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บทคดัย่อ 
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Abstract 

 
In this project, we propose and analyze the numerical methods for the 

approximation of axisymmetric flows as well as algorithms suitable for the solution of 
fluid structure. This work deals with the three-dimensional axisymmetric fluid problem 
based on the incompressible Navier-Stokes equations (NSEs) which are solved on the 
two-dimensional problem. We then introduce a new form of the NSEs for axisymmtric 
flow derived according to Aristov and Pukhnachev (2004). The new function is 
introduced that is related to the pressure and a system similar to the vorticity-stream 
function formulation is derived. The new form of the NSEs for the axisymmetric motion 
of a viscous incompressible fluid offers the possibility to create a different numerical 
model. Because of the physical nature of the coupling function, the model may have 
different mathematical properties than the vorticity-stream function formulation. We 
account for large deformations of the fluid structure and we show how existing 
algorithms may be improved to reduce the computational time. Moreover, the developed 
method can be applied to numerical simulation for more complicated flow problems. 
Further investigation of developed methods is encouraged. The success can be 
attributed to the adequate physical nature of the auxiliary function. 
 
 
Project Code: MRG5580217 
 
Project Title: Physical Nature of the Auxiliary function in New Form of the Navier- 
                  Stokes Equations 
 
Investigator: Dr. Kanyuta Poochinapan, Faculty of Science, Chiang Mai University  
 
E-mail Address: kanyuta@hotmail.com 
 
Project Period: 2 years 
 
Keywords: Navier-Stokes equations, Incompressible fluid flow, Finite difference method 
 



Introduction to the research problem and its significance: 
 Axisymmetric-rotating flows have been studied for a variety of reasons. Their 
technological applications are many (e.g., centrifugal pumps, cyclone separators and so 
on). Their importance to geophysical flows is indicated over a large range of scales 
(e.g., tornadoes, hurricanes, ocean circulations).  
 These flows have been treated by representing the Navier-Stokes equations in 
cylindrical coordinates. The stream function or the velocity and pressure field is used to 
numerical simulation in many researches. Methods of the approximate solutions of the 
Navier-Stokes equations have been investigated rather extensively in the past. 
 The practical estimation of any scheme can be rather different from the 
theoretical estimation because of the nonlinearity of the Navier-Stokes equations and 
the implicit nature of the continuity condition. This is correct specifically for very high 
Reynolds numbers. Different schemes perform better in different situations. There is no 
single scheme can be best in every aspects. The above reason causes the creation of 
new methods in the past several years. 
 In 2003, Aristov and Pukhnachev [1] proposed new form of the Navier-Stokes 
equations. The advantage of the new form of the equations is the following: 
 a) The system is weakly coupled system of two parabolic second-order 
equations, for which the first initial boundary value problem is stated, and one linear 
elliptic fourth-order equation, for which a Neumann-type problem is stated.  
 b) The boundary conditions for unknown functions are uncoupled, in contrast to 
the traditional approach, where the proper derivation of the boundary values for the 
vorticity is a difficult computational problem. 
 The Navier-Stokes equations for a viscous incompressible fluid are 

     21dv
p v

dt



            (1) 

     0v          (2) 

where p  is the pressure,   is the density, and  the kinematic viscosity (



   where 

is dynamic viscosity). The density and the kinematic viscosity are assumed constant. 
 In two-dimensional flow, the incompressible Navier-Stokes equations can be 
formulated by introducing two scalar variables, the vorticity   stream function  , in 
place of the primitive variables, the velocity v  and pressure p . For fluid motions 
parallel to the plane xy , the scalar vorticity   is the z -component of the vorticity 
vector v  , normal to the plane, namely, 
     v k          (3) 



where v   is the unit vector normal to the plane xy . 
 In two-dimensional, the condition of incompressibility 0v   can be satisfied 
by expressing v  in term of stream function   according to  
     v k  . 
In conclusion, taking the curl of the momentum equation (1) and make use of the fact 
that the curl of a gradient of a scalar is zero (so that the pressure terms go away) leads 
to the vorticity transport equation 

2

t x y y x

    
 

    
   

    
. 

On the other hand, substituting the expression v k   in to the vorticity definition 
(3) gives the following Poisson equation for the stream function  

2    . 
The vorticity-stream function formulation of the Navier-Stokes equations for two-
dimentional flow are 

2( , )J
t


   


  


,          (4)      

2   ,                (5) 

where   

 

,
( , )

,
J

x y

 
 





.  

Substitution  2    into the vorticity transport equation (4) gives the following time-
dependent bi-harmonic problem 

     
2

2 4,J
t


   


   


.                     (6) 

The Navier-Stokes equations for a viscous incompressible fluid can be written as 
2

2

2 2

1 2r r r r r
r z r

v v vv v v v vp
v v v

t r r z r r r r

  
  

      
                

,         (7) 

  2

2 2

1 2r r
r z

v v v v v v v v vp
v v v

t r r z r r r r

      


   

      
                

,     (8) 

21z z z z
r z z

vv v v v p
v v v

t r r z z

 
 

    
      

    
,                     (9) 

  1 1
0

r z
rv v v

r r r z





  
  

  
,                   (10) 

where the Laplace operator in cylindrical coordinates takes the form 
2 2

2

2 2 2

1 1
r

r r r r z

    
    

    
, 



and r ,   and z  denote the radial, azimuthal and axial coordinates respectively and 

rv , v  and 
zv  the respective components of the velocity vector. 

Axisymmetric flow is most conveniently described in terms of cylindrical 
coordinates  , ,r z . The assumption of axisymmetry implies that the velocity 
components and pressure are functions only of r and z . Therefore, the Navier-Stokes 
equations for a viscous incompressible fluid in case of axisymmetric flow can be written 
as 

      
2 2 2

2 2 2

1 1 1r r r r r r
r z r

vv v v v v vp
v v v

t r z r r r r r r z

 


      
         

       
,             (11) 

    
2 2

2 2 2

1 1r
r z

v v v v v v v v
v v v

t r z r r r r r z

      


      
       

      
,       (12) 

2 2

2 2

1 1z z z z z z
r z

v v v v v vp
v v

t r z z r r r z




      
       

       
,       (13) 

 
0

1











z

v

r

rv

r

zr .           (14) 

The stream function is defined such that the continuity equation is identically 
satisfied, which gives 

       1
rv

r z


 


 and       1

zv
r r





.        (15) 

The stream function is related only to the radial and axial velocity components and 
independent of azimuthal velocity component. The vorticity vector in axisymmetric flow 
is given by ( , , )r z     such that  

r

v

z




 


,         r zv v

z r


 
 
 

,         1
z

rv v v

r r r r

  
 

  
 

. 

Now, we introduce the function rv  .  Using Eq.(15) vorticity vector can be 
represented in the following form 

1 1 1
( , , )

r z r r r
 

 
   

 
, 

where 
2 2

2 2

1

r r r z

  
   

  
, 

and the velocity vector is 

        
1 1 1

, , ( , , )r zv v v v
r z r r r



  
   

 
. 

The association between stream function   and vorticity function   is  r    . 
In term of   ,  , and   , the axisymmetric Navier-Stokes equations become  



    D    ,           (16) 

          
2

4

4
D

r r r r r z r

    


         
           

         
,          (17) 

r    ,             (18) 
where 

1 1
D

t r z r r r z

     
  
    

. 

The substitution of Eq.(15) into Eq.(13) provides 
2

1 1 1
0r p

r t r r z z r r

   
 



         
                   

.        (19) 

Therefore, there is a function   satisfying the relations 
2

2

1 1 1
p

r r r r





  
   

  
,          (20) 

  1

t r r z z

  
 

   
   

   
.        (21) 

The substitution of Eq. (15) into Eq. (12)  provides 

1 1

t r z r r r z

 


    
   

    
.               (22) 

Differentiating Eq. (20) and Eq. (21) with respect to r  and z , respectively, and 
substituting the resulting expressions into Eq.(11), where rv  and  zv  are expressed in 
term of   , we obtain  

   
2

2

2

1 2

r z r r

 


   
           

.         (23) 

Since, we do not know boundary conditions for the function  , which is needed to Eq. 
(23). Aristov and Pukhnachev [1], are shown that if apply operator   to Eq. (23) the 
boundary condition for new fourth-order equation can be derived easily. So, applying the 
operator   into Eq.(23) we get a fourth-order equation 

2

2 2

2

1 2

r z r r

 


    
                

.           (24) 

In term of new variables  ,  , and   , the axisymmetric Navier-Stokes equations 
become  Eqs. (21), (22) and (24).  

A typical boundary condition consists in prescribing the value of the velocity v  
on the boundary     

( , )SS
v b x t ,     0,t T ,      (25) 



where S  is the boundary of the domain V  occupied by the fluid, b  is given function 
and 

Sx S . When the boundary is a solid wall in contact with the fluid, the velocity 
boundary value b  is equal to the velocity of the wall. The condition on the tangential 
components of velocity is known as the no-slip condition. 
 The initial condition consists in the specification of the velocity field 0v  at the 
initial time, 0t  , namely, 

 00
( )

t
v v x


 .                                            (26) 

The boundary velocity b  must satisfy, for all 0t  , the global condition 
0n b ds  ,                                             (27) 

which follows from integrating the continuity equation over V  and using the divergence 
theorem. The vector n denotes the outward unit normal to the boundary S . To 
determine the pressure uniquely additional requirement is needed  

0( , ) 0p x t  ,     0,t T  ,   0x V . 
The boundary conditions supplementing the vorticity-stream function formulation 

of the Navier-Stokes problem for two-dimensional flow are deduced by separating the 
normal and tangential components of the velocity boundary condition ( , )SS

v b x t . 
Here S  represents the boundary of the two-dimensional domain V . Let n denotes the 
outward unit vector normal to the boundary S  and   is the unit vector tangential to S . 
Finally, let s  be the curvilinear coordinate along the boundary S . Then, the boundary 
condition for the normal component 

S
S

n k k n n b
s


   


         


, 

and for the tangential component 

S
S

k k n b
n


     


           


. 

The first boundary condition, after integrating its right-hand side, provides a Dirichlet 
condition for .  So that the two conditions can be written as follows 

S
a  ,       

S

b
n





                                (28) 

where 
1

s

s

a n b ds  and b b   . The initial data 0v  and the boundary data ( , )a s t

are assumed to satisfy the conditions  

            0 0v  ,      
0

( ,0)
S

a s
n v

s


 


.                       (29) 

The initial condition for the system of equations governing   and   is concerned, the 
initial velocity field 0v  provides the following initial condition for the vorticity   



               00 0t t
v k v k

 
    .                       (30) 

Let R  be the 0r   half-plane of the ( , )r z plane,   be the bounded domain 
in  R ,   be the boundary of   ,  0,TQ T , and  0,TS T  . Assume the 
closure   of domain   does not contain points lying on the z  axis.  

The boundary conditions for the system of Eqs. (21), (22), and (24) are 
considered only in the case where 0 zr vvv   are satisfied at the boundary of the 
flow domain. In term of the functions   and  , these conditions are represented in the 
form  

0
n





,   ( , , ) Tr z t S ,              (31) 

0  , 0  , ( , , ) Tr z t S ,         (32) 
 

where 
n




 means differentiation with respect to the normal to the  . The boundary 

condition (32) can be used for Eqs. (21) and (22), respectively. The initial conditions for 
the system of Eqs. (21), (22), and (24) are 

               0( , )r z  ,    ( , )r z  ,     0t  ,            (33)
    0( , )r z   ,    ( , )r z  ,     0t  .            (34) 

Boundary conditions for the function   which is redundant for Eq. (21) is derived by 
using condition (31). To this end, by using operator E apply into Eq. (23) provides a 
fourth-order equation (24). One boundary condition for Eq. (24) follows immediately from 
Eqs. (23), (31), and (32) 
             0  ,           ( , , ) Tr z t S .              (35) 

Applying the operator 
n




 to Eq. (23) and using Eqs. (31)  and (32), then the second 

condition for  Eq. (24) is following                  
2

n r n r




   
   

   
,         ( , , ) Tr z t S .   (36) 

Concluding this section, Eq. (31) follows from Eqs.(23) and (36) under the additional 
condition 

         
2

1 1
cos sin 0

r n z n r


  

     
     

     
,     ( , , ) Tr z t S , 

where   is the angle between the z  axis and the normal to the  . If the last condition is 
valid for 0t  , it is satisfied at least for small  0T  . 

This new form of Navier-Stokes equations can attributed to the adequate 
physical nature of several phenomenon such as: axisymmetric rotating flows (For 
example, the hard disk drive (HDD) is one of the most important components in many 



computers these days and it is the primary device, which provides storages space for 
software and data. In today’s Thailand hard disk drive industry, the demand for higher 
recording density and higher rotating speed has become more and more stringent and 
this requires a good understanding of the airflow characteristics to achieve a highly 
accurate head positioning).  

 
Literature review: 

Couette flow (the flow between two concentric rotating cylinders) is simplest 
example of axisymmetric flow can be find in any handbook of fluid mechanics (see for 
example [2-3]). Axisymmetric flow is a subject of much interest in many areas of 
engineering and has been investigated by many researchers. There have been a 
number of experimental and numerical studies of these flow (e.g.,[4-28]).  

Escudier [11] observe the flow produced in a cylindrical container by a rotating 
endwall. Observations made using the laser-induced fluorescence technique are 
presented of the steady swirling flow produced in a closed cylindrical container 
completely full of fluid by rotating one endwall. The oscillatory motion in certain swirling 
flows is observed by Chanaud [11]. A descriptive experimental study was made in both 
air and water of the temporally periodic motion that occurs in the vortex whistle and 
cyclone separator. A comparison between the experimental visualization and numerical 
simulations of the occurrence of vortex breakdown in laminar swirling flows is presented 
by Lopez [13]. The physical mechanisms for vortex breakdown is studied by Brown and 
Lopez [14] 

A viscous incompressible fluid flow in cylindrical container with a rotating disk at 
the fluid surface is numerically investigated by [4,13-18,24-28]. Inamuro, Yamaguchi, 
and Ogino [4] solve the axisymmetric Navier-Stokes equations using a finite-volume 
method. The effect of the relative directions and magnitudes of disk and container 
rotations are studied. The numerical simulation for solving the axisymmetric unsteady 
incompressible Navier-Stokes equations using vorticity-velocity variables and a 
staggered grid is presented by Dexun and Yanwen [16]. The numerical results are also 
compared with experimental data. Lopez and Shen [17], studied about an efficient and 
accurate numerical scheme for the axisymmtric Navier-Stokes equations in primitive 
variables in a cylinder. Numerical solutions of the axisymmetric flow are used to study 
over a range of Reynolds numbers [ 2 310 4 10  ] where the flow is observed to remain 
axisymmetric (e.g., [5,8,17-19]). The numerical simulation of the incompressible fluid 



flows the appropriate mathematical formulation of the Navier-Stokes equations may be 
advantageous if the choice is according to the problem domain and boundary condition.  
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Objectives: 

 To derive a numerical method for approximate solutions of the NSEs in new 
variables proposed by Aristov and Pukhnachev (2004). 

 The proposed technique can be used in the future for in-depth investigations of 
the phenomena in rotating flows. 

 The developed method can be applied to a numerical simulation of more 
complicated flow problem such as, two-dimensional flow past circular cylinder. 

 The success can be attributed to the adequate physical nature of the auxiliary 
function. 

 
Methodology: 

 Literature search and survey and study on the methodology used in this 
research. 

 Problem formulation and construct of the mathematical model. 
 Developed computer codes (FORTRAN code). 
 Numerical solution of the particular problem. 

 
Scope of research: 
In this project, there are limitations on 

 The fluid is viscous and incompressible. 
 The axisymmetric flow problems are considered. 
 Using the numerical methods for approximation solution. 
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Abstract

In this project, we propose and analyze a numerical method for the approximation of flows as well
as algorithms suitable for the solution of fluid structures. This work deals with fluid problems based
on the incompressible Navier-Stokes equations which are solved on the two-dimensional problem. We
then introduce a new form of the Navier-Stokes equations for flow derived according to Aristov and
Pukhnachev (2003). A new function related to the pressure and a system similar to the vorticity-
stream function formulation are derived. The new form of the Navier-Stokes equations for the motion
of a viscous incompressible fluid offers the possibility to create a different numerical model. Because
of the physical nature of the coupling function, the model may have different mathematical properties
than the vorticity-stream function formulation. We account for large deformations of fluid structures.
Moreover, the developed method can be applied to numerical simulation for more complicated flow
problems. The success can be attributed to the adequate physical nature of the auxiliary function.

Keywords: Navier-Stokes equations, Incompressible flow, Finite difference method

1. Introduction

It may be worthwhile to briefly mention why the 2D flow is important. It has applications in
the industry (e.g. progressive cavity pumps) and importance to the scientific world, specifically in
fluid mechanics. In general, a viscous fluid flow inside a driven cavity has been a common experiment
approach used to check or improve numerical techniques (see for example, Ghia et. al. 1982; Botella
and Peyret, 1998; Spotz 1998; Christov and Marinava, 2001; Moshkin and Poochinapan, 2010).

Traditionally, the viscous incompressible flow has been treated by representing the NSEs in the
Cartesian coordinates. The stream function, stream function/vorticity, or (alternatively) the velocity
and pressure field can be used. First, we write the viscous incompressible flow in the Cartesian
coordinate system (x, y),

ut + uux + vuy = −1
ρ
px + ν

(
uxx + uyy

)
, (1)

vt + uvx + vvy = −1
ρ
py + ν

(
vxx + vyy

)
, (2)

ux + vy = 0, (3)

where u and v are the velocity components in x− and y−directions, respectively; p is the pressure,
ρ is the fluid density, and ν is the kinematic viscosity. The fluid is subjected to potential external
forces. In 2D, the constraint of incompressibility ∇ · v̄ = 0 can be satisfied exactly by expressing the
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velocity vector in terms of the stream function ψ according to

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (4)

The aim of the present work is to develop and validate a finite-difference scheme for the approximate
solution of governing equations (1)–(3) proposed in Pukhnachev (2004):

ψt − ψxψy + Φx = νΔψ, (5)
ΔΦ = 2ψyΔψ, (6)

where Δ def=
∂2

∂x2
+

∂2

∂y2
and a function Φ satisfies the relations

1
ρ
p = −ψ2

y + Φy.

The case of the no-slip conditions satisfied at the boundary of the flow domain will be considered only.
In terms of the function ψ only, boundary conditions are

ψ = 0,
∂ψ

∂n
= b(x, y), (7)

where
∂ψ

∂n
means the derivative in the direction of the normal vector to the boundary. To complete

the formulation of the problem, it is necessary to specify the initial conditions

ψ = ψ0(x, y), Φ = Φ0(x, y), t = 0. (8)

The main difficulty in solving the system of equations for ψ and Φ is that two boundary conditions are
specified for ψ while none is available for Φ. This difficulty is similar to the vorticity–stream function
equations in two dimensions.

A schematic of the flow geometry is shown in the figure where parameters are defined: Lx is the
width of the cavity, Ly is the height of cavity, and U is velocity of wall motion.

L
x

x

y

L
y

U

L
x

x

y

L
y

U

Figure 1: The flow geometry.
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The non-dimensional parameters of the problem are

Re =
LxU

ν
and Γ =

Ly

Lx
,

where Re is the Reynolds number and Γ is the aspect ratio. The system of equations (1)–(3) is
rendered dimensionless as follows:

x =
x∗

Lx
, y =

y∗

Lx
, t =

t∗ν
L2

x

, u =
u∗

U
, v =

v∗

U
. (9)

2. Numerical method

The domain Q = {0 � x � 1, 0 � y � Γ} is covered with a uniform staggered grid

Qh =
{
(xi, yj)|xi = (i− 1.5)hx, yj = (j − 1.5)hy , i = 1, . . . , Nx, j = 1, . . . , Ny

}

with spacings hx = 1
Nx−2 and hy = 1

Ny−2 in the x− and y−directions, respectively. Such grid
allows one to use the central differences to approximate boundary conditions with the second-order
on two-point stencils.

The essential element of the proposed algorithm is that equations (5) and (6) for ψ and Φ are
considered as a coupled system. Note that ψ and Φ are evaluated on the full-time steps. This
formulation is based on the idea of considering the two boundary conditions for ψ as actual conditions
for the ψ−Φ system. The second-order central-difference approximations for the operators in equations
(5) and (6) are employed. The system of difference equations is

ψn+1
i,j − ψn

i,j

τ
−Re

(ψn
i+1,j − ψn

i−1,j)(ψ
n+1
i,j+1 − ψn+1

i,j−1)
8hxhy

−Re
(ψn+1

i+1,j − ψn+1
i−1,j)(ψ

n
i,j+1 − ψn

i,j−1)
8hxhy

+Re

(
Φn+1

i+1,1 − Φn+1
i−1,j

)

2hx
=

1
2

(
�ψn+1

i,j + �ψn
i,j

)
, (10)

�Φn+1
i,j =

1
2hy

[
(ψn

i,j+1 − ψn
i,j−1)�ψn+1

i,j + (ψn+1
i+1,j − ψn+1

i−1,j)�ψn
i,j

]
,

i = 2, . . . , Nx − 1, j = 2, . . . , Ny − 1. (11)

The boundary conditions are written in the following form

ψn+1
2,j + ψn+1

1,j

2
= 0,

ψn+1
2,j − ψn+1

1,j

hx
= 0,

ψn+1
Nx,j + ψn+1

Nx−1,j

2
= 0,

ψn+1
Nx,j − ψn+1

Nx−1,j

hx
= 0,

j = 1, . . . , Ny,

ψn+1
i,2 + ψn+1

i,1

2
= 0,

ψn+1
i,2 − ψn+1

i,1

hy
= 1,

ψn+1
i,Ny

+ ψn+1
i,Ny−1

2
= 0,

ψn+1
i,Ny

− ψn+1
i,Ny−1

hy
= 1,

i = 1, . . . , Nx.

(12)

To combine equations as a single linear system with a banded matrix, two new indices are introduced
as follows:

k(i,j) = 2(j − 1)Nx + 2i− 1, i = 1, . . . , Nx,

m(i,j) = 2(j − 1)Nx + 2i = k(i,j) + 1, j = 1, . . . , Ny.
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Now, the new grid function σk is introduced. It is defined on the composite grid where σk represents
ψi,j and σm(= σk+1) represents Φi,j. Substituting σk instead of ψi,j and σm instead of Φi,j into
equations (10)–(11), the algebraic system can be recast as the following form

σn+1
k − σn

k

τ
+

Re

8hxhy

[ (
σn

k+2 − σn
k−2

) (
σn+1

k+2Nx
− σn+1

k−2Nx

)
+

(
σn+1

k+2 − σn+1
k−2

) (
σn

k+2Nx
− σn

k−2Nx

) ]

− Re

2hx

(
σn+1

k+1 − σn+1
k−3

)
=

1
2

(
Δσn+1

k + Δσn
k

)
, (13)

Δσn+1
m =

(σn
m+2Nx−1 − σn

m−2Nx−1)
2hy

Δσn+1
m−1 +

(σn+1
m+2Nx−1 − σn+1

m−2Nx−1)
2hy

Δσn
m−1, (14)

where
Δσk =

(σk+2 − 2σk + σk−2)
h2

x

+
(σk+2Nx − 2σk + σk−2Nx)

h2
y

.

We applied the developed numerical tool for investigating the mechanisms of the 2-sided lid driven
cavity flow by using different values of the governing parameters. If the steady flow is needed then the
algorithm can be considered as an iterative procedure. Iterations are terminated at the certain time
n = N when the following criterion is satisfied:

maxi,j

∣∣∣σN+1
i,j − σN

i,j

∣∣∣
maxi,j

∣∣∣σN+1
i,j

∣∣∣
� 10−8.

Note that the linear system for the coupled formulation of the ψ − Φ problem can be written as the
following multi-diagonal system for the composite grid function σ

Bl−2Nx−1σ
n+1
l−2Nx−1 +Bl−2Nxσ

n+1
l−2Nx

+Bl−3σ
n+1
l−3 +Bl−2σ

n+1
l−2

+Bl−1σ
n+1
l−1 +Blσ

n+1
l +Bl+1σ

n+1
l+1 +Bl+2σ

n+1
l+2

+Bl+2Nx−1σ
n+1
l+2Nx−1 +Bl+2Nxσ

n+1
l+2Nx

+Bl+2Nx+1σ
n+1
l+2Nx+1 = Fl, (15)

where l = 1, . . . , 2NyNx. The matrix of the linear system (15) is banded with 2Nx + 1 lower and
upper bandwidths. The standard routings DGBSV and DGBSVX of the LAPACK routine are used
to compute the solution of equation (15).

3. Results and comparisons

In this section we applied the developed numerical tool for investigating the mechanisms of the
2-sided lid driven cavity flow for different values of the governing parameters.

The dynamic of the flow when driven by the top and bottom lids was investigated for Re ∈ [50, 1700]
and Γ ∈ [2, 3]. For Re = 100 and small to moderate Γ, the flow consists of two-eddy symmetrical to
each other, created essentially by the parallel motion of the walls. As the relative length Γ increases,
the two-eddy stationary flow is eventually replaced by the four-eddy structure. The further increase of
the aspect ratio to Γ = 2.5 leads to the vortex of the secondary streaming and Γ = 3 marks the actual
transition to a four-eddy structure, when the small two-eddy structure occurs between the two vortices
and spans with the increase of Γ, the entire breath of the gap. As it should have been expected (see
Fig. 6), the further increase of Γ allows the secondary vortices to grow and to become commensurate
with the other two-eddy structure.
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Figure 2: Stream function, Gamma 2: (a) Re = 100 (b) Re = 300 (c) Re = 700 (c) Re = 1700.
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Figure 3: Φ function, Gamma 2: (a) Re = 100 (b) Re = 300 (c) Re = 700 (c) Re = 1700.

(a)
0 0.5 1

0

0.5

1

1.5

2

2.5

3

(b)
0 0.5 1

0

0.5

1

1.5

2

2.5

3

(c)
0 0.5 1

0

0.5

1

1.5

2

2.5

3

(d)
0 0.5 1

0

0.5

1

1.5

2

2.5

3

(e)
0 0.5 1

0

0.5

1

1.5

2

2.5

3

Figure 4: Stream function, Gamma 3: (a) Re = 50 (b) Re = 85 (c) Re = 100 (d) Re = 200 (e) Re = 300.

In order to understand better the role of nonlinearity in the process of transition from a four-
eddy to a six-eddy, we chose Γ = 5 and Re ∈ [100, 1500] which lies securely inside the region of
parameters where the six-eddy structure is to be expected. After the flow is established for a particular
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Figure 5: Φ function, Gamma 3: (a) Re = 50 (b) Re = 85 (c) Re = 100 (d) Re = 200 (e) Re = 300.
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Figure 6: Stream function, Re=100: (a) Γ = 2 (b) Γ = 2.5 (c) Γ = 3 (d) Γ = 5.

Reynolds number (say, Re0), we increase Re in small increments according to the formula Re =
Re0(1 − exp(−0.05(n − 1)))), where n = 1, 2, 3, ..., nf is the time step. The number of nf defines the
value of Re, which has to be reached. Then we continue the time steps n > nf with the last value of
Reynolds number until stationary regime is attained. Thus, we are able to proceed from one Reynolds
number to another without imposing discontinuous initial condition. These precautions are needed
in order to avoid artificial jumps that can make the solution end up in another bifurcated state. The
steady states that we were able to reach with this algorithm are shown in Fig. 7. By slowly increasing
Re reached Re = 1500 for which Reynolds number the flow changed from a four-eddy structure to a
six-eddy structure.
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Figure 7: Stream function, Gamma 5: (a) Re = 100 (b) Re = 200 (c) Re = 500 (d) Re = 600 (e) Re = 700 (f) Re = 1500.
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solving the nonlinear implicit scheme. The derivatives for space discretization are approx- 
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1. Introduction 

An ocean surface disturbance generally resulted from undersea earthquakes that shift the seafloor generating tsunami

wave and ocean acoustic fields has been severe topics of scientists for a long time [1,2] . Tsunami is nearshore propagating

waves which have enormous amplitudes and long wavelengths. Then, the possibility for migration into land and devastation

to properties are substantial. In the past, the observation of wave forms and wave trains, with either leading elevated waves

or leading depressed waves has been performed. In terms of producing any catastrophes for humans, the amplitude and

wavelength range of these types of wave are very considerable. That is, climate changes and global warming are several

examples of such very huge natural disasters seen previously. Nowadays, heat waves, flooding, earlier spring arrival, sea-

level rising, melting glaciers, coral reef bleaching, and the spread of disease are obvious signs of climate changes. However,

alternative energy sources for the near future can be generated by utilizing these giant waves if essential technology is

applied. 

A natural phenomenon is the interesting field of scientific study, which in the past many researchers have investigated

in mathematical models by using various nonlinear evolution equations. In the learning internal mechanism of dynamic of

nonlinear phenomena, finding of the exact traveling wave solution to nonlinear evolution equations plays an important role.
∗ Corresponding author at: Center of Excellence in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai 

University, Chiang Mai 50200, Thailand. 

E-mail address: poochinapan@gmail.com (K. Poochinapan). 

https://doi.org/10.1016/j.amc.2018.06.009 

0 096-30 03/© 2018 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.amc.2018.06.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2018.06.009&domain=pdf
mailto:poochinapan@gmail.com
https://doi.org/10.1016/j.amc.2018.06.009


B. Wongsaijai et al. / Applied Mathematics and Computation 340 (2019) 84–100 85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Various potent methods create analytical and approximate solutions of these nonlinear evolution equations. Furthermore,

with the assistance of analytical solutions, nonlinear evolution equations have been used to approximate, to comprehend

better, and to criticize such wave behaviors. Nevertheless, analytical solutions of these equations are barely feasible while

nonlinear terms are implicated. Hence, a numerical solution of these nonlinear evolution equations is significantly essential

because only limited types of the equations are solvable by analytical methods. 

The mathematical models of water wave have drawn attention for a long time. These models aim to describe from

smaller-scale waves, such as ripples on the water surface to larger-scale waves, such as tsunami waves. The examples of

mathematical models that explain the dynamic of waves are the KdV equation (Korteweg-de Vries equation) [3] , the RLW

equation (Regularized Long-Wave equation) [4,5] , and the Rosenau equation [6,7] . Boussinesq and Korteweg & de Vries

applied the KdV equation to investigate shallow waves, ion sound waves, and longitudinal astigmatic waves [8–10] . Although

the KdV equation has an analytical solution, but it is numerically unstable. On the other hand, the KdV equation has been

numerically solved by various techniques, such as the finite difference method (FDM), the collocation method, the finite

element method, the Galerkin method, and the spectral method. 

Initially suggested by Peregrine [4,5] , the RLW equation provides a presentation on a different situation of a nonlinear

dispersive wave from the more classical KdV equation. The RLW equation is one of models which are used to study in many

areas, e.g. ion-acoustic plasma waves, magnetohydrodynamic plasma waves, and shallow water waves. Shallow water wave

that is observed at the beach is generally applied in oceanography and atmospheric science. Besides, the RLW equation

can also explain soliton motion through optical fibers in a telecommunication system. The equation cannot explain the

interaction between wave-wave and wave-wall, but it is suitable for modeling a small-amplitude long wave in a channel.

For the dynamic of dense discrete systems, the interaction between wave-wave and wave-wall can be explained by the

Rosenue equation. Early studies attempted to find both theoretical and numerical techniques on the equation [6,7,11–15] .

The results from Park [11,12] showed the existence and uniqueness of the solution for the Rosenau equation. In the field,

the solitary wave’s behavior of the equation has been well numerically studied for the past years. 

For an additional examination of nonlinear behaviors of waves, a viscous term u xxt needs to be included in the Rosenau

equation. The equation is commonly called the general Rosenau-RLW 

u t + u xxxxt − u xxt + u x + α(u 

p ) x = 0 , (1)

where p ≥ 2 is an integer and α is a constant. If p = 2 and α = 

1 
2 , then Eq. (1) is called the usual Rosenau-RLW equation.

If p = 3 , then Eq. (1) is called the modified Rosenau-RLW equation. It is to be decorated that such type of the equation

frequently arises in various branches of physics and applied sciences. In the recent period, many methods were settled

and proposed for finding the exact solution of the Rosenau-RLW equation, such as the sech ansatz method and sine-cosine

method. However, solutions of the Rosenau-RLW equation are not analytically solved in general. For this reason, numerical

techniques are important to be developed in order to get much more understanding solution behaviors. 

Most of numerical methods for solving the usual Rosenau-RLW and general Rosenau-RLW are based on the FDM [16–

24] . In [16] , Zuo et. al. have proposed the Crank-Nicolson FDM for the generalized Rosenau-RLW and also discussed its

convergence and stability of the proposed scheme. Later, Pan and Zhang [17] developed and studied an average three-level

linearized conservative FDM. Very recently, Wang et. al. [18] presented a three-level finite difference scheme (FDS) by intro-

ducing two weighted parameters appeared on a first order derivative in both time and space variables. A critical review of

using finite difference techniques shows that several approaches have been developed for the structure-preserving schemes

with an order of accuracy O (τ 2 + h 2 ) . However, Hu et. al. [24] attempted to provide a linear there-level higher-order FDM

by using the Richardson extrapolation idea, but it is a non-compact scheme due to the number of grid stencils. 

A method to conquer the conflict among stability, accuracy, and computational cost is the improvement of a high-order

compact difference scheme since the stability, accuracy, and computational cost, which are in conflict with each other, are

the desired properties of the FDS. Implicit approximation is required in order to reach the stability of the FDS. The stencil

becomes wider with increasing order of accuracy for a high-order method of a conventional scheme. Furthermore, the solu-

tion of an algebraic system for equations with extensive bandwidth is resulted by using an implicit method. It is supposed

to improve schemes that have a broad range of stability and high order of accuracy. 

Generally, previous research highlights that the higher-order compact difference method performs better solutions when

compared with non-compact or low-order methods on the same grid stencils (see [21,22,25–29] ). At present, there are

few results on a higher-order compact FDM for solving the Rosenau-RLW type equation. In [21] , the authors proposed a

linear three-level compact FDM for the generalized Rosenau-RLW equation derived via standard Taylor expansion, where the

method achieves the truncation error of order O (τ 2 + h 4 ) . Moreover, a compact conservative nonlinear FDS is considered by

Wang et. al. [18] . The recent work of Li [23] analyzed a compact conservative FDM for solving the 3D Rosenau-RLW equation.

There are currently detailed studies of an iterative algorithm for solving the nonlinear system generated by the scheme. 

The benefit of characterizing order of accuracy in time is that quite strong statement can be made on how the order

of accuracy ultimately evolves. It appears obvious that there are other important factors for improving the efficiency and

reducing the computation cost of a finite difference technique. However, most past studies have correlated with the second-

order of accuracy in time. Therefore, a new compact finite difference technique with order of accuracy O (τ 4 + τ 2 h 2 + h 4 )

is applied to the solution of the generalized Roseanu-RLW equation in this research. Then, we consider the generalized
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Rosenau-RLW equation with an initial condition 

u (x, 0) = u 0 (x ) , x l ≤ x ≤ x r , (2) 

and boundary conditions 

u (x l , t) = u x (x l , t) = u xx (x l , t) = 0 , u (x r , t) = u x (x r , t) = u xx (x r , t) = 0 , 0 ≤ t ≤ T . (3) 

When x l and x r are large enough, the initial-boundary value problem (1) –(3) is consistent, so the boundary conditions (3) are

reasonable. 

The main purpose of this paper is to create a compact FDS for the Rosenau-RLW equation with initial and boundary

conditions. Some preliminary lemmas and discrete norms are given, and the invariant property Q 

n is proved in Section 2 . We

discuss about the priori estimate and boundedness of the solution in Section 3 . The solvability of the FDS and the existence

and uniqueness of the solution are also proved in Section 4 . Section 5 presents complete proofs on the convergence and

stability of the proposed method with convergence rate O (τ 4 + τ 2 h 2 + h 4 ) . Within this study, the iterative algorithm for

solving the nonlinear implicit scheme is described in Section 6 . The outcomes of the numerical experiments are presented

in Section 7 , where we make a detailed comparison with available data to confirm and illustrate our theoretical analysis.

Finally, conclusions are drawn in Section 8 . 

2. Compact finite difference scheme 

This section is devoted to a complete description of how the compact structure-preserving method can be developed for

the Rosenau-RLW equation. Here, the description about a computational domain will be discovered. First, we introduce the

solution domain to be 

Q = { (x, t) | x l ≤ x ≤ x r , 0 ≤ t ≤ T } , 
which is covered by a uniform grid 

Q h = { (x i , t n ) | x i = x l + ih, t n = nτ, i = 0 , . . . , M, n = 0 , . . . , N} . 
We discretize the time domain uniformly identified by t n = nτ, here τ is a time increment. In addition, the spatial domain

[ x l , x r ] is discretized by using function values on a finite set of the points { x i } M 

i =0 
⊂ [ x l , x r ] , where the grid size h = (x r − x l ) /M

is a uniform distance between two points. Points can be located according to values of i and n , so difference equations

are usually written in term of the point ( i , n ). Then, u n 
i 

will be called, in this paper, the grid function of u at the point

(x l + ih, nτ ) , and the space Z 0 
h 

is introduced: 

Z 0 h = { u = (u i ) | u −1 = u 0 = u 1 = u M−1 = u M 

= u M+1 = 0 , i = −1 , 0 , 1 , . . . , M − 1 , M, M + 1 } . 
For completeness, the following notations will be used: 

(u 

n 
i ) t = 

u 

n +1 
i 

− u 

n 
i 

τ
, (u 

n 
i ) t̄ = 

u 

n 
i 

− u 

n −1 
i 

τ
, (u 

n 
i ) ˆ t = 

u 

n +1 
i 

− u 

n −1 
i 

2 τ
, 

(u 

n 
i ) x = 

u 

n 
i +1 

− u 

n 
i 

h 

, (u 

n 
i ) x̄ = 

u 

n 
i 

− u 

n 
i −1 

h 

, (u 

n 
i ) ˆ x = 

u 

n 
i +1 

− u 

n 
i −1 

2 h 

, 

ū 

n 
i = 

u 

n +1 
i 

+ u 

n −1 
i 

2 

, (u 

n , v n ) = h 

M−1 ∑ 

i =1 

u 

n 
i v 

n 
i , ‖ u 

n ‖ 

2 = (u 

n , u 

n ) , 

and ‖ u n ‖ ∞ 

= max 
1 ≤i ≤M−1 

| u n i | . Now, we give a description of a finite difference scheme and an algorithm for the formulation of

the problem (1) . By setting w = −u x − α( u p ) x , Eq. (1) can be written as w = u t − u xxt + u xxxxt . Using the Taylor expansion in

the variable t , we obtain 

w 

n 
i = 

[(
u 

n 
i 

)
ˆ t 
− τ 2 

6 

(
∂ 3 t u 

)n 

i 

]
−

[(
∂ 2 x u 

n 
i 

)
ˆ t 
− τ 2 

6 

(
∂ 2 x ∂ 

3 
t u 

)n 

i 

]
+ 

[(
∂ 4 x u 

n 
i 

)
ˆ t 
− τ 2 

6 

(
∂ 4 x ∂ 

3 
t u 

)n 

i 

]
+ O 

(
τ 4 

)
. (4) 

From definition of w, Eq. (4) may be arranged as 

w 

n 
i + 

τ 2 

6 

(
∂ 2 t w 

)n 

i 
= 

(
u 

n 
i 

)
ˆ t 
−

(
∂ 2 x u 

n 
i 

)
ˆ t 
+ 

(
∂ 4 x u 

n 
i 

)
ˆ t 
+ O 

(
τ 4 

)
. (5) 

The standard central difference approximations are used in order to obtain corresponding higher order convergence rates,

which imply 

w 

n 
i + 

τ 2 

6 

(
∂ 2 t w 

)n 

i 
= 

(
u 

n 
i 

)
ˆ t 
−

[(
u 

n 
i 

)
x ̄x ̂ t 

− h 

2 

12 

(
∂ 4 x u 

n 
i 

)
ˆ t 

]
+ 

[(
u 

n 
i 

)
xx ̄x ̄x ̂ t 

− h 

2 

6 

(
∂ 6 x u 

n 
i 

)
ˆ t 

]
+ O (τ 4 + h 

4 ) . (6) 
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Unless additional terms in the Taylor expansion are included, this approach is at most the fourth-order accurate in time and

space. Moreover, using the Taylor expansion in the variable x , we obtain 

w 

n 
i = −

[(
u 

n 
i 

)
ˆ x 
− h 

2 

6 

(
∂ 3 x u 

)n 

i 

]
− α

[[
(u 

n 
i ) 

p 
]

ˆ x 
− h 

2 

6 

(
∂ 3 x u 

p 
)n 

i 

]
+ O (h 

4 ) . (7)

Inspection of Eq. (5) shows that the higher-order derivative term can be eliminated by presenting (
∂ 6 x u 

n 
i 

)
ˆ t 
= 

(
∂ 4 x u 

n 
i 

)
ˆ t 
−

(
∂ 2 x u 

n 
i 

)
ˆ t 
−

(
∂ 3 x u 

)n 

i 
− α

(
∂ 3 x u 

p 
)n 

i 
+ O (τ 2 ) . (8)

This approach is the second-order accurate. By using Eqs. (7) –(8) , Eq. (6) can be rewritten as 

(
u 

n 
i 

)
ˆ t 
−

(
1 − h 

2 

6 

)(
u 

n 
i 

)
x ̄x ̂ t 

+ 

(
1 − h 

2 

12 

)(
u 

n 
i 

)
xx ̄x ̄x ̂ t 

+ 

(
u 

n 
i 

)
ˆ x 
+ α

[
(u 

n 
i ) 

p 
]

ˆ x 
− τ 2 

6 

(
∂ 2 t w 

)n 

i 
= O (τ 4 + h 

2 τ 2 + h 

4 ) . (9)

To illustrate the higher order finite difference scheme, we use an appropriate form to approximate the term 

(
∂ 2 t w 

)n 

i 
: (

∂ 2 t w 

)n 

i 
= −(u 

n 
i ) ˆ x t ̄t −

αp 

p + 1 

[(u 

n 
i ) 

p−1 (u 

n 
i ) ˆ x + [(u 

n 
i ) 

p ] ˆ x ] t ̄t + O (τ 2 + h 

2 ) . 

For convenience, ψ p (u n 
i 
) may be decomposed as 

ψ p (u 

n 
i ) = 

αp 

(p + 1) 
[(u 

n 
i ) 

p−1 (u 

n 
i ) ˆ x + [(u 

n 
i ) 

p ] ˆ x ] . 

After discretizing Eqs. (1) –(3) in time and space, they can be regarded as the compact fourth-order scheme 

(
u n i 

)
ˆ t 
− s 1 

(
u n i 

)
x ̄x ̂ t 

+ s 2 
(
u n i 

)
xx ̄x ̄x ̂ t 

+ 

(
u n i 

)
ˆ x 
+ α

[
(u n i ) 

p 
]

ˆ x 
+ 

τ 2 

6 
(u n i ) ˆ x t ̄t + 

τ 2 

6 
[ ψ p (u n i )] t ̄t = 0 ; 1 ≤ i ≤ M − 1 , 1 ≤ n ≤ N − 1 , (10)

u 0 i = u 0 (x i ) , 0 ≤ i ≤ M, (11)

u n 0 = u n M 

= 0 , (u n 0 ) ˆ x = (u n M 

) ˆ x = 0 , (u n 0 ) x ̄x = (u n M 

) x ̄x = 0 , 1 ≤ n ≤ N, (12)

where s 1 = 1 − h 2 

6 
and s 2 = 1 − h 2 

12 
. 

Theorem 1. Suppose u 0 ∈ H 

2 
0 [ x l , x r ] . If p = 2 , then the finite difference scheme (10) –(12) is conservative for discrete mass in sense: 

Q 

n = 

h 

2 

M−1 ∑ 

i =1 

(
u n +1 

i 
+ u n i 

)
= Q 

n −1 = · · · = Q 

0 . (13)

Proof. By multiplying Eq. (10) by h , summing up for i from 1 to M − 1 and considering the boundary conditions (12) , we

approach our point 

h 

2 

M−1 ∑ 

i =1 

(
u n +1 

i 
− u n −1 

i 

)
+ 

hτ 2 

6 

M−1 ∑ 

i =1 

[ ψ p (u n i )] t ̄t = 0 . 

Due to the equality 

M−1 ∑ 

i =1 

[ ψ p (u n i )] = 

2 α

3 

M−1 ∑ 

i =1 

[
u n i (u n i ) ˆ x + [(u n i ) 

2 ] ˆ x 

]
= 0 , 

finally, we arrive to our aim giving Eq. (13) , which completes the proof. �

The following lemma is some properties of the above FDS which can be directly obtained from the definition. It is

essential for existence, uniqueness, convergence, and stability of our numerical solution. 

Lemma 2. For any two mesh functions u, v ∈ Z 0 
h 
, we have 

( u ˆ x , v ) = −( u, v ˆ x ) , ( u x ̄x , v ) = −( u x , v x ) , (u xx ̄x ̄x , v ) = (u x ̄x , v x ̄x ) , 

then one has 

2 2 
( u x ̄x , u ) = −( u x , u x ) = −‖ u ‖ , (u xx ̄x ̄x , u ) = (u x ̄x , u x ̄x ) = ‖ u x ̄x ‖ . 
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3. Priori estimate 

We now investigate the priori estimate of the compact FDM proposed through Eq. (10) . 

Lemma 3. (discrete Sobolev’s inequality [30] ). There exist two constants C 1 and C 2 such that 

‖ u 

n ‖ ∞ 

≤ C 1 ‖ u 

n ‖ + C 2 ‖ u 

n 
x ‖ . 

Theorem 4. Suppose u 0 ∈ H 

2 
0 

[ x l , x r ] , then the solution u n satisfies ‖ u n ‖ ≤ C , ‖ u n x ‖ ≤ C and 
∥∥u n 

x ̄x 

∥∥ ≤ C, which yields ‖ u n ‖ ∞ 

≤ C

and ‖ u n x ‖ ∞ 

≤ C . 

Proof. It follows from the initial condition, and that is u 0 ≤ C . The first level of a scheme u 1 can be computed by an available

fourth-order method. Hence, the following estimate is gotten about ‖ u 1 ‖ ≤ C , ‖ u 1 
x ̄x 

‖ ≤ C, and ‖ u 1 ‖ ∞ 

≤ C . Now, we use an

induction argument to prove the theorem. Assuming that 

‖ u 

k ‖ ∞ 

≤ C, for k = 2 , 3 , . . . , n. (14) 

Taking the inner product of Eq. (10) with 2 ̄u n 
(
i.e. u n +1 + u n −1 

)
and using Lemma 2 , we obtain (

‖ u 

n +1 ‖ 

2 − ‖ u 

n −1 ‖ 

2 
)

+ s 1 

(
‖ u 

n +1 
x ‖ 

2 − ‖ u 

n −1 
x ‖ 

2 
)

+ s 2 

(
‖ u 

n +1 
x ̄x 

‖ 

2 − ‖ u 

n −1 
x ̄x 

‖ 

2 
)

+2 τ
(
u 

n 
ˆ x 
, 2 ̄u 

n 
)

+ α( [ (u 

n ) p ] ˆ x , 2 ̄u 

n ) + 

τ 3 

3 

(
u 

n 
ˆ x t ̄t 

, 2 ̄u 

n 
)

+ 

τ 3 

3 

(
[ ψ p (u 

n 
i )] t ̄t , 2 ̄u 

n 
)

= 0 . (15) 

According to the Cauchy-Schwarz inequality, the boundary conditions (12) provide inequalities 

‖ u 

n 
ˆ x 
‖ ≤ ‖ u 

n 
x ‖ (16) 

and (
u 

n 
ˆ x 
, 2 ̄u 

n 
)

≤
(
‖ u 

n 
x ‖ 

2 + 

1 

2 

‖ u 

n +1 ‖ 

2 + 

1 

2 

‖ u 

n −1 ‖ 

2 
)
. (17) 

Next, we turn to the inner product of Eq. (10) with 2 ̄u n , that is 

([
( u 

n ) 
p 
]

ˆ x 
, 2 ̄u 

n 
)

= −h 

M−1 ∑ 

i =1 

( u i 
n ) 

p 
(
u 

n +1 
i 

+ u 

n −1 
i 

)
ˆ x 
≤ C 

(
‖ u 

n ‖ 

2 + 

1 

2 

‖ u 

n +1 
x ‖ 

2 + 

1 

2 

‖ u 

n −1 
x ‖ 

2 
)
, (18) 

(
u 

n 
ˆ x t ̄t 

, 2 ̄u 

n 
)

= 

h 

τ 2 

M−1 ∑ 

i =1 

(
(u 

n +1 
i 

) ˆ x − 2(u 

n 
i ) ˆ x + (u 

n −1 
i 

) ˆ x 

)
(u 

n +1 
i 

− u 

n −1 
i 

) 

≤ 2 

τ 2 

(‖ u 

n −1 ‖ 

2 + ‖ u 

n +1 ‖ 

2 + ‖ u 

n −1 
x ‖ 

2 + ‖ u 

n 
x ‖ 

2 + ‖ u 

n +1 
x ‖ 

2 
)

(19) 

and (
[ ψ p (u 

n )] t ̄t , 2 ̄u 

n 
)

= 

αp 

(p + 1) 

[(
[(u 

n ) p−1 (u 

n ) ˆ x ] t ̄t , 2 ̄u 

n 
)

−
(
[(u 

n ) p ] t ̄t , 2 ̄u 

n 
ˆ x 

)]
= 

αph 

τ 2 (p + 1) 

[ 

M−1 ∑ 

i = i 

((
u 

n +1 
i 

)p−1 (
u 

n +1 
i 

)
ˆ x 
− 2 

(
u 

n 
i 

)p−1 (
u 

n 
i 

)
ˆ x 
+ 

(
u 

n −1 
i 

)p−1 (
u 

n −1 
i 

)
ˆ x 

)(
u 

n +1 
i 

+ u 

n −1 
i 

)

−
M−1 ∑ 

i =1 

((
u 

n +1 
i 

)p − 2 

(
u 

n 
i 

)p + 

(
u 

n +1 
i 

)p 
)(

u 

n +1 
ˆ x 

+ u 

n −1 
ˆ x 

)] 

≤ C 

τ 2 

(‖ u 

n −1 ‖ 

2 + ‖ u 

n ‖ 

2 + ‖ u 

n +1 ‖ 

2 + ‖ u 

n −1 
x ‖ 

2 + ‖ u 

n 
x ‖ 

2 + ‖ u 

n +1 
x ‖ 

2 
)
, (20) 

where Eq. (14) , the Cauchy-Schwarz inequality, the boundary conditions (12) , Eq. (16) , and Lemma 2 are used, respectively.

Due to inequalities (17) –(20) , Eq. (15) can be rewritten as (
‖ u 

n +1 ‖ 

2 − ‖ u 

n −1 ‖ 

2 
)

+ s 1 

(
‖ u 

n +1 
x ‖ 

2 − ‖ u 

n −1 
x ‖ 

2 
)

+ s 2 

(
‖ u 

n +1 
x ̄x 

‖ 

2 − ‖ u 

n −1 
x ̄x 

‖ 

2 
)

≤ 2 τC 
(‖ u 

n −1 ‖ 

2 + ‖ u 

n ‖ 

2 + ‖ u 

n +1 ‖ 

2 + ‖ u 

n −1 
x ‖ 

2 + ‖ u 

n 
x ‖ 

2 + ‖ u 

n +1 
x ‖ 

2 
)
. (21) 

Next, the function B n is presented: 

B 

n = ‖ u 

n ‖ 

2 + ‖ u 

n −1 ‖ 

2 + s 1 

(
‖ u 

n 
x ‖ 

2 + ‖ u 

n −1 
x ‖ 

2 
)

+ s 2 

(
‖ u 

n 
x ̄x ‖ 

2 + ‖ u 

n −1 
x ̄x 

‖ 

2 
)

(22) 

and, turning to Eq. (21) , we express it in terms of a function defined in Eq. (22) as follows: 

B 

n +1 − B 

n ≤ τC 
(
B 

n +1 + B 

n 
)
. 
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If τ is sufficiently small which satisfies τ ≤ k − 2 

kC 
and k > 2 then 

B 

n +1 ≤ ( 1 + τC ) 

( 1 − τC ) 
B 

n ≤ ( 1 + τkC ) B 

n ≤ exp ( CT ) B 

0 . (23)

Thus, B n +1 in the left-hand side in Eq. (23) is bounded, which immediately provides ‖ u n ‖ ≤ C , ‖ u n x ‖ ≤ C and ‖ u n 
x ̄x 

‖ ≤ C. Next,

we are ready to estimate ‖ u n ‖ ∞ 

≤ C and ‖ u n x ‖ ∞ 

≤ C where Lemma 3 is used. �

4. Existence and uniqueness 

At present, we prove the solvability of the solution to the scheme (10) that guarantees the existence and uniqueness of

our numerical solution. To prove the existence of the solution to the scheme (10) –(12) , the Browder fixed point theorem

will be used for the proof. 

Lemma 5 (Browder fixed point theorem [31] ) . Let H be a finite dimensional inner product space. Suppose that g : H → H is

continuous, and there exists an α > 0 such that ( g ( x ), x ) > 0 for all x ∈ H with ‖ x ‖ = α. Then, there exists x ∗ ∈ H such that g(x ∗) =
0 and ‖ x ∗‖ ≤α. 

Lemma 6. Let v ∈ Z 0 
h 

. Then (ψ p (v ) , v ) = 0 . 

Proof. The direct calculation of the inner product gives 

(ψ p (v ) , v ) = 

αph 

(p + 1) 

M−1 ∑ 

i =1 

[(v i ) p−1 (v i ) ˆ x + [(v i ) p ] ˆ x ] v i 

= 

αp 

2(p + 1) 

M−1 ∑ 

i =1 

[ v i +1 (v i ) p − v i −1 (v i ) p + v i (v i +1 ) 
p − v i (v i −1 ) 

p ] 

= 0 , 

which completes the proof. �

Theorem 7. The finite difference scheme (10) –(12) is solvable. 

Proof. To prove the theorem, we proceed by the mathematical induction. We assume that u 0 , u 1 , . . . , u n satisfy the difference

scheme (10) for 1 ≤ n ≤ N − 1 . Indeed, u 1 can be computed by an available method. Next, we prove that there exists u n +1

satisfied Eq. (10) . Define an operator g : Z 0 
h 

→ Z 0 
h 

as the following form 

g(v ) = v − u 

n −1 − s 1 
(
v x ̄x − u 

n −1 
x ̄x 

)
+ s 2 

(
v xx ̄x ̄x − u 

n −1 
xx ̄x ̄x 

)
+ 2 τ ( u 

n ) ˆ x + 2 τα[ (u 

n ) p ] ˆ x 

+ 

τ

3 

(
(v ) ˆ x − 2(u 

n ) ˆ x + (u 

n −1 ) ˆ x 

)
+ 

τ

3 

(
ψ p (v ) − 2 ψ p ( u 

n ) + ψ p 

(
u 

n −1 
))

. 

In order to apply the Browder fixed point theorem, we need to show that there exists a positive α such that (g(v ) , v ) > 0

for all v ∈ Z 0 
h 

with ‖ v ‖ = α. Let us consider 

( g(v ) , v ) = ‖ v ‖ 

2 + s 1 ‖ v x ‖ 

2 + s 2 ‖ v x ̄x ‖ 

2 − (u 

n −1 , v ) − s 1 (u 

n −1 
x , v x ) − s 2 (u 

n −1 
x ̄x 

, v x ̄x ) 

+ 2 τα( [ (u 

n ) p ] ˆ x , v ) + 

τ

3 

(
4 u 

n 
ˆ x 
+ u 

n −1 
ˆ x 

, v 
)

+ 

τ

3 

(
ψ p (v ) − 2 ψ p ( u 

n ) + ψ p 

(
u 

n −1 
)
, v 

)
≥‖ v ‖ 

2 + s 1 ‖ v x ‖ 

2 + s 2 ‖ v x ̄x ‖ 

2 − ‖ v ‖ · ‖ u 

n −1 ‖ − s 1 ‖ v x ‖ · ‖ u 

n −1 
x ‖ 

− s 2 ‖ v x ̄x ‖ · ‖ u 

n −1 
x ̄x 

‖ − τ

3 

(
4 ‖ u 

n 
x ‖ · ‖ v ‖ + ‖ u 

n −1 
x ‖ · ‖ v ‖ 

)
+ 2 τα( [ (u 

n ) p ] ˆ x , v ) + 

−2 τ

3 

( ψ p ( u 

n ) , v ) + 

τ

3 

(
ψ p 

(
u 

n −1 
)
, v 

)
(24)

where we apply the Cauchy-Schwarz inequality, Lemma 2, Lemma 6 , and Eq. (16) . Using Theorem 4 , Eq. (16) , and the Young’s

inequality, which immediately obtain inequalities 

( [ (u 

n ) p ] ˆ x , v ) = −h 

M−1 ∑ 

i =1 

(u 

n 
i ) 

p (v i ) ˆ x ≤ C‖ u 

n ‖ · ‖ v ‖ ≤ Cτ‖ u 

n ‖ 

2 + 

1 

24 ατ
‖ v ‖ 

2 , 

( ψ p ( u 

n ) , v ) = 

αph 

(p + 1) 

M−1 ∑ 

i =1 

[(u 

n 
i ) 

p−1 (u 

n 
i ) ˆ x + [(u 

n 
i ) 

p ] ˆ x ] v i ≤ hC 

( 

M−1 ∑ 

i =1 

∣∣(u 

n 
i ) 

p−1 (u 

n 
i ) ˆ x 

∣∣| v i | + 

M−1 ∑ 

i =1 

∣∣u 

n 
i 

∣∣p | (v i ) ˆ x | 
) 

≤ Cτ
(‖ u 

n ‖ 

2 + ‖ u 

n 
x ‖ 

2 
)

+ 

1 ‖ v ‖ 

2 + 

s 1 ‖ v x ‖ 

2 . 

8 τ 4 τ
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Next, we calculate 
(
ψ p (u n −1 ) , v 

)
which is similar to the above: (

ψ p (u 

n −1 ) , v 
)

≤ Cτ
(‖ u 

n −1 ‖ 

2 + ‖ u 

n −1 
x ‖ 

2 
)

+ 

1 

4 τ
‖ v ‖ 

2 + 

s 1 
2 τ

‖ v x ‖ 

2 . 

Again by using the Young’s inequality with the remaining terms in Eq. (24) , we have 

‖ u 

n −1 ‖ · ‖ v ‖ ≤ 3 ‖ u 

n −1 ‖ 

2 + 

1 

12 

‖ v ‖ 

2 , 

‖ u 

n −1 ‖ · ‖ v x ‖ ≤ 3 

2 

‖ u 

n −1 
x ‖ 

2 + 

1 

6 

‖ v x ‖ 

2 , 

‖ u 

n −1 
x ̄x 

‖ · ‖ v x ̄x ‖ ≤ 1 

2 

‖ u 

n −1 
x ̄x 

‖ 

2 + 

1 

2 

‖ v x ̄x ‖ 

2 , 

‖ u 

n 
x ‖ · ‖ v ‖ ≤ 4 τ‖ u 

n 
x ‖ 

2 + 

1 

16 τ
‖ v ‖ 

2 , 

‖ u 

n −1 
x ‖ · ‖ v ‖ ≤ τ‖ u 

n 
x ‖ 

2 + 

1 

4 τ
‖ v ‖ 

2 . 

Then Eq. (24) can be estimated by 

( g(v ) , v ) ≥1 

2 

(‖ v ‖ 

2 + s 1 ‖ v x ‖ 

2 + s 2 ‖ v x ̄x ‖ 

2 
)
− C 

(‖ u 

n −1 ‖ 

2 + ‖ u 

n −1 
x ‖ 

2 + ‖ u 

n −1 
x ̄x 

‖ 

2 
)

− Cτ 2 
(‖ u 

n −1 ‖ 

2 + ‖ u 

n −1 
x ‖ 

2 + ‖ u 

n ‖ 

2 + ‖ u 

n 
x ‖ 

2 
)

≥1 

2 

‖ v ‖ 

2 − (1 + τ 2 ) C 
(‖ u 

n −1 ‖ 

2 + ‖ u 

n −1 
x ‖ 

2 + ‖ u 

n −1 
x ̄x 

‖ 

2 + ‖ u 

n ‖ 

2 + ‖ u 

n 
x ‖ 

2 
)
. 

That is (g(v ) , v ) ≥ 0 , for all v ∈ Z 0 
h 

with 

‖ v ‖ = 2(1 + τ 2 ) C 
(‖ u 

n −1 ‖ 

2 + ‖ u 

n −1 
x ‖ 

2 + ‖ u 

n −1 
x ̄x 

‖ 

2 + ‖ u 

n ‖ 

2 + ‖ u 

n 
x ‖ 

2 
)
+ 1 . 

Finally, it follows from the Browder fixed point theorem that there exists v ∗ ∈ Z 0 
h 

which satisfies g(v ∗) = 0 . This implies the

existence of the solution to the scheme (10) –(12) . This completes the proof. �

Theorem 8. Suppose τ is sufficiently small. The finite difference scheme (10) –(12) is unique. 

Proof. Suppose that u n +1 and w 

n +1 are two solutions of the scheme (10) –(12) . We denote ρn +1 = u n +1 − w 

n +1 . Then, 

ρn +1 
i 

− s 1 
(
ρn +1 

i 

)
x ̄x 

+ s 2 
(
ρn +1 

i 

)
xx ̄x ̄x 

+ 

τ

3 

(ρn +1 
i 

) ˆ x + 

τ

3 

[ ψ p (u 

n +1 
i 

) − ψ p (w 

n +1 
i 

)] = 0 . (25)

Taking the inner product of Eq. (25) with ρn +1 leads to ∥∥ρn +1 
∥∥2 + s 1 

∥∥ρn +1 
x 

∥∥2 + s 2 
∥∥ρn +1 

x ̄x 

∥∥2 + 

τ

3 

(
ψ p (u 

n +1 ) − ψ p (w 

n +1 ) , ρn +1 
)

= 0 , (26) 

where Lemma 2 is used. The inner product, 
(
ψ p (u n +1 ) − ψ p (w 

n +1 ) , ρn +1 
)
, may be arranged as 

(
ψ p (u 

n +1 ) − ψ p (w 

n +1 ) , ρn +1 
)

= h 

M−1 ∑ 

i =1 

(
ψ p (u 

n +1 
i 

) − ψ p (w 

n +1 
i 

) 
)
ρn +1 

i 

= 

αph 

(p + 1) 

M−1 ∑ 

i =1 

(
(u 

n +1 
i 

) p−1 (u 

n +1 
i 

) ˆ x − (w 

n +1 
i 

) p−1 (w 

n +1 
i 

) ˆ x 

)
ρn +1 

i 

+ 

αph 

(p + 1) 

M−1 ∑ 

i =1 

(
[(u 

n +1 
i 

) p ] ˆ x − [(w 

n +1 
i 

) p ] ˆ x 

)
ρn +1 

i 
. 

Next, we apply Theorem 4 , the Cauchy-Schwarz inequality, and Eq. (16) , giving 

h 

M−1 ∑ 

i =1 

((
u 

n +1 
i 

)p−1 (
u 

n +1 
i 

)
ˆ x 
−

(
w 

n +1 
i 

)p−1 (
w 

n +1 
i 

)
ˆ x 

)
ρn +1 

i 

= h 

M−1 ∑ 

i =1 

((
u 

n +1 
i 

)p−1 (
ρn +1 

i 

)
ˆ x 
+ ρn +1 

i 

(
w 

n +1 
i 

)
ˆ x 

p−2 ∑ 

j=0 

(
u 

n +1 
i 

)p− j−2 (
w 

n +1 
i 

) j 
)
ρn +1 

i 

= hC 

M−1 ∑ 

i =1 

(| (ρn +1 
i 

) ˆ x | + | ρn +1 
i 

| )| ρn +1 
i 

| 

≤ C 
(‖ ρn +1 ‖ 

2 + ‖ ρn +1 
x ‖ 

2 
)
, 
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and 

h 

M−1 ∑ 

i =1 

(
[(u 

n +1 
i 

) p ] ˆ x − [(w 

n +1 
i 

) p ] ˆ x 

)
ρn +1 

i 
= −h 

M−1 ∑ 

i =1 

(
(u 

n +1 
i 

) p − (w 

n +1 
i 

) p 
)
(ρn +1 

i 
) ˆ x 

= −h 

M−1 ∑ 

i =1 

( 

ρn +1 
i 

p−1 ∑ 

j=0 

(
u 

n +1 
i 

)p− j−1 (
w 

n +1 
i 

) j 

) 

(ρn +1 
i 

) ˆ x 

≤ hC 

M−1 ∑ 

i =1 

∣∣ρn +1 
i 

∣∣∣∣(ρn +1 
i 

) ˆ x 

∣∣ ≤ C 
(‖ ρn +1 ‖ 

2 + ‖ ρn +1 
x ‖ 

2 
)
, 

respectively. Hence, the inner product appearing in Eq. (26) may be reduced to the relation (
ψ p (u 

n +1 ) − ψ p (w 

n +1 ) , ρn +1 
)

≤ C 
(‖ ρn +1 ‖ 

2 + ‖ ρn +1 
x ‖ 

2 
)
. 

Using the above inequality, Eq. (26) can be estimated as ∥∥ρn +1 
∥∥2 + s 1 

∥∥ρn +1 
x 

∥∥2 + s 2 
∥∥ρn +1 

x ̄x 

∥∥2 ≤ τC 

(∥∥ρn +1 
∥∥2 + 

∥∥ρn +1 
x 

∥∥2 
)
. 

Provided that τ is sufficiently small such that s 2 − τC > 0 , then we obtain inequality 

( 1 − τC ) 
∥∥ρn +1 

∥∥2 + s 1 
∥∥ρn +1 

x 

∥∥2 + ( s 2 − τC ) 
∥∥ρn +1 

x ̄x 

∥∥2 ≤ 0 . (27)

Finally, Eq. (27) implies that ∥∥ρn +1 
∥∥ = 

∥∥ρn +1 
x 

∥∥ = 

∥∥ρn +1 
x ̄x 

∥∥ = 0 . 

That is, Eq. (25) has only a trivial solution. Therefore, the scheme (10) –(12) determines u n +1 uniquely, as in required, which

completes the proof. �

5. Convergence and stability 

In this section, we prove the convergence and stability of the scheme (10) –(12) . Let e n 
i 

= v n 
i 

− u n 
i 
, where v n 

i 
and u n 

i 
are

the solutions of (1) –(3) and (10) –(12) , respectively. We then obtain the following error equations 

r n i = 

(
e n i 

)
ˆ t 
− s 1 

(
e n i 

)
x ̄x ̂ t 

+ s 2 
(
e n i 

)
xx ̄x ̄x ̂ t 

+ 

(
e n i 

)
ˆ x 
+ α

[
(v n i ) 

p 
]

ˆ x 
− α

[
(u 

n 
i ) 

p 
]

ˆ x 

+ 

τ 2 

6 

(e n i ) ˆ x t ̄t + 

τ 2 

6 

[ ψ p (v n i )] t ̄t −
τ 2 

6 

[ ψ p (u 

n 
i )] t ̄t , (28)

where r n 
i 

denotes the truncation error. By using Taylor expansion, we easily obtain that r n 
i 

= O 

(
τ 4 + h 2 τ 2 + h 4 

)
holds as τ ,

h → 0. 

The following lemmas are well known and useful for the proof of convergence and stability. 

Lemma 9 (discrete Gronwall’s inequality [30] ) . Suppose that ω( k ) and ρ( k ) are nonnegative functions, and ρ( k ) is nondecreas-

ing. If C > 0 and 

ω(k ) ≤ ρ(k ) + Cτ
k −1 ∑ 

l=0 

ω(l) , ∀ k 

then 

ω(k ) ≤ ρ(k ) e Cτk , ∀ k. 

Lemma 10. Suppose that u 0 ∈ H 

2 
0 [ x l , x r ] , then the solution u n of Eqs. (1) –(3) satisfies 

‖ u ‖ L 2 ≤ C, ‖ u x ‖ L 2 ≤ C, ‖ u ‖ L ∞ ≤ C, ‖ u x ‖ L ∞ ≤ C. 

The following theorem guarantees the convergence of our scheme with the convergence rate O (τ 4 + τ 2 h 2 + h 4 ) . 

Theorem 11. Suppose u 0 ∈ H 

2 
0 

[ x l , x r ] , then the solution u n of the scheme (10) —(12) converges to the solution of the problem

(1) –(3) in the sense of || · || ∞ 

, and the rate of convergence is O (τ 4 + h 2 τ 2 + h 4 ) . 

Proof. Taking the inner product of Eq. (28) and 2 ̄e n (i.e. e n +1 + e n −1 ) leads to (∥∥e n +1 
∥∥2 −

∥∥e n −1 
∥∥2 

)
+ s 1 

(∥∥e n +1 
x 

∥∥2 −
∥∥e n −1 

x 

∥∥2 
)

+ s 2 

(∥∥e n +1 
x ̄x 

∥∥2 −
∥∥e n −1 

x ̄x 

∥∥2 
)

+ 2 τ
(
e n ˆ x 

, 2 ̄e n 
)

+ α
([

( v n ) p − ( u 

n ) 
p 
]

ˆ x 
, 2 ̄e n 

)
+ 

τ 3 (
e n 

ˆ x t ̄t 
, 2 ̄e n 

)
+ 

τ 3 

( [ ψ p (v n )] t ̄t − [ ψ p (u 

n )] t ̄t , 2 ̄e n ) − 2 τ ( r n , 2 ̄e n ) = 0 , (29)

3 3 
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where Lemma 2 is used. The quantity appearing in Eq. (29) may be reduced to relations 

‖ e n ˆ x 
‖ 

2 ≤ ‖ e n x ‖ 

2 , (30) 

(
e n ˆ x 

, 2 ̄e n 
)

≤ ‖ e n x ‖ 

2 + 

1 

2 

(
‖ e n +1 ‖ 

2 + ‖ e n −1 ‖ 

2 
)
, (31) 

( r n , 2 e n ) ≤ ‖ r n ‖ 

2 + 

1 

2 

(‖ e n +1 ‖ 

2 + ‖ e n −1 ‖ 

2 
)
. (32) 

By using Lemma 2, Lemma 10 , and Theorem 4 , we see that 

(
e n 

ˆ x t ̄t 
, 2 ̄e n 

)
= 

h 

τ 2 

M−1 ∑ 

i =1 

(
(e n +1 

i 
) ˆ x − 2(e n i ) ˆ x + (e n −1 

i 
) ˆ x 

)
(e n +1 

i 
− e n −1 

i 
) 

≤ 2 

τ 2 

(‖ e n −1 ‖ 

2 + ‖ e n +1 ‖ 

2 + ‖ e n −1 
x ‖ 

2 + ‖ e n x ‖ 

2 + ‖ e n +1 
x ‖ 

2 
)

([
( v n ) p − ( u 

n ) 
p 
]

ˆ x 
, 2 ̄e n 

)
= −h 

M−1 ∑ 

i =1 

((
v n i 

)p −
(
u 

n 
i 

)p 
)
( ̄e n i ) ˆ x 

= −h 

M−1 ∑ 

i =1 

( 

e n i 

p−1 ∑ 

j=0 

(
v n +1 

i 

)p− j−1 (
u 

n +1 
i 

) j 

) (
ē n i 

)
ˆ x 

≤ hC 

M−1 ∑ 

i =1 

∣∣e n i 

∣∣∣∣( ̄e n i ) ˆ x 

∣∣
≤ C 

(‖ 

e n ‖ 

2 + ‖ e n −1 
x ‖ 

2 + ‖ e n +1 
x ‖ 

2 
)
. (33) 

Next, we turn to the inner product, 
(
[ ψ p (v n )] t ̄t − [ ψ p (u n )] t ̄t , 2 ̄e 

n 
)

in Eq. (29) , and we have (
[ ψ p (v n )] t ̄t − [ ψ p (u 

n )] t ̄t , 2 ̄e n 
)

= 

αp 

(p + 1) 
[ ( M 1 , 2 ̄e n ) − ( M 2 , 2 ̄e n ) ] 

where 

M 1 = 

[
( v n ) p−1 

( v n ) ˆ x 

]
t ̄t 

−
[
( u 

n ) 
p−1 

( u 

n ) ˆ x 

]
t ̄t 
, 

M 2 = 

[
( v n ) p 

]
ˆ x t ̄t 

−
[
( u 

n ) 
p 
]

ˆ x t ̄t 
, 

are used. According to Lemma 2, Theorem 4, Lemma 10 , the Cauchy-Schwartz inequality and Eq. (30) , we arrive at (
( v n ) p−1 

( v n ) ˆ x − ( u 

n ) 
p−1 

( u 

n ) ˆ x , 2 ̄e n 
)

= 2 h 

M−1 ∑ 

i =1 

[ (
v n i 

)p−1 (
v n i 

)
ˆ x 
−

(
u 

n 
i 

)p−1 (
u 

n 
i 

)
ˆ x 

] 
ē n i 

= 2 h 

M−1 ∑ 

i =1 

[ (
v n i 

)p−1 (
e n i 

)
ˆ x 
ē n i 

] 
+ 2 h 

M−1 ∑ 

i =1 

[ (
v n i 

)p−1 −
(
u 

n 
i 

)p−1 
] (

u 

n 
i 

)
ˆ x 
ē n i 

= 2 h 

M−1 ∑ 

i =1 

[ (
v n i 

)p−1 (
e n i 

)
ˆ x 
ē n i 

] 
+ 2 h 

M−1 ∑ 

i =1 

[ 

e n i 

p−2 ∑ 

k =0 

(
v n i 

)p−2 −k (
u 

n 
i 

)k 

] (
u 

n 
i 

)
ˆ x 
ē n i 

≤ C 
(‖ e n −1 ‖ 

2 + ‖ e n ‖ 

2 + ‖ e n +1 ‖ 

2 + ‖ e n x ‖ 

2 
)
. (34) 

This leads to the inequality 

( M 1 , 2 ̄e n ) ≤ C 

τ 2 

(‖ e n −1 ‖ 

2 + ‖ e n ‖ 

2 + ‖ e n +1 ‖ 

2 + ‖ e n −1 
x ‖ 

2 + ‖ e n x ‖ 

2 + ‖ e n +1 
x ‖ 

2 
)
. (35) 

Here, we also have 

( M 2 , 2 ̄e n ) ≤ C 

τ 2 

(‖ e n −1 ‖ 

2 + ‖ e n ‖ 

2 + ‖ e n +1 ‖ 

2 + ‖ e n −1 
x ‖ 

2 + ‖ e n +1 
x ‖ 

2 
)

(36) 

which is similar to the proof of Eq. (33) . Instead of Eqs. (30) –(36) , Eq. (29) becomes (
‖ e n +1 ‖ 

2 − ‖ e n −1 ‖ 

2 
)

+ s 1 

(
‖ e n +1 

x ‖ 

2 − ‖ e n −1 
x ‖ 

2 
)

+ s 2 

(
‖ e n +1 

x ̄x 
‖ 

2 − ‖ e n −1 
x ̄x 

‖ 

2 
)

≤ Cτ
(‖ e n −1 ‖ 

2 + ‖ e n ‖ 

2 + ‖ e n +1 ‖ 

2 + ‖ e n −1 
x ‖ 

2 + ‖ e n x ‖ 

2 + ‖ e n +1 
x ‖ 

2 
)
+ 2 τ‖ r n ‖ 

2 . (37) 
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Let B n be defined as follows: 

B 

n = 

(
‖ e n ‖ 

2 + ‖ e n −1 ‖ 

2 
)

+ s 1 

(
‖ e n x ‖ 

2 + ‖ e n −1 
x ‖ 

2 
)

+ s 2 

(
‖ e n x ̄x ‖ 

2 + ‖ e n −1 
x ̄x 

‖ 

2 
)

and, turning to Eq. (37) , we easily obtain that 

B 

n +1 − B 

n ≤ 2 τ‖ r n ‖ 

2 + τC 
(
B 

n +1 + B 

n 
)
. 

Therefore, 

( 1 − Cτ ) 
(
B 

n +1 − B 

n 
)

≤ 2 τ‖ r n ‖ 

2 + 2 CτB 

n . 

Provided that τ is sufficiently small satisfying 1 − Cτ > 0 , then 

B 

n +1 − B 

n ≤ Cτ‖ r n ‖ 

2 + τCB 

n . 

By summing up from 0 to n − 1 , we have 

B 

n ≤ B 

0 + Cτ
n −1 ∑ 

k =0 

‖ r k ‖ 

2 + Cτ
n −1 ∑ 

l=0 

B 

k . (38)

The properties of the operator norm and Eq. (28) yield 

τ
n −1 ∑ 

k =0 

‖ r k ‖ 

2 ≤ nτ max 
0 ≤k ≤n −1 

‖ r k ‖ 

2 ≤ T · O 

(
τ 4 + τ 2 h 

2 + h 

4 
)2 

and e 0 = 0 . Now, we are ready to estimate 

B 

n ≤ O 

(
τ 4 + τ 2 h 

2 + h 

2 
)2 + Cτ

n −1 ∑ 

k =0 

B 

k , 

where B 0 = O 

(
τ 4 + τ 2 h 2 + h 4 

)2 
. According to Lemma 9 , we obtain the inequality B n ≤ O 

(
τ 4 + τ 2 h 2 + h 4 

)2 
, that is 

‖ e n ‖ 

2 ≤ O 

(
τ 4 + τ 2 h 

2 + h 

4 
)2 

, ‖ e n x ‖ 

2 ≤ O 

(
τ 4 + τ 2 h 

2 + h 

4 
)2 

, 

and ‖ e n 
x ̄x 

‖ 2 ≤ O 

(
τ 4 + τ 2 h 2 + h 4 

)2 
, respectively. Finally, we arrive at our aim 

‖ e n ‖ ∞ 

≤ C‖ e n ‖ + C‖ e n x ‖ ≤ O 

(
τ 4 + τ 2 h 

2 + h 

4 
)
, 

due to Lemma 3 , which completes the proof. �

Theorem 12. Under the conditions of Theorem 11 , the solution of scheme (10) –(12) is stable by || · || ∞ 

. 

6. Iterative algorithm 

This section gives an iterative algorithm for solving the nonlinear implicit higher-order compact three-level scheme (10) –

(12) . Inspired by the techniques in Sun and Zhu [32] , the nonlinear term can be solved by the following iterative algorithm,

for s = 0 , 1 , 2 , . . . , : 

1 

2 τ

(
u 

(n +1)(s +1) 
i 

− u 

n −1 
i 

)
− s 1 

2 τ

(
u 

(n +1)(s +1) 
i 

− u 

n −1 
i 

)
x ̄x 

+ 

s 2 
2 τ

(
u 

(n +1)(s +1) 
i 

− u 

n −1 
i 

)
xx ̄x ̄x 

+ 

(
u 

n 
i 

)
ˆ x 
+ α

[
(u 

n 
i ) 

p 
]

ˆ x 
+ 

1 

6 

(
u 

(n +1)(s +1) 
i 

− 2 u 

n 
i + u 

n −1 
i 

)
ˆ x 

+ 

1 

6 

[
ψ p 

(
u 

(n +1)(s ) 
i 

)
− 2 ψ p 

(
u 

n 
i 

)
+ ψ p 

(
u 

n −1 
i 

)]
= 0 ; 1 ≤ i ≤ M − 1 , 1 ≤ n ≤ N − 1 , (39)

u 

0 
i = u 0 (x i ) , 0 ≤ i ≤ M, (40)

u 

n 
0 = u 

n 
M 

= 0 , (u 

n 
0 ) x = (u 

n 
M 

) x = 0 , (u 

n 
0 ) x ̄x = (u 

n 
M 

) x ̄x = 0 , 1 ≤ n ≤ N, (41)

where 

u 

(n +1)(0) 
i 

= 2 u 

n 
i − u 

n −1 
i 

. 

Before proving the convergence of the iterative algorithm (39) –(41) , we let 

ε (s ) 
i 

= u 

(n +1) 
i 

− u 

(n +1)(s ) 
i 

. 
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Note that 

ε (0) 
i 

= u 

n +1 
i 

− 2 u 

n 
i + u 

n −1 
i 

≤
(
u 

n +1 
i 

− v n +1 
i 

)
− 2 

(
u 

n 
i − v n i 

)
+ 

(
u 

n −1 
i 

− v n −1 
i 

)
+ v n +1 

i 
− 2 v n i + v n −1 

i 

≤ O (h 

4 + h 

2 τ 2 + τ 4 ) + O (τ 2 ) = O (τ 2 + h 

4 ) . (42) 

Similarly, we also have (
ε (0) 

i 

)
x 

≤ O (τ 2 + h 

4 ) , 
(
ε (0) 

i 

)
x ̄x 

≤ O (τ 2 + h 

4 ) . (43) 

Theorem 13. Let τ and h be sufficiently small. Then, the iterative algorithm (39) –(41) converges to the solution of the higher-

order compact difference scheme (10) –(12) . 

Proof. Let τ and h be sufficiently small. We have 

‖ ε (0) ‖ ∞ 

≤ 1 

2 

. 

Suppose 

‖ ε (s ) ‖ ∞ 

≤ 1 

2 

and ‖ ε (s ) 
x ‖ ∞ 

≤ 1 

2 

. (44) 

By Theorem 4 and the assumption (44) , we see that 

‖ u 

(n +1)(s ) ‖ ∞ 

≤ ‖ u 

n +1 ‖ ∞ 

+ ‖ ε (s ) ‖ ∞ 

≤ C. 

Subtracting Eqs. (39) –(41) from Eqs. (10) –(12) , we have 

1 

2 τ
ε (s +1) 

i 
− s 1 

2 τ

(
ε (s +1) 

i 

)
x ̄x 

+ 

s 2 
2 τ

(
ε (s +1) 

i 

)
xx ̄x ̄x 

+ 

1 

6 

(
ε (s +1) 

i 

)
ˆ x 
+ 

1 

6 

[
ψ p 

(
u 

(n +1)(s +1) 
i 

)
− ψ p 

(
u 

n +1 
i 

)]
= 0 . (45) 

Taking the inner product of Eq. (45) with ε (s +1) , by using Lemma 2 , we have ∥∥ε (s +1) 
∥∥2 + s 1 

∥∥ε (s +1) 
x 

∥∥2 + s 2 
∥∥ε (s +1) 

x ̄x 

∥∥2 + 

τ

3 

(
ψ p 

(
u 

(n +1)(s ) 
)

− ψ p 

(
u 

n +1 
)
, ε (s +1) 

)
= 0 . (46) 

The inner product, 
(
ψ p 

(
u (n +1)(s ) 

)
− ψ p 

(
u n +1 

)
, ε (s +1) 

)
, appearing in Eq. (46) may be reduced to the relation (

ψ p 

(
u 

(n +1)(s ) 
)

− ψ p 

(
u 

n +1 
)
, ε (s +1) 

)
= 

αp 

(p + 1) 

[(
M 3 , ε 

(s +1) 
)

−
(
M 4 , ε 

(s +1) 
)]

, (47) 

where 

M 3 = 

(
u 

(n +1)(s ) 
)p−1 (

u 

(n +1)(s ) 
)

ˆ x 
−

(
u 

n +1 
)p−1 (

u 

n +1 
)

ˆ x 
, 

M 4 = 

(
u 

(n +1)(s ) 
)p −

(
u 

n +1 
)p 

. 

Turning to Eq. (47) , we express inner product terms as (
M 3 , ε 

(s +1) 
)

= 

((
u 

(n +1)(s ) 
)p−1 (

u 

(n +1)(s ) 
)

ˆ x 
−

(
u 

n +1 
)p−1 (

u 

n +1 
)

ˆ x 
, ε (s +1) 

i 

)
= h 

M−1 ∑ 

i =1 

[ (
u 

(n +1)(s ) 
i 

)p−1 (
u 

(n +1)(s ) 
i 

)
ˆ x 
−

(
u 

n +1 
i 

)p−1 (
u 

n +1 
i 

)
ˆ x 

] 
ε (s +1) 

i 

= h 

M−1 ∑ 

i =1 

(
u 

(n +1)(s ) 
i 

)p−1 (
ε (s ) 

i 

)
ˆ x 
ε (s +1) 

i 
+ h 

M−1 ∑ 

i =1 

[ (
u 

(n +1)(s ) 
i 

)p−1 −
(
u 

n +1 
i 

)p−1 
] (

u 

n +1 
i 

)
ˆ x 
ε (s +1) 

i 

= h 

M−1 ∑ 

i =1 

[ (
u 

(n +1)(s ) 
i 

)p−1 (
ε (s ) 

i 

)
ˆ x 
ε (s +1) 

i 

] 
+ h 

M−1 ∑ 

i =1 

[ 

ε (s ) 
i 

p−2 ∑ 

k =0 

(
u 

(n +1)(s ) 
i 

)p−2 −k (
u 

n +1 
i 

)k 

] (
u 

n +1 
i 

)
ˆ x 
ε (s +1) 

i 

≤ C 
(‖ ε (s ) ‖ 

2 + ‖ ε (s ) 
x ‖ 

2 + ‖ ε (s +1) ‖ 

2 
)
, (48) 

and (
M 4 , ε 

s +1 
ˆ x 

)
= h 

M−1 ∑ 

i =1 

((
u 

(n +1)(s ) 
i 

)p −
(
u 

n +1 
i 

)p 
)(

ε (s +1) 
i 

)
ˆ x 

= −h 

M−1 ∑ 

i =1 

( 

ε (s ) 
i 

p−1 ∑ 

j=0 

(
u 

(n +1)(s ) 
i 

)p− j−1 (
u 

n +1 
i 

) j 

) (
ε (s +1) 

i 

)
ˆ x 

≤ C 
(‖ ε (s ) ‖ 

2 + ‖ ε (s +1) 
x ‖ 

2 
)
, (49) 
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by according to Lemma 2, Theorem 4 , the Cauchy-Schwartz inequality and Eq. (16) . From Eq. (46) , we have 

‖ ε (s +1) ‖ 

2 + s 1 ‖ ε (s +1) 
x ‖ 

2 + s 2 ‖ ε (s +1) 
x ̄x 

‖ 

2 ≤ τC 
(‖ ε (s ) ‖ 

2 + ‖ ε (s ) 
x ‖ 

2 + ‖ ε (s +1) ‖ 

2 + ‖ ε (s +1) 
x ‖ 

2 
)
, 

where the estimates in Eqs. (48) and (49) are used. Let τ be sufficiently small s 2 − τC > 0 , then the above inequality is

arranged as 

‖ ε (s +1) ‖ 

2 
∞ 

+ ‖ ε (s +1) 
x ‖ 

2 
∞ 

≤ τC 
(‖ ε (s ) ‖ 

2 + ‖ ε (s ) 
x ‖ 

2 
)

(50)

≤ τC 
(‖ ε (s ) ‖ 

2 
∞ 

+ ‖ ε (s ) 
x ‖ 

2 
∞ 

)
, 

where Lemma 3 is used. Again, let ε is sufficiently small to obtain 

‖ ε (s +1) ‖ 

2 
∞ 

+ ‖ ε (s +1) 
x ‖ 

2 
∞ 

≤ 1 

2 

(‖ ε (s ) ‖ 

2 
∞ 

+ ‖ ε (s ) 
x ‖ 

2 
∞ 

)
. 

By the induction principle, we see that ‖ ε (s +1) ‖ ∞ 

≤ 1 
2 and ‖ ε (s +1) 

x ‖ ∞ 

≤ 1 
2 . Then 

‖ ε (s +1) ‖ ∞ 

≤ 1 

2 

‖ ε (s ) ‖ ∞ 

≤ 1 

2 

s +1 
‖ ε (0) ‖ ∞ 

, 

which completes the proof. �

7. Numerical experiments 

As the first step, the efficiency of the proposed scheme is analyzed by using test cases p = 2 and p = 4 compared with

available data. Next, the consistency of numerical results compared with previous published studies is assessed. The algo-

rithm is finally applied through long-time behavior of a solitary wave to confirm the performance of the present method. To

investigate the form and shape of an incident wave, many metrics could be used. It is significant to specify measures which

do not alter or barely alter. The evolution of solitary wave amplitude is often described using the Rosenau-RLW equation. In

this equation, there are invariants and it specifically shows that 

Q 

n = 

∫ x r 

x l 

u (x, t) dx ≈ h 

M−1 ∑ 

i =1 

u 

n 
i , (51)

E n = 

∫ x r 

x l 

u 

2 (x, t) + u 

2 
x (x, t) + u 

2 
xx (x, t) dx 

≈ h 

M−1 ∑ 

i =1 

((
u 

n 
i 

)2 + 

[(
u 

n 
i 

)
ˆ x 

]2 + 

[(
u 

n 
i 

)
x ̄x 

]2 
)
, (52)

which are related to the conservative of mass and energy, respectively. The benefit of characterizing the wave shape in terms

of Q 

n and E n is to investigate on how the wave ultimately evolves. Moreover, the accuracy of the scheme will be monitored

by the comparison of numerical data with analytical data by using ‖ · ‖ and ‖ · ‖ ∞ 

norms defined by 

‖ 

e n ‖ 

= 

∥∥u 

exact − u 

n 
∥∥ = 

( 

h 

M−1 ∑ 

i =1 

∣∣u 

exact 
i − u 

n 
i 

∣∣2 

) 1 / 2 

, 

‖ 

e n ‖ ∞ 

= 

∥∥u 

exact − u 

n 
∥∥

∞ 

= max 
1 ≤i ≤M−1 

∣∣u 

exact 
i − u 

n 
i 

∣∣. 
Example 1. Consider the following usual Rosenau-RLW equation in the case of p = 2 , α = 0 . 5 

u t − u xxt + u xxxxt + u x + uu x = 0 (53)

with an initial condition 

u (x, 0) = 

15 

19 

sech 

4 

(√ 

13 

26 

x 

)
, x ∈ [ x l , x r ] , (54)

and the boundary conditions 

u (x l , t) = u (x r , t) = u x (x l , t) = u x (x r , t) = u xx (x l , t) = u xx (x r , t) = 0 , t ∈ [0 , T ] . (55)

Recall that Eqs. (53) –(55) possesses the solitary wave of the form 

u (x, t ) = 

15 

19 

sech 

4 

(√ 

13 

26 

(
x − 169 

133 

t 

))
. 

The numerical simulations are performed by setting x l = −50 and x r = 150 . The accuracy of the presented scheme is

compared with those FDMs for the usual Rosenua-RLW equation in [20,24,33] . Various space and time step combinations
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Table 1 

The errors of numerical solutions and rate of convergence at t = 24 using p = 2 , τ = h, x l = −50 , and x r = 150 . 

Present Ref. [20] Ref. [24] Ref. [33] 

‖ e n ‖ Rate ‖ e n ‖ Rate ‖ e n ‖ Rate ‖ e n ‖ Rate 

h = 0 . 8 7 . 78402 × 10 −4 − 2 . 42851 × 10 −1 − 3 . 11658 × 10 −1 − 2 . 03287 × 10 −2 −
h = 0 . 4 4 . 73034 × 10 −5 4.04050 6 . 58790 × 10 −2 1.88218 8 . 62872 × 10 −2 1.85275 4 . 88759 × 10 −3 2.05632 

h = 0 . 2 2 . 94078 × 10 −6 4.00767 1 . 6 846 8 × 10 −2 1.96735 2 . 21942 × 10 −2 1.95896 1 . 21311 × 10 −3 2.01042 

h = 0 . 1 1 . 83776 × 10 −7 4.0 0 018 4 . 23946 × 10 −3 1.99052 5 . 59422 × 10 −3 1.98817 3 . 02978 × 10 −4 2.00142 

Present Ref. [20] Ref. [24] Ref. [33] 

‖ e n ‖ ∞ Rate ‖ e n ‖ ∞ Rate ‖ e n ‖ ∞ Rate ‖ e n ‖ ∞ Rate 

h = 0 . 8 3 . 09410 × 10 −4 − 9 . 06883 × 10 −2 − 1 . 16717 × 10 −1 − 7 . 56362 × 10 −3 −
h = 0 . 4 1 . 87205 × 10 −5 4.04683 2 . 48437 × 10 −2 1.88218 3 . 27045 × 10 −2 2.05632 1 . 82402 × 10 −3 1.85275 

h = 0 . 2 1 . 16521 × 10 −6 4.00596 6 . 36404 × 10 −3 1.96735 8 . 43616 × 10 −3 2.01042 4 . 52324 × 10 −4 1.95896 

h = 0 . 1 7 . 27778 × 10 −8 4.0 0 095 1 . 12985 × 10 −4 1.99052 3 . 02978 × 10 −4 2.00142 2 . 21651 × 10 −3 1.98817 
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Fig. 1. (Left) Numerical solution using p = 2 , τ = h and x l = −50 . (Right) Distribution error using p = 2 , τ = h and x l = −50 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are investigated and compared with the exact solution. We model a solitary wave with approximately the 0.75 maximum

amplitude and present the results of the simulation in Table 1 . As seen, the ‖ · ‖− and ‖ · ‖ ∞ 

− error norms stay less than

7 . 8 × 10 −4 at time t = 24 . The most accurate simulation as obtained from our method is with the choice τ = h = 0 . 1 for

which the ‖ · ‖− and ‖ · ‖ ∞ 

− errors less than 7 . 3 × 10 −8 . According to the results in Table 1 , it can be seen that the compu-

tational efficiency of the present scheme is clearly better than others, in term of grid point number. Obviously, experimental

results agree with the theoretical convergence rate O (τ 4 + τ 2 h 2 + h 4 ) or the fourth-order convergence rate verified in the

case h = τ . 

The solution profiles are shown in Fig. 1 (Left) at selected time t ∈ [0, 40]. From this figure, it is clear that the peak of

solitary waves remains the same during the time simulation. The distribution of absolute errors at selected time t ∈ [0, 40] is

illustrated in Fig. 1 (Right). It seems that the maximum error occurs near the peak amplitude of the solitary wave. Moreover,

Fig. 1 (Right) indicates that the error slightly increases as the time is increased. 

In the present analysis, there is not only the order of accuracy but also other important factors for improving the effi-

ciency of the numerical method. One of those factors is the preserving invariant property of the method that has the same

or perhaps even more impact on numerical results. The proposed method is applied to verify the conservation of the nu-

merical model by tracking the simulation of solitary wave motion run up to t = 40 , as indicated in Table 2 . For a solitary

wave, the constant value of the mobility shall be analytically to give Q = 7 . 5906342641 . The results show that the mobility

constant slightly alters from the exact value by less than 2 . 1 × 10 −9 %. Moreover, the invariant E whose exact value is gained

as E = 4 . 2654202506 is listed in Table 2 for the simulation period. Likewise, the mobility constant slightly alters from the

exact value by less than 2 . 2 × 10 −2 %. The result from Table 2 shows discrete mass obtained from Theorem 1 close to the

one obtained from the analytical method. 

According to the experiment, a waveform at long time should be observed. As in Figs. 2 and 3 , the waveforms mod-

eled by the present scheme are illustrated using h = 0 . 8 , τ = 0 . 8 , x l = −50 , and x r = 1300 . The waveforms at t = 10 0 0 agree

with those at t = 0 quite well, which also presents the performance of the scheme. We characterize these results at long

time obtained by the second-order finite difference schemes reported by Pan and Zhang [20,24,33] in order to underscore

the efficiency of the present scheme. Results obtained by Pan and Zhang [20,24] show lagging of numerical solutions when
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Table 2 

Quantities Q n and E n under different mesh steps h = τ = 0 . 4 at various time. 

Mass Energy Discrete Mass 

Q n | Q n − Q(0) | E n | E n − E(0) | Q n 
Thm 1 

| Q n 
Thm 1 

− Q(0) | 
Analytical 7.5906342641 − 4.2654202506 − 7.5906342641 −
4 7.5906342641 1 . 56358 × 10 −10 4.2645011659 9 . 19091 × 10 −4 7.5906342641 1 . 55941 × 10 −10 

8 7.5906342641 1 . 55657 × 10 −10 4.2645008939 9 . 19363 × 10 −4 7.5906342641 1 . 55491 × 10 −10 

12 7.5906342641 1 . 55242 × 10 −10 4.2645009896 9 . 19268 × 10 −4 7.5906342641 1 . 55043 × 10 −10 

16 7.5906342641 1 . 55742 × 10 −10 4.2645009662 9 . 19291 × 10 −4 7.5906342641 1 . 55555 × 10 −10 

20 7.5906342641 1 . 56096 × 10 −10 4.2645009588 9 . 19298 × 10 −4 7.5906342641 1 . 55933 × 10 −10 

24 7.5906342641 1 . 55834 × 10 −10 4.2645009548 9 . 19302 × 10 −4 7.5906342641 1 . 55795 × 10 −10 
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Fig. 2. The long-time behavior of numerical solutions at t = 10 0 0 using p = 2 , h = 0 . 8 , τ = h, x l = −50 , and x r = 1300 . 
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Fig. 3. The left-tail behavior of numerical solutions at t = 10 0 0 using p = 2 , h = 0 . 8 , τ = h, x l = −50 , and x r = 1300 . 

 

 

 

compared to exact solutions. However, results obtained by Wongsaijai and Poochinapan [33] show leading of numerical so-

lutions when compared to exact solutions. Besides, Fig. 3 that illustrates the expanded left-tail figure exhibits the oscillation

of numerical approximations on x ∈ [ −50 , 1200] . As observed, the present method offers the fit resolution of wave structure

at left-tail. 
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Table 3 

The errors of numerical solutions and rate of convergence at t = 24 using p = 2 , τ = h, x l = −50 , and x r = 150 . 

Present Ref. [17] Ref. [21] Ref. [22] 

‖ e n ‖ Rate ‖ e n ‖ Rate ‖ e n ‖ Rate ‖ e n ‖ Rate 

h = 0 . 8 4 . 33437 × 10 −4 − 4 . 33356 × 10 −2 − 2 . 29013 × 10 −1 − 5 . 47448 × 10 −2 −
h = 0 . 4 2 . 59246 × 10 −5 4.06343 1 . 11909 × 10 −2 1.95323 5 . 00535 × 10 −2 2.19389 1 . 29577 × 10 −2 2.07891 

h = 0 . 2 1 . 60587 × 10 −6 4.01289 2 . 82645 × 10 −3 1.98526 1 . 21867 × 10 −2 2.03816 3 . 20256 × 10 −3 2.01652 

h = 0 . 1 1 . 00259 × 10 −7 4.00155 7 . 09140 × 10 −4 1.99485 3 . 03019 × 10 −3 2.00783 7 . 99013 × 10 −4 2.00293 

Present Ref. [17] Ref. [21] Ref. [22] 

‖ e n ‖ ∞ Rate ‖ e n ‖ ∞ Rate ‖ e n ‖ ∞ Rate ‖ e n ‖ ∞ Rate 

h = 0 . 8 1 . 73987 × 10 −4 − 1 . 64873 × 10 −2 − 9 . 21264 × 10 −2 − 2 . 03188 × 10 −2 −
h = 0 . 4 1 . 03213 × 10 −5 4.07528 4 . 25828 × 10 −3 1.95301 2 . 01925 × 10 −2 2.18979 4 . 78559 × 10 −3 2.08604 

h = 0 . 2 6 . 37832 × 10 −7 4.01630 1 . 07810 × 10 −3 1.98178 4 . 89501 × 10 −3 2.04 4 4 4 1 . 17720 × 10 −3 2.02333 

h = 0 . 1 3 . 97932 × 10 −8 4.00258 2 . 70375 × 10 −4 1.99546 1 . 21680 × 10 −3 2.00821 2 . 93288 × 10 −4 2.00497 

Table 4 

Quantities Q n and E n under different mesh steps h = τ = 0 . 4 at various time. 

Mass Energy 

Q n | Q n − Q(0) | E n | E n − E(0) | 
Analytical 6.2658061620 − 2.8676945570 −
4 6.2658061737 1 . 16998 × 10 −8 2.8667709115 9 . 23646 × 10 −4 

8 6.2658061739 1 . 19090 × 10 −8 2.8667710721 9 . 23485 × 10 −4 

12 6.2658061725 1 . 05193 × 10 −8 2.8667710180 9 . 23539 × 10 −4 

16 6.2658061733 1 . 13092 × 10 −8 2.8667710109 9 . 23546 × 10 −4 

20 6.2658061739 1 . 19305 × 10 −8 2.8667710076 9 . 23549 × 10 −4 

24 6.2658061736 1 . 16634 × 10 −8 2.8667710046 9 . 23552 × 10 −4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2. Consider the following the general Rosenau-RLW equation in the case of p = 4 , α = 1 

u t − u xxt + u xxxxt + u x + (u 

4 ) x = 0 (56) 

with initial condition 

u (x, 0) = u 0 (x ) , x ∈ [ x l , x r ] , (57)

and the boundary conditions 

u (x l , t) = u (x r , t) = u x (x l , t) = u x (x r , t) = u xx (x l , t) = u xx (x r , t) = 0 , t ∈ [0 , T ] . (58)

It is known that, the solitary wave solution for Eq. (1) is 

u (x, t) = e ln { (p+3)(3 p+1)(p+1) / [2(p 2 +3)(p 2 +4 p+7)] } / (p−1) sech 

4 / (p−1) 

[ 

p − 1 √ 

4 p 2 + 8 p + 20 

(x − ct) 

] 

, 

where p ≥ 2 is an integer and c = (p 4 + 4 p 3 + 14 p 2 + 20 p + 25) / (p 4 + 4 p 3 + 10 p 2 + 12 p + 21) . 

Similar to the Example 1 , the motion of a solitary wave is first modeled with the range x l = −50 and x r = 150 with

t = 24 . Table 3 lists the error of the numerical solutions using various τ and h . As seen, the error slightly decreases as

τ and h are decreased. The ‖ · ‖− and ‖ · ‖ ∞ 

− error norms stay less than 4 . 4 × 10 −4 at time t = 24 . The most accurate

simulation as obtained from our method is with the choice τ = h = 0 . 1 for which the ‖ · ‖− and ‖ · ‖ ∞ 

− errors less than

3 . 98 × 10 −8 . As shown in Table 3 , the fourth-order convergence of numerical solutions is verified. 

Fig. 4 (Left) and (Right) illustrate the profile of the solitary wave at times t = 8 , 16 , 24 , 32 , 40 and the error distribution

of the profile, respectively. As in the figures, during the time simulation, the crest of soliton clearly remains the same.

As presented in Table 3 , we apply the present scheme to verify the conservation of the numerical model by tracking the

experiment of soliton motion run up to t = 40 . The mobility values shall be analytically to give Q = 6 . 2658061620 and

E = 2 . 8676945570 , as observed in Table 5. The results show that the mobility constants Q 

n and E n slightly change from the

exact values by less than 1 . 9 × 10 −7 % and 3 . 3 × 10 −2 %, respectively. 

We analyze the behavior at long time obtained by the second-order difference methods presented by Pan and Zhang

[17,21,22] in order to underscore the efficiency of the proposed scheme. As shown in Fig. 5 , results calculated by the methods

[17,22] show lagging of predicted solutions when compared to exact solutions. However, results generated by Wongsaijai

et al. [21] show leading of approximate solutions when compared to exact solutions. As observed, Fig. 6 that illustrates the

expanded left-tail figure exhibits the fluctuation of numerical approximations on x ∈ [ −50 , 1250] . Furthermore, the present

method offers the fit resolution of the wave structure at left-tail. 



B. Wongsaijai et al. / Applied Mathematics and Computation 340 (2019) 84–100 99 

−50

0

50

100

150 0

10

20

30

400

0.2

0.4

0.6

t
x

u(
x,

t)

−50

0

50

100

150 0

10

20

30

400

0.5

1

1.5

x 10
−5

t
x

Fig. 4. (Left) Numerical solution using p = 4 , τ = h and x l = −50 . (Right) Distribution error using p = 4 , τ = h and x l = −50 . 
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Fig. 5. The long-time behavior of numerical solutions at t = 10 0 0 using p = 4 , h = 0 . 8 , τ = h, x l = −50 , and x r = 1250 . 
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Fig. 6. The left-tail behavior of numerical solutions at t = 10 0 0 using p = 4 , h = 0 . 8 , τ = h, x l = −50 , and x r = 1250 . 
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8. Conclusions 

The method which combines between the nonlinear finite difference and iterative algorithms was introduced and an-

alyzed. Only a regular five-point stencil at higher-time level is required for construction of the compact finite difference

scheme, which is similar to the second-order schemes [17,20–22,24,33] . The accuracy and stability of the numerical method

to the solution of the Rosenau-RLW equation can be tested by using the exact solution. The scheme was constructed so

that it maintains a high-order of accuracy and gives highly accurate results up to four digit better than previous known

methods do when h = 0 . 1 is used. An extensive comparison of the present numerical results with the previous benchmark

solutions, Figs. 2 and 5 , establishes that the use of the compact method at long time results in waveforms to be smoothed

out by the type of high-order accuracy. In practice, the existence and uniqueness of the approximate solution are directly

obtained from the calculation of a nonlinear system, which can be implemented by using the present iterative algorithm.

The numerical simulations indicated that the present method supports the analysis of convergence rate and the invariant

properties can be verified by using analytical expressions. Such analysis provided guidelines as to how the method solves

the given problem and may also lead to error estimates on the approximate solution. 
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The paper presents a novel finite difference method for the symmetric regularized long wave

equation. The time discretization is performed by using a four-level average difference tech-

nique for solving the fluid velocity independently from the density. At this stage, the numeri-

cal solution is easily solved by using the presented method since it does not require an extra

effort to deal with a nonlinear term and the density. The existence and uniqueness of the nu-

merical solution and the conservation of mass are guaranteed. The stability and convergence

of the numerical solution with second-order accuracy on both space and time are also veri-

fied. Numerical results are carried out to confirm the accuracy of our theoretical results and

the efficiency of the scheme. To illustrate the effectiveness and the advantage of the proposed

method, the results at long-time behavior are compared with the ones obtained from previ-

ously known methods. Moreover, in the computation, the present method is applied to the

collision of solitons under the effect of variable parameters.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Seyler and Fenstermacher [1] investigated the symmetric regularized long wave (SRLW) equation for describing various non-

linear phenomena such as the propagation of ion acoustic waves, shallow water waves, and solitary waves with bidirectional

propagation:

ut − uxxt + ρx + uux = 0, (1)

ρt + ux = 0, (2)

where u and ρ are the fluid velocity and the density, respectively. The density function can be removed from Eqs. (1) and (2) and

then the equations turn to a single nonlinear equation for the velocity function:

utt − uxxtt − uxx + 1

2
(u2)xt = 0. (3)

The equation is comparable to the regularized long wave (RLW) equation but explicitly symmetry in the x and t derivatives (see

[1–7] and references therein).

There are several researches on the system of the SRLW equation using theoretical and numerical techniques [1,8–13]. The

hyperbolic secant squared solitary waves have been proposed by Seyler and Fenstermacher [1]. They demonstrated the solution
∗ Corresponding author. Tel.: +66 816712598.
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to the SRLW equation for preserving four invariants of motion. Also, the behavior of solitary waves of the SRLW equation is nu-

merically investigated and compared with that of the RLW equation. The existence of the global solution and global attractor to

the system of multi-dimensional SRLW equation with periodic conditions has been proved by Shaomei et al. [8]. Zheng et al. [9]

applied the Fourier pseudo-spectral method with a restraint operator to approximate a nonlinear term. They proved the gener-

alized stability of the semi-discrete and fully-discrete schemes and gave the optimum error estimate. Later, Shang and Gua [10]

applied the Chebyshev pseudo–spectral method for solving the multi-dimensional generalized SRLW equation with homoge-

neous initial boundary conditions. They constructed the fully-discrete Chebyshev pseudo-spectral scheme and also obtained the

optimum error estimate. Wang et al. [11] proposed three conservative finite difference schemes: a coupled two-level nonlinear

implicit scheme, a coupled three-level linear implicit scheme, and an uncoupled two-level linear implicit scheme. All schemes

are of second-order accuracy in both space and time. They also showed that the energy was preserved for all schemes and the

mass was preserved only for the first scheme. Subsequently, Nie [12] proposed an uncoupled three–level linear finite difference

scheme for solving this system. The discrete energy and the truncation error of order O(h4 + τ 2) have been derived by using a

five-point stencil. Moreover, Hu et al. [13] developed a coupled conservative three-level implicit scheme with the fourth–order

rate of convergence. Obviously, the scheme requires heavy iterative computations because it is nonlinear implicit.

From literature, the numerical methods have been used to study the SRLW equation mostly in the form of system (1) and (2).

However, the numerical method for the SRLW equation in the form of Eq. (3) which is independent of the variable ρ has been

scarcely studied. In this paper, we consider the SRLW equation (3), with the homogeneous boundary conditions:

u(xL, t) = u(xR, t) = 0, ux(xL, t) = ux(xR, t) = 0, uxx(xL, t) = uxx(xR, t) = 0, t ∈ [0, T ], (4)

where xL and xR are left and right endpoints, and the initial conditions:

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [xL, xR], (5)

where u0(x) and u1(x) are two known smooth functions. The solution and its derivatives for the solitary wave are supposed to

have the following asymptotic values, u → 0 as x → ±∞, and for n ≥ 1, ∂nu
∂xn → 0 as x → ±∞. For that reason, if xL � 0 and xR �

0, the initial-boundary value problem is in agreement with the Cauchy problem of Eq. (3). In addition, the time evolution of the

SRLW equation preserves the following physical quantities:

I1(t) = 1

2

∫ xR

xL

u(x, t)dx = 1

2

∫ xR

xL

u0(x)dx = I1(0), (6)

I2(t) = 1

2

∫ xR

xL

ρ(x, t)dx = 1

2

∫ xR

xL

ρ0(x)dx = I2(0), (7)

I3(t) = 1

2
(‖u‖2

L2
+‖ux‖2

L2
+‖ρ‖2

L2
) = 1

2
(‖u0‖2

L2
+‖(u0)x‖2

L2
+‖ρ0‖2

L2
) = I3(0), (8)

where I1(t), I2(t), and I3(t) are called mass of u(x, t), mass of ρ(x, t), and energy at time t, respectively [11].

Scientists in the past have presented many conservative finite difference schemes in order to study solutions for various non-

linear wave equations [14–22]. One of the important properties of fluid or propagating waves is obviously the conservativeness.

For example, the accomplishment of a numerical estimation in the long-time behavior is assured by schemes for the conserva-

tion of energy and mass. Therefore, a mass-conservative finite difference scheme which can preserves the solution to the SRLW

equation is needed. Moreover, a four-level linear implicit finite difference scheme for solving the SRLW equation (3) is created

because there is no single method which is most suitable for all aspects. In general, the type of linearization which is used can

significantly affect the convergence rate of the iterations to the solution.

The content of this paper is organized as follows. In Section 2, we propose a four-level linear implicit finite difference scheme

which guarantees unique solvability for the SRLW equation (3). Discrete norms and some preliminary lemmas are given, and the

discrete conservative property of mass is also proved. Section 3 describes complete proofs on the convergence and stability of the

finite difference scheme which is second–order accuracy on both space and time. Section 4, presents the results obtained with

the proposed numerical model, where our results are compared to available data. Conclusions are finally reported in Section 5.

2. Finite difference scheme

In this section, a finite difference procedure for solving Eq. (3) and conditions (4) and (5) is established. The spatial domain

[xL, xR] is discretized by using function values on a finite set of the points {xi}M
i=0

⊂ [xL, xR], where h = (xR − xL)/M is uniform

distance between two points. We discretize the time domain uniformly by tn = nτ . Points can be located according to values of i

and n, so difference equations are usually written in term of the point (i, n). We write the notation un
i

for a value of a function u

at the grid point (xL + ih, nτ). Denote

Z0
h = {u = (ui) | u−1 = u0 = u1 = uM−1 = uM = uM+1 = 0, i = −1, 0, . . . , M, M + 1}.

Throughout this paper, let C be a generic positive constant independent of h and τ , which may have different values in different

occurrences. For a nonnegative integer k, let Hk(�) denote the usual Sobolev space of real valued functions defined on �. We
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define the following Sobolev space:

Hk
0(�) =

{
u ∈ Hk(�) | ∂ iu

∂xi
= 0 on ∂�, i = 0, 1, . . . , k − 1

}
.

We define the following notations applied to the grid function un
i

below:

(un
i )x

= un
i+1

− un
i

h
, (un

i )x̄
= un

i
− un

i−1

h
, (un

i )x̂
= un

i+1
− un

i−1

2h
,

(un
i )t

= un+1
i

− un
i

τ
, (un

i )t̄
= un

i
− un−1

i

τ
, (un

i )t̂
= un+1

i
− un−1

i

2τ
,

ūn
i = un+1

i
+ un−1

i

2
, 〈un, vn〉 = h

M−1∑
i=1

un
i vn

i ,

‖un‖2 = 〈un, un〉, ‖un‖∞ = max
1≤i≤M−1

|un
i |.

We use the second-order accurate central difference approximations for linear operators in Eqs. (3)–(5). The second-order

accurate backward approximation in time derivative appearing in the nonlinear term of Eq. (3) makes the whole scheme very

easy to implement. We provide the formula here. To approximate the nonlinear term 1
2 (u2)xt at the point (xi, tn), we use the

formula

3

4
[(un

i )
2
]

x̂t̄
− 1

4
[(un−1

i
)

2
]

x̂t̄
.

Using the Taylor expansion, it can be seen from the above analysis that the approximation has the second–order accuracy in both

space and time if the function to be approximated is four times continuously differentiable. Combining these above approxima-

tions yields the difference equations

(un
i )tt̄

− (un
i )xx̄tt̄

− (ūn
i )xx̄

+ 3

4
[(un

i )
2
]

x̂t̄
− 1

4
[(un−1

i
)

2
]

x̂t̄
= 0, 1 ≤ i ≤ M − 1, (9)

u0
i = u0(xi), u1

i = u1(xi), 0 ≤ i ≤ M, (10)

un
0 = un

M = 0, (un
0)x̂ = (un

M)x̂ = 0, (un
0)xx = (un

M)xx = 0, 1 ≤ n ≤ N. (11)

The above scheme can be rewritten as

−
(

1

2h2
+ 1

τ 2h2

)
un+1

i−1
+

(
1

τ 2
+ 2

τ 2h2
+ 1

h2

)
un+1

i
−

(
1

2h2
+ 1

τ 2h2

)
un+1

i+1

= +
(

1

2h2
+ 1

τ 2h2

)
un−1

i−1
−

(
1

τ 2
+ 2

τ 2h2
+ 1

h2

)
un−1

i
+

(
1

2h2
+ 1

τ 2h2

)
un−1

i+1
− 2

τ 2h2
un

i−1

+
(

2

τ 2
+ 4

τ 2h2

)
un

i − 2

τ 2h2
un

i+1 + 1

8τh
[(un−1

i+1
)

2 − (un−2
i+1

)
2 − (un−1

i−1
)

2 + (un−2
i−1

)
2
]

− 3

8τh
[(un

i+1)
2 − (un−1

i+1
)

2 − (un
i−1)

2 + (un−1
i−1

)
2
].

Then we get the linear algebraic system for n = 2, 3, . . . , N − 1

k1un+1
i−1

+ k2un+1
i

+ k1un+1
i+1

= f n
i , 1 ≤ i ≤ M − 1, (12)

where

k1 = − 1

2h2
− 1

τ 2h2
, k2 = 1

τ 2
+ 2

τ 2h2
+ 1

h2
,

and

f n
i = − 2

τ 2h2
un

i−1 +
(

2

τ 2
+ 4

τ 2h2

)
un

i − 2

τ 2h2
un

i+1 +
(

1

2h2
+ 1

τ 2h2

)
un−1

i−1

−
(

1

τ 2
+ 2

τ 2h2
+ 1

h2

)
un−1

i
+

(
1

2h2
+ 1

τ 2h2

)
un−1

i+1

+ 1

8τh
[(un−1

i+1
)

2 − (un−2
i+1

)
2 − (un−1

i−1
)

2 + (un−2
i−1

)
2
]

− 3
[(un

i+1)
2 − (un−1

i+1
)

2 − (un
i−1)

2 + (un−1
i−1

)
2
].
8τh
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Since un+1
0

= un+1
M

= 0, Eq. (12) can be written as KU = F where

K =

⎡
⎢⎢⎢⎢⎣

k2 k1 0 . . . 0
k1 k2 k1 . . . 0
...

...
...

...
...

0 . . . k1 k2 k1

0 . . . 0 k1 k2

⎤
⎥⎥⎥⎥⎦, U =

⎡
⎢⎢⎢⎢⎢⎢⎣

un+1
1

un+1
2

...

un+1
M−2

un+1
M−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, and F =

⎡
⎢⎢⎢⎢⎢⎢⎣

f n
1

f n
2

...

f n
M−2

f n
M−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The coefficient matrix in the above equation depends on constants h and τ and is strictly diagonally dominant matrix. This guar-

antees the existence and uniqueness of our numerical solution. Moreover, the scheme (9)–(11) is linear thus the solution can be

easily obtained.

Next, the conservative approximation is developed as follows:

Theorem 1. Suppose u0 ∈ H1
0 [xL, xR], then the difference scheme (9)–(11) is conservative in a sense:

Qn = h

M−1∑
i=1

(un+1
i

− un
i ) = Qn−1 = · · · = Q0. (13)

Proof. Multiplying Eq. (9) with h, summing up on i from 1 to M − 1, we obtain

h

M−1∑
i=1

(un
i )tt̄

− h

M−1∑
i=1

(un
i )xx̄tt̄

− h

M−1∑
i=1

(ūn
i )xx̄

+ h

M−1∑
i=1

(
3

4
[(un

i )
2
]

x̂t̄
− 1

4
[(un−1

i
)

2
]

x̂t̄

)
= 0.

Considering the boundary conditions (11), we have

h

M−1∑
i=1

(un+1
i

− 2un
i + un−1

i
) = 0.

Then, Eq. (13) holds. �

The following lemmas play an important role to proof the boundedness, convergence, and stability of our numerical solution.

Lemma 2. Let u, v ∈ Z0
h

be any two mesh functions. Then we have

〈ux̂, v〉 = −〈u, vx̂〉, 〈uxx̄, v〉 = −〈ux, vx〉,
and

〈uxx̄, u〉 = −〈ux, ux〉 = −‖ux‖2
.

Lemma 3 (Discrete Poincaré inequality [23]). Let u ∈ Z0
h

be any mesh functions. Then we have(
2 sin (πh/2)

h

)
‖u‖ ≤ ‖ux̄‖. (14)

Lemma 4 (Discrete Sobolev’s inequality [24]). There exist two constants C1 and C2 such that

‖un‖∞ ≤ C1‖un‖ + C2‖un
x‖. (15)

For establishment of the next lemma, we use the boundary conditions (11), discrete Poincaré inequality, and discrete Sobolev’s

inequality in order to be a tool for proofing the next theorem.

Lemma 5. Let u ∈ Z0
h

be any mesh function satisfying ‖un
x‖ ≤ C, then ‖un‖∞ ≤ C.

Proof. Since, sup
0<h<1

( h
2 sin (πh/2)

) = 1
2 , by using Lemma 3, we have

‖un‖ ≤
[

sup
0<h<1

(
h

2 sin (πh/2)

)]
‖un

x̄‖ = 1

2
‖un

x̄‖.

From the boundary conditions (11), we have

‖un
x̄‖ = ‖un

x‖. (16)

Since ‖un
x‖ ≤ C, thus Eq. (16) leads to

‖un‖ ≤ C.
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Using Lemma 4, we obtain

‖un‖∞ ≤ C1‖un‖ + C2‖un
x‖ ≤ C.

This completes the proof of Lemma 5. �

Lemma 6 (Discrete Gronwall’s inequality [24]). Suppose ω(k) and ρ(k) are nonnegative functions and ρ(k) is a nondecreasing

function. If C > 0 and

ω(k) ≤ ρ(k) + Cτ
k−1∑
l=0

ω(l), ∀ k,

then

ω(k) ≤ ρ(k)eCτk, ∀ k.

The following theorem guarantees that the numerical solution obtained from the scheme (9)–(11) is bounded.

Theorem 7. Suppose u0 ∈ H1
0

[xL, xR], then there is an approximate solution un of the scheme (9)–(11) that satisfying

‖un‖ ≤ C,‖un
x‖ ≤ C,‖un‖∞ ≤ C, and‖un

t̄
‖∞ ≤ C. (17)

Proof. Using the mathematical induction, we assume

‖uk
t̄
‖ ≤ C,‖uk

xt̄
‖ ≤ C,‖uk

x‖ ≤ C,‖uk‖ ≤ C, (18)

and

‖uk
t̄
‖∞ ≤ C, ‖uk‖∞ ≤ C, (19)

for k = 1, 2, . . . , n. Taking an inner product between Eq. (9) with un
t̂
, we obtain

〈un
tt̄
, un

t̂
〉 − 〈un

xx̄tt̄
, un

t̂
〉 − 〈ūn

xx̄, un
t̂
〉 = −3

4
〈(un)2

x̂t̄
, un

t̂
〉 + 1

4
〈(un−1)2

x̂t̄
, un

t̂
〉. (20)

Using Lemma 2, Eq. (20) becomes

1

2τ
(‖un+1

t̄
‖2 − ‖un

t̄
‖2) + 1

2τ
(‖un+1

xt̄
‖2 − ‖un

xt̄
‖2) + 1

4τ
(‖un+1

x ‖2 − ‖un−1
x ‖2

) = −3

4
〈(un)2

x̂t̄
, un

t̂
〉 + 1

4
〈(un−1)2

x̂t̄
, un

t̂
〉. (21)

From

(un
i )x̂t̄

= (un
i+1

− un
i−1

)t̄

2h
= 1

2τh
(un

i+1 − un−1
i+1

− un
i−1 + un−1

i−1
),

we have

[(un
i )

2
]

x̂t̄
= 1

2τh
[(un

i+1)
2 − (un−1

i+1
)

2 − (un
i−1)

2 + (un−1
i−1

)
2
]

= 1

2τh
[(un

i+1 − un−1
i+1

− un
i−1 + un−1

i−1
)(un

i+1 + un−1
i−1

+ un−1
i+1

+ un
i−1)]

+ 1

2τh
[2un−1

i+1
un

i+1 − 2un
i+1un−1

i−1
] − 1

2τh
[2un−1

i+1
un

i+1 − 2un−1
i+1

un
i−1]

=(un
i+1 + un−1

i−1
+ un−1

i+1
+ un

i−1)(un
i )x̂t̄

+ 2

τ
[un

i+1(un−1
i

)x̂] − 2

τ
[un−1

i+1
(un

i )x̂]

=(un
i+1 + un−1

i−1
+ un−1

i+1
+ un

i−1)(un
i )x̂t̄

− 2un
i+1

[
(un

i
)

x̂
− (un−1

i
)

x̂

τ

]
+ 2(un

i )x̂

[
un

i+1
− un−1

i+1

τ

]
=(un

i+1 + un−1
i−1

+ un−1
i+1

+ un
i−1)(un

i )x̂t̄
− 2un

i+1(un
i )x̂t̄

+ 2(un
i )x̂

(un
i+1)t̄

. (22)

With the assumption (19), Eq. (22) reaches

|[(un
i )

2
]

x̂t̄
| = |(un

i+1 + un−1
i−1

+ un−1
i+1

+ un
i−1)(un

i )x̂t̄
− 2un

i+1(un
i )x̂t̄

+ 2(un
i )x̂

(un
i+1)t̄

| ≤ C|(un
i )x̂t̄

| + C|(un
i )x̂

|. (23)

Using Eq. (23) and the Cauchy–Schwarz inequality, we get

〈(un)2
x̂t̄

, un
t̂
〉 = h

M−1∑
i=1

(un
i )

2
x̂t̄
(un

i )t̂
≤ h

M−1∑
i=1

|(un
i )

2
x̂t̄
||(un

i )t̂
| ≤ Ch

M−1∑
i=1

|(un
i )x̂t̄

||(un
i )t̂

| + Ch

M−1∑
i=1

|(un
i )x̂

||(un
i )t̂

|

≤ C‖un
x̂t̄
‖‖un

t̂
‖ + C‖un

x̂‖‖un
t̂
‖ ≤ C(‖un

x̂t̄
‖2 + ‖un

x̂‖2 + ‖un
t̂
‖2). (24)

In the same manner, we can obtain

〈(un−1)2
x̂t̄

, un
ˆ 〉 ≤ C(‖un−1

¯
‖2 + ‖un−1

ˆ
‖2 + ‖un

ˆ ‖2). (25)

t x̂t x t
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Furthermore,

‖un
t̂
‖2 = 1

4
‖un+1

t̄
+ un

t̄
‖2 ≤ 1

2
(‖un+1

t̄
‖2 + ‖un

t̄
‖2), (26)

and using boundary conditions (11), we have

‖un
x̂‖2 = 1

4
‖un

x + un
x̄‖2 ≤ 1

2
(‖un

x‖2 + ‖un
x̄‖2) = ‖un

x‖2
. (27)

Substituting Eqs. (24)–(27) into Eq. (21), we get

(‖un+1
t̄

‖2 − ‖un
t̄
‖2) + (‖un+1

xt̄
‖2 − ‖un

xt̄
‖2) + 1

2
(‖un+1

x ‖2 − ‖un−1
x ‖2

)

≤ Cτ(‖un
xt̄
‖2 + ‖un−1

xt̄
‖2 + ‖un+1

t̄
‖2 + ‖un

t̄
‖2 + ‖un

x‖2 + ‖un−1
x ‖2

). (28)

Let

Bn ≡ ‖un
t̄
‖2 + ‖un

xt̄
‖2 + 1

2
‖un

x‖2 + 1

2
‖un−1

x ‖2
.

Using the assumption (18), Eq. (28) can be rewritten as follows:

Bn+1 − Bn ≤ Cτ(‖un
xt̄
‖2 + ‖un+1

t̄
‖2 + ‖un

t̄
‖2 + ‖un

x‖2 + ‖un−1
x ‖2

) + Cτ‖un−1
xt̄

‖2 ≤ Cτ(Bn+1 + Bn) + Cτ.

That is,

(1 − Cτ)(Bn+1 − Bn) ≤ CτBn + Cτ.

If τ is sufficiently small satisfying 1 − Cτ > 0, then

Bn+1 − Bn ≤ CτBn + Cτ. (29)

Summing up Eq. (29) from 1 to n, we have

Bn+1 − B1 ≤ Cτ
n∑

k=1

Bk + Cnτ ≤ Cτ
n∑

k=1

Bk + CT .

From the assumption (18), we get B1 ≤ C. Hence,

Bn+1 ≤ C + Cτ
n∑

k=1

Bk.

By Lemma 6, it can immediately obtain Bn+1 ≤ CeCnτ ≤ CeCT ≤ C. This leads to

‖un+1
t̄

‖ ≤ C, ‖un+1
xt̄

‖ ≤ C, ‖un+1
x ‖ ≤ C.

Finally, by using Lemma 4 and Lemma 5, we get

‖un+1
t̄

‖∞ ≤ C, ‖un+1‖∞ ≤ C.

This completes the proof of Theorem 7. �

3. Convergence and stability

In this section, the convergence and stability of the scheme (9)–(11) are given. Let vn
i

= v(xi, tn) be the solution of Eq. (3) with

conditions (4) and (5). Then the truncation error of the difference scheme (9)–(11) can be obtained from

rn
i = (vn

i )tt̄
− (vn

i )xx̄tt̄
− (v̄n

i )xx̄
+ 3

4
[(vn

i )
2
]

x̂t̄
− 1

4
[(vn−1

i
)

2
]

x̂t̄
. (30)

By the Taylor expansion, we easily obtain rn
i

= O(h2 + τ 2) as τ , h → 0. The proof is based on the following lemma.

Lemma 8 (Wang et al. [11]). Suppose u0 ∈ H1
0

[xL, xR], then the solution of Eq. (3) with conditions (4) and (5) satisfies

‖u‖L2
≤ C, ‖ux‖L2

≤ C, and ‖u‖L∞ ≤ C, (31)

for a constant C.

Theorem 9. Suppose u0 ∈ H1
0

[xL, xR], then the solution un of scheme (9)–(11) converges to the solution of Eq. (3) with conditions (4)

and (5) in the sense of ‖ · ‖∞ with the rate of convergence of order O(h2 + τ 2).

Proof. Let en
i

= vn
i

− un
i
, we have

rn
i = (en

i )tt̄
− (en

i )xx̄tt̄
− (ēn

i )xx̄
+ 3

[(vn
i )

2 − (un
i )

2
]

x̂t̄
− 1

[(vn−1
i

)
2 − (un−1

i
)

2
]

x̂t̄
. (32)
4 4
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Taking an inner product between Eq. (32) with en
t̂

and using Lemma 2, we obtain

(‖en+1
t̄

‖2 − ‖en
t̄
‖2) + (‖en+1

xt̄
‖2 − ‖en

xt̄
‖2) + 1

2
(‖en+1

x ‖2 − ‖en−1
x ‖2

)

= 2τ 〈rn, en
t̂
〉 − 3

2
τ 〈[(vn)

2 − (un)
2
]x̂t̄ , en

t̂
〉 + 1

2
τ 〈[(vn−1)

2 − (un−1)
2
]x̂t̄ , en

t̂
〉. (33)

According to Lemma 2, Theorem 7, Lemma 8, and the Cauchy–Schwarz inequality, we have

〈[(vn)
2 − (un)

2
]x̂t̄ , en

t̂
〉 = −〈[(vn)

2 − (un)
2
]t̄ , en

x̂t̂
〉

= −h

M−1∑
i=1

[(vn
i )

2 − (un
i )

2
]
t̄
(en

i )x̂t̂

= −h

M−1∑
i=1

[vn
i (en

i + un
i ) − un

i (v
n
i − en

i )]
t̄
(en

i )x̂t̂

= −h

M−1∑
i=1

(vn
i en

i )t̄
(en

i )x̂t̂
− h

M−1∑
i=1

(un
i en

i )t̄
(en

i )x̂t̂

= −h

M−1∑
i=1

[vn
i (en

i )t̄
+ en−1

i
(vn

i )t̄
](en

i )x̂t̂
− h

M−1∑
i=1

[un
i (en

i )t̄
+ en−1

i
(un

i )t̄
](en

i )x̂t̂

≤ h

M−1∑
i=1

(|vn
i ||(en

i )t̄
| + |en−1

i
||(vn

i )t̄
|)|(en

i )x̂t̂
| + h

M−1∑
i=1

(|un
i ||(en

i )t̄
| + |en−1

i
||(un

i )t̄
|)|(en

i )x̂t̂
|

≤ h

M−1∑
i=1

(|vn
i ||(en

i )t̄
| + |en−1

i
||(en

i )t̄
| + |en−1

i
||(un

i )t̄
|)|(en

i )x̂t̂
|

+ h

M−1∑
i=1

(|un
i ||(en

i )t̄
| + |en−1

i
||(un

i )t̄
|)|(en

i )x̂t̂
|

≤ Ch

M−1∑
i=1

|(en
i )t̄

||(en
i )x̂t̂

| + Ch

M−1∑
i=1

|en−1
i

||(en
i )x̂t̂

|

≤ C‖en
t̄
‖‖en

x̂t̂
‖ + C‖en−1‖‖en

x̂t̂
‖

≤ C(‖en
t̄
‖2 + ‖en−1‖2 + ‖en

x̂t̂
‖2). (34)

Similarly, it can be easily shown that

〈[(vn−1)
2 − (un−1)

2
]x̂t̄ , en

t̂
〉 ≤ C(‖en−1

t̄
‖2 + ‖en−2‖2 + ‖en

x̂t̂
‖2). (35)

Furthermore,

〈rn, en
t̂
〉 =

〈
rn,

1

2
(en+1

t̄
+ en

t̄
)
〉

≤ 1

2
‖rn‖2 + 1

4
(‖en+1

t̄
‖2 + ‖en

t̄
‖2). (36)

Similarly to Eq. (27), we have ‖en
x̂t̂
‖2 ≤ ‖en

xt̂
‖2

. Then

‖en
x̂t̂
‖2 ≤ 1

4
‖en+1

xt̄
+ en

xt̄
‖2 ≤ 1

2
(‖en+1

xt̄
‖2 + ‖en

xt̄
‖2

). (37)

Substituting Eqs. (34)–(37) into Eq. (33), we obtain

(‖en+1
t̄

‖2 − ‖en
t̄
‖2) + (‖en+1

xt̄
‖2 − ‖en

xt̄
‖2) + 1

2
(‖en+1

x ‖2 − ‖en−1
x ‖2

)

≤ Cτ(‖en+1
t̄

‖2+‖en
t̄
‖2+‖en−1

t̄
‖2+‖en−1‖2+‖en−2‖2+‖en+1

xt̄
‖2+‖en

xt̄
‖2) + τ‖rn‖2

. (38)

Let

Dn ≡ ‖en
t̄
‖2 + ‖en

xt̄
‖2 + 1

2
‖en

x‖2 + 1

2
‖en−1

x ‖2
.

Using Lemma 3, Eq. (38) can be rewritten as

Dn+1 − Dn ≤ Cτ(Dn+1 + Dn + Dn−1) + τ‖rn‖2
,

and obtain

(1 − Cτ)(Dn+1 − Dn) ≤ Cτ(Dn + Dn−1) + τ‖rn‖2
.
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If τ is sufficiently small satisfying 1 − Cτ > 0, then

Dn+1 − Dn ≤ Cτ(Dn + Dn−1) + Cτ‖rn‖2
. (39)

Summing up Eq. (39) from 2 to n, we have

Dn+1 − D2 ≤ Cτ
n∑

k=1

Dk + Cτ
n∑

k=2

‖rk‖2
. (40)

Notice that

τ
n∑

k=2

‖rk‖2 ≤ (n − 1)τ max
2≤k≤n

‖rk‖2 ≤ T · O(h2 + τ 2)
2
.

Since we can approximate u1 and u2 using any available second-order accuracy method, thus, it implies u1 and u2 are of

O(h2 + τ 2). From Eq. (40), we obtain

Dn+1 ≤ O(h2 + τ 2)
2 + Cτ

n∑
k=1

Dk.

By Lemma 6, we have

Dn+1 ≤ O(h2 + τ 2)
2
eCnτ ≤ O(h2 + τ 2)

2
eCT = O(h2 + τ 2)

2
.

That is,

‖en+1
t̄

‖ ≤ O(h2 + τ 2), ‖en+1
xt̄

‖ ≤ O(h2 + τ 2), ‖en+1
x ‖ ≤ O(h2 + τ 2).

Finally, by using Lemmas 4 and 5, we get

‖en+1
t̄

‖∞ ≤ O(h2 + τ 2), ‖en+1‖∞ ≤ O(h2 + τ 2).

This completes the proof of Theorem 9. �

Theorem 10. Under the conditions of Theorem 9, the solution of scheme (9)–(11) is stable with respect to ‖ · ‖∞.

4. Numerical experiments

The exact solitary wave [1] of the SRLW equation (3) has the following form

u(x, t) = 3(υ2 − 1)

υ
sech

2

(√
υ2 − 1

4υ2
(x − υt)

)
. (41)

Note that υ is a variable parameter that allows the existence of bidirectional propagation for υ < −1 and υ > 1 simply refer to

left and right traveling solitary waves of the same type, respectively. Recall that the RLW equation possesses solitary waves of

the form

u(x, t) = 3(1 − υ)sech
2

(√
υ − 1

4υ
(x − υt)

)
, (42)

which propagate in both directions. The two branches of solitary waves for the velocity υ in the ranges υ < 0 and υ > 1 simply

refer to left and right traveling solitary waves of different types, respectively. In test problems for the SRLW equation, we use

initial conditions with υ = √
2 associated with this equation, which takes the form [11]

u0(x) = 3
√

2

2
sech

2

(√
2

4
x

)
, u1(x) = 3

√
2

2
sech

2

(√
2

4
x

)
tanh

(√
2

4
x

)
.

Since the first–order system of the SRLW equation (1) and (2) which was mentioned in introduction is equivalent to Eq. (3),

thus, we can directly calculate the density ρ(x, t) by using the second-order finite difference approximation

ρn+1
i

= −τ

h
(un

i+1 − un
i−1) + ρn−1

i
.

It is known that, the exact density [11,12] is

ρ(x, t) = 3(υ2 − 1)

υ2
sech

2

(√
υ2 − 1

4υ2
(x − υt)

)
.

Here we take the initial density associated with this equation, which takes the form

ρ0(x) = 3

2
sech

2

(√
2

4
x

)
.

Our study of numerical simulations can be summarized as follows.
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Table 1

The error of numerical solutions un
i

using ‖ · ‖−norm at t = 20.

Scheme h = τ = 0.1 h = τ = 0.05 h = τ = 0.025

Scheme 1 [11] 0.0347 0.0087 0.0022

Scheme 2 [11] 0.0735 0.0186 0.0046

Scheme 3 [11] 0.0283 0.0071 0.0018

Present 0.0162 0.0037 0.00088

Table 2

The error of numerical solutions ρn
i

using ‖ · ‖−norm at t = 20.

Scheme h = τ = 0.1 h = τ = 0.05 h = τ = 0.025

Scheme 1 [11] 0.0254 0.0064 0.0016

Scheme 2 [11] 0.0536 0.0136 0.0034

Scheme 3 [11] 0.0201 0.0051 0.0013

Present 0.0151 0.0036 0.00087

Table 3

The error of numerical solutions un
i

and rate of convergence using ‖ · ‖−norm.

h = τ = 0.1 h = τ = 0.05 h = τ = 0.025

‖en‖ Rate ‖en‖ Rate ‖en‖ Rate

t = 5 0.00854 – 0.00215 1.9931 0.00054 1.9945

t = 10 0.01168 – 0.00285 2.0332 0.00071 2.0136

t = 15 0.01371 – 0.00325 2.0777 0.00079 2.0352

t = 20 0.01622 – 0.00370 2.1335 0.00088 2.0644

Table 4

The error of numerical solutions un
i

and rate of convergence using ‖ · ‖∞−norm.

h = τ = 0.1 h = τ = 0.05 h = τ = 0.025

‖en‖ Rate ‖en‖ Rate ‖en‖ Rate

t = 5 0.00515 – 0.00129 1.99781 0.00032 1.99765

t = 10 0.00589 – 0.00146 2.01409 0.00036 2.00466

t = 15 0.00671 – 0.00163 2.04016 0.00040 2.01781

t = 20 0.00782 – 0.00185 2.08044 0.00045 2.03930

Table 5

The error of numerical solutions ρn
i

and rate of convergence using ‖ · ‖−norm.

h = τ = 0.1 h = τ = 0.05 h = τ = 0.025

‖en‖ Rate ‖en‖ Rate ‖en‖ Rate

t = 5 0.01192 – 0.00292 2.0301 0.00072 2.0136

t = 10 0.01222 – 0.00303 2.0115 0.00076 2.0047

t = 15 0.01250 – 0.00301 2.0555 0.00074 2.0250

t = 20 0.01509 – 0.00357 2.0804 0.00087 2.0373
4.1. Error and convergence rate

A grid refinement study has been performed to assess the asymptotic error of the present scheme by using xL = −20 and xR =
180. The error has been defined to be discrete ‖ · ‖− and ‖ · ‖∞− norms of the difference between the exact and the numerical

solutions. We compute the error at the final time t = 20 and compare it to the error from methods in [11] to illustrate the accuracy

of the scheme. The results obtained by the new scheme show the same significant digits as the ones obtained by the scheme 2 in

[11] although the new scheme approximately uses two time larger step size, as presented in Tables 1 and 2. In term of the grid

point number, the computational performance of the new scheme is obviously better than that of the schemes in [11]. Also, our

scheme can reduce errors from the schemes in [11]. Especially, the present scheme obtains almost two time less error than the

scheme 1 does and four time less error than the scheme 2 does. It is clear that results by our scheme show improvement over

the previous one reported by [11]. As shown in Tables 3–6, the second-order convergence of numerical solutions is verified.

A more quantitative comparison is presented in Fig. 1, where numerical solutions of the present scheme and the scheme 3

in [11] are compared. For the numerical simulations, we set xL = −20, xR = 180, and t ∈ [0, 60]. In the plot of Fig. 1, we present

the error norm of un
i

versus time. The plots show that the convergence histories computed by using the present scheme and the
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Table 6

The error of numerical solutions ρn
i

and rate of convergence using ‖ · ‖∞−norm.

h = τ = 0.1 h = τ = 0.05 h = τ = 0.025

‖en‖ Rate ‖en‖ Rate ‖en‖ Rate

t = 5 0.00733 – 0.00176 2.05379 0.00043 2.02804

t = 10 0.00507 – 0.00127 1.99427 0.00032 1.99945

t = 15 0.00523 – 0.00125 2.06439 0.00031 2.03157

t = 20 0.00605 – 0.00141 2.10406 0.00034 2.05301

0 10 20 30 40 50 60
10

−2

10
−1

10
0

t

||e
||

Scheme 3 [11]
Present

0 10 20 30 40 50 60
10

−2

10
−1

10
0

t

||e
||

Scheme 3 [11]
Present

Fig. 1. The error of numerical solutions of u(x, t) using ‖ · ‖–norm at t = 60 with h = 0.25, τ = 0.1 (left) and h = 0.5, τ = 0.1 (right).
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Fig. 2. The error of numerical solutions of u(x, t) using ‖ · ‖–norm (left) and ‖ · ‖∞–norm (right) under different mesh steps h and τ .
scheme 3 in [11] are distinguishable. It is observed that both errors increase with time but the error of the present scheme is less

than that of the scheme 3 in [11]. The present scheme behaviors have been obtained using step sizes considerably larger than

those employed for the schemes in [11]. Figs. 2 and 3 show error norms obtained by the present scheme as a function of time

step and grid spacing. From four cases of simulation, the errors increase almost linearly with time except the case h = 0.1 and

τ = 0.05. The error slightly increases as the time step is decreased to τ = 0.025, presumably because of the increase in round-off

error. This reason is the same as the case that the error slightly increases as the grid spacing is decreased to h = 0.05.
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Fig. 3. The error of numerical solutions of ρ(x, t) using ‖ · ‖–norm (left) and ‖ · ‖∞–norm (right) under different mesh steps h and τ .

Table 7

Quantities Qn under different mesh steps h and τ at various time.

h = τ = 0.1 h = 0.1, τ = 0.05 h = 0.1, τ = 0.025 h = 0.05, τ = 0.1

t = 0 0.0000008532 0.0000004373 0.0000002214 0.0000008384

t = 10 0.0000014616 0.0000004730 0.0000002048 0.0000009769

t = 20 0.0000053996 −0.0000032166 −0.0000025267 0.0000121037

t = 30 −0.0000475892 0.0000045640 0.0000060689 −0.0000651447

t = 40 0.0000135275 −0.0000026284 −0.0000018423 0.0000252299

t = 50 0.0000109632 −0.0000018509 −0.0000010681 0.0000192928

t = 60 −0.0000379896 −0.0000026339 0.0000014097 −0.0000409694

Table 8

Quantities In
1 under different mesh steps h and τ at various time.

h = τ = 0.1 h = 0.1, τ = 0.05 h = 0.1, τ = 0.025 h = 0.05, τ = 0.1

Analytical value 5.9999956719 5.9999956719 5.9999956719 5.9999956719

t = 0 5.9999955171 5.9999955171 5.9999955171 5.9999955949

t = 10 5.9999818987 5.9999883051 5.9999898719 5.9999860981

t = 20 5.9998590814 5.9999287900 5.9999500510 5.9999003444

t = 30 5.9989594743 6.0004457165 6.0008455686 5.9981872735

t = 40 5.9991755664 6.0003288589 6.0007063648 5.9985558260

t = 50 5.9996485455 6.0003318057 6.0006334590 5.9990934424

t = 60 6.0001680653 6.0003794646 6.0005905238 5.9996447141
4.2. Conservative approximations

Conservative approximation, that is a supplementary constraint, is essential for a suitable difference equation to make a

discrete analogue effective to the fundamental conservation properties of the governing equation. Then, we can calculate three

conservative approximations by using discrete forms as follows:

In
1 = h

2

M−1∑
i=1

un
i ,

In
2 = h

2

M−1∑
i=1

ρn
i ,

In
3 = h

2

M−1∑
i=1

(un
i )

2+ 1

8h

M−1∑
i=1

(un
i+1 − un

i−1)
2+ h

2

M−1∑
i=1

(ρn
i )

2
.

In Table 7, it results from the present method, and the values of Qn at any time t ∈ [0, 60] coincide with the theory. In this

case, the following sets of parameters are chosen for the test problems: xL = −20 and xR = 180. In Tables 8 and 9, the quantities

In
1

and In
2

are well preserved regardless of the time step and grid spacing. The quantity In
3

is presented in Table 10. One can easily
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Table 9

Quantities In
2 under different mesh steps h and τ at various time.

h = τ = 0.1 h = 0.1, τ = 0.05 h = 0.1, τ = 0.025 h = 0.05, τ = 0.1

Analytical value 4.2426376267 4.2426376267 4.2426376267 4.2426376267

t = 0 4.2426375172 4.2426375172 4.2426375172 4.2426375723

t = 10 4.2426385251 4.2426381201 4.2426379403 4.2426383024

t = 20 4.2426388155 4.2426365015 4.2426357062 4.2426391530

t = 30 4.2426247708 4.2426409843 4.2426452841 4.2426287753

t = 40 4.2426455507 4.2426365856 4.2426351950 4.2426439868

t = 50 4.2426444371 4.2426368507 4.2426362331 4.2426429745

t = 60 4.2426196418 4.2426356990 4.2426410456 4.2426278958

Table 10

Quantities In
3 under different mesh steps h and τ at various time.

h = τ = 0.1 h = 0.1, τ = 0.05 h = 0.1, τ = 0.025 h = 0.05, τ = 0.1

Analytical value 13.5764501988 13.5764501988 13.5764501988 13.5764501988

t = 0 13.5754409883 13.5754409883 13.5754409883 13.5761977195

t = 10 13.5819388501 13.5770214700 13.5766395403 13.5818774327

t = 20 13.5892493371 13.5779107322 13.5767488004 13.5892335547

t = 30 13.5966265407 13.5788185645 13.5768622319 13.5966433943
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Fig. 4. Discrete mass In
1 (left) and discrete energy In

3 (right) under different mesh steps h and τ .
see that the quantity In
3

slightly increases as the time is increased whereas it slightly decreases as the time step is decreased. As

shown in Fig. 4, the quantity In
1

is independent from the time step, grid spacing, and time. For the quantity In
3
, it has been found

to increase as the time is increased and seems to tend to asymptotic constant values for the case h = 0.1 and τ = 0.025.

4.3. Long-time simulations

According to an experiment, at long–time behavior should be observed. The waveforms obtained by the present scheme are

plotted in Fig. 5 using h = 0.25, τ = 0.1, xL = −20, and xR = 180. The waveforms at t = 40 and 80 agree with the waveforms at

t = 0 quite well, which also shows the accuracy of the scheme. To underscore the efficiency of the present method, we compare

these results at long time obtained by using the second-order finite difference method reported by [11]. Clearly, it converges very

slowly, and even on the finer grid than the grid used in Fig. 6 (left), it is still far from the converged solution, especially at the

peak of amplitude.

The plots of Figs. 7 and 8 show a clear loss of accuracy of the scheme 3 in [11] with the step size h = 0.5, τ = 0.1, xL = −20,

xR = 180, and t = 100. Results obtained by the scheme 3 show lagging of numerical solutions when compared to exact solutions.

Moreover, subgraphs of Figs. 7 and 8 which illustrate the expanded left-tail figure show oscillation of numerical approximations

on x ∈ [40, 120]. It can be observed that the present scheme provides the well resolution of wave structure at left-tail.
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Fig. 5. Numerical solutions of u(x, t) (left) and ρ(x, t) (right) with h = 0.25 and τ = 0.1.
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Fig. 6. Comparison absolute error of numerical solutions of u(x, t) at t = 60 with h = 0.25, τ = 0.1 (left) and h = 0.5, τ = 0.1 (right).
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Fig. 7. Numerical solution of u(x, t) at t = 100 with h = 0.5, τ = 0.1.
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Fig. 8. Numerical solution of ρ(x, t) at t = 100 with h = 0.5, τ = 0.1.

Fig. 9. Overtaking collision of two solitary waves with h = 0.05 and τ = 0.001 at υ1 = 2, υ2 = 6, x0 = 12, (left) and υ1 = 6, υ2 = 2, x0 = 12 (right).

Fig. 10. Head-on collision of two solitary waves with h = 0.05 and τ = 0.001 at υ1 = −15, υ2 = 15, x0 = 20 (left) and υ1 = −30, υ2 = 30, x0 = 20 (right).
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Fig. 11. Overtaking collision of two solitary waves with velocity pair υ1 = 2, υ2 = 6, x0 = 12, h = 0.05, and τ = 0.001.
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Fig. 12. Head-on collision of two equal–amplitude solitary waves with velocity pair υ1 = −15, υ2 = 15, x0 = 20, h = 0.05, and τ = 0.001.
4.4. Collision of two solitons

We next examine the performance of the present scheme for the collision case. Results from a sequence of numerical simula-

tions in cases of copropagating and counterpropagating interactions between two solitons are presented and compared with the
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exact solution by using the soliton solution which is in the form

u(x, t) = 3(υ1
2 − 1)

υ1

sech
2

(√
υ1

2 − 1

4υ1
2

(x − x0 − υ1t)

)
+ 3(υ2

2 − 1)

υ2

sech
2

(√
υ2

2 − 1

4υ2
2

(x + x0 − υ2t)

)
. (43)

For numerical experiments, we set h = 0.05, τ = 0.001, xL = −60, xR = 120, and t ∈ [0, 20]. Figs. 9 and 10 clearly show that

the parameters v1 and v2 affect the propagation characteristics of collision of two solitons. From Fig. 9, if v1 is less than v2 and

both have the same sign, the overtaking collision will happen. From Fig. 10, however, if two solitons have the different polarity,

the head-on collision will happen. The bigger size of v1 and v2 is, the faster head-on collision occurs.

Fig. 11 shows the results with a time-dependent computation corresponding to the propagation of initial waves v1 = 2 and

v2 = 6. The initial waves are centered at x0 = 12 and the solutions are computed on step size h = 0.05, τ = 0.001, xL = −40,

and xR = 120. The soliton with the bigger amplitude overtakes the smaller one, as both with positive polarity are right-going.

Fig. 12 shows the results with a time dependent computation corresponding to the propagation of initial waves v1 = −15 and

v2 = 15. The initial waves are centered at x0 = 20 and the solutions are computed on step size h = 0.05, τ = 0.001, xL = −60,

and xR = 60. While v1 is positive and v2 is negative, a head-on collision of different polarity between one right-going soliton and

one left-going soliton appears. It can be observed that the sign of vi regulates the direction in which the solitons propagate. The

velocity and amplitude of each soliton definitely remain the same after both overtaking and head-on collisions.

5. Conclusions

The four-level linear implicit finite difference scheme for the SRLW equation is introduced and analyzed. The existence and

uniqueness of the numerical solution are directly obtained from the calculation of a linear system since a coefficient matrix is

strictly diagonally dominant. Moreover, the accuracy and stability of the numerical scheme for the solution of the SRLW equation

can be tested by using the exact solution. The present method gives an implicit linear system, which can be easily implemented,

and also shows the second-order accuracy in time and space. The numerical experiments show that the present method supports

the analysis of convergence rate and the invariant properties can be verified by using analytical expressions. It is obvious that the

solitary wave obtained by this novel method can be smoothed out, at long time. In addition, overtaking and head-on collisions

between two solitons can be dealt with the proposed scheme.
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In the present work, a mathematical model to obtain the solution of the nonlinear wave by
coupling the Rosenau–KdV equation and the Rosenau–RLW equation is proposed. The solu-
tion properties are also derived. A numerical tool is applied to the model by using a three-
level average implicit finite difference technique. The fundamental conservative properties
of the equation are preserved by the presented numerical scheme, and the existence and
uniqueness of the numerical solution are proved. Moreover, the convergence and stability
of the numerical solution are also shown. The new method give second-order accurate in
time and space. Thus, the presented results can be constructed to demonstrate the viability
of the new model.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

A nonlinear wave phenomenon is one of the important areas of scientific research, which many scientists in the past have
studied about mathematical models explaining the behavior. There are mathematical models which describe the dynamics
of wave behaviors, such as the KdV equation, the RLW equation, the Rosenau equation, and many others [1–17]. The KdV
equation has been used in very wide applications, such as magnetic fluid wave, ion sound wave, and longitudinal astigmatic
wave [1–4]. The RLW equation, which is first proposed by Peregrine [16,17], provides an explanation on different situations
of a nonlinear dispersive wave from the more classical KdV equation. Peregrine developed the RLW equation as a new option
of the KdV equation to examine solution behavior and as a model for small-amplitude long waves on the water surface. Fur-
thermore, an interesting property of the RLW equation is that the production of secondary solitary waves or sinusoidal solu-
tions is caused by the collision of two solitary waves. Since the case of wave–wave and wave–wall interactions cannot be
described by the KdV equation, Rosenau [6,7] proposed an equation for describing the dynamic of dense discrete systems.
It is known as the Rosenau equation:
ut þ uxxxxt þ ux þ ðu2Þx ¼ 0:
The existence and uniqueness of the solution for the Rosenau equation were proved by Park [8,18]. For the further con-
sideration of nonlinear waves, the viscous term uxxx needs to be included in the equation. This equation is usually called the
Rosenau–KdV equation [10–15]:
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ut þ uxxxxt þ uxxx þ ux þ ðu2Þx ¼ 0:
However, a numerical method for the initial-boundary value problem of the Rosenau–KdV equation has not been studied
widely. Hu et al. [10] has proposed the second-order conservative finite difference scheme for the approximate solution. On
the other hand, to understand another nonlinear behavior of waves, the term �uxxt is included in the equation. This equation
is usually called the Rosenua-RLW equation:
ut � uxxt þ uxxxxt þ ux þ u2� �
x ¼ 0:
The behavior of the solution to the Rosenau–RLW equation with the Cauchy problem has been well studied for the past
years [19–24]. The Rosenau–RLW equation has been solved numerically by various methods. Zuo et al. [19] have proposed
the Crank–Nicolson finite difference scheme for the equation; the convergence and stability of the proposed method were
also discussed. Obviously, the scheme in [19] requires heavy iterative computations because it is nonlinear implicit. More-
over, Pan and Zhang [20,21] developed linearized difference schemes which are three-level and conservative implicit for
both Rosenau–RLW and general Rosenau–RLW equations. The second-order accuracy and unconditional stability were also
proved.

In this paper, we consider the numerical method of the following initial-boundary value problem for coupling the general
Rosenau–RLW equation and the Rosenau–KdV equation (the Rosenau–KdV–RLW equation):
ut � cRLWuxxt þ uxxxxt þ bKdVuxxx þ ux þ aðu2Þx ¼ 0; xl < x < xr ; 0 6 t 6 T; ð1Þ
with an initial condition
uðx;0Þ ¼ u0ðxÞ; xl 6 x 6 xr; ð2Þ
and boundary conditions
uðxl; tÞ ¼ uðxr ; tÞ ¼ 0; uxðxl; tÞ ¼ uxðxr ; tÞ ¼ 0; uxxðxl; tÞ ¼ uxxðxr; tÞ ¼ 0; 0 6 t 6 T; ð3Þ
where a > 0 and bKdV and cRLW are any real number. When �xl � 0 and xr � 0, the initial-boundary value problem (1)–(3) is
consistent, so the boundary condition (3) is reasonable.

By observation, the total accuracy of a specific method is affected by not only the order of accuracy of the numerical
method but also other factors. That is, the conservative approximation property of the method is another factor that has
the same or possibly even more impact on results. Better solutions can be expected from numerical schemes which have
effective conservative approximation properties rather than the ones which have nonconservative properties [10,25]. To cre-
ate the discretization equation, the finite difference method is applied in the present research since conservative approxima-
tion analysis by the mathematical tools has been developing until now.

In this study, the performance of the purposed method is investigated by considering well-known benchmark problems,
the Rosenau–KdV equation and the Rosenau–RLW equation. Test cases involve simulating the solitary waves at several
parameters and the characteristics of these benchmark problems have been reported by previously known numerical inves-
tigations. It will also be shown that our solution is equipped with all mentioned characteristics. Moreover, the test problems
have a common experiment approach which is used to check or improve a numerical technique (see for example, [10,11,19–
24]).

The content of this paper is organized as follows. In the next section, we present invariant and boundedness properties of
solutions. Section 3 describes a conservative implicit finite difference scheme for the Rosenau–KdV–RLW Eq. (1) with the
initial and boundary conditions (2) and (3). Some preliminary lemmas and discrete norms are given, and the invariant prop-
erties are proved. The solvability of the finite difference scheme is discussed, and the existence and uniqueness of the solu-
tion are proven. This section presents complete proofs on the convergence and stability of the proposed method with
convergence rate Oðs2 þ h2Þ. The results on validation of the finite difference scheme are presented in Section 4, where
we make a detailed comparison with available data, to confirm and illustrate our theoretical analysis. Finally, we finish
our paper by concluding remarks in the last section.

2. Solution properties

In order to make a discrete analogue effective to the fundamental conservation properties (mass and energy) of the gov-
erning equation, discrete conservation, which is an supplementary restriction, is necessary for a suitable difference equation.
For a conservative governing equation, the analytic results are evaluated in this section. By assumptions, the solitary wave
solution and its derivatives have the following asymptotic values, u! 0 as x! �1, and for n P 1; @nu

@xn ! 0 as x! �1.
Therefore, we obtain the solution properties as follows:

Theorem 1. Suppose u0 2 H2
0½xl; xr �, then the solution of Eqs. (1)–(3) satisfies:
QðtÞ ¼
Z xr

xl

uðx; tÞdx ¼
Z xr

xl

u0ðx;0Þdx ¼ Qð0Þ:
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Theorem 2. Suppose u0 2 H2
0½xl; xr �, then the solution of Eqs. (1)–(3) satisfies:
E tð Þ ¼ uk k2
L2
þ cRLW uxk k2

L2
þ uxxk k2

L2
¼ E 0ð Þ:
Proof. Consider ut � cRLWuxxt þ uxxxxt ¼ �ux � bKdVuxxx � a u2
� �

x , we have
dEðtÞ
dt
¼ 2

Z xr

xl

uutdxþ 2cRLW
Z xr

xl

uxuxtdxþ 2
Z xr

xl

uxxuxxtdx

¼ 2
Z xr

xl

uutdx� 2cRLW
Z xr

xl

uuxxtdx� 2
Z xr

xl

uxuxxxtdxþ 2 cRLWuuxt þ uxuxxt
� ���xr

xl

¼ 2
Z xr

xl

uutdx� 2cRLW
Z xr

xl

uuxxtdxþ 2
Z xr

xl

uuxxxxtdx� 2uuxxxtjxr
xl
¼ 2

Z xr

xl

u ut � cRLWuxxt þ uxxxxt
� �

dx

¼ 2
Z xr

xl

u �ux � bKdVuxxx � a2uux

� �
dx ¼ �2

Z xr

xl

uux þ bKdVuuxxx þ a2u2ux

� �
dx ¼ �2bKdV

Z xr

xl

uuxxxdx

¼ 2bKdV
Z xr

xl

uxuxxdx� 2bKdVuuxx

���xr

xl

¼ 0:
Therefore, EðtÞ is a constant function, that is
EðtÞ ¼ uk k2
L2
þ cRLW uxk k2

L2
þ uxxk k2

L2
¼ E 0ð Þ: �
Theorem 3. Suppose that u0 2 H2
0½xl; xr �, then the solution of Eqs. (1)–(3) satisfies kukL2

6 C; kuxxkL2
6 C which yields kukL1 6 C.
Proof. From Theorem 2, we have
kukL2
6 C and kuxxkL2

6 C:
Using the Hölder inequality and the Cauchy–Schwarz inequality yields
uxk k2
L2
¼
Z xr

xl

uxð Þ2dx ¼ �
Z xr

xl

uuxxdx 6 uk kL2
uxxk kL2

6
1
2

uk k2
L2
þ uxxk k2

L2

� �
:

Then,
uxk k2
L2
6

1
2

uk k2
L2
þ uxxk k2

L2

� �
6 C:
By the Sobolev’s inequality, we get uk k1 6 C. h
3. Numerical technique

In this section, we present a complete description of our finite difference scheme and an algorithm for the formulation of
the problem (1)–(3). We first describe our solution domain and its grid. The solution domain is defined to be
X ¼ fðx; tÞj xl 6 x 6 xr; 0 6 t 6 Tg, which is covered by a uniform grid Xh ¼ fðxi; tnÞj xi ¼ xl þ ih; tn ¼ ns; i ¼ 0; . . . ;M;

n ¼ 0; . . . ;Ng, with spacings h ¼ ðxr � xlÞ=M and s ¼ T=N. Denote un
i � uðxl þ ih; nsÞ and Z0

h ¼ fu ¼ ðuiÞj u�1 ¼ u0 ¼ uM ¼
uMþ1 ¼ 0; i ¼ �1;0;1; . . . ;M;M þ 1g. We use the following notations for the simplicity:
u
nþ1

2
i ¼ unþ1

i þ un
i

2
; �un

i ¼
unþ1

i þ un�1
i

2
;

ðun
i Þt ¼

unþ1
i � un

i

s
; ðun

i Þt̂ ¼
unþ1

i � un�1
i

2s
;

ðun
i Þx ¼

un
iþ1 � un

i

h
; ðun

i Þ�x ¼
un

i � un
i�1

h
; ðun

i Þx̂ ¼
un

iþ1 � un
i�1

2h
;

ðun;vnÞ ¼ h
XM�1

i¼1

un
i v

n
i ; kunk2 ¼ ðun; unÞ; kunk1 ¼ max

16i6M�1
jun

i j:
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In the paper, C ¼ CðhÞ denotes a general positive constant, which may have different values in different occurrences. Since
ðu2Þx ¼ 2huux þ ð1� hÞðu2Þx, where h 2 R is a real constant, we employ second-order central-difference approximations for
the operators in Eqs. (1) and (3). The system of difference equations becomes
ðun
i Þt̂ � cRLWðun

i Þx�xt̂ þ ðu
n
i Þxx�x�xt̂ þ bKdVð�un

i Þx�xx̂ þ ðu
n
i Þx̂ þuh un

i ; �u
n
i

� �
¼ 0; 1 6 i 6 M � 1; 1 6 n 6 N � 1; ð4Þ
where
uh un
i ; �u

n
i

� �
¼ a 2hun

i
�un

i

� �
x̂ þ ð1� hÞ un

i
�un

i

� �
x̂

� �
;

u0
i ¼ u0ðxiÞ; 0 6 i 6 M; ð5Þ

un
0 ¼ un

M ¼ 0; ðun
0Þx̂ ¼ ðu

n
MÞx̂ ¼ 0; ðun

0Þx�x ¼ ðu
n
MÞx�x ¼ 0; 1 6 n 6 N: ð6Þ
The three-step method is used for time discretization of the above described scheme. The matrix system of the Eqs. (4)
and (6) is banded with penta-diagonal. The nonlinear term of Eq. (1) is handled by using the linear implicit approximation.
Therefore, the algebraic system of equations is solved easily by using the presented method since it does not require extra
effort to deal with a nonlinear term.

The following lemmas are some properties of the above finite difference scheme which can be obtained directly from the
definition. They are essential for existence, uniqueness, convergence, and stability of our numerical solution.

Lemma 4. For any two mesh functions u; v 2 Z0
h, we have
ux̂;vð Þ ¼ � u;v x̂ð Þ; ux;vð Þ ¼ � u;v�xð Þ; ux�x;vð Þ ¼ � ux;vxð Þ;

ðu;ux�xÞ ¼ �ðux;uxÞ ¼ �kuxk2
:

Furthermore, if ðu0Þx�x ¼ ðuMÞx�x ¼ 0, it implies
ðu;uxx�x�xÞ ¼ kux�xk2
:

Lemma 5. For any two mesh functions u 2 Z0
h, we have
ux̂;uð Þ ¼ 0; ux�xx̂;uð Þ ¼ 0:
Lemma 6 (Discrete Sobolev’s inequality [26]). There exist two constants C1 and C2 such that
kunk1 6 C1kunk þ C2kun
xk:
Theorem 7. Suppose u0 2 H2
0½xl; xr �, then there is an estimated solution of the difference scheme (4)–(6) satisfying

kunk 6 C; kun
x�xk 6 C which yield kunk1 6 C.
Proof. To prove the theorem, we proceed by the mathematical induction. We assume that
kukk 6 C; kuk
x�xk 6 C; kukk1 6 C; k ¼ 0;1;2;3; . . . ;n: ð7Þ
After computing the inner product of Eq. (4) and 2�unði:e:unþ1 þ un�1Þ, according to Lemma 4, we have
1
2s

unþ1
		 		2 � un�1

		 		2
� �

þ 1
2s

cRLW unþ1
x

		 		2 � un�1
x

		 		2
� �

þ 1
2s

unþ1
x�x

		 		2 � un�1
x�x

		 		2
� �

þ bKdV �un
x�xx̂;2�un

� �
þ un

x̂ ;2�un
� �

þ uh un; �unð Þ;2�unð Þ ¼ 0; ð8Þ
where
uh un
i ; �u

n
i

� �
¼ a 2hun

i �un
i

� �
x̂ þ ð1� hÞ un

i �un
i

� �
x̂

� �
:

By the Cauchy–Schwarz inequality, boundary conditions, and Lemma 4, we obtain
�un
x�xx̂;2�un

� �
¼ 0; ð9Þ

kun
x̂k

2
6 kun

xk
2
6

1
2
kunk2 þ 1

2
kun

x�xk
2
; ð10Þ

un
x̂ ;2�un

� �
6 kun

xk
2 þ 1

2
kun�1k2 þ 1

2
kunþ1k2

: ð11Þ
From boundary conditions (6), then
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2h
XM�1

i¼1

un
i �un

i

� �
x̂ þ un

i �un
i

� �
x̂

� �
�un

i ¼
XM�1

i¼1

un
i �un

iþ1 � �un
i�1

� �
þ un

iþ1�un
iþ1 � un

i�1�un
i�1

� �
�un

i

¼
XM�1

i¼1

un
i
�un

iþ1�un
i � un

i�1�un
i
�un

i�1

� �
�
XM�1

i¼1

un
i
�un

i
�un

i�1 � un
iþ1�un

iþ1�un
i

� �
¼ 0; ð12Þ
by the Schwarz inequality and Eq. (7), we obtain
uh un; �unð Þ;2�unð Þ ¼ 2ah
XM�1

i¼1

2hun
i

�un
i

� �
x̂ þ 1� hð Þ un

i
�un

i

� �
x̂

� �
�un

i

¼ 2a 1� hð Þh
XM�1

i¼1

un
i

�un
i

� �
x̂ þ un

i
�un

i

� �
x̂

� �
�un

i þ 2ah
XM�1

i¼1

3h� 1ð Þun
i

�un
i

� �
x̂
�un

i ¼ 2ah
XM�1

i¼1

3h� 1ð Þun
i

�un
i

� �
x̂
�un

i

6 Ch
XM�1

i¼1

j �un
i

� �
x̂jj�u

n
i j 6 C k�unk2 þ k�un

xk
2

� �
6 C kunþ1k2 þ kun�1k2 þ kunþ1

x k2 þ kun�1
x k2

� �

6 C kunþ1k2 þ kun�1k2 þ kunþ1
x�x k

2 þ kun�1
x�x k

2
� �

: ð13Þ
Substituting Eqs. (9)–(13) into Eq. (8), we obtain
unþ1
		 		2 � un�1

		 		2
� �

þ cRLW unþ1
x

		 		2 � un�1
x

		 		2
� �

þ unþ1
x�x

		 		2 � un�1
x�x

		 		2
� �

6 Cs kun�1k2 þ kunk2 þ kunþ1k2 þ kun�1
x�x k

2 þ kun
x�xk

2 þ kunþ1
x�x k

2
� �

: ð14Þ
Let
Bn ¼ unk k2 þ un�1
		 		2

� �
þ cRLW un

x

		 		2 þ un�1
x

		 		2
� �

þ un
x�x

		 		2 þ un�1
x�x

		 		2
� �

;

then Eq. (14) can be rewritten as follows:
Bnþ1 � Bn
6 Cs Bnþ1 þ Bn

� �
:

If s is sufficiently small which satisfies s 6 k�2
kC and k > 2, then
Bnþ1
6

1þ sCð Þ
1� sCð ÞB

n
6 1þ skCð ÞBn

6 1þ skCð ÞnB1
6 exp kCTð ÞB1:
Hence unþ1
		 		 6 C; unþ1

x

		 		 6 C, and unþ1
x�x

		 		 6 C, then yield unþ1
		 		

1 6 C by Lemma 6. h
3.1. Discrete conservation

Now, the conservative approximations are developed for discrete conservation of mass which is guaranteed for all a
parameter h 2 R. However, for discrete energy, we can guarantee h ¼ 1

3 only.

Theorem 8. Suppose u0 2 H2
0½xl; xr �, then the finite difference scheme (4)–(6) is conservative for discrete mass in sense:
Q n ¼ h
2

XM�1

i¼1

unþ1
i þ un

i

� �
þ ahsh

XM�1

i¼1

un
i unþ1

i

� �
x̂ ¼ Q n�1 ¼ . . . ¼ Q 0: ð15Þ
Proof. By multiplying Eq. (4) by sh , summing up for i from 1to M � 1, and considering the boundary conditions (6) together
with Lemma 4, we obtain
h
2

XM�1

i¼1

unþ1
i � un�1

i

� �
þ ahsh

XM�1

i¼1

un
i unþ1

i

� �
x̂ � un�1

i un
i

� �
x̂

� �
¼ 0:
Then, this gives Eq. (15). h
Theorem 9. Suppose u0 2 H2
0½xl; xr� and h ¼ 1

3, then the finite difference scheme (4)–(6) is conservative for discrete energy in sense:
En ¼ 1
2

unþ1
		 		2 þ unk k2


 �
þ cRLW

2
unþ1

x

		 		2 þ un
x

		 		2
� �

þ 1
2

unþ1
x�x

		 		2 þ un
x�x

		 		2
� �

þ hs
XM�1

i¼1

unþ1
i un

i

� �
x̂ ¼ En�1 ¼ . . . ¼ E0: ð16Þ
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Proof. After computing the inner product of Eq. (4) and 2�un (i.e. unþ1 þ un�1Þ, according to Lemmas 4 and 5, we have
1
2s

unþ1
		 		2 � un�1

		 		2
� �

þ 1
2s

cRLW unþ1
x

		 		2 � un�1
x

		 		2
� �

þ 1
2s

unþ1
x�x

		 		2 � un�1
x�x

		 		2
� �

þ un
x̂ ;2�un

� �
þ u1

3
un; �unð Þ;2�un

� �
¼ 0:

ð17Þ
From Eq. (12), we obtain
u1
3

un; �unð Þ;2�un
� �

¼ 4
3

h
XM�1

i¼1

un
i

�un
i

� �
x̂ þ un

i
�un

i

� �
x̂

� �
�un

i ¼ 0:
By Lemma 4, it gives
un
x̂ ;2�un

� �
¼ 2h

XM�1

i¼1

un
i

� �
x̂
�un

i ¼ h
XM�1

i¼1

un
i

� �
x̂unþ1

i � h
XM�1

i¼1

un
i

� �
x̂un�1

i :
Then, Eq. (17) can be rewritten as
1
2s

unþ1
		 		2 � un�1

		 		2
� �

þ 1
2s

cRLW unþ1
x

		 		2 � un�1
x

		 		2
� �

þ 1
2s

unþ1
x�x

		 		2 � un�1
x�x

		 		2
� �

þ h
XM�1

i¼1

un
i

� �
x̂unþ1

i � h
XM�1

i¼1

un
i

� �
x̂un�1

i ¼ 0:
Finally, this gives Eq. (16), which completes the proof of theorem. h

A conservative approximation confirms that the energy would not increase in time, which allows to make the scheme
stable for the case h ¼ 1

3 only.

Remark 10. In the case h ¼ 1
3, the approximation of the nonlinear term of the scheme (4) is the same as that of the scheme

[10] for the Rosenau–KdV equation, where cRLW ¼ 0, and that of the schemes [19–22] for the Rosenau–RLW equation, where
bKdV ¼ 0. Moreover, the same approximation of the nonlinear term as the scheme (4) is widely used for the RLW equation
[9,27], the RLW-Burgers equation [28], the Rosenau equation [29,30], and the Rosenau–Burgers equation [31–33].
3.2. Existence and uniqueness

In this part, we prove the solvability of solutions for the scheme (4)–(6). This guarantees the existence and uniqueness of
our numerical solution.

Theorem 11. The finite difference scheme (4)–(6) is uniquely solvable.
Proof. To prove the Theorem, we proceed by the mathematical induction. We assume that u0; u1; . . . ;un satisfy the difference
scheme (4)–(6) for 1 6 n 6 N � 1. Indeed, u1 can be computed by an available second-order method (such as the Crank–
Nicolson method). Next, we prove that there exists unþ1 satisfied Eq. (4). We first consider
1
2s

unþ1
i � 1

2s
cRLW unþ1

i

� �
x�x þ

1
2s

unþ1
i

� �
xx�x�x þ

1
2

bKdV unþ1
i

� �
x�xx̂ þ

1
2
uhðun

i ;u
nþ1
i Þ ¼ 0; ð18Þ
where
uh un
i ;u

nþ1
i

� �
¼ a 2hun

i unþ1
i

� �
x̂ þ ð1� hÞ un

i unþ1
i

� �
x̂

� �
:

By taking the inner product of Eq. (18) with unþ1, we obtain
1
2s

unþ1
		 		2 þ 1

2s
cRLW unþ1

x

		 		2 þ 1
2s

unþ1
x�x

		 		2 þ 1
2

uhðun;unþ1Þ;unþ1� �
¼ 0:
Since
XM�1

i¼1

un
i unþ1

i

� �
x̂ þ un

i unþ1
i

� �
x̂

� �
¼
XM�1

i¼1

un
i unþ1

iþ1 � unþ1
i�1

� �
þ un

iþ1unþ1
iþ1 � un

i�1unþ1
i�1

� �
unþ1

i

¼
XM�1

i¼1

un
i unþ1

iþ1 unþ1
i � un

i�1unþ1
i�1 unþ1

i

� �
�
XM�1

i¼1

un
i unþ1

i�1 unþ1
i � un

iþ1unþ1
iþ1 unþ1

i

� �
¼ 0: ð19Þ
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By the Cauchy–Schwarz inequality, Theorem 7, Eqs. (19) and (10), we obtain
uh un;unþ1� �
;unþ1� �

¼ ah
XM�1

i¼1

2hun
i unþ1

i

� �
x̂ þ 1� hð Þ un

i unþ1
i

� �
x̂

� �
unþ1

i

¼ a 1� hð Þh
XM�1

i¼1

un
i unþ1

i

� �
x̂ þ un

i unþ1
i

� �
x̂

� �
�un

i þ 2ah
XM�1

i¼1

3h� 1ð Þun
i unþ1

i

� �
x̂unþ1

i

¼ ah
XM�1

i¼1

3h� 1ð Þun
i unþ1

i

� �
x̂unþ1

i 6 Ch
XM�1

i¼1

unþ1
i

� �
x̂

�� �� unþ1
i

�� �� 6 C unþ1
		 		2 þ unþ1

x

		 		2
� �

6 C unþ1
		 		2 þ unþ1

x�x

		 		2
� �

:

Therefore,
unþ1
		 		2 þ cRLW unþ1

x

		 		2 þ unþ1
x�x

		 		2
6 2sC kunþ1k2 þ kunþ1

x�x k
2

� �
:

If s is sufficiently small, which satisfies 1� 2Cs > 0, then
unþ1
		 		 ¼ 0 and unþ1

x�x

		 		 ¼ 0:
This implies that there uniquely exists the trivial solution satisfying Eq. (4). Hence, unþ1 is uniquely solvable, and this
completes the proof of the theorem. h
3.3. Convergence and stability

Now, we prove the convergence and stability of the scheme (4)–(6). Let en
i ¼ vn

i � un
i , where vn

i and un
i are the solutions of

Eqs. (1)–(6), respectively. We then obtain the following error equations
rn
i ¼ ðen

i Þt̂ � cRLWðen
i Þx�xt̂ þ ðe

n
i Þxx�x�xt̂ þ bKdVð�en

i Þx�xx̂ þ ðe
n
i Þx̂ þ a 2hvn

i
�vn

i

� �
x̂ þ 1� hð Þ vn

i
�vn

i

� �
x̂

� �
� a 2hun

i �un
i

� �
x̂ þ 1� hð Þ un

i �un
i

� �
x̂

� �
; ð20Þ
where rn
i denotes the truncation error. By using Taylor expansion, we easily obtain that rn

i ¼ Oðs2 þ h2Þ holds as s; h! 0.
The following lemmas and theorem play important roles for the proof of convergence and stability.

Lemma 12 (Discrete Gronwall’s inequality [26]). Suppose that xðkÞ and qðkÞ are nonnegative functions and qðkÞ is a
nondecreasing function. If C > 0 and
xðkÞ 6 qðkÞ þ Cs
Xk�1

l¼0

xðlÞ; 8k;
then
xðkÞ 6 qðkÞeCsk; 8k:

The following theorem grantees the convergence of the scheme (4)–(6) with the convergence rate Oðs2 þ h2Þ.
Theorem 13. Suppose u0 2 H2
0½xl; xr �, then the solution un of the scheme (4)–(6) converges to the solution of the problem (1)–(3)

in the sense of jj � jj1, and the rate of convergence is Oðs2 þ h2Þ.
Proof. By taking the inner product of Eq. (20) and 2�en (i.e. enþ1 þ en�1), and using Lemma 4, we obtain
1
2s

enþ1
		 		2 � en�1

		 		2
� �

� 1
2s

cRLW enþ1
x

		 		2 � en�1
x

		 		2
� �

þ enþ1
x�x

		 		2 � en�1
x�x

		 		2
� �

¼ rn;2�enð Þ � en
x̂ ;2�en

� �
� M1 þM2;2�enð Þ; ð21Þ
where
M1 ¼ 2ah vn
i

�vn
i

� �
x̂ � un

i
�un

i

� �
x̂

� �
;

M2 ¼ a 1� hð Þ vn
i �vn

i

� �
x̂ � un

i �un
i

� �
x̂

� �
:
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According to Lemma 4, Theorems 7 and 3, and the Cauchy–Schwarz inequality, we have
M1;2enð Þ ¼ 2ahh
XM�1

i¼1

vn
i �vn

i

� �
x̂ � un

i
�un

i

� �
x̂

� �
�en

i ¼ 2ahh
XM�1

i¼1

vn
i

�en
i

� �
x̂
�en

i þ 2ahh
XM�1

i¼1

en
i

�un
i

� �
x̂
�en

i 6 C k�en
x̂k

2 þ k�enk2 þ kenk2
� �

6 C kenþ1
x̂ k2 þ ken�1

x̂ k2 þ kenþ1k2 þ kenk2 þ ken�1k2
� �

: ð22Þ
Similar to the proof of Eq. (22), we also have
M2;2enð Þ 6 C k�en
x̂k

2 þ k�enk2 þ kenk2
� �

6 C kenþ1
x̂ k2 þ ken�1

x̂ k2 þ kenþ1k2 þ kenk2 þ ken�1k2
� �

: ð23Þ
Furthermore,
ken
x̂k

2
6 ken

xk
2
6

1
2

enk k2 þ en
x�x

		 		2
� �

; ð24Þ

en
x̂ ;2�en

� �
6 en

x

		 		2 þ 1
2

enþ1
		 		2 þ en�1

		 		2
� �

; ð25Þ

rn;2enð Þ 6 krnk2 þ 1
2
kenþ1k2 þ ken�1k2
� �

: ð26Þ
Substituting Eqs. (22)–(24), (26) into Eq. (19), we obtain
kenþ1k2 � ken�1k2
� �

þ cRLW kenþ1
x k2 � ken�1

x k2
� �

þ kenþ1
x�x k

2 � ken�1
x�x k

2
� �

6 Cs kenþ1
x k2 þ ken�1

x k2 þ kenk2 þ kenþ1k2 þ ken�1k2 þ kenk2
� �

þ 2skrnk2
: ð27Þ
Let
Bn ¼ kenk2 þ ken�1k2
� �

þ cRLW ken
xk

2 þ ken�1
x k2

� �
þ ken

x�xk
2 þ ken�1

x�x k
2

� �
:

Then Eq. (27) can be rewritten as
Bnþ1 � Bn
6 2skrnk2 þ sCðBnþ1 þ BnÞ:
Hence,
ð1� CsÞðBnþ1 � BnÞ 6 2skrnk2 þ 2CsBn:
If s is sufficiently small, which satisfies 1� Cs > 0, then
Bnþ1 � Bn
6 Cskrnk2 þ sCBn: ð28Þ
By summing Eq. (28) from 1 to n, we have
Bnþ1
6 B1 þ Cs

Xn

k¼1

krkk2 þ Cs
Xn

k¼1

Bk: ð29Þ
Notice that
s
Xn

k¼1

krkk2
6 ns max

16k6n
krkk2

6 T � O s2 þ h2
� �2
and e0 ¼ 0. We then have B1 ¼ O s2 þ h2
� �2

. Hence,
Bnþ1
6 Oðs2 þ h2Þ

2
þ Cs

Xn

k¼1

Bk:
According to Lemma 12, we get Bn
6 Oðs2 þ h2Þ

2
. That is
kenþ1k2
6 O s2 þ h2

� �2
and kenþ1

x�x k
2
6 O s2 þ h2

� �2
:

It follows from Eq. (24) that
kenþ1
x k 6 Oðs2 þ h2Þ:
By using Lemma 6, we have
kenþ1k1 6 Oðs2 þ h2Þ:
Therefore, the solution un of the scheme (4)–(6) converges to the solution of the problem (1)–(3) in the sense of jj � jj1
with the rate Oðs2 þ h2Þ. h
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Theorem 14. Under the conditions of Theorem 13, the solution un of the scheme (4)–(6) is stable in the sense of jj � jj1.
4. Numerical experiments

In this section, some numerical experiments to verify the correction of our theoretical analysis were computed. As a test
problem for the scheme proposed here, we chose three test problems for which exact solution or numerical solutions have
been reported previously. For the Rosenau–KdV and Rosenau–RLW equations, the parameters used by other researchers
[10,22] to obtain their results were taken as guiding principle for our computations.

In order to apply the three-level linear scheme, u1 needs to be accurately approximated. To approximate u1, therefore we
have to develop another two-level finite difference scheme which satisfies desired invariant properties
Table 1
Compar

Sche

Sche
Sche
Sche
ðu0
i Þt � cRLWðu0

i Þx�xt þ ðu
0
i Þxx�x�xt þ bKdVðu1=2

i Þx�xx̂ þ ðu
0
i Þx̂ þuh u0

i ;u
1=2
i

� �
¼ 0;
where
uh u0
i ;u

1=2
i

� �
¼ a 2hu0

i u1=2
i

� �
x̂
þ ð1� hÞ u0

i u1=2
i

� �
x̂

h i
;

u0
i ¼ u0ðxiÞ; 0 6 i 6 M:
By using k � k and k � k1 norm, the accuracy of the new method is measured by the comparison of numerical solutions with
the exact solutions as well as other numerical solutions from methods in the literatures.

4.1. The Rosenau–KdV equation

Consider the Rosenau–KdV equation with the initial condition
u0ðxÞ ¼ �35
24
þ 35

312

ffiffiffiffiffiffiffiffiffi
313
p
 �

sech4 1
24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�26þ 2

ffiffiffiffiffiffiffiffiffi
313
pq
 �

x

 �

;

and the boundary conditions
uðxl; tÞ ¼ uðxr; tÞ ¼ 0; uxðxl; tÞ ¼ uxðxr; tÞ ¼ 0; uxxðxl; tÞ ¼ uxxðxr ; tÞ ¼ 0; 0 6 t 6 T:
It is know that, the solitary wave solution [10,15] is
uðx; tÞ ¼ �35
24
þ 35

312

ffiffiffiffiffiffiffiffiffi
313
p
 �

sech4 1
24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�26þ 2

ffiffiffiffiffiffiffiffiffi
313
pq

x� 1
2
þ 1

26

ffiffiffiffiffiffiffiffiffi
313
p
 �

t

 �
 �

:

The results in term of errors at the time T ¼ 20 by using cRLW ¼ 0; bKdV ¼ 1; a ¼ 1
2 ; xl ¼ �70, and xr ¼ 100 are reported in

Tables 1–4. According to the results in Tables 1 and 3, even though the present method uses approximately two time larger
step size than the method [10] does, the present method obtains the same significant digits. It can be seen that the compu-
tational efficiency of the present method is slightly better than that of the method [10], in term of grid point number. As
shown in Tables 2 and 4, the second-order convergence of the numerical solutions is verified.

We continue with the examination of the soliton profile in Fig. 1. The patterns are in excellent agreement with the exact
solutions.

4.2. The Rosenau–RLW equation

Consider the Rosenau–RLW equation with the initial condition
uðx;0Þ ¼ 15
19

sech4

ffiffiffiffiffiffi
13
p

26
x

" #
;

and the boundary conditions
uðxl; tÞ ¼ uðxr; tÞ ¼ 0; uxxðxl; tÞ ¼ uxxðxr ; tÞ ¼ 0; 0 6 t 6 T:
ison of errors using L2-norm at T ¼ 20.

me s ¼ h ¼ 0:2 s ¼ h ¼ 0:1 s ¼ h ¼ 0:05 s ¼ h ¼ 0:025

me [10] – 3.045414E�03 7.631169E�04 1.905450E�04
me (4) h ¼ �1=3 2.63759E�03 6.57830E�04 1.64418E�04 4.11082E�05
me (4) h ¼ 1=3 1.77798E�03 4.43965E�04 1.10984E�04 2.77477E�05



Table 2
Rate of convergence using L2-norm at T ¼ 20.

Scheme s ¼ h ¼ 0:2 s ¼ h ¼ 0:1 s ¼ h ¼ 0:05 s ¼ h ¼ 0:025

Scheme [10] – – 1.996662 2.001772
Scheme (4) h ¼ �1=3 – 2.003433 2.000347 1.999870
Scheme (4) h ¼ 1=3 – 2.001721 2.000094 1.999912

Table 3
Comparison of errors using L1-norm at T ¼ 20.

Scheme s ¼ h ¼ 0:2 s ¼ h ¼ 0:1 s ¼ h ¼ 0:05 s ¼ h ¼ 0:025

Scheme [10] – 1.131442E�03 2.835874E�04 7.097948E�05
Scheme (4) h ¼ �1=3 1.01916E�03 2.54116E�04 6.35011E�05 1.58769E�05
Scheme (4) h ¼ 1=3 4.95101E�04 1.23727E�04 3.09342E�05 7.73365E�06

Table 4
Rate of convergence using L1-norm at T ¼ 20.

Scheme s ¼ h ¼ 0:2 s ¼ h ¼ 0:1 s ¼ h ¼ 0:05 s ¼ h ¼ 0:025

Scheme [10] – – 1.996297 1.998319
Scheme (4) h ¼ �1=3 – 2.003821 2.000634 1.999852
Scheme (4) h ¼ 1=3 – 2.000563 1.999886 1.999981

Fig. 1. Numerical solutions of the Rosenau–KdV equation with s ¼ h ¼ 0:25; xl ¼ �40; xr ¼ 60 (left) and xl ¼ �40; xr ¼ 150 (right).

Table 5
Comparison of errors using L2-norm at T ¼ 20.

Scheme s ¼ h ¼ 0:4 s ¼ h ¼ 0:2 s ¼ h ¼ 0:1 s ¼ h ¼ 0:05

Scheme I [22] 2.85546E�02 7.27247E�03 1.82699E�03 4.57348E�04
Scheme II [22] 2.43622E�02 6.17910E�03 1.55040E�03 3.87952E�04
Scheme (4) h ¼ �1=3 4.25934E�03 1.05710E�03 2.64073E�04 6.60383E�05
Scheme (4) h ¼ 1=3 1.50201E�02 3.80043E�03 9.54178E�04 2.38950E�04
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The exact solitary wave solution [22] has the following form:
uðx; tÞ ¼ 15
19

sech4

ffiffiffiffiffiffi
13
p

26
x� 169

133
t


 �" #
:



Table 6
Rate of convergence using L2-norm at T ¼ 20.

Scheme s ¼ h ¼ 0:4 s ¼ h ¼ 0:2 s ¼ h ¼ 0:1 s ¼ h ¼ 0:05

Scheme I [22] – 1.973206 1.992977 1.998104
Scheme II [22] – 1.979176 1.994756 1.998690
Scheme (4) h ¼ �1=3 – 2.010518 2.001103 1.999562
Scheme (4) h ¼ 1=3 – 1.982660 1.993832 1.997550

Table 7
Comparison of errors using L1- norm at T ¼ 20.

Scheme s ¼ h ¼ 0:4 s ¼ h ¼ 0:2 s ¼ h ¼ 0:1 s ¼ h ¼ 0:05

Scheme I [22] 1.09079E�02 2.78947E�03 7.01120E�04 1.75565E�04
Scheme II [22] 9.45747E�03 2.40611E�03 6.04189E�04 1.51212E�04
Scheme (4) h ¼ �1=3 1.60697E�03 3.98895E�04 9.96138E�05 2.49119E�05
Scheme (4) h ¼ 1=3 5.04081E�03 1.27673E�03 3.20501E�04 8.02614E�05

Table 8
Rate of convergence using L1-norm at T ¼ 20.

Scheme s ¼ h ¼ 0:4 s ¼ h ¼ 0:2 s ¼ h ¼ 0:1 s ¼ h ¼ 0:05

Scheme I [22] – 1.967310 1.992258 1.997656
Scheme II [22] – 1.974752 1.993631 1.998427
Scheme (4) h ¼ �1=3 – 2.010262 2.001592 1.999511
Scheme (4) h ¼ 1=3 – 1.981202 1.994053 1.997551
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The numerical results in term of errors obtained by scheme (4) are reported in Tables 5–8 by using
cRLW ¼ 1; bKdV ¼ 0; a ¼ 1

2 ; xl ¼ �40, and xr ¼ 60. The results of numerical experiments compare quantitatively very well
with the case presented in [22]. It is clear from Tables 5 and 7 that results by our method show improvement over the pre-
vious one reported by [22], especially for the case h ¼ � 1

3. From Tables 6 and 8, we get the second-order accurate scheme
which is as accurate as [22].

The solitary waves by the scheme (4) are plotted in Fig. 2 with s ¼ h ¼ 0:25. The solitons at t ¼ 10; 20; 30, and 60 agree
with the soliton at t ¼ 0 quite well, which also shows the accuracy of the scheme.

4.3. The Rosenau–KdV–RLW equation

Now, we present a brief description of solving the Rosenau–KdV–RLW Eq. (1) by using the sine–cosine method. In order to
obtain the solitary wave solution of the Rosenau–KdV–RLW equation, after making transformation uðx; tÞ ¼ uðnÞ; n ¼ x� ct
where c is constant to be determined later, Eq. (1) becomes
Fig. 2. Numerical solutions of the Rosenau–RLW equation with s ¼ h ¼ 0:25; xl ¼ �40; xr ¼ 60 (left) and xl ¼ �40; xr ¼ 150 (right).
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1� cð Þuþ au2 þ bKdV þ ccRLW
� �

unn � cunnnn ¼ 0: ð30Þ
Using the method mentioned above, we may choose the solution of reduced ODE (30) in the form
uðnÞ ¼
k cosg lnð Þ; nj j 6 p

2l

0; otherwise;

(
ð31Þ
or in the form
uðnÞ ¼
k sing lnð Þ; nj j 6 p

2l

0; otherwise;

(
ð32Þ
where k; n, and g are parameters which are determined. It is easy to reduce that
u00 ¼ kg g� 1ð Þl2 cosg�2 lnð Þ � kg2l2 cosgðlnÞ ð33Þ
and
uð4Þ ¼ kl4gðg� 1Þðg� 2Þðg� 3Þ cosg�4ðlnÞ � 2kl4gðg� 1Þ g2 � 2gþ 2
� �

cosg�2ðlnÞ þ kl4g4 cosgðlnÞ; ð34Þ
where similar equations can be obtained for the sine assumption. By applying Eqs. (31)–(34) into Eq. (30), we find
k 1� c � bKdV þ ccRLW
� �

g2l2 � cl4g4
� �

cosg lnð Þ � ckl4g g� 1ð Þ g� 2ð Þ g� 3ð Þ cosg�4 lnð Þ

þ k bKdV þ ccRLW
� �

g g� 1ð Þl2 þ c2l4g g� 1ð Þ g2 � 2gþ 2
� �� �

cosg�2 lnð Þ þ ak2 cos2g lnð Þ ¼ 0: ð35Þ
Balancing cos2gðlnÞ with cosg�4ðlnÞ in Eq. (35) gives g ¼ �4. Substituting g ¼ �4 into Eq. (35) and setting each coeffi-
cients of cosjðlnÞ to zero yield a set of equation for l; k, and c
k ak� 840cl4� �
¼ 0;

k 20 bKdV þ ccRLW
� �

l2 þ 1040cl4
� �

¼ 0;

k 1� c � 16 bKdV þ ccRLW
� �

l2 � 256cl4
� �

¼ 0:

ð36Þ
In case bKdV ¼ cRLW ¼ 1 and a ¼ 0:5, system (36) gives
1
2

k k� 1680cl4� �
¼ 0;

k 20ð1þ cÞl2 þ 1040cl4� �
¼ 0; ð37Þ

k 1� c � 16ð1þ cÞl2 � 256cl4� �
¼ 0:
Solving the system (37) leads to the following sets of solutions
l ¼ �i
1ffiffiffiffiffiffiffiffiffi
288
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�13þ

ffiffiffiffiffiffiffiffiffi
457
pq

;

c ¼ 241þ 13
ffiffiffiffiffiffiffiffiffi
457
p

266
;

k ¼ 5
456

�25þ 13
ffiffiffiffiffiffiffiffiffi
457
p� �

;

ð38Þ
and
l ¼ � 1ffiffiffiffiffiffiffiffiffi
288
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13þ

ffiffiffiffiffiffiffiffiffi
457
pq

;

c ¼ 241� 13
ffiffiffiffiffiffiffiffiffi
457
p

266
;

k ¼ 5
456

�25� 13
ffiffiffiffiffiffiffiffiffi
457
p� �

:

ð39Þ
By using the results of Eqs. (38) and (39), we obtain solutions of Eq. (1)
uðx; tÞ ¼ 5
456

�25þ 13
ffiffiffiffiffiffiffiffiffi
457
p� �

sec h4 1ffiffiffiffiffiffiffiffiffi
288
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�13þ

ffiffiffiffiffiffiffiffiffi
457
pq

x� 241þ 13
ffiffiffiffiffiffiffiffiffi
457
p

266

 !
t

 !" #



Table 9
Errors of numerical solutions at T ¼ 30.

s ¼ h kek rate kek1 rate

h ¼ �1
0.5 2.57844E+00 9.86753E�01
0.25 5.56190E�01 2.21285 2.14488E�01 2.20179
0.125 1.34741E�01 2.04539 5.19201E�02 2.04653
0.0625 3.34447E�02 2.01034 1.28858E�02 2.01051

h ¼ �1=3
0.5 4.14324E�01 1.72860E�01
0.25 9.17596E�02 2.17483 3.83521E�02 2.17222
0.125 2.23327E�02 2.03871 9.34197E�03 2.03751
0.0625 5.54842E�03 2.00901 2.32074E�03 2.00914

h ¼ 0
0.5 6.02160E�01 2.43684E�01
0.25 1.50948E�01 1.99610 6.06169E�02 2.00722
0.125 3.78126E�02 1.99711 1.51770E�02 1.99783
0.0625 9.46327E�03 1.99845 3.79653E�03 1.99913

h ¼ 1=3
0.5 1.45901E+00 5.57917E�01
0.25 3.72110E�01 1.97119 1.42175E�01 1.97238
0.125 9.34897E�02 1.99285 3.56991E�02 1.99371
0.0625 2.34123E�02 1.99754 8.93944E�03 1.99763

h ¼ 1
0.5 2.94337E+00 1.08501E+00
0.25 8.05629E�01 1.86928 3.00424E�01 1.85264
0.125 2.05276E�01 1.97255 7.66547E�02 1.97055
0.0625 5.15696E�02 1.99297 1.92614E�02 1.99266
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and
Table 1
Invarian

T

0
15
30
45
60

Table 1
Invarian

T

0
15
30
45
60
uðx; tÞ ¼ 5
456

25� 13
ffiffiffiffiffiffiffiffiffi
457
p� �

csch4 1ffiffiffiffiffiffiffiffiffi
288
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�13þ

ffiffiffiffiffiffiffiffiffi
457
pq

x� 241þ 13
ffiffiffiffiffiffiffiffiffi
457
p

266

 !
t

 !" #
:

In test problems for the Rosenau–KdV–RLW equation, we use the initial condition associated with this equation, which
takes the form
u0ðxÞ ¼
5

456
�25þ 13

ffiffiffiffiffiffiffiffiffi
457
p� �

sech4 1ffiffiffiffiffiffiffiffiffi
288
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�13þ

ffiffiffiffiffiffiffiffiffi
457
pq
 �

x

 �

:

As shown in Table 9, for a particular choice of parameters xl ¼ �40 and xr ¼ 100, the estimated rates of convergence are
close the theoretically predicted second-order rate of convergence. We can also say that when we use smaller time and space
steps, numerical solutions are almost the same as the exact solutions. In Tables 10 and 11, it results from the present method,
and the values of Q n and En at any time t 2 ½0;60� coincide with the theory. The quantities Q n and En seem to be conserved on
the average, i.e. they are contained in a small interval but there are fluctuations. In this case, the following sets of parameters
are chosen for the test problems: s ¼ h ¼ 0:25; xl ¼ �40, and xr ¼ 160.
0
t of motion Qn .

h ¼ �1 h ¼ �1=3 h ¼ 0 h ¼ 1=3 h ¼ 1

21.6792584430 21.6792584430 21.6792584430 21.6792584430 21.6792584430
21.6825770313 21.6798772354 21.6792585207 21.6791001829 21.6801606811
21.6826412754 21.6798843150 21.6792488984 21.6790824977 21.6801763808
21.6834261714 21.6805287614 21.6798420932 21.6796348051 21.6802663552
21.6746253679 21.6728367822 21.6726648091 21.6729484047 21.6749016262

1
t of motion En .

h ¼ �1 h ¼ �1=3 h ¼ 0 h ¼ 1=3 h ¼ 1

43.7085514657 43.7085514657 43.7085514657 43.7085514657 43.7085514657
43.7265201536 43.7147171789 43.7112854772 43.7093907612 43.7099637500
43.7266422849 43.7148001553 43.7113467696 43.7094288659 43.7099530153
43.7266440914 43.7148018420 43.7113480338 43.7094288529 43.7099016523
43.7266440850 43.7148021240 43.7113484031 43.7094296146 43.7099281613



Fig. 3. Impact of the parameter h with s ¼ h ¼ 0:25; xl ¼ �40, and xr ¼ 160.

Fig. 4. Absolute error distribution at T ¼ 30 (left) and T ¼ 60 (right).

Fig. 5. Numerical solutions of the Rosenau–KdV–RLW equation with s ¼ h ¼ 0:25; xl ¼ �40; xr ¼ 80 (left) and xl ¼ �40; xr ¼ 200 (right).
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We then study the impact of the parameter h to the error of our numerical solution. The results are shown in the Fig. 3
where the errors of the numerical solutions are plotted versus h for different sets of parameters. One can easily see that the
variation of h in the range of ½�1;1� affects the approximate quantities; hence, the truncation error is improved. Absolute
error distributions with s ¼ h ¼ 0:25 are drawn at t ¼ 30 and t ¼ 60 in Fig. 4, respectively. It can be easily observed that
the maximum error is taken place around the peak amplitude of solitary waves. Finally, Fig. 5 presents numerical results
from t ¼ 0 to t ¼ 60, which are close to exact values. The present method can be well used to study a solitary wave at long
time.

The results of this section suffice to claim that both the new formulation and its numerical implementation offer a valid
approach toward the numerical investigation of a nonlinear wave phenomena.

5. Conclusion

The new formulation for a nonlinear wave proposed by coupling the Rosenau–KdV equation and the Rosenau–RLW equa-
tion is implemented numerically. The impact on the results of the actual value of a small parameter h in a nonlinear term is
judiciously evaluated by numerical experiments and show that, for h 2 ð�1;1Þ, the results are correct with the same signif-
icant digits as the truncation error. The new numerical model is applied to the Rosenau–KdV equation and the Rosenau–RLW
equation. We show that the new technique performs robustly and allows one to follow accurately of the soliton patterns. The
results are in good quantitative agreement with [10,22] in the common ranges of the parameters.

Moreover, the accuracy and stability of the numerical scheme for the solutions of the Rosenau–KdV–RLW equation can be
tested by using the exact solution. The present method gives an implicit linear system, which can be easily implemented.
This method shows the second-order accurate in time and space. The numerical experiments show that the present method
supports the analysis of convergence rate and the invariant properties can be verified by using the analytical expression.

The present paper shows that the Rosenau–KdV–RLW equation is a viable approach to a model of a nonlinear wave and
can serve as a basis for efficient numerical models.
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Two numerical models to obtain the solution of the KdV equation are proposed. Numerical tools, compact fourth-order and
standard fourth-order finite difference techniques, are applied to the KdV equation.The fundamental conservative properties of the
equation are preserved by the finite difference methods. Linear stability analysis of two methods is presented by the Von Neumann
analysis. The new methods give second- and fourth-order accuracy in time and space, respectively. The numerical experiments
show that the proposed methods improve the accuracy of the solution significantly.

1. Introduction

Researchers in the past have worked onmathematical models
explaining the behavior of a nonlinear wave phenomenon
which is one of the significant areas of applied research.
Derived by Korteweg and de Vries [1], the Korteweg-de Vries
eqaution (KdV equation) is one of the mathematical models
which are used to study a nonlinear wave phenomenon. The
KdV equation has been used in very wide applications, such
as magnetic fluid waves, ion sound waves, and longitudinal
astigmatic waves.

The KdV equation has been solved numerically by
various methods, such as the collocation method [2–4], the
finite element method [5, 6], the Galerkin method [7–10], the
spectral method [11, 12], and the finite differencemethod [13–
18]. To create a numerical tool, the finite difference method
for the KdV equation is developed until now. Zhu [13] solved
the KdV equation using the implicit difference method. The
scheme is unconditionally linearly stable and has a truncation
error of order 𝑂(𝜏 + ℎ2). Qu and Wang [14] developed the
alternating segment explicit-implicit (ASE-I) difference
scheme consisting of four asymmetric difference schemes, a
classical explicit scheme, and an implicit scheme, which is
unconditionally linearly stable by the analysis of linearization

procedure. Wang et al. [15] have proposed an explicit finite
difference scheme for the KdV equation.The scheme is more
stable than the Zabusky-Kruskal (Z-K) scheme [16] when it
is used to simulate the collisions of multisoliton.The stability
of the method in [15] was also discussed by using the frozen
coefficient Von Neumann analysis method. The time step
limitation of themethod in [15] is twice looser than that of the
Z-K method. Moreover, Kolebaje and Oyewande [17]
investigated the behavior of solitons generated from the KdV
equation that depends on the nature of the initial condition,
by using the Goda method [18], the Z-K method, and the
Adomian decomposition method.

The stability, accuracy, and efficiency, which are in con-
flict with each other, are the desired properties of the finite
difference scheme. Implicit approximation is requested in
order to reach the stability of the finite difference scheme. A
high-order accuracy in the spatial discretization is desired in
various problems.The stencil becomes wider with increasing
order of accuracy for a high-order method of a conventional
scheme. Furthermore, using an implicit method results in the
solution of an algebraic system for equations with extensive
bandwidth. It is required to improve schemes that have a
broad range of stability and high order of accuracy. Addi-
tionally, this leads to the solution of the system for linear
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equations with a pentadiagonal matrix, that is, the system
of linear equations arising from a standard second-order
discretization of a boundary value problem. A method to
conquer the conflict between stability, accuracy, and com-
putational cost is the development of a high-order compact
scheme.

In recent decades, many scientists concentrated upon the
difference method that makes a discrete analogue effective in
the fundamental conservation properties. This causes us to
create finite difference schemes which preserve the mass and
energy of solutions for the KdV equation. In this paper, two
fourth-order difference schemes are constructed for the one
dimensional KdV equation:

𝑢𝑡 + 𝛼𝑢𝑥𝑥𝑥 + 𝛾 (𝑢2)
𝑥
= 0, 𝑥𝐿 < 𝑥 < 𝑥𝑅, 0 ≤ 𝑡 ≤ 𝑇, (1)

with an initial condition

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑅, (2)

and boundary conditions

𝑢 (𝑥𝐿, 𝑡) = 𝑢 (𝑥𝑅, 𝑡) = 0,
𝑢𝑥 (𝑥𝐿, 𝑡) = 𝑢𝑥 (𝑥𝑅, 𝑡) = 0,
𝑢𝑥𝑥 (𝑥𝐿, 𝑡) = 𝑢𝑥𝑥 (𝑥𝑅, 𝑡) = 0,

0 ≤ 𝑡 ≤ 𝑇,
(3)

where 𝛼 and 𝛾 are any real number.When −𝑥𝐿 ≫ 0 and 𝑥𝑅 ≫0, the initial-boundary value problem (1)–(3) is consistent, so
the boundary condition (3) is reasonable. By assumptions, the
solitary wave solution and its derivatives have the following
asymptotic values, 𝑢 → 0 as 𝑥 → ±∞, and for 𝑛 ≥ 1,𝜕𝑛𝑢/𝜕𝑥𝑛 → 0 as 𝑥 → ±∞. Moreover, we obtain the solution
properties as follows [19]:

𝐼1 = ∫𝑥𝑅
𝑥𝐿

𝑢 (𝑥, 𝑡) 𝑑𝑥,
𝐼2 = ∫𝑥𝑅

𝑥𝐿

𝑢 (𝑥, 𝑡)2 𝑑𝑥,
𝐼3 = ∫𝑥𝑅

𝑥𝐿

[2𝛾𝑢 (𝑥, 𝑡)3 − 3𝛼 [𝑢 (𝑥, 𝑡)𝑥]2] .
(4)

The content of this paper is organized as follows. In the
next section, we create fourth-order finite difference schemes
for the KdV equation with the initial and boundary condi-
tions. The stability of finite difference schemes is discussed
and the conservative approximations are also given. The
results on validation of finite difference schemes are pre-
sented in Section 3, where we make a detailed comparison
with available data, to confirm and illustrate our theoretical
analysis. Finally, we finish our paper by conclusions in the last
section.

2. Difference Schemes

We start the discussion of finite difference schemes by
defining a grid of points in the (𝑥, 𝑡) plane. For simplicity, we

use a uniform grid for a discrete process with states identified
by 𝑥𝑗 = 𝑥𝐿+𝑗ℎwhich the grid size is ℎ = (𝑥𝑅−𝑥𝐿)/𝑀, where𝑀 is the number of grid points.Therefore, the grid will be the
points (𝑥𝑗, 𝑡𝑛) = (𝑥𝐿 + 𝑗ℎ, 𝑛𝜏) for arbitrary integers 𝑗 and 𝑛.
Here 𝜏 is a time increment (time step length). We write the
notation 𝑢𝑛𝑗 for a value of a function 𝑢 at the grid point(𝑥𝐿 + 𝑗ℎ, 𝑛𝜏).

In this paper, we give a complete description of our finite
difference schemes and an algorithm for the formulation
of the problem (1)–(3). We use the following notations for
simplicity:

𝑢𝑛𝑗 = 𝑢𝑛+1𝑗 + 𝑢𝑛−1𝑗2 , (𝑢𝑛𝑗)𝑡̂ = 𝑢𝑛+1𝑗 − 𝑢𝑛−1𝑗2𝜏 ,
(𝑢𝑛𝑗)𝑥 = 𝑢𝑛𝑗 − 𝑢𝑛𝑗−1ℎ , (𝑢𝑛𝑗)𝑥 = 𝑢𝑛𝑗+1 − 𝑢𝑛𝑗ℎ ,

(𝑢𝑛𝑗)𝑥 = 𝑢𝑛𝑗+1 − 𝑢𝑛𝑗−12ℎ , (𝑢𝑛𝑗) ̈𝑥 = 𝑢𝑛𝑗+2 − 𝑢𝑛𝑗−24ℎ ,
(𝑢𝑛, V𝑛) = ℎ𝑀−1∑

𝑗=1

𝑢𝑛𝑗V𝑛𝑗 , 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2 = (𝑢𝑛, 𝑢𝑛) ,
󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩∞ = max

1≤𝑗≤𝑀−1

󵄨󵄨󵄨󵄨󵄨𝑢𝑛𝑗 󵄨󵄨󵄨󵄨󵄨 .

(5)

As introduced in the following subsections, the tech-
niques for determining the value of numerical solution to (1)
are used.

2.1. Compact Fourth-Order Finite Difference Scheme. By set-
ting𝑤 = −𝛼𝑢𝑥𝑥𝑥 −𝛾(𝑢2)𝑥, (1) can be written as𝑤 = 𝑢𝑡. By the
Taylor expansion, we obtain

𝑤𝑛𝑗 = (𝜕𝑡𝑢)𝑛𝑗 = (𝑢𝑛𝑗)𝑡̂ + 𝑂 (𝜏2) , (6)

𝑤𝑛𝑗 = −𝛼[(𝑢𝑛𝑗)𝑥𝑥𝑥 − ℎ24 (𝜕5𝑥𝑢)𝑛𝑗]
− 𝛾 [[(𝑢𝑛𝑗)2]𝑥 − ℎ26 (𝜕3𝑥𝑢2)𝑛𝑗] + 𝑂 (ℎ4) .

(7)

From (6), we have

𝛼 (𝜕5𝑥𝑢)𝑛𝑗 = −𝛾 (𝜕3𝑥𝑢2)𝑛𝑗 − (𝜕2𝑥𝑤)𝑛
𝑗
. (8)

Substituting (8) into (7), we get

𝑤𝑛𝑗 = −𝛼 (𝑢𝑛𝑗)𝑥𝑥𝑥 − ℎ24 (𝜕2𝑥𝑤)𝑛
𝑗
− 𝛾 [(𝑢𝑛𝑗)2]𝑥

− ℎ212𝛾 (𝜕3𝑥𝑢2)𝑛𝑗 + 𝑂 (ℎ4) .
(9)

Using second-order accuracy for approximation, we obtain

(𝜕3𝑥𝑢2)𝑛𝑗 = [(𝑢𝑛𝑗)2]𝑥𝑥𝑥 + 𝑂 (ℎ2) ,
(𝜕2𝑥𝑤)𝑛

𝑗
= (𝑤𝑛𝑗)𝑥𝑥 + 𝑂 (ℎ2) . (10)
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The following method is the proposed compact finite differ-
ence scheme to solve the problem (1)–(3):

(𝑢𝑛𝑗)𝑡̂ + ℎ24 (𝑢𝑛𝑗)𝑥𝑥 𝑡̂ + 𝛼 (𝑢𝑛𝑗)𝑥𝑥𝑥 + 𝛾 [(𝑢𝑛𝑗) (𝑢𝑛𝑗)]𝑥
+ 𝛾ℎ212 [(𝑢𝑛𝑗) (𝑢𝑛𝑗)]𝑥𝑥𝑥 = 0,

(11)

where

𝑢0𝑗 = 𝑢0 (𝑥𝑗) , 0 ≤ 𝑗 ≤ 𝑀. (12)

Since the boundary conditions are homogeneous, they give

𝑢𝑛0 = 𝑢𝑛𝑀 = 0, (𝑢𝑛0)𝑥 = (𝑢𝑛𝑀)𝑥 = 0, 1 ≤ 𝑛 ≤ 𝑁. (13)

At this time, let 𝑒𝑛𝑗 = V𝑛𝑗 − 𝑢𝑛𝑗 where V𝑛𝑗 and 𝑢𝑛𝑗 are the
solution of (1)–(3) and (11)–(13), respectively.Then, we obtain
the following error equation:

𝑟𝑛𝑗 = (𝑒𝑛𝑗)𝑡̂ + ℎ24 (𝑒𝑛𝑗)𝑥𝑥 𝑡̂ + 𝛼 (𝑒𝑛𝑗)𝑥𝑥𝑥 + 𝛾 [(V𝑛𝑗) (V𝑛𝑗)]𝑥
− 𝛾 [(𝑢𝑛𝑗) (𝑢𝑛𝑗)]𝑥 + 𝛾ℎ212 [(V𝑛𝑗) (V𝑛𝑗)]𝑥𝑥𝑥
− 𝛾ℎ212 [(𝑢𝑛𝑗) (𝑢𝑛𝑗)]𝑥𝑥𝑥 ,

(14)

where 𝑟𝑛𝑗 denotes the truncation error. By using the Taylor
expansion, it is easy to see that 𝑟𝑛𝑗 = 𝑂(𝜏2+ℎ4) holds as 𝜏, ℎ →0.

The Von Neumann stability analysis of (11) with 𝑢𝑛𝑗 =𝜉𝑛𝑒𝑖𝑘𝑗ℎ, where 𝑖2 = −1 and 𝑘 is a wave number, gives the
following the amplification factor:

𝜉2 = 𝐴 − 𝑖𝜏𝐵𝐴 + 𝑖𝜏𝐵 , (15)

where

𝐴 = 6ℎ3 (cos (𝑘ℎ) + 1) ,
𝐵 = 12𝛼 (sin (2𝑘ℎ) − 2 sin (𝑘ℎ))

+ 𝛾ℎ2 (𝑢𝑛𝑗) (sin (4𝑘ℎ) + 10 sin (2𝑘ℎ)) .
(16)

The amplification factor which is a complex number has its
modulus equal to one; therefore the compact finite difference
scheme is unconditionally stable.

Theorem 1. Suppose 𝑢(𝑥, 𝑡) is smooth enough, then the scheme
(11)–(13) is conservative in a sense:

𝐼𝑛1 = ℎ2
𝑀−1∑
𝑗=1

(𝑢𝑛+1𝑗 + 𝑢𝑛𝑗) = 𝐼𝑛−11 = ⋅ ⋅ ⋅ = 𝐼01 , (17)

under assumptions 𝑢1 = 𝑢𝑀−1 = 0.

Proof. By multiplying (11) by ℎ, summing up for 𝑗 from 1 to𝑀−1, and considering the boundary condition and assuming𝑢1 = 𝑢𝑀−1 = 0, we get
ℎ2𝜏
𝑀−1∑
𝑗=1

(𝑢𝑛+1𝑗 − 𝑢𝑛−1𝑗 ) = 0. (18)

Then, this gives (17).

2.2. Standard Fourth-Order Finite Difference Scheme. By the
fact (𝑢2)𝑥 = (2/3)[𝑢𝑢𝑥+(𝑢2)𝑥] and using an implicit finite dif-
ference method, we propose a standard seven-point implicit
difference scheme for the problem (1)–(3):

(𝑢𝑛𝑗)𝑡̂ + 𝛼(32 (𝑢𝑛𝑗)𝑥𝑥𝑥 − 12 (𝑢𝑛𝑗)𝑥𝑥 ̈𝑥)
+ 2𝛾 [49 ((𝑢𝑛𝑗𝑢𝑛𝑗)𝑥 + 𝑢𝑛𝑗 (𝑢𝑛𝑗)𝑥) − 19 ((𝑢𝑛𝑗𝑢𝑛𝑗) ̈𝑥 + 𝑢𝑛𝑗 (𝑢𝑛𝑗) ̈𝑥)]

= 0,
(19)

where

𝑢0𝑗 = 𝑢0 (𝑥𝑗) , 0 ≤ 𝑗 ≤ 𝑀. (20)

Since the boundary conditions are homogeneous, we obtain

𝑢𝑛0 = 𝑢𝑛𝑀 = 0, (21)

4 (𝑢𝑛0)𝑥 − (𝑢𝑛0) ̈𝑥 = 4 (𝑢𝑛𝑀)𝑥 − (𝑢𝑛𝑀) ̈𝑥 = 0, (22)

− (𝑢𝑛−1)𝑥𝑥 + 14 (𝑢𝑛0)𝑥𝑥 − (𝑢𝑛1)𝑥𝑥
= − (𝑢𝑛𝑀−1)𝑥𝑥 14 (𝑢𝑛𝑀)𝑥𝑥 − (𝑢𝑛𝑀+1)𝑥𝑥
= 0, 1 ≤ 𝑛 ≤ 𝑁.

(23)

𝑢, 𝑢𝑥, and 𝑢𝑥𝑥 are required by the standard fourth-order
technique to be zero at the upstream and downstreambound-
aries because the method utilizes a seven-point finite differ-
ence scheme for the approximation of solution 𝑢. Through
the analytical technique of contrasting, (11) requires two
homogeneous boundary conditions only.

Now, let 𝑒𝑛𝑗 = V𝑛𝑗 − 𝑢𝑛𝑗 where V𝑛𝑗 and 𝑢𝑛𝑗 are the solution of
(1)–(3) and (19)–(22), respectively. Then, we obtain the fol-
lowing error equation:

(𝑒𝑛𝑗)𝑡̂ + 𝛼32 (𝑒𝑛𝑗)𝑥𝑥𝑥 − 𝛼12 (𝑒𝑛𝑗)𝑥𝑥 ̈𝑥
+ 8𝛾9 [((V𝑛𝑗V𝑛𝑗)𝑥 + V𝑛𝑗 (V𝑛𝑗)𝑥) − ((𝑢𝑛𝑗𝑢𝑛𝑗)𝑥 + 𝑢𝑛𝑗 (𝑢𝑛𝑗)𝑥)]
− 2𝛾9 [((V𝑛𝑗V𝑛𝑗) ̈𝑥 + V𝑛𝑗 (V𝑛𝑗) ̈𝑥) − ((𝑢𝑛𝑗𝑢𝑛𝑗) ̈𝑥 + 𝑢𝑛𝑗 (𝑢𝑛𝑗) ̈𝑥)] = 0,

(24)

where 𝑟𝑛𝑗 denotes the truncation error. By using the Taylor
expansion, it is easy to see that 𝑟𝑛𝑗 = 𝑂(𝜏2+ℎ4) holds as 𝜏, ℎ →0.
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The Von Neumann stability analysis of (19) with 𝑢𝑛𝑗 =𝜉𝑛𝑒𝑖𝑘𝑗ℎ gives the following amplification factor:

𝜉2 = 36ℎ3 − 𝑖𝜏𝐴36ℎ3 + 𝑖𝜏𝐴, (25)

where

𝐴 = 4𝛾ℎ2 (𝑢𝑛𝑗) (− sin (4𝑘ℎ) + 7 sin (2𝑘ℎ) + 8 sin (𝑘ℎ))
+ 9𝛼 (− sin (3𝑘ℎ) + 8 sin (2𝑘ℎ) − 13 sin (𝑘ℎ)) . (26)

The amplification factor which is a complex number
has its modulus equal to one; therefore the finite difference
scheme is unconditionally stable.

Theorem2. Suppose𝑢(𝑥, 𝑡) is smooth enough, then the scheme
(11)–(13) is conservative in a sense:

𝐼𝑛1 = ℎ2
𝑀−1∑
𝑗=1

(𝑢𝑛+1𝑗 + 𝑢𝑛𝑗)
+ 𝜏ℎ𝛾𝑀−1∑

𝑗=1

[49𝑢𝑛𝑗 (𝑢𝑛+1𝑗 )
𝑥
− 19𝑢𝑛𝑗 (𝑢𝑛+1𝑗 )

̈𝑥
]

= 𝐼𝑛−11 = ⋅ ⋅ ⋅ = 𝐼01 ,
(27)

under assumptions 𝑢1 = 𝑢2 = 𝑢𝑀−2 = 𝑢𝑀−1 = 0. Moreover,
the scheme (19)–(22) is conservative in a sense:

𝐼𝑛2 = 12 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2 + 12 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2 = 𝐼𝑛−12 = ⋅ ⋅ ⋅ = 𝐼02 . (28)

Proof. By multiplying (11) by ℎ, summing up for 𝑗 from 1 to𝑀−1, and considering the boundary condition and assuming𝑢1 = 𝑢2 = 𝑢𝑀−2 = 𝑢𝑀−1 = 0, we have
𝜏ℎ𝑀−1∑
𝑗=1

[89 (𝑢𝑛𝑗 (𝑢𝑛𝑗)𝑥) − 29 (𝑢𝑛𝑗 (𝑢𝑛+1𝑗 )
̈𝑥
)]

= 𝜏ℎ𝑀−1∑
𝑗=1

[49 (𝑢𝑛𝑗 (𝑢𝑛+1𝑗 )
𝑥
− 𝑢𝑛−1𝑗 (𝑢𝑛𝑗)𝑥)

−19 (𝑢𝑛𝑗 (𝑢𝑛+1𝑗 )
̈𝑥
− 𝑢𝑛−1𝑗 (𝑢𝑛𝑗) ̈𝑥)] .

(29)

As a result, we have

ℎ2
𝑀−1∑
𝑗=1

(𝑢𝑛+1𝑗 − 𝑢𝑛−1𝑗 )
+ 𝛾𝜏ℎ𝑀−1∑

𝑗=1

[49 (𝑢𝑛𝑗 (𝑢𝑛+1𝑗 )
𝑥
− 𝑢𝑛−1𝑗 (𝑢𝑛𝑗)𝑥)

− 19 (𝑢𝑛𝑗 (𝑢𝑛+1𝑗 )
̈𝑥
− 𝑢𝑛−1𝑗 (𝑢𝑛𝑗) ̈𝑥)] = 0.

(30)

Then, this gives (27). We then take an inner product between
(19) and 2𝑢𝑛. We obtain

12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1󵄩󵄩󵄩󵄩󵄩2) + 3𝛼2 ((𝑢𝑛)𝑥𝑥𝑥 , (𝑢𝑛))
− 𝛼2 ((𝑢𝑛)𝑥𝑥 ̈𝑥 , (𝑢𝑛)) + 2𝛾 (𝜑𝑛 (𝑢𝑛, 𝑢𝑛) , 𝑢𝑛) = 0, (31)

where

𝜑𝑛 (𝑢𝑛𝑗 , 𝑢𝑛𝑗) = 49 ((𝑢𝑛𝑗𝑢𝑛𝑗)𝑥 + 𝑢𝑛𝑗 (𝑢𝑛𝑗)𝑥)
− 19 ((𝑢𝑛𝑗 𝑢𝑛𝑖 ) ̈𝑥 + 𝑢𝑛𝑗 (𝑢𝑛𝑗) ̈𝑥) ,

(32)

by considering the boundary condition (13). According to

(𝑢𝑛𝑥𝑥𝑥, 𝑢𝑛) = 0,
(𝑢𝑛𝑥𝑥 ̈𝑥, 𝑢𝑛) = 0, (33)

indeed,

(𝜑𝑛 (𝑢𝑛, 𝑢𝑛) , 𝑢𝑛)
= 4ℎ9
𝑀−1∑
𝑗=1

[𝑢𝑛𝑗 (𝑢𝑛+1𝑗 )
𝑥
+ (𝑢𝑛𝑗𝑢𝑛+1𝑗 )

𝑥
] 𝑢𝑛+1𝑗

− ℎ9
𝑀−1∑
𝑗=1

[𝑢𝑛𝑗 (𝑢𝑛+1𝑗 )
̈𝑥
+ (𝑢𝑛𝑗𝑢𝑛+1𝑗 )

̈𝑥
] 𝑢𝑛+1𝑗

= 29
𝑀−1∑
𝑗=1

[(𝑢𝑛𝑗𝑢𝑛+1𝑗 𝑢𝑛+1𝑗+1 − 𝑢𝑛𝑗−1𝑢𝑛+1𝑗−1𝑢𝑛+1𝑗 )
+ (𝑢𝑛𝑗+1𝑢𝑛+1𝑗 𝑢𝑛+1𝑗+1 − 𝑢𝑛𝑗𝑢𝑛+1𝑗−1𝑢𝑛+1𝑗 )]

− 136
𝑀−1∑
𝑗=1

[(𝑢𝑛𝑗𝑢𝑛+1𝑗 𝑢𝑛+1𝑗+2 − 𝑢𝑛𝑗−2𝑢𝑛+1𝑗−2𝑢𝑛+1𝑗 )
+ (𝑢𝑛𝑗+2𝑢𝑛+1𝑗 𝑢𝑛+1𝑗+2 − 𝑢𝑛𝑗𝑢𝑛+1𝑗−2𝑢𝑛+1𝑗 )]

= 0.

(34)

Therefore,

12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1󵄩󵄩󵄩󵄩󵄩2) = 0. (35)

Then, this gives (28).

A conservative approximation confirms that the energy
would not increase in time, which allows making the scheme
stable.

3. Numerical Experiments

In this section, we present numerical experiments on the
classical KdV equation when 𝛼 = 1 and 𝛾 = 3 with both dif-
ference schemes. The accuracy of the methods is measured
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Table 1: Error and convergence rate of the compact finite difference scheme (11) at 𝑡 = 60, ℎ = 0.5, and 𝜏 = 0.25.

𝜏, ℎ 𝜏/4, ℎ/2 𝜏/16, ℎ/4‖𝑒‖ 1.39538 × 10−2 7.15872 × 10−4 4.49013 × 10−5
Rate — 4.28481 3.99487‖𝑒‖∞ 7.64991 × 10−3 3.32024 × 10−4 2.08869 × 10−5
Rate — 4.52608 3.99062

Table 2: Error and convergence rate of the standard fourth-order finite difference scheme (19) at 𝑡 = 60, ℎ = 0.5, and 𝜏 = 0.25.

𝜏, ℎ 𝜏/4, ℎ/2 𝜏/16, ℎ/4‖𝑒‖ 1.59924 × 10−1 9.79739 × 10−3 6.09352 × 10−4
Rate — 4.02885 4.00705‖𝑒‖∞ 8.63999 × 10−2 5.33149 × 10−3 3.33067 × 10−4
Rate — 4.01842 4.00066

Table 3: Invariants of 𝐼1, 𝐼2, and 𝐼3 of the compact fourth-order finite difference scheme (11).

𝑡 𝐼1 𝐼2 𝐼3
0 2.0000000000 0.6666666667 1.2058836346
10 1.9999449243 0.6666680888 1.2059201473
20 2.0001106778 0.6666680896 1.2059186978
30 1.9999055324 0.6666679386 1.2059155167
40 2.0001880153 0.6666680804 1.2059193791
50 1.9999670401 0.6666680255 1.2059262538
60 1.9998768932 0.6666679688 1.2059162036

by the comparison of numerical solutions with the exact
solutions as well as other numerical solutions from methods
in the literatures, by using ‖ ⋅ ‖ and ‖ ⋅ ‖∞ norm. The initial
conditions for each problem are chosen in such a way that the
exact solutions can be explicitly computed. In case 𝛼 = 1 and𝛾 = 3, the KdV equation has the analytical solution as

𝑢 (𝑥, 𝑡) = 0.5 sech2 (0.5 (𝑥 − 𝑡)) . (36)

Therefore, the initial condition of (1) takes the form

𝑢0 (𝑥) = 0.5 sech2 (0.5 (𝑥)) . (37)

For these particular experiments, we set 𝑥𝐿 = −40,𝑥𝑅 = 100, and 𝑇 = 60. We make a comparison between the
compact fourth-order finite difference scheme (11) and the
standard fourth-order finite difference scheme (19). So, the
results on this experiment in terms of errors at the time 𝑡 = 60
is reported in Tables 1 and 2, respectively. It is clear that the
results obtained by the compact fourth-order difference
scheme (11) are more accurate than the ones obtained by the
standard fourth-order difference scheme but the estimation
of the rate of convergence for both schemes is close to the the-
oretically predicted fourth-order rate of convergence. It can
be seen that the computational efficiency of the scheme (11) is
better than that of the scheme (19), in terms of error.

Conservative approximation, that is a supplementary
constraint, is essential for a suitable difference equation to
make a discrete analogue effective to the fundamental con-
servation properties of the governing equation.Then, we can

calculate three conservative approximations by using discrete
forms as follows:

𝐼1 ≈ ℎ2
𝑀∑
𝑗=1

(𝑢𝑛+1𝑗 + 𝑢𝑛𝑗) ,
𝐼2 ≈ ℎ2

𝑀∑
𝑗=1

[(𝑢𝑛+1𝑗 )2 + (𝑢𝑛𝑗)2] ,

𝐼3 ≈ ℎ𝑀∑
𝑗=1

[[2𝛾((𝑢𝑛+1𝑗 )3 + (𝑢𝑛𝑗)32 )

−3𝛼((𝑢𝑛+1𝑗 )2
𝑥
+ (𝑢𝑛𝑗)2𝑥2 )]] .

(38)

Here, we take ℎ = 0.25 and 𝜏 = ℎ2 at 𝑡 ∈ [0, 60] for the com-
pact fourth-order finite difference scheme (11) and the stan-
dard fourth-order finite difference scheme (19) and results
are presented in Tables 3 and 4, respectively. The numerical
results show that both two schemes can preserve the discrete
conservation properties.

The second-order explicit scheme (Z-K scheme) and the
second-order implicit scheme (Goda scheme) are used for
testing the numerical performance of the new schemes. In
Figure 1, we see that the Z-K scheme computes reasonable
solutions using ℎ = 0.1 and 𝜏 = 0.01, except that the approx-
imate solution at 𝑡 = 0.1 does not maintain the shape of
the exact solution. Similar calculations at 𝑡 = 0.1 and 𝑡 = 0.11
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Table 4: Invariants of 𝐼1, 𝐼2, and 𝐼3 of the standard fourth-order finite difference scheme (19).

𝑡 𝐼1 𝐼2 𝐼3
0 2.0000000000 0.6666666667 1.2058836346
10 2.0000527573 0.6666666667 1.2059115241
20 2.0000219448 0.6666666667 1.2059125783
30 1.9999931738 0.6666666667 1.2059105915
40 2.0001264687 0.6666666667 1.2059099477
50 1.9999456225 0.6666666667 1.2059116281
60 1.9998875333 0.6666666667 1.2059106816
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Figure 1: Explicit solutions using the Z-K scheme at 𝑡 ∈ [0, 0.1],𝑥𝐿 = −40, 𝑥𝑅 = 100, ℎ = 0.1, and 𝜏 = 0.01.
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Figure 2: Explicit solution using the Z-K scheme at 10 time steps,𝑥𝐿 = −40, 𝑥𝑅 = 100, ℎ = 0.1, and 𝜏 = 0.01.

are demonstrated in Figures 2 and 3, respectively. The figures
show that numerical waveforms begin to oscillate at 𝑡 = 0.1
and show a blowup when 𝑡 = 0.11. According to the results,
the Z-K scheme is numerically unstable, regardless of how
small time increment is.

As shown in Figure 2, the results of the Z-K scheme are
greatly fluctuating at 10 time steps. Therefore, It can not be
used to predict the behavior of the solution at long time.
Figures 4 and 5 present the numerical solutions by using the
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Figure 3: Explicit solution using the Z-K scheme at 11 time steps,𝑥𝐿 = −40, 𝑥𝑅 = 100, ℎ = 0.1, and 𝜏 = 0.01.
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Figure 4: Implicit solutions using the Goda scheme at 𝑡 ∈ [0, 10],𝑥𝐿 = −40, 𝑥𝑅 = 100, ℎ = 0.5, and 𝜏 = 0.25.
Goda scheme.We see that the Goda scheme can run very well
at ℎ = 0.5 and 𝜏 = 0.25. However, the result is still slightly
oscillate at the left side of the solution.

Using the same parameters as the Goda scheme, Figures 6
and 7 present waveforms with 𝑡 ∈ [0, 10]. The result obtained
by the fourth-order difference schemes is greatly improved,
compared to that obtained by the second-order schemes.

Figure 8 shows the numerical solution at 𝑡 = 200. The
result from the compact fourth-order difference scheme (11)
is almost perfectly sharp. From the point of view for the long
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Figure 5: Implicit solution using the Goda scheme at 𝑡 = 10, 𝑥𝐿 =−40, 𝑥𝑅 = 100, ℎ = 0.5, and 𝜏 = 0.25.
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Figure 6: Numerical solutions using the scheme (11) at 𝑡 ∈ [0, 10],𝑥𝐿 = −40, 𝑥𝑅 = 100, ℎ = 0.5, and 𝜏 = 0.25.

time behavior of the resolution, the compact fourth-order
difference scheme (11) can be seen to be much better than the
standard implicit fourth-order scheme (19).

The results of this section suffice to claim that both
numerical implementations offer a valid approach toward the
numerical investigation of a solution of the KdV equation,
especially for the compact finite difference method.

4. Conclusion

Two conservative finite difference schemes for the KdV equa-
tion are introduced and analyzed. The construction of the
compact finite difference scheme (11) requires only a regular
five-point stencil at higher time level, which is similar to the
standard second-order Crank-Nicolson scheme, the explicit
scheme [16], and the implicit scheme [18]. However, the con-
struction of the standard fourth-order scheme (19) requires a
seven-point stencil at higher time level.The accuracy and sta-
bility of the numerical schemes for the solutions of the KdV

0
2

4
6

8
10

0

20

0

0.1

0.2

0.3

0.4

0.5

0.6

t
x −20

u
(x
,t
)

Figure 7: Numerical solutions using the scheme (19) at 𝑡 ∈ [0, 10],𝑥𝐿 = −40, 𝑥𝑅 = 100, ℎ = 0.5, and 𝜏 = 0.25.
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Figure 8: Numerical solutions at 𝑡 = 200, 𝑥𝐿 = −40, 𝑥𝑅 = 300,ℎ = 0.5, and 𝜏 = 0.25.
equation can be tested by using the exact solution. In the
paper, the numerical experiments show that the present
methods support the analysis of convergence rate. The per-
formance of the fourth-order schemes is well efficient at long
time by comparing with the second-order schemes [16, 18].
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We introduce a new technique, a three-level average linear-implicit finite difference method, for solving the Rosenau-Burgers
equation. A second-order accuracy on both space and time numerical solution of the Rosenau-Burgers equation is obtained using a
five-point stencil. We prove the existence and uniqueness of the numerical solution. Moreover, the convergence and stability of the
numerical solution are also shown.The numerical results show that our method improves the accuracy of the solution significantly.

1. Introduction

Anonlinearwave phenomenon is the important area of scien-
tific research.There are mathematical models which describe
the dynamic of wave behaviors such as the KdV equation,
the Rosenau equation, and many others. The KdV equation
cannot explain the wave-wave and wave-wall interactions
for the model of the dynamics of compact discrete systems.
Therefore, Rosenau [1, 2] presented the novel model, which is
more suitable than the KdV equation, as follows:

𝑢𝑡 + 𝑢𝑥𝑥𝑥𝑥𝑡 + 𝑢𝑥 + 𝑢𝑢𝑥 = 0. (1)

The existence and uniqueness of the solution for this equation
were proved by Park [3]. Many methods have been applied to
find a numerical solution of the Rosenau equation such as a
discontinuousGalerkinmethod [4], a finite element Galerkin
method [5], and a finite difference method [6–8]. Numerical
solutions and error estimates in ‖ ⋅ ‖ and ‖ ⋅ ‖∞ norms were
obtained for the Rosenau equation in one space variable [9].

As for Burgers’ equation,

𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 0, (2)

this equation has been studied in the evolution equation
describing a wave propagation. Moreover, the simulation for
Burgers’ equation was the very first step of conceptual under-
standing of themethod for the computations of complex flow.

The existence and uniqueness of the generalized Burgers’
equation have been shown with certain conditions.

In this paper, we consider the following initial-boundary
value problem of the generalized Rosenau-Burgers equation:

𝑢𝑡 + 𝑢𝑥𝑥𝑥𝑥𝑡 − 𝛼𝑢𝑥𝑥 + 𝛽𝑢𝑥 + (𝑢𝑝)𝑥 = 0,
0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 𝑇, (3)

with an initial condition

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 0 ≤ 𝑥 ≤ 1, (4)

and boundary conditions

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0, 𝑢𝑥𝑥 (0, 𝑡) = 𝑢𝑥𝑥 (1, 𝑡) = 0,
0 ≤ 𝑡 ≤ 𝑇, (5)

where 𝛼 > 0, 𝛽 ∈ R, and 𝑝 ≥ 2 is an integer.
This equation was proposed in 1989 to describe the wave

in shallow water. It differs from Burgers’ equation by an addi-
tional strongly dissipative term 𝑢𝑥𝑥𝑥𝑥𝑡. The behavior of the
solution to the Rosenau-Burgers equation with the Cauchy
problem has been well studied for the past years [10–13].
Several second-order accuracy finite difference methods in
space were used for finding numerical solutions on both
linear and nonlinear terms [14–20].
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Hu et al. [14] have proposed the Crank-Nicolson dif-
ference scheme, nonlinear scheme, for the Rosenau-Burgers
equation. Hu et al. [18] have proposed a three-level average
implicit finite difference scheme for the Rosenau-Burgers
equation. The schemes are obviously implicit and require
a heavy calculation for each iteration. Pan and Zhang [20]
have proposed a three-level linear-implicit difference scheme.
The schemes, we have mentioned above, are second-order
accuracy on both time and space.

In this paper, we propose a modified three-level average
linear-implicit finite difference method for the Rosenau-
Burgers equation. By comparing with the existence second-
order accuracy finite difference scheme on a test problem, our
new technique gives a better maximal error of the numerical
solutions. A second-order accuracy on both space and time
numerical solution of the equation is obtained using a five-
point stencil.

This paper is organized into 7 sections. In Section 2, we
describe our modified finite different scheme. In Section 3,
we discuss the solvability of our scheme. The existence and
uniqueness are also proven in this section. In Section 4, we
give complete proofs on the convergence and stability of
the finite difference scheme which is second-order accuracy
on both space and time. The numerical results are given in
Section 5 to confirm and illustrate our theoretical analysis.
Then we finish our paper by concluding remarks.

2. Modified Finite Difference Scheme

In this section,we give a complete description of ourmodified
finite difference scheme and an algorithm for the formulation
of the problem (3)–(5).We first describe our solution domain
and its grid.We define the solution domain to be𝑄 = {(𝑥, 𝑡) |0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 𝑇}, which is covered by a uniform grid𝑄ℎ = {(𝑥𝑖, 𝑡𝑛) | 𝑥𝑖 = 𝑖ℎ, 𝑡𝑛 = 𝑛𝜏, 𝑖 = 0, . . . , 𝐽, 𝑛 = 0, . . . , 𝑁},
with spacings ℎ = 1/𝐽 and 𝜏 = 𝑇/𝑁. Denote 𝑢𝑛𝑖 ≈ 𝑢(𝑖ℎ, 𝑛𝜏)
and 𝑍0ℎ = {𝑢 = (𝑢𝑖) | 𝑢0 = 𝑢𝐽 = 0, 𝑖 = −1, 0, . . . , 𝐽, 𝐽 + 1}.
Throughout this paper, we will denote𝐶 as a generic constant
independent of step sizes 𝜏 and ℎ. For nonnegative integer𝑘, let 𝐻𝑘(Ω) denote the usual Sobolev space of real-valued
functions defined on Ω. We define the following Sobolev
space:

𝐻𝑘0 (Ω) = {𝑢 ∈ 𝐻𝑘 (Ω) :
𝜕𝑖𝑢𝜕𝑢𝑖 = 0 on 𝜕Ω, 𝑖 = 0, 1, . . . , 𝑘 − 1} .

(6)

We use the following notations for the simplicity:

𝑢𝑛𝑖 = 𝑢𝑛+1𝑖 + 𝑢𝑛−1𝑖2 , (𝑢𝑛𝑖 )𝑡̂ = 𝑢𝑛+1𝑖 − 𝑢𝑛−1𝑖2𝜏 ,
(𝑢𝑛𝑖 )𝑥 = 𝑢𝑛𝑖+1 − 𝑢𝑛𝑖ℎ , (𝑢𝑛𝑖 )𝑥 = 𝑢𝑛𝑖 − 𝑢𝑛𝑖−1ℎ ,
(𝑢𝑛𝑖 )𝑥 = 𝑢𝑛𝑖+1 − 𝑢𝑛𝑖−12ℎ , (𝑢𝑛𝑖 )𝑥𝑥 = 𝑢𝑛𝑖+1 − 2𝑢𝑛𝑖 + 𝑢𝑛𝑖−1ℎ2 ,

(𝑢𝑛, V𝑛) = ℎ𝐽−1∑
𝑖=1

𝑢𝑛𝑖 V𝑛𝑖 , 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2 = (𝑢𝑛, 𝑢𝑛) ,
󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩∞ = max

1≤𝑖≤𝐽−1

󵄨󵄨󵄨󵄨𝑢𝑛𝑖 󵄨󵄨󵄨󵄨 .
(7)

Since (𝑢𝑝)𝑥 = 𝑝/(𝑝 + 1)[𝑢𝑝−1𝑢𝑥 + (𝑢𝑝)𝑥], the following finite
difference scheme solves the problem (3)–(5):

(𝑢𝑛𝑖 )𝑡̂ + ℎ26 (𝑢𝑛𝑖 )𝑥𝑥 𝑡̂ − 𝛼ℎ
2

12 (𝑢𝑛𝑖 )𝑥𝑥𝑥𝑥 + (𝑢𝑛𝑖 )𝑥𝑥𝑥𝑥 𝑡̂ − 𝛼(𝑢𝑛𝑖 )𝑥𝑥
+ 𝛽(𝑢𝑛𝑖 )𝑥 + 𝜓 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) = 0, 1 ≤ 𝑖 ≤ 𝐽 − 1,

(8)

𝑢𝑛0 = 𝑢𝑛𝐽 = 0, (𝑢𝑛0)𝑥𝑥 = (𝑢𝑛𝐽)𝑥𝑥 = 0, 1 ≤ 𝑛 ≤ 𝑁, (9)

𝑢0𝑖 = 𝑢0 (𝑥𝑖) , (10)
where

𝜓 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) = 𝑝𝑝 + 1 [(𝑢𝑛𝑖 )𝑝−1(𝑢𝑛𝑖 )𝑥 + ((𝑢𝑛𝑖 )𝑝−1𝑢𝑛𝑖 )𝑥] . (11)

The following lemmas are some properties of the above
finite difference scheme which can be obtained directly from
the definition. They are essential for existence, uniqueness,
convergence, and stability of our numerical solution.

Lemma 1 (Hu et al. [14]). For any two mesh functions 𝑢, V ∈𝑍0ℎ, we have(𝑢𝑥, V) = − (𝑢, V𝑥) , (V, 𝑢𝑥𝑥) = − (V𝑥, 𝑢𝑥) ,
(𝑢, 𝑢𝑥𝑥) = − (𝑢𝑥, 𝑢𝑥) = −󵄩󵄩󵄩󵄩𝑢𝑥󵄩󵄩󵄩󵄩2. (12)

Furthermore, if (𝑢0)𝑥𝑥 = (𝑢𝐽)𝑥𝑥 = 0, then
(𝑢, 𝑢𝑥𝑥𝑥𝑥) = 󵄩󵄩󵄩󵄩𝑢𝑥𝑥󵄩󵄩󵄩󵄩2. (13)

Lemma 2 (discrete Sobolev’s inequality [9]). There exist con-
stants 𝐶1 and 𝐶2 such that󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩∞ ≤ 𝐶1 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 + 𝐶2 󵄩󵄩󵄩󵄩𝑢𝑛𝑥󵄩󵄩󵄩󵄩 . (14)

The following theorem guarantees that the numerical
solution obtained from scheme (8)-(9) is bounded.

Theorem 3. Suppose 𝑢0 ∈ 𝐻20 [0, 𝐿]. Then there is an estima-
tion for the solution 𝑢𝑛 of the scheme (8)-(9) that satisfies󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 ≤ 𝐶, 󵄩󵄩󵄩󵄩𝑢𝑛𝑥𝑥󵄩󵄩󵄩󵄩 ≤ 𝐶 (15)
which imply ‖𝑢𝑛‖∞ ≤ 𝐶 for some 𝐶 ∈ R.
Proof. Consider the inner product between (8) and 2𝑢𝑛 ≡(𝑢𝑛+1 + 𝑢𝑛−1). According to Lemma 1, we have

12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1󵄩󵄩󵄩󵄩󵄩2) − ℎ
2

12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1𝑥 󵄩󵄩󵄩󵄩󵄩2)
− 𝛼ℎ26 󵄩󵄩󵄩󵄩𝑢𝑛𝑥𝑥󵄩󵄩󵄩󵄩2 + 12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2)
+ 2𝛼󵄩󵄩󵄩󵄩𝑢𝑛𝑥󵄩󵄩󵄩󵄩2 + 𝛽 (𝑢𝑛𝑥, 2𝑢𝑛) + (𝜓 (𝑢𝑛, 𝑢𝑛) , 2𝑢𝑛) = 0.

(16)
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By a direct calculation and the boundary condition (9), we
have

(𝑢𝑛𝑥, 2𝑢𝑛) = 2ℎ𝐽−1∑
𝑖=1

[ 12ℎ (𝑢𝑛𝑖+1 − 𝑢𝑛𝑖−1) 𝑢𝑛𝑖 ]
= 𝐽−1∑
𝑖=1

𝑢𝑛𝑖 𝑢𝑛𝑖+1 − 𝐽−1∑
𝑖=1

𝑢𝑛𝑖−1𝑢𝑛𝑖 = 0.
(17)

Furthermore, by using the definition of the inner product

(𝜓 (𝑢𝑛, 𝑢𝑛) , 2𝑢𝑛)
= 2𝑝𝑝 + 1ℎ

𝐽−1∑
𝑖=1

[(𝑢𝑛𝑖 )𝑝−1(𝑢𝑛𝑖 )𝑥 + ((𝑢𝑛𝑖 )𝑝−1𝑢𝑛𝑖 )𝑥] 𝑢𝑛𝑖
= 𝑝𝑝 + 1

𝐽−1∑
𝑖=1

[(𝑢𝑛𝑖 )𝑝−1 (𝑢𝑛𝑖+1 − 𝑢𝑛𝑖−1) + (𝑢𝑛𝑖+1)𝑝−1𝑢𝑛𝑖+1
− (𝑢𝑛𝑖−1)𝑝−1𝑢𝑛𝑖−1] 𝑢𝑛𝑖

= 𝑝𝑝 + 1
𝐽−1∑
𝑖=1

[(𝑢𝑛𝑖 )𝑝−1𝑢𝑛𝑖+1𝑢𝑛𝑖 − (𝑢𝑛𝑖−1)𝑝−1𝑢𝑛𝑖 𝑢𝑛𝑖−1]
− 𝑝𝑝 + 1

𝐽−1∑
𝑖=1

[(𝑢𝑛𝑖 )𝑝−1𝑢𝑛𝑖 𝑢𝑛𝑖−1− (𝑢𝑛𝑖+1)𝑝−1𝑢𝑛𝑖+1𝑢𝑛𝑖 ] = 0.

(18)

From (17) and (18), (16) can be rewritten as

12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1󵄩󵄩󵄩󵄩󵄩2) − ℎ
2

12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1𝑥 󵄩󵄩󵄩󵄩󵄩2)
− 𝛼ℎ26 󵄩󵄩󵄩󵄩𝑢𝑛𝑥𝑥󵄩󵄩󵄩󵄩2 + 12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2)
+ 2𝛼󵄩󵄩󵄩󵄩𝑢𝑛𝑥󵄩󵄩󵄩󵄩2 = 0.

(19)

Therefore,

(󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1󵄩󵄩󵄩󵄩󵄩2) − ℎ26 (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1𝑥 󵄩󵄩󵄩󵄩󵄩2)
+ (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2) ≤ 𝛼𝜏ℎ26 (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2) .

(20)

We now define

𝐸𝑛 ≡ (󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1󵄩󵄩󵄩󵄩󵄩2) − ℎ26 (󵄩󵄩󵄩󵄩𝑢𝑛𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1𝑥 󵄩󵄩󵄩󵄩󵄩2)
+ (󵄩󵄩󵄩󵄩𝑢𝑛𝑥𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑢𝑛−1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2) .

(21)

Then inequality (20) can be rewritten as follows:

𝐸𝑛+1 − 𝐸𝑛 ≤ 𝜏𝐶 (𝐸𝑛+1 + 𝐸𝑛) . (22)

If 𝜏 is sufficiently small which satisfies 𝜏 ≤ (𝑘 − 2)/𝑘𝐶 and𝑘 > 2, then
𝐸𝑛+1 ≤ (1 + 𝜏𝐶)(1 − 𝜏𝐶)𝐸𝑛 ≤ (1 + 𝜏𝑘𝐶) 𝐸𝑛 ≤ (1 + 𝜏𝑘𝐶)𝑛𝐸1

≤ exp (𝑘𝐶𝑇) 𝐸1. (23)

Hence,

(󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2) − ℎ26 (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥 󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑢𝑛𝑥󵄩󵄩󵄩󵄩2)
+ (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑢𝑛𝑥𝑥󵄩󵄩󵄩󵄩2) ≤ 𝐶.

(24)

By using Lemma 1 and the Cauchy-Schwarz inequality, we
arrive at 󵄩󵄩󵄩󵄩𝑢𝑛𝑥󵄩󵄩󵄩󵄩2 ≤ 12 (󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑢𝑛𝑥𝑥󵄩󵄩󵄩󵄩2) . (25)

Then, we get

(1 − ℎ212) [(󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2) + (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑢𝑛𝑥𝑥󵄩󵄩󵄩󵄩2)] ≤ 𝐶.
(26)

If ℎ is sufficiently small in which (1 − ℎ2/12) > 0, we arrive at
that 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩 ≤ 𝐶, 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩 ≤ 𝐶. (27)

From (25), it follows that ‖𝑢𝑛+1𝑥 ‖ ≤ 𝐶. By Lemma 2, it is obvi-
ous that ‖𝑢𝑛+1‖∞ ≤ 𝐶 and that completes the proof.

3. Solvability

In this section, we prove the solvability of a solution for
scheme (8). This guarantees the existence and uniqueness of
our numerical solution.

Theorem 4. The finite difference scheme (8)–(10) is uniquely
solvable.

Proof. Toprove the theorem,we proceed by themathematical
induction.We assume that 𝑢0, 𝑢1, . . . , 𝑢𝑛 satisfy the difference
scheme (8). Indeed, 𝑢1 can be computed by an available
second-order accuracy method. Next we prove that there
exists 𝑢𝑛+1 which satisfied (8). Consider

12𝜏𝑢𝑛+1𝑖 − (𝛼2 − ℎ
2

12𝜏) (𝑢𝑛+1𝑖 )𝑥𝑥 + ( 12𝜏 − 𝛼ℎ
2

24 ) (𝑢𝑛+1𝑖 )𝑥𝑥𝑥𝑥
+ 𝛽2 (𝑢𝑛+1𝑖 )𝑥 + 12𝜓 (𝑢𝑛𝑖 , 𝑢𝑛+1𝑖 ) = 0, 1 ≤ 𝑖 ≤ 𝐽 − 1,

(28)

where

𝜓 (𝑢𝑛𝑖 , 𝑢𝑛+1𝑖 ) = 𝑝𝑝 + 1 [(𝑢𝑛𝑖 )𝑝−1(𝑢𝑛+1𝑖 )𝑥 + ((𝑢𝑛𝑖 )𝑝−1𝑢𝑛+1𝑖 )𝑥] .
(29)

By taking the inner product of (28) with 𝑢𝑛+1 and using
Lemma 1, we obtain

12𝜏󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2 + (𝛼2 − ℎ
2

12𝜏) 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥 󵄩󵄩󵄩󵄩󵄩2 + ( 12𝜏 − 𝛼ℎ
2

24 ) 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2
+ 12 (𝜓 (𝑢𝑛, 𝑢𝑛+1) , 𝑢𝑛+1) = 0.

(30)



4 Advances in Mathematical Physics

Notice that

(𝜓 (𝑢𝑛, 𝑢𝑛+1) , 𝑢𝑛+1)
= ℎ𝑝𝑝 + 1

𝐽−1∑
𝑖=1

[(𝑢𝑛𝑖 )𝑝−1(𝑢𝑛+1𝑖 )𝑥 +((𝑢𝑛𝑖 )𝑝−1𝑢𝑛+1𝑖 )𝑥] 𝑢𝑛+1𝑖
= 𝑝2 (𝑝 + 1)

𝐽−1∑
𝑖=1

[(𝑢𝑛𝑖 )𝑝−1 (𝑢𝑛+1𝑖+1 − 𝑢𝑛+1𝑖−1 )
+ (𝑢𝑛𝑖+1)𝑝−1𝑢𝑛+1𝑖+1 − (𝑢𝑛𝑖−1)𝑝−1𝑢𝑛+1𝑖−1 ] 𝑢𝑛+1𝑖

= 𝑝2 (𝑝 + 1)
𝐽−1∑
𝑖=1

[(𝑢𝑛𝑖 )𝑝−1𝑢𝑛+1𝑖+1 𝑢𝑛+1𝑖 − (𝑢𝑛𝑖−1)𝑝−1𝑢𝑛+1𝑖−1 𝑢𝑛+1𝑖 ]
− 𝑝2 (𝑝 + 1)

𝐽−1∑
𝑖=1

[(𝑢𝑛𝑖 )𝑝−1𝑢𝑛+1𝑖−1 𝑢𝑛+1𝑖 − (𝑢𝑛𝑖+1)𝑝−1𝑢𝑛+1𝑖+1 𝑢𝑛+1𝑖 ] = 0.
(31)

Hence,

󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2 + (𝛼𝜏 − ℎ26 ) 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥 󵄩󵄩󵄩󵄩󵄩2 + (1 − 𝛼𝜏ℎ
2

12 ) 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 = 0.
(32)

Similar to the proof of inequality (25), (32) can be rewritten
as

(1 − ℎ212) (󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2) ≤ 𝛼𝜏ℎ
2

12 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2. (33)

For ℎ and 𝜏 are sufficiently small which satisfies 1−(ℎ2/12)(1−𝛼𝜏) > 0, we obtain 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 ≤ 0. (34)

It follows that 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1󵄩󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩󵄩𝑢𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 = 0. (35)

This implies that there uniquely exists a trivial solution sat-
isfying (8)–(10). Hence, 𝑢𝑛+1 is uniquely solvable. This com-
pletes the proof.

4. Convergence and Stability

In this section, the second-order rate of convergence and
stability of scheme (8)-(9) are guaranteed and explicitly
proved. Let 𝑒𝑛𝑖 = V𝑛𝑖 − 𝑢𝑛𝑖 , where V𝑛𝑖 and 𝑢𝑛𝑖 are the solutions
of the problem (3)–(5) and the problem (8)-(9), respectively.
We arrive at the following error equation:

𝑟𝑛𝑖 = (𝑒𝑛𝑖 )𝑡̂ + ℎ26 (𝑒𝑛𝑖 )𝑥𝑥 𝑡̂ − 𝛼ℎ
2

12 (𝑒𝑛𝑖 )𝑥𝑥𝑥𝑥 + (𝑒𝑛𝑖 )𝑥𝑥𝑥𝑥 𝑡̂ − 𝛼(𝑒𝑛𝑖 )𝑥𝑥
+ 𝛽(𝑒𝑛𝑖 )𝑥 + 𝑝𝑝 + 1 [(V𝑛𝑖 )𝑝−1(V𝑛𝑖 )𝑥 + ((V𝑛𝑖 )𝑝−1V𝑛𝑖 )𝑥]
− 𝑝𝑝 + 1 [(𝑢𝑛𝑖 )𝑝−1(𝑢𝑛𝑖 )𝑥 + ((𝑢𝑛𝑖 )𝑝−1𝑢𝑛𝑖 )𝑥] ,

(36)

where 𝑟𝑛𝑖 denotes the truncation error. By the Taylor expan-
sion, we easily obtain that 𝑟𝑛𝑖 = 𝑂(𝜏2 + ℎ2) holds as 𝜏, ℎ →0. The following lemmas are well known and useful for the
proofs of the convergence and stability.

Lemma 5 (Zheng and Hu [16]). Suppose that 𝑢 ∈ 𝐻20 [0, 𝐿].
Then the solution of the initial-boundary value problem (3)–
(5) satisfies

‖𝑢‖𝐿2 ≤ 𝐶, 󵄩󵄩󵄩󵄩𝑢𝑥𝑥󵄩󵄩󵄩󵄩𝐿2 ≤ 𝐶, ‖𝑢‖𝐿∞ ≤ 𝐶, (37)

for a constant 𝐶.
Lemma 6 (discrete Gronwall inequality [9]). Suppose 𝑤(𝑘),𝜌(𝑘) are nonnegative mesh functions and 𝜌(𝑘) is a nondecreas-
ing function. If 𝐶 > 0 and

𝑤 (𝑘) ≤ 𝜌 (𝑘) + 𝐶𝜏𝑘−1∑
𝑙=0

𝑤 (𝑙) , ∀𝑘, (38)

then

𝑤 (𝑘) ≤ 𝜌 (𝑘) 𝑒𝐶𝜏𝑘, ∀𝑘. (39)

The following theorem guarantees the convergence of our
scheme with the convergence rate of 𝑂(𝜏2 + ℎ2).
Theorem 7. Suppose 𝑢0 ∈ 𝐻20 [0, 𝐿]. Then the solution 𝑢𝑛 of
scheme (8)-(9) converges to the solution of the problem (3)–(5)
in the sense of ‖ ⋅ ‖∞ and the rate of convergence is 𝑂(𝜏2 + ℎ2).
Proof. By taking the inner product of (8) and 2𝑒𝑛 ≡ 𝑒𝑛+1+𝑒𝑛−1
and using the fact that (𝑒𝑛𝑥, 2𝑒𝑛) = 0, we get12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2) − ℎ

2

12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1𝑥 󵄩󵄩󵄩󵄩󵄩2)
− 𝛼ℎ26 󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩2 + 12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2) + 2𝛼󵄩󵄩󵄩󵄩𝑒𝑛𝑥󵄩󵄩󵄩󵄩2
= (𝑟𝑛, 2𝑒𝑛 − (𝑀1 +𝑀2, 2𝑒𝑛)) ,

(40)

where

𝑀1 = 𝑝𝑝 + 1 [(V𝑛)𝑝−1(V𝑛)𝑥 − (𝑢𝑛)𝑝−1(𝑢𝑛)𝑥] ,
𝑀2 = 𝑝𝑝 + 1 [((V𝑛)𝑝−1V𝑛)𝑥 − ((𝑢𝑛)𝑝−1𝑢𝑛)𝑥] .

(41)

According to Lemma 5, Theorem 3, and the Cauchy-
Schwartz inequality, we have(𝑀1, 2𝑒𝑛)
= 2𝑝𝑝 + 1ℎ

𝐽−1∑
𝑖=1

[(V𝑛𝑖 )𝑝−1(V𝑛𝑖 )𝑥 − (𝑢𝑛𝑖 )𝑝−1(𝑢𝑛𝑖 )𝑥] 𝑒𝑛𝑖
= 2𝑝𝑝 + 1ℎ

𝐽−1∑
𝑖=1

[(V𝑛𝑖 )𝑝−1(𝑒𝑛𝑖 )𝑥𝑒𝑛𝑖 ]
+ 2𝑝𝑝 + 1ℎ

𝐽−1∑
𝑖=1

[(V𝑛𝑖 )𝑝−1 − (𝑢𝑛𝑖 )𝑝−1] (𝑢𝑛𝑖 )𝑥𝑒𝑛𝑖
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= 2𝑝𝑝 + 1ℎ
𝐽−1∑
𝑖=1

[(V𝑛𝑖 )𝑝−1(𝑒𝑛𝑖 )𝑥𝑒𝑛𝑖 ]
+ 2𝑝𝑝 + 1ℎ

𝐽−1∑
𝑖=1

[𝑒𝑛𝑖 𝑝−2∑
𝑘=0

(V𝑛𝑖 )𝑝−2−𝑘(𝑢𝑛𝑖 )𝑘] (𝑢𝑛𝑖 )𝑥𝑒𝑛𝑖
≤ 𝐶 (󵄩󵄩󵄩󵄩𝑒𝑛𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2)
≤ 𝐶 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥 󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1𝑥 󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2) .

(42)

Similar to the proof of (42), we have also

(𝑀2, 2𝑒𝑛) ≤ 𝐶 (󵄩󵄩󵄩󵄩𝑒𝑛𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2)
≤ 𝐶 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥 󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1𝑥 󵄩󵄩󵄩󵄩󵄩2

+ 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2) .
(43)

Furthermore,󵄩󵄩󵄩󵄩𝑒𝑛𝑥󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑒𝑛𝑥󵄩󵄩󵄩󵄩2 ≤ 12 (󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩2) , (44)

(𝑟𝑛, 2𝑒𝑛) ≤ 󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 + 12 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2) . (45)

By substituting (42)–(45) into (40), we obtain12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2)
− ℎ212𝜏 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1𝑥 󵄩󵄩󵄩󵄩󵄩2) − 𝛼ℎ

2

6 󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩2
+ 12𝜏 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2) + 2𝛼󵄩󵄩󵄩󵄩𝑒𝑛𝑥󵄩󵄩󵄩󵄩2
≤‖ 𝑟𝑛‖2 + 𝐶(󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2

+󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2) .

(46)

Hence,

(󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2) − ℎ26 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1𝑥 󵄩󵄩󵄩󵄩󵄩2)
+ (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2) ≤ 2𝜏󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2
+ 𝐶𝜏 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2

+ 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2) .
(47)

Let

𝐸𝑛 = (󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2) − ℎ26 (󵄩󵄩󵄩󵄩𝑒𝑛𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1𝑥 󵄩󵄩󵄩󵄩󵄩2)
+ (󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2) ,

𝐵𝑛 = (󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1󵄩󵄩󵄩󵄩󵄩2) + (󵄩󵄩󵄩󵄩𝑒𝑛𝑥𝑥󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛−1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩2) .
(48)

From (44), then (47) can be rewritten as

𝐸𝑛+1 − 𝐸𝑛 ≤ 2𝜏󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 + 𝜏𝐶 (𝐸𝑛+1 + 𝐸𝑛) . (49)

That is,

(1 − 𝐶𝜏) (𝐸𝑛+1 − 𝐸𝑛) ≤ 2𝜏󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 + 2𝐶𝜏𝐸𝑛. (50)

If 𝜏 is sufficiently small which satisfies 1 − 𝐶𝜏 > 0, then
𝐸𝑛+1 − 𝐸𝑛 ≤ 𝐶𝜏󵄩󵄩󵄩󵄩𝑟𝑛󵄩󵄩󵄩󵄩2 + 𝐶𝜏𝐸𝑛. (51)

Summing up from 1 to 𝑛, we have
𝐸𝑛+1 − 𝐸1 ≤ 𝐶𝜏 𝑛∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩𝑟𝑘󵄩󵄩󵄩󵄩󵄩2 + 𝐶𝜏 𝑛∑
𝑘=1

𝐸𝑘. (52)

Then

𝐸𝑛+1 ≤ 𝐸1 + 𝐶𝜏 𝑛∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩𝑟𝑘󵄩󵄩󵄩󵄩󵄩2 + 𝐶𝜏 𝑛∑
𝑘=1

𝐸𝑘. (53)

Using (44), we obtain that

12𝐵𝑛 ≤ 𝐸𝑛 ≤ 𝐵𝑛. (54)

Equations (53) and (54) yield

12𝐵𝑛+1 ≤ 𝐵1 + 𝐶𝜏
𝑛∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩𝑟𝑘󵄩󵄩󵄩󵄩󵄩2 + 𝐶𝜏 𝑛∑
𝑘=1

𝐵𝑘, (55)

which is equivalent to

𝐵𝑛+1 ≤ 2𝐵1 + 𝐶𝜏 𝑛∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩𝑟𝑘󵄩󵄩󵄩󵄩󵄩2 + 𝐶𝜏 𝑛∑
𝑘=1

𝐵𝑘. (56)

Notice that

𝜏 𝑛∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩𝑟𝑘󵄩󵄩󵄩󵄩󵄩2 ≤ 𝑛𝜏max
1≤𝑘≤𝑛

󵄩󵄩󵄩󵄩󵄩𝑟𝑘󵄩󵄩󵄩󵄩󵄩2 ≤ 𝑇 ⋅ 𝑂(𝜏2 + ℎ2)2. (57)

Since we can approximate 𝑢1 using any available second-
order accuracy method, we have 𝐵1 = 𝑂(𝜏2 + ℎ2)2. Hence

𝐵𝑛+1 ≤ 𝑂(𝜏2 + ℎ2)2 + 𝐶𝜏 𝑛∑
𝑘=1

𝐵𝑘. (58)

According to Lemma 6, 𝐵𝑛+1 ≤ 𝑂(𝜏2 + ℎ2)2 implies󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩 ≤ 𝑂 (𝜏2 + ℎ2) , 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥𝑥 󵄩󵄩󵄩󵄩󵄩 ≤ 𝑂 (𝜏2 + ℎ2) . (59)

It follows from (44) that󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑥 󵄩󵄩󵄩󵄩󵄩 ≤ 𝑂 (𝜏2 + ℎ2) . (60)

By using Lemma 2, we have󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1󵄩󵄩󵄩󵄩󵄩∞ ≤ 𝑂 (𝜏2 + ℎ2) . (61)

This completes the proof of Theorem 7.
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Figure 1: Numerical solutions at 𝑡 = 10, ℎ = 1/32, 𝜏 = 0.1, 𝛽 = 1,𝛼 = 2, and 𝑝 = 4.

Theorem 8. Under the conditions of Theorem 7, the solution
of scheme (8)-(9) is stable with respect to ‖ ⋅ ‖∞.
5. Numerical Experiments

In this section, we present numerical experiments on a test
problem

𝑢𝑡 + 𝑢𝑥𝑥𝑥𝑥𝑡 − 𝛼𝑢𝑥𝑥 + 𝛽𝑢𝑥 + (𝑢𝑝)𝑥 = 0,
0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 10, (62)

with an initial condition

𝑢 (𝑥, 0) = 𝑢0 (𝑥) = 𝑥4(1 − 𝑥)4, 0 ≤ 𝑥 ≤ 1, (63)

and boundary conditions

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0, 𝑢𝑥𝑥 (0, 𝑡) = 𝑢𝑥𝑥 (1, 𝑡) = 0,
0 ≤ 𝑡 ≤ 10, (64)

to confirm and illustrate the accuracy of our method. Since
the exact solution is not known, the finest grid (ℎ = 1/256)
is used as a reference solution (pseudoanalytical solution).
Wemake comparisons between schemes proposed in [18, 20]
with our scheme (8), which is also second-order in space
and time.The errors from the three schemes are presented in
Tables 1, 2, and 3. For𝑝 = 2, 4, and 8, it is clear that our scheme
gives better approximation than both schemes proposed in
[18, 20].
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Figure 2: Numerical solutions at 𝑡 = 10, ℎ = 1/32, 𝜏 = 0.1, 𝛽 = 1,𝛼 = 2, and 𝑝 = 8.
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Figure 3: Numerical solutions at 𝑡 = 10, ℎ = 1/32, 𝜏 = 0.1, 𝛽 = 1,𝛼 = 4, and 𝑝 = 4.
The corresponding errors with respect to ‖ ⋅ ‖ and ‖ ⋅ ‖∞-

norm are listed in Tables 4, 5, and 6 for 𝑝 = 2, 4, and 8. The
rate of convergence is computed using two grids according to
the formula

rate = log2 󵄩󵄩󵄩󵄩𝑒ℎ󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑒ℎ/2󵄩󵄩󵄩󵄩 . (65)

Since we have five grids, we can get four different estimations
of the convergent rates. As shown in Tables 4, 5, and 6 for
one particular choice of the parameters, the three numerically
estimated rates are presented and they are close to the
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Table 1: The maximal errors of numerical solutions at 𝑡 = 10, 𝜏 = 0.1, 𝛽 = 1, 𝛼 = 2, and 𝑝 = 2.
Methods ℎ = 1/16 ℎ = 1/32 ℎ = 1/64 ℎ = 1/128
[18] 5.319866𝑒 − 4 1.276895𝑒 − 4 3.018276𝑒 − 5 6.026481𝑒 − 6
[20] 4.483472𝑒 − 5 1.110691𝑒 − 5 2.644709𝑒 − 6 5.290243𝑒 − 7
Scheme (8) 3.831638𝑒 − 5 9.264042𝑒 − 6 2.207048𝑒 − 6 4.408479𝑒 − 7

Table 2: The maximal errors of numerical solutions at 𝑡 = 10, 𝜏 = 0.1, 𝛽 = 1, 𝛼 = 2, and 𝑝 = 4.
Methods ℎ = 1/16 ℎ = 1/32 ℎ = 1/64 ℎ = 1/128
[18] 5.319788𝑒 − 4 1.276876𝑒 − 4 3.018218𝑒 − 5 6.026111𝑒 − 6
[20] 4.482287𝑒 − 5 1.110366𝑒 − 5 2.644021𝑒 − 6 5.288865𝑒 − 7
Scheme (8) 3.830394𝑒 − 5 9.261242𝑒 − 6 2.206324𝑒 − 6 4.407013𝑒 − 7
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Figure 4: Numerical solutions at 𝑡 = 10, ℎ = 1/32, 𝜏 = 0.1, 𝛽 = 1,𝛼 = 4, and 𝑝 = 8.
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Figure 5: Numerical solutions at different time with ℎ = 1/32, 𝜏 =0.1, 𝛽 = 1, 𝛼 = 2, and 𝑝 = 4.
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Figure 6: Numerical solutions at different time with ℎ = 1/32, 𝜏 =0.1, 𝛽 = 1, 𝛼 = 2, and 𝑝 = 8.
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Figure 7: Numerical solutions at different time with ℎ = 1/32, 𝜏 =0.1, 𝛽 = 1, 𝛼 = 4, and 𝑝 = 4.
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Table 3: The maximal errors of numerical solutions at 𝑡 = 10, 𝜏 = 0.1, 𝛽 = 1, 𝛼 = 2, and 𝑝 = 8.
Methods ℎ = 1/16 ℎ = 1/32 ℎ = 1/64 ℎ = 1/128
[18] 5.319785𝑒 − 4 1.276873𝑒 − 4 3.018188𝑒 − 5 6.025843𝑒 − 6
[20] 4.482286𝑒 − 5 1.110366𝑒 − 5 2.644016𝑒 − 6 5.288811𝑒 − 7
Scheme (8) 3.830394𝑒 − 5 9.261242𝑒 − 6 2.206324𝑒 − 6 4.407013𝑒 − 7
Table 4: The errors of numerical solutions at 𝑡 = 10, 𝜏 = 0.1, 𝛽 = 1,𝛼 = 2, and 𝑝 = 2.
ℎ ‖𝑒‖∞ Rate ‖𝑒‖ Rate1/8 1.674577𝑒 − 4 — 9.800635𝑒 − 5 —1/16 3.831638𝑒 − 5 2.127764 2.291144𝑒 − 5 2.0968071/32 9.264042𝑒 − 6 2.048248 5.554049𝑒 − 6 2.0444561/64 2.207048𝑒 − 6 2.069524 1.315895𝑒 − 6 2.0774951/128 4.408479𝑒 − 7 2.323765 2.628915𝑒 − 7 2.323505
Table 5: The errors of numerical solutions at 𝑡 = 10, 𝜏 = 0.1, 𝛽 = 1,𝛼 = 2, and 𝑝 = 4.
ℎ ‖𝑒‖∞ Rate ‖𝑒‖ Rate1/8 1.673863𝑒 − 4 — 9.800669𝑒 − 5 —1/16 3.830394𝑒 − 5 2.127617 2.291161𝑒 − 5 2.0968011/32 9.261242𝑒 − 6 2.048215 5.554093𝑒 − 6 2.0444561/64 2.206324𝑒 − 6 2.069561 1.315904𝑒 − 6 2.0774971/128 4.407013𝑒 − 7 2.323772 2.628917𝑒 − 7 2.323514
Table 6: The errors of numerical solutions at 𝑡 = 10, 𝜏 = 0.1, 𝛽 = 1,𝛼 = 2, and 𝑝 = 8.
ℎ ‖𝑒‖∞ Rate ‖𝑒‖ Rate1/8 1.673863𝑒 − 4 — 9.800669𝑒 − 5 —1/16 3.830394𝑒 − 5 2.127617 2.291161𝑒 − 5 2.0968011/32 9.261242𝑒 − 6 2.048215 5.554093𝑒 − 6 2.0444561/64 2.206324𝑒 − 6 2.069561 1.315905𝑒 − 6 2.0774961/128 4.407013𝑒 − 7 2.323772 2.628922𝑒 − 7 2.323512
theoretically predicted ones which are second-order rates of
convergence.

Figures 1, 2, 3, and 4 show the numerical solutions at 𝑡 =10with 𝑝 = 4 and 8. The graphs of the numerical solutions of
Hu et al. [18], Pan and Zhang [20] schemes, and the proposed
scheme are presented. It is to confirm that the approximated
solutions are coinciding.

Figures 5, 6, 7, and 8 present the numerical solutions
computed by the finite difference scheme (8) with 𝜏 = 0.1, ℎ =1/32 at 𝑡 = 0, 2, 4, 6, and 8when 𝛼 = 2 and 4, respectively. It is
clear that the amplitude of the numerical solution decreases
over time. In Figures 9, 10, 11, and 12, numerical solutions are
presented for a fixed set of ℎ, 𝜏, and 𝑡 with different values
of 𝛽 and 𝛼, respectively. The graph shows that 𝛽 does not
contribute to the height of the amplitude of the numerical
solution. On the other hand, the larger the value of 𝛼, the
smaller the amplitude of the numerical solution.
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Figure 8: Numerical solutions at different time with ℎ = 1/32, 𝜏 =0.1, 𝛽 = 1, 𝛼 = 4, and 𝑝 = 8.
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Figure 9: Numerical solutions at different 𝛼 with ℎ = 1/32, 𝜏 = 0.1,𝛽 = 1, and 𝑝 = 4.
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Figure 10: Numerical solutions at different 𝛼with ℎ = 1/32, 𝜏 = 0.1,𝛽 = 1, and 𝑝 = 8.
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Figure 11: Numerical solutions at different 𝛽with ℎ = 1/32, 𝜏 = 0.1,𝛼 = 1, and 𝑝 = 4.

Absolute error distributions for the three methods are
plotted at 𝑡 = 10 in Figures 13, 14, 15, and 16. Clearly, our
proposed method gives a better approximate solution than
the schemes proposed in [18, 20], especially at the peak of the
solution. As the results in some of the applications where the
characterization of the solution at the peak needs to be precise
our proposed method is highly recommended.
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Figure 12: Numerical solutions at different 𝛽with ℎ = 1/32, 𝜏 = 0.1,𝛼 = 1, and 𝑝 = 8.

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

×10−4

Present
Ref. [18]

Figure 13: Absolute error distribution at ℎ = 1/32, 𝜏 = 0.1, 𝛽 = 1,𝛼 = 2, 𝑝 = 4, and 𝑡 = 10.

6. Concluding Remarks

We introduce a three-level average linear-implicit finite dif-
ference method for solving the Rosenau-Burgers equation.
We prove the existence and uniqueness of the numerical
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Figure 14: Absolute error distribution at ℎ = 1/32, 𝜏 = 0.1, 𝛽 = 1,𝛼 = 2, 𝑝 = 8, and 𝑡 = 10.
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Figure 15: Absolute error distribution at ℎ = 1/32, 𝜏 = 0.1, 𝛽 = 1,𝛼 = 2, 𝑝 = 4, and 𝑡 = 10.

solution. The convergence and stability of the numerical
solution are also shown. The quantitative comparison of the
numerical results from previously known methods shows
that our method improves the accuracy of the solution
significantly. In addition, our results provide the most precise
peak amplitude.
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Figure 16: Absolute error distribution at ℎ = 1/32, 𝜏 = 0.1, 𝛽 = 1,𝛼 = 2, 𝑝 = 8, and 𝑡 = 10.
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A Compact Finite Difference Method for Solving
the General Rosenau–RLW Equation

Ben Wongsaijai, Kanyuta Poochinapan∗, and Thongchai Disyadej

Abstract—In this paper, a compact finite difference method
to solve the Rosenau–RLW equation is proposed. A numerical
tool is applied to the model by using a three–level average
implicit finite difference technique. The fundamental conser-
vative property of the equation is preserved by the presented
numerical scheme, and the existence and uniqueness of the
numerical solution are proved. Moreover, the convergence
and stability of the numerical solution are also shown. The
new method gives second– and fourth–order accuracy in time
and space, respectively. The algorithm uses five–point stencil
to approximate the derivatives for the space discretization.
The numerical experiments show that the proposed method
improves the accuracy of the solution significantly.

Index Terms—finite difference method, Rosenau–RLW equa-
tion.

I. INTRODUCTION

A nonlinear wave phenomenon is the important area
of scientific research, which many scientists in the

past have studied about mathematical models explaining
the wave behavior. There are mathematical models which
describe the dynamic of wave behaviors–for example, the
KdV equation, the RLW equation, the Rosenau equation,
and many others [1]–[10]. The KdV equation has been used
in very wide applications, such as magnetic fluid waves, ion
sound waves, and longitudinal astigmatic waves [4]–[6]. The
RLW equation, which was first proposed by Peregrine [7], [8]
provides an explanation on a different situation of a nonlinear
dispersive wave from the more classical KdV equation. The
RLW equation is one of models which are encountered in
many areas, e.g. ion–acoustic plasma waves, magnetohydro-
dynamic plasma waves, and shallow water waves. Since the
case of wave–wave and wave–wall interactions cannot be
described by the KdV equation, Rosenau [9], [10] proposed
an equation for describing the dynamic of dense discrete
systems; it is known as the Rosenue equation. The existence
and uniqueness of the solution for the Rosenau equation were
proved by Park [11], [12]. For the further consideration of
the nonlinear wave, a viscous term uxxt needs to be included:

ut − uxxt + uxxxxt + ux + (up)x = 0, (1)

where p ≥ 2 is an integer and u0(x) is a known smooth
function. This equation is usually called the Rosenua–RLW
equation. If p = 2, then Eq. (1) is called the usual Rosenau–
RLW equation. Moreover, if p = 3, then Eq. (1) is called
the modified Rosenau–RLW equation. The behavior of the
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solution to the Rosenau–RLW equation with the Cauchy
problem has been well studied for the past years [13]–[18].
It is known that the solitary wave solution for Eq. (1) is

u(x, t) = eln{(p+3)(3p+1)(p+1)/[2(p2+3)(p2+4p+7)]}/(p+1)×

sech4/(p+1)

[
p− 1√

4p2 + 8p + 20
(x− ct)

]
,

where p ≥ 2 is an integer and c = (p4 +4p3 +14p2 +20p+
25)/(p4 + 4p3 + 10p2 + 12p + 21).

The Rosenau–RLW equation has been solved numerically
by various methods (for example, see [13]–[18]). Zuo et
al. [13] have proposed the Crank–Nocolson finite difference
scheme for the equation. The convergence and stability of
the proposed method were also discussed. Obviously, the
scheme in [13] requires heavy iterative computations because
the scheme is nonlinear implicit. Pan and Zhang [14], [15]
developed linearized difference schemes which are three–
level and conservative implicit for both the usual Rosenau–
RLW (p = 2) and the general Rosenau–RLW (p ≥ 2)
equations. The second–order accuracy and unconditional
stability were also proved.

In this paper, we consider the following initial–boundary
value problem of the general Rosenau–RLW equation with
an initial condition:

u(x, 0) = u0(x), (xl ≤ x ≤ xr), (2)

and boundary conditions

u(xl, t) = u(xr, t) = 0,

uxx(xl, t) = uxx(xr, t) = 0, (0 ≤ t ≤ T ). (3)

The initial–boundary value problem possesses the following
conservative properties:

Q(t) =
∫ xr

xl

u(x, t)dx =
∫ xr

xl

u0(x, 0)dx = Q(0),

and

E(t) = ‖u‖2L2
+ ‖ux‖2L2

+ ‖uxx‖2L2
= E(0).

When −xl À 0 and xr À 0, the initial–boundary value
problem (1)–(3) is consistent, so the boundary condition (3)
is reasonable.

By observation, the total accuracy of a specific method is
affected by not only the order of accuracy of the numerical
method but also other factors. That is, the conservative
approximation property of the method is another factor that
has the same or possibly even more impact on results. Better
solutions can be expected from numerical schemes which
have effective conservative approximation properties rather
than the ones which have nonconservative properties [19],
[20]. To create the discretization equation, a finite difference
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method is applied in the present research since conservative
approximation analysis by the mathematical tools has been
developing until now.

The content of this paper is organized as follows. In
the next section, we describe a conservative implicit finite
difference scheme for the general Rosenau–RLW equation
(1) with the initial and boundary conditions (2)–(3). Some
preliminary lemmas and discrete norms are given and the
invariant property Qn is proved. We discuss about the
solvability of the finite difference scheme, and the existence
and uniqueness of the solution are also proved in the Section
3. Section 4 presents complete proofs on the convergence
and stability of the proposed method with convergence rate
O(τ2 +h4). The results of validation for the finite difference
scheme are presented in Section 5, where we make a detailed
comparison with available data, to confirm and illustrate
our theoretical analysis. Finally, we finish our paper by
concluding remarks in Section 6.

II. FINITE DIFFERENCE SCHEME

In this section, we introduce a finite difference scheme
for the formulation of Eqs. (1)–(3). The solution domain
Ω = {(x, t)| xl ≤ x ≤ xr, 0 ≤ t ≤ T} is covered by a
uniform grid:

Ωh = {(xi, tn)| xi = xl + ih, tn = nτ, 0 ≤ i ≤ M,

0 ≤ n ≤ N},
with spacings h = (xr − xl)/M and τ = T/N . Denote
un

i ≈ u(xi, tn),

Ω̄h = {(xi, tn)| xi = xl + ih, tn = nτ, −1 ≤ i ≤ M +1,

0 ≤ n ≤ N},
and Z0

h = {un = (un
i )| u0 = uM = 0, −1 ≤ i ≤ M + 1}.

We use the following notations for simplicity:

u
n+ 1

2
i =

un+1
i + un

i

2
, ūn

i =
un+1

i + un−1
i

2
,

(un
i )t =

un+1
i − un

i

τ
, (un

i )t̂ =
un+1

i − un−1
i

2τ
,

(un
i )x =

un
i+1 − un

i

h
, (un

i )x̄ =
un

i − un
i−1

h
,

(un
i )x̂ =

un
i+1 − un

i−1

2h
, (un, vn) = h

M−1∑

i=1

un
i vn

i ,

‖un‖2 = (un, un), ‖un‖∞ = max
1≤i≤M−1

|un
i |.

By setting w = uxxt − ux − uxxxxt − (up)x, Eq. (1) can be
written as w = ut. By the Taylor expansion, we obtain

wn
i = (∂tu)n

i = (un
i )t̂ + O

(
τ2

)
, (4)

and

wn
i =

[
(un

i )xx̄t̂ −
h2

12
(
∂4

x∂tu
)n

i

]
−

[
(un

i )x̂ −
h2

6
(
∂3

xu
)n

i

]

−
[
(un

i )xxx̄x̄t̂ −
h2

6
(
∂6

x∂tu
)n

i

]

−
[
[(un

i )p]x̂ −
h2

6
(
∂3

xup
)n

i

]
+ O

(
h4

)
. (5)

From Eq. (4), we have
(
∂6

x∂tu
)n

i
=

(
∂4

x∂tu
)n

i
−(

∂3
xu

)n

i
−(

∂3
xup

)n

i
−(

∂2
xw

)n

i
. (6)

Then,

wn
i =

[
(un

i )xx̄t̂ −
h2

12
(
∂4

x∂tu
)n

i

]
−

[
(un

i )x̂ −
h2

6
(
∂3

xu
)n

i

]

−
[
[(un

i )p]x̂ −
h2

6
(
∂3

xup
)n

i

]
−

[
(un

i )xxx̄x̄t̂

− h2

6

[(
∂4

x∂tu
)n

i
− (

∂3
xu

)n

i
− (

∂3
xup

)n

i
− (

∂2
xw

)n

i

] ]

+ O
(
h4

)
. (7)

This implies that

wn
i = (un

i )xx̄t̂ +
h2

12
(
∂4

x∂tu
)n

i
− (un

i )x̂ − [(un
i )p]x̂

− (un
i )xxx̄x̄t̂ −

h2

6
(
∂2

xw
)n

i
+ O

(
h4

)
. (8)

Using second–order accuracy for approximation, we obtain
(
∂4

xu
)n

i
=(un

i )xxx̄x̄ + O
(
h2

)
,

(
∂2

xw
)n

i
=(wn

i )xx̄ + O
(
h2

)
.

The following method is a proposed finite difference scheme
to solve the problem (1)–(3):

(un
i )t̂ −

(
1− h2

6

)
(un

i )xx̄t̂ +
(

1− h2

12

)
(un

i )xxx̄x̄t̂

+ (un
i )x̂ + [(un

i )p]x̂ = 0;
1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1, (9)

where

u0
i = u0(xi), 0 ≤ i ≤ M, (10)

un
0 = un

M = 0, (un
0 )xx̄ = (un

M )xx̄ = 0, 1 ≤ n ≤ N.
(11)

A three–step method is used for the time discretization of
the above described scheme. After the new time discretiza-
tion of Eq. (9) is performed, three– and five–point stencils
approximating the derivatives for the space discretization are
used to obtain an algebraic system. The matrix system of
Eq. (9) is banded with penta–diagonals and we use a standard
routine of the MATLAB to solve the system (9)–(11). The
nonlinear term of Eq. (1) is handled by using the linear
implicit scheme. Therefore, the equations are solved easily
by using the presented method since it does not require extra
effort to deal with the nonlinear term.

Lemma 1: (Pan and Zhang [15]) For any two mesh func-
tions u, v ∈ Z0

h, we have

(ux̂, v) = −(u, vx̂),
(ux, v) = −(u, vx̄),

(v, uxx̄) = −(vx, ux),

(u, uxx̄) = −(ux, ux) = −‖ux‖2.
Furthermore, if (un

0 )xx̄ = (un
M )xx̄ = 0, then it implies

(u, uxxx̄x̄) = ‖uxx̄‖2.

IAENG International Journal of Applied Mathematics, 44:4, IJAM_44_4_05

(Advance online publication: 28 November 2014)

 
______________________________________________________________________________________ 



Theorem 2: Suppose that u0 ∈ H2
0 , then the scheme (9)–

(11) is conservative in sense:

Qn =
h

2

M−1∑

i=1

(
un+1

i + un
i

)
= Qn−1 = . . . = Q0, (12)

under assumptions u−1 = u1 = 0 and uM−1 = uM+1 = 0.
Proof: By multiplying Eq. (9) by h, summing up for i

from 0 to M − 1, considering the boundary conditions, and
assuming u−1 = u1 = 0 and uM−1 = uM+1 = 0, we get

h

2

M−1∑

i=1

(
un+1

i − un−1
i

)
= 0.

Then, this gives Eq. (12).
Lemma 3: (Discrete Sobolev’s inequality [21]) There exist

two constants C1 and C2 such that

‖un‖∞ ≤ C1‖un‖+ C2‖un
x‖.

Theorem 4: Suppose u0 ∈ H2
0 [xl, xr], then the solution

un satisfies ‖un‖ ≤ C and ‖un
xx‖ ≤ C, which yields

‖un‖∞ ≤ C .
Proof: It follows from the initial condition (10) that

u0 ≤ C. The first level u1 is computed by the fourth–order
method. Hence, the following estimates are gotten about∥∥u1

∥∥ ≤ C and
∥∥u1

∥∥
∞ ≤ C. Now, we use the induction

argument to prove the estimate. We assume that
∥∥uk

∥∥
∞ ≤ C for k = 0, 1, 2, . . . , n. (13)

Taking the inner product of Eq. (9) with 2ūn and using
Lemma 1, we obtain

∥∥un+1
∥∥2−∥∥un−1

∥∥2
+

(
1− h2

6

) (∥∥un+1
x

∥∥2 − ∥∥un−1
x

∥∥2
)

+
(

1− h2

12

) (∥∥un+1
xx̄

∥∥2 −
∥∥un−1

xx̄

∥∥2
)

= −2τ ((un)x̂, 2ūn)− 2τ ([(un)p]x̂, 2ūn) .

According to the Cauchy–Schwarz inequality and direct
calculation, it gives

‖un
x̂‖ ≤ ‖un

x‖,
and

((un)x̂, 2ūn) ≤
(
‖un

x‖2 +
1
2

∥∥un+1
∥∥2

+
1
2

∥∥un−1
∥∥2

)
.

From Eq. (13), the Cauchy–Schwarz inequality, and Lemma
1, we get

([(un)p]x̂, 2ūn) = −h
M−1∑

i=1

(un
i )p(

un+1
i + un−1

i

)
x̂

≤ C

(
‖un‖2 +

1
2

∥∥un+1
x

∥∥ 2 +
1
2

∥∥un−1
x

∥∥ 2

)
.

Setting

Bn = ‖un‖2+
∥∥un−1

∥∥2
+

(
1− h2

6

) (
‖un

x‖2 +
∥∥un−1

x

∥∥2
)

+
(

1− h2

12

) (
‖un

xx̄‖2 +
∥∥un−1

xx̄

∥∥2
)

,

then
Bn+1 −Bn ≤ τC

(
Bn+1 + Bn

)
.

If τ is sufficiently small, which satisfies τ ≤ k − 2
kC

and
k > 2, then

Bn+1 ≤ (1 + τC)
(1− τC)

Bn ≤ (1 + τkC)Bn ≤ exp (kCT )B0.

Hence
∥∥un+1

∥∥ ≤ C,
∥∥un+1

x

∥∥ ≤ C, and
∥∥un+1

xx̄

∥∥ ≤ C, which
yield

∥∥un+1
∥∥
∞ ≤ C by Lemma 3.

III. SOLVABILITY

In this section, we prove the existence and uniqueness of
our proposed scheme that implies the unique solvability.

Theorem 5: The finite difference scheme (9)–(11) is
uniquely solvable.

Proof: By using the mathematical induction, we can
determine u0 uniquely by an initial condition and then
choose a fourth–order method to compute u1. Now, suppose
u0, u1, u2, ..., un to be solved uniquely. By considering Eq.
(9) for un+1, we have

1
2τ

un+1
i − 1

2τ

(
1− h2

6

) (
un+1

i

)
xx̄

+

1
2τ

(
1− h2

12

) (
un+1

i

)
xxx̄x̄

= 0. (14)

By taking an inner product of Eq. (14) with un+1, we obtain

1
2τ

∥∥un+1
∥∥2 − 1

2τ

(
1− h2

6

) ∥∥un+1
x

∥∥2

+
1
2τ

(
1− h2

12

) ∥∥un+1
xx̄

∥∥2
= 0.

By the Cauchy–Schwarz inequality and Lemma 1, we have
∥∥un+1

x

∥∥2
= (un+1, un+1

xx̄ ) ≤ 1
2

∥∥un+1
∥∥2

+
1
2

∥∥un+1
xx̄

∥∥2
.

Then,

1
2

∥∥un+1
∥∥2

+
(

1
2
− h2

12

) ∥∥un+1
xx̄

∥∥2
= 0.

Therefore, Eq. (14) has the only one solution and Eq. (9)
un+1 is uniquely solvable. This completes the proof of
Theorem 5.

IV. CONVERGENCE AND STABILITY

In this section, we prove the convergence and stability of
the scheme (9)–(11). Let en

i = vn
i − un

i , where vn
i and un

i

are the solutions of (1)–(3) and (9)–(11), respectively. Then,
we obtain the following error equations:

rn
i = (en

i )t̂ −
(

1− h2

6

)
(en

i )xx̄t̂ +
(

1− h2

12

)
(en

i )xxx̄x̄t̂

+ (en
i )x̂ + [(vn

i )p]x̂ − [(un
i )p]x̂, (15)

where rn
i denotes the truncation error. By using the Taylor

expansion, it is easy to see that rn
i = O(τ2 + h4) holds as

τ, h → 0. The following lemmas are essential for the proof
of convergence and stability of our scheme.

Lemma 6: (Discrete Gronwall’s inequality [21]) Suppose
that ω(k) and ρ(k) are nonnegative functions and ρ(k) is
nondecreasing. If C > 0 and

ω(k) ≤ ρ(k) + Cτ
k−1∑

l=0

ω(l), ∀k,
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then
ω(k) ≤ ρ(k)eCτk, ∀k.

Lemma 7: (Pan and Zhang [15]) Suppose that u0 ∈
H2

0 [xl, xr], then the solution un of Eqs. (1)–(3) satisfies

‖u‖L2 ≤ C, ‖ux‖L2 ≤ C,

‖uxx‖L2 ≤ C, ‖u‖L∞ ≤ C.

The following theorem shows that our scheme converges to
the solution with convergence rate O(τ2 + h4).

Theorem 8: Suppose u0 ∈ H2
0 [xl, xr], then the solution

un converges to the solution for the problem in the sense of
‖·‖∞ and the rate of convergence is O(τ2 + h4).

Proof: By taking an inner product on both sides of Eq.
(15) with 2ēn ≡ (en+1 + en−1), we get

(∥∥en+1
∥∥2 −

∥∥en−1
∥∥2

)
+

(
1− h2

6

) (∥∥en+1
x

∥∥2 −
∥∥en−1

x

∥∥2
)

+
(

1− h2

12

) (∥∥en+1
xx̄

∥∥2 − ∥∥en−1
xx̄

∥∥2
)

= 2τ (rn, 2ēn)

− 2τ (en
x̂ , 2ēn)− 2τ ([(vn)p]x̂ − [(un)p]x̂, 2ēn) . (16)

According to the Schwarz inequality, Lemma 1, Theorem 2,
and Lemma 7, we obtain(

[(vn)p]x̂ − [(un)p]x̂, 2ēn

)

= 2h
M−1∑

i=1

[
[(vn

i )p]x̂ − [(un
i )p]x̂

]
ēn
i

= −2h
M−1∑

i=1

[
(vn

i )p − (un
i )p

]
(ēn

i )x̂

= 2h
M−1∑

i=1

[
en
i

p−2∑

k=1

(vn
i )p−k−2 (un

i )k

]
(ēn

i )x̂

≤ C
(
‖en‖2 + ‖ēn

x̂‖2
)

≤ C

(
‖en‖2 +

∥∥en−1
x̂

∥∥2
+

∥∥en+1
x̂

∥∥2
)

. (17)

By the Cauchy–Schwarz inequality, Lemma 1, and a direct
calculation, we obtain

‖en
x̂‖ ≤ ‖en

x‖, (18)

‖en
x‖ = − (en, en

xx̄) ≤ 1
2

(
‖en‖2 + ‖en

xx̄‖2
)

, (19)

(en
x̂ , 2ēn) ≤ ‖en

x̂‖2 +
1
2

(∥∥en+1
∥∥2

+
∥∥en−1

∥∥2
)

, (20)

(rn, 2ēn) ≤ ‖rn‖2 +
1
2

(∥∥en+1
∥∥2

+
∥∥en−1

∥∥2
)

. (21)

From Eqs.(16)–(21), they yield
(∥∥en+1

∥∥2 − ∥∥en−1
∥∥2

)

+
(

1− h2

6

) (∥∥en+1
x

∥∥2 −
∥∥en−1

x

∥∥2
)

+
(

1− h2

12

) (∥∥en+1
xx̄

∥∥2 − ∥∥en−1
xx̄

∥∥2
)

≤ 2τ‖rn‖2 + τC

(∥∥en−1
∥∥2

+ ‖en‖2 +
∥∥en+1

∥∥2

+
∥∥en−1

x

∥∥2
+ ‖en

x‖2 +
∥∥en+1

x

∥∥2
)

. (22)

Setting

En = ‖en‖2+
∥∥en−1

∥∥2
+

(
1− h2

6

) (
‖en

x‖2 +
∥∥en−1

x

∥∥2
)

+
(

1− h2

12

) (
‖en

xx̄‖2 +
∥∥en−1

xx̄

∥∥2
)

,

then Eq. (22) can be rewritten as

En+1 − En ≤ 2τ‖rn‖2 + τC
(
En+1 + En

)
,

and

(1− 2τC)
(
En+1 − En

) ≤ τ‖rn‖2 + 2τCEn.

If τ is sufficiently small, which satisfies 1− 2Cτ > 0, then

En+1 − En ≤ τC‖rn‖2 + τCEn. (23)

Summing up Eq. (23) from 1 to n, we have

En+1 ≤ E1 + Cτ
n∑

k=1

∥∥rk
∥∥2

+ Cτ
n∑

k=1

Ek. (24)

Thus, we can use a fourth–order method to compute u1 such
that

E1 ≤ O(τ2 + h4)
2
,

and

τ
n∑

k=1

∥∥rk
∥∥2 ≤ nτ max

0≤l≤n−1

∥∥rl
∥∥2 ≤ T ·O(τ2 + h4)2.

By Lemma 6, we obtain En ≤ O(τ2 + h4)2, that is

‖en‖ ≤ O(τ2 + h4), ‖en
xx̄‖ ≤ O(τ2 + h4).

From Eq. (20), we obtain

‖en‖ ≤ O(τ2 + h4), ‖en
x‖ ≤ O(τ2 + h4),

and
‖en

xx̄‖ ≤ O(τ2 + h4).

By Lemma 3,

‖en‖∞ ≤ O(τ2 + h4).

This completes the proof.
Theorem 9: Under the conditions of Theorem 8, the so-

lution un of Eqs. (9)–(11) is stable in norm ‖ · ‖∞.

V. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments on a
test problem to confirm and illustrate the accuracy of our
proposed method. The accuracy of the method is measured
by the comparison of numerical solutions with exact solu-
tions as well as other numerical solutions from the method
in the literature [15] by using ‖ · ‖ and ‖ · ‖∞ norm. The
initial condition associated for the Rosenau–RLW equation
takes the form:

u0(x) = eln{(p+3)(3p+1)(p+1)/[2(p2+3)(p2+4p+7)]}/(p+1)×

sech4/(p+1)

[
p− 1√

4p2 + 8p + 20
(x)

]
.
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TABLE I
COMPARISON OF ERRORS WITH τ = 0.1, h = 0.25, xl = −60, AND

xr = 120 AT t = 40.

‖e‖ × 10−2 ‖e‖∞ × 10−3

p Present Pan&Zhang Present Pan&Zhang

2 0.23608 0.78777 0.88670 2.88972
4 0.47254 1.73066 1.81252 6.47969
8 0.46713 1.80583 1.75739 6.66740
16 0.38438 1.37857 1.30630 5.05919

TABLE II
COMPARISON OF ERRORS WITH τ = 0.1, h = 0.5, xl = −60, AND

xr = 120 AT t = 40.

‖e‖ × 10−2 ‖e‖∞ × 10−2

p Present Pan&Zhang Present Pan&Zhang

2 0.230294 3.25288 0.086284 1.19460
4 0.447881 7.45173 0.171122 2.78712
8 0.431841 8.03730 0.161891 2.95337
16 0.357253 6.13044 0.118759 2.25471

−60 −40 −20 0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

 

 

Present
Pan and Zhang [15]

Fig. 1. Absolute error distribution at p = 4, h = 0.5, τ = h2, and t = 40.

For u1, we employ a two–level method to estimate the
solution by

(un
i )t −

(
1− h2

6

)
(un

i )xx̄t +
(

1− h2

12

)
(un

i )xxx̄x̄t

+
(
u

n+ 1 2
i

)
x̂

+ [(un
i )p]x̂ = 0;

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1. (25)

We make a comparison between the scheme (9)–(11) and
the scheme proposed in [15]. The rate of convergence is
computed using two grids, according to the formula:

Rate = log2

‖eh‖
‖eh/2‖

.

The results in term of errors at t = 40, τ = 0.1, and
different p, by using xl = −60 and xr = 120, with h = 0.25
and h = 0.5 are reported in Tables I and II. It is clear that the
results obtained by the scheme (9)–(11) are more accurate
than the ones obtained by the scheme in [15].

Absolute error distributions for the two methods with τ =
0.25, h = 0.5, and t = 40 are drawn at p = 4 and 8 in Figs. 1
and 2, respectively. The results obtained by the scheme (9)–
(11) are greatly improved when compared to those by the
scheme in [15]. It can be easily observed that the maximum

−60 −40 −20 0 20 40 60 80 100 120
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0.02

0.025
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Pan and Zhang [15]

Fig. 2. Absolute error distribution at p = 8, h = 0.5, τ = h2, and t = 40.
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Fig. 3. Error ‖e‖ versus t at p = 4, h = 0.5, and τ = h2.
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Fig. 4. Error ‖e‖∞ versus t at p = 4, h = 0.5, and τ = h2.

error is taken place around the peak amplitude of the solitary
wave and then the scheme (9)–(11) is applied in this area.

Figs. 3–6 show errors at t ∈ [0, 60] with τ = 0.25, h =
0.5, and p = 4, 8 by comparing with the Pan&Zhang method
[15]. It is observed that both errors increase with time quite
linearly but the error of the present method is less than that
of the Pan&Zhang method [15].

As shown in Tables III and IV, on one particular choice of
the parameters, the estimated rate is close to the theoretically
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Fig. 5. Error ‖e‖ versus t at p = 8, h = 0.5, and τ = h2.

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

 

 

Present
Pan and Zhang [15]

Fig. 6. Error ‖e‖∞ versus t at p = 8, h = 0.5, and τ = h2.

predicted fourth–order rate of convergence. We can also say
that when we use smaller time and space steps, numerical
values are almost the same as exact values. The CPU time
for two methods are listed in Tables III and IV. It can be seen
that the computational efficiency of the present method are
slightly better than that of Pan&Zhang method [15], in term
of CPU time. However, the construction of the novel scheme
requires only a regular five–point stencil at a higher time
level, which is similar to the standard second–order Crank–
Nicolson scheme and Pan&Zhang scheme [15].

As in Tables V and VI, the values of Qn and En at any
time t ∈ [0, 40], which results from the present method,
coincide with the theory. The quantities Qn and En seem
to be conserved on the average, i.e. they are contained in a
small interval but there are fluctuations.

Figs. 7 and 8 show numerical solutions at t = 200 with
p = 4 and 8. The results from the Pan&Zhang method [15]
are slightly oscillate at the left side of the solitary wave in
case of p = 8. However, the results from the present method
are almost perfectly sharp in both cases p = 4 and 8. From
the point of view for the long time behavior of the resolution,
the present method can be seen to be much better than the
method in [15].

The solitary waves obtained by the present scheme are
plotted in Figs. 9 and 10 using τ = 0.25, h = 0.5, xl =
−60, xr = 200, and p = 4, 8. The solitons at t = 60 and

TABLE III
RATE OF CONVERGENCE AND CPU TIME WITH p = 4 AND t = 40.

τ = 0.25, h = 0.5

τ, h τ
4
, h

2
τ
16

, h
4

Present

‖e‖ × 10−2 3.20548 0.197080 0.0123084
Rate 4.02369 4.00106

‖e‖∞ × 10−2 1.22483 0.0752290 0.00469781
Rate 4.02515 4.00123

CPU time (s) 1.153389 12.866165 155.967273

Pan&Zhang

‖e‖ × 10−2 6.41825 1.85385 0.479643
Rate 1.79165 1.95050

‖e‖∞ × 10−2 2.38960 0.696030 0.180409
Rate 1.77955 1.94788

CPU time (s) 1.251865 13.534488 157.561488

TABLE IV
RATE OF CONVERGENCE AND CPU TIME WITH p = 8 AND t = 40.

τ = 0.25, h = 0.5

τ, h τ
4
, h

2
τ
16

, h
4

Present

‖e‖ × 10−2 3.18080 0.194284 0.0121337
Rate 4.03315 4.00108

‖e‖∞ × 10−2 1.19513 0.0727869 0.00454621
Rate 4.03734 4.00094

CPU time 1.21464 13.868260 174.397644

Pan&Zhang

‖e‖ × 10−2 6.44908 1.99919 0.525426
Rate 1.68968 1.92785

‖e‖∞ × 10−2 2.35870 0.739615 0.194938
Rate 1.67314 1.92376

CPU time 1.371416 14.862871 175.068007

TABLE V
DISCRETE MASS Qn .

τ = 0.25, h = 0.5
t p = 4 p = 8

t = 10 6.26580620079700 9.74208591413665
t = 20 6.26580620078861 9.74208595412127
t = 30 6.26580619948382 9.74208578472995
t = 40 6.26580617252808 9.74208558745239
Q(0) 6.26580620079328 9.74208618205024

TABLE VI
DISCRETE ENERGY En .

τ = 0.25, h = 0.5
t p = 4 p = 8

t = 10 2.86723006370139 4.73479863443071
t = 20 2.86725271321602 4.73481771538282
t = 30 2.86726739317968 4.73483391314363
t = 40 2.86727839480750 4.73485101919594
E(0) 2.86718872840474 4.73477831492679

120 agree with the soliton at t = 0 quite well, which also
shows the accuracy of the scheme.

VI. CONCLUSIONS

The new conservative finite difference scheme for the
Rosenau–RLW equation is introduced and analyzed. The
present method gives an implicit linear system, which can
be easily implemented. This method shows the second– and
fourth–order accuracy in time and space, respectively. In
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Fig. 7. Numerical solutions at p = 4, xl = −60, xr = 300, h = 0.5,
τ = h2, and t = 200.
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Fig. 8. Numerical solutions at p = 8, xl = −60, xr = 300, h = 0.5,
τ = h2, and t = 200.
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Fig. 9. Numerical solutions at p = 4.

addition, the numerical experiments show that the present
method supports the analysis of convergence rate.

It is obvious from numerical experiments that the present
method, the scheme (9)–(11), gives the well resolution for
the Rosenau–RLW equation. It is possible that the solitary
wave obtained by this novel method can be smoothed out,
at long time, by type of the high–order accuracy.
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Fig. 10. Numerical solutions at p = 8.
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