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4.4, Ynuanlusinniunin (Separated Wing and Propeller in Tractor Configuration)
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4.5. Undaluiadurias(Pusher)
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4.6. Ynuenluinaiumas (Separated Wing and Propeller in Pusher Configuration)

A < ) Yy v
°1ugﬂ 51 (a)-(c) ﬂm‘wnmmgnammziaumimgmmﬂ‘uww Tuldadeany

=

= o Y 2 Y 1 A YA [ R=] A S o
nasumlasves ¢, dunaldniyulznzi@ernuinm ¢, MlndiRssnududnge Stall NG

1

1 a3 o 1 o I 1 ] 1 4 A o {
Usingiuiluga@edniu uadmsua ¢, Tusnnou Stall emusoumsryuveslunan

< T 1= ~ A ~ '
mmmauim nuNmM C, UliJiJﬂﬁLﬂaEJuLLﬂﬁ\ifﬂi]mlel1%1ﬂﬂ1511’iﬂ%®@@1ﬂ1ﬁ‘ﬂ1‘”ﬂWTH

a

] 9 Y
i luimslasumlassusuTasasiedanai ms InaneudesuiEsusa lildurllndaua
Y

usnogudIaledninavesluna uAMa9IN Stall ©INFGUNAA Separation WINTIVY 1ioiTa
é@’ = Y a d o v A [ 1=~ A o [
yulegnggau daudnezialsingmsaidsnarmiounu ualnniduiusevvesluiia

1 o Y < ] ~ dy Y o a £ 9 3 A da! <
3J1ﬂﬂ')1%$‘1/]ﬂ1"iﬂ’ﬂll!‘i'3ﬁll”h’iaNWHﬂﬂ’gQ"Uu q@ﬂWﬂﬁﬂJﬂﬁ%ﬁ‘WﬁL!ﬁﬂ@WHﬂl,Wll"UuﬁnJﬂ’JﬂJL'i'J

Y
= td'do 1

a A = o Y 3 = = 1
Mnmavh Idmundnnusiuiausevunn UM Coainm

53



Propeller V=6 m/s
1

—&— N 6000
3 —— N 6000 Supaero

-
o
R e a i G
-1
0 20 40 60 80 100
AOA, o (°)
(a)
4 Propeller V=6 m/s
T
—4-— N 4000
34 —®— N 6000
—— N 8000
2
1
o=l =0
-1
0 20 40 60 80 100
AOA, o (°)
(d)

Propeller V=10 m/s

H
—4— N 4000
—®— N 6000
1+ —%— N 8000

15

-0.5
20 40 60 80 100
AOA, o (°)
(b)
4 Propeller V=10 m/s
H
-—-4--- N 4000
3 —@&— N 6000
—&— N 8000
2
1
os——8—8—8——0—0—-0—0
-1
0 20 40 60 80 100
AOA, a (°)
(e)

54

Propeller V=14 m/s
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Wing prop-on (Tractor), AR=1, D=0.2
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Wing prop-on (Tractor), AR=1, D=0.2
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Wing prop-on (Tractor), AR=1, D=0.2

Wing prop-on (Tractor), AR=1, D=0.2
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3\éVing prop-wash effect (Tractor), AR=1, D=0.2
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Wing prop-wash effect (Tractor), AR=1, D=0.2 Wing prop-wash effect (Tractor), AR=1, D=0.2
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Wing prop-on (Pusher), AR=1, D=0.2
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Wing prop-on (Pusher), AR=1, D=0.2 Wing prop-on (Pusher), AR=1, D=0.2

Wing prop-on (Pusher), AR=1, D=0.2
0.6 0.6 0.6
0.4 0.4 -] 0.4
3 = 3 = g
g 02 el g 02 =] g 02
@) @) ©) =
0 —&—J=0.225 ] 0 —&—J=0.375 | 0 —&—J=0.525|
—4—J1=0.3 —4—J1=05 ——J1=0.7
— Wing — Wing — Wing
-0.2 L L -0.2 L L -0.2 L L
-20 0 20 40 60 80 100 -20 0 20 40 60 80 100 -20 0 20 40 60 80 100
AOA, o (°) AOA, o (°) AOA, a (°)
(e) (f) (g

i [ 4 a o v A < A 4 ] 1 @ a £
517 50 usuieumeimanamansvesiinanluwadunasninawsa 6 10 14 was/Aui Welsuyuzng 0-90° Tas (a)-(c) naasmduilsz@nsus

' rd 1
an, (d)-(f) uﬁmmﬁuﬂsxﬁmmqﬁ’m, (e)-(2) naaemdudseans Tumuan 30% voannueuduse

[ <3 [ I~ a o o
W TuuaaznsmziinnusuRernu Taenedne nae tazun Tawi52910 6 10 wag 14 was/ Ui awdau

S

61
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4.7. Vnuazmansznuanlunaves Tractor (Wing and Propeller Wash Effect of Tractor)
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ABSTRACT

An experimental investigation of the interaction of a propeller-wing configuration for a
tilt body MAV VTOL was performed in the low speed wind tunnel. This study’s primary
objective is to present the effect of the interactions between a low aspect ratio wing and
propeller for a range of incidence in transition between horizontal and vertical flight.
During the transition from horizontal flight to vertical flight or vice versa, the flow
patterns seen by the wing are the result of the combination between the free-stream and
the propeller flow. This was reflected in the change of the aerodynamic forces and
moments of the wing. The model is a tractor configuration propeller and with a wing of
aspect ratio equal to one, the airfoil of the wing is a NACA 0012. All tests were
conducted at low speeds in a range from 2 to 8 m/s. In order to simulate the transition
flight of a tilt-body MAV VTOL a range of incidence from -10 to 90 degrees was used.
The results show that the flow of the propeller certainly improves the aerodynamic
characteristics of the wing, increasing the lift and delaying stall with respect to the flight
path of the MAV.

NOMENCLATURE

= Wing chord (m)

= Propeller rotation speed (rev/s)

= Drag coefficient

= Lift coefficient

= Pitching moment coefficient

= Lateral propeller force coefficient

= Thrust coefficient

= Total longitudinal force coefficient

= Drag (N)

= Lift (N)

= Advance ratio

= Pitching moment (N.m)

= Installation propeller a head of wing leading edge (1)
= Radial position (m)

= Moment reference point with respect to the leading edge (1)
= Wing area (m?)

= Thrust (N)

= Lateral free stream velocity (m/s)

= Slipstream resulting velocity (m/s)

= Induced velocity in dynamic propeller (m/s)
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w, = Static induced velocity (n/s)

X = Total longitudinal force (N)

04w = Model angle of attack (deg)

o, = Slipstream angle of attack (deg)

o, = effective wing angle of attack (deg)
p = air density (kg/m®)

1. INTRODUCTION

The interaction between wing and propeller is one of the main factors to be taken into account for
improvement of the aerodynamic performance of MAV. In aerodynamic terms, for the case of a
propeller at incidence the interaction between the propeller slipstream and the lateral free-stream has
been shown to be a very challenging problem due to the complexity of this resultant flow. This has been
shown by Ribner for full scale propeller in [1] and Gomez in [2] for MAV. Now if a wing is added, the
complexity of the problem is increased by the influence of the wing over the propeller and the influence
of the resultant combined flow of the propeller and the freestream over the wing. It has been shown by
Catalano [3] that the position of propeller has an influence on the wing boundary layer characteristics
such as: laminar flow extension and transition, laminar separation bubbles, and reattachment and
turbulent separation. It was shown by Catalano that pusher propeller configuration inflow affects the
wing characteristics more effectively than the tractor configuration. But it was also shown by Bataille
in [4] that to have a good control of the tilt-body MAV, using the control surface of the tractor
configuration outperformed the pusher configuration.

It has been shown by Veldhuis in [5] for the full scale aircraft and Hrishikeshavan in [6], Ageev in
[7] and Shkarayev in [8], that for MAVs, the propeller slipstream produced a modified flow over the
wing where the kinetic energy is increased, modifying the boundary layer characteristic by increasing
the Reynolds number and changing the separation behavior.

Similar researches as the one perform by Randall in [9] and [10] have studied in detail the co-axial
propeller slipstream effect on the lift and drag of the wing. The results show the slipstream effect on
the stall delay, lift augmentation, drag increase, and reduced aerodynamic efficiency. This research
studied and supported the Mini-Vertigo MAV. Itasse in [11] studied the characteristic longitudinal flight
behavior during an equilibrium transition between vertical/horizontal flight modes. Part of the research
focused on the enhancement of the longitudinal control of the MAVion (a tractor configuration MAV
of ISAE). Deng et al. in [12] studied the propeller-wing interaction using both the experimental and
numerical methods. It was found that the slipstream has a significant influence on the pressure
distribution on the wing surface, as well as, explained the pattern of wing-tip vortex at different angles
of attack with a rotary propeller. However, the test is limited to low angles of attack. Therefore, the
aerodynamic part of wing and propeller interaction is essential to study and understand the performance
of MAV during transition flight.

To further understand the behavior of the flow seen by the wing for a single propeller and to isolate
the wing forces under the effect of the slipstream from the propeller forces, four different types of
models were designed and studied. First an isolated propeller at incidence was tested. Second, an
isolated wing was analyzed. Third, a combined propeller-wing model where both are connected was
studied. Finally a model of the propeller-wing interaction where the propeller was isolated from the
wing was used. For this third model just the wing aerodynamic forces and moments were measured.
For all the models the effect of propeller wash or slipstream on the wing aerodynamics during transition
flight was the focus of the study and just the fixed-wing tractor configuration was considered.
Moreover, the wing down-wash effect over the propeller, which several researches neglected, has been
considered in this paper.

2. EXPERIMENTAL SETUP

The model information is shown in Table 1 and Figure 1. The test was performed at the ISAE SabRe
wind-tunnel. The model was tested from low incidence angle to high incidence angle; thus the range of
the angle of attack (o) varies from -10 to 90 degrees. The model was also designed with a plain flap.
The experiments where focused on low Reynolds number. Moreover, the installation of propeller
position was also studied.
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- N

Figure 1. Model information and tractor configuration model in SabRe

Table 1. Model Information

Information Value

Airfoil NACA 0012

Wingspan 0.3 m

Wing chord 0.3 m

Platform shape Rectangular

Wing area 0.09 m*

AR 1

Flap type Plain flap

Flap area 0.03 m*

Motor Brushless PJS 3D 550

Propeller Graupner 8x6”
3. EXPERIMENTAL SETUP

The study of the wing propeller interaction was performed using the measurements of four different
experimental models. First, a single isolated propeller was tested at different angles of attack (o) as
shown by Gomez in [2]. A wing only model was started to be a baseline behavior of the wing. The third
model was called MPROWM (Mounted propeller on wing model). The aerodynamic forces and
moments measured in [2] are subtracted from the total measurements of MPROWM model to obtain
the aerodynamic load and moments of the wing under the slipstream influence. Finally a fourth model
call SPROWM (Separated propeller wing model) was used to investigate the wing down-wash effect
over the propeller.

The MPROWM and SPROWM models were installed in the closed-circuit low speed wind tunnel
of ISAE (SabRe). The test section dimensions are /.2m x 0.8m and 2.4m. The model was positioned
vertically with respect to the flow of test section.

The propeller was moved using the aluminum motor support wedges as seen in Figure 1(b). The
propeller was set at two different positions from the leading edge: 7%c and /8%c. The model was
turned from -/0 to 90 degrees using an automatic position motor in order to simulate the angle of attack
of the models. The flap deflections were in a range from -/0 to +20 degrees. A digital servo mechanism
inside the wing was used to deflect the flap. The propeller speeds were fixed at 5000 RPM and 6000
RPM. The free stream velocity was set in a range from 2 to 8 m/s.

Volume 5 - Number 4 - 2013
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Figure 3. Model SPROWM a) Wind-tunnel tests set up b) Model in the SabRe wind tunnel

The isolated wing, MPROWM and SPROWM were installed at the SabRe wind tunnel shown in
Figures 2a and 3a.The forces and moments were measured by the internal five-component Micro Sting
Balance (Figure 3) which is limited to 10 N in terms of forces and 0.5 N-m in terms of moments. This
balance is made of high strength 3SNCD16 alloy steel. The calibration of this balance used in the
current investigation follows the same parameter as the calibration performed by Thipyopas in [13].

The acquisition system for SabRe was developed by DAEP Laboratory and is composed of a
National Instruments acquisition terminal, six Celians signal conditioners (power supply, signal
amplification, filters), a control and acquisition computer and a National Instrument rack equipped with
an interface SCXI module. A Labview based software was developed and used for the control of the
experimental setup and for acquisition of the data.

The data was collected at a sampling frequency 1,000 Hz and recorded after 10 seconds of
stabilization time. Moreover, 10 samples for each AOA were used in order to perform an statistical
analysis of the data. Note: all of data has been corrected through the wind tunnel wall effects, which is
the method of Pope [14].
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Figure 4. High Sensitive Micro String Balance MicroB

Figure 5. Free body diagram of MPROWM

3.1 Mounted Propeller on Wing Model (MPROWM) and theoretical model
The balance was installed inside the wing. A second calibration was performed including the model
weight. The ¢,,,, and flap deflection angle 5f were calibrated as well. o, was calibrated by the use
of a portable laser positioning system. ,was calibrated using a potentiometer and a protractor. The bias
error observed during the calibration is very small and can be ignored.

The force conventions are considered in terms of the body axis as shown in Figure 5 and 6. In the
combination of wing-propeller as shown in the MPROWM model; the resulting aerodynamic forces are
generated by the combination of the single propeller forces, the wing forces, and the interaction effects
between the propeller wash and the wing down-wash. The main effect of the propeller wash over the

2 1 Propeller

Figure 6. Velocity triangle of fully accelerated slipstream
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wing is the increase of the Reynolds number and the change of the wing effective angle of attack (¢, ).
As a first approximation ¢, can be calculated using the method suggested by McCormick in [15] and
shown in eqns (1-7).

The calculated modifications to ¢, and the resultant velocity vector shown in Figure 5 were
performed using the measured experimental thrust. The results of eqn (7) for an advance ratio of J = 0.40
and J = 0.48 is shown in Figure 7a. Figure 7b show the ratio of the resultant velocity with respect to
the free-stream velocity. The resultant velocity is calculated using eqn (5).

This theoretical result can be compared with the experimental results to analyze if the predicted
behavior of the propeller slipstream matches the observed trends of the MPROWM experiment result.

T=2pAV'w ey
V' =[(V cosa+w)’ +(V sine)*]" 2
T 1/2
" :[_] ®
2pA

4
(1] +2[1Elcosa+[lj££] =1 “4)
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Figure 7. Propeller slipstream effect when J=0.40 and 0.48: (b) wing angle of attack

The wing angle of attack (¢,) in Figure 7a is smaller than the MAV ¢, due to the combination
between free-stream velocity and the propeller induced velocity which generates the resultant velocity
shown in Figure 7b. The wing effective angle of attack (¢, ) increases as the advance ratio does. This
can be explained by, first, the fact that the free-stream velocity is kept constant in function of o ,,, and
the change of J is due to the decrease in RPM as shown in Table 2. Second, from Figure 6 it can be
deduced that if V' is constant and w increases (as thrust increases) the propeller slipstream angle (o)
will also increase with the model angle of attack (¢, ,,). Taking into account eqn (7) it is seen in Figure
7a how the effective wing angle of attack will tend to decrease as the induced velocity is predominant
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over the free-stream. This of course also means that smaller o, becomes, further the stall of the wing
in function of ¢, will be delayed. Moreover, the resultant velocity increases as well which causes the
wing to experience different Reynolds as ¢,,,, and J increase .

This effect will be studied more in detail in the following sections, although the analysis would be
focused on the behavior of the wing with respect to the model angle of attack ¢, . This was done
because ¢, represents the angle of transition between horizontal and vertical flight .

4. RESULTS
The relation of free-stream velocity in variation of propeller rotation is considered in terms of advance
ratio which is shown in Table 2. The aerodynamic coefficient in this paper can be calculated as:

L c D c M C X V

¢, = D= > bw T ¢
Lpr’s Lpr?*Se Lpr?s nD

L

Table 2. Advance ratio equivalences

V (m/s) RPM J
6 5000 0.36
8 5000 0.4
8 6000 0.48

4.1 Wing and Propeller Wash Effect

411Lift coefficient study

In Figures 9a and 9b, the effect of the prop-wash over the lift coefficient for the MPROWM model can
be observed. To obtain the prop-wash effect for the MPROWM model the generated lift coefficient
contributions can be derived from eqn (8). By assuming that the effect of the wing down-wash over the
propeller is negligible (AC Lving—prop = 0) the propeller-wash effect (AC Lprop meg) can be calculated
from the measured values of C,, .. C Liwing and C Lprop' The total lift coefficient of the wing under the
prop-wash effect (C, ..

et AC Lprop HWl.ng) is compared with respect to the total model lift and the
unpowered wing lift in Figure 9a and 9b.

C +AC +AC )

Ltotal — CLwing + Cmep Lprop—wing Lwing— prop

In Figures 9a and 9b it can be observed that the prop-wash has a strong stall-delay effect on the wing.
The stall angle in terms of ¢,,,, increases from 25 degrees to 50 degrees for J=0.4 and 25 degrees to
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Figure 9. MPROWM Wing prop-on/ off and propeller-wash effect in terms of lift coefficient vs. cMAV: a)
J=0.4b) J=048
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45 degrees for J=0.48. Moreover the results show that the maximum lift coefficient increases when the
advance ratio decreases. This is due to the increase in induced velocity as the propeller generates more
thrust. The maximum wing prop-on lift increases 200% and 175% of the wing lift coefficient by the
propeller-wash effect (C Lwing T AC Lprop Hng) for /=0.40 and 0.48 respectively. These results confirm
again that the propeller slipstream can develop the wing boundary layer characteristics such as laminar
separation bubbles, reattachment and turbulent separation as is shown by Catalano in [3].

As seen before, the increase of the stall angle with respect to the free stream ¢, is a consequence
of the change in the wing effective angle of attack ¢ in function of deflection of the slipstream
produced by the free-stream (¢, ). This makes ¢, strongly depending on the ratio V_/w . So it can be
seen that as the propeller axial induced velocity increases with respect to the free-stream velocity, o,
will tend to be smaller.
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Figure 10 Comparison propeller-wash effect between MPROWM and SPROWM in terms of lift
coefficient vs. cMAV: @) J=0.4 b) J=0.48

It can be also be observed that the lift of the wing accounts for almost 40% the total lift of the model
before stall. After the wing has stalled most of the lift is generated by the propeller. This behavior is of
course expected, but it should be remarked that longer the stall of the wing is delayed less lifting power
from the propeller will be required.

Part of this investigation has been also focused on the effect of the wing over the propeller. Figure
10a and 10b show the calculated prop-wash effect using MPROWM model vs. the measured prop-wash
using the SPROWM model. The difference in the behavior of the lift coefficient for both models shows
that neglecting the wing-wash effect over the propeller is a reasonable assumption.

Considering the lift difference AC, between the models, it seems that the MPROWM underestimate
by less that /0% the lift coefficient before 20 degrees. Subsequently, the prop-wash has a strong effect
on the model and its maximum is at 40-45 degrees, which is near the stall angle. To further support this
conclusion, using the results of the SPROWM model in eqn (8) the wing-wash effect AC Lving—sprop €N
be calculated. The results between the measured AC Lprop—swing and the calculated AC Lwing—prop SN be
observed in Figures 11a and 11b. It is shown that the effect of the down-wash of the wing over to
propeller has a tendency to reduce the propeller lift but in comparison with the effect of the propeller
over the wing the effect of the down-wash can be neglected for a first approximation to the MAV
stability calculations.
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Figure 11 Propeller-wash and wing-wash effect in terms of lift coefficient vs. aMAV: a) J=0.4 b) J=0.48

412 Total Longitudinal Force Coefficient

Figures 12a and 12b show how the C;, of the unpowered wing and the C}, of the wing under the prop-
wash influence in function of ¢, . For this case also wing-wash effect over the wing is ignored. It is
seen that the total longitudinal force of the MAV C,, . makes a transition at an angle of 25 degrees.
This transition is produced when the horizontal component of the thrust is not strong enough to have a
propulsive effect. After 25 degrees Cy, . is transform in pure drag.

Analyzing the propeller-wash effect over the drag of the wing it can be seen that drag increases
between a maximum of /90% and 156% for J=0.40 and J=0.48 respectively. For the total model the
maximum C,, . is found at 90 degrees where for J=0.40 it rises 25% and for J=0.48 it rises /3%
compare with the prop-wash wing drag. This clearly shows that the wing is also responsible for most
of the drag produced by the model.

The total longitudinal force and wing drag can be separated in each part of MPROWM as in eqn (9).

c C,+C, +AC +AC 9)

Xtotal — ~ Dwing Xprop Dprop—wing Dwing— prop

The comparison of the propeller-wash effect between MPROWM and SPROWM in terms of drag
coefficient is shown in Figures 13a and 13b. It is clear that in the MPROWM model, where
C Dwing—prop is neglected, a good accuracy in terms of prediction of the drag coefficient is obtained.
For high angles of attack, when the advance ratio is increased a difference can be noticeable. This
difference remains at around 7%.

J=040,AR=1,5,=0° J=048,AR=1,5,=0"|
Fol Wing_prop-on ( CX;_,) o Wing_prop-on ( CXy,,)
25 5 A Winé_{PCEr;wing ) . 25 5 A Winé_{PCSwing ) .
I o Prop-wash ( CDwing + ACDprop—wing) I o Prop-wash ( CDwing + ACDprop—wing)
2} g 2}
b o wrﬂ’u g
1.5 & /‘\/‘L Y 1.5 = ’%)rx
a f q / B a [ o1 o
s A b o T2
o 1 F 2 ( A © 1 F o a
o L/ q /
0.5F o ¥ / 0.5F 4
ob—x24e8 i1 4 Ofb—tedant W
i L~ & I ]
-0.5 — -0.5
'120 0 20 40 60 80 100 '120 0 20 40 60 80 100
O“MAV (O) O“Mf\v (O)
(@) (b)

Figure 12 Wing prop-on/off and propeller-wash effect in terms of drag coefficient vs. cMAV: @) J=0.4 b)
J=0.48
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Figure 13 Comparison propeller-wash effect between MPROWM and SPROWM in terms of drag

coefficient: a) J=0.4 b) J=0.48
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Figure 14 Propeller-wash and wing-wash effect in terms of drag coefficient vs. cMAV: a) J=0.4 b) J=0.48

Figures 14a and 14b show that neither the propeller wash nor wing-wash interaction has an effect on
each other between -/0 to 25 degrees. But after 25 degrees a remarkable effect of the prop-wash over
the wing can be seen. For aJ = 0.4, it is seen that the wing-wash effect does not have any major effect
over the propeller. On the other hand for a /=048, it is seen that the wing-wash produces a small
increment of the thrust of the propeller which can account for the difference between the models seen
in Figures 13a and 13b. Again, it can be seen that even if at high advance ratios certain differences
between the models can be observed, the fact of ignoring the wing-wash effect over the wing has shown
to be a valid supposition also in terms of drag prediction.

4.1.3 Pitching Moment Coefficient (LE)

The pitching moment is considered at the wing leading edge (LE), thus the negative values represent a
pitch-down moment and the positive values a pitch-up moment. Figures 15a and 15b shows that the
maximum C,,, . increases about 290% for J=0.40 and 250% for J=0.48 with respect to the unpowered
configuration. It can be observed that before the stall of the unpowered configuration the slope of the
linear part is the same for the powered and unpowered configurations.
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Figure 15. Wing prop-on/off and propeller-wash effect in terms of pitching coefficient vs. aMAV:
a) J=04b) J=0.48

The MPROWM C,, . can be separated by the contribution of each model element and its
interactions:

C

Miotal

AC

Mprop—wing Mwing— prop

©))

Mwing + Mprop +

where, Cotprop = Cr + Cr X1

It is shown in [2] that for a propeller at incidence the resultant propeller thrust C, is not applied at
the center of the propeller. This is due to the asymmetric distribution of the thrust over the propeller
disk. But, due to the fact that the radius of the current propeller is really small and the fact that the total
off-axis thrust does not displace more than 45% away from the center of the propeller, it is safe to
assume that for this type of propeller the pitching moment produce by C,.  can be neglected. To predict
the pitching moment of the wing under the effect of the prop-wash (for the MPROWM) the wing-wash
effect is ignored again.

The effect of neglecting the wing-wash effect over the propeller on the pitching moment can be
studied by comparing both experimental models MPROWM and SPROWM. As shown in Figures 16a
and 16b it is observed that neglecting the effect of the wing wash over the propeller in order to calculate
the prop-wash effect over the pitch moment has no major difference with respect to the measured
experimental value (SPROWM model).
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Figure 16. Comparison propeller-wash effect between MPROWM and SPROWM in terms of pitching
moment coefficient at wing leading edge: @) J=0.4 b) J=0.48

Volume 5 - Number 4 - 2013



256 Aerodynamic Characteristics of a Low Aspect Ratio Wing and Propeller Interaction
for a Tilt-Body MAV

0.4 J=0.40, AR=1, Sj.=0° J=0.48, AR=1, Sj.=0°
: —o0—— ACMprop—wing 0.4 ——o0—— ACMprop—>wing|
| l ACMwing—prop: | ACMwing—prop:
0.2 0.2
L—
s 0 - -~ s 0 - P s I
. & : B =
0 | oot 0 el
-0.2 l\q\\:\ J’J:'/t -0.2 ’\c\h\:\o‘u}:(p}
0.4 - 04
050 20 80 100 080 20 80 100

20 60 40 60
Oyay () Oygay ()
() (b)

Figure 17. Propeller-wash and wing-wash effect in terms of pitching moment coefficient vs. cMAV:
a) J=04b) J=048

It can be observed in a and 17b that the wing-wash effect over the propeller tens to further increase the
pitching up moment . This can be explain by the fact that the wing hash effect tends to increase the
propeller angle of attack as explain in [5], and it is show in [2] that the pitching moment of the propeller
tends to increase with the angle of attack. It is clear again that the effect of the prop-wash

AC over the moment of the wing is more important in comparison with AC

MLEprop—wing MLEwing—prop*

4.2 Wing behavior in transition

Figures 18a to 18c show the behavior of the lift, drag and pitching moment coefficient curves in
function of ¢, The effect of the increased Reynolds number is reflected in the change of magnitude
observed in the lift and drag coefficients. It should be noted that the Reynolds number increase is due
to the increase in the resultant velocity as seen by the wing as observed in Figure 7b. It should be noted
that as the advance ratio increases and the induced velocity of the propeller decreases the deflection of
the slipstream also will increase. This increase in ¢ will of course increase ¢,,. This is why it can be
seen that the maximum ¢ for J = 0.48 is around 50 degrees and for J = 0.4 it is around 42 degrees
(Note: The maximum ¢ is obtained for an ¢, = 90 degrees). In Figure 18a the lift behavior of the
wing can be analyzed. But first it should be remembered that the stall angle for the current wing in an
unpowered configuration is around 25 degrees as shown in Figures 9a and 9b. Taking this into account,
it is clear that from the point of view of the wing a delay in the stall angle is also observed. Of course,
the magnitude of the delay is smaller in comparison with the stall delay with respect to ¢, But in
this case, it seen more clearly how the increased circulation produced by the prop-wash delays the wing
stall by controlling the separation of the boundary layer.

Analyzing closer Figure 18a, a very particular behavior can be observed. As the advance ratio
increases the V,, decreases, which accounts for the magnitude reduction of the lift, drag and pitching
moment coefficient. But a further stall delay is observed as the advance ratio increases. This behavior
can be attributed to the embedded characteristics of low aspect ratio wings, where the vortical lift is
predominant. So as V, decreases, the vortical structures over the wing are not dissipated as fast. These
vortical structures have a positive effect over the attachment of the boundary layer which is reflected
in a stall delay.
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Figure 18. Propeller slipstream effect over a) lift , b) drag and ¢) pitching moment coefficients for J = 0.40
and 0.48 vs. the effective wing angle of attack

4.3 Stream-wise Propeller Position Effect

The position of the propeller was changed from 7% to /8% of the mean aerodynamic chord with respect
to the leading edge. This change of position was done to investigate the influence of the separation of
the propeller from the wing over the behavior of the slipstream over the wing.

It was found that the slope over the stall of the wing for a propeller located at /8%c decreases
immediately after stall but the propeller located at 7%c reduces gradually. This can be explained by the
fact that if the propeller is closer to the wing, it can better control the flow around the wing and less
deflection due to the lateral free stream will be experience.

As the propeller flow develops in the axial direction the V,, decreases, so the propeller position also
has an impact over flow attachment over the wing surface. It is observed that for the small gains
observed in terms of the lift coefficient a higher penalty in drag is paid as the propeller is closer to the
wing. To understand the relation between the drag increase and the propeller proximity to the wing, it
becomes necessary to study the topology of the flow in function of this parameter.

It can be concluded a priori that even with the drag penalties observed the best performance of the
wing is obtained when the propeller is installed close to the wing. Previous studies as the one presented
in [5] have shown the results for low ¢,,,. The current results show that a delay of the stall or even an
improvement in the lift behavior of the wing can be obtained by reducing the distance between the
propeller and the wing leading edge. It should be noted that there are small differences of RPM at very
high angles of attack which are produced by the in-plane free-stream velocity component and the small
effects of the wing down-wash over the up-going and down-going blades. But it is considered that the
changes are so small that they can be neglected as an influence parameter in the comparison of the
propeller position.

4.3 Flap Deflections Effect

Some studies of the flap deflections effect were performed for the MPROWM with a flap deflection
range from -/0 to 20 degrees. In Figures 20a and 20b the behavior of the lift and drag coefficient for
the power and unpowered flap is compared. As explained before the aerodynamic behavior of the wing
is improved due to the influence of the prop-wash. The prop-wash develops the boundary layer on the
wing surface and tends to keep a laminar flow at higher incidence angles. This also affects the flap
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Figure 19. Propeller distance installation effect

behavior because as the separation of the boundary layer is delayed the flap can maintain its
effectiveness. The increase in the wing C, and C,, is consequent with the increase in magnitude
observed for the unpowered configuration. A clear increase of the flap effectiveness at high angles of
attack is observed. In the linear slope part the increase in C, & for each /0 degrees is equal to 0.35 the
increase of C),5,is equal to 0.25. Further studies of the deflection of the prop-wash produced by the flap
and the behavior at extreme high angles is necessary to understand the loss of efficiency.
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Figure 20. Flap deflection effect on the MPROWM : a) lift coefficient, b) total longitudinal force coefficient

5. CONCLUSIONS

Due to multi-function of MAVs, it can tilt body from horizontal to vertical flight, as well as hover. Thus
it is important to know to aerodynamic characteristics which influence flight control while flying. In
order to investigate the aerodynamic characteristics, the study was focused on the interaction between
a wing and propeller. Additionally, this research has focused on the effect of the propeller with respect
the leading edge of the wing. The models used in this research consist of a basic configuration of a
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NACA 0012 low aspect ratio wing powered by a propeller. This was used to explain the aerodynamic
performance and interaction between wing and propeller for tilt body MAVs.

. The models were tested in the SabRe wind tunnel and found that the MPROWM aerodynamic
forces and moment are not only generated by the singular wing and propeller, but also the
slipstream effect interactions with the wing.

. Moreover, the slipstream is divided into propeller-wash effect and wing-wash effect. The
propeller-wash has the large effect, but the wing-wash over the propeller has a very small
effect in comparison. The influence of propeller-wash on the wing develops the boundary
layer and keeps a laminar flow at higher incident angle commonly found during transition.
These effects increase the wing performance and delay stall angle.

. As the propeller is installed close to the wing leading edge minor improvements in the
efficiency are observed in comparison with the farther position. This efficiency increase is
observed because as the distance between the propeller and the wing leading edge is
decreased, so is reduced the effect of the lateral flow over the propeller-wash.

The experimental data of this study can only explain the interaction between wing and propeller of
tilt body MAVs in terms of aerodynamic loads and moments coefficients. Therefore the future work
will use Computational Fluid Dynamic (CFD) methodology. In order to achieve the level of detail to
describe the flow topology and behavior that occurs in the propeller-wing interaction, as well as,
confirm the assumptions of experimental study about the flow, the numerical methodology uses the
FLUENT. This intends to explain the propeller slipstream which is the main point of flow around the
wing. The k- RNG turbulent model is applied. The main interest is that the RNG model in FLUENT
provides an option to account for the effects of swirl or rotation. The Pressure-Velocity coupling solves
to get the convergence by the SIMPLE C algorithm. The propeller is assumed to be an actuator disk.
Moreover UDF is called for the actuator disk boundary condition which the velocity polynomial profile
function of propeller is suggested by Rosen in [16]. A structured C-grid type is used and shown in
Figure 21(a). The first case at zero AOA has been done and shows the axial velocity contour plot in
Figure 21(b), which also found the axial velocity increases at propeller downstream.

(@) L)

Figure 21. @) Structure C-grid of wing and actuator disk, b) Axial velocity contour plot when the
MPROWM ), ,\, = 40 degrees and free-stream velocity 6 m/s
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