i" +0(1?). (8)
This approach is the second-order accurate. By using Eqs. (7)-(8), Eq. (6) can be rewritten as
n h? n 1 h? n n n\p T? 52 n ot L 212 + 1t 9
(uf); - G (Uf) e + 12 (”z’)xxxxﬁ(”i)ﬁ“[(”i)]x‘ﬁ(rW)i: (% +h°T=+ 1%). )

To illustrate the higher order finite difference scheme, we use an appropriate form to approximate the term (agw)?:
(82w)" = —(UM)ggt — —P— [P~ W)g + [P ele + O(2% + h?)
tW), = at T i)% i) Izl :

For convenience, p(u!') may be decomposed as

ny _ ap nyp—1,¢,my . n ~
Yp@) = gy LD e+ [Pl

After discretizing Eqs. (1)-(3) in time and space, they can be regarded as the compact fourth-order scheme

T2 72 .
() 10+ 50 00) o[G0+ g+ Dl =0 12i2M 1 120N 1, (1)
W =ug(x), 0<i<M, (11)
ug=uy =0, (ugg = (uy)z =0, (Uup)xz = (Upy)xx =0,1<n <N, (12)

2 2
where s;=1-% and s, =1- 1.

Theorem 1. Suppose ug € H3[x;, x;]. If p =2, then the finite difference scheme(10)-(12) is conservative for discrete mass in sense:

M-1
Qn:gZ(U?H-FU?):QHJ:"':QO- (13)
i=1
Proof. By multiplying Eq. (10) by h, summing up for i from 1 to M —1 and considering the boundary conditions (12), we
approach our point

N =

M_1 ht? M-1
2 (! )+ T Sl =0
i=1 =1

Due to the equality

M-1 2a M-1

Do lph] = 5 > [uf @b+ [W)?e] =0,

i=1 i=1

finally, we arrive to our aim giving Eq. (13), which completes the proof. O

The following lemma is some properties of the above FDS which can be directly obtained from the definition. It is
essential for existence, uniqueness, convergence, and stability of our numerical solution.

Lemma 2. For any two mesh functions u, v Zg, we have
(U V) = = (U V5), (U V) =—(Ux. Vx).  (Upgx. V) = (Ung. Vi)
then one has

(U, U) = — (U, Ux) = —[Ull?, (Ui, U) = (Unis Ung) = Uz |-
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3. Priori estimate

We now investigate the priori estimate of the compact FDM proposed through Eq. (10).
Lemma 3. (discrete Sobolev’s inequality [30]). There exist two constants C; and C, such that
lu"lle = Gllu"[| + Gollugll.

Theorem 4. Suppose ug € Hg[xl,xr], then the solution u" satisfies ||u™|| <C, ||u%| <C and ||u§x|| < C, which yields ||u"||. <C
and [u?], <C

Proof. It follows from the initial condition, and that is u® < C. The first level of a scheme u! can be computed by an available
fourth-order method. Hence, the following estimate is gotten about ||u!| <C, ||u}02|| <C, and ||u'|| <C. Now, we use an
induction argument to prove the theorem. Assuming that

lukll, <C. for k=2,3,...,n. (14)

Taking the inner product of Eq. (10) with 2u" (i.e. umtl 4 u”‘l) and using Lemma 2, we obtain

2 _1112 2 _1y2 2 _12
(0 = ) s (0 = 7)o (0 = %)

- - 73 73 _
+27 (g, 20") + ([Pl 20") + 5 (ugp 20") + 5 (1Y (@] ), 20") = 0. (15)
According to the Cauchy-Schwarz inequality, the boundary conditions (12) provide inequalities
lugll < llugll (16)
and
n oqn ny2 1 n+1y2 1 n—1y2
(g, 20) = (B2l 17+ 5 ). (a7)
Next, we turn to the inner product of Eq. (10) with 24", that is
_ 1 1
p 1 1 2 192 -1)|2
([@m?],.2a") = - 2 WP () = O + 5 2 5 ). (18)
p M-l
(e 20") = =5 30 (@)= 2+ @ g @ — )
i=1
2 _ _
< ;(IIU” P N A P+ ) (19)

and

(1M 20") = PP Wil 26) — (")) 20

ap
(p+1)
M-1

ph n - n+ n\F— n n— - n— n n—
= % > ((”i“)p 1(”1' D= 2(uh)’ l(”i);ﬁ(”i bE ](“i 1);?)(”:‘+1 +u")

i=i

- z () = 20u)" + (™)) ()

=< ;(IIU“’1 12+ ™ 12 ™7 o = 02 g 2+ gt %), (20)

where Eq. (14), the Cauchy-Schwarz inequality, the boundary conditions (12), Eq. (16), and Lemma 2 are used, respectively.
Due to inequalities (17)-(20), Eq. (15) can be rewritten as

2 _ 2 _ 2 _
(hm 0 = ) s (0 = 12 5o (0 = 12

< 2C ([l 2 2 4 2 2 ] ). (21)
Next, the function B" is presented:
2 _1n2 2 12
B = u||? + [l +s1(||u:z|| + [lut1) )+Sz(||ll "k +||u"ﬂ||) (22)

and, turning to Eq. (21), we express it in terms of a function defined in Eq. (22) as follows:
Bn+1 _B" < .Cc(BnJrl +Bn)
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If T is sufficiently small which satisfies T < k-2 and k> 2 then

kC
g1 - (1+70)
~(1-70)

Thus, B™! in the left-hand side in Eq. (23) is bounded, which immediately provides ||u"*|| <C, |lu?|| < C and [lugell < C. Next,
we are ready to estimate [|u"|| <C and ||uf||c < C where Lemma 3 is used. O

B" < (1 + TkC)B" < exp (CT)B. (23)

4. Existence and uniqueness

At present, we prove the solvability of the solution to the scheme (10) that guarantees the existence and uniqueness of
our numerical solution. To prove the existence of the solution to the scheme (10)-(12), the Browder fixed point theorem
will be used for the proof.

Lemma 5 (Browder fixed point theorem [31]). Let H be a finite dimensional inner product space. Suppose that g: H— H is
continuous, and there exists an o« > 0 such that (g(x), x) > 0 for all xe H with ||x|| = c. Then, there exists x* € H such that g(x*) =
0 and ||x*|| <c.

Lemma 6. Let v € Z). Then (Y,(v),v) =0

Proof. The direct calculation of the inner product gives

M-1
(Vo)1) = 2 L@ @+ L@l
— aipqu [v, (v.)p — U (v.)p +v,(v. )p _ v.(v. )p]
= 2(p+1) o i+1\Vi i—1\Vi i\Vit+1 i\Vi-1
= 0’

which completes the proof. O
Theorem 7. The finite difference scheme (10)-(12) is solvable.

Proof. To prove the theorem, we proceed by the mathematical induction. We assume that u®, u!, ..., u" satisfy the difference
scheme (10) for 1 <n <N —1. Indeed, u' can be computed by an available method. Next, we prove that there exists u™*!
satisfied Eq. (10). Define an operator g : Z,? — Z,? as the following form

gsw)=v- u1 S1 (Uxi - u)’(');l) + 57 (wab? uxm) +2T " ) + 2ro¢[(u”)l’]
+§((V))? - 2(un))? =+ (u”—l),;) + g(lﬁp(v) — zwp(un) + I//p(un_1)).

In order to apply the Browder fixed point theorem, we need to show that there exists a positive « such that (g(v),v) >0
forall ve Z,? with ||v|| = . Let us consider

(g(v),V)=||vI|2+51||vx||2JrSzIvax-Ilz—(u'H v) s ) — s (U Vi)
+21a([(U™)P]e V) + = (4u +ulv) + §(1//p(l/)—21//1)(11”)-1-1,0,,(”“71),1))
=[lv)1® + s llvxll® +52||UX)2||2 =Nl ™ = sylloll - [lug =l

T _
= 2wl - gl - 7(4IIU“|I Al g - vl

+2tra ([Pl v) + —5— (%(u") v)+ 2 (Yp(u"). ) (24)
where we apply the Cauchy-Schwarz inequallty, Lemma 2, Lemma 6, and Eq. (16). Using Theorem 4, Eq. (16), and the Young'’s
inequality, which immediately obtain inequalities

M-1

([WMPle.v) = =h Y- WP W)g < Cllu™| - vl < Crllu”||* +

i=1

2
R

M- M-1

(Yp(u"), =1

=1 i=1

?)P1(u?)f+[<u?)i’1g1vfshc( | !y 1(u">x||v,|+2|u K |(v,>x>

< CT(IIU”II2 +lugl?) + —||v||2 + ||le|2~
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Next, we calculate (wp(u”*), v) which is similar to the above:
1 S
1. v) < cr(|lut1|2 u12) - — 1wl + 22 .12
(o), v) = Co (1P + 1 12) + 5 I+ 5L
Again by using the Young’s inequality with the remaining terms in Eq. (24), we have

a1 flvll < 3l +

= ol = 2 Bt 12+ &
It - sl < 2 g 2 4+ 2 ol
gl - vl < 4t llugll® + %IIVIIZ,
g - vl < gl + 417IIUII2-

Then Eq. (24) can be estimated by

&), v) =5 (||U||2+51”UX”2+52||vxx||) CCI™ M1 + N 12 + g '11%)

= C (™M1 + g P+ a1 + [l l1)
z%llvll2 T+ )C(Iu 1P + e 1 + Hlugg 1P+ N1 + ug)1?).

That is (g(v),v) > 0, for all v € Z) with

vl =21+ )P+l 1+ fuge 12+ 1 + flugl®) + 1

Finally, it follows from the Browder fixed point theorem that there exists v* Z,? which satisfies g(v*) = 0. This implies the

existence of the solution to the scheme (10)-(12). This completes the proof. O
Theorem 8. Suppose t is sufficiently small. The finite difference scheme (10)-(12) is unique.

Proof. Suppose that u™! and w™*! are two solutions of the scheme (10)-(12). We denote p"*+1 = y+1

T T
P = s1(PI) o+ 5200 e 5 (Pt S [y () — Yy (W] = 0

XXXX
Taking the inner product of Eq. (25) with p™t1 leads to
||pn+1 “ + 51 ”p;url ” +5 ”pxxﬂ ” (wp(unﬂ) _ 1/fp(Wn+]), pn+l) -0
where Lemma 2 is used. The inner product, (l/lp(u"“) — Yp(wtl), p"“), may be arranged as

M-1
(wp(unﬂ) _ wp(wnﬂ)’ an) —h Z (¢p(u?+1) _ T//p(W?H))PfH

i=1

M-
(p + 1 Z ((un+l)p71 (u;wl ))2 _ (W?H )p—l (W?H )i)pinﬂ

=1
M-1

Z(( FOPle = LW HPg) ot

(p+1)

Next, we apply Theorem 4, the Cauchy-Schwarz mequallty, and Eq. (16), giving
M-1

Yy ((u?ﬂ)P—] (u’;”))? _ (W?H)P—l (w1, )pln-H
i1
= 1\P-1 1 1 1p2 1\P-j-2 1\J 1
:hZ<(u:_1+) (Pn+)+,0,n+( n+) (n+) ( ”+)),0;“'

1

1 j=0

=hC Z (1o Dl + 1o+ ) 1o+

i=1

<C(Ip™ M1+ oy 11%).

— w1, Then,

(25)

(26)
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and
M-1 M-1
B3 (L)L = (Wi )PLe) ot = —h 37 ()P = wit)P) (o
i=1 i=1

g

M-1
——h Z <pin+1
i=1 j
-1

hC Z |om [ (o g
i=1

(u?ﬂ)l’ j= 1(Wnﬂ) )(pnﬂ)x

[
=}

<C(Ip™ 1P+ g 11%),

respectively. Hence, the inner product appearing in Eq. (26) may be reduced to the relation
(p@™h) = grpw™ ), p 1) < C(Ip™ 1> + [l of 1)

Using the above inequality, Eq. (26) can be estimated as

[ P+ silob [P+ safl o < w0 [P+ o )-
Provided that 7 is sufficiently small such that s, — C > 0, then we obtain inequality

=10 P +si | *+ 62 - 10 0| < 0. (27)
Finally, Eq. (27) implies that

[t =Tzt = [l =0.
That is, Eq. (25) has only a trivial solution. Therefore, the scheme (10)-(12) determines u™! uniquely, as in required, which

completes the proof. O

5. Convergence and stability

In this section, we prove the convergence and stability of the scheme (10)-(12). Let e} = v —uf, where v and uf are
the solutions of (1)-(3) and (10)-(12), respectively. We then obtain the following error equations

= (e?) 51( )xxr+52( )xxxxf"'(en) +a[(v;‘)”]£—a[(u;‘)”]£
2
TR A S s A (28)

where 17" denotes the truncation error. By using Taylor expansion, we easily obtain that r! = O(‘L’4 +h%t2 + h“) holds as t,
h— 0.
The following lemmas are well known and useful for the proof of convergence and stability.

Lemma 9 (discrete Gronwall’s inequality [30]). Suppose that w(k) and p(k) are nonnegative functions, and p(k) is nondecreas-
ing. If C>0 and

k-1

wk) < pk)+Ct Za)(l), Yk
1=0

then
w(k) < p(k)eT*, Vk.
Lemma 10. Suppose that ug € Hg[xl,xr], then the solution u" of Egs. (1)-(3) satisfies
lull, =€ luxll, =G lulle, =€ luxl, <C
The following theorem guarantees the convergence of our scheme with the convergence rate O(t* + t2h2 + h%).

Theorem 11. Suppose ug € Hg[x,,xr], then the solution u" of the scheme (10)—(12) converges to the solution of the problem
(1)~(3) in the sense of || ||, and the rate of convergence is O(t* + h®t2 + h*).

Proof. Taking the inner product of Eq. (28) and 2é"(i.e. e"*! + e"=1) leads to
(1= ) o e P s ) 2 20)
3
+a ([P - @hP], 2¢") + ’3 (ef-28") + —([Wv )ie — [¥p "], 28" — 27 (", 28") = 0, (29)
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where Lemma 2 is used. The quantity appearing in Eq. (29) may be reduced to relations

IR < e, (30)
_ 1 2 12

(.22") = el + 5 (eI + ™)), G1)

(. 26" < P17+ 5 (177 + ). (52)

By using Lemma 2, Lemma 10, and Theorem 4, we see that

_ h "= _ _
(e 28") = —5 2= ((€f™)e —2(eNs + (e e) (e —ef )
i=1
2 - _
< ;(Ile" U2+ e 2 + e 12 + Nl + et 112)

-1

([P = @HP],. 28" = —hMZ ((uy)" - (u?)p) @Mz

i=1

Il
|
=
=<
L
e
o
~3
T
—_
<
-3
pnd
o
N—
S
L
|
-
—
=
E]
X
N—
.
v
—_
o
~35
~
B

i=1
< C(lle" 17 + el 12 + lleg]1). (33)

Next, we turn to the inner product, ([1//p(v”)]tf —[YrpW™ ] 2é") in Eq. (29), and we have

(1) = p @) 287) = 2P 1M, 227) — (M, 28]

where
My = [P ")) = [@" W]
M; = [(vn)p]m - [(un)p])?tf’
are used. According to Lemma 2, Theorem 4, Lemma 10, the Cauchy-Schwartz inequality and Eq. (30), we arrive at

M-1_
(@7 @ = @y g 2et) =2n 30| () (), - ()" ),
i=1

()" (@] + thi:[(v?)“ - ()" )@

_(U;;)Pfl (e?)ié?] + 2/1A§:1 |:e?pz_2(v?)p2"(u?)k:| (u?)ié?

M-1
=2h)"
i=1

M-1
=2hY)"
i=1

- i=1 k=0
<C([le" 1> + [le™ 1> + [le™I> + lleg]I?). (34)
This leads to the inequality
_ C _ _
My, 2€e") < ;(Ile” T2+ [le |1 + ™ 1% + ey 1% + llexl® + llex 1) (35)
Here, we also have
_ C _ _
(Mp,2¢") < ;(Ile” Y2+ lle™ )12 + [le™ 12 + [ley 1% + llegt1%) (36)

which is similar to the proof of Eq. (33). Instead of Eqs. (30)—(36), Eq. (29) becomes
2 112 2 12 2 112
(hem 17 = e 17) -1 (1™ 17 = e 1) +s2 e I — lefi 1)

<Cr(lle™ 1>+ le™ 1 + e I + lleg 1> + lleg I + llex ™ 1%) + 2z [ 1>, (37)
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Let B" be defined as follows:
B = (1" 1" 1) + 51 (eI + Ned 1) + 2 (el + e 1)
and, turning to Eq. (37), we easily obtain that
B*! — B" < 2t||r"||* + zC(B"! + B").
Therefore,
(1-Cr)(B*! - B") <2t ||r"||> + 2CTB".
Provided that 7 is sufficiently small satisfying 1 —Ct > 0, then
B! — B" < Ct||r"||?> + tCB"™.

By summing up from O to n — 1, we have

n-1 n-1
B" < B%+Cty |2 +CTy B~ (38)
k=0 1=0

The properties of the operator norm and Eq. (28) yield

n-1

k|2 k|2 4 212 4\2
T || <nt max ||r*||*<T-0O(t*+t°h“+h
I = max I < T- O )

and e = 0. Now, we are ready to estimate
5 n-1

B" < 0(t*+ t2h* + h?)" +Ct) B,
k=0

where B = 0(z*4 + t2h? + h4)2. According to Lemma 9 , we obtain the inequality B" < O(t* + 72h? + h4)2, that is
le"|> < 0(z* + 72h2 + h*)?, [lell|2 = O(¢* + T2h2 + h)’,

and [len[|> < O(t# + t2h? + h4)2, respectively. Finally, we arrive at our aim
lle"llo < Clle™|| +Cllexll < 0(z* + 7>h? + h?),

due to Lemma 3, which completes the proof. O

Theorem 12. Under the conditions of Theorem 11, the solution of scheme (10)-(12) is stable by || - ||c-
6. Iterative algorithm

This section gives an iterative algorithm for solving the nonlinear implicit higher-order compact three-level scheme (10)-
(12). Inspired by the techniques in Sun and Zhu [32], the nonlinear term can be solved by the following iterative algorithm,
fors=0,1,2,...,:

l(u§n+l)(5+1) ) = S (e et
i XX

2T V1 2t V! !
S2 (1 (n+1)(s+1) _ ne 1/ e+ -
4'?(“:'11+ TVl 1);00& + (u?)x + a[(u?)p]i + é(uin+ T =2 l)x
+%[1/fp(u§”+”<s>) =2y, () + Yp(uf )] =0; 1<i<M-1,1T<n<N-1, (39)
w =up(x;)), 0<i<M, (40)
ug=upy =0, Wix= Wy)x=0, W= (Uj)x=01=<n<N, (41)

where

u™mO gyt

Before proving the convergence of the iterative algorithm (39)-(41), we let

81'(5) — ui(n+1) _ ui(n+1)(s)'
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Note that
8[(0) I1+1 2u +un 1

< o) ~2(uf —of) o+ (0 ) 2

<O0h* +h?72 + 4 + 0(7?) = 0(z2 + h?). (42)
Similarly, we also have
(si(o))x <0(t? +hY), (81‘(0)),& <0(t2+hY). (43)

Theorem 13. Let t and h be sufficiently small. Then, the iterative algorithm (39)-(41) converges to the solution of the higher-
order compact difference scheme (10)-(12).

Proof. Let T and h be sufficiently small. We have
le@lle < 5
Suppose
le®ll < 3 and el < . (44)
o0 = 2 X o0 —= 2

By Theorem 4 and the assumption (44), we see that
[u™ DO < 1™ oo + 169l < C.

Subtracting Eqs. (39)-(41) from Egs. (10)-(12), we have

g = e )t ) e+ )+ L) — ()] = 0 (5)
Taking the inner product of Eq. (45) with ¢+ by using Lemma 2, we have

o0 P 5 |+ B (0 9) ). £600) 0 o
The inner product, (,(u®™1®) -y, (u"+1), £6+1), appearing in Eq. (46) may be reduced to the relation

(Up (um DO — gy (un+1), 641) = (pO:_p1) [(M3, s6H) — (M, 8(s+1))]’ (47)
where

M; = (u(n+l)(s))p*] (u(”“)(S))A _ (u”*l)pq (u””)”
X X
My = (u(n+1)(s))P _ (un+l)1"
Turning to Eq. (47), we express inner product terms as

(M3’ 8(s+1)) _ ((u(n+1)(s))p 1(u<n+1)(s)) _ (un+1)p_l(un+1)£’ 8i(s+1))
) ), - ) ) Je
() e ) - ) e

=

h

I

=<

I
F%

:hM 1[( (n+1>(s>)P 1( (5))2 <s+1>] +hZ (S)Z( <n+1>(s>)” > "(un+1)" (u:?ﬂ)igi(s‘*'])
i=1 i=1 k=0
=C(IeD 1P + e 12 + e V112), (48)
and
(55 =R (0 = ) ),
i=1
= (P Ty e,
i=1 j=0

(@2 + 5+V112), (49)
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by according to Lemma 2, Theorem 4, the Cauchy-Schwartz inequality and Eq. (16). From Eq. (46), we have
e SN2 +s1lled™ I +alle ™ 1P = (U@ + e I + eV 12 + e 1),

where the estimates in Eqgs. (48) and (49) are used. Let T be sufficiently small s, — 7C > 0, then the above inequality is
arranged as

e 11%, + lles V1%

A

(@12 + 1e112) (50)
(@12 + 1612).

where Lemma 3 is used. Again, let ¢ is sufficiently small to obtain

IA

1
1
||e(s+”||2: + ||(9,§SJr )||2 < 5 (Ilﬁ(s)Hzoo + ”‘9)((5)”200)'

By the induction principle, we see that ||e®*D o < 1 and |6V || < 1. Then

1 1
e+l < ills(s)lloo < WIIE(O)IIW
which completes the proof. O

7. Numerical experiments

As the first step, the efficiency of the proposed scheme is analyzed by using test cases p =2 and p =4 compared with
available data. Next, the consistency of numerical results compared with previous published studies is assessed. The algo-
rithm is finally applied through long-time behavior of a solitary wave to confirm the performance of the present method. To
investigate the form and shape of an incident wave, many metrics could be used. It is significant to specify measures which
do not alter or barely alter. The evolution of solitary wave amplitude is often described using the Rosenau-RLW equation. In
this equation, there are invariants and it specifically shows that

. M-1
Q”:/ u(x,t)dx ~h " uf, (51)

X i=1
Xr
E"= / w2 (x, t) + u2(x, t) + uZ (x, t)dx
X

<n 3 (@) 00T + )T £

which are related to the conservative of mass and energy, respectively. The benefit of characterizing the wave shape in terms
of Q" and E" is to investigate on how the wave ultimately evolves. Moreover, the accuracy of the scheme will be monitored

by the comparison of numerical data with analytical data by using || - || and || - || norms defined by
M1 1/2
2
||€"|| _ ||uexact " “ —|n Z |uiexact _ u:1| i
i=1
”en”oO — ”uexact —u" || — max |u;exact _ uln|

o 1<i<M-1
Example 1. Consider the following usual Rosenau-RLW equation in the case of p=2, « = 0.5
Ut — Uyt + Usxee + Uy + ULy =0 (53)

with an initial condition

u(x,0) = gsech4(fx>, x € [x, %], (54)

and the boundary conditions
ulx;, t) =u®,, t) = ux(x, t) = Uy (Xr, t) = U (X}, ) = Ugx (Xr, t) =0, t € [0, T]. (55)

Recall that Eqs. (53)-(55) possesses the solitary wave of the form

ux,t) = gsech‘l(f(x - gr))

The numerical simulations are performed by setting x; = —50 and x, = 150. The accuracy of the presented scheme is
compared with those FDMs for the usual Rosenua-RLW equation in [20,24,33]. Various space and time step combinations



96 B. Wongsaijai et al./Applied Mathematics and Computation 340 (2019) 84-100

Table 1
The errors of numerical solutions and rate of convergence at t =24 using p= 2, T = h, x, = —50, and x, = 150.
Present Ref. [20] Ref. [24] Ref. [33]
fle™]| Rate lle™|| Rate lle™ || Rate lle™ || Rate

h=08 7.78402 x10~* — 2.42851 x 107! - 3.11658 x 10! - 2.03287 x 1072 —

h=04 473034x10->  4.04050  6.58790 x 102 1.88218 8.62872 x 102 1.85275 4.88759 x 10~ 2.05632
h=02 294078 x10°¢  4.00767 1.68468 x 102 196735  2.21942 x 102 1.95896 1.21311 x 1073 2.01042
h=0.1 1.83776 x 1077 400018  4.23946 x 103 199052  5.59422 x 103 1.98817 3.02978 x 1074 2.00142

Present Ref. [20] Ref. [24] Ref. [33]
lle" oo Rate lle" I Rate lle" o Rate lle" oo Rate
h=08 3.09410x 104 — 9.06883 x 102 — 1.16717 x 101 — 7.56362 x 103 —

h=04 1.87205x 10"  4.04683 248437 x 102  1.88218  3.27045x 102  2.05632  1.82402 x 10~  1.85275
h=02 1.16521 x10®  4.00596 6.36404 x 10-> 196735 8.43616 x 103  2.01042  4.52324 x 10~*  1.95896
h=0.1 727778 x 10  4.00095 1.12985x 10~*  1.99052  3.02978 x 10-*  2.00142  2.21651 x 103 1.98817

08 2.5
06 2
- 15

$ o4 g
=] =1 1
02 05
0 40 0
-50 20 -50

0 20
50
100 10
150" 0 t

X

Fig. 1. (Left) Numerical solution using p =2, T = h and x; = —50. (Right) Distribution error using p =2, 7 = h and x, = —50.

are investigated and compared with the exact solution. We model a solitary wave with approximately the 0.75 maximum

amplitude and present the results of the simulation in Table 1. As seen, the || - |- and | - ||.o— error norms stay less than
7.8 x 1074 at time t = 24. The most accurate simulation as obtained from our method is with the choice T =h=0.1 for
which the || - ||— and || - ||c— errors less than 7.3 x 108, According to the results in Table 1, it can be seen that the compu-

tational efficiency of the present scheme is clearly better than others, in term of grid point number. Obviously, experimental
results agree with the theoretical convergence rate O(t* + t2h? + h*) or the fourth-order convergence rate verified in the
case h=r.

The solution profiles are shown in Fig. 1 (Left) at selected time te [0, 40]. From this figure, it is clear that the peak of
solitary waves remains the same during the time simulation. The distribution of absolute errors at selected time t< [0, 40] is
illustrated in Fig. 1 (Right). It seems that the maximum error occurs near the peak amplitude of the solitary wave. Moreover,
Fig. 1 (Right) indicates that the error slightly increases as the time is increased.

In the present analysis, there is not only the order of accuracy but also other important factors for improving the effi-
ciency of the numerical method. One of those factors is the preserving invariant property of the method that has the same
or perhaps even more impact on numerical results. The proposed method is applied to verify the conservation of the nu-
merical model by tracking the simulation of solitary wave motion run up to t = 40, as indicated in Table 2. For a solitary
wave, the constant value of the mobility shall be analytically to give Q = 7.5906342641. The results show that the mobility
constant slightly alters from the exact value by less than 2.1 x 10~2%. Moreover, the invariant E whose exact value is gained
as E = 4.2654202506 is listed in Table 2 for the simulation period. Likewise, the mobility constant slightly alters from the
exact value by less than 2.2 x 10-2%. The result from Table 2 shows discrete mass obtained from Theorem 1 close to the
one obtained from the analytical method.

According to the experiment, a waveform at long time should be observed. As in Figs. 2 and 3, the waveforms mod-
eled by the present scheme are illustrated using h = 0.8, 7 = 0.8, x;, = —50, and x; = 1300. The waveforms at t = 1000 agree
with those at t = 0 quite well, which also presents the performance of the scheme. We characterize these results at long
time obtained by the second-order finite difference schemes reported by Pan and Zhang [20,24,33] in order to underscore
the efficiency of the present scheme. Results obtained by Pan and Zhang [20,24] show lagging of numerical solutions when
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Table 2
Quantities Q" and E" under different mesh steps h = t = 0.4 at various time.
Mass Energy Discrete Mass
Q" 1Q" — Q(0)] Er |E" — E(0)] - [Qfy — QO)]
Analytical 7.5906342641 - 4.2654202506  — 7.5906342641 —
4 7.5906342641 1.56358 x 10-1° 4.2645011659 9.19091 x 104 7.5906342641 1.55941 x 10-10
8 7.5906342641 1.55657 x 1010 42645008939  9.19363 x 104 7.5906342641 1.55491 x 1010
12 7.5906342641 1.55242 x 1010 4.2645009896  9.19268 x 104 7.5906342641 1.55043 x 1010
16 7.5906342641 1.55742 x 10710 4.2645009662  9.19291 x 104 7.5906342641 1.55555 x 1010
20 7.5906342641 1.56096 x 10-1° 4.2645009588  9.19298 x 104 7.5906342641 1.55933 x 1010
24 7.5906342641 1.55834 x 10-1° 4.2645009548  9.19302 x 10 7.5906342641 1.55795 x 10-10
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Fig. 2. The long-time behavior of numerical solutions at ¢t = 1000 using p=2,h = 0.8, 7 = h, x; = 50, and x; = 1300.
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Fig. 3. The left-tail behavior of numerical solutions at t = 1000 using p =2,h = 0.8, T = h, x, = —50, and x, = 1300.

compared to exact solutions. However, results obtained by Wongsaijai and Poochinapan [33] show leading of numerical so-
lutions when compared to exact solutions. Besides, Fig. 3 that illustrates the expanded left-tail figure exhibits the oscillation
of numerical approximations on x € [—50, 1200]. As observed, the present method offers the fit resolution of wave structure
at left-tail.
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Table 3
The errors of numerical solutions and rate of convergence at t = 24 using p=2, t = h, x, = —50, and x, = 150.
Present Ref. [17] Ref. [21] Ref. [22]
Ile™ | Rate lle™ |l Rate lle™|| Rate [le™|| Rate

h=08 433437 x 10~* - 4.33356 x 1072 - 2.29013 x 10! — 5.47448 x 102 -

h=04 259246 x 10>  4.06343  1.11909 x 10~2 195323  5.00535 x 102 2.19389 1.29577 x 102 2.07891
h=02 160587 x10-®  4.01289 2.82645 x 1073 198526  1.21867 x 102 2.03816 3.20256 x 103 2.01652
h=0.1 1.00259 x 107 4.00155 7.09140 x 104 1.99485  3.03019 x 103 2.00783 7.99013 x 104 2.00293

Present Ref. [17] Ref. [21] Ref. [22]
[le™ ]| oo Rate [le™ [ oo Rate [le™ || oo Rate [le™ || oo Rate
h=0.8 1.73987 x 104 — 1.64873 x 1072 — 9.21264 x 102 - 2.03188 x 102 -

h=04 1.03213 x107° 407528  4.25828 x 103 1.95301 2.01925 x 102 218979 4.78559 x 10— 2.08604
h=02 637832 x 1077 4.01630 1.07810 x 103 1.98178 4.89501 x 103 2.04444  1.17720 x 103 2.02333
h=01 397932x10-%  4.00258  2.70375 x 10~ 199546  1.21680 x 10~3 2.00821 2.93288 x 1074 2.00497

Table 4
Quantities Q" and E" under different mesh steps h = t = 0.4 at various time.
Mass Energy
Q Q" -—Q(0)] ET [E" — E(0)]
Analytical 6.2658061620  — 2.8676945570  —
4 6.2658061737 1.16998 x 10-8 2.8667709115 9.23646 x 104
8 6.2658061739  1.19090 x 10-8 2.8667710721 9.23485 x 104
12 6.2658061725  1.05193 x 10-8 2.8667710180 9.23539 x 104
16 6.2658061733 1.13092 x 108 2.8667710109 9.23546 x 1074
20 6.2658061739  1.19305 x 10~8 2.8667710076  9.23549 x 10~*
24 6.2658061736  1.16634 x 108 2.8667710046  9.23552 x 104

Example 2. Consider the following the general Rosenau-RLW equation in the case of p=4, a =1

Ur — Uyee + Ut + Ux + (U =0 (56)
with initial condition

u(x,0) = up(x), xe€[x,x], (57)
and the boundary conditions

ulx;, t) = uXr, t) = ux(x;,t) = ux (X, t) = Ugx (X, t) = Ux (X, t) =0, t €[0,T]. (58)

It is known that, the solitary wave solution for Eq. (1) is

ux,t) = I (p+3) Bp+1) (p+1)/[2(p*+3) (P*+4p+ )]}/ (P~ gach ¥/ (P-1) L (x—ct) |,
V4p*+8p+20

where p>2 is an integer and ¢ = (p* + 4p> + 14p2 +20p + 25)/(p* + 4p3 + 10p? + 12p + 21).

Similar to the Example 1, the motion of a solitary wave is first modeled with the range x; = —50 and x; = 150 with
t = 24. Table 3 lists the error of the numerical solutions using various t and h. As seen, the error slightly decreases as
7 and h are decreased. The |- ||— and || - ||co— error norms stay less than 4.4 x 10~4 at time t = 24. The most accurate
simulation as obtained from our method is with the choice T = h = 0.1 for which the || - |- and || - ||— errors less than

3.98 x 108, As shown in Table 3, the fourth-order convergence of numerical solutions is verified.

Fig. 4(Left) and (Right) illustrate the profile of the solitary wave at times t = 8, 16, 24, 32, 40 and the error distribution
of the profile, respectively. As in the figures, during the time simulation, the crest of soliton clearly remains the same.
As presented in Table 3, we apply the present scheme to verify the conservation of the numerical model by tracking the
experiment of soliton motion run up to t =40. The mobility values shall be analytically to give Q = 6.2658061620 and
E = 2.8676945570, as observed in Table 5. The results show that the mobility constants Q" and E" slightly change from the
exact values by less than 1.9 x 10-7% and 3.3 x 102%, respectively.

We analyze the behavior at long time obtained by the second-order difference methods presented by Pan and Zhang
[17,21,22] in order to underscore the efficiency of the proposed scheme. As shown in Fig. 5, results calculated by the methods
[17,22] show lagging of predicted solutions when compared to exact solutions. However, results generated by Wongsaijai
et al. [21] show leading of approximate solutions when compared to exact solutions. As observed, Fig. 6 that illustrates the
expanded left-tail figure exhibits the fluctuation of numerical approximations on x € [—50, 1250]. Furthermore, the present
method offers the fit resolution of the wave structure at left-tail.
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8. Conclusions

The method which combines between the nonlinear finite difference and iterative algorithms was introduced and an-
alyzed. Only a regular five-point stencil at higher-time level is required for construction of the compact finite difference
scheme, which is similar to the second-order schemes [17,20-22,24,33]. The accuracy and stability of the numerical method
to the solution of the Rosenau-RLW equation can be tested by using the exact solution. The scheme was constructed so
that it maintains a high-order of accuracy and gives highly accurate results up to four digit better than previous known
methods do when h = 0.1 is used. An extensive comparison of the present numerical results with the previous benchmark
solutions, Figs. 2 and 5, establishes that the use of the compact method at long time results in waveforms to be smoothed
out by the type of high-order accuracy. In practice, the existence and uniqueness of the approximate solution are directly
obtained from the calculation of a nonlinear system, which can be implemented by using the present iterative algorithm.
The numerical simulations indicated that the present method supports the analysis of convergence rate and the invariant
properties can be verified by using analytical expressions. Such analysis provided guidelines as to how the method solves
the given problem and may also lead to error estimates on the approximate solution.
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Kej{WOT 45-‘ The paper presents a novel finite difference method for the symmetric regularized long wave
Finite difference method equation. The time discretization is performed by using a four-level average difference tech-
ERLW equation nique for solving the fluid velocity independently from the density. At this stage, the numeri-
S;r;)\;lei;g,ence cal solution is easily solved by using the presented method since it does not require an extra

effort to deal with a nonlinear term and the density. The existence and uniqueness of the nu-
merical solution and the conservation of mass are guaranteed. The stability and convergence
of the numerical solution with second-order accuracy on both space and time are also veri-
fied. Numerical results are carried out to confirm the accuracy of our theoretical results and
the efficiency of the scheme. To illustrate the effectiveness and the advantage of the proposed
method, the results at long-time behavior are compared with the ones obtained from previ-
ously known methods. Moreover, in the computation, the present method is applied to the
collision of solitons under the effect of variable parameters.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Seyler and Fenstermacher [1] investigated the symmetric regularized long wave (SRLW) equation for describing various non-
linear phenomena such as the propagation of ion acoustic waves, shallow water waves, and solitary waves with bidirectional
propagation:

Ut — Ugxe + Px + ULy = 0, (1)

Pr+ Uy =0, (2)

where u and p are the fluid velocity and the density, respectively. The density function can be removed from Eqgs. (1) and (2) and
then the equations turn to a single nonlinear equation for the velocity function:

1
Upt — Uxxer — Uxx + j(uz)xt =0. (3)

The equation is comparable to the regularized long wave (RLW) equation but explicitly symmetry in the x and t derivatives (see
[1-7] and references therein).

There are several researches on the system of the SRLW equation using theoretical and numerical techniques [1,8-13]. The
hyperbolic secant squared solitary waves have been proposed by Seyler and Fenstermacher [1]. They demonstrated the solution
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to the SRLW equation for preserving four invariants of motion. Also, the behavior of solitary waves of the SRLW equation is nu-
merically investigated and compared with that of the RLW equation. The existence of the global solution and global attractor to
the system of multi-dimensional SRLW equation with periodic conditions has been proved by Shaomei et al. [8]. Zheng et al. [9]
applied the Fourier pseudo-spectral method with a restraint operator to approximate a nonlinear term. They proved the gener-
alized stability of the semi-discrete and fully-discrete schemes and gave the optimum error estimate. Later, Shang and Gua [10]
applied the Chebyshev pseudo-spectral method for solving the multi-dimensional generalized SRLIW equation with homoge-
neous initial boundary conditions. They constructed the fully-discrete Chebyshev pseudo-spectral scheme and also obtained the
optimum error estimate. Wang et al. [11] proposed three conservative finite difference schemes: a coupled two-level nonlinear
implicit scheme, a coupled three-level linear implicit scheme, and an uncoupled two-level linear implicit scheme. All schemes
are of second-order accuracy in both space and time. They also showed that the energy was preserved for all schemes and the
mass was preserved only for the first scheme. Subsequently, Nie [12] proposed an uncoupled three-level linear finite difference
scheme for solving this system. The discrete energy and the truncation error of order O(h* + 72) have been derived by using a
five-point stencil. Moreover, Hu et al. [13] developed a coupled conservative three-level implicit scheme with the fourth-order
rate of convergence. Obviously, the scheme requires heavy iterative computations because it is nonlinear implicit.

From literature, the numerical methods have been used to study the SRLW equation mostly in the form of system (1) and (2).
However, the numerical method for the SRLW equation in the form of Eq. (3) which is independent of the variable p has been
scarcely studied. In this paper, we consider the SRLW equation (3), with the homogeneous boundary conditions:

u(xp,t) = ulxg,t) =0, ux(x,t) = ux(xg. t) =0,  Un(X1,t) = Uxx(x, ) =0, t€[0,T], 4)
where x; and xy are left and right endpoints, and the initial conditions:
ux,0) =uo(x), ue(x,0) =us(x),x € [, xl, (5)

where ug(x) and uq(x) are two known smooth functions. The solution and its derivatives for the solitary wave are supposed to
have the following asymptotic values, u — 0 as x — 400, and forn > 1, % — 0 as x — =oo. For that reason, if X, « 0 and x; >
0, the initial-boundary value problem is in agreement with the Cauchy problem of Eq. (3). In addition, the time evolution of the

SRLW equation preserves the following physical quantities:

1 [ 1 [

I(t) = E/ u(x, t)dx = 5[ o (x)dx = I, (0). 6)
1 [ 1 [

b =5 [ px. dx= 5 / po()dx = L (0), (7)
1 1

L(t) = §(||U||f2+||ux||f2+||,0||f2) = §(||HO||f2 +lo)xlIZ, + 1l poll?,) = 15(0). (8)

where I4(t), [,(t), and I3(t) are called mass of u(x, t), mass of p(x, t), and energy at time t, respectively [11].

Scientists in the past have presented many conservative finite difference schemes in order to study solutions for various non-
linear wave equations [14-22]. One of the important properties of fluid or propagating waves is obviously the conservativeness.
For example, the accomplishment of a numerical estimation in the long-time behavior is assured by schemes for the conserva-
tion of energy and mass. Therefore, a mass-conservative finite difference scheme which can preserves the solution to the SRLW
equation is needed. Moreover, a four-level linear implicit finite difference scheme for solving the SRLW equation (3) is created
because there is no single method which is most suitable for all aspects. In general, the type of linearization which is used can
significantly affect the convergence rate of the iterations to the solution.

The content of this paper is organized as follows. In Section 2, we propose a four-level linear implicit finite difference scheme
which guarantees unique solvability for the SRLW equation (3). Discrete norms and some preliminary lemmas are given, and the
discrete conservative property of mass is also proved. Section 3 describes complete proofs on the convergence and stability of the
finite difference scheme which is second-order accuracy on both space and time. Section 4, presents the results obtained with
the proposed numerical model, where our results are compared to available data. Conclusions are finally reported in Section 5.

2. Finite difference scheme

In this section, a finite difference procedure for solving Eq. (3) and conditions (4) and (5) is established. The spatial domain
[x1, xg] is discretized by using function values on a finite set of the points {x,-}?io C [xg, xg], where h = (xg — x;)/M is uniform
distance between two points. We discretize the time domain uniformly by t, = nt. Points can be located according to values of i
and n, so difference equations are usually written in term of the point (i, n). We write the notation uj for a value of a function u
at the grid point (x; + ih, nt). Denote

Z,?:{u:(ui)|u_1=u0=u1=uM_1=uM=uM+1=O, i=—l,0,...,M,M+1}.

Throughout this paper, let C be a generic positive constant independent of h and t, which may have different values in different
occurrences. For a nonnegative integer k, let H*(2) denote the usual Sobolev space of real valued functions defined on . We
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define the following Sobolev space:
‘ k du )
Hj(2) = ueH(Q)|W:Oon&Q,z:O,l,.,.,k—l .

We define the following notations applied to the grid function u]' below:

(u”) _ uzn-H B ul'f’ (un) _ u? B u?—l (un) _ u?—*—l B u?—l
i/x h ’ i/x = h ’ ix 2h ’
n+l n n n-1 n+1 n-1
—uf u —u’ u™t !
1 1
W), = L @)= )=
_ uf”]—l—u'?’] M-1
ul' = % " v"y =h> uv,
i=1
2
u||” = (u",u" u"||, = max |ul|.
= o).l = max uf|

We use the second-order accurate central difference approximations for linear operators in Egs. (3)-(5). The second-order
accurate backward approximation in time derivative appearing in the nonlinear term of Eq. (3) makes the whole scheme very
easy to implement. We provide the formula here. To approximate the nonlinear term %(uz)xt at the point (x;, tp), we use the
formula

3 2 1 n—142
Z[(ui) ];?E_Z[(ui Dl

Using the Taylor expansion, it can be seen from the above analysis that the approximation has the second-order accuracy in both
space and time if the function to be approximated is four times continuously differentiable. Combining these above approxima-
tions yields the difference equations

- 3 1 132 .
(W) = W) g = @)+ 51U g = 1@ ) ] =01 i =M -1, (©)
w = up(x), ul =uy(x),0<i<M, (10)
ug=uy =0, (uj;=Wi)=0 (Uls=Wys=01=<n=<N. (11)

The above scheme can be rewritten as
(2}12 + #)uﬁ‘ + (% + % + h]2>u;?+1 (21? + #)u?ﬂ
(g e (B et~
+(% + %)u 2o+ ) — ) - )+ )]

(@)’ —(u,H) — )+l )]

81h
Then we get the linear algebraic system forn=2,3,...,N -1
kil + kou™ 4 kluf’:l] =ff1<i<M-1, (12)
where
k-,L,L k-l+i+l
VT2 vz T TRz R
and

2 2 4 2 1 1
==zt + (52 oo )~ gt + (g + 2 )i
1T 2 1\ ,, (1 1\ .4
- (ﬁ e h2>“ * (ﬁ * thz)“fH
[(u,H) - (u,+1) - (uf H? + (U 2)°]

—ﬂ[(lt?ﬂ) @i = @) + @h’].
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Since up*! = u/1 = 0, Eq. (12) can be written as KU = F where

- un+] = - n =

ky k, 0 ... 0 }]H fln

k] k2 k] ... 0 u2 fZ
K=]: : : : Sl U= : ,and F = :
o ... k] k2 k] urH—l n

M-2 M-2
0 ... 0 ki k; e "

- M-1 L M-1

The coefficient matrix in the above equation depends on constants h and t and is strictly diagonally dominant matrix. This guar-
antees the existence and uniqueness of our numerical solution. Moreover, the scheme (9)-(11) is linear thus the solution can be
easily obtained.

Next, the conservative approximation is developed as follows:

Theorem 1. Suppose i H(l] |x1, xg], then the difference scheme (9)-(11) is conservative in a sense:
M-1
Q'=h) @' -u)=Q""'=-..=Q" (13)
i=1
Proof. Multiplying Eq. (9) with h, summing up on i from 1 to M — 1, we obtain
M-1 M-1 M1 M-l 4 , 1 X
B3 W= h 3 (W) = 3 (@) +h Y (FU00 ) = 510 ) ) =0
i=1 i=1 i=1 i=1
Considering the boundary conditions (11), we have
M-1
h> @ = 2uf +ul~") = 0.
i=1

Then, Eq. (13) holds. O
The following lemmas play an important role to proof the boundedness, convergence, and stability of our numerical solution.
Lemma 2. Letu,v e Z,? be any two mesh functions. Then we have
(ug, v) = —(u, vg), (Usz, V) = — (U, Ux),
and
(U, U) = —(up, Uy) = _||u><||2~

Lemma 3 (Discrete Poincaré inequality [23]). Let u € Z,? be any mesh functions. Then we have

2sin(mwh/2
((h”) Jul < g (14)
Lemma 4 (Discrete Sobolev’s inequality [24]). There exist two constants C; and C, such that
lu"lloc < Gl | +Cofluyl- (15)

For establishment of the next lemma, we use the boundary conditions (11), discrete Poincaré inequality, and discrete Sobolev’s
inequality in order to be a tool for proofing the next theorem.

Lemma 5. Let u € Z be any mesh function satisfying ||u}|| < C, then ||u"| - < C.

Proof. Since, OS%D1(WM‘/2)) = % by using Lemma 3, we have

h 1
n _ = Z||y®
lut]] < [oilﬁgl (25in(7rh/2)>:|”u"” 5 Iluzll-

From the boundary conditions (11), we have
ugll = llugll- (16)
Since ||u?|| < C, thus Eq. (16) leads to

Ju"] <C.
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Using Lemma 4, we obtain
Ul = Gllu"[l + Glluyll < C.

This completes the proof of Lemma 5. O

813

Lemma 6 (Discrete Gronwall’s inequality [24]). Suppose w(k) and p(k) are nonnegative functions and p(k) is a nondecreasing

function. If C > 0 and

k-1
wk) < p(k) +Ct Y w(l), Yk,

1=0
then
w(k) < p(k)ec™*, Vk.

The following theorem guarantees that the numerical solution obtained from the scheme (9)-(11

Theorem 7. Suppose ug H(} [x;, xg], then there is an approximate solution u™ of the scheme (9)-(11) that satisfying

<Cand|luf|l , =
Proof. Using the mathematical induction, we assume
lufll < C. llulll < C llufll < C [lu*]| <C.

and
lugll, <C llukll =€
fork=1,2,...,n Taking an inner product between Eq. (9) with u’g, we obtain
n un 3 n)2 n 1 n—-1y\2 n
<utt’u ) — (U U ) (U t) —72((11 2E’uf>+z((u &f’uf>'

Using Lemma 2, Eq. (20) becomes

1 2 2 1 2 2 1 2 _1n2
Z(Ilu?“ll = Il )+Z(|Iu,’2f“ll = [l )+E(|Iu2”|| — [lug "l )=—

From

W, —ul' g
n i+1 i-1/t n-1 n n—1
(ui)g = T Zrh (Uil —ufy —uly + ),

we have
ny2 1 n 2
(W) ]gf=ﬂ[(ui+1) - (u 1+1) — )+ @)
2‘ch [y — ! = uly +u) (g +u +ul +ul )]

n . n-1
zrhlzuzﬂ u1+1 2“i+l Ul;] 2‘[]1[2”‘“ u1+1 x+1 u: 1]

=y + U U ) g + [U.+1 W™zl - *[“m Wizl

Wn), — @), u?
=y (D - 2u | S |, | e
+ T T

=(ufl +uf )l )W) g — 2ufl () g + 2 (uf); -
With the assumption (19), Eq. (22) reaches

11! Tl = 1l -+ 0 ) () — 20f () g + 2] (0] )l = CIUP) gl +CIuP)gl-

Using Eq. (23) and the Cauchy-Schwarz inequality, we get
M-1

(W, uf hZ(u ZUDp <h YW II(u”)|<ChZI(U”)xtII(U”) |+ChZ|(u”) I (u)e]

i=1 i=1
< Clluﬁll Nuf |+ ClluG I u? (| < CCME I + ugI1® + [[u?[1).
In the same manner, we can obtain

(D% uf) < CClug I + lug 1 + 1)

((u R [)—i_1

(18)

(19)

(20)

m. (21)
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Furthermore,
2 1 2 1 2 2
flu I =leu’£”+U?I| < j(llu’t—”‘ll + lug %), (26)
and using boundary conditions (11), we have
2 1 2 1 2 2 2
llugh™ = Z e +ugll” = 5 gl + ugl®) = Nl (27)
Substituting Eqs. (24)-(27) into Eq. (21), we get
2 2 2 2 1 2 142
(" = fad 1) + Al = gl )+§(|IU'X’“II — [l
2 112 2 2 2 12
< CTIUG ™ + Nul M7+ a7+ g 1 + gl + g 0. (28)
Let
B = (2 + [l + 2 2+ [t
= uf + qu +§ uX +§ ux .
Using the assumption (18), Eq. (28) can be rewritten as follows:
2 2 2
B — B < Cr(fJu|® + [l I + lul)® + [l + [[ud="|%) + CrfJu 1| ” < CT(B™! +B") +Cr.
That is,
(1-=Ct)(B™!' —B") <CtB"+ (1.
If T is sufficiently small satisfying 1 — Ct > 0, then
B™! —B" <CtB" +(r. (29)
Summing up Eq. (29) from 1 to n, we have
n n
B! —B' <Ct ) B‘+Cnt <Cr )y B+CT.
k=1 k=1

From the assumption (18), we get B! < C. Hence,

n
B! <C+Ct ) B
k=1

By Lemma 6, it can immediately obtain B™! < Ce"* < CeT < C. This leads to
[ul ' <G, fulf') <C Jluyt <C
Finally, by using Lemma 4 and Lemma 5, we get
1 1
lug*'ll  =C [u™l, <C

This completes the proof of Theorem 7. O
3. Convergence and stability

In this section, the convergence and stability of the scheme (9)-(11) are given. Let V' = v(x;, tn) be the solution of Eq. (3) with
conditions (4) and (5). Then the truncation error of the difference scheme (9)-(11) can be obtained from

= W (D) — e+ @~ 210 g (30)
By the Taylor expansion, we easily obtain ' = 0(h? + 12) as T, h — 0. The proof is based on the following lemma.
Lemma 8 (Wang et al. [11]). Suppose ug € H(l) [x, xg], then the solution of Eq. (3) with conditions (4) and (5) satisfies

lull, =C luxll,, =C and JJull,, <C (31)
for a constant C.

Theorem 9. Suppose ug € Hé [xL, xg], then the solution u™ of scheme (9)-(11) converges to the solution of Eq. (3) with conditions (4)
and (5) in the sense of || - || With the rate of convergence of order O(h? + t2).

Proof. Lete! = v —ul', we have

1 = g (€t — @)t SO = WPl — 108 — )] (32)
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Taking an inner product between Eq. (32) with e? and using Lemma 2, we obtain

2 2 1 2 142
(e = e 1) + (lle | —||eﬁgllz)+§(||e§’”|| —lleg="1I%)
3 1 2 2
= 20{ ¢f) = ST = W)l ) + 5T = @) L ). (33)
According to Lemma 2, Theorem 7, Lemma 8, and the Cauchy-Schwarz inequality, we have
(@ = @)l €f) = =((0* = W) ]g. e

M-1
= —h Y 1D = @)l (ePg

i=1

M-1
=—h) [Wiel +uf) —uf (] —e))]p(ef)g
i1

M-1 M-1
=-h)_ (feD)i(el)g —h ) (ufel)g(el)y
i=1 i=1

M-1 M-1
= —h Y [P+ 7 WP —h Y [l e + € e
i=1 i=1
M-1 M-1
<h Y (vlle)el + el 1T@H:D (el +h Y (ullleg] + lef w1 (ef ) gl
i=1 i=1
M-1

<h ) (11Dl + lef (el + lef b1 gl
i=1
M-1
+h Y (uflleel + lef DI (el

i=1

M-1 M-1
<Ch Yy 1Ml +Chy " lefI(ehg
i=1 i=1
<Clieflilleg Il +Clie™ [l llegl
2 12 2
< C(lleF 1" + le™ 1" + lleg %) (34)
Similarly, it can be easily shown that
2 2 2 2
("7 = @) T ef) < CCler 1"+ e[ + lle 1) (35)
Furthermore,
1 1 2 1 2 2
(e = (17, 5@+ e} < S + g el I+ e ). (36)

Similarly to Eq. (27), we have ||e2f||2 < ||e3f||2. Then

2 1 2 1 2
llegell” = glle ! +eell™ = 5 (lle M1 + lleg 1) (37)

Xt xt
Substituting Eqs. (34)-(37) into Eq. (33), we obtain

2 2 2 2 1 2 102
e " = Nlef 1) + (e 1™ — [lekl )+§(|IEL’”|| —lleg "%

2 2 102 142 902 2 2 2
< Cr(llem 17+ el 5+ e 1"+ le™ 1"+ le™ 21"+ el 1™ + el “) + T llr™ 1. (38)
Let

D" = et + el + 5 el + o eI
Using Lemma 3, Eq. (38) can be rewritten as

D™ - D" < CT(D™! 4+ D" 4 D" 1) + 7|2,
and obtain

(1-Cr)(D™! —D") < Ct (D" + D" 1) + |||,
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If 7 is sufficiently small satisfying 1 — Ct > 0, then
D™ — D" < Cz(D" + D" 1) + Cr||r||%. (39)
Summing up Eq. (39) from 2 to n, we have

n n
D —D? <CT Y DM 4 Cr Y (I (40)
k=1 k=2
Notice that

rZ||r’<|| <(n—l)tmax )% < T-0(h? + %)%
k=2

Since we can approximate u! and u? using any available second-order accuracy method, thus, it implies u' and u? are of
0(h? + t2). From Eq. (40), we obtain

n
D! < 0(h? +12)° +Ct > Dk
k=1

By Lemma 6, we have
D™ < O(h? + 12) et < O(h? + Tz) eT — 0(h? + 12)
That is,
lef* !l < 0(h* +72), llel [ < 0(h* +7%), [lef*'|| < O(h* +72).
Finally, by using Lemmas 4 and 5, we get
e < O(h% + 7). [le™ ||, < O(h? + 72).
This completes the proof of Theorem 9. O

Theorem 10. Under the conditions of Theorem 9, the solution of scheme (9)-(11) is stable with respect to || - || oc-

4. Numerical experiments

The exact solitary wave [ 1] of the SRLW equation (3) has the following form
2
u(x, t) = 3(U sech2 (

Note that v is a variable parameter that allows the existence of bidirectional propagation for v < —1 and v > 1 simply refer to
left and right traveling solitary waves of the same type, respectively. Recall that the RLW equation possesses solitary waves of
the form

(x vt)) (41)

u(x, t) = 3(1 — v)sech? ( 1 (x— vt)), (42)

which propagate in both directions. The two branches of solitary waves for the velocity v in the ranges v < 0 and v > 1 simply
refer to left and right traveling solitary waves of different types, respectively. In test problems for the SRLW equation, we use
initial conditions with v = +/2 associated with this equation, which takes the form [11]

Up(x) = B\TFS ch2<fx> up(x) = 3\—rs ch2<fx> tanh(lf2 >

Since the first-order system of the SRLW equation (1) and (2) which was mentioned in introduction is equivalent to Eq. (3),
thus, we can directly calculate the density p(x, t) by using the second-order finite difference approximation
It is known that, the exact density [11,12] is

px,t) = ( se ch? ( (x vt))
Here we take the initial density associated with this equation, which takes the form

po(x) = fsechz (fx)

Our study of numerical simulations can be summarized as follows.

-7 _
P! = T(”?H_L‘:‘1—1)+101?1 .
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Table 1
The error of numerical solutions u!! using || - [[-norm at t = 20.
Scheme h=1t=0.1 h=1t=005 h=1t=0.025
Scheme 1[11]  0.0347 0.0087 0.0022
Scheme 2 [11]  0.0735 0.0186 0.0046
Scheme 3 [11]  0.0283 0.0071 0.0018
Present 0.0162 0.0037 0.00088
Table 2
The error of numerical solutions p[" using || - ||-norm at t = 20.
Scheme h=t=01 h=1t=005 h=1=0.025
Scheme 1[11]  0.0254 0.0064 0.0016
Scheme 2 [11]  0.0536 0.0136 0.0034
Scheme 3 [11]  0.0201 0.0051 0.0013
Present 0.0151 0.0036 0.00087
Table 3
The error of numerical solutions u! and rate of convergence using || - || —norm.
h=1=0.1 h=1=0.05 h=1=0.025
[le™]| Rate [le™ || Rate [le™ | Rate
t=5 0.00854 - 0.00215 1.9931 0.00054  1.9945
t=10 0.01168 - 0.00285  2.0332 0.00071  2.0136
t=15 0.01371 - 0.00325  2.0777 0.00079  2.0352
t =20 0.01622 - 0.00370 21335 0.00088  2.0644
Table 4
The error of numerical solutions u!' and rate of convergence using || - [|—norm.
h=1=0.1 h=1=0.05 h=1=0.025
[le™]| Rate el Rate [le™]l Rate
t=5 0.00515 - 0.00129  1.99781 0.00032  1.99765
t=10 0.00589 - 0.00146  2.01409 0.00036  2.00466
t=15 0.00671 - 0.00163  2.04016 0.00040  2.01781
t=20 0.00782 - 0.00185  2.08044 0.00045  2.03930
Table 5
The error of numerical solutions p/' and rate of convergence using || - || -norm.
h=1=0.1 h=1=0.05 h=1=0.025
[le™|| Rate [le™]l Rate [le™]| Rate
t=5 0.01192 - 0.00292  2.0301 0.00072  2.0136
t=10 0.01222 - 0.00303  2.0115 0.00076  2.0047
t=15 0.01250 - 0.00301 2.0555 0.00074  2.0250
t=20 0.01509 - 0.00357  2.0804 0.00087  2.0373

4.1. Error and convergence rate

A grid refinement study has been performed to assess the asymptotic error of the present scheme by using x;, = —20 and xg =
180. The error has been defined to be discrete || - ||— and || - ||.o— norms of the difference between the exact and the numerical
solutions. We compute the error at the final time t = 20 and compare it to the error from methods in [11] to illustrate the accuracy
of the scheme. The results obtained by the new scheme show the same significant digits as the ones obtained by the scheme 2 in
[11] although the new scheme approximately uses two time larger step size, as presented in Tables 1 and 2. In term of the grid
point number, the computational performance of the new scheme is obviously better than that of the schemes in [11]. Also, our
scheme can reduce errors from the schemes in [11]. Especially, the present scheme obtains almost two time less error than the
scheme 1 does and four time less error than the scheme 2 does. It is clear that results by our scheme show improvement over
the previous one reported by [11]. As shown in Tables 3-6, the second-order convergence of numerical solutions is verified.

A more quantitative comparison is presented in Fig. 1, where numerical solutions of the present scheme and the scheme 3
in [11] are compared. For the numerical simulations, we set x; = —20, xg = 180, and t € [0, 60]. In the plot of Fig. 1, we present
the error norm of uf versus time. The plots show that the convergence histories computed by using the present scheme and the
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Table 6
The error of numerical solutions o/ and rate of convergence using || - || .—norm.
h=1=0.1 h=1=0.05 h=1=0.025
[le™]| Rate [le™]| Rate lle™|| Rate
=5 0.00733 - 0.00176  2.05379 0.00043  2.02804
t=10 0.00507 - 0.00127  1.99427 0.00032  1.99945
t=15 0.00523 - 0.00125  2.06439 0.00031  2.03157
t=20 0.00605 - 0.00141 2.10406 0.00034  2.05301
10° , : , , , o
—@— Scheme 3 [11]
—=®— Present
3107} T
—@&— Scheme 3 [11]
—=®— Present
10_2 i i i i i 1072 L L - -
t
Fig. 1. The error of numerical solutions of u(x, t) using || - ||-norm at t = 60 with h = 0.25, T = 0.1 (left) and h = 0.5, T = 0.1 (right).
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Fig. 2. The error of numerical solutions of u(x, t) using || - |[-norm (left) and || - ||.—norm (right) under different mesh steps h and 7.

scheme 3 in [11] are distinguishable. It is observed that both errors increase with time but the error of the present scheme is less
than that of the scheme 3 in [11]. The present scheme behaviors have been obtained using step sizes considerably larger than
those employed for the schemes in [11]. Figs. 2 and 3 show error norms obtained by the present scheme as a function of time
step and grid spacing. From four cases of simulation, the errors increase almost linearly with time except the case h = 0.1 and
T = 0.05. The error slightly increases as the time step is decreased to T = 0.025, presumably because of the increase in round-off
error. This reason is the same as the case that the error slightly increases as the grid spacing is decreased to h = 0.05.
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Fig. 3. The error of numerical solutions of p(x, t) using || - |[-norm (left) and || - || .—norm (right) under different mesh steps h and t.
Table 7
Quantities Q" under different mesh steps h and t at various time.
h=t=0.1 h=0.1,7=0.05 h=0.1,7 =0.025 h=0.057=0.1
t=0 0.0000008532 0.0000004373 0.0000002214 0.0000008384
t=10 0.0000014616 0.0000004730 0.0000002048 0.0000009769
t=20 0.0000053996 —0.0000032166 —0.0000025267 0.0000121037
t=30 —0.0000475892 0.0000045640 0.0000060689 —0.0000651447
t =40 0.0000135275 —0.0000026284 —0.0000018423 0.0000252299
t =50 0.0000109632 —0.0000018509 —0.0000010681 0.0000192928
t =60 —0.0000379896 —0.0000026339 0.0000014097 —0.0000409694
Table 8
Quantities I{ under different mesh steps h and 7 at various time.
h=1t=0.1 h=0.1,7 =0.05 h=0.1,7 =0.025 h=0.05,7=0.1
Analytical value 5.9999956719 5.9999956719 5.9999956719 5.9999956719
t=0 5.9999955171 5.9999955171 5.9999955171 5.9999955949
t=10 5.9999818987 5.9999883051 5.9999898719 5.9999860981
t=20 5.9998590814 5.9999287900 5.9999500510 5.9999003444
t=30 5.9989594743 6.0004457165 6.0008455686 5.9981872735
t =40 5.9991755664 6.0003288589 6.0007063648 5.9985558260
t=50 5.9996485455 6.0003318057 6.0006334590 5.9990934424
t=60 6.0001680653 6.0003794646 6.0005905238 5.9996447141

4.2. Conservative approximations
Conservative approximation, that is a supplementary constraint, is essential for a suitable difference equation to make a

discrete analogue effective to the fundamental conservation properties of the governing equation. Then, we can calculate three
conservative approximations by using discrete forms as follows:

hM—l

I? =§ZU?,
i=1
hM—1

I ) > o
i=1

pM=l o M h' 2
=3 2 )+ g Xl —ul )+ 5 (o)
i=1 i=1 =1

In Table 7, it results from the present method, and the values of Q" at any time t € [0, 60] coincide with the theory. In this
case, the following sets of parameters are chosen for the test problems: x; = —20 and xz = 180. In Tables 8 and 9, the quantities
IT and I} are well preserved regardless of the time step and grid spacing. The quantity I§ is presented in Table 10. One can easily
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Table 9
Quantities I under different mesh steps h and T at various time.
h=7=01 h=01,7=005 h=01,7t=0025 h=0057=0.1

Analytical value  4.2426376267  4.2426376267 4.2426376267 4.2426376267
t=0 4.2426375172  4.2426375172 4.2426375172 4.2426375723
t=10 4.2426385251  4.2426381201 4.2426379403 4.2426383024
t=20 4.2426388155  4.2426365015 4.2426357062 4.2426391530
t=30 42426247708 4.2426409843 4.2426452841 4.2426287753
t=40 4.2426455507  4.2426365856 4.2426351950 4.2426439868
t=50 4.2426444371  4.2426368507 4.2426362331 4.2426429745
t =60 42426196418  4.2426356990 42426410456 4.2426278958

Table 10
Quantities I} under different mesh steps h and 7 at various time.
h=t=01 h=01,7=005 h=01,t=0025 h=00571=0.1

Analytical value  13.5764501988 13.5764501988 13.5764501988 13.5764501988
t=0 13.5754409883  13.5754409883 13.5754409883 13.5761977195
t=10 13.5819388501 13.5770214700 13.5766395403 13.5818774327
t=20 13.5892493371 13.5779107322 13.5767488004 13.5892335547
t =30 13.5966265407  13.5788185645 13.5768622319 13.5966433943
t =40 13.6040284766  13.5797269165 13.5769754293 13.6040790919
t =50 13.6114414174 13.5806353499 13.5770885004 13.6115252098
t =60 13.6188685380 13.5815439746 13.5772014613 13.6189855725

6.0018 : :
~—A—h=01, t=01

6.0013} —m®—h=0.1, 1=0.05
~—49—h=0.1, t=0.025
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13.620] : : ; ' ;
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13.600
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5.9993}
13.590f
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5.9983} 135801
4
5.9978 13.57 : :
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t t

Fig. 4. Discrete mass I{ (left) and discrete energy I} (right) under different mesh steps h and 7.

see that the quantity I§ slightly increases as the time is increased whereas it slightly decreases as the time step is decreased. As
shown in Fig. 4, the quantity I} is independent from the time step, grid spacing, and time. For the quantity £, it has been found
to increase as the time is increased and seems to tend to asymptotic constant values for the case h = 0.1 and t = 0.025.

4.3. Long-time simulations

According to an experiment, at long-time behavior should be observed. The waveforms obtained by the present scheme are
plotted in Fig. 5 using h = 0.25, 7 = 0.1, x; = —20, and x = 180. The waveforms at t = 40 and 80 agree with the waveforms at
t = 0 quite well, which also shows the accuracy of the scheme. To underscore the efficiency of the present method, we compare
these results at long time obtained by using the second-order finite difference method reported by [11]. Clearly, it converges very
slowly, and even on the finer grid than the grid used in Fig. 6 (left), it is still far from the converged solution, especially at the
peak of amplitude.

The plots of Figs. 7 and 8 show a clear loss of accuracy of the scheme 3 in [11] with the step size h = 0.5, T = 0.1, x, = —20,
Xxg = 180, and t = 100. Results obtained by the scheme 3 show lagging of numerical solutions when compared to exact solutions.
Moreover, subgraphs of Figs. 7 and 8 which illustrate the expanded left-tail figure show oscillation of numerical approximations
on x € [40, 120]. It can be observed that the present scheme provides the well resolution of wave structure at left-tail.
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Fig. 5. Numerical solutions of u(x, t) (left) and p(x, t) (right) with h = 0.25 and 7 = 0.1.
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Fig. 7. Numerical solution of u(x, t) at t = 100 with h = 0.5, 7 = 0.1.
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u(x,t)

u(x,t)

S. Yimnet et al. / Applied Mathematics and Computation 273 (2016) 809-825

t=0.0

18
161

14}

101

Exact s

— — — Present

olution

!

!

!

-20

20

40
X

t=5.5

60

80

100

120

151

Exact s

— — — Present

olution| |

18

20

100

120

16| - - - Present

141
121

Exact solution

!

!

!

!

Fig. 11.

20

40
X

60

80

100

120

u(x,t)

u(x,t)

u(x,t)

t=4.6

823

18
161

14}

Exact s

- — — Present

olution

!

!

20

40

t=7.4

60

80

100

120

14}

Exact solution

— — — Present

80

100

120

167

Exact

solution
- — — Present

141
121

!

!

!

~40

20

40
X

60

80

Overtaking collision of two solitary waves with velocity pair v; =2, v, = 6,Xy = 12, h = 0.05, and 7 = 0.001.

100

120



824 S. Yimnet et al. / Applied Mathematics and Computation 273 (2016) 809-825

t=0.0 t=1.0
50 . : 50 . .
Exact solution Exact solution
401 - - — Present N 401 - - — Present I
30F 1 30F 1
20+ 1 20t 1
10f 1 10f 1
X o0 X 0
) =}
-10f B —10} ]
-201 B —20} ]
-30r B —30} ]
-40} 1 -40} 1
_50 . . . . . _50 . . . . .
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
X X
t=12 t=1.4
50 T T T T
Exact solution L Exact solution |]
30
401 - - — Present N - - — Present
30F 1 20} |
20 1
101 1
101 1
X o0 X 0
S =]
—10} ]
—10} ]
—20} ]
—30} 4 201 9
—40} 1 _30} ]
_50 . . . . . . . . . .
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
X X
t=17 t=22
50 T T T 50 T T T
Exact solution Exact solution
407| - — — present | 40| - - -~ Present |
30F 1 30F 1
20+ 1 20+ 1
10f 1 10F 1
Z 0 Z 0
=] =]
-10r 1 —10} ]
-201 1 —20} ]
-301 B —30} ]
-401 1 -401 1
_50 . . . . . _50 . . . . .
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60

Fig. 12. Head-on collision of two equal-amplitude solitary waves with velocity pair v; = —15, v, = 15,Xp = 20, h = 0.05, and 7 = 0.001.

4.4. Collision of two solitons

We next examine the performance of the present scheme for the collision case. Results from a sequence of numerical simula-
tions in cases of copropagating and counterpropagating interactions between two solitons are presented and compared with the
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exact solution by using the soliton solution which is in the form

3(U12—1) 2 U12—1 3(U22—1) 2 Uzz—l
= — h — (X = — + — h — X+ — . 4
Ll(X, f) o1 sec U]Z (X Xo — Uq t) Uy sec Uzz (X Xo Uzt) (43)

For numerical experiments, we set h = 0.05, T = 0.001, x; = —60, xz = 120, and t € [0, 20]. Figs. 9 and 10 clearly show that
the parameters vy and v, affect the propagation characteristics of collision of two solitons. From Fig. 9, if v; is less than v, and
both have the same sign, the overtaking collision will happen. From Fig. 10, however, if two solitons have the different polarity,
the head-on collision will happen. The bigger size of v; and v, is, the faster head-on collision occurs.

Fig. 11 shows the results with a time-dependent computation corresponding to the propagation of initial waves v; = 2 and
v, = 6. The initial waves are centered at xq = 12 and the solutions are computed on step size h = 0.05, T = 0.001, x; = —40,
and xg = 120. The soliton with the bigger amplitude overtakes the smaller one, as both with positive polarity are right-going.
Fig. 12 shows the results with a time dependent computation corresponding to the propagation of initial waves v; = —15 and
v, = 15. The initial waves are centered at x, = 20 and the solutions are computed on step size h = 0.05, T = 0.001, x; = —60,
and xg = 60. While v; is positive and v, is negative, a head-on collision of different polarity between one right-going soliton and
one left-going soliton appears. It can be observed that the sign of v; regulates the direction in which the solitons propagate. The
velocity and amplitude of each soliton definitely remain the same after both overtaking and head-on collisions.

5. Conclusions

The four-level linear implicit finite difference scheme for the SRLW equation is introduced and analyzed. The existence and
uniqueness of the numerical solution are directly obtained from the calculation of a linear system since a coefficient matrix is
strictly diagonally dominant. Moreover, the accuracy and stability of the numerical scheme for the solution of the SRLW equation
can be tested by using the exact solution. The present method gives an implicit linear system, which can be easily implemented,
and also shows the second-order accuracy in time and space. The numerical experiments show that the present method supports
the analysis of convergence rate and the invariant properties can be verified by using analytical expressions. It is obvious that the
solitary wave obtained by this novel method can be smoothed out, at long time. In addition, overtaking and head-on collisions
between two solitons can be dealt with the proposed scheme.
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1. Introduction

A nonlinear wave phenomenon is one of the important areas of scientific research, which many scientists in the past have
studied about mathematical models explaining the behavior. There are mathematical models which describe the dynamics
of wave behaviors, such as the KdV equation, the RLW equation, the Rosenau equation, and many others [1-17]. The KdV
equation has been used in very wide applications, such as magnetic fluid wave, ion sound wave, and longitudinal astigmatic
wave [1-4]. The RLW equation, which is first proposed by Peregrine [16,17], provides an explanation on different situations
of a nonlinear dispersive wave from the more classical KdV equation. Peregrine developed the RLW equation as a new option
of the KdV equation to examine solution behavior and as a model for small-amplitude long waves on the water surface. Fur-
thermore, an interesting property of the RLW equation is that the production of secondary solitary waves or sinusoidal solu-
tions is caused by the collision of two solitary waves. Since the case of wave-wave and wave-wall interactions cannot be
described by the KdV equation, Rosenau [6,7] proposed an equation for describing the dynamic of dense discrete systems.
It is known as the Rosenau equation:

Ut + Uyxxxe + Ux + (HZ)X = 0

The existence and uniqueness of the solution for the Rosenau equation were proved by Park [8,18]. For the further con-
sideration of nonlinear waves, the viscous term u,,, needs to be included in the equation. This equation is usually called the
Rosenau-KdV equation [10-15]:
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Up + Usexxe + Uxex + Ux + (uz)x =0.

However, a numerical method for the initial-boundary value problem of the Rosenau-KdV equation has not been studied
widely. Hu et al. [10] has proposed the second-order conservative finite difference scheme for the approximate solution. On
the other hand, to understand another nonlinear behavior of waves, the term —u,, is included in the equation. This equation
is usually called the Rosenua-RLW equation:

Ut — Uyt + Ut + Uy + (U%), = 0.

The behavior of the solution to the Rosenau-RLW equation with the Cauchy problem has been well studied for the past
years [19-24]. The Rosenau-RLW equation has been solved numerically by various methods. Zuo et al. [19] have proposed
the Crank-Nicolson finite difference scheme for the equation; the convergence and stability of the proposed method were
also discussed. Obviously, the scheme in [19] requires heavy iterative computations because it is nonlinear implicit. More-
over, Pan and Zhang [20,21] developed linearized difference schemes which are three-level and conservative implicit for
both Rosenau-RLW and general Rosenau-RLW equations. The second-order accuracy and unconditional stability were also
proved.

In this paper, we consider the numerical method of the following initial-boundary value problem for coupling the general
Rosenau-RLW equation and the Rosenau-KdV equation (the Rosenau-KdV-RLW equation):

RLW

U — V Uyxt + Uxxxxt + ﬁl(dvuxxx + Uy + a(uz)x = 07 X <X <X, 0 < t < T7 (1)

with an initial condition
ux,0) =up(x), X <x<x, (2)
and boundary conditions

ux;, t) =u(x,t) =0, ug(x;,t) =uy(X,£) =0, Un(X,t) = Un(Xr,t) =0, 0<t<LT, (3)

where o > 0 and ¢ and y’W are any real number. When —x; > 0 and x, > 0, the initial-boundary value problem (1)—(3) is

consistent, so the boundary condition (3) is reasonable.

By observation, the total accuracy of a specific method is affected by not only the order of accuracy of the numerical
method but also other factors. That is, the conservative approximation property of the method is another factor that has
the same or possibly even more impact on results. Better solutions can be expected from numerical schemes which have
effective conservative approximation properties rather than the ones which have nonconservative properties [10,25]. To cre-
ate the discretization equation, the finite difference method is applied in the present research since conservative approxima-
tion analysis by the mathematical tools has been developing until now.

In this study, the performance of the purposed method is investigated by considering well-known benchmark problems,
the Rosenau-KdV equation and the Rosenau-RLW equation. Test cases involve simulating the solitary waves at several
parameters and the characteristics of these benchmark problems have been reported by previously known numerical inves-
tigations. It will also be shown that our solution is equipped with all mentioned characteristics. Moreover, the test problems
have a common experiment approach which is used to check or improve a numerical technique (see for example, [10,11,19-
24]).

The content of this paper is organized as follows. In the next section, we present invariant and boundedness properties of
solutions. Section 3 describes a conservative implicit finite difference scheme for the Rosenau-KdV-RLW Eq. (1) with the
initial and boundary conditions (2) and (3). Some preliminary lemmas and discrete norms are given, and the invariant prop-
erties are proved. The solvability of the finite difference scheme is discussed, and the existence and uniqueness of the solu-
tion are proven. This section presents complete proofs on the convergence and stability of the proposed method with
convergence rate O(t2 + h*). The results on validation of the finite difference scheme are presented in Section 4, where
we make a detailed comparison with available data, to confirm and illustrate our theoretical analysis. Finally, we finish
our paper by concluding remarks in the last section.

2. Solution properties

In order to make a discrete analogue effective to the fundamental conservation properties (mass and energy) of the gov-
erning equation, discrete conservation, which is an supplementary restriction, is necessary for a suitable difference equation.
For a conservative governing equation, the analytic results are evaluated in this section. By assumptions, the solitary wave
solution and its derivatives have the following asymptotic values, u — 0 as x — %oo, and for n > 1, 2% — 0 as x — %co.
Therefore, we obtain the solution properties as follows:

Theorem 1. Suppose ug € Hﬁ [x1, x;], then the solution of Egs. (1)-(3) satisfies:

Q) = / " u(x, )dx = / ¥ to(x,0)dx = Q(0).

Xl X
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Theorem 2. Suppose uy € Hé [x1,x;], then the solution of Egs. (1)—(3) satisfies:

E(t) = ullf, + 7""Iluxl, + luxz, = E(0).

ﬁKdV

Proof. Consider u; — YR"W ity 4 Ugeuxr = — Uy — U — 0(u?), , we have

X Xr r
—dE(t) = 2/ uuedx + ZVRLW/ Uyl dX + 2 / U Uy AX
x| X

X

Xr Xr Xr
=2 / uudx — 2yRW / Ul dX — 2 / Ul dX + 2 (YWY ULy + Uyl ) |:’

Xl

=2 / uudx — 2yRW / Ul dX + 2 / Ulhyeee@X — 2ULlygere [y = 2 / (ue — /RLWuxxtJruxxxxt)dx

Jx

= 2/ — BV — otZqu) dx = —2/ Uty + YUy + c2u ux) dx = —2pV uumdx

X1

Xr
Uw| =0.

X

) ﬁl(dv lelm dx —2 BKdvu
X

Therefore, E(t) is a constant function, that is

E(t) = Jully, + 7" lluelll, + [allf, = E©0). O
Theorem 3. Suppose that uy € Ha[x;, x,, then the solution of Eqs. (1)-(3) satisfies llull,, < C, lluwll,, < C which yields |ufl, < C

Proof. From Theorem 2, we have

Jull, <C and |yl <C.
Using the Holder inequality and the Cauchy-Schwarz inequality yields
2 x' 2 o 2 2
e, = [ P = — [ < el < (10, + )
Jx J X
Then,

1

2 2 2

luelly, <5 (Ul + s, ) < C
2

By the Sobolev’s inequality, we get |ul, < C. O

3. Numerical technique

In this section, we present a complete description of our finite difference scheme and an algorithm for the formulation of
the problem (1)-(3). We first describe our solution domain and its grid. The solution domain is defined to be
Q={(xt)]x <x<Xx, 0<t<T}, which is covered by a uniform grid Q, = {(x;,t,)|xi =x +ih, t,=nt,i=0,...,M,
n=0,...,N}, with spacings h = (x, —x)/M and t =T/N. Denote u! ~ u(x +ih,nt) and Z) = {u= ()| u_; = tp = uy =
uy1 =0, i=-1,0,1,...,M,M + 1}. We use the following notations for the simplicity:

g _ W w o
e W
n+1 n n+1 n-1
n, =M Mgy W U
1/t T ’ i/t 27 ’
n n n n n n
(u'f‘) = M (u{l)i _ U — Uiy (UF)A _ Ui — Uiy i
1/Xx h ’ i/x h 9 ilx 72}' 5

1<i<M-1

M-1
2
=hy uiel, =t fu. = max fufl.
i=1



292 B. Wongsaijai, K. Poochinapan/Applied Mathematics and Computation 245 (2014) 289-304

In the paper, C = C(0) denotes a general positive constant, which may have different values in different occurrences. Since
(u?), = 20uuy + (1 — 0)(u?),, where 0 € R is a real constant, we employ second-order central-difference approximations for
the operators in Egs. (1) and (3). The system of difference equations becomes

() = 7™ U + U] + B () i+ (U] + @y (uf uf) =0, 1<i<M—-1, 1<n<N-1, (4)
where

@ (uf, uf) = o [20u7 () + (1 = 0) (uiuf)y

uW=up(x;)), 0<i<M, (5)

ug=uy =0, (ug),=Wy)=0 (Uyy= Uy =0 1<n<N. (6)

The three-step method is used for time discretization of the above described scheme. The matrix system of the Egs. (4)
and (6) is banded with penta-diagonal. The nonlinear term of Eq. (1) is handled by using the linear implicit approximation.
Therefore, the algebraic system of equations is solved easily by using the presented method since it does not require extra
effort to deal with a nonlinear term.

The following lemmas are some properties of the above finite difference scheme which can be obtained directly from the
definition. They are essential for existence, uniqueness, convergence, and stability of our numerical solution.

Lemma 4. For any two mesh functions u, v € Z9, we have
(U, V) = —(U, Vy), (U, V) =—(U, V%), (U, V) = —(Ux, Vx),
(4, ) = —(t, ) = =[xl

Furthermore, if (Uo),; = (Um)y = O, it implies

(U, Uyx) = ||t

Lemma 5. For any two mesh functions u € Z2, we have

(ug,u) = 0, (Uyzz, u) = 0.

Lemma 6 (Discrete Sobolev’s inequality [26]). There exist two constants C; and C, such that

U™l < Galu™|| + Caffugll-

Theorem 7. Suppose uoeHZ[xhxr] then there is an estimated solution of the difference scheme (4)-(6) satisfying
[lu"|| < C, |luk|l < C which yield |ju"||

Proof. To prove the theorem, we proceed by the mathematical induction. We assume that
[uk| < C, Jukll<C, |u¥|l.<C, k=0,1,2,3,...,n (7)
After computing the inner product of Eq. (4) and 2u"(i.e.u™! + u™1), according to Lemma 4, we have
o (1 P ) g (P (o ) o (P = )+ 5 (i 20)
+ (ug, 20") + (@y(u", u"),2u") = 0, (8)
where
Py (uf, u7) = o[20u] (a7)  + (1 = 0) (winy), ]

By the Cauchy-Schwarz inequality, boundary conditions, and Lemma 4, we obtain

(@, 20") =0, 9)

I < P < +2||uxxu (10)
. 1 .

(. 20") < 2+ g =+ g (1)

From boundary conditions (6), then
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L), + (u?ﬂ?)x} uj = ) [uf (uf, —af ) +uf, uf, —ufuf, oy

M-1 M- 1

_ n angn TR A oan)
- (u ul+l uz Ui Ut 1 U Ui U 1+] Ui U; ) - 07 (12)
i=1 1:1

by the Schwarz inequality and Eq. (7), we obtain

M-1
(@, "), 207) = 20" [2000 (), + (1 — 0) (),
i=1
M-1 M-1

uohMZl rar) Jup 4+ 20hy (30 — uf () b = 2ah» (30 — )ul (@) it

i=1 i=1
M—

< (),
i=1

< C(m™ P P+ P+ 1) (13)

_ —nn2 —nn2 2 ~12 2 ~12
] < (| + gl ) < CQI™ P + P+ P + g 1))

Substituting Egs. (9)-(13) into Eq. (8), we obtain

(Il 17 = =) % 0 = 1) + (i = i 1)

< Cr (P P I i + ) (14)

Let

B = (ot + = IP) 5 (P )+ (el )

then Eq. (14) can be rewritten as follows:

B - B < Ct(B" 4+ B").

If 7 is sufficiently small which satisfies 7 < 22 and k > 2, then

(1470,
B <)

Hence ||[u™'|| < C, ||[ut'|| < C, and |jujf'|| < C, then yield |[u™!|| < Cby Lemma 6. O

T B" < (1+tkC)B" < (1 + tkC)"B' < exp (kCT)B'

3.1. Discrete conservation

Now, the conservative approximations are developed for discrete conservation of mass which is guaranteed for all a
parameter 0 € R. However, for discrete energy, we can guarantee ¢ =1 only.

Theorem 8. Suppose Ug € Hﬁ [x;,X;], then the finite difference scheme (4)-(6) is conservative for discrete mass in sense:

M-
L Y +ocerh2u w ), =Q" = ... = Q% (15)

x
2:1 i=1

Proof. By multiplying Eq. (4) by th , summing up for i from 1to M — 1, and considering the boundary conditions (6) together
with Lemma 4, we obtain

M-1

Z uttt — n 1 + a@‘[hz n+1 ? 1(1,[1»)5(] =0.

i=1

Then, this gives Eq. (15). O

NI:‘

Theorem 9. Suppose uy € Hé [x;,x;] and 6 = 1, then the finite difference scheme (4)-(6) is conservative for discrete energy in sense:

1 RLW 1 M-l _
B = (g P ) P (P )+ (s + ) + o (), = = =% (16)
i=1
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Proof. After computing the inner product of Eq. (4) and 24" (i.e. u™! + u"1), according to Lemmas 4 and 5, we have

1 1 1 _ _ _
e (I P = = P oy (P 1) g (1P = 1) + (u 2) + (g ), 207) = 0.
(17)
From Eq. (12), we obtain

M-1
oy, ), 207) = S uf (), + (ufa), Juf =0
i=1
By Lemma 4, it gives
(ut,2u") = ZhZ(u?)xﬂ? =h) " (ul) urt - hZ(u?)*u?’].
i=1 i=1 i=1

Then, Eq. (17) can be rewritten as
1 /1 112 n721 n ,1721,,2 no1112 Mﬁlnn
R g R e R (7 e s ) Wy o Rl z
i1

Finally, this gives Eq. (16), which completes the proof of theorem. O

A conservative approximation confirms that the energy would not increase in time, which allows to make the scheme
stable for the case 0 =1 only.

Remark 10. In the case 0 = 1, the approximation of the nonlinear term of the scheme (4) is the same as that of the scheme
[10] for the Rosenau-KdV equation, where yRW = 0, and that of the schemes [19-22] for the Rosenau-RLW equation, where
BX¥ = 0. Moreover, the same approximation of the nonlinear term as the scheme (4) is widely used for the RLW equation
[9,27], the RLW-Burgers equation [28], the Rosenau equation [29,30], and the Rosenau-Burgers equation [31-33].

3.2. Existence and uniqueness

In this part, we prove the solvability of solutions for the scheme (4)-(6). This guarantees the existence and uniqueness of
our numerical solution.

Theorem 11. The finite difference scheme (4)-(6) is uniquely solvable.

Proof. To prove the Theorem we proceed by the mathematical induction. We assume that u®, u', ..., u" satisfy the difference
scheme (4)-(6) for 1 <n < N — 1. Indeed, u' can be computed by an available second- order method (such as the Crank-
Nicolson method). Next, we prove that there exists u™! satisfied Eq. (4). We first consider

1 1 1 1 1
St = o) () g B () g 5 @) = O, (18)

where

@ (uf, ut) = o[20u] (uf ), + (1= 0) (uful),].

By taking the inner product of Eq. (18) with u"*!, we obtain

ZITH n+1H + 1 RLWHuz+1H2+ ||un+]H + (Po(u un+1) un+1) —0.
Since
M- 1 M-1
n+l u un+l . Z :1:11 n+1) +ul+1u;1:]1 _ ul ]U;HII]UHH
i=1 i=1
M-1 M-1

n+1,,n+1 n+1 n+1 n n+1 n+1 n+1, n+17 _
[u U Ui — ul Uiy U Z[U iU - uz+1ul+1 U ] =0. (19)
i=1

I
—_
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By the Cauchy-Schwarz inequality, Theorem 7, Egs. (19) and (10), we obtain

ME

((Po(un7un+l)7un+l) oh [ZHU ( n+1) + (1 _ 9) (u?u?*])x} U?H

X

i=1

Z

-1

a(1—0)h>  [uf (), + (wul),Jul +2ahz (30 — Dyuf (u) ur!

1 X
i=1

N
—_

i

ME

b 30 - D)t < O ), ot < (Ju )

Il
—_

i
<l + )

Therefore,
un+? H2 R gy HZ o+ fun ||2 < 2‘cC<|\u"“H2 + HU,'('{]”z)-

If 7 is sufficiently small, which satisfies 1 — 2Ct > 0, then
[uH| =0 and [jug]| =0

This implies that there uniquely exists the trivial solution satisfying Eq. (4). Hence, u™*! is uniquely solvable, and this
completes the proof of the theorem. O

3.3. Convergence and stability

Now, we prove the convergence and stability of the scheme (4)-(6). Let e!' = ¢! — u!', where ¢ and u! are the solutions of
Egs. (1)-(6), respectively. We then obtain the following error equations

1 = (€)= 7 € (D + B @) + () + 22000 (20), + (1 = ) (2] )
—o[20uf (uf), + (1 - 0)(ufaf), ], .

where 1 denotes the truncation error. By using Taylor expansion, we easily obtain that r! = O(t? + h?) holds as 7, h — 0.
The following lemmas and theorem play important roles for the proof of convergence and stability.

Lemma 12 (Discrete Gronwall’s inequality [26]). Suppose that w(k) and p(k) are nonnegative functions and p(k) is a
nondecreasing function. If C > 0 and

k-1
(k) < pk) + CT>_a(l), vk,
1=0

then
(k) < p(k)e™*,  Vk.

The following theorem grantees the convergence of the scheme (4)-(6) with the convergence rate O(t? + hz).

Theorem 13. Suppose uy € H3[x, x;], then the solution u" of the scheme (4)-(6) converges to the solution of the problem (1)(3)
in the sense of || - ||.., and the rate of convergence is O(t2 + h?).

Proof. By taking the inner product of Eq. (20) and 2e" (i.e. e™! + e 1), and using Lemma 4, we obtain

1 2 12 1 1112 2 112
oo (1P = e 1) = g™ (e 1 = e 1) + (e I~ lles™ )

= (", 28") — (eI, 2") — (M + My, 28", (21)
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According to Lemma 4, Theorems 7 and 3, and the Cauchy-Schwarz inequality, we have

M-1 M-1 M-1
(M, 2€") = 2000y [ (), — uf (&) Jef = 200 o7 () &) + 200hy_el (uf) & < C(llef]* + lle"|* + e
i=1

i=1

<Ce P+ eI+ e™ I + el + e 1)

Similar to the proof of Eq. (22), we also have

(M, 2¢") < C(Il gl + 11e"” + le"?) < C(llef™ I + e "I + eI + le"* + ™ |-

Furthermore,
1
lezli® < Negl’® <5 (el + [lexdl”).
(ef. 2¢") < [lef] +%(||€"”H2 +[le),

1
(1, 2e") < )+ (e 1 + e 1),

Substituting Eqs. (22)-(24), (26) into Eq. (19), we obtain
(lem 1P = e 1) + ™ (e 1P = llea 1) + (He™ 1™ = et 1)

< CT(IIELMH2 +1leg I+ lle 1 + eI+ fle ) + ||€“H2) + 2t

Let

2 —112 2 —12 2 —1/12
B" = (lle") + 1™ 1P) + 7™ (el + el 1) + (llell® + el I1)-

Then Eq. (27) can be rewritten as
B™' — B" < 21||r"|)> + tC(B""! + B").
Hence,

(1 - Ct)(B™" —B") < 21|r"|? + 2CtB".

If 7 is sufficiently small, which satisfies 1 — Ct > 0, then

B! — B" < C1||r"||* + tCB".
By summing Eq. (28) from 1 to n, we have
n n
Bnﬂ < Bl +C‘CZ||rk||2 +C‘CZB’(.
k=1 k=1
Notice that
n 2
> [P < nt max|[P < T- o(r2 + h2>
P 1<k<n
2
and e® = 0. We then have B' = O<T2 + hz) . Hence,

n
B! < 0(t? + %) +CT> B

k=1

According to Lemma 12, we get B" < O(12 + hz)z. That is

e P <0(z +h*)" and el < 0( +h?)
It follows from Eq. (24) that

ler || < Oz + h*).
By using Lemma 6, we have

le" 1. < O(T? + h).

2

i=1

(22)

(23)

(24)
(25)

(26)

(28)

(29)

Therefore, the solution u" of the scheme (4)-(6) converges to the solution of the problem (1)-(3) in the sense of || - ||,

with the rate O(t2 + h?). O
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Theorem 14. Under the conditions of Theorem 13, the solution u" of the scheme (4)-(6) is stable in the sense of || - ||..

4. Numerical experiments

In this section, some numerical experiments to verify the correction of our theoretical analysis were computed. As a test
problem for the scheme proposed here, we chose three test problems for which exact solution or numerical solutions have
been reported previously. For the Rosenau-KdV and Rosenau-RLW equations, the parameters used by other researchers
[10,22] to obtain their results were taken as guiding principle for our computations.

In order to apply the three-level linear scheme, u! needs to be accurately approximated. To approximate u', therefore we
have to develop another two-level finite difference scheme which satisfies desired invariant properties

(WD) = P (D) g + (U + BV 1) g+ (W) + 0, (! ) = 0,

where

a1 ) = a2 (), + (1 =0 (7). .

wW=up(x), 0<i<M.

By using || - || and || - ||, norm, the accuracy of the new method is measured by the comparison of numerical solutions with
the exact solutions as well as other numerical solutions from methods in the literatures.

4.1. The Rosenau-KdV equation

Consider the Rosenau-KdV equation with the initial condition

[ 35 35 (1
uo(x)_< 54 3]2\/3] )sech Kﬂ —26+2\/313>x}

and the boundary conditions
uX;, t) =u(x,, t) =0, ux(x;,t) =ux(Xr,t) =0, Un(X,t) = U(Xr,£) =0, 0<tLT.

It is know that, the solitary wave solution [10,15] is

35 35 41 1 1
u(x,t) = ( 24+312v31 )sech [ﬂ —26+2\/313< ( 26v313> ﬂ
The results in term of errors at the time T = 20 by using y®*" =0, Y =1, a =1, x, = —70, and x, = 100 are reported in

Tables 1-4. According to the results in Tables 1 and 3, even though the present method uses approximately two time larger
step size than the method [10] does, the present method obtains the same significant digits. It can be seen that the compu-
tational efficiency of the present method is slightly better than that of the method [10], in term of grid point number. As
shown in Tables 2 and 4, the second-order convergence of the numerical solutions is verified.

We continue with the examination of the soliton profile in Fig. 1. The patterns are in excellent agreement with the exact
solutions.

4.2. The Rosenau-RLW equation

Consider the Rosenau-RLW equation with the initial condition

ux.0) = 13 h[m}

and the boundary conditions
u(x;, t) = u(x,, t) =0, Ug(X,t) = Un(X,£) =0, 0<LEtLT.

Table 1

Comparison of errors using L,-norm at T = 20.
Scheme T=h=02 t=h=0.1 T=h=0.05 T=h=0.025
Scheme [10] - 3.045414E-03 7.631169E-04 1.905450E—-04
Scheme (4) 0 = -1/3 2.63759E-03 6.57830E—-04 1.64418E-04 4.11082E-05

Scheme (4) 6 =1/3 1.77798E-03 4.43965E-04 1.10984E-04 2.77477E-05
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Table 2
Rate of convergence using L,-norm at T = 20.
Scheme T=h=02 T=h=0.1 T=h=0.05 7=h=0.025
Scheme [10] - - 1.996662 2.001772
Scheme (4) 0 = -1/3 - 2.003433 2.000347 1.999870
Scheme (4) 0=1/3 - 2.001721 2.000094 1.999912
Table 3
Comparison of errors using L..-norm at T = 20.
Scheme T=h=02 T=h=0.1 7=h=0.05 T=h=0.025
Scheme [10] - 1.131442E-03 2.835874E-04 7.097948E-05
Scheme (4) 6 = -1/3 1.01916E-03 2.54116E-04 6.35011E-05 1.58769E—-05
Scheme (4) 0 =1/3 4.95101E-04 1.23727E-04 3.09342E-05 7.73365E—-06
Table 4
Rate of convergence using L..-norm at T = 20.
Scheme T=h=02 T=h=0.1 7=h=0.05 7=h=0.025
Scheme [10] - - 1.996297 1.998319
Scheme (4) 0 = -1/3 - 2.003821 2.000634 1.999852
Scheme (4) 0 =1/3 - 2.000563 1.999886 1.999981
0.6 T T T 0.6 T T T T T T T T T
—T=0 —T=0
- —-=T=10 I \ — = =T=30
05F | — —.T=20 1 05p " i — — T=60]]
I "
I ! ;
0.4} 1 0.4} [ I E
I !
—_ . 1 !
= . [ |
%03} 1 %03} Do | 1
E] E] L ;!
o P!
02f 1 02} 1o P! 1
[ |
[ ! \
o S
01} — 0.1f o | —
| \ | !
/ \ J \
0 , 0 \ 1 I LN \ A , , \
-40 -20 60 -40 -20 0 20 40 60 80 100 120 140
X X

Fig. 1. Numerical solutions of the Rosenau-KdV equation with T = h = 0.25,

x; = —40, x, = 60 (left) and x, = —40, x, = 150 (right).

Table 5

Comparison of errors using L,-norm at T = 20.
Scheme t=h=04 T=h=02 T=h=0.1 T=h=0.05
Scheme I [22] 2.85546E-02 7.27247E-03 1.82699E-03 4.57348E—-04
Scheme 11 [22] 2.43622E-02 6.17910E-03 1.55040E-03 3.87952E-04
Scheme (4) 0 =-1/3 4.25934E-03 1.05710E-03 2.64073E-04 6.60383E—05
Scheme (4) 0 =1/3 1.50201E-02 3.80043E-03 9.54178E-04 2.38950E—-04

The exact solitary wave solution [22] has the following form:

15

u(x,t) = —=sec

19

h*| 22 (x — oot

V13 169
26 133
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Table 6

Rate of convergence using L,-norm at T = 20.
Scheme t=h=04 T=h=02 t=h=0.1 T=h=0.05
Scheme I [22] - 1.973206 1.992977 1.998104
Scheme II [22] - 1.979176 1.994756 1.998690
Scheme (4) 0= -1/3 - 2.010518 2.001103 1.999562
Scheme (4) 0 =1/3 - 1.982660 1.993832 1.997550

Table 7

Comparison of errors using L..- norm at T = 20.
Scheme t=h=04 t=h=02 t=h=0.1 T=h=0.05
Scheme I [22] 1.09079E-02 2.78947E-03 7.01120E-04 1.75565E—-04
Scheme II [22] 9.45747E-03 2.40611E-03 6.04189E-04 1.51212E-04
Scheme (4) 0 = -1/3 1.60697E—-03 3.98895E-04 9.96138E-05 2.49119E-05
Scheme (4) 0 =1/3 5.04081E-03 1.27673E-03 3.20501E-04 8.02614E-05

Table 8

Rate of convergence using L..-norm at T = 20.
Scheme t=h=04 T=h=02 t=h=0.1 T=h=0.05
Scheme I [22] - 1.967310 1.992258 1.997656
Scheme II [22] - 1.974752 1.993631 1.998427
Scheme (4) 0= -1/3 - 2.010262 2.001592 1.999511
Scheme (4) 0 =1/3 - 1.981202 1.994053 1.997551

The numerical results in term of errors obtained by scheme (4) are reported in Tables 5-8 by using
PRW — 1 gV — 0, o = 1, X = —40, and x, = 60. The results of numerical experiments compare quantitatively very well
with the case presented in [22]. It is clear from Tables 5 and 7 that results by our method show improvement over the pre-
vious one reported by [22], especially for the case 0 = —1. From Tables 6 and 8, we get the second-order accurate scheme
which is as accurate as [22].

The solitary waves by the scheme (4) are plotted in Fig. 2 with T = h = 0.25. The solitons at t = 10, 20, 30, and 60 agree
with the soliton at t = 0 quite well, which also shows the accuracy of the scheme.

4.3. The Rosenau-KdV-RLW equation
Now, we present a brief description of solving the Rosenau-KdV-RLW Eq. (1) by using the sine-cosine method. In order to

obtain the solitary wave solution of the Rosenau-KdV-RLW equation, after making transformation u(x,t) = u(¢), ¢ =x—ct
where c is constant to be determined later, Eq. (1) becomes

0.45 . . . : 0.45 . . . . . ; ; : :
T=0 ——T=0
04F | - - =T=10 1 04F N | — — —-T=30]1
- = T=20 " ‘ -~ T=60
035} 1 0.35} n " 1
[l Iy
[ i
0.3} E 0.3} ‘ I i
D L
o 0250 1 o o025 I b :
5: 5 [ [
5 o2} 1 B o2} ro h 1
[ I
| 1 |
0.15} E 0.15} L [ 1
o o
01} 1 01} [ o 1
| | I \
0.05} 1 0.05} o o 1
! / \
/ \
L 0 L L L ! Lz ! ! ! L
-40 -20 60 40 -20 0 20 40 60 80 100 120 140

Fig. 2. Numerical solutions of the Rosenau-RLW equation with T = h = 0.25, x; = —40, x, = 60 (left) and x, = —40, x, = 150 (right).
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(1—cpu+ou? + <13Kdv + CVRLW>H<¢ — Clgeze = 0. (30)

Using the method mentioned above, we may choose the solution of reduced ODE (30) in the form

Acos (ué), & <L
e = {0, ) l)t‘heli/!\llise, 1)
or in the form
Asin (ué), ¢ <E
e = {0, ) |()t|heri/l:1ise, (32)
where 4, & and x are parameters which are determined. It is easy to reduce that
u" = n(n — 1) cos"? (ug) — in? i cos (ug) (33)
and
u® = 2ptn(n = 1)(n = 2)(n = 3) cos" (&) — 224 n(n — 1) (* — 217 + 2) cos" () + A’ cos” (ue), (34)

where similar equations can be obtained for the sine assumption. By applying Egs. (31)-(34) into Eq. (30), we find
A1 == (B + W) — et ) cos” (ue) — capn(n — 1) — 2)(1 - 3) cos”* (ug)
+ )v(<ﬁ'<d" + CVRLV")n(n — 1) +c2ptn(n - 1)(n* = 2n + 2)> cos2 (u&) + oi? cos (ué) = 0. (35)
Balancing cos?1(ué) with cos"4(ué) in Eq. (35) gives 7 = —4. Substituting 7 = —4 into Eq. (35) and setting each coeffi-
cients of cos'(u¢) to zero yield a set of equation for p, 4, and ¢
J(oi — 840cu*) =0,
pl (20(/3‘“” + cyRLW) 12+ 104Oc,u4> =0, (36)
z(l - 16(/3'“” + cvRLW) 12— 2566u4) —0.

In case g% =

1 o
54(4— 1680cu’) = 0,

YRW =1 and o = 0.5, system (36) gives

A(20(1 + €)% + 1040cu?) = 0, (37)

(1 —c—16(1 +c)p* — 256cu*) = 0.

Solving the system (37) leads to the following sets of solutions

= ii\/%\/—ﬂ + V457,

2414 13v457 (38)
- 266 ’
5
A= (—25 + 13\/457).,
and
1
—4+-—— /13 4+ V457,
H==%s ’
o 241 — 13v457 (39)
- 266 ’
5
=25 (725 - 13¢457).

By using the results of Egs. (38) and (39), we obtain solutions of Eq. (1)

u(x,t) = & <—25 + 13\/457) sech* L/% \/ =13 + v457 (x - <w> t>]
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Table 9
Errors of numerical solutions at T = 30.
t=h le| rate llell rate
0=-1
0.5 2.57844E+00 9.86753E-01
0.25 5.56190E-01 2.21285 2.14488E-01 2.20179
0.125 1.34741E-01 2.04539 5.19201E-02 2.04653
0.0625 3.34447E-02 2.01034 1.28858E-02 2.01051
0=-1/3
0.5 4.14324E-01 1.72860E-01
0.25 9.17596E-02 2.17483 3.83521E-02 2.17222
0.125 2.23327E-02 2.03871 9.34197E-03 2.03751
0.0625 5.54842E-03 2.00901 2.32074E-03 2.00914
=0
0.5 6.02160E-01 2.43684E-01
0.25 1.50948E-01 1.99610 6.06169E—02 2.00722
0.125 3.78126E-02 1.99711 1.51770E-02 1.99783
0.0625 9.46327E-03 1.99845 3.79653E-03 1.99913
0=1/3
0.5 1.45901E+00 5.57917E-01
0.25 3.72110E-01 1.97119 1.42175E-01 1.97238
0.125 9.34897E-02 1.99285 3.56991E-02 1.99371
0.0625 2.34123E-02 1.99754 8.93944E-03 1.99763
0=
0.5 2.94337E+00 1.08501E+00
0.25 8.05629E-01 1.86928 3.00424E-01 1.85264
0.125 2.05276E-01 1.97255 7.66547E—02 1.97055
0.0625 5.15696E—02 1.99297 1.92614E-02 1.99266
and

u(x7t):&(25—13\/457)csch4 \/%\/—1%\/457 X % VAT

In test problems for the Rosenau-KdV-RLW equation, we use the initial condition associated with this equation, which
takes the form

5

Up(x) = 456

(—25 + 13\/4—57>sech4 K\/% -13+ \/4—57>x} .

As shown in Table 9, for a particular choice of parameters x, = —40 and x, = 100, the estimated rates of convergence are
close the theoretically predicted second-order rate of convergence. We can also say that when we use smaller time and space
steps, numerical solutions are almost the same as the exact solutions. In Tables 10 and 11, it results from the present method,
and the values of Q" and E" at any time t ¢ [0, 60] coincide with the theory. The quantities Q" and E" seem to be conserved on
the average, i.e. they are contained in a small interval but there are fluctuations. In this case, the following sets of parameters
are chosen for the test problems: T = h = 0.25, x; = —40, and x, = 160.

Table 10

Invariant of motion Q".
T 0=-1 0=-1/3 0=0 0=1/3 0=1
0 21.6792584430 21.6792584430 21.6792584430 21.6792584430 21.6792584430
15 21.6825770313 21.6798772354 21.6792585207 21.6791001829 21.6801606811
30 21.6826412754 21.6798843150 21.6792488984 21.6790824977 21.6801763808
45 21.6834261714 21.6805287614 21.6798420932 21.6796348051 21.6802663552
60 21.6746253679 21.6728367822 21.6726648091 21.6729484047 21.6749016262

Table 11

Invariant of motion E".
T 0=-1 0=-1/3 0=0 0=1/3 0=1
0 43.7085514657 43.7085514657 43.7085514657 43.7085514657 43.7085514657
15 43.7265201536 43.7147171789 43.7112854772 43.7093907612 43.7099637500
30 43.7266422849 43.7148001553 43.7113467696 43.7094288659 43.7099530153
45 43.7266440914 43.7148018420 43.7113480338 43.7094288529 43.7099016523

60 43.7266440850 43.7148021240 43.7113484031 43.7094296146 43.7099281613
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Fig. 3. Impact of the parameter 0 with T = h = 0.25, x; = —40, and x, = 160.
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Fig. 5. Numerical solutions of the Rosenau-KdV-RLW equation with T = h = 0.25, x;, = —40, x, = 80 (left) and x;, = —40, x, = 200 (right).
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We then study the impact of the parameter 0 to the error of our numerical solution. The results are shown in the Fig. 3
where the errors of the numerical solutions are plotted versus 0 for different sets of parameters. One can easily see that the
variation of 6 in the range of [-1, 1] affects the approximate quantities; hence, the truncation error is improved. Absolute
error distributions with T = h = 0.25 are drawn at t = 30 and t = 60 in Fig. 4, respectively. It can be easily observed that
the maximum error is taken place around the peak amplitude of solitary waves. Finally, Fig. 5 presents numerical results
from t = 0 to t = 60, which are close to exact values. The present method can be well used to study a solitary wave at long
time.

The results of this section suffice to claim that both the new formulation and its numerical implementation offer a valid
approach toward the numerical investigation of a nonlinear wave phenomena.

5. Conclusion

The new formulation for a nonlinear wave proposed by coupling the Rosenau-KdV equation and the Rosenau-RLW equa-
tion is implemented numerically. The impact on the results of the actual value of a small parameter 0 in a nonlinear term is
judiciously evaluated by numerical experiments and show that, for 6 € (—1,1), the results are correct with the same signif-
icant digits as the truncation error. The new numerical model is applied to the Rosenau-KdV equation and the Rosenau-RLW
equation. We show that the new technique performs robustly and allows one to follow accurately of the soliton patterns. The
results are in good quantitative agreement with [10,22] in the common ranges of the parameters.

Moreover, the accuracy and stability of the numerical scheme for the solutions of the Rosenau-KdV-RLW equation can be
tested by using the exact solution. The present method gives an implicit linear system, which can be easily implemented.
This method shows the second-order accurate in time and space. The numerical experiments show that the present method
supports the analysis of convergence rate and the invariant properties can be verified by using the analytical expression.

The present paper shows that the Rosenau-KdV-RLW equation is a viable approach to a model of a nonlinear wave and
can serve as a basis for efficient numerical models.
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Two numerical models to obtain the solution of the KdV equation are proposed. Numerical tools, compact fourth-order and
standard fourth-order finite difference techniques, are applied to the KdV equation. The fundamental conservative properties of the
equation are preserved by the finite difference methods. Linear stability analysis of two methods is presented by the Von Neumann
analysis. The new methods give second- and fourth-order accuracy in time and space, respectively. The numerical experiments
show that the proposed methods improve the accuracy of the solution significantly.

1. Introduction

Researchers in the past have worked on mathematical models
explaining the behavior of a nonlinear wave phenomenon
which is one of the significant areas of applied research.
Derived by Korteweg and de Vries [1], the Korteweg-de Vries
eqaution (KdV equation) is one of the mathematical models
which are used to study a nonlinear wave phenomenon. The
KdV equation has been used in very wide applications, such
as magnetic fluid waves, ion sound waves, and longitudinal
astigmatic waves.

The KdV equation has been solved numerically by
various methods, such as the collocation method [2-4], the
finite element method [5, 6], the Galerkin method [7-10], the
spectral method [11, 12], and the finite difference method [13-
18]. To create a numerical tool, the finite difference method
for the KdV equation is developed until now. Zhu [13] solved
the KdV equation using the implicit difference method. The
scheme is unconditionally linearly stable and has a truncation
error of order O(t + h?). Qu and Wang [14] developed the
alternating segment explicit-implicit (ASE-I) difference
scheme consisting of four asymmetric difference schemes, a
classical explicit scheme, and an implicit scheme, which is
unconditionally linearly stable by the analysis of linearization

procedure. Wang et al. [15] have proposed an explicit finite
difference scheme for the KdV equation. The scheme is more
stable than the Zabusky-Kruskal (Z-K) scheme [16] when it
is used to simulate the collisions of multisoliton. The stability
of the method in [15] was also discussed by using the frozen
coefficient Von Neumann analysis method. The time step
limitation of the method in [15] is twice looser than that of the
Z-K method. Moreover, Kolebaje and Oyewande [17]
investigated the behavior of solitons generated from the KdV
equation that depends on the nature of the initial condition,
by using the Goda method [18], the Z-K method, and the
Adomian decomposition method.

The stability, accuracy, and efficiency, which are in con-
flict with each other, are the desired properties of the finite
difference scheme. Implicit approximation is requested in
order to reach the stability of the finite difference scheme. A
high-order accuracy in the spatial discretization is desired in
various problems. The stencil becomes wider with increasing
order of accuracy for a high-order method of a conventional
scheme. Furthermore, using an implicit method results in the
solution of an algebraic system for equations with extensive
bandwidth. It is required to improve schemes that have a
broad range of stability and high order of accuracy. Addi-
tionally, this leads to the solution of the system for linear



equations with a pentadiagonal matrix, that is, the system
of linear equations arising from a standard second-order
discretization of a boundary value problem. A method to
conquer the conflict between stability, accuracy, and com-
putational cost is the development of a high-order compact
scheme.

In recent decades, many scientists concentrated upon the
difference method that makes a discrete analogue effective in
the fundamental conservation properties. This causes us to
create finite difference schemes which preserve the mass and
energy of solutions for the KdV equation. In this paper, two
fourth-order difference schemes are constructed for the one
dimensional KdV equation:

ut+ocuxxx+y(u2) 0, x;<x<xR 0<t<T, (1)

x =
with an initial condition

u(x,0) =uy(x), xp<x<xp, (2)

and boundary conditions
u(xp,t) =u(xgt)=0,

Uy (xp,1) = u, (xp,t) = 0,
3)

Usx (xL’ t) = Uyx ('xR’ t) = 0’
0<t<T,

where « and y are any real number. When —x; > 0and xp >
0, the initial-boundary value problem (1)-(3) is consistent, so
the boundary condition (3) is reasonable. By assumptions, the
solitary wave solution and its derivatives have the following
asymptotic values, u — 0asx — =*o0, and forn > 1,
0"u/0x" — 0asx — +00.Moreover, we obtain the solution
properties as follows [19]:

I :J Ru(x,t)dx,

XL

I = rR 1 (x, £)% dx, (4)

XL

*R
L= J [Zyu (x,1)* = 3a [u(x, t)x]z] )
XL

The content of this paper is organized as follows. In the
next section, we create fourth-order finite difference schemes
for the KdV equation with the initial and boundary condi-
tions. The stability of finite difference schemes is discussed
and the conservative approximations are also given. The
results on validation of finite difference schemes are pre-
sented in Section 3, where we make a detailed comparison
with available data, to confirm and illustrate our theoretical
analysis. Finally, we finish our paper by conclusions in the last
section.

2. Difference Schemes

We start the discussion of finite difference schemes by
defining a grid of points in the (x, t) plane. For simplicity, we
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use a uniform grid for a discrete process with states identified
by x; = x; + jh which the grid size is h = (xg —x )/ M, where
M is the number of grid points. Therefore, the grid will be the
points (x;,t,) = (xg + jh,nt) for arbitrary integers j and n.
Here 7 is a time increment (time step length). We write the
notation u! for a value of a function u at the grid point
(xp + jh,nT).

In this paper, we give a complete description of our finite
difference schemes and an algorithm for the formulation
of the problem (1)-(3). We use the following notations for
simplicity:

un+1 + un—l l/lr«”l _ ur‘t—l
—n j j ( n) j j
= , u; ). = )
J 17t 2T
n n n n
() Uj ~Uja () Ujer ~ U
s h Jx ™ ho
n n n n
(un) _ Ujrg ~Uj (un) _ Ujp ~Ujo (5)
1z 2h /s 4h 7
M-1 ,
n n n n n n n
(”W):hzujvj’ " = (", u"),
j=1
n n
]l = max |u].
© <jem-1

As introduced in the following subsections, the tech-
niques for determining the value of numerical solution to (1)
are used.

2.1. Compact Fourth-Order Finite Difference Scheme. By set-
tingw = —au,, —y(u’),, (1) can be written as w = u,. By the
Taylor expansion, we obtain

Wi = (atu);l = (u;’)? +0 (Tz), (6)

(7)
" W n
|67, - £ @) | +0 )
From (6), we have
W) - @) - ().
Substituting (8) into (7), we get
n h2 n n
wj=-«a (”J)m T4 (Qfw); - v [(uJ)Z]g
9)

_ h_2 (83 2\ Lo (K
17 (0); + O ().
Using second-order accuracy for approximation, we obtain
n n\2
(@), = [(5)] L+ 0o (),

(@), = (w)) . + O ().

(10)
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The following method is the proposed compact finite differ-
ence scheme to solve the problem (1)-(3):

where

u?:uo(xj), 0<j<M. (12)

Since the boundary conditions are homogeneous, they give

1<n<N. (13)

ug =up =0, (ug). = (uy)z =0,

At this time, let e;‘ = v;‘ - u;f where v;’ and u;’ are the
solution of (1)-(3) and (11)-(13), respectively. Then, we obtain
the following error equation:

R L ) S ) R [ CATCA

-V[(u7)(i¥)]£+-%%;[(v?)(i?)]ng (14)

where r;‘ denotes the truncation error. By using the Taylor

expansion, it is easy to see that r;? = O('r2 +h4) holdsast,h —
0.
The Von Neumann stability analysis of (11) with u;’ =

g"e®i" where i* = -1 and k is a wave number, gives the
following the amplification factor:

A—itB

b itB’ 15)
where
A = 6h* (cos (kh) + 1),
B = 12a (sin (2kh) — 2 sin (kh)) (16)

+yh* (u?) (sin (4kh) + 10 sin (2kh)) .

The amplification factor which is a complex number has its
modulus equal to one; therefore the compact finite difference
scheme is unconditionally stable.

Theorem 1. Suppose u(x,t) is smooth enough, then the scheme
(11)-(13) is conservative in a sense:

-1

M

n+l n n—1
Z(”j +”j)_11 =
j=1

I = =1, W)

oS

under assumptions u; = uy,;_; = 0.

Proof. By multiplying (11) by h, summing up for j from 1 to
M -1, and considering the boundary condition and assuming
u; = Uy, = 0, we get

h M-1

n+l n-1\ _
ZAI(MJ' —u ) =0, (18)
e

Then, this gives (17). O

2.2. Standard Fourth-Order Finite Difference Scheme. By the
fact (u?) L« =1(2/3) [uux+(u2) ,J and using an implicit finite dif-
ference method, we propose a standard seven-point implicit
difference scheme for the problem (1)-(3):

(e (20) - @)...)

cop[2((4m), + (), - S (), - (),)]

(19)

u=uy(x;), 0<j<M. (20)

Since the boundary conditions are homogeneous, we obtain
Uy =uy, =0, (21)
4(ug)e = (up) = 4 (up)e = (up)e =0, (22)
= () oz + 14 (1) o — ()
= = (1) 14 () iz — (Uhg) 2 (23)
=0, 1<n<N.

u, u,, and u,, are required by the standard fourth-order
technique to be zero at the upstream and downstream bound-
aries because the method utilizes a seven-point finite differ-
ence scheme for the approximation of solution u. Through
the analytical technique of contrasting, (11) requires two
homogeneous boundary conditions only.

Now, let € = v/ — /) where v} and /" are the solution of
(1)-(3) and (19)-(22), respectively. Then, we obtain the fol-
lowing error equation:

(e?)? * “% (57)9&2 - oc% (E?)x@z
L)+ (57)) - (), + o6 ()]

 L(G57),+ 7 (7)) = (o), o ), )] = 0,
(24)

where 77 denotes the truncation error. By using the Taylor

expansion, it is easy to see that r;l = O(r*+h*) holdsas T,h —
0.



The Von Neumann stability analysis of (19) with u} =

£"e™M gives the following amplification factor:

36h° —itA

= (25)
36h% +iTA

&=
where

A = 4yi’ (u;') (— sin (4kh) + 7 sin (2kh) + 8 sin (kh))
26)
+ 9« (— sin (3kh) + 8 sin (2kh) — 13 sin (kh)) .

The amplification factor which is a complex number
has its modulus equal to one; therefore the finite difference
scheme is unconditionally stable.

Theorem 2. Suppose u(x,t) is smooth enough, then the scheme
(11)-(13) is conservative in a sense:

] ]
j=1
"4 1 (27)
SCON RS HCON
— Infl _ _ IO

under assumptions u; = u, = Uy, = Uy, = 0. Moreover,
the scheme (19)-(22) is conservative in a sense:

g= el

o1 ] 7 HED ST

2

Proof. By multiplying (11) by &, summing up for j from 1 to
M -1, and considering the boundary condition and assuming
U; = U, = Uy, = Uy, = 0, we have

ONHCACREHCACON]
oS [ ) )

. |
j=1
hM_l il n n+l _ n-1 n (30)
T Zl[g(“j(”j )e =¥ (4),)
j=
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Then, this gives (27). We then take an inner product between
(19) and 2u". We obtain

3z (= 1) + 5 (@) e @)

= 2 (@) e @) 20 (9" ("), 0) = 0,

where

X (32)
-5 () +u} (@),),

by considering the boundary condition (13). According to

,u') =0,

ux%)?

(W, u") =0,

XXX u

(33)

indeed,

(¢" (", "), u")

Z[ (),

(ununﬂ) ]un+1
777 Jx170

Z [ ("),

( nun+1) ]un+1
Uit )14

_ z [(unun+1un+1 _ u un+1un+1)
9 i Tl j-17j-17%] (34)

n n+l n+l

n_ n+l n+1)]
Uy U

—u.u. . u

+(” j+l PN N

i [(unun+lun+1 _un un+1un+l)
P77 T2 J=27j-27j

+ (un un+1un+1 _ unun+1un+l)]
jr27j 0 T2 J7i27
=0.

Therefore,

T T DR

1
2
Then, this gives (28). ]

A conservative approximation confirms that the energy
would not increase in time, which allows making the scheme
stable.

3. Numerical Experiments

In this section, we present numerical experiments on the
classical KdV equation when « = 1 and y = 3 with both dif-
ference schemes. The accuracy of the methods is measured
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TaBLE 1: Error and convergence rate of the compact finite difference scheme (11) at t = 60, h = 0.5, and 7 = 0.25.
T, h /4, h/2 T/16, h/4
llel 1.39538 x 1072 7.15872 x 107* 449013 x 10
Rate — 4.28481 3.99487
lello 7.64991 x 107 3.32024 x 107 2.08869 x 107°
Rate — 4.52608 3.99062
TaBLE 2: Error and convergence rate of the standard fourth-order finite difference scheme (19) at t = 60, h = 0.5, and 7 = 0.25.
T, h /4, h/2 7/16, h/4
llel 1.59924 x 107" 9.79739 x 107> 6.09352 x 107
Rate — 4.02885 4.00705
llelloo 8.63999 x 1072 5.33149 x 10~ 3.33067 x 107*
Rate — 4.01842 4.00066
TABLE 3: Invariants of I}, I,, and I; of the compact fourth-order finite difference scheme (11).

t 1, I, I,

0 2.0000000000 0.6666666667 1.2058836346
10 1.9999449243 0.6666680888 1.2059201473
20 2.0001106778 0.6666680896 1.2059186978
30 1.9999055324 0.6666679386 1.2059155167
40 2.0001880153 0.6666680804 1.2059193791
50 1.9999670401 0.6666680255 1.2059262538
60 1.9998768932 0.6666679688 1.2059162036

by the comparison of numerical solutions with the exact
solutions as well as other numerical solutions from methods
in the literatures, by using || - || and | - ||, norm. The initial
conditions for each problem are chosen in such a way that the
exact solutions can be explicitly computed. In case « = 1 and
y = 3, the KdV equation has the analytical solution as

u(x,1) = 0.5sech” (0.5 (x — t)). (36)
Therefore, the initial condition of (1) takes the form
u, (x) =0.5 sech? (0.5 (x)). (37)

For these particular experiments, we set x; = —40,
xg = 100, and T = 60. We make a comparison between the
compact fourth-order finite difference scheme (11) and the
standard fourth-order finite difference scheme (19). So, the
results on this experiment in terms of errors at the time t = 60
is reported in Tables 1 and 2, respectively. It is clear that the
results obtained by the compact fourth-order difference
scheme (11) are more accurate than the ones obtained by the
standard fourth-order difference scheme but the estimation
of the rate of convergence for both schemes is close to the the-
oretically predicted fourth-order rate of convergence. It can
be seen that the computational efficiency of the scheme (11) is
better than that of the scheme (19), in terms of error.

Conservative approximation, that is a supplementary
constraint, is essential for a suitable difference equation to
make a discrete analogue effective to the fundamental con-
servation properties of the governing equation. Then, we can

calculate three conservative approximations by using discrete
forms as follows:

I ~E§(u”+l+u")
Y A A P
iz

L= B3 [+ )],

j=1
" p\3 L (n)? (38)
[ 7 )
=1
(i) + ()

Here, we take h = 0.25 and 7 = K% at ¢ € [0, 60] for the com-
pact fourth-order finite difference scheme (11) and the stan-
dard fourth-order finite difference scheme (19) and results
are presented in Tables 3 and 4, respectively. The numerical
results show that both two schemes can preserve the discrete
conservation properties.

The second-order explicit scheme (Z-K scheme) and the
second-order implicit scheme (Goda scheme) are used for
testing the numerical performance of the new schemes. In
Figure 1, we see that the Z-K scheme computes reasonable
solutions using & = 0.1 and 7 = 0.01, except that the approx-
imate solution at t = 0.1 does not maintain the shape of
the exact solution. Similar calculationsatt = 0.1 and ¢t = 0.11
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TABLE 4: Invariants of I,, I, and I; of the standard fourth-order finite difference scheme (19).

t I, I, I
0 2.0000000000 0.6666666667 1.2058836346
10 2.0000527573 0.6666666667 1.2059115241
20 2.0000219448 0.6666666667 1.2059125783
30 1.9999931738 0.6666666667 1.2059105915
40 2.0001264687 0.6666666667 1.2059099477
50 1.9999456225 0.6666666667 1.2059116281
60 1.9998875333 0.6666666667 1.2059106816
10 +
= 5t
)
3
0
51
—10 }
FIGURE 1: Explicit solutions using the Z-K scheme at t € [0,0.1], 15 o s o s n Is

x; = —40, xp = 100, h = 0.1, and 7 = 0.01.

15 -10 -5 0 5 10 15
FIGURE 2: Explicit solution using the Z-K scheme at 10 time steps,
x, = —40, xz = 100, h = 0.1,and 7 = 0.01.

are demonstrated in Figures 2 and 3, respectively. The figures
show that numerical waveforms begin to oscillate at ¢ = 0.1
and show a blowup when t = 0.11. According to the results,
the Z-K scheme is numerically unstable, regardless of how
small time increment is.

As shown in Figure 2, the results of the Z-K scheme are
greatly fluctuating at 10 time steps. Therefore, It can not be
used to predict the behavior of the solution at long time.
Figures 4 and 5 present the numerical solutions by using the

FIGURE 3: Explicit solution using the Z-K scheme at 11 time steps,
x; = —40, xp =100, h = 0.1,and 7 = 0.01.

0.6 -

o o
[

|
)

ﬁ’!‘!‘l
FIGURE 4: Implicit solutions using the Goda scheme at ¢ € [0, 10],
x; = —40, x5 = 100, h = 0.5,and T = 0.25.

u(x,t)

Goda scheme. We see that the Goda scheme can run very well
at h = 0.5 and 7 = 0.25. However, the result is still slightly
oscillate at the left side of the solution.

Using the same parameters as the Goda scheme, Figures 6
and 7 present waveforms with ¢ € [0, 10]. The result obtained
by the fourth-order difference schemes is greatly improved,
compared to that obtained by the second-order schemes.

Figure 8 shows the numerical solution at ¢ = 200. The
result from the compact fourth-order difference scheme (11)
is almost perfectly sharp. From the point of view for the long
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0.45

0.4

-40 -30 -20 -10 0 10 20 30 40 50
FIGURE 5: Implicit solution using the Goda scheme at t = 10, x; =
—40, xz = 100, h = 0.5, and 7 = 0.25.

0.6
0.5

s
M

HWO

u(x,t)

l
i

i

I

0.1 4

FIGURE 6: Numerical solutions using the scheme (11) at t € [0, 10],
x; = —40, xp = 100, h = 0.5, and 7 = 0.25.

time behavior of the resolution, the compact fourth-order
difference scheme (11) can be seen to be much better than the
standard implicit fourth-order scheme (19).

The results of this section suffice to claim that both
numerical implementations offer a valid approach toward the
numerical investigation of a solution of the KdV equation,
especially for the compact finite difference method.

4. Conclusion

Two conservative finite difference schemes for the KdV equa-
tion are introduced and analyzed. The construction of the
compact finite difference scheme (11) requires only a regular
five-point stencil at higher time level, which is similar to the
standard second-order Crank-Nicolson scheme, the explicit
scheme [16], and the implicit scheme [18]. However, the con-
struction of the standard fourth-order scheme (19) requires a
seven-point stencil at higher time level. The accuracy and sta-
bility of the numerical schemes for the solutions of the KdV

u(x,t)

FIGURE 7: Numerical solutions using the scheme (19) at t € [0, 10],
x; = —40, x5 = 100, h = 0.5,and T = 0.25.

0.6 T T T
0.5
04}
03
0.2}
0.1}
0
-0.1 . . -
190 195 200 205 210
-»- Scheme (11)
-e- Scheme (19)
—— Exact solution
FIGURE 8: Numerical solutions at t = 200, x, = —40, x = 300,

h=0.5and 7 = 0.25.

equation can be tested by using the exact solution. In the
paper, the numerical experiments show that the present
methods support the analysis of convergence rate. The per-
formance of the fourth-order schemes is well efficient at long
time by comparing with the second-order schemes [16, 18].
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We introduce a new technique, a three-level average linear-implicit finite difference method, for solving the Rosenau-Burgers
equation. A second-order accuracy on both space and time numerical solution of the Rosenau-Burgers equation is obtained using a
five-point stencil. We prove the existence and uniqueness of the numerical solution. Moreover, the convergence and stability of the
numerical solution are also shown. The numerical results show that our method improves the accuracy of the solution significantly.

1. Introduction

A nonlinear wave phenomenon is the important area of scien-
tific research. There are mathematical models which describe
the dynamic of wave behaviors such as the KdV equation,
the Rosenau equation, and many others. The KdV equation
cannot explain the wave-wave and wave-wall interactions
for the model of the dynamics of compact discrete systems.
Therefore, Rosenau [1, 2] presented the novel model, which is
more suitable than the KdV equation, as follows:

Up + Uy + Uy + U, = 0. (1)

The existence and uniqueness of the solution for this equation
were proved by Park [3]. Many methods have been applied to
find a numerical solution of the Rosenau equation such as a
discontinuous Galerkin method [4], a finite element Galerkin
method [5], and a finite difference method [6-8]. Numerical
solutions and error estimates in | - || and | - ||, norms were
obtained for the Rosenau equation in one space variable [9].
As for Burgers’ equation,

U, — Uy, + uu, =0, (2)

this equation has been studied in the evolution equation
describing a wave propagation. Moreover, the simulation for
Burgers’ equation was the very first step of conceptual under-
standing of the method for the computations of complex flow.

The existence and uniqueness of the generalized Burgers’
equation have been shown with certain conditions.

In this paper, we consider the following initial-boundary
value problem of the generalized Rosenau-Burgers equation:

Up + Uysrns — Qs + ﬁux + (up)x =0,

0<x<1, 0<t<T, R
with an initial condition
u(x,0)=uy(x), 0<x<1, (4)
and boundary conditions
u(0,t) =u(1,t) =0, U, (0,t) =u,, (1,t) =0, -

0<t<T,

where a > 0, 8 € R, and p > 2 is an integer.

This equation was proposed in 1989 to describe the wave
in shallow water. It differs from Burgers’ equation by an addi-
tional strongly dissipative term u,,,. The behavior of the
solution to the Rosenau-Burgers equation with the Cauchy
problem has been well studied for the past years [10-13].
Several second-order accuracy finite difference methods in
space were used for finding numerical solutions on both
linear and nonlinear terms [14-20].



Hu et al. [14] have proposed the Crank-Nicolson dif-
ference scheme, nonlinear scheme, for the Rosenau-Burgers
equation. Hu et al. [18] have proposed a three-level average
implicit finite difference scheme for the Rosenau-Burgers
equation. The schemes are obviously implicit and require
a heavy calculation for each iteration. Pan and Zhang [20]
have proposed a three-level linear-implicit difference scheme.
The schemes, we have mentioned above, are second-order
accuracy on both time and space.

In this paper, we propose a modified three-level average
linear-implicit finite difference method for the Rosenau-
Burgers equation. By comparing with the existence second-
order accuracy finite difference scheme on a test problem, our
new technique gives a better maximal error of the numerical
solutions. A second-order accuracy on both space and time
numerical solution of the equation is obtained using a five-
point stencil.

This paper is organized into 7 sections. In Section 2, we
describe our modified finite different scheme. In Section 3,
we discuss the solvability of our scheme. The existence and
uniqueness are also proven in this section. In Section 4, we
give complete proofs on the convergence and stability of
the finite difference scheme which is second-order accuracy
on both space and time. The numerical results are given in
Section 5 to confirm and illustrate our theoretical analysis.
Then we finish our paper by concluding remarks.

2. Modified Finite Difference Scheme

In this section, we give a complete description of our modified
finite difference scheme and an algorithm for the formulation
of the problem (3)-(5). We first describe our solution domain
and its grid. We define the solution domain to be Q = {(x, t) |
0 <x < 1,0 <t < T}, which is covered by a uniform grid
Q, = {(x;t,) | x;, =ih, t,=nt,i=0,...,],n=0,...,N},
with spacings h = 1/] and T = T/N. Denote v =~ u(ih, nt)
and Z) = {u = (u) | uy = u; = 0,i = -1,0,...,J,] + 1}.
Throughout this paper, we will denote C as a generic constant
independent of step sizes T and h. For nonnegative integer
k, let H*(Q) denote the usual Sobolev space of real-valued
functions defined on Q. We define the following Sobolev
space:

Hi (Q) = {u e H (Q) :

i ©)
o'u
— =0o0n0Q, i=0,1,....,k—1¢.
ou'
We use the following notations for the simplicity:
u}:l+1 + u}"l—l n+1 un—l
—n
) S .
n n
u. 1 u. u - u
(), = T ), = M,
(uf‘)A _ u?ﬂ - u?—l i (ui"l o u?ﬂ B 2”? + u?—l i
i/x 2h i/xx hz
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(" V") = hZul Vi, || = (", ),

n —
4], = max, ]

7)

Since (u?), = p/(p + D[P u, + (uf),], the following finite
difference scheme solves the problem (3)-(5):
ah?

(1) + —( Dt = 7y ) ez +

+(u ?)xxzy? —Q E?)x}

B ). +y (ui,u;)=0, 1<i<]-1,
(8)
ug=u; =0, (Up)z= (”7);&:0’ 1<n<N, (9)
w) = uy (x;), (10)
where
v (1) = [( )] @

The followmg lemmas are some properties of the above
finite difference scheme which can be obtained directly from
the definition. They are essential for existence, uniqueness,
convergence, and stability of our numerical solution.

Lemma 1 (Hu et al. [14]). For any two mesh functions u,v €
Zz, we have

(ov)= —(vs), (i) == (vouy),
R (12)
(u’ ux?) = = (ux’ux) = _"ux" :
Furthermore, if (uy) 5 = (4;),x = 0, then
(th thz) = sl (13)

Lemma 2 (discrete Sobolev’s inequality [9]). There exist con-
stants C, and C, such that

[0 < Co "l + Co il (14)
The following theorem guarantees that the numerical

solution obtained from scheme (8)-(9) is bounded.

Theorem 3. Suppose u, € H,[0,L]. Then there is an estima-
tion for the solution u" of the scheme (8)-(9) that satisfies

[«"| < C, v < C (15)
which imply 1", < C for some C € R.

Proof. Consider the inner product between (8) and 2u" =
W™ +u" . According to Lemma 1, we have

1 _ W _
= (1 =1 1) = 5z (1= ')

g L (- )

6
+ 2o + B (@l 2a") + (v (u", @), 20") = 0.
(16)
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By a direct calculation and the boundary condition (9), we
have

17)

—n —n _ 0
- utqu U Uy =0
i=1 i=1

Furthermore, by using the definition of the inner product

(v (", "), 2u")

_P+1 Z[(” )@+ () ), ]

4 -1 _
= p+ li:l [(uzn)P l(u?+l _u?—l) ( z+1)P 7 1+1
(18)
- (”?—1)P_lﬁ?—1] u;
J-1
- P2 (6 - )
--L Iil[(u)Pl AT O L u]—O
p + 11‘:1 1 i+1 1+1
From (17) and (18), (16) can be rewritten as
1 +11|2 -1)2 hz +112 1112
2z (b = I |)‘E(”§ =)
o’ +1 (19)
- St o (b - )
+ 2o = 0.
Therefore,

(I = e F) -2 (e - )
(1~ B ) = 2 (o ).

(20)
We now define
n a2 o2\ K (a2 w12
B = (1 + o) = 2 (P + 1) on
+ (el + o' T7)
Then inequality (20) can be rewritten as follows:
E™ - E'<tC(E™ + E"). (22)

If 7 is sufficiently small which satisfies 7 < (k — 2)/kC and
k > 2, then

(1 + TC)
<(1 kC) E" 1 kC)"E"
(l—TC) < (L+7kQ) B < (1+ 7kC)’ (23)

< exp (kCT) E.

Hence,

n+1
X

n+1

(Ju

P ) - 5 (i + 1)

(||u"“|| +Hul) <c.

By using Lemma 1 and the Cauchy-Schwarz inequality, we
arrive at

2 < 5 (' + el (23)
Then, we get
h2 n+ n n+
(1) o W) (o ) s
(26)

If h is sufficiently small in which (1 - K?/12) > 0, we arrive at
that

fze Wlse @
From (25), it follows that ||u:+1 | < C. By Lemma 2, it is obvi-
ous that "], < C and that completes the proof. O

3. Solvability

In this section, we prove the solvability of a solution for
scheme (8). This guarantees the existence and uniqueness of
our numerical solution.

Theorem 4. The finite difference scheme (8)-(10) is uniquely
solvable.

Proof. To prove the theorem, we proceed by the mathematical
induction. We assume that u’, u', .. ., 1" satisfy the difference
scheme (8). Indeed, u' can be computed by an available
second-order accuracy method. Next we prove that there
exists ! which satisfied (8). Consider

1 n+1 o h2 n+1 1 (th n+l1
w3 et (o) W s

+E( n+1) + 1/’( n n+1):0’

1<i<]-1,
5 ]

(28)
where

n n+l

y (™) = 2 [ () () ]

(29)

p+1

By taking the inner product of (28) with u"*'

Lemma 1, we obtain

1
e (St e (5 -

(V/ (un, un+1) ,un+1) = 0.

and using

el

(30)

1
+_
2



Notice that
(V’ (un) un+1) , un+1)

= hp ]i[(u")‘pfl(u"”) +((u")P71un+l) ]un+1
p+1& iz i i )glti
_pr S n\p-1 ( n+l n+l
) 2(P+1);[(ui) (w2l - ui)
( z+1)P 1 In++ll _(u?_l)P—lu?:rll u:lH
—P 5 myp1 ntl ntl n \P-1 n+l n+l
) 2(P+1)Z[(u") uig g — ()" ]
i=1
2(P+1 Z [( )P 1 :1+11 1n+1 - u?ﬂ)P_l”?:”?H] =0.
(31)
Hence,
i o (= o (- 5 ) e =0
(32)

Similar to the proof of inequality (25), (32) can be rewritten

as
ot nt h o
(-2 (e o ') = S .

For h and 7 are sufficiently small which satisfies 1— (W*/12)(1-
«1) > 0, we obtain

Jo [+
u

n+1'| <0. (34)

It follows that

n+1|| _ 'lun+1|| —o. (35)

This implies that there uniquely exists a trivial solution sat-
isfying (8)-(10). Hence, ™ s uniquely solvable. This com-
pletes the proof. O

4. Convergence and Stability

In this section, the second-order rate of convergence and
stability of scheme (8)-(9) are guaranteed and explicitly
proved. Let e = v!' — u!, where v!" and u! are the solutions
of the problem (3)-(5) and the problem (8)-(9), respectively.
We arrive at the following error equation:

5 o’

rin = (6 ) + _( n)xxt 12 (E?)x)&} + (e?)xxif?_

: ‘X(E?)x}
p a\p—1/—n m\P-lon
+ p_l [(Vi ) (V); + ((Vi )’ Vi )f]

P+1 [( P () + ((”?)P_lﬁ?)se]’
(36)
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where ;' denotes the truncation error. By the Taylor expan-
sion, we easily obtain that r = O(r* + W*) holds as 1,h —
0. The following lemmas are well known and useful for the
proofs of the convergence and stability.

Lemma 5 (Zheng and Hu [16]). Suppose that u € Hg [0,L].
Then the solution of the initial-boundary value problem (3)-
(5) satisfies

”M"L2 S C) "u S C) "u”Loo S C’ (37)

sl

for a constant C.

Lemma 6 (discrete Gronwall inequality [9]). Suppose w(k),
p(k) are nonnegative mesh functions and p(k) is a nondecreas-
ing function. If C > 0 and

k-1
w(k) < pk)+Cry w(l), Vk, (38)
=0
then
w (k) < p (k) e“™,  Vk. (39)

The following theorem guarantees the convergence of our
scheme with the convergence rate of O(z* + h?).

Theorem 7. Suppose u, € HZ[0,L]. Then the solution u" of
scheme (8)-(9) converges to the solution of the problem (3)-(5)
in the sense of | - ||, and the rate of convergence is o(r* + h?).
Proof. By taking the inner product of (8) and 2¢” = "' +¢"!
and using the fact that (7, 26”) =0, we get

1 -
(e P~ e ) - - (Je - )

- —Il'xxll (I & - eI )+ 2afe°
= (r",2¢" - (M, + MZ,ZE”)),
(40)
where
= 2P,y
» (41)
n\p—l—n nm\p-l—n
M, = Im [((V ) )2_((” )P u )2]

According to Lemma5, Theorem 3, and the Cauchy-
Schwartz inequality, we have

(M, 2€")
J-1

= 2Py [, - @)@,

p+l o

= 2Ly () @)

p+1 par
J-1

+ 22y [P

p+1 P

- @) @)
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- 200 [ @]

Z[ O ]r’f),?z?

p+1 =
<C([el + [ + le"I”)

2
<C(Jer ' e + Je

n+l1

Similar to the proof of (42), we have also

(M, 2¢") < C (&) + [&"])° + Jle"]]*)
("en+1" +_"6271”2
e + e ).

n+1

+ )€

Furthermore,
ezl < el < > (||e I°+le0°).
(r",2¢") < ||r" || + = (" "+1|| + "e" 1" )

By substituting (42)-(45) into (40), we obtain

1 -
2= (= 1)

2 n+1 n—1
- 5 (e || | ) - % s
# o (Je | - e )+zaue::||
<l P+ C (e |+ el + e
e+ e + e 2).
Hence,
(' = ') - % ( -1l
+(Je' 1= e=') = 2P

+Cr ([l + el + e
+ |'e"+1”2 e + e 2).

Let
_ K2 _
£ = (1 + Jo ') = 7 (el + Je'IF)
+ (el + ')

B = (le' P+ e ') + (el + '] -

n—1

e+ e ).

(42)

(43)

(44)

(45)

(46)

(47)

(48)

From (44), then (47) can be rewritten as
E"' - E" < 21|’ + 7C (E™ + EY). (49)
That is,
(1-Co)(E™ - E") < 2t|r"|’ +2CeE". (50
If 7 is sufficiently small which satisfies 1 — Ct > 0, then
E" -E'< CT"r””Z + CtE". (51)

Summing up from 1 to n, we have

E -E' < Cri"rk“z + CriEk. (52)
k=1 k=1
Then
E"' <E'+ CTi"I’k“z - CTiEk. (53)
k=1 k=1

Using (44), we obtain that
1
EBH <E'"<B" (54)
Equations (53) and (54) yield
1 n 2 n
B < B e Cr) |||+ ) B, (55)
2 k=1 k=1
which is equivalent to
n 2 n
B! <2B' +Cry ||+ ) B~ (56)
k=1 k=1
Notice that

TZ"rk” <m‘max|'rk'| <T- O(T +h2) (57)

1<k<n

Since we can approximate u' using any available second-

order accuracy method, we have B' = 0(* + h2)2. Hence

B <0 + 1)+ CrY B (58)
k=1
According to Lemma 6, B < O(z* + h?)” implies
e so(Z+r),  |ex|so(+r). (59
It follows from (44) that
lex'| <o+ ). (60)
By using Lemma 2, we have

"en“”OO <0 (T2 + hz) . (61)

This completes the proof of Theorem 7. O
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FIGURE 1: Numerical solutions at t = 10, h = 1/32,7 = 0.1, =1,
a=2,and p = 4.

Theorem 8. Under the conditions of Theorem 7, the solution
of scheme (8)-(9) is stable with respect to | - || o

5. Numerical Experiments

In this section, we present numerical experiments on a test
problem

Up + Usypxt — Oy + ﬂux + (up)x =0,
(62)

with an initial condition

u(x,0) =uy(x) = S1-x*% 0<x<1, (63)

and boundary conditions

u(0,t) =u(1,t) =0, u, (0,t) =u, (1,t) =0,
(64)

0<t<10,

to confirm and illustrate the accuracy of our method. Since
the exact solution is not known, the finest grid (h = 1/256)
is used as a reference solution (pseudoanalytical solution).
We make comparisons between schemes proposed in [18, 20]
with our scheme (8), which is also second-order in space
and time. The errors from the three schemes are presented in
Tables1,2,and 3. For p = 2,4, and 8, itis clear that our scheme
gives better approximation than both schemes proposed in
(18, 20].
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FIGURE 2: Numerical solutions at t = 10,4 = 1/32,7 = 0.1, 3 = 1,
a=2,and p = 8.
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FIGURE 3: Numerical solutions at t = 10, h = 1/32,7 = 0.1, = 1,
a=4,and p = 4.

The corresponding errors with respect to || - || and | - [l -
norm are listed in Tables 4, 5, and 6 for p = 2, 4, and 8. The
rate of convergence is computed using two grids according to
the formula

e
ezl
Since we have five grids, we can get four different estimations
of the convergent rates. As shown in Tables 4, 5, and 6 for

one particular choice of the parameters, the three numerically
estimated rates are presented and they are close to the

rate = log, (65)
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TaBLE 1: The maximal errors of numerical solutions att = 10, 7= 0.1, =1, =2,and p = 2.
Methods h=1/16 h=1/32 h=1/64 h=1/128
(18] 5.319866¢ — 4 1.276895e — 4 3.018276e — 5 6.026481e — 6
[20] 4.483472¢ - 5 1.110691e — 5 2.644709% — 6 5.290243e — 7
Scheme (8) 3.831638e — 5 9.264042¢ — 6 2.207048e — 6 4.408479%¢ — 7
TaBLE 2: The maximal errors of numerical solutions att = 10, 7 = 0.1, 3= 1,0 = 2,and p = 4.
Methods h=1/16 h=1/32 h=1/64 h=1/128
(18] 5.319788e — 4 1.276876e — 4 3.018218e -5 6.026111e — 6
[20] 4.482287¢ — 5 1.110366¢ — 5 2.644021e — 6 5.288865¢e — 7
Scheme (8) 3.830394e - 5 9.261242e — 6 2.206324e - 6 4.407013e - 7
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FIGURE 4: Numerical solutions at ¢ = 10, h = 1/32,7 = 0.1, = 1,

a=4,and p = 8.
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FIGURE 6: Numerical solutions at different time with h = 1/32, 7 =
0.1, =1, ¢=2,and p = 8.

x1073

35¢

3t

25 ¢

2+

15F

1F

4

35+

3L

25 ¢

2k

15}

1k

0.5 F 05|
0 0
705 1 1 1
0 0.25 0.5 0.75 1 =05
_;i(z) ig PR =0 —~— =6
o t= - T - t=2 — t=8
—— t=4
—— t=4

FIGURE 5: Numerical solutions at different time with & = 1/32, 7 =

0.1, =1, a¢=2,and p=4.

FIGURE 7: Numerical solutions at different time with & = 1/32, 7 =
01,8=1,a=4,and p = 4.
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TaBLE 3: The maximal errors of numerical solutions att = 10, 7 = 0.1, =1, = 2,and p = 8.

Methods h=1/16 h=1/32 h=1/64 h=1/128

(18] 5.319785¢ — 4 1.276873¢ — 4 3.018188¢ — 5 6.025843¢ — 6
[20] 4.482286¢ — 5 1.110366€ — 5 2.644016¢ — 6 5.288811e — 7
Scheme (8) 3.830394e - 5 9.261242¢ — 6 2.206324¢ — 6 4.407013¢ — 7

TABLE 4: The errors of numerical solutions att = 10,7 = 0.1, f = 1,
a=2,and p = 2.

h llell o Rate [lell Rate
1/8 1.674577e — 4 — 9.800635e — 5 —
1/16 3.831638e - 5 2.127764 2.291144e - 5 2.096807
1/32 9.264042¢e — 6 2.048248 5.554049¢ - 6 2.044456
1/64 2.207048e — 6 2.069524 1.315895e — 6 2.077495
1/128  4.408479¢ — 7 2.323765 2.628915e — 7 2.323505

TaBLE 5: The errors of numerical solutions at t = 10, 7= 0.1, =1,
a=2,and p = 4.

h lello, Rate [lell Rate
1/8 1.673863¢ — 4 — 9.800669¢ — 5 —
1/16 3.830394e -5  2.127617  2.29116le—-5  2.096801
1/32 9.261242e -6 2.048215 5.554093e -6  2.044456
1/64 2.206324e — 6 2.069561 1.315904e — 6 2.077497
1/128 4.407013e -7 2.323772 2.628917e — 7 2.323514

TABLE 6: The errors of numerical solutions att = 10,7 = 0.1, f = 1,
a=2,and p=8.

h llell o Rate [lell Rate
1/8 1.673863e — 4 — 9.800669¢ — 5 —
1/16 3.830394e - 5 2.127617 2.29116le -5 2.096801
1/32 9.261242¢ - 6 2.048215 5.554093e - 6 2.044456
1/64 2.206324e - 6 2.069561 1.315905e - 6 2.077496
1/128 4.407013e—7  2.323772  2.628922¢ -7  2.323512

theoretically predicted ones which are second-order rates of
convergence.

Figures 1, 2, 3, and 4 show the numerical solutions at t =
10 with p = 4 and 8. The graphs of the numerical solutions of
Hu et al. [18], Pan and Zhang [20] schemes, and the proposed
scheme are presented. It is to confirm that the approximated
solutions are coinciding.

Figures 5, 6, 7, and 8 present the numerical solutions
computed by the finite difference scheme (8) with 7 = 0.1,h =
1/32att =0,2,4,6,and 8 when o = 2 and 4, respectively. It is
clear that the amplitude of the numerical solution decreases
over time. In Figures 9, 10, 11, and 12, numerical solutions are
presented for a fixed set of h, 7, and t with different values
of B and «, respectively. The graph shows that 3 does not
contribute to the height of the amplitude of the numerical
solution. On the other hand, the larger the value of «, the
smaller the amplitude of the numerical solution.

x1072

0.75 1
— t=0
- t=2

—— =4

FIGURE 8: Numerical solutions at different time with i = 1/32, 7 =
0., =1, a=4,and p = 8.

x1073

0 0.25 0.5 0.75 1

— a =05 —*— a=6
-+- a=2 —— a=38
-*%- a=4

FIGURE 9: Numerical solutions at different & with h = 1/32, 7 = 0.1,
B=1andp=4.
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F1GURE 10: Numerical solutions at different « with h = 1/32,7 = 0.1,
B=1and p=8.

x1073

-0.5 - - -
0 0.25 0.5 0.75 1
— B=05 —— B=6
-+- f=2 —— =38
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FIGURE 11: Numerical solutions at different S with h = 1/32,7 = 0.1,
a=1,and p =4.

Absolute error distributions for the three methods are
plotted at ¢ = 10 in Figures 13, 14, 15, and 16. Clearly, our
proposed method gives a better approximate solution than
the schemes proposed in [18, 20], especially at the peak of the
solution. As the results in some of the applications where the
characterization of the solution at the peak needs to be precise
our proposed method is highly recommended.

x1072

0 0.25 0.5 0.75 1

— B=05 —— f=6
-+- f=2 —— B=8
-%x- =4

FIGURE 12: Numerical solutions at different S with h = 1/32,7 = 0.1,
a=1,and p =8.
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FIGURE 13: Absolute error distribution at h = 1/32,7 = 0.1, = 1,
a=2,p=4,andt = 10.

6. Concluding Remarks

We introduce a three-level average linear-implicit finite dif-
ference method for solving the Rosenau-Burgers equation.
We prove the existence and uniqueness of the numerical
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FIGURE 14: Absolute error distribution at h = 1/32, 7 = 0.1, f = 1,
a=2,p=28andt = 10.

0 0.25 0.5 0.75 1

-~ Ref. [20]
—6— Present

FIGURE 15: Absolute error distribution at 4 = 1/32,7 = 0.1, f = 1,
a=2,p=4,andt = 10.

solution. The convergence and stability of the numerical
solution are also shown. The quantitative comparison of the
numerical results from previously known methods shows
that our method improves the accuracy of the solution
significantly. In addition, our results provide the most precise
peak amplitude.
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A Compact Finite Difference Method for Solving
the General Rosenau—RLW Equation

Ben Wongsaijai, Kanyuta Poochinapan*, and Thongchai Disyade;j

Abstract—In this paper, a compact finite difference method
to solve the Rosenau—RLW equation is proposed. A numerical
tool is applied to the model by using a three-level average
implicit finite difference technique. The fundamental conser-
vative property of the equation is preserved by the presented
numerical scheme, and the existence and uniqueness of the
numerical solution are proved. Moreover, the convergence
and stability of the numerical solution are also shown. The
new method gives second— and fourth-order accuracy in time
and space, respectively. The algorithm uses five—point stencil
to approximate the derivatives for the space discretization.
The numerical experiments show that the proposed method
improves the accuracy of the solution significantly.

Index Terms—finite difference method, Rosenau—-RLW equa-
tion.

I. INTRODUCTION

nonlinear wave phenomenon is the important area
A of scientific research, which many scientists in the
past have studied about mathematical models explaining
the wave behavior. There are mathematical models which
describe the dynamic of wave behaviors—for example, the
KdV equation, the RLW equation, the Rosenau equation,
and many others [1]-[10]. The KdV equation has been used
in very wide applications, such as magnetic fluid waves, ion
sound waves, and longitudinal astigmatic waves [4]-[6]. The
RLW equation, which was first proposed by Peregrine [7], [8]
provides an explanation on a different situation of a nonlinear
dispersive wave from the more classical KdV equation. The
RLW equation is one of models which are encountered in
many areas, e.g. ion—acoustic plasma waves, magnetohydro-
dynamic plasma waves, and shallow water waves. Since the
case of wave—wave and wave—wall interactions cannot be
described by the KdV equation, Rosenau [9], [10] proposed
an equation for describing the dynamic of dense discrete
systems; it is known as the Rosenue equation. The existence
and uniqueness of the solution for the Rosenau equation were
proved by Park [11], [12]. For the further consideration of
the nonlinear wave, a viscous term u,.,; needs to be included:

Ut — Uggt T Ugggat + Uy + (up)L = 07 (1)

where p > 2 is an integer and ug(z) is a known smooth
function. This equation is usually called the Rosenua—RLW
equation. If p = 2, then Eq. (1) is called the usual Rosenau—
RLW equation. Moreover, if p = 3, then Eq. (1) is called
the modified Rosenau—RLW equation. The behavior of the

*Kanyuta Poochinapan, Corresponding Author, Department of Mathemat-
ics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
(email: kanyuta@hotmail.com, k.poochinapan@gmail.com)

Ben Wongsaijai, Department of Mathematics, Faculty of Science,
Chiang Mai University, Chiang Mai 50200, Thailand (email:
ben.wongsaijai @ gmail.com)

Thongchai Disyadej, Electricity Generating Authority of Thailand, Phit-
sanulok 65000, Thailand (e-mail: thongchai.d@egat.co.th)

solution to the Rosenau—RLW equation with the Cauchy
problem has been well studied for the past years [13]-[18].
It is known that the solitary wave solution for Eq. (1) is

u(z, t) = e tEF3)ErH(E+1)/20°+3) (p° +4p+ DI}/ (p+1)

p—1
—(x
\/4p? + 8p + 20

where p > 2 is an integer and ¢ = (p* + 4p® + 14p? + 20p +
25)/(p* + 4p3 + 10p? + 12p + 21).

The Rosenau—RLW equation has been solved numerically
by various methods (for example, see [13]-[18]). Zuo et
al. [13] have proposed the Crank—Nocolson finite difference
scheme for the equation. The convergence and stability of
the proposed method were also discussed. Obviously, the
scheme in [13] requires heavy iterative computations because
the scheme is nonlinear implicit. Pan and Zhang [14], [15]
developed linearized difference schemes which are three—
level and conservative implicit for both the usual Rosenau—
RLW (p = 2) and the general Rosenau-RLW (p > 2)
equations. The second—order accuracy and unconditional
stability were also proved.

In this paper, we consider the following initial-boundary
value problem of the general Rosenau—RLW equation with
an initial condition:

sech?/(P+1) —ct)|,

u(z,0) = uo(z), (2 <z <), 2)
and boundary conditions

u(zy,t) = u(z,,t) =0,

The initial-boundary value problem possesses the following
conservative properties:

Q) = [ ute.tnie = [ w0z = Q)

Zy Zy

B(t) = |lullz, + luall, + lueal7, = E(0).

When —x; > 0 and z, > 0, the initial-boundary value
problem (1)—(3) is consistent, so the boundary condition (3)
is reasonable.

By observation, the total accuracy of a specific method is
affected by not only the order of accuracy of the numerical
method but also other factors. That is, the conservative
approximation property of the method is another factor that
has the same or possibly even more impact on results. Better
solutions can be expected from numerical schemes which
have effective conservative approximation properties rather
than the ones which have nonconservative properties [19],
[20]. To create the discretization equation, a finite difference

(Advance online publication: 28 November 2014)
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method is applied in the present research since conservative
approximation analysis by the mathematical tools has been
developing until now.

The content of this paper is organized as follows. In
the next section, we describe a conservative implicit finite
difference scheme for the general Rosenau—RLW equation
(1) with the initial and boundary conditions (2)—(3). Some
preliminary lemmas and discrete norms are given and the
invariant property Q™ is proved. We discuss about the
solvability of the finite difference scheme, and the existence
and uniqueness of the solution are also proved in the Section
3. Section 4 presents complete proofs on the convergence
and stability of the proposed method with convergence rate
O(7%+ h*). The results of validation for the finite difference
scheme are presented in Section 5, where we make a detailed
comparison with available data, to confirm and illustrate
our theoretical analysis. Finally, we finish our paper by
concluding remarks in Section 6.

II. FINITE DIFFERENCE SCHEME

In this section, we introduce a finite difference scheme
for the formulation of Eqgs. (1)—(3). The solution domain
Q=A{=t) o1 <z <z, 0<t<T}is covered by a
uniform grid:

Qn = {(xs,tn)| ®; = 2 +ih, t, =n7,0 <i < M,
0<n< N},

with spacings h = (x, — x;)/M and 7 =

w2 u(w,ty),

T/N. Denote

Qn = {(xi,tp)| i = 21 +ih, t, =n1, =1 <i < M+1,
0<n< N},

and Z) = {u" = (u")| up =up =0, =1 <i < M +1}.
We use the following notations for simplicity:

”+% u?+1 + uzn —n u;l+1 + u?il
U =T i =y
n u?_‘—l — u? n u;ﬂ—l — u?_l
(), =4 =

Uy, —uy uy —up
(UM = %, (uM)z = %7
M-1
U —ul
() = === @) = h Y,
i=1
n|2 __ n n n _ n
| = (", "), oo = manx o’

By setting w = Ugzt — Uy — Ugazat — (W), Eq. (1) can be
written as w = u;. By the Taylor expansion, we obtain

w! = () = (ul); + O (7'2) , 4)
and
h2 n n h2 2 n
af = [ 35 @20 - [, — & (@20
h? n
- [(u?)rr"cxf 6 (agatu)i]
h2

- -5 @] o). o

From Eq. (4), we have
(80), = (010,)] — (02u)! — (027)! — (02)". (©
Then,

n n h2 4 n n h2 3, \"
w; = (uz )mff - E (amatu)l - (uz )53 - F (890“)1
h? n n
R G e (e
h2 n 2 n 2 n n
5 (@200 - (02 - (02! - (@] ]
+0 (h*). (7)
This implies that
h2

15 (0200)] = (uf); — [(uf")"];
12 ¢
h? o \n 4
Using second—order accuracy for approximation, we obtain
(Gﬁu)? =(u} +0 (h2) ,

2 )x;cii
(0Fw); = (w]),z + O (h?).

The following method is a proposed finite difference scheme
to solve the problem (1)—(3):

= (1= 5 ) s+ (1= 55) @)

+ (i) + [(w)’]; = 0;
1<i<M-1, 1<n<N-1, 9

where
u; = up(z;), 0<i<M, (10)
ug =uy =0, (ul)wz = (Ups)z =0, 1 <n<N.
Y

A three—step method is used for the time discretization of
the above described scheme. After the new time discretiza-
tion of Eq. (9) is performed, three— and five—point stencils
approximating the derivatives for the space discretization are
used to obtain an algebraic system. The matrix system of
Eq. (9) is banded with penta—diagonals and we use a standard
routine of the MATLAB to solve the system (9)-(11). The
nonlinear term of Eq. (1) is handled by using the linear
implicit scheme. Therefore, the equations are solved easily
by using the presented method since it does not require extra
effort to deal with the nonlinear term.

Lemma 1: (Pan and Zhang [15]) For any two mesh func-
tions u,v € Z°, we have

(ug,v) = —(u,vz),
(tg,v) = —(u,vz),
(v, Uuzz) = —(Vay Uz,
(u,uﬂ) = *(Umvum) = *Hur”2

Furthermore, if (u})zz = (u%;)zz = 0, then it implies

(U, uzz:if) = ||uri||2

(Advance online publication: 28 November 2014)
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Theorem 2: Suppose that ug € Hg, then the scheme (9)—

(11) is conservative in sense:

hM—l

Q=32 (" +uf)

i=1

=Q" =...=¢" 1
under assumptions u_; = u; = 0 and upr—1 = upr41 = 0.
Proof: By multiplying Eq. (9) by h, summing up for ¢
from 0 to M — 1, considering the boundary conditions, and
assuming u_; = u; = 0 and up;—1 = upr41 = 0, we get

*Z

Then, this gives Eq. (12). |
Lemma 3: (Discrete Sobolev’s inequality [21]) There exist
two constants C'; and C5 such that

n+1 n 1) _ O

[ oo < Crlu”[| + Coffuz]

Theorem 4: Suppose ug € HZ[x;,z,], then the solution
u™ satisfies ||u”|| < C and |ju < C, which yields
Ju"]l,. < C.

Proof: Tt follows from the initial condition (10) that
u® < C. The first level u! is computed by the fourth—order
method. Hence, the following estimates are gotten about
||u1H < C and ||u1||(><> < C. Now, we use the induction
argument to prove the estimate. We assume that

|u¥||. <C for k=0,1,2,...,n

zel

13)

Taking the inner product of Eq. (9) with 24" and using
Lemma 1, we obtain

wL“W—wL1W+(L-6)OWJHF—W%IW)
= (1-5) (I = s )

= =27 ((u"),,2u") — 27 ([(u™)"];,

According to the Cauchy—Schwarz inequality and direct
calculation, it gives

2a").

luz ]l < gl
and
1
((u");.2a") < (nuan + 2||u’“||2) :

From Eq. (13), the Cauchy—Schwarz inequality, and Lemma
1, we get

1 2
4 2|

M-—1
([(u™)"]; ——hZ (wi ™ +uf ™),
n n 1 n—
c@UW+2m;w2+nmrwﬁ-
Setting

h2
B = Pl P (1= 5 ) (el + )
+ (1= 5 (sl + )

Bn+1 o

then
B" <rC (B"*' + B").

k—2
kC

and

If 7 is sufficiently small, which satisfies 7 <
k > 2, then

(1+7C)
-~ (1-70)
Hence ||u"+1H <C, ||u”+1|| < C, and ||u"+1|| < C, which
yield |[u"||_ < C by Lemma 3. [

BTl < B" < (1+7kC) B™ < exp (kCT) B°

III. SOLVABILITY

In this section, we prove the existence and uniqueness of
our proposed scheme that implies the unique solvability.

Theorem 5: The finite difference scheme (9)-(11) is
uniquely solvable.

Proof: By using the mathematical induction, we can
determine u® uniquely by an initial condition and then
choose a fourth-order method to compute «!. Now, suppose
u®,u',u?, ..., u" to be solved uniquely. By considering Eq.
(9) for u™t!, we have

i n+l i o hiz n+1
2 27 (1 6 > () ot

1 h2 n+1
2r (1 12) (u ):cxii =0. (14

By taking an inner product of Eq. (14) with u"*!, we obtain

2 1 h2 +1 2
-5 (1= %) I

o (1-0) e —o

By the Cauchy—Schwarz inequality and Lemma 1, we have

1 un+1H

27”

2
™|

1 n n
e (5= 1) B = o

Therefore, Eq. (14) has the only one solution and Eq. (9)
w1 is uniquely solvable. This completes the proof of
Theorem 5. |

() < Sl P 4 o

Then,

IV. CONVERGENCE AND STABILITY

In this section, we prove the convergence and stability of
the scheme (9)-(11). Let e} = v}’ — ', where v]" and u}
are the solutions of (1)—(3) and (9)—(11), respectlvely Then
we obtain the following error equations:

= 0= (1) €Dt (17 1 ) €D
(), + )~ (@), (15)

where 7' denotes the truncation error. By using the Taylor
expansion, it is easy to see that r?* = O(72 + h*) holds as
7,h — 0. The following lemmas are essential for the proof
of convergence and stability of our scheme.

Lemma 6: (Discrete Gronwall’s inequality [21]) Suppose
that w(k) and p(k) are nonnegative functions and p(k) is
nondecreasing. If C' > 0 and

k—1

p(k) +CT Y w(l), VE,

=0

w(k) <

(Advance online publication: 28 November 2014)
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then
w(k) < p(k)eCT", VE.

Lemma 7: (Pan and Zhang [15]) Suppose that ug €
HZ[x;, 2], then the solution u™ of Eqgs. (1)—(3) satisfies

ullz, <C, [uzll, <C,
[tae L, < C, lullz,, < C.

The following theorem shows that our scheme converges to
the solution with convergence rate O(72 4 h*).

Theorem 8: Suppose ug € HZ[x;,z,], then the solution
u™ converges to the solution for the problem in the sense of
-1l and the rate of convergence is O(72 + h?).

Proof: By taking an inner product on both sides of Eq.
(15) with 2e" = (e"t! + e~ 1), we get

1112 1112 h? 1112 n—1112
(e = e ) (120 (e = e )

# (1= 5) (les P = et ) = 2r . 2e)
=27 (e, 2e") = 27 ([(v")"]; — [(")"];,2¢") . (16)

According to the Schwarz inequality, Lemma 1, Theorem 2,
and Lemma 7, we obtain

“a Y 7, - (e

/jiil n\PpP n\pP -n
:_2@; [<> —(ul>]<ez>f
oy [ eyt e,

< C (Jle") + llez1?)
<o+ eI+ e ).

By the Cauchy—Schwarz inequality, Lemma 1, and a direct
calculation, we obtain

ezl < flez) (18)
1

ezl == (e ene) < 5 (lenl® + ez l?) s a9)

(e,2¢) < ezl + 5 (e + e ), o

(" 2e) < 1P 4 5 (e P + e ). e

From Egs.(16)—(21), they yield
(e = e 1)
+(1- ’;2) (her P = ez 1P)
+(1-55) (eI = ez?I)

< 2rfr|” + TC(He”*H? el + e

e P e+ ). e

Setting

h2
B = eI (1- ) (1t + s )
h? n 2 n—1[|2
+ (1 — 12) (HeziH + Hewi H ) ’

then Eq. (22) can be rewritten as
Em — B < orf|r"|® 4+ £C (BT + BT
and
(1—2rC) (E™*' — E™) < 7|r"||” + 2rCE™.

If 7 is sufficiently small, which satisfies 1 — 2C'T > 0, then

L En < 1C|r"||* + TCE™. (23)
Summing up Eq. (23) from 1 to n, we have
B < B ror Y|P P or Y B 4

k=1 k=1

Thus, we can use a fourth—order method to compute ! such
that
2
E' <O(r* +n'),

and

n
TZHT]CH <n7‘0<Iln<aX 1HrlH <T-0(r* —|—h4)
n

By Lemma 6, we obtain E" < O(72 + h4)2, that is

le"] < O(r* + k%), |lefz] < O(r* +hY).
From Eq. (20), we obtain

le”[l < O(72 + 1), |lezll < O(* + h*),

and
lezzll < O(r* + hY).
By Lemma 3,
€™l < O(r® + R*).
This completes the proof. |
Theorem 9: Under the conditions of Theorem 8, the so-
lution u™ of Egs. (9)—(11) is stable in norm || - || co-

V. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments on a
test problem to confirm and illustrate the accuracy of our
proposed method. The accuracy of the method is measured
by the comparison of numerical solutions with exact solu-
tions as well as other numerical solutions from the method
in the literature [15] by using || - || and || - ||oc norm. The
initial condition associated for the Rosenau—RLW equation
takes the form:

wo () = e BB EPE) @)/ R0 +8) b +4p T}/ (1) o

sech?/ (P+1) [

p—1
(2| .
\/4p? + 8p + 20

(Advance online publication: 28 November 2014)
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TABLE I
COMPARISON OF ERRORS WITH 7 = 0.1, h = 0.25, x; = —60, AND 0.025 ; ; ; ;
xyr = 120 AT t = 40. Present |
—-— - Pan and Zhang [15] “\
le]] x 102 llelloo x 10~3 002t .
p Present Pan&Zhang Present Pan&Zhang
2 0.23608 0.78777 0.88670 2.88972
4 0.47254 1.73066 1.81252 6.47969 0.0151 ]
8 0.46713 1.80583 1.75739 6.66740
16 0.38438 1.37857 1.30630 5.05919
0.01f 1
TABLE 1T
COMPARISON OF ERRORS WITH 7 = 0.1, h = 0.5, x; = —60, AND
zr = 120 AT t = 40. 0.005 ]
e x 102 [e]loc X 10—~ ‘
p Present Pan&Zhang Present Pan&Zhang _050 —40 120
2 0.230294 3.25288 0.086284 1.19460
4 0.447881 7.45173 0.171122 2.78712
8 0.431841 8.03730 0.161891 2.95337 Fig. 2. Absolute error distribution at p = 8, h = 0.5, 7 = h2, and t = 40.
16 0.357253 6.13044 0.118759 2.25471
0.1 . .
0.025 T T T —o— Present a
Present i 0.09r1 .5 pan and Zhang [15] o
— - — - Pan and Zhang [15] N 0.081 o 4
0.02F 007k o |
o
0.06 1
o
0.015f
0.05F o 1
0.04 u q
0.011 o
0.03+ 1
o
0.02f 5 1
0.005
001F g ]
N 5 0 10 20 30 40 50 60

S0 w0 20 0 20 4 60 80 100 120
Fig. 1. Absolute error distribution at p = 4, h = 0.5, 7 = h?, and t = 40.

For u!', we employ a two-level method to estimate the

solution by

)= (1= ) e (155 D)

+ (1L?+l2)i i [(u?)P]j — 0

1<i<M-1, 1<n<N-1. (25

We make a comparison between the scheme (9)-(11) and
the scheme proposed in [15]. The rate of convergence is
computed using two grids, according to the formula:

llenl

Rate = log, lensall

The results in term of errors at ¢ = 40, 7 = 0.1, and
different p, by using x; = —60 and z,, = 120, with h = 0.25
and h = 0.5 are reported in Tables I and II. It is clear that the
results obtained by the scheme (9)-(11) are more accurate
than the ones obtained by the scheme in [15].

Absolute error distributions for the two methods with 7 =
0.25,h = 0.5, and ¢t = 40 are drawn at p = 4 and 8 in Figs. 1
and 2, respectively. The results obtained by the scheme (9)—
(11) are greatly improved when compared to those by the
scheme in [15]. It can be easily observed that the maximum

Fig. 3. Error ||e|| versus ¢ at p = 4,h = 0.5, and 7 = h2.

0.035

T T T T T h
i
a
003l Zhang and Pan [15]
o
o
0.025
o
o
0.02-
o
o
0.015-
o
0.0+ g
af
0.005
o
o . . . . .
0 10 20 30 40 50 60

Fig. 4. Error ||e|loo versus t at p=4,h = 0.5, and 7 = h2.

error is taken place around the peak amplitude of the solitary
wave and then the scheme (9)—(11) is applied in this area.

Figs. 3-6 show errors at ¢ € [0,60] with 7 = 0.25, h =
0.5, and p = 4, 8 by comparing with the Pan&Zhang method
[15]. It is observed that both errors increase with time quite
linearly but the error of the present method is less than that
of the Pan&Zhang method [15].

As shown in Tables III and IV, on one particular choice of
the parameters, the estimated rate is close to the theoretically

(Advance online publication: 28 November 2014)
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0.12

T T

—o— Present b
B Pan and Zhang [15]

0.1 1

0.08 - q

0.06 - q

0.02 a q

o . . . . .
0 10 20 30 40 50 60

Fig. 5.

Error ||e|| versus ¢ at p = 8, h = 0.5, and 7 = h?.

0.04 T T

—©— Present
0.035 & - Pan and Zhang [15] - i

0.031 q

0.025 q

0.021 = 1

0.015 q

0.011 q

0.005 1

10 20 30 40 50 60

Fig. 6. Error ||e|loo versus ¢ at p= 8, h = 0.5, and 7 = h2.

predicted fourth—order rate of convergence. We can also say
that when we use smaller time and space steps, numerical
values are almost the same as exact values. The CPU time
for two methods are listed in Tables IIT and IV. It can be seen
that the computational efficiency of the present method are
slightly better than that of Pan&Zhang method [15], in term
of CPU time. However, the construction of the novel scheme
requires only a regular five—point stencil at a higher time
level, which is similar to the standard second—order Crank—
Nicolson scheme and Pan&Zhang scheme [15].

As in Tables V and VI, the values of Q™ and E™ at any
time ¢t € [0,40], which results from the present method,
coincide with the theory. The quantities Q™ and E™ seem
to be conserved on the average, i.e. they are contained in a
small interval but there are fluctuations.

Figs. 7 and 8 show numerical solutions at ¢ = 200 with
p =4 and 8. The results from the Pan&Zhang method [15]
are slightly oscillate at the left side of the solitary wave in
case of p = 8. However, the results from the present method
are almost perfectly sharp in both cases p = 4 and 8. From
the point of view for the long time behavior of the resolution,
the present method can be seen to be much better than the
method in [15].

The solitary waves obtained by the present scheme are
plotted in Figs. 9 and 10 using 7 = 0.25,h = 0.5,2; =
—60,z, = 200, and p = 4,8. The solitons at ¢ = 60 and

TABLE III

RATE OF CONVERGENCE AND CPU TIME WITH p = 4 AND t = 40.

T =025 h=05

T.h i3 o4
Present
le]| x 102 3.20548 0.197080 0.0123084
Rate 4.02369 4.00106
llef|oo x 102 1.22483 0.0752290 0.00469781
Rate 4.02515 4.00123
CPU time (s) 1.153389 12.866165 155.967273
Pan&Zhang
llel| x 102 6.41825 1.85385 0.479643
Rate 1.79165 1.95050
llef|oo x 102 2.38960 0.696030 0.180409
Rate 1.77955 1.94788
CPU time (s) 1.251865 13.534488 157.561488

TABLE IV

RATE OF CONVERGENCE AND CPU TIME WITH p = 8 AND ¢t = 40.

=025 h=05

.h 15 i
Present
le]| x 102 3.18080 0.194284 0.0121337
Rate 4.03315 4.00108
lellos x 102 1.19513 0.0727869 0.00454621
Rate 4.03734 4.00094
CPU time 1.21464 13.868260 174.397644
Pan&Zhang
le]| x 102 6.44908 1.99919 0.525426
Rate 1.68968 1.92785
llellos x 102 2.35870 0.739615 0.194938
Rate 1.67314 1.92376
CPU time 1.371416 14.862871 175.068007
TABLE V
DISCRETE MASS Q™.
T=0.25 h=0.5
t p=4 p=2_8

t=10 6.26580620079700 9.74208591413665

t=20 6.26580620078861 9.74208595412127

t=30 6.26580619948382  9.74208578472995

t=40 6.26580617252808 9.74208558745239

Q(0) 6.26580620079328  9.74208618205024

TABLE VI
DISCRETE ENERGY E™.
T=0.25 h=0.5
t p=4 p=2_8

t=10 2.86723006370139  4.73479863443071

t=20 2.86725271321602 4.73481771538282

t=30 2.86726739317968 4.73483391314363

t=40 2.86727839480750 4.73485101919594

E(0) 2.86718872840474  4.73477831492679

120 agree with the soliton at t = 0 quite well, which also
shows the accuracy of the scheme.

VI. CONCLUSIONS

The new conservative finite difference scheme for the
Rosenau—RLW equation is introduced and analyzed. The
present method gives an implicit linear system, which can
be easily implemented. This method shows the second— and
fourth—order accuracy in time and space, respectively. In

(Advance online publication: 28 November 2014)
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Fig. 7. Numerical solutions at p = 4,x; = —60,x, = 300,h = 0.5,
7 = h2, and t = 200.

0.8 Exact solution 1 ]
Present e
0.7 | —=— Pan and Zhang [15] )

Fig. 8. Numerical solutions at p = 8,x; = —60,x, = 300,h = 0.5,
7 = h2, and ¢t = 200.

t=0
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— —t=120
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Fig. 9. Numerical solutions at p = 4.

addition, the numerical experiments show that the present
method supports the analysis of convergence rate.

It is obvious from numerical experiments that the present
method, the scheme (9)-(11), gives the well resolution for
the Rosenau—RLW equation. It is possible that the solitary
wave obtained by this novel method can be smoothed out,
at long time, by type of the high—order accuracy.
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