
Final Report

 Project Title: A program analysis framework to 
increase the performance and effectiveness of 
asymmetric race detection and toleration

 By Paruj Ratanaworabhan

             February, 2015
      



               Contract No. ………….

               Final Report

A program analysis framework to increase the 
performance and effectiveness of asymmetric race 

detection and toleration

                   Researcher                      Institute
                    Paruj Ratanaworabhan       Kasetsart University

                 This project is supported by the Thailand Research Fund
                                      
               



                      
Abstract 

Project Code: 

Project Title: A program analysis framework to increase the 
performance and effectiveness of asymmetric race detection and 
toleration

Investigator: Paruj Ratanaworabhan

E-mail Address: paruj.r@ku.ac.th

Project Period: 12 months

Abstract: As multicore processors become ubiquitous, parallel 
programs that exploit those extra cores are expected to be 
prevalent. However, parallel programming is not an easy 
undertaking. At present, programmers find that it is already hard 
enough to correctly program in conventional sequential mode. 
Parallel programming worsens the status quo as it introduces 
additional errors that are not found in sequential programming. 
These are, for example, deadlock, atomicity violation, and data 
races. This project will focus on data races, specifically asymmetric 
data races. In general, a race is defined as a condition where 
multiple threads access a shared memory location without 
synchronization and there is at least one write among the 
accesses. Asymmetric races occur when one thread correctly 
protects a shared variable using a lock while another thread 
accesses the same variable improperly due to a synchronization 
error (e.g., not taking a lock, taking the wrong lock, taking a lock 
late, etc.).

Asymmetric races are common and developers in software houses 
like Microsoft constantly have problems with them.  There are two 
reasons for this. First, usually a programmer’s local reasoning 
about concurrency, e.g., taking proper locks to protect shared 
variables, is correct. Errors due to taking wrong locks or no locks 
lie outside of the programmer’s code, for example, in third party 



libraries. Given that lock-based programs rely on convention, this 
phenomenon is understandable. The second reason has to do with 
legacy code. As software evolves, assumptions about a piece of 
code may be invalidated. For instance, a library may have been 
written assuming a single-threaded environment, but later the 
requirements change and multiple threads use it. An expedient 
response to this change is to demand that all clients wrap their 
calls to the library, acquiring locks before entry and releasing them 
on exit. Because this solution requires that all clients be changed, 
races can be introduced when clients fail to follow the proper 
locking discipline.

This project tackles asymmetric data races in locked-based 
parallel programs, specifically those written in unsafe languages 
such as C or C++ that use add-on libraries for threading and 
synchronization. At present, a large installed code base of such 
programs exists and programmers continue to write parallel code 
in this paradigm. The project aims to increase the efficiency and 
effectiveness of an asymmetric race detector and tolerator.

Keywords: Asymmetric race toleration and detection, static and 
dynamic program analysis, dynamic instrumentation



Executive Summary 

Asymmetric races are data races caused when one thread 
accesses a shared variable guarded by a lock in a critical section 
and another thread accesses the same shared variable without 
holding the same lock. Asymmetric races are common and usually 
harmful. They often arise when well-tested code interacts with 
buggy legacy code or third-party libraries. Existing solutions for 
tolerating asymmetric races, whether based on software or 
hardware, have some limitations: they require either complier 
support, or application changes, or new hardware to be added to 
commercial hardware platforms.

This project proposes a consistent execution model for critical 
sections in lock-based multi-threaded programs. During the 
consistent execution of a critical section, two conditions are 
satisfied: (1) shared variables read in the critical section are not 
written outside and (2) shared variables written in the critical 
section are not read and written outside. As a result, asymmetric 
races can never occur. Based on this consistent execution model, 
we present a new software-based scheme, called ARace, to 
dynamically ensure that all critical sections are consistently 
executed by exploiting write buffering and shared variable 
protection. ARace can be directly applied to binary code and 
requires no additional compiler support or application changes. We 
have implemented ARace based on dynamic b inary 
instrumentation and evaluated it with the applications from 
SPLASH-2 and Phoenix. Our results show that ARace guarantees 
the absence of asymmetric races while incurring only about 1x 
overhead on average.



Objectives

The main objective of this project is to build a software tool that is 
able to better detect and tolerate asymmetric data races. We 
achieve our main objective through three steps:

1.Develop a theory for and design a program dynamic analyzer, 
ARace, to increase the performance and effectiveness of 
asymmetric race detection and toleration.

2. Implement ARace based on Pin, a dynamic binary 
instrumentation framework from Intel.

3.Evaluate ARace against two widely adopted benchmarking 
suites, SPLASH-2 and Phoenix, from Stanford University



Research Methodology

Our research methodology follows the outline below:

• Surveying related work
• Developing the underlying theory for and designing the software 

tool that will satisfy our objectives
• Implementing the software tool based on the theory and design 

developed in the previous step
• Evaluating the effectiveness of our software tool using 

comprehensive benchmark programs

Related Work

The existence of data races makes multi-threaded programs error-
prone. When two threads access a shared variable without any 
synchronization, where one of the accesses is a write, a data race 
happens. Data races may cause multi-threaded programs to 
exhibit undesired behaviors. Some data races escaping from in-
house testing may be catastrophic in the real world, as is the case 
for the Northeastern U.S. electricity blackout.
 
There has been a plenty of research on dealing with data races. 
These research efforts fall into two categories: prior detection and 
post tolerance. The former detects and removes data races as 
aggressively as possible during in-house testing, while the latter 
tolerates data races in production runs. Despite extensive in-house 
testing, some data races still lurk around in released products. 
Thus, the latter techniques are invaluable in practice.

There is one class of data races, called asymmetric races, which 
occur at the time when one thread accesses a shared variable 
inside a critical section protected by a lock and another thread also 
accesses the same shared variable due to a synchronization error 
(e.g., outside any critical section or inside a critical section but not 



protected by the same lock). The figure below illustrates an 
asymmetric race.

�
In this example, ptr is a shared variable. The two reads to ptr in 
thread 1 are inside a critical section protected by a lock L but the 
write to ptr in thread 2 is not inside any critical section. This race 
may lead to inconsistent results when reading ptr in thread 1 
during different program executions. This happens when the write 
to ptr in thread 2 takes place between the first read to ptr at S2 and 
the second read to ptr at S5 in thread 1.

Asymmetric races are common in real applications and usually 
harmful. Among the harmful data races found, about 20% are 
estimated to be asymmetric races. The developer usually expects 
the accesses to shared variables to be made inside critical 
sections guarded by appropriate locks. Unfortunately, asymmetric 
races often arise when the developer’s code interacts eventually 
with the other code from third-party libraries or legacy binaries. 
The latter code may be originally written only for single-threaded 
applications in mind. Thus, the presence of asymmetric races is 
often beyond the developer’s control.

Although prior detection is useful for detecting and removing some 
asymmetric races, post tolerance can be more attractive. Many 
asymmetric races happen only when well-tested code interacts 
with legacy binaries or third-party libraries, whose source may be 
unavailable. In addition, due to their asymmetric nature, 
asymmetric races, which cannot be found during prior detection, 

Thread 1

S1: Lock(L);
S2: if (!ptr) {
S3:  ptr = malloc ();
S4: }

S5: *ptr = var;
S6: Unlock (L);

Thread 2

S7: ptr = NULL;

Figure 1. An asymmetric race



can be better prevented with post tolerance. A simple way to 
tolerate asymmetric races is to prevent another thread from 
accessing a shared variable if some thread is accessing it in a 
critical section, avoiding corrupting the shared variable.

We will now look at prior work related to the area of asymmetric 
races.

Asymmetric Races
ToleRace [1-4] is the first proposed software scheme for detecting 
and tolerating asymmetric races. ToleRace copies two shadows, v′ 
and v″, for each shared variable v accessed in a critical section 
when a thread Τ1 executes the critical section. Then T1 accesses 
v′ in the critical section. At the same time, another thread Τ2 can 
accesses v outside the critical section. After T1 has reached the 
end of the critical section, ToleRace compares the values of v and 
v″. Then ToleRace decides which value of v and v′ should be 
reserved as the new value of v: (1) if Τ1 can be serialized before 
Τ2, the value of v is reserved; (2) if Τ2 can be serialized before Τ1, 
the value of v′ is reserved; (3) if Τ1 and Τ2 cannot be serialized, 
ToleRace has to interrupt the execution of the program. ToleRace 
can tolerate asymmetric races in the former two cases but is 
inadequate in the last case ([5] illustrates one such example).

ISOLATOR [5] is another software scheme. At the beginning of a 
critical section, any page p that will be accessed in the critical 
section is copied to a shadow page p′. Then ISOLATOR protects p 
by making it inaccessible. The accesses to p in the critical section 
are redirected to p′. The accesses to p not in the critical section 
will cause page fault exceptions. At the end of the critical section, 
ISOLATOR copies the content from p′ to p, and unprotects p to be 
accessible. ISOLATOR needs compiler support or even application 
changes so that pages can be shadowed appropriately. Besides, 
for every shadow page, ISOLATOR uses a temporary page to copy 
it back. However, if there are multiple shadow pages, the atomicity 
of copying them back is not guaranteed in ISOLATOR.



Pacman [6] also aims to asymmetric races. The main difference 
between Pacman and above two schemes is that Pacman is 
based on hardware. Pacman exploits cache coherence hardware 
to protect cache lines that contain variables accessed in a critical 
section. If instructions not in the critical section try to access these 
cache lines, they will fail and have to wait. Pacman needs 
additional hardware support to exploit cache coherence. Besides, 
Pacman has no knowledge about critical sections. That is because 
critical sections have no difference with normal code from a 
hardware perspective. Compared with software-based schemes, 
Pacman is unintrusive and has negligible execution overhead. 
Nevertheless, it is not yet supported by current computer 
platforms.

Transactional Memory
Transactional Memory (TM) is another way to provide atomicity for 
lock-free data structures. In TM, an atomic region is considered as 
a transaction and the transaction is executed speculatively. At the 
end of the transaction, TM checks whether there is conflict. If yes, 
TM aborts the transaction and rolls back to re-execute the 
transaction. Otherwise, the transaction is committed. TM needs to 
handle side effect operations effectively during rollback, which is 
still an open problem. TM can be implemented based on hardware 
[7], software [8], or hybrid [9].

Data Race Detection
There is a large body of research focusing on data race detection, 
both static and dynamic. Static detections use program analysis 
techniques, like type-based checking [10], static flow analysis [11], 
or lockset analysis [12]. One inherent drawback of static detections 
is that a lot of false positives are reported. Dynamic detections are 
mainly based on the lock-set algorithm [13], happens-before 
analysis [14] or hybrid of the two [15]. Although dynamic detections 
have fewer false positives than static detections, they have the 
challenge of coverage.



If we focus on the three systems most closely related to ours, 
ToleRace, ISOLATOR, and Pacman, we see the following 
shortcomings:

• ToleRace cannot tolerate a case of asymmetric race where the 
two  executing threads T1 and T2 cannot be serialized, and, 
hence, needs to interrupt the execution of the program.

• ISOLATOR requires compiler support or even application 
changes so that pages can be shadowed appropriately. This 
scheme is ineffective unless the source of a program is available. 
Unfortunately, asymmetric races are often triggered when well-
tested code interacts with legacy binaries or third-party libraries.

• Pacman is a hardware-based scheme that is uninstrusive and 
induces negligible slowdown. However, it is not yet supported by 
current computer platforms.

To overcome the imitations inherent in the three aforementioned 
schemes, this project proposes a consistent execution model for 
critical sections in lock-based multi-threaded programs. During the 
consistent execution of a critical section, two conditions are 
satisfied: (1) shared variables read in the critical section are not 
written outside and (2) shared variables written in the critical 
section are not read and written outside. As a result, asymmetric 
races can never occur. Based on this consistent execution model, 
we present a new software-based scheme, called ARace, to 
dynamically ensure that all critical sections are consistently 
executed by exploiting write buffering and shared variable 
protection. ARace works on-the-fly, requires no additional compiler 
support or application changes, and can be deployed even when 
the source code of a program is not available. We have 
implemented ARace based on dynamic binary instrumentation. 
Our results show that ARace guarantees the absence of 
asymmetric races with acceptable performance overhead.



There are fundamental differences between ARace and 
Transactional Memory (TM). Even though both use write buffers, 
ARace does not need to detect versions and conflicts during the 
execution of a critical section, because it protects the shared 
variables read in the critical section. When there are conflicts, TM 
must abort a transaction and rollback. During rollback, TM needs 
to handle side effect operations effectively, which is still an open 
problem. In contrast, there is no notion of abort-and-rollback in 
ARace, because its program executions are not speculative.

1.P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. Zorn, R. 
Nagpal, and K. Pattabiraman. Detecting and Tolerating 
Asymmetric Races. In PPoPP, 2009.

2.P. Ratanaworabhan, D. Kirovski, and R. Nagpal. Efficient 
Runtime Detection and Toleration of Asymmetric Races. In IEEE 
Trans. on Comput., Vol. 61, No. 4, 2012.

3.P. Ratanaworabhan, M. Burtscher, D. Kirovshi, and B. Zorn. 
Hardware Supprot for Enforcing Isolation in Lock-Based Parallel 
Programs. In ICS, 2012.

4.D. Kirovski, B. Zorn, R. Nagpal, and K. Pattabiraman. An Oracle 
for Tolerating and Detecting Asymmetric Races. Microsoft 
Research Technical Report MSR-TR-2007-122, 2007.

5.S. Rajamani, G. Ramalingam, V. P. Ranganath, and K. Vaswani. 
ISOLATOR: Dyamically Ensuring Isolation in Concurrent 
Programs. In ASPLOS, 2009.

6.S. Qi, N. Otsuki, L. O. Nogueira, A. Muzahid, and J. Torrellas. 
Pacman: Tolerating Asymmetric Data Races with Unintrusive 
Hardware. In HPCA, 2012.

7.L. Baugh, N. Neelakantam, and C. Zilles. Using Hardware 
Memory Protection to Build a High-Performance, Strongly-
Atomic Hybrid Transactional Memory. In ISCA, 2008.

8.V. Gramoli, R. Guerraoui, and V. Trigonakis. TM2C: A Software 
Transactional Memory for Many-Cores. In EuroSys, 2012.

9.C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, 
J. Casper, C. Kozyrakis, and K. Olukotun. An Effective Hybrid 
Transactional Memory System with Strong Isolation Guarantees. 
In ISCA, 2007.



10.C. Boyapati and M. C. Rinarad. A Parameterized Type System 
for Race-Free Java Programs. In OOPSLA, 2001.

11.D. Engler and K. Ashcraft. RacerX: Effective, Static Detection of 
Race Conditions and Deadlocks. In SOSP, 2003.

12.P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: Context-
Sensitive Correlation Analysis for Race Detection. In PLDI, 2006.

13.S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. 
Andersom. Eraser: A Dynamic Data Race Detector for 
Multithreaded Programs. In ACM Trans. Comput. Syst., 1997.

14.E. Schonberg. On-the-fly Detection of Access Anomalies. In 
PLDI, 1989.

15.A. Muzahid, D. S. Gracia, S. Qi, and J. Torrellas. SigRace: 
Signature-Based Data Race Detection. In ISCA, 2009.

Theory and Design

Overview
ARace exploits two techniques to ensure that the execution Θ of a 
critical section Ξ is consistent, where Ξ = <Λ, Φ, Γ>. The first is 
Write Buffer. The writes to any φ in Φ during Θ are redirected to 
the write buffer. The write buffer is written back to original shared 
variables when the last instruction in Θ is executed. By this way, the 
intermediate statuses of any φ in Φ generated by instructions in Θ 
are hidden, and instructions not in Θ can only see the final result of 
φ after Θ is finished.

Another technique utilized by ARace is Shared Variable 
Protection. Any φ in Φ read by instructions in Θ is protected to be 
read-only. When Θ is executed, if an instruction not in Θ tries to 
modify φ after instructions in Θ have read φ, it will fail. Then it has 
to wait for the finish of Θ. Any protected φ is unprotected to be 
writeable when the last instruction in Θ is executed.

To prohibit inconsistent statuses of shared variables, ARace forbids 
two critical sections that access same shared variables from being 
executed concurrently. For two critical sections Ξ1 = <Λ1, Φ1, Γ1> 
and Ξ2 = <Λ2, Φ2, Γ2>, if Φ1 ∩ Φ2 ≠ Ø, then any Θ1 of Ξ1 and any Θ2 
of Ξ2 are not allowed to be executed concurrently. Otherwise, if Φ1 ∩ 



Φ2 = Ø, then any Θ1 of Ξ1 and any Θ2 of Ξ2 can be executed 
concurrently. Note, if Ξ1 and Ξ2 are protected by the same lock, 
then any Θ1 of Ξ1 and any Θ2 of Ξ2 will not be executed 
concurrently even if Φ1 ∩ Φ2 = Ø.

Figure 2 illustrates the main steps of ARace. The numbers in the 
ring manifest the happen-before order of the steps. In this example, 
X and Y are shared variables accessed in the critical section. S1 
indicates that this is a critical section. When S2 is executed, the 
shared variable X is protected to be read-only firstly (1). Then S2 
can read the value of X (2). When S3 is executed, a new write 
buffer item, Y′ is allocated to cache the writes to Y (see details in 
next subsection) (3). When S4 is executed, Y′ in the write buffer is 
written back to Y (4), and X is unprotected to be writeable (5).

!  

Write Buffer
The write buffer is a thread private storage, allocated at thread 
starting and freed at thread exiting. It is constructed by write buffer 
items and is indexed by the memory addresses of shared variables. 
The size of each write buffer item is not fixed, and depends on the 
access size of instructions in Θ. Each φ in Φ written by instructions 
in Θ is mapped to a unique write buffer item. The write buffer item 
corresponding to φ is allocated at the first time that φ is written by 
some instruction γ in Θ. The size of the firstly allocated item is the 
same as the access size to φ in γ. In some programming 
languages, for example C/C++, it is allowed to access some bits of 
variables. Hence, φ may not be accommodated in the firstly 
allocated item. To address this problem, when the access size to φ 

S1: Lock(L);

S2: var1 = X;

S3: Y = var2;

S4: Unlock(L);

Figure 2. Main steps of ARace

X

Y

Y′

protected to 
be read-only} unprotected to 

be writeable

3 write buffer

original memory

2

5

4

1



in instructions after γ is bigger than the size of previous allocated 
item, ARace will allocate a new write buffer item to accommodate 
the bigger size and copy the content from the old item to the new 
item. Then, the following accesses to φ are redirected to the new 
item.

Atomicity of Writing Back The write buffer item corresponding to 
φ is written back to φ when the last instruction in Θ is executed. If 
the process of writing back is not atomic, an inconsistent execution 
will be introduced. Figure 3 illustrates this situation. S3 and S4 read 
shared variable X and Y when S1 and S2 write back new values to 
X and Y. After this execution interleaving, var1 and var2 are 
respectively 1 and 0, which violates sequential consistence. To 
guarantee the atomicity of writing back, ARace protects all 
corresponding shared variables to be unreadable and unwriteable 
at the beginning of writing back, i.e. X and Y are protected to be 
unreadable and unwriteable before S1 and S2 are executed in this 
example.

�
After above protecting, ARace cannot write back write buffer items 
to corresponding shared variables directly. Fortunately, most 
modern operating systems, like Windows, UNIX, or Linux, support 
mapping the same physical memory at multiple virtual pages in a 
process’s address space. To write back a write buffer item to 
corresponding shared variable φ, ARace allocates a new virtual 
page, called swap page, to map the physical page of original 
virtual page that contains φ. The swap page is both readable and 
writeable. ARace writes back the write buffer item corresponding to 
φ to the swap page with the same offset of φ in original virtual 
page. Actually, with the help of one swap page, ARace can write 

Init: X = Y = 0;
Thread 1

S1: Write back X with 1;

S2: Write back Y with 2;

Thread 2

S3: var1 = X;
S4: var2 = Y;

Figure 3. An example of writing back



back items whose corresponding shared variables lie in the same 
page, which is more efficient than writing back items one by one.

The protected shared variables are unprotected to be readable and 
writeable after the writing back process finishes. Then instructions 
not in Θ will read consistent status of shared variables. Besides, 
after the writing back process, the write buffer items allocated 
during Θ are freed for following executions of critical sections.

Shared Variable Protecting
To prevent instructions not in Θ from corrupting shared variable φ 
read by instructions in Θ, φ is protected to be read-only. When the 
last instruction in Θ is executed, φ is unprotected to be writeable. In 
most modern operating systems, memory is protected at a page 
granularity. Thus ARace has to protect the whole page that contains 
φ when it needs to protect φ. If φ lies in two pages, all of these two 
pages are protected. And the protected pages are unprotected to 
be writeable at the end of Θ.

False Sharing For two different critical sections Ξ1 = <Λ1, Φ1, Γ1> 
and Ξ2 = <Λ2, Φ2, Γ2>, if Φ1 ∩ Φ2 = Ø, then any Θ1 of Ξ1 and any Θ2 
of Ξ2 can be executed concurrently. However, shared variable φ1 in 
Φ1 read by instructions in Θ1 and φ2 in Φ2 read by instructions in Θ2 
may be allocated in the same page, called p. If Θ1 and Θ2 are 
executed by two different threads T1 and T2 concurrently, p will be 
protected repeatedly. More to the point, assuming T1 finishes Θ1 
before T2 finishes Θ2, if T1 unprotects p to be writeable at the end of 
Θ1, Θ2 will be at the risk of inconsistent.

To solve above false sharing problem, ARace uses a global shared 
structure, called globalPage, to record which pages have been 
protected to be read-only so far. Each protected page has a thread 
list L to record which threads have read shared variables in this 
page in critical sections. In addition, every thread in ARace has a 
local storage S to record the pages that contains shared variables it 
has read in critical sections. Algorithm 1 and Algorithm 2 
respectively illustrate the processes of shared variable protecting 
and share variable unprotecting.



�

When the page that contains φ is protected, instructions not in Θ 
can only read the content in this page. If there is an instruction not 
in Θ that tries to modify any content in this page, it will receive page 
fault exception. Then ARace suspends the thread in page fault 
handler. The suspended thread will resume its execution when the 
page is writeable.



Lazy Unprotecting If Θ is executed frequently, the page p 
containing φ is also protected and unprotected frequently. Actually, 
except instructions in Θ, if there is no instruction modifying any 
content in p, it does not need to unprotect p at the end of Θ. To 
utilize this feature, ARace-LU is proposed. ARace-LU is ARace with 
Lazy Unprotecting (LU). LU puts off unprotecting p until there is an 
instruction not in Θ that modifies contents in p. During this process, 
although Θ is executed multiple times, p is protected and 
unprotected only once.

Although LU will decrease the number of unnecessary protecting 
and unprotecting of p, it may also introduce additional page fault 
exceptions on p. For example, there are instructions not in Θ 
modifying contents in p after every Θ. The performance evaluation 
of ARace and ARace-LU will be presented later in this report.

Access Redirecting
ARace examines each instruction γ in Θ to check whether it 
accesses some shared variable φ in Φ. If yes, ARace will redirect 
the access. Algorithm 3 illustrates the process of access 
redirecting.

For most RISC architectures, like MIPS or Alpha, instructions have 
only two memory access types: reading and writing. But for CISC 
architectures, it is different. For example, instructions in IA-32 have 
three memory access types: reading, writing, and readwriting. The 
last access type means one instruction can read and then write the 
memory. The redirecting algorithm in ARace supports all access 
types in these architectures.

Lock Variable Mapping
Lock variables, like λ in Λ, are used to implement lock 
synchronizations. In most current popular programming languages, 
including C/C++, Java, and C#, programmers can define lock 
variables like normal variables. From the view of the compiler, lock 
variables have no difference with normal variables. Therefore, lock 
variable λ in Λ may be allocated in the same page with shared 
variable φ in Φ. If instructions in Θ read φ, ARace needs to protect 



the page that contains φ to be read-only. Thus, λ is also protected 
to be read-only. Figure 4 illustrates this case.

�

In this example, Ξ1 = <Λ1, Φ1, Γ1>, where Λ1 = {L1}, Φ1 = {X}, Γ1 = 
{S1, S2, S3}, and Ξ2 = <Λ2, Φ2, Γ2>, where Λ2 = {L1, L2}, Φ2 = {Y, Z}, 
Γ2 = {S4, S5, S6, S7, S8, S9}. Because there is no branch type 
instruction in Γ1 and Γ2, Ξ1 and Ξ2 both have only sequential 
executions. Suppose they are respectively Θ1 executed by T1 and 
Θ2 executed by T2. Θ1 and Θ2 can be executed concurrently 
because Φ1 ∩ Φ2 = Ø.

Assume that X, Y and L1 are allocated in the same page p as 
illustrated in Figure 4. Consider the following execution interleaving 
between Θ1 and Θ2: S1 is executed between S4 and S6. Then S6 
has to wait for S3 to acquire lock L1. Due to the end of Θ1, before 
S3 is executed, T1 tries to unprotect p to be writeable. However, 
because of T2, the thread list L of p is not null after erasing T1. Thus 
p is still read-only when S3 is executed. L1 will not be released 
successfully until p is writeable, which means T2 have finished Θ2. 
However, if L1 cannot be acquired at S6, T2 will not finish Θ2. 
Therefore, a deadlock status happens.

To avoid this unintended deadlock status, ARace exploits a Lock 
Variable Mapping Table (LVMT) to map every lock variable λ in Λ 
to a new lock variable λ′, where λ′� Λ. λ′ has the same memory 
size with λ, and is in an independent memory region, which is 
always readable and writeable. LVMT is a one-to-one mapping 
table illustrated in Figure 5. Each term of LVMT has information for 
mapping: memory addresses of λ and λ′. When Lock/Unlock 

Thread 1

S1: Lock(L1);
S2: var1 = X;
S3: Unlock (L1);

Thread 2

S4: Lock(L2);
S5: var2 = Y;

S6: Lock(L1);
S7: Z = var3;
S8: Unlock(L1);
S9: Unlock(L2);

Figure 4. A deadlock example

X

Y

L1

page p

∉



instruction in Θ accesses λ, the memory address of λ is used to 
search LVMT to find λ′. Then λ is replaced by λ′, and the 
probability of deadlock status is eliminated.

�
Ad Hoc Synchronizations
In many multi-threaded programs, ad hoc synchronizations are 
widely used by developers. If one of the synchronization pairs is in 
a critical section, the ad hoc synchronization itself constructs an 
asymmetric race. Figure 6 is an example of this case. In this 
example, S3 and S6 construct an asymmetric race: AR(S3, S6).

Under ARace, AR(S3, S6) will not be triggered. But, thread 1 will 
never exit the loop if it executes S3 before thread 2 executes S6. 
That is because syncFlag belongs to the shared variable set of the 
critical section, and if thread 1 reads different values from syncFlag, 
the execution of the critical section will be inconsistent. Actually, 
shared variables like syncFlag are only used for ad hoc 
synchronizations. Thus there is no need to guarantee the 
consistent statuses of these variables in critical sections. ARace 
utilizes techniques proposed in a related work by W. Xiong et al. 
“Ad Hoc Synchronization Considered Harmful”, OSDI, 2010, to 
detect shared variables like syncFlag accessed in a critical section, 
and deletes them from the shared variable set of the critical section.

Figure 5. Lock Variable Mapping Table

λ1

λ2

λ3

λ1′

λ2′

λ3′

&λ1′&λ11
&λ2′&λ22
&λ3′&λ33

.........

original locks
LVMT

new locksNewOri.Id



�
Implementation

We choose Pin to implement ARace. Pin is a dynamic binary 
instrumentation framework from Intel. The targets of Pin are the 
IA-32 and x86-64 instruction set architectures. It is extensively used 
in a plenty of research. Pin instruments programs at run time. Thus 
it needs no recompiling of programs.

ARace is implemented as a Pintool, including two main 
components: instrumentation engine and analysis engine. The 
instrumentation engine is used to instrument instructions and 
routines. The analysis engine contains access redirecting, write 
buffer, shared variable protecting, and lock variable mapping. 
Figure 7 illustrates the framework of the implementation.

The target multi-threaded programs are compiled on IA-32 
architecture with pthreads library. The pthreads library is a widely 
used multi-threaded library. Although the platform and multi-
threaded library are specific in our implementation, we believe that 
ARace scheme is general enough for other platforms and multi-
threaded libraries.

Init: syncFlag = TRUE;

Thread 1

S1: Lock(L);
S2: ...
S3: while(syncFlag ){};
S4: ...
S5: Unlock(L);

Thread 2

S6: syncFlag = FALSE;

Figure 6. An asymmetric race with ad hoc 
synchronization



�
Shared Variables
Because we have no any prior knowledge about that which variable 
is shared variable, a conservative policy is adopted: regarding all 
non-stack variables as shared variables. Although this policy may 
introduce some false positives, it does not affect the accuracy. In 
addition, this policy is more efficient than determining if a variable is 
a shared variable at run time.

Critical Sections & Lock Variables
In pthreads library, the points of entering and exiting a critical 
section are indicated by calling pthread_mutex_lock and 
pthread_mutex_unlock routines. For pthread_mutex_trylock 
routine, if the calling thread acquires the lock successfully, we also 
consider the following instructions are executed in a critical section.

Lock variables are those arguments passed to above routines with 
pthread_mutex_t structure in pthreads. The original lock variables 
passed to above routines are replaced by new lock variables via 
LVMT. So it is not the original lock variables but the new lock 
variables are really accessed in these routines. In our 
implementation, above three routines are all instrumented.

Figure 7. Implementation framework

Write 
Buffer

Shared 
Variable 

Protecting

Access Redirecting

Lock 
Variable 
Mapping

Instrumentation Engine

Pin

Target Multi-threaded Programs

Analysis Engine

Pintool



Moreover, current implementation of ARace utilizes techniques 
proposed by A. Jannesari and W. F. Tichy in “Identifying Ad-hoc 
Synchronization for Enhanced Race Detection.”, in IPDPS, 2010, to 
identify critical sections enclosed by user-defined Lock/Unlock calls.

Conditional Variables
Besides lock variables, conditional variables are another important 
class of synchronizations. Conditional variables are generally 
accessed in critical sections. Figure 8 is a typical example using 
conditional variable from application radix in SPLASH-2 [28]. In this 
example, the accesses to conditional variable C is protected by lock 
L. This creates an illusion that the critical section protected by the 
same lock can be executed concurrently.

�

In fact, the illusion is not true. The reason is that wait(C, L) is 
implemented as following:

Unlock (L);
Wait on C;
Lock (L);

Therefore, we just need to treat Unlock/Lock in conditional variable 
waiting operations as the point of critical section exiting or entering.
 
Critical Section Instrumentation
Instructions executed in critical sections are instrumented to 
redirect the accesses to shared variables. It is implemented by 
rewriting the operands of these instructions. Some instructions in 

T hread 1

S1: Lock(L);
S2: if(flag == 0)
S3:   wait(C, L);
S4: flag = 0;
S5: Unlock(L);

T hread 2

S6: Lock(L);
S7: flag = 1;
S8: broadcast(C);
S9: Unlock(L);

Figure 8 . A n exam ple of conditional variable

Init: flag = 0;



IA-32, like MOVS series, or CMPS series, have multiple memory 
operands. Thus we have to rewrite all memory operands of these 
instructions. The operands are converted from its original 
addressing mode to the base register addressing mode via Pin’s 
scratch registers. A routine is inserted for each memory operand in 
one instruction to obtain the address after redirecting. Pin’s scratch 
registers are filled up with the return value of this routine. Then the 
memory operands of this instruction are rewritten.

Routine Calls in Critical Sections
Routines called inside critical sections also need to be instrumented 
to redirect the accesses to shared variables, while there is no need 
to instrument routines called outside critical sections. In practice, 
the same routine may be called both inside and outside critical 
sections. If a routine is called outside critical sections at the first 
time, it will never be instrumented. That is because the routine used 
to instrument in Pin is executed only at the first time that the routine 
to be instrumented is executed.

To overcome this limitation, we define a rule for instrumenting 
routines: once a routine has been executed in a critical section, it 
will always be instrumented, or it will never be instrumented. We 
record a Boolean flag Fr for every routine r. Fr is initialized when r is 
called first time with the value if r is called in a critical section. If r is 
called in a critical section at the first time, its Fr is TRUE. Otherwise 
its Fr is FALSE.

All call instructions executed in a critical section are examined. For 
direct call instructions, the callee routine r is known at instrumenting 
time, and is fixed. Thus we just need to check Fr of r. If Fr is FALSE, 
the uninstrumented code cache of r in Pin is invalidated and the 
routine used to instrument in Pin is re-executed to instrument r. 
Then Fr is set to TRUE, which means r has been executed in some 
critical section. For indirect call instructions, the callee routine r is 
not fixed. Thus we insert a routine to obtain the callee routines. The 
inserted routine is executed every time the indirect call instruction is 
executed. 



System Calls
System calls executed in a critical section may also access shared 
variables. For example,

Lock(L);
…
gettimeofday (&tv, NULL);
…
Unlock(L);

where tv is a shared variable defined in user space but accessed in 
kernel space. However, the address of tv should not be delivered to 
the kernel. That is because the page containing tv may have been 
protected to be read-only. If the address of tv is delivered to the 
kernel, when the kernel writes the system call result to tv, it will fail. 
This failure may never happen in executions without ARace. Beside 
system calls inside critical sections, system calls outside critical 
sections have the same problem.

To avoid unexpected failures of system calls, our implementation 
wraps system calls that access variables in user space. The real 
addresses delivered to the kernel are from new variables. If the 
system call is executed in a critical section and the original variable 
is shared, the new variable is allocated in the write buffer. And the 
system call result is written back along with other write buffer items. 
Otherwise, the new variable is allocated in an independent memory 
region that is always readable and writeable, and is written back to 
the original variable immediately after the execution of the system 
call.

Evaluation

Experimental Setup
We evaluate ARace with all 14 applications from SPLASH-2 and all 
8 applications from Phoenix. For SPLASH-2 applications, we use 
their default inputs but increase the size to lengthen the runtime 
when necessary. Phoenix is a shared memory implementation of 
Google’s MapReduce programming model for multi-core chips and 
shared-memory multiprocessors. The source code of Phoenix is 



downloaded from the website. Every application in Phoenix has 
three versions: MapReduce, Pthreads and Sequential. We use the 
MapReduce version with the large dataset to evaluate ARace. 
Besides, we also use two real multi-threaded applications, Pbzip2 
and Aget, to evaluate ARace.

To eliminate the impact of performance fluctuations due to random 
factors, each application from SPLASH-2 and Phoenix is tested for 
ten times, and the final result is the arithmetic average of these ten 
times.

All of our evaluations are conducted on a HP laptop computer with 
Intel(R) Core(TM)2 Duo CPU T7250 2.00 GHz, 2 MB L2 Cache, 
and 1 GB main memory. The operating system is 32 bit Fedora 14, 
which is a Red Hat-sponsored community project. The version of 
the Linux kernel is 2.6.35. The compiler is gcc with version 4.5.1. 
Applications from SPLASH-2 and Phoenix are complied with the 
default options in Makefiles. The two real applications are also 
complied with their default options. In addition, the performance is 
measured by the elapsed time via the command “time” when each 
application runs alone on the platform.



Result

Critical Section Characterization

TABLE 1: CRITICAL SECTION CHARACTERIZATION

�

TABLE 1 presents the critical section characterization of 
applications from SPLASH-2 and Phoenix. The second and third 
columns are respectively the number of active lock and total lock. 
They represent lock variables used in critical sections, and lock 
variables initialized. These two columns show that there are locks 
initialized but not used. The fourth column shows the number of 
critical sections dynamically executed. Some applications, including 
radiosity, barnes, and kmeans, execute many critical sections. The 
fifth column is the number of dynamic instructions per critical 
section. The following three columns show the numbers of 
instructions reading, writing and readwriting shared variables per 

Applications
#Lock
Active

#Lock
Total

#CS
executed

#Inst
per CS

#Read SV
perl CS

#Write SV
perl CS

#ReadWrite
SV perl CS

%Inst
in CS

cholesky 7 7 91 112.51 7.64 2.7 0 0.00
fft 1 1 2 553.5 9.5 1.5 0 0.00
lu-con 1 1 2 553.5 9.5 1.5 0 0.00
lu-non 1 1 2 549.5 6.5 1.5 0 0.00
radix 4 6 12 336.25 4.08 1.25 0 0.00
barnes 2049 2050 686646 265.68 15.54 15.57 0 0.33
fmm 2051 2052 330980 481.32 21.46 24.49 0.000012 0.21
ocean-con 2 6 2416 16.13 4.91 0.91 0 0.00
ocean-non 3 6 89044 15.33 4.77 0.77 0 0.00
radiosity 3914 3915 3212879 21.06 6.29 2.43 0 0.24
raytrace 5 5 196133 21.94 3.45 1.16 0 0.00
volrend 5 67 70766 25.2 4 1 0 0.02
water-nsquared 517 521 4130 277.8 58.49 8.93 0 0.06
water-spatial 70 70 2035 55.42 9.38 1.49 0 0.01
histogram 2 4 21718 61.51 8.95 2.98 0 0.02
kmeans 2 4 341715 129.68 13.17 5.21 2.427959 0.00
linear_regression 2 4 8538 60.76 8.88 2.94 0 0.00
matrix_multiply 2 4 369 83.14 7.43 3.4 0.897019 0.00
pca 2 4 7432 3349.73 192.74 475.16 19.12 0.08
reverse_index 2 4 6790 149.88 21.35 13.5 0 0.01
string_match 2 4 8537 243.12 12.76 3.91 2.91 0.00
word_count 4 7 2143 93.35 6.53 1.76 0 0.00



critical section. And the last column shows the percentage of total 
dynamic instructions executed in critical sections.

Performance

TABLE 2: EXECUTION STATISTICS OF ARACE

�

In this section, we study the performance of ARace and ARace-LU 
on applications from SPLASH-2 and Phoenix. Figure 9 presents the 
performance results. All execution times are normalized to the 
runtime with Pin.

There are four bars for each application. The first bar is the 
normalized native runtime. The second bar is the base, runtime 
with Pin. The third and fourth bars respectively indicate the 
normalized runtime with ARace and ARace-LU. For applications 
that execute many critical sections except radiosity, ARace only 

Applications #fault #fault
static

#fault
dynamic

#invalidate #page
written back

cholesky 166 32 134 42 110
fft 4 2 2 13 3
lu-con 4 2 2 13 3
lu-non 2 1 1 13 3
radix 3 2 1 22 12
barnes 23470 2 23468 21 1599015
fmm 194838 7 194831 56 330038
ocean-con 18211 5 18206 13 23871
ocean-non 57898 13378 44520 13 66167
radiosity 1314821 4 1314817 29 3150186
raytrace 8599 14 8585 13 203094
volrend 45 13 32 37 70751
water-nsquared 9566 5 9561 13 4195
water-spatial 528 4 524 53 2587
histogram 9 5 4 14 43172
kmeans 504386 83560 420826 38 932763
linear_regression 10 7 3 14 16812
matrix_multiply 116 4 112 48 583
pca 26725 8 26717 42 36441
reverse_index 164047 6 164041 14 13316
string_match 8285 4 8281 41 25087
word_count 45 20 25 15 3758



incurs about 4x overhead. But for radiosity, ARace incurs about 36x 
overhead, which is the worst case. On average, ARace incurs only 
about 1x overhead to the runs with Pin. This performance of ARace 
is competitive, especially for applications that require a high level of 
security.

�

�

As expected, lazy unprotecting reduces the overhead of ARace for 
some applications, i.e. barnes, radiosity, string_match, etc. 
Unfortunately, it also increases the overhead for other applications, 
i.e. fmm, reverse_index, etc. This demonstrates that lazy 
unprotecting is mild for some applications but wild for some other 
applications.

TABLE II presents some execution statistics of ARace. The second 
column shows the number of page faults introduced by ARace. The 
third and fourth columns respectively indicate the number of page 
faults on static data and dynamic heap. For most applications, 
except ocean-non and kmeans, most of page faults happen on 
dynamic heap. The fifth column demonstrates that the amount of 
code cache invalidated by ARace is very tiny. The sixth column 

0

1

2

3

4

5

6

7

8
Native Pin ARace ARace-LU

36.3 35.4

Figure 9. Normalized execution times of ARace and ARace -LU



presents the total number of pages that are written back at the end 
of critical sections. Except the first five applications, the numbers 
are large. The reason is that all writes to shared variables in critical 
sections are cached in the write buffer by ARace.

To study the overhead proportion of each component in ARace, we 
also gather the relative ratio of execution times of each component. 
Figure 10 presents the relative ratio of six components in ARace: 
initialization, instrumentation, access redirecting, writing back, page 
fault handler and lock mapping. The initialization work is done by 
Pin before the application starts. And the page fault handler is the 
handler that a thread executes when it receives a page fault 
exception. Except cholesky and linear_regression, the rest 
applications fall into two categories. In one category, the main part 
of the overhead is instrumentation, i.e. fft, lu-con, lu-non, and radix. 
In another category, the main part of the overhead is access 
redirecting, i.e. barnes, radiosity, string_match, etc. This difference 
results from the number of dynamically executed critical sections, 
which in second category is far more than that in first category. For 
cholesky, the number of executed critical sections is between the 
first category and the second category. Thus, the relative ratio of 
instrumentation and access redirecting nearly equals one. 
However, for linear_regression, the main part of the overhead is 
writing back. By studying the source code of this application, we 
found that it emits many shared intermediate statuses in a map 
callback function which is executed in a critical section. Thus ARace 
has to write back these statuses at the end of the critical section, 
which will introduce a lot of overhead. Figure 10 also shows that the 
proportion of the overhead introduced by initialization, page fault 
hander and lock mapping is not high.
 
Real Applications

Two real multi-threaded applications, Pbzip2 and Aget, are also 
used to evaluate ARace. Pbzip2 is a parallel implementation of the 
bzip2 file compressor. Aget is a multi-threaded http download 
accelerator [48]. To evaluate ARace, we use Pbzip2 to compress a 
73MB file with tar format and download a 321MB file from a local 



web server via Aget. These two applications are tested with 1, 2, 4, 
and 8 threads.

Effectiveness
During the evaluation of Pbzip2, ARace found a known real 
asymmetric race bug. The bug is illustrated in Figure 11. This bug 
takes place when thread 1 writes to fifo during thread 2 reading 
from fifo in the critical section guarded by the lock fifo->mut. ARace 
prevents this bug by protecting fifo to be read-only when thread 2 
executes the critical section.
 

�
Performance
Figure 12 presents the execution time of the two applications. The 
results show that the overheads introduced by ARace are 
acceptable for real applications.

�  

Thread 1

void main (){
�
fifo->empty = 1;
�
queueDelete (fifo);
fifo = NULL;
...

}

Thread 2

void *consumer (){
�
for(;;){
lock(fifo->mut);
�
if(allDone == 1){
unlock (fifo->mut);
return NULL ;

}
...

}
...

}
Figure 11. A real asymmetric race bug in Pbzip2

0
5
10
15
20
25

1 2 4 8

Ex
ec

ut
io

n 
tim

e 
(se

co
nd

s)

Number of threads

Aget Native
Pin
ARace

Figure 12. Performance of real applications

0
5
10
15
20
25

1 2 4 8

Ex
ec

ut
io

n 
tim

e 
(se

co
nd

s)

Number of threads

Pbzip2 Native
Pin
ARace



Conclusion

In this project, we propose a consistent execution model for critical 
sections in lock-based multi-threaded programs. Asymmetric races 
can never be triggered under this model. Based on this consistent 
execution model, a new software-based scheme ARace is 
presented to dynamically tolerate asymmetric races. Unlike 
previous schemes, ARace can guarantee the absence of 
asymmetric races. In addition, ARace can be directly applied to 
program binaries and requires no compiler support and application 
changes. We also present an implementation of ARace based on 
dynamic binary instrumentation. The results show that the 
performance of ARace is competitive.

To prohibit inconsistent statuses of shared variables, two critical 
sections accessing same shared variables are not allowed to be 
executed concurrently. Actually, ARace has no prior knowledge 
about the shared variable set of a critical section. One feasible 
solution is training ARace on-the-fly. At the first few times that a 
critical section is executed, ARace collects shared variables 
accessed in this critical section. During the training stage, critical 
sections are executed sequentially. After training, critical sections 
can be executed concurrently. We leave this work as part of future 
work.



Output

Wenwen Wang, Chenggang Wu, Paruj Ratanaworabhan, Xiang 
Yuan, Zhenjiang Wang, Jianjun Li, and Xiaobing Feng, 
“Dynamically Tolerating and Detecting Asymmetric Races”, Journal 
of Computer Research and Development, 51(8): 1748-1763, 2014.



Scopus

Author details
1 of 2  ◅  Return to search results  ▻Next  Print  Email

Ratanaworabhan, Paruj
, Bangkok, Thailand

Author ID: 9637167700
Kasetsart University



Follow this Author

View potential author matches

Other name formats: 
Subject area:  Computer Science  Engineering  Mathematics  Medicine  Decision Sciences

Document and
citation trends:

Years

D
oc
um

en
ts C

itations

Documents

Citations

2009 2019
0

5

0

44

 Get citation alerts  + Add to ORCID  Edit author profile

22

h-index: 

7

Documents by author

Total citations

361 by  documents

❓ View h-graph

Analyze author output

292

View citation overview

Sort on:

Document title Authors Year Source Cited by

, 2019 10th International Conference on Information and
Communication Technology for Embedded Systems, IC-
ICTES 2019 - Proceedings
8695955

0

  

, ,
, ,

2018 ICSEC 2017 - 21st International Computer Science and
Engineering Conference 2017, Proceeding
8443906, pp. 219-223

0

  

, 2017 20th International Computer Science and Engineering
Conference: Smart Ubiquitos Computing and Knowledge,
ICSEC 2016
7859876

  

, 2016 ICSEC 2015 - 19th International Computer Science and
Engineering Conference: Hybrid Cloud Computing: A New
Approach for Big Data Era
7401403

0

  

22 Documents Cited by 292 documents 27 co-authors Author history Topics

 ▻View in search results format Date (newest) 

   Export all Add all to list Set document alert Set document feed

Exploiting Extra CPU Cores to Detect NOP Sleds
Using Sandboxed Execution

Phringmongkol, N.
Ratanaworabhan, P.

 View abstract View at Publisher Related documents

Using Document Classification to Improve the
Performance of a Plagiarism Checker: A Case for
Thai language documents

Sornsoontorn, C. Rimcharoen, S.
Leelathakul, N. Kawtrakul, A.
Ratanaworabhan, P.

 View abstract View at Publisher Related documents

A new approach to extracting sport highlight Suksai, P. Ratanaworabhan, P. 2

 View abstract View at Publisher Related documents

A parser generator using the grammar flow graph Nakwijit, P. Ratanaworabhan, P.

 View abstract View at Publisher Related documents

https://www.scopus.com/home.uri?zone=header&origin=searchbasic
https://www.scopus.com/results/authorNamesList.uri?origin=searchauthorlookup&src=al&edit=&poppUp=&basicTab=&affiliationTab=&advancedTab=&st1=ratanaworabhan&st2=&institute=&orcidId=&authSubject=LFSC&_authSubject=on&authSubject=HLSC&_authSubject=on&authSubject=PHSC&_authSubject=on&authSubject=SOSC&_authSubject=on&s=AUTHLASTNAME%28ratanaworabhan%29&sdt=al&sot=al&searchId=75660f73db9c6a08103d3e685d5f8c85&exactSearch=off&sid=75660f73db9c6a08103d3e685d5f8c85
javascript:submitAuthorFormForClickedLinks('NextButton');
https://www.scopus.com/affil/profile.uri?afid=60021944
https://www.scopus.com/standard/help.uri?topic=11214&anchor=anchor
https://www.scopus.com/search/submit/author.uri?author=Ratanaworabhan%2c+Paruj&origin=AuthorProfile&zone=documentsTab&authorId=9637167700
https://www.scopus.com/record/display.uri?eid=2-s2.0-85065434109&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57208652033&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fICTEmSys.2019.8695955&locationID=2&categoryID=4&eid=2-s2.0-85065434109&issn=&linkType=ViewAtPublisher&year=2019&origin=authorProfile&dig=ce04851914ef768e6b2b80d8973d1557&recordRank=1&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-85065434109&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-85053464828&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=1&citeCnt=0&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57203900825&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=15754464900&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=23567210500&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=6602383203&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fICSEC.2017.8443906&locationID=2&categoryID=4&eid=2-s2.0-85053464828&issn=&linkType=ViewAtPublisher&year=2018&origin=authorProfile&dig=2953c34be4121fb044505d2ae67d68e1&recordRank=2&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-85053464828&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-85016176205&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=2&citeCnt=2&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57193737405&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-85016176205&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fICSEC.2016.7859876&locationID=2&categoryID=4&eid=2-s2.0-85016176205&issn=&linkType=ViewAtPublisher&year=2017&origin=authorProfile&dig=e6c66f37d9c26ab147260745ac1d1ae2&recordRank=3&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-85016176205&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-84964324803&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=3&citeCnt=0&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57188958126&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fICSEC.2015.7401403&locationID=2&categoryID=4&eid=2-s2.0-84964324803&issn=&linkType=ViewAtPublisher&year=2016&origin=authorProfile&dig=d4ae9975ed6bdb9181c58f167bd30381&recordRank=4&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84964324803&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem


Document title Authors Year Source Cited by

, 
, 

2015 ECTI-CON 2015 - 2015 12th International Conference on
Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology
7206972

  

, 
, 

2015 ECTI-CON 2015 - 2015 12th International Conference on
Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology
7207091

  

, 2014 2014 International Computer Science and Engineering
Conference, ICSEC 2014
6978132, pp. 73-77

0

  

, ,
, (...), ,

2014

51(8), pp. 1748-1763

  

2012 2012 9th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications
and Information Technology, ECTI-CON 2012
6254278

  

, ,
, 

2012

pp. 301-310

  

, ,
, (...), ,

2012
61(4), pp. 548-562

  

, 2010
5453485, pp. 396-405

  

A case for malware that make antivirus irrelevant Thamsirarak, N. Seethongchuen,
T. Ratanaworabhan, P.

2

 View abstract View at Publisher Related documents

High-quality web-based volume rendering in
real-time

Wangkaoom, K. Ratanaworabhan,
P. Thongvigitmanee, S.S.

3

 View abstract View at Publisher Related documents

Simple optimizations for LAMMPS Kaewtes, V. Ratanaworabhan, P.

 View abstract View at Publisher Related documents

Dynamically tolerating and detecting asymmetric
races

Wang, W. Wu, C.
Ratanaworabhan, P. Li, J.
Feng, X.

Jisuanji Yanjiu yu Fazhan/Computer Research and
Development

1

 Hide abstract View at Publisher Related documents

Asymmetric races are a common type of data races. They are triggered when a thread accesses a shared variable in a critical section, and another thread
accesses the same shared variable not in any critical section, or in a critical section guarded by a different lock. Asymmetric races in multi-threaded
programs are usually harmful. To solve the problem introduced by asymmetric races, ARace is proposed. ARace utilizes shared variable protecting and
write buffer to dynamically tolerate and detect asymmetric races. Shared variable protecting is used to protect shared variables that are read-only and
read-before-write in critical sections, and these shared variables should not be modified out of critical sections; write buffer is used to buffer the writing
operations to shared variables in critical sections. ARace can not only tolerate asymmetric races triggered by shared variable accesses in and out of critical
sections, but also detect asymmetric races triggered by shared variable accesses in concurrent critical sections. ARace can be directly applied to binary
code and requires neither additional compiler support nor hardware support. In addition, an implementation based on dynamic binary instrumentation
is also proposed. The experimental results demonstrate that ARace guarantees the tolerance and detection of asymmetric races while incurring acceptable
performance and memory overhead.

Functional cache simulator for multicore Ratanaworabhan, P. 2

 View abstract View at Publisher Related documents

Hardware support for enforcing isolation in lock-
based parallel programs

Ratanaworabhan, P. Burtscher, M.
Kirovski, D. Zorn, B.

Proceedings of the International Conference on
Supercomputing

1

 View abstract View at Publisher Related documents

Efficient Runtime Detection and Toleration of
Asymmetric Races

Ratanaworabhan, P. Burtscher, M.
Kirovski, D. Nagpal, R.
Pattabiraman, K.

IEEE Transactions on Computers 4

 View abstract View at Publisher Related documents

gFPC: A self-tuning compression algorithm Burtscher, M. Ratanaworabhan, P. Data Compression Conference Proceedings 7

 View abstract View at Publisher Related documents

https://www.scopus.com/record/display.uri?eid=2-s2.0-84956999956&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=4&citeCnt=2&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57095052400&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57095037700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-84956999956&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fECTICon.2015.7206972&locationID=2&categoryID=4&eid=2-s2.0-84956999956&issn=&linkType=ViewAtPublisher&year=2015&origin=authorProfile&dig=f7fbf09764270b57a369c26cc60eefcb&recordRank=5&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84956999956&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-84956974891&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=5&citeCnt=3&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=55902759900&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=35318932300&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-84956974891&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fECTICon.2015.7207091&locationID=2&categoryID=4&eid=2-s2.0-84956974891&issn=&linkType=ViewAtPublisher&year=2015&origin=authorProfile&dig=ffe1c69d81be492d2d38910257e486f3&recordRank=6&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84956974891&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-84988227228&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=6&citeCnt=0&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57191243712&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fICSEC.2014.6978132&locationID=2&categoryID=4&eid=2-s2.0-84988227228&issn=&linkType=ViewAtPublisher&year=2014&origin=authorProfile&dig=4280a4efe00cac02efef55fe81300b10&recordRank=7&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84988227228&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-84907804429&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=7&citeCnt=1&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=55839570700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57189926569&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57196156873&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=55624716100&zone=
https://www.scopus.com/sourceid/26714?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-84907804429&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.7544%2fissn1000-1239.2014.20130123&locationID=2&categoryID=4&eid=2-s2.0-84907804429&issn=10001239&linkType=ViewAtPublisher&year=2014&origin=authorProfile&dig=01857e4832a3c8ddfa778ee44fcf75f4&recordRank=8&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84907804429&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-84866760653&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=8&citeCnt=2&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-84866760653&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fECTICon.2012.6254278&locationID=2&categoryID=4&eid=2-s2.0-84866760653&issn=&linkType=ViewAtPublisher&year=2012&origin=authorProfile&dig=3af424e403f93c78c612033e5f04f7c6&recordRank=9&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84866760653&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-84864040013&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=9&citeCnt=1&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7005117176&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7007162266&zone=
https://www.scopus.com/sourceid/56825?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-84864040013&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1145%2f2304576.2304618&locationID=2&categoryID=4&eid=2-s2.0-84864040013&issn=&linkType=ViewAtPublisher&year=2012&origin=authorProfile&dig=d4ab6d5582f05a167e8874cfb6bbcd08&recordRank=10&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84864040013&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-85008538388&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=10&citeCnt=4&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7005117176&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004650279&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=8887951000&zone=
https://www.scopus.com/sourceid/25033?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-85008538388&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fTC.2011.48&locationID=2&categoryID=4&eid=2-s2.0-85008538388&issn=00189340&linkType=ViewAtPublisher&year=2012&origin=authorProfile&dig=f3bd56c3ae6240fcb95d5936a3ad54ee&recordRank=11&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-85008538388&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-77952706638&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=11&citeCnt=7&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/sourceid/13706?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-77952706638&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fDCC.2010.42&locationID=2&categoryID=4&eid=2-s2.0-77952706638&issn=10680314&linkType=ViewAtPublisher&year=2010&origin=authorProfile&dig=f1b850233f606dd2199bbc9f2d4e7f48&recordRank=12&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-77952706638&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem


Document title Authors Year Source Cited by

, 2009
4976448, pp. 43-52

  

, ,
, (...), ,

2009
44(4), pp. 173-184

  

, 2009 Proceedings - 2009 Data Compression Conference, DCC
2009
4976448, pp. 43-52

  

, ,
, (...), ,

2009

pp. 173-184

  

, 2009
58(1), pp. 18-31

  

, 2008 ISPASS 2008 - IEEE International Symposium on
Performance Analysis of Systems and Software
4510734, pp. 11-21

  

, 2007
4148768, pp. 293-302

  

, 2006 Proceedings of the 2006 IEEE International Symposium on
Workload Characterization, IISWC - 2006
4086135, pp. 71-79

  

pFPC: A parallel compressor for floating-point
data

Burtscher, M. Ratanaworabhan, P. Data Compression Conference Proceedings 8

 View abstract Related documents

Detecting and tolerating asymmetric races Ratanaworabhan, P. Burtscher, M.
Kirovski, D. Nagpal, R.
Pattabiraman, K.

ACM SIGPLAN Notices 5

 View abstract View at Publisher Related documents

pFPC: A parallel compressor for floating-point
data

Burtscher, M. Ratanaworabhan, P. 2

 View abstract View at Publisher Related documents

Detecting and tolerating asymmetric races Ratanaworabhan, P. Burtscher, M.
Kirovski, D. Nagpal, R.
Pattabiraman, K.

Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPOPP

42

 View abstract View at Publisher Related documents

FPC: A high-speed compressor for double-
precision floating-point data

Burtscher, M. Ratanaworabhan, P. IEEE Transactions on Computers 95

 View abstract View at Publisher Related documents

Program phase detection based on critical basic
block transitions

Ratanaworabhan, P. Burtscher, M. 8

 View abstract View at Publisher Related documents

High throughput compression of double-
precision floating-point data

Burtscher, M. Ratanaworabhan, P. Data Compression Conference Proceedings 52

 View abstract View at Publisher Related documents

Load instruction characterization and acceleration
of the BioPerf programs

Ratanaworabhan, P. Burtscher, M. 4

 View abstract View at Publisher Related documents

Display:    results per page
20   1 2

 Top of page

The data displayed above is compiled exclusively from documents indexed in the Scopus database. To request corrections to any inaccuracies
or provide any further feedback, please use the .Author Feedback Wizard 

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語に切り替える

切换到简体中文

切換到繁體中文

Русский язык

Customer Service

Help

Contact us

https://www.scopus.com/record/display.uri?eid=2-s2.0-77957737173&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=12&citeCnt=8&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/sourceid/13706?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-77957737173&src=s&origin=resultslist
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-77957737173&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-70350599977&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=13&citeCnt=5&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7005117176&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004650279&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=8887951000&zone=
https://www.scopus.com/sourceid/19700185000?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-70350599977&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=http://dx.doi.org/10.1145/1594835.1504202&locationID=2&categoryID=4&eid=2-s2.0-70350599977&issn=15232867&linkType=ViewAtPublisher&year=2009&origin=resultslist&dig=4c10806fcece8731c75e358c1de66427&recordRank=14
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-70350599977&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-67650680278&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=14&citeCnt=2&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-67650680278&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fDCC.2009.43&locationID=2&categoryID=4&eid=2-s2.0-67650680278&issn=&linkType=ViewAtPublisher&year=2009&origin=authorProfile&dig=21eb6c5861971e0e538432c31f9d56b5&recordRank=15&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-67650680278&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-67650178060&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=15&citeCnt=42&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7005117176&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004650279&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=8887951000&zone=
https://www.scopus.com/sourceid/57354?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-67650178060&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1145%2f1504176.1504202&locationID=2&categoryID=4&eid=2-s2.0-67650178060&issn=&linkType=ViewAtPublisher&year=2009&origin=authorProfile&dig=3757c45ca3b98fbde5713e5ed043315e&recordRank=16&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-67650178060&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-57349117031&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=16&citeCnt=95&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/sourceid/25033?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-57349117031&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fTC.2008.131&locationID=2&categoryID=4&eid=2-s2.0-57349117031&issn=00189340&linkType=ViewAtPublisher&year=2009&origin=authorProfile&dig=42537b30ad0cfaefe235c5cd85f4f4e8&recordRank=17&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-57349117031&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-52249105104&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=17&citeCnt=8&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-52249105104&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fISPASS.2008.4510734&locationID=2&categoryID=4&eid=2-s2.0-52249105104&issn=&linkType=ViewAtPublisher&year=2008&origin=authorProfile&dig=79899e4518071eff6331d66f1bb29d1d&recordRank=18&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-52249105104&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-34547626759&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=18&citeCnt=52&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/sourceid/13706?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-34547626759&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fDCC.2007.44&locationID=2&categoryID=4&eid=2-s2.0-34547626759&issn=10680314&linkType=ViewAtPublisher&year=2007&origin=authorProfile&dig=b298a7158ab094d36f9ed0af2cb803aa&recordRank=19&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-34547626759&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-48449089101&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=19&citeCnt=4&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-48449089101&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fIISWC.2006.302731&locationID=2&categoryID=4&eid=2-s2.0-48449089101&issn=&linkType=ViewAtPublisher&year=2006&origin=authorProfile&dig=d7a55b10d175d4e6efdcf070e041a43f&recordRank=20&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-48449089101&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/standard/help.uri?topic=14550
https://www.elsevier.com/online-tools/scopus
https://www.elsevier.com/online-tools/scopus/content-overview/
https://blog.scopus.com/
https://dev.elsevier.com/
https://www.elsevier.com/about/our-business/policies/privacy-principles
https://www.scopus.com/personalization/switch/Japanese.uri?origin=AuthorProfile&zone=footer&locale=ja_JP
https://www.scopus.com/personalization/switch/Chinese.uri?origin=AuthorProfile&zone=footer&locale=zh_CN
https://www.scopus.com/personalization/switch/Chinese.uri?origin=AuthorProfile&zone=footer&locale=zh_TW
https://www.scopus.com/personalization/switch/Russian.uri?origin=AuthorProfile&zone=footer&locale=ru_RU
https://www.scopus.com/standard/contactUs.uri?pageOrigin=footer
https://www.scopus.com/standard/contactForm.uri?pageOrigin=footer


 

Copyright © 2019 . All rights reserved. Scopus® is a registered trademark of Elsevier B.V. 
We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the

.

↗Terms and conditions ↗Privacy policy 

↗Elsevier B.V 

use of cookies

 

https://www.elsevier.com/
https://www.elsevier.com/locate/termsandconditions
https://www.elsevier.com/locate/privacypolicy
https://www.elsevier.com/
https://www.scopus.com/cookies/policy.uri
http://www.relx.com/


Dynamically Tolerating Asymmetric Races in 

Lock-Based Multi-threaded Programs 

Wenwen Wang1, Chenggang Wu1, Paruj Ratanaworabhan2, Jingling Xue3, Xiang Yuan1, Zhenjiang Wang1, Jianjun Li1 
1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences 

2Faculty of Engineering, Kasetsart University 
3School of Computer Science and Engineering, University of New South Wales 

{wangwenwen, wucg, yuanxiang, wangzhenjiang, lijianjun}@ict.ac.cn, paruj.r@ku.ac.th, jingling@cse.unsw.edu.au 

 

 
Abstract—Asymmetric races are data races caused when one 

thread accesses a shared variable guarded by a lock in a 

critical section and another thread accesses the same shared 

variable without holding the same lock. Asymmetric races 

are common and usually harmful. They often arise when 

well-tested code interacts with buggy legacy code or third-

party libraries. Existing solutions for tolerating asymmetric 

races, whether based on software or hardware, have some 

limitations: they require either compiler support, or 

application changes, or new hardware to be added to 

commercial hardware platforms.  

This paper proposes a consistent execution model for 

critical sections in lock-based multi-threaded programs. 

During the consistent execution of a critical section, two 

conditions are satisfied: (1) shared variables read in the 

critical section are not written outside and (2) shared 

variables written in the critical section are not read and 

written outside. As a result, asymmetric races can never 

occur. Based on this consistent execution model, we present 

a new software-based scheme, called ARace, to dynamically 

ensure that all critical sections are consistently executed by 

exploiting write buffering and shared variable protection. 

ARace can be directly applied to binary code and requires 

neither additional compiler support nor application changes. 

We have implemented ARace based on dynamic binary 

instrumentation and evaluated it with the applications from 

SPLASH-2 and Phoenix. Our results show that ARace 

guarantees the absence of asymmetric races while incurring 

only about 1x overhead on average. 

Keywords-asymmetric race; race tolerance; runtime 

supprot; dynamic instrumentation 

I.  INTRODUCTION 

The existence of data races makes multi-threaded 
programs error-prone. When two threads access a shared 
variable without any synchronization, where one of the 
accesses is a write, a data race happens. Data races may 
cause multi-threaded programs to exhibit undesired 
behaviors. Some data races escaping from in-house testing 
may be catastrophic in the real world, as is the case for the 
Northeastern U.S. electricity blackout [33].  

There has been a plenty of research on dealing with 
data races [1-4, 12, 13]. These research efforts fall into two 
categories: prior detection and post tolerance. The former 
detects and removes data races as aggressively as possible 
during in-house testing, while the latter tolerates data races 

in production runs. Despite extensive in-house testing, 
some data races still lurk around in released products [20]. 
Thus, the latter techniques are invaluable in practice. 

There is one class of data races, called asymmetric 
races, which occur at the time when one thread accesses a 
shared variable inside a critical section protected by a lock 
and another thread also accesses the same shared variable 
due to a synchronization error (e.g., outside any critical 
section or inside a critical section but not protected by the 
same lock) [15]. Figure 1 illustrates an asymmetric race. In 
this example, ptr is a shared variable. The two reads to 

ptr in thread 1 are inside a critical section protected by a 

lock L but the write to ptr in thread 2 is not inside any 

critical section. This race may lead to inconsistent results 
when reading ptr in thread 1 during different program 

executions. This happens when the write to ptr in thread 

2 takes place between the first read to ptr at S2 and the 

second read to ptr at S5 in thread 1. 

Thread 1

S1: Lock(L);
S2: if (!ptr) {
S3:  ptr = malloc();
S4: }

S5: *ptr = var;

S6: Unlock(L);

Thread 2

S7: ptr = NULL;

Figure 1. An asymmetric race

 
Asymmetric races are common in real applications and 

usually harmful [15]. Among the harmful data races found, 
about 20% are estimated to be asymmetric races [14]. The 
developer usually expects the accesses to shared variables 
to be made inside critical sections guarded by appropriate 
locks. Unfortunately, asymmetric races often arise when 
the developer’s code interacts eventually with the other 
code from third-party libraries or legacy binaries. The 
latter code may be originally written only for single-
threaded applications in mind. Thus, the presence of 
asymmetric races is often beyond the developer’s control.  

Although prior detection is useful for detecting and 
removing some asymmetric races, post tolerance can be 
more attractive. That is because many asymmetric races 
happen only when well-tested code interacts with legacy 
binaries or third-party libraries, whose source may be 
unavailable. In addition, due to their asymmetric nature, 
asymmetric races, which cannot be found during prior 



detection, can be better prevented with post tolerance. A 
simple way to tolerate asymmetric races is to prevent 
another thread from accessing a shared variable if some 
thread is accessing it in a critical section, avoiding 
corrupting the shared variable.  

There are three schemes specifically aiming to tolerate 
asymmetric races: software-based ToleRace [15], 
ISOLATOR [21], and hardware-based Pacman [14].  

ToleRace makes two copies v′ and v″ for each shared 
variable v accessed in a critical section when a thread T1 
executes the critical section. During the execution of the 
critical section, T1 reads from and writes to v′. Meanwhile, 
another thread T2 can read from and write to v outside the 
critical section. After T1 has reached the end of the critical 
section, ToleRace compares the values of v and v″ and 
takes one of the following three actions: (1) if T1 can be 
serialized before T2, reserve the value of v; (2) if T2 can be 
serialized before T1, copy the value from v′ to v; (3) if T1 
and T2 cannot be serialized, interrupt the execution of the 
program. ToleRace can tolerate asymmetric races in the 
former two cases but is inadequate in the last case. 

ISOLATOR copies each page that contains shared 
variables accessed in a critical section to a shadow page 
and protects the original page by making it inaccessible 
when a thread T1 executes the critical section. Then T1 
operates only on the shadow page of each page in the 
critical section. If another thread T2 tries to access an 
original page, then it will be instructed (via an exception) 
to wait for T1. After T1 has reached the end of the critical 
section, ISOLATOR copies the contents in every shadow 
page back to its original page and unprotects the original 
page by making it accessible again. ISOLATOR requires 
compiler support or even application changes so that pages 
can be shadowed appropriately. This scheme is ineffective 
unless the source of a program is available. Unfortunately, 
asymmetric races are often triggered when well-tested 
code interacts with legacy binaries or third-party libraries. 

Pacman utilizes additional cache coherence hardware 
to protect variables accessed in a critical section. 
Compared with the two software-based schemes discussed 
above, this hardware-based scheme is uninstrusive and 
induces negligible slowdown. However, it is not yet 
supported by current commercial computer platforms. 

To overcome the limitations inherent in the three 
aforementioned schemes, this paper proposes a consistent 
execution model for critical sections in lock-based multi-
threaded programs. During the consistent execution of a 
critical section, two conditions are satisfied: (1) shared 
variables read in the critical section are not written outside 
and (2) shared variables written in the critical section are 
not read and written outside. As a result, asymmetric races 
can never occur. Based on this consistent execution model, 
we present a new software-based scheme, called ARace, 
to dynamically ensure that all critical sections are 
consistently executed by exploiting write buffering and 
shared variable protection. ARace works on-the-fly, 
requires neither additional compiler support nor 
application changes, and can be deployed even when the 
source code of a program is not available. We have 

implemented ARace based on dynamic binary 
instrumentation. Our results show that ARace guarantees 
the absence of asymmetric races with acceptable 
performance overhead. 

There are fundamental differences between ARace and 
Transactional Memory (TM) [34]. Even though both use 
write buffers, ARace does not need to detect versions and 
conflicts during the execution of a critical section, because 
it protects the shared variables read in the critical section. 
When there are conflicts, TM must abort a transaction and 
rollback. During rollback, TM needs to handle side effect 
operations effectively, which is still an open problem. In 
contrast, there is no notion of abort-and-rollback in ARace, 
because its program executions are not speculative. 

This paper makes following contributions: 

 We propose a consistent execution model for 
critical sections in lock-based multi-threaded 
programs. 

 We present a new software-based scheme ARace 
to dynamically tolerate asymmetric races. 

 We describe an implementation of ARace and 
show that it is effective with small overhead.  

The rest of this paper is organized as follows. Section 
II describes the background. Sections III and IV describe 
the architecture and implementation of ARace. Section V 
evaluates ARace. Section VI discusses related work. 
Finally, Section VII concludes and discusses future work. 

II. BACKGROUND 

In this section, we define a simple programming 
language and describe the consistent execution model. 

A. Definitions 

1) Multi-threaded Programs 
A multi-threaded program is a quadruple Ρ = <Λ, Φ, Ψ, 

Γ>, where Λ is a finite set of lock variables: {λ1, λ2, …}, Φ 

is a finite set of shared variables: {φ1, φ2, …}, and Ψ is a 

finite set of threads: {Τ1, Τ2, …}. Each thread Τ is a finite 
set of local variables: {τ1, τ2, …}. Γ is a finite set of 

instructions: {γ1, γ2, …}. The operand of an instruction can 
be a constant c or a variable. Each instruction in Γ belongs 

to one of the following operations: 

 τi ← c : writing local variable τi with the value of a 
constant c, where τi Τa and TaΨ; 

 τi ← φj : reading the value from shared variable φj 
to local variable τi, where φj Φ, τi Τa, and TaΨ;  

 φi ← τj : writing shared variable φi with the value 
of local variable τj, where φi  Φ, τj  Τa, and 

TaΨ;  

 τi ← ArithOrLogic(τ1, τ2, …, τj) : arithmetic or 
logical operation on local variables τ1, τ2, …, τj 
and writing the result to local variable τi, where τi, 
τ1, τ2, …, τj Τa and TaΨ; 

 BranchEQ(γk, τi, τj) : branching next to be 
executed instruction to γk if the values of local 
variables τi and τj are equal, where γk Γ, τi, τj Τa, 

and TaΨ;  



 Lock(λi) : acquiring lock λi if it is not acquired by 
any thread in Ψ, or blocking until it is released, 

where λi Λ; 

 Unlock(λi) : releasing lock λi if it is acquired by 
the thread that is executing this instruction, or 
blocking, where λi Λ. 

An execution of Ρ is that threads in Ψ execute 

instructions in Γ, denoted as Δ. Δ is an ordered list: 

δ1  δ2  …  δm, where any δ = T γ, TΨ, and γ Γ. 

T γ means that thread T executes instruction γ. δi  δj 

means that δi happens before δj. The execution space of Ρ 
is the set of Δ: {Δ1, Δ2, …}. 

In this paper, we assume that properly synchronized 
multi-threaded programs adhere to the data-race-free 0 
model [37]. With this model, the hardware appears 
sequentially consistent with respect to the programs even 
though it may be weakly ordered in reality. 

2) Critical Sections 
Now, we give the formal definition of a critical section 

based on above programming language. A critical section 
in Ρ, where Ρ = <Λ, Φ, Ψ, Γ>, is a triple Ξ = <Λ, Φ, Γ>, 

where Λ is the set of lock variables and Λ Λ; Φ is the set 

of shared variables and Φ Φ; Γ is the set of instructions 

and Γ Γ. An execution of Ξ is that some thread T in Ψ 

executes the instructions in Γ, denoted as Θ. Θ is also an 
ordered list: θ1  θ2  …  θn, where any θ = T γ, and 

γ Γ. For the convenience of description, we also say that 
thread T executes Θ and instruction γ is in Θ. Besides, if θ1 

= T γi and θn = T γj, we can conclude that γi = Lock(λ) 

and γj = Unlock(λ), where λ Λ. In other words, any 
execution of a given critical section Ξ is enclosed by 
instructions acquiring and releasing some fixed lock λ. We 
say that Ξ is protected by lock λ, or each shared variable φ 
in Φ is protected by lock λ. 

3) Asymmetric Races 
Given a multi-threaded program Ρ, where Ρ = <Λ, Φ, Ψ, 

Γ>, assume that two instructions γp and γq in Γ access the 

same shared variable φ in Φ and at least one is writing to φ. 

If γp and γq satisfy any one of the following conditions, we 
say that they construct an asymmetric race, denoted as 
AR(γp, γq). 

 γp is in some critical section in Ρ, but there is no 
critical section in Ρ that contains γq; 

 γq is in some critical section in Ρ, but there is no 
critical section in Ρ that contains γp; 

 γp and γq are in critical sections in Ρ protected by 
different locks, but γp and γq are not in critical 
sections in Ρ protected by the same lock. 

All of the three requirements imply that at least one of 
γp and γq is in a critical section. Suppose γp (γq is the same) 
of AR(γp, γq) is in a critical section Ξ in Ρ, where Ξ = <Λ, 
Φ, Γ> and γp Γ. Thus γq is either not in a critical section 
or in a critical section different with Ξ. Θ is an execution 
of Ξ by some thread Ta in Ψ, and Θ = θ1  θ2  …  θn. γp 

is firstly executed at θf in Θ: θf = Ta γp, where 1 < f < n. 

Δ is an execution of Ρ and Δ = δ1  δ2  …  δm. Δ 
contains Θ, and θ1 = δi, θn = δj, θf = δk, where 1 ≤ i < k < j 

≤ m. If there exists a δ in Δ satisfying: δk  δ  δj, where δ 
= Tb γq and TbΨ, we say that AR(γp, γq) is triggered 

in Δ.  

B. Consistent Execution Model 

Given a critical section Ξ, where Ξ = <Λ, Φ, Γ>, in a 
multi-threaded program Ρ, where Ρ = <Λ, Φ, Ψ, Γ>, Θ is an 

execution of Ξ by some thread Ta in Ψ, and Θ = 

θ1  θ2  …  θn. Δ is an execution of Ρ and Δ = 
δ1  δ2  …  δm. Δ contains Θ, and θ1 = δi, θn = δj, where 
1 ≤ i < j ≤ m. θf in Θ accesses shared variable φ: θf = 
Ta γp, where 1 < f < n, φ Φ, and γp Γ. Besides, θf = δk, 

where i < k < j. If the following two conditions are 
satisfied for any f and any φ, we say that Θ in Δ is 
consistent or Θ in Δ is a consistent execution of Ξ. 

 If γp = τa ← φ, where τa Ta, then there is no δ in 
Δ satisfying following conditions: δk  δ  δj, 
where δ = Tb γq, γq = φ ← τb, TbΨ, γq Γ, and 

τb Tb; 

 If γp = φ ← τa, where τa Ta, then there is no δ in 
Δ satisfying following conditions: δk  δ  δj, 
where δ = Tb γq, γq = φ ← τb or γq = τb ← φ, 

TbΨ, γq Γ, and τb Tb. 

The first condition means that reading instructions in Θ 
always read consistent statuses of φ, because φ is not 
written by instructions not in Θ. The second condition 
means that any intermediate status of φ generated by 
writing instructions in Θ is not read and written by 
instructions not in Θ. If any one of the two conditions is 
not satisfied, we say Θ in Δ is inconsistent or Θ in Δ is an 
inconsistent execution of Ξ. Asymmetric races will be 
triggered in Δ if Θ in Δ is inconsistent. Note, Θ can be 
consistent in Δ1, but inconsistent in Δ2, where Δ1 and Δ2 
are two different executions of Ρ. It depends on Δ1 and Δ2. 

From a programmer’s perspective, the executions of a 
critical section are always consistent, because they are 
protected by the lock. But the existence of ill-behaved 
legacy code and third-party libraries destroys this 
consistence. They may access shared variables at any time, 
due to no mutually exclusive condition with the accesses 
in proper critical sections. These unsafe accesses will 
probably introduce harmful asymmetric races. 

III. ARACE 

A. Overview 

ARace exploits two techniques to ensure that the 
execution Θ of a critical section Ξ is consistent, where Ξ = 
<Λ, Φ, Γ>. The first is Write Buffering. The writes to any 
φ in Φ during Θ are redirected to the write buffer. The 
write buffer is written back to original shared variables 
when the last instruction in Θ is executed. By this way, the 
intermediate statuses of any φ in Φ generated by 
instructions in Θ are hidden, and instructions not in Θ can 
only see the final result of φ after Θ is finished.  

Another technique utilized by ARace is Shared 
Variable Protection. Any φ in Φ read by instructions in Θ 
is protected to be read-only. When Θ is executed, if an 



instruction not in Θ tries to modify φ after instructions in 
Θ have read φ, it will fail. Then it has to wait for the finish 
of Θ. Any protected φ is unprotected to be writeable when 
the last instruction in Θ is executed.  

To prohibit inconsistent statuses of shared variables, 
ARace forbids two critical sections that access same 
shared variables from being executed concurrently. For 
two critical sections Ξ1 = <Λ1, Φ1, Γ1> and Ξ2 = <Λ2, Φ2, 
Γ2>, if Φ1 ∩ Φ2 ≠ Ø, then any Θ1 of Ξ1 and any Θ2 of Ξ2 
are not allowed to be executed concurrently. Otherwise, if 
Φ1 ∩ Φ2 = Ø, then any Θ1 of Ξ1 and any Θ2 of Ξ2 can be 
executed concurrently. Note, if Ξ1 and Ξ2 are protected by 
the same lock, then any Θ1 of Ξ1 and any Θ2 of Ξ2 will not 
be executed concurrently even if Φ1 ∩ Φ2 = Ø. 

Figure 2 illustrates the main steps of ARace. The 
numbers in the ring manifest the happen-before order of 
the steps. In this example, X and Y are shared variables 

accessed in the critical section. S1 indicates that this is a 

critical section. When S2 is executed, the shared variable 

X is protected to be read-only firstly (1). Then S2 can read 

the value of X (2). When S3 is executed, a new write 

buffer item, Y′, is allocated to cache the writes to Y (see 

details in next subsection) (3). When S4 is executed, Y′ in 

the write buffer is written back to Y (4), and X is 

unprotected to be writeable (5). 

S1: Lock(L);

S2: var1 = X;

S3: Y = var2;

S4: Unlock(L);

Figure 2. Main steps of ARace

X

Y

Y′

protected to 

be read-only}
unprotected to 

be writeable

3 write buffer

original memory

2

5

4

1

 

B. Write Buffer 

The write buffer is a thread private storage, allocated at 
thread starting and freed at thread exiting. It is constructed 
by write buffer items and is indexed by the memory 
addresses of shared variables. The size of each write buffer 
item is not fixed, and depends on the access size of 
instructions in Θ. Each φ in Φ written by instructions in Θ 
is mapped to a unique write buffer item. The write buffer 
item corresponding to φ is allocated at the first time when 
φ is written by some instruction γ in Θ. The size of the 
firstly allocated item is the same as the access size to φ in γ. 
In some programming languages, for example C/C++, it is 
allowed to access some bits of variables. Hence, φ 
probably cannot be accommodated in the firstly allocated 
item. To address this problem, when the access size to φ in 
the instruction after γ is bigger than the size of previous 
allocated item, ARace will allocate a new write buffer item 
to accommodate the bigger size and copy the contents 
from the old item to the new one. Then, the following 
accesses to φ are redirected to the new item. 

Atomicity of Writing Back The write buffer item 
corresponding to φ is written back to φ when the last 
instruction in Θ is executed. If the process of writing back 
is not atomic, an inconsistent execution will be introduced. 
Figure 3 illustrates this situation. S3 and S4 read shared 

variables X and Y when S1 and S2 write back new values 

to X and Y. After this execution interleaving, var1 and 

var2 are respectively 1 and 0, which is an inconsistent 

result. To guarantee the atomicity of writing back, ARace 
protects all corresponding shared variables to be 
unreadable and unwriteable at the beginning of writing 
back, i.e. X and Y are protected to be unreadable and 

unwriteable before S1 and S2 are executed in this 

example. 

Init: X = Y = 0;

Thread 1

S1: Write back X with 1;

S2: Write back Y with 2;

Thread 2

S3: var1 = X;
S4: var2 = Y;

Figure 3. An example of writing back

 
After above protecting, ARace cannot write back write 

buffer items to corresponding shared variables directly. 
Fortunately, most modern operating systems, like UNIX, 
Linux, or Windows, support mapping the same physical 
memory at multiple virtual pages in a process’s address 
space [26]. To write back a write buffer item to 
corresponding shared variable φ, ARace allocates a new 
virtual page, called swap page, to map the physical page 
of original virtual page that contains φ. The swap page is 
both readable and writeable. ARace writes back the write 
buffer item corresponding to φ to the swap page with the 
same offset of φ in original virtual page. Actually, with the 
help of one swap page, ARace can write back items whose 
corresponding shared variables lie in the same page, which 
is more efficient than writing back items one by one. 

The protected shared variables are unprotected to be 
readable and writeable after the writing back process. Then 
instructions not in Θ will read a consistent status of shared 
variables. Besides, after the writing back process, the write 
buffer items allocated during Θ are freed for following 
executions of critical sections. 

C. Shared Variable Protecting 

To prevent instructions not in Θ from corrupting 
shared variable φ read by instructions in Θ, φ is protected 
to be read-only. When the last instruction in Θ is executed, 
φ is unprotected to be writeable. In most modern operating 
systems, memory is protected at a page granularity. Thus 
ARace has to protect the whole page that contains φ when 
it needs to protect φ. If φ lies in two pages, all of these two 
pages are protected. And the protected pages are 
unprotected to be writeable at the end of Θ. 

False Sharing For two different critical sections Ξ1 = 
<Λ1, Φ1, Γ1> and Ξ2 = <Λ2, Φ2, Γ2>, if Φ1 ∩ Φ2 = Ø, then 
any Θ1 of Ξ1 and any Θ2 of Ξ2 can be executed 
concurrently. However, shared variable φ1 in Φ1 read by 
instructions in Θ1 and φ2 in Φ2 read by instructions in Θ2 



may be allocated in the same page, called p. If Θ1 and Θ2 
are executed by two different threads T1 and T2 
concurrently, p will be protected repeatedly. More to the 
point, assuming T1 finishes Θ1 before T2 finishes Θ2, if T1 
unprotects p to be writeable at the end of Θ1, Θ2 will be at 
the risk of being inconsistent. 

To solve above false sharing problem, ARace uses a 
global shared structure, called globalPage, to record which 
pages have been protected to be read-only so far. Each 
protected page has a thread list L to record which threads 
have read shared variables in this page in critical sections. 
In addition, each thread in ARace has a local storage S to 
record the pages containing shared variables that it has 
read in critical sections. Algorithm 1 and Algorithm 2 
respectively illustrate the processes of shared variable 
protecting and share variable unprotecting. 

When the page that contains φ is protected, instructions 
not in Θ can only read the contents in this page. If there is 

an instruction not in Θ that tries to modify any content in 
this page, it will receive a page fault exception. Then 
ARace suspends the thread that executes this instruction in 
page fault handler. The suspended thread will resume its 
execution when the page is writeable. 

Lazy Unprotecting If Θ is executed frequently, the 
page p that contains φ is also protected and unprotected 
frequently. Actually, except instructions in Θ, if there is no 
instruction modifying any content in p, it does not need to 
unprotect p at the end of Θ. To utilize this feature, ARace-
LU is proposed. ARace-LU is ARace with Lazy 
Unprotecting (LU). LU puts off unprotecting p until there 
is an instruction not in Θ that modifies the contents in p. 
During this process, although Θ is executed multiple times, 
p is protected and unprotected only once.  

Although LU can decrease the number of unnecessary 
protecting and unprotecting of p, it may also introduce 
additional page fault exceptions on p. For example, there 
are instructions not in Θ modifying the contents in p after 
every Θ. The performance of ARace and ARace-LU are 
evaluated in Section V. 

D. Access Redirecting 

ARace examines each instruction γ in Θ to check 
whether it accesses some shared variable φ in Φ. If so, 
ARace will redirect the access. Algorithm 3 illustrates the 
process of access redirecting.  

For most RISC architectures, like MIPS or Alpha, 
instructions have only two memory access types: reading 
and writing. But for CISC architectures, it is different. For 
example, instructions in IA-32 have three memory access 
types: reading, writing, and readwriting. The last access 
type means one instruction can read and then write the 
memory. The redirecting algorithm in ARace supports all 
access types in these architectures. 

E. Lock Variable Mapping 

Lock variables, like λ in Λ, are used to implement lock 
synchronizations. In most current popular programming 
languages, including C/C++, Java, and C#, programmers 
can define lock variables like normal variables. From the 
view of the compiler, lock variables have no difference 
with normal variables. Therefore, lock variable λ in Λ may 
be allocated in the same page with shared variable φ in Φ. 
If instructions in Θ read φ, ARace needs to protect the 
page that contains φ to be read-only. Thus, λ is also 
protected to be read-only. Figure 4 illustrates this case. 

Thread 1

S1: Lock(L1);
S2: var1 = X;

S3: Unlock(L1);

Thread 2

S4: Lock(L2);
S5: var2 = Y;

S6: Lock(L1);
S7: Z = var3;
S8: Unlock(L1);
S9: Unlock(L2);

Figure 4. A deadlock example

X

Y

L1

page p

 
In this example, Ξ1 = <Λ1, Φ1, Γ1>, where Λ1 = {L1}, 

Φ1 = {X}, Γ1 = {S1, S2, S3}, and Ξ2 = <Λ2, Φ2, Γ2>, 

where Λ2 = {L1, L2}, Φ2 = {Y, Z}, Γ2 = {S4, S5, S6, S7, 

Algorithm 3. redirect_access (ins, t)

Input: instruction ins in a critical section, thread t executing ins

Output: if ins accesses shared variable, memory address after redirecting

  1: type = instruction_type (ins);

  2: if ((type is Read_SV) or (type is Write_SV)) then

  3:   addr = shared_variable_address (ins);

  4:   size = shared_variable_size (ins);

  5:   if (addr is in t.writebuffer) then

  6:     if (size > t.writebuffer(addr).size) then

  7:       allocate a new item in t.writebuffer for (addr, size);

  8:       if (type is Read_SV) then

  9:         protect_sv (t, addr, size);

10:         copy the contents from addr to new item;

11:       end if

12:       copy the contents from old item to new item and free old item;

13:     end if

14:     return &t.writebuffer(addr);

15:   end if

16:   if ((type is Read_SV) and (type is not Write_SV)) then

17:     protect_sv (t, addr, size);

18:     return addr;

19:   end if

20:   if ((type is not Read_SV) and (type is Write_SV)) then

21:     allocate a new item in t.writebuffer for (addr, size);

22:     return &t.writebuffer(addr);

23:   end if

24:   if ((type is Read_SV) and (type is Write_SV)) then

25:     protect_sv (t, addr, size);

26:     allocate a new item in t.writebuffer for (addr, size);

27:     copy the contents from addr to new item;

28:     return &t.writebuffer(addr);

29:   end if

30: end if

Algorithm 1. protect_sv (t, v, size)

Input: thread t, shared variable v 

read by t, and the size of v

Output: none

  1: P = pages (v, size);

  2: for each p in P do

  3:   Lock (globalPage.Lock);

  4:   if (p is not in globalPage) then

  5:     protect p to be read-only;

  6:     add p to globalPage;

  7:   end if

  8:   add t to p.L;

  9:   Unlock (globalPage.Lock);

10:   add p to t.S;

11: end for

Algorithm 2. unprotect_sv (t)

Input: thread t to exit a critical 

section

Output: none

  1: for each p in t.S do

  2:   Lock (globalPage.Lock);

  3:   delete t from p.L;

  4:   if p.L is empty then

  5:     unprotect p to be writeable;

  6:     delete p from globalPage;

  7:   end if

  8:   Unlock (globalPage.Lock);

  9:   delete p from t.S;

10: end for



S8, S9}. Because there is no branch type instruction in Γ1 

and Γ2, Ξ1 and Ξ2 both have only sequential executions. 
Suppose they are respectively Θ1 executed by T1 and Θ2 
executed by T2. Θ1 and Θ2 can be executed concurrently 
because Φ1 ∩ Φ2 = Ø. 

Assume that X, Y, and L1 are allocated in the same 

page p as illustrated in Figure 4. Consider the following 
execution interleaving between Θ1 and Θ2: S1 is executed 

between S4 and S6. Then S6 has to wait for S3 to acquire 

lock L1. Due to the end of Θ1, before S3 is executed, T1 

tries to unprotect p to be writeable. However, because of 
T2, the thread list L of p is not empty after erasing T1. Thus 
p is still read-only when S3 is executed. L1 will not be 

released successfully until p is writeable, which means T2 
has finished Θ2. However, if L1 cannot be acquired at S6, 

T2 will not finish Θ2. Therefore, a deadlock status happens. 
To avoid this unintended deadlock status, ARace 

exploits a Lock Variable Mapping Table (LVMT) to 
map each lock variable λ in Λ to a new lock variable λ′, 
where λ′Λ. λ′ has the same memory size with λ, and is in 

an independent memory region, which is always readable 
and writeable. LVMT is a one-to-one mapping table 
illustrated in Figure 5. Each term of LVMT has the 
information for mapping: memory addresses of λ and λ′. 
When Lock/Unlock instruction in Θ accesses λ, the 
memory address of λ is used to search LVMT to find λ′. 
Then λ is replaced by λ′, and the probability of deadlock 
status is eliminated. 

Figure 5. Lock Variable Mapping Table

λ1

λ2

λ3

λ1′

λ2′

λ3′

&λ1′&λ11

&λ2′&λ22

&λ3′&λ33

.........

original locks
LVMT

new locksNewOri.Id

 

F. Ad Hoc Synchronizations 

In many multi-threaded programs, ad hoc 
synchronizations are widely used by developers [22]. If 
one of the synchronization pairs is in a critical section, the 
ad hoc synchronization itself constructs an asymmetric 
race. Figure 6 is an example of this case. In this example, 
S3 and S6 construct an asymmetric race: AR(S3, S6). 

Under ARace, AR(S3, S6) will not be triggered. But, 

thread 1 will never exit the loop if it executes S3 before 

thread 2 executes S6. That is because syncFlag belongs 

to the shared variable set of the critical section, and if 
thread 1 reads different values from syncFlag, the 

execution of the critical section will be inconsistent. 
Actually, shared variables like syncFlag are only used 

for ad hoc synchronizations [22]. Thus there is no need to 
guarantee the consistent statuses of these variables in 
critical sections. ARace utilizes techniques proposed in [22, 

31, 32] to detect shared variables like syncFlag 

accessed in a critical section, and deletes them from the 
shared variable set of the critical section. 

Init: syncFlag = TRUE;

Thread 1

S1: Lock(L);
S2: ...
S3: while(syncFlag){};
S4: ...

S5: Unlock(L);

Thread 2

S6: syncFlag = FALSE;

Figure 6. An asymmetric race with ad hoc 

synchronization

 

IV. IMPLEMENTATION 

We choose Pin [27] to implement ARace. Pin is a 
dynamic binary instrumentation framework from Intel. 
The targets of Pin are the IA-32 and x86-64 instruction set 
architectures. It is extensively used in research work for 
dynamic program analysis. Pin instruments programs at 
run time. Thus it needs no recompiling of programs. 

ARace is implemented as a Pintool, including two 
main components: instrumentation engine and analysis 
engine. The instrumentation engine is used to instrument 
instructions and routines. The analysis engine contains 
access redirecting, write buffer, shared variable protecting, 
and lock variable mapping. Figure 7 illustrates the 
framework of the implementation. 

The target multi-threaded programs are compiled on 
IA-32 architecture with pthreads library, which is a widely 
used multi-threaded library. Although the platform and 
multi-threaded library are somewhat specific in our 
implementation, we believe that ARace scheme is general 
enough for other platforms and multi-threaded libraries. 

Figure 7. Implementation framework

Write 
Buffer

Shared 
Variable 

Protecting

Access Redirecting

Lock 
Variable 
Mapping

Instrumentation Engine

Pin

Target Multi-threaded Programs

Analysis Engine

Pintool

 

A. Shared Variables 

Because we have no any prior knowledge about that 
which variable is a shared variable, a conservative policy 
is adopted: regarding all non-stack variables as shared 
variables. Although this policy may introduce some false 
positives, it does not affect the accuracy. In addition, this 
policy is more efficient than determining if a variable is a 
shared variable at run time. 



B. Critical Sections & Lock Variables 

In pthreads library, the points of entering and exiting a 
critical section are indicated by calling 
pthread_mutex_lock and pthread_mutex_unlock routines. 
For pthread_mutex_trylock routine, if the calling thread 
acquires the lock successfully, we also consider the 
following instructions are executed in a critical section. 

Lock variables are those arguments passed to above 
routines with pthread_mutex_t structure in pthreads. The 
original lock variables passed to above routines are 
replaced by the new lock variables via LVMT. So it is not 
the original lock variables but the new lock variables are 
really accessed in these routines. In our implementation, 
above three routines are all instrumented. 

Moreover, current implementation of ARace utilizes 
techniques proposed in [31, 32] to identify critical sections 
enclosed by user-defined Lock/Unlock calls. 

C. Conditional Variables 

Besides lock variables, conditional variables are 
another important class of synchronizations. Conditional 
variables are generally accessed in critical sections. Figure 
8 is a typical example using conditional variable from 
application radix in SPLASH-2 [28]. In this example, the 
accesses to conditional variable C are protected by a lock L. 

This creates an illusion that critical sections protected by 
the same lock can be executed concurrently. 

Thread 1

S1: Lock(L);
S2: if(flag == 0)
S3:   cond_wait(C, L);
S4: flag = 0;

S5: Unlock(L);

Thread 2

S6: Lock(L);
S7: flag = 1;
S8: cond_broadcast(C);
S9: Unlock(L);

Figure 8. An example of conditional variable

Init: flag = 0;

 
In fact, the illusion is not true. The reason is that 

cond_wait(C, L) is implemented as following: 

Unlock (L); 
Wait on C; 
Lock (L); 
Therefore, we just need to treat Unlock/Lock in 

conditional variable waiting operations as the point of 
critical section exiting or entering.  

D. Critical Section Instrumentation 

Instructions executed in critical sections are 
instrumented to redirect the accesses to shared variables. It 
is implemented by rewriting the memory operands of these 
instructions. Some instructions in IA-32, like MOVS series, 

or CMPS series, have multiple memory operands. Thus we 

have to rewrite all memory operands of these instructions. 
The memory operands are converted from their original 
addressing modes to the base register addressing mode via 
Pin’s scratch registers. A routine is inserted for each 
memory operand in one instruction to obtain the address 
after redirecting. One of Pin’s scratch registers is filled up 
with the return value of this routine. Then the memory 
operand of this instruction is rewritten. 

E. Routine Calls in Critical Sections 

Routines called inside critical sections also need to be 
instrumented to redirect the accesses to shared variables, 
while there is no need to instrument routines called outside 
critical sections. In practice, the same routine may be 
called both inside and outside critical sections. If a routine 
is called outside critical sections at the first time, it will 
never be instrumented. That is because the routine for 
instrumenting in Pin is executed only at the first time when 
the routine to be instrumented is executed.  

To overcome this limitation, we define a rule for 
instrumenting routines: once a routine has been executed 
in a critical section, it will always be instrumented, or it 
will never be instrumented. We record a Boolean flag Fr 
for every routine r. Fr is initialized when r is called at the 
first time with the value if r is called in a critical section. If 
r is called in a critical section at the first time, its Fr is 
TRUE. Otherwise its Fr is FALSE. 

All call instructions executed in a critical section are 

examined. For direct call instructions, the callee routine 

r is known at the instrumenting time, and is fixed. Thus we 
just need to check Fr of r. If Fr is FALSE, the 

uninstrumented code cache of r in Pin is invalidated and 
the routine for instrumenting in Pin is re-executed to 
instrument r. Then Fr is set to TRUE, which means r has 

been executed in some critical section. For indirect call 

instructions, the callee routine r is not fixed. Thus we 
insert a routine to obtain the callee routines. The inserted 
routine is executed every time the indirect call 

instruction is executed.  

F. System Calls 

System calls executed in a critical section may also 
access shared variables. For example, 

Lock (L); 
… 
gettimeofday (&tv, NULL); 
… 
Unlock (L); 
where tv is a shared variable defined in user space but 

accessed in kernel space. However, the address of tv 
should not be delivered to the kernel. That is because the 
page that contains tv may have been protected to be read-
only. If the address of tv is delivered to the kernel, when 
the kernel writes the system call result to tv, it will fail. 
This failure may never happen in executions without 
ARace. Beside system calls inside critical sections, system 
calls outside critical sections also have the same problem. 

To avoid these unexpected failures of system calls, our 
implementation wraps system calls that access variables in 
user space. The real addresses delivered to the kernel are 
from the new variables. If the system call is executed in a 
critical section and the original variable is shared, the new 
variable is allocated in the write buffer. And the system 
call result is written back along with other write buffer 
items. Otherwise, the new variable is allocated in an 
independent memory region that is always readable and 



writeable, and is written back to the original variable 
immediately after the execution of the system call.  

V. EVALUATION 

A. Experimental Setup 

We evaluate ARace with all 14 applications from 
SPLASH-2 [28] and all 8 applications from Phoenix [29]. 
For SPLASH-2 applications, we use their default inputs 
but increase the size to lengthen the runtime when 
necessary. Phoenix is a shared memory implementation of 
Google’s MapReduce programming model for multi-core 
chips and shared-memory multiprocessors. The source 
code of Phoenix is downloaded from the website [30]. 
Each application in Phoenix has three versions: 
MapReduce, Pthreads, and Sequential. We use the 
MapReduce version with the large dataset to evaluate 
ARace. Besides, we also use two real multi-threaded 
applications, Pbzip2 [39] and Aget [48], to evaluate ARace. 

To eliminate the impact of performance fluctuations 
due to random factors, each application from SPLASH-2 
and Phoenix is tested for ten times, and the final result is 
the arithmetic average of these ten times. 

All of our evaluations are conducted on a HP laptop 
computer with Intel(R) Core(TM)2 Duo CPU T7250 2.00 
GHz, 2 MB L2 Cache, and 1 GB main memory. The 
operating system is 32 bit Fedora 14, which is a Red Hat-
sponsored community project. The version of the Linux 
kernel is 2.6.35. The compiler is gcc with version 4.5.1. 
Applications from SPLASH-2 and Phoenix are complied 
with the default options in Makefiles. The two real 

applications are also complied with their default options. 
In addition, the performance is measured by the elapsed 
time via the command “time -p” when each application 

runs alone on the platform. 

B. Critical Section Characterization 

TABLE I.  CRITICAL SECTION CHARACTERIZATION 

Applications
#Lock

active

#Lock

total

#CS

executed

#Inst

per CS

#Read SV

perl CS

#Write SV

perl CS

#ReadWrite

SV perl CS

%Inst

in CS

cholesky 7 7 91 112.51 7.64 2.7 0 0.00

fft 1 1 2 553.5 9.5 1.5 0 0.00

lu-con 1 1 2 553.5 9.5 1.5 0 0.00

lu-non 1 1 2 549.5 6.5 1.5 0 0.00

radix 4 6 12 336.25 4.08 1.25 0 0.00

barnes 2049 2050 686646 265.68 15.54 15.57 0 0.33

fmm 2051 2052 330980 481.32 21.46 24.49 0.000012 0.21

ocean-con 2 6 2416 16.13 4.91 0.91 0 0.00

ocean-non 3 6 89044 15.33 4.77 0.77 0 0.00

radiosity 3914 3915 3212879 21.06 6.29 2.43 0 0.24

raytrace 5 5 196133 21.94 3.45 1.16 0 0.00

volrend 5 67 70766 25.2 4 1 0 0.02

water-nsquared 517 521 4130 277.8 58.49 8.93 0 0.06

water-spatial 70 70 2035 55.42 9.38 1.49 0 0.01

histogram 2 4 21718 61.51 8.95 2.98 0 0.02

kmeans 2 4 341715 129.68 13.17 5.21 2.427959 0.00

linear_regression 2 4 8538 60.76 8.88 2.94 0 0.00

matrix_multiply 2 4 369 83.14 7.43 3.4 0.897019 0.00

pca 2 4 7432 3349.7 192.74 475.16 19.12 0.08

reverse_index 2 4 6790 149.88 21.35 13.5 0 0.01

string_match 2 4 8537 243.12 12.76 3.91 2.91 0.00

word_count 4 7 2143 93.35 6.53 1.76 0 0.00  

TABLE I presents the critical section characterization 
of applications from SPLASH-2 and Phoenix. The second 
and third columns are respectively the number of active 
locks and total locks. They represent lock variables used in 
critical sections, and lock variables only initialized. These 
two columns demonstrate that there are locks initialized 
but not used. The fourth column shows the total number of 
critical sections dynamically executed. Some applications, 
including radiosity, barnes, kmeans, and fmm, execute a 
plenty of critical sections. The fifth column is the average 
number of dynamic instructions per critical section. The 
following three columns present the average numbers of 
instructions reading, writing, and readwriting shared 
variables per critical section. And the last column shows 
the total percentage of dynamic instructions executed in 
critical sections.  

C. Performance 

TABLE II.  EXECUTION STATISTICS OF ARACE 

Applications #fault
#fault

static

#fault

dynamic
#invalidate

#page

written back

cholesky 166 32 134 42 110

fft 4 2 2 13 3

lu-con 4 2 2 13 3

lu-non 2 1 1 13 3

radix 3 2 1 22 12

barnes 23470 2 23468 21 1599015

fmm 194838 7 194831 56 330038

ocean-con 18211 5 18206 13 23871

ocean-non 57898 13378 44520 13 66167

radiosity 1314821 4 1314817 29 3150186

raytrace 8599 14 8585 13 203094

volrend 45 13 32 37 70751

water-nsquared 9566 5 9561 13 4195

water-spatial 528 4 524 53 2587

histogram 9 5 4 14 43172

kmeans 504386 83560 420826 38 932763

linear_regression 10 7 3 14 16812

matrix_multiply 116 4 112 48 583

pca 26725 8 26717 42 36441

reverse_index 164047 6 164041 14 13316

string_match 8285 4 8281 41 25087

word_count 45 20 25 15 3758  
 

In this section, we study the performance of ARace and 
ARace-LU on applications from SPLASH-2 and Phoenix. 
Figure 9 presents the performance results. All execution 
times are normalized to the runtimes with Pin. 

There are four bars for each application. The first bar is 
the normalized native runtime. The second bar is the base, 
runtime with Pin. The third and fourth bars respectively 
indicate the normalized runtime with ARace and ARace-
LU. For applications that execute many critical sections 
except radiosity, ARace only incurs about 4x overhead. 
But for radiosity, ARace incurs about 35x overhead, which 
is the worst case. On average, ARace incurs only about 1x 
overhead to the run with Pin. This performance of ARace 
is competitive, especially for applications that require a 
high level of security. 



As expected, lazy unprotecting reduces the overhead of 
ARace for some applications, i.e. barnes, radiosity, 
string_match, etc. Unfortunately, it also increases the 
overhead for other applications, i.e. fmm, reverse_index, 
etc. This demonstrates that lazy unprotecting is mild for 
some applications but wild for some other applications.  

TABLE II presents some execution statistics of ARace. 
The second column shows the total number of page faults 
introduced by ARace. The third and fourth columns 
respectively indicate the number of page faults on static 
data and dynamic heap. For most applications, except 
ocean-non and kmeans, most of page faults happen on 
dynamic heap. The fifth column demonstrates that the 
amount of code cache invalidated by ARace is very tiny. 
The sixth column presents the total number of pages that 
are written back at the end of critical sections. Except the 
first five applications, the numbers are large. The reason is 
that all writes to shared variables in critical sections are 
cached in the write buffer by ARace.  

To study the overhead proportion of each component 
in ARace, we also gather the relative ratio of execution 
times of each component. Figure 10 presents the relative 
ratio of six components in ARace: initialization, 
instrumentation, access redirecting, writing back, page 
fault handler, and lock mapping. The initialization work is 
done by Pin before the application starts. And the page 
fault handler is the handler that a thread executes when it 
receives a page fault exception. Except cholesky and 
linear_regression, the rest applications fall into two 

categories. In one category, the main part of the overhead 
is instrumentation, i.e. fft, lu-con, lu-non, and radix. In 
another category, the main part of the overhead is access 
redirecting, i.e. barnes, radiosity, string_match, etc. This 
difference results from the number of dynamically 
executed critical sections, which in second category is far 
more than that in first category. For cholesky, the number 
of executed critical sections is between the first category 
and the second category. Thus, the relative ratio of 
instrumentation and access redirecting nearly equals one. 
However, for linear_regression, the main part of the 
overhead is writing back. By studying the source code of 
this application, we found that it emits many shared 
intermediate statuses in a callback function which is 
executed in a critical section. Thus ARace has to write 
back these statuses at the end of the critical section, which 
will introduce a lot of overhead. Figure 10 also shows that 
the proportion of the overheads introduced by initialization, 
page fault hander, and lock mapping is not high.  

D. Real Applications 

Two real multi-threaded applications, Pbzip2 and Aget, 
are also used to evaluate ARace. Pbzip2 is a parallel 
implementation of the bzip2 file compressor [39]. Aget is 
a multi-threaded http download accelerator [48]. To 
evaluate ARace, we use Pbzip2 to compress a 73MB file 
with tar format and download a 321MB file from a local 

web server via Aget. These two applications are tested 
with 1, 2, 4, and 8 threads.  

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0%

in it ializa tio n in st ru m e n ta tio n ac c es s re d irec ti n g w rit in g b ac k p ag e fa u lt h a n d ler lo c k m a p p in g

Figure 10. Overhead proportion of ARace

0

1

2

3

4

5

6

7

8

N ative Pin A Race A Race-LU

36.3 35.4

Figure 9. Normalized execution times of ARace and ARace-LU



1) Effectiveness 
During the evaluation of Pbzip2, ARace found a 

known real asymmetric race bug. The bug is illustrated in 
Figure 11. This bug takes place when thread 1 writes to 
fifo during thread 2 reading from fifo in the critical 

section protected by the lock fifo->mut. ARace 

prevents this bug by protecting fifo to be read-only 

when thread 2 executes the critical section.  

Thread 1

void main(){

  …
  fifo->empty = 1;

  …
  queueDelete(fifo);

  fifo = NULL;
  ...

}

Thread 2

void *consumer(){

  …
  for(;;){

    lock(fifo->mut);

    …
    if(allDone == 1){

      unlock(fifo->mut);
      return NULL;
    }
    ...
  }
  ...
}

Figure 11. A real asymmetric race bug in Pbzip2

 
2) Performance 

Figure 12 presents the execution times of the two 
applications. The results show that the overheads 
introduced by ARace are acceptable for real applications. 

VI. RELATED WORK 

A. Asymmetric Races 

ToleRace [15-17, 19] is the first proposed software 
scheme for detecting and tolerating asymmetric races. 
ToleRace copies two shadows, v′ and v″, for each shared 
variable v accessed in a critical section when a thread Τ1 
executes the critical section. Then T1 accesses v′ in the 
critical section. At the same time, another thread Τ2 can 
access v outside the critical section. After T1 has reached 
the end of the critical section, ToleRace compares the 
values of v and v″. Then ToleRace decides which value of 
v and v′ should be reserved as the new value of v: (1) if Τ1 
can be serialized before Τ2, the value of v is reserved; (2) if 
Τ2 can be serialized before Τ1, the value of v′ is reserved; 
(3) if Τ1 and Τ2 cannot be serialized, ToleRace has to 
interrupt the execution of the program. ToleRace can 
tolerate asymmetric races in the former two cases but is 
inadequate in the last case ([21] illustrates one such 
example). Compared with ToleRace, although there is 
performance penalty, ARace can tolerate these asymmetric 
races correctly. The reason is that Τ2 is not allowed to 
access v when Τ1 executes the critical section.  

ISOLATOR [21] is another software scheme. At the 
beginning of a critical section, any page p that contains 

shared variables accessed in the critical section is copied to 
a shadow page p′. Then ISOLATOR protects p by making 
it inaccessible. The accesses to p in the critical section are 
redirected to p′. The accesses to p not in the critical section 
will cause page fault exceptions. At the end of the critical 
section, ISOLATOR copies the contents from p′ to p, and 
unprotects p to be accessible. ISOLATOR needs compiler 
support or even application changes so that pages can be 
shadowed appropriately. In contrast, ARace has no such 
restriction, because it is directly applied to program 
binaries. Besides, for every shadow page, ISOLATOR 
uses a temporary page to copy it back. However, if there 
are multiple shadow pages, the atomicity of copying them 
back is not guaranteed in ISOLATOR. In ARace, we use 
another way to write back write buffer items, which can 
guarantee the atomicity of writing back. 

Pacman [14] also aims to asymmetric races. The main 
difference between Pacman and above two schemes is that 
Pacman is based on hardware. Pacman exploits cache 
coherence hardware to protect cache lines that contain 
variables accessed in a critical section. If instructions not 
in the critical section try to access these cache lines, they 
will fail and have to wait. Pacman needs additional 
hardware support to exploit cache coherence. Besides, 
Pacman has no knowledge about critical sections. That is 
because critical sections have no difference with normal 
code from the perspective of hardware. Compared with 
software-based schemes, Pacman is uninstrusive and has 
negligible execution overhead. Nevertheless, it is not yet 
supported by current computer platforms. 

B. Transactional Memory 

Transactional Memory (TM) is another way to provide 
atomicity for lock-free data structures [34]. In TM, an 
atomic region is considered as a transaction and the 
transaction is executed speculatively. At the end of the 
transaction, TM checks whether there are conflicts. If so, 
TM aborts the transaction and rolls back to re-execute the 
transaction. Otherwise, the transaction is committed. TM 
needs to handle side effect operations effectively during 
rollback, which is still an open problem. TM can be 
implemented based on hardware [23, 26, 40, 42], software 
[50, 44, 45], or hybrid [63, 57, 52, 54]. The difference 
between ARace and TM is that ARace does not need 
speculative execution, rollback, version management, and 
timestamp support. 

C. Data Race Detection 

There is a large body of research focusing on data race 
detection, including static and dynamic. Static detections 
use program analysis techniques, like type-based checking 
[59, 55, 56, 58], static flow analysis [1, 2], or lockset 
analysis [35, 60]. One inherent drawback of static 
detections is that a lot of false positives are reported. 
Dynamic detections are mainly based on the lock-set 
algorithm [3, 51, 18, 20, 41], happens-before analysis [43, 
36, 47], or hybrid of the two [24, 53, 49, 4]. Although 
dynamic detections have fewer false positives than static 

0

5

10

15

20

25

1 2 4 8

Ex
ec

ut
io

n 
ti

m
e 

(s
ec

on
ds

)

N um be r of thre ads

A get Native

Pin

ARace

Figure 12. Performance of real applications

0

5

10

15

20

25

1 2 4 8

Ex
ec

ut
io

n 
ti

m
e 

(s
ec

on
ds

)

N um be r of thre ads

P bzip2
Native

P in

A Race



detections, they have the challenge of coverage. Different 
with the prior detection, ARace is a post tolerance scheme. 

D. Other Related Work 

There are also some other related research work to 
facilitate debugging and diagnosing of multi-threaded 
programs, including studying concurrency bugs [6], 
classifying benign and harmful data races [10, 61], 
avoiding atomicity violations [7-9, 25, 38, 46], avoiding 
deadlock [62], and surviving or bypassing software 
failures [5, 11-13, 64]. Different with these techniques, 
ARace specially aims to dynamically tolerate asymmetric 
races in lock-based multi-threaded programs. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we propose a consistent execution model 
for critical sections in lock-based multi-threaded programs. 
Asymmetric races can never be triggered under this model. 
Based on this consistent execution model, a new software-
based scheme ARace is presented to dynamically tolerate 
asymmetric races. Unlike previous schemes, ARace can 
guarantee the absence of asymmetric races. In addition, 
ARace can be directly applied to program binaries and 
requires neither additional support from the compiler nor 
application changes. We also present an implementation of 
ARace based on dynamic binary instrumentation. The 
results show that the performance of ARace is competitive. 

As described in section III, to prohibit inconsistent 
statuses of shared variables, two critical sections that 
access same shared variables are not allowed to be 
executed concurrently. Actually, ARace has no prior 
knowledge about the shared variable set of a critical 
section. One feasible solution is training ARace on-the-fly. 
At the first few times when a critical section is executed, 
ARace collects shared variables accessed in this critical 
section. During the training stage, critical sections are 
executed sequentially. After training, critical sections can 
be executed concurrently. In addition, with the help of 
prior knowledge about the share variable set of a critical 
section, ARace can protect shared variables read in the 
critical section at the point of entering the critical section, 
which will prevent a few potential races. We leave this 
work as part of future work. 

Another future direction is to reduce the overhead 
introduced by ARace, for example, via dynamic program 
analysis or with the aid of data race detections. 

REFERENCES 

[1] D. Engler and K. Ashcraft. RacerX: Effective, Static Detection of 
Race Conditions and Deadlocks. In SOSP, 2003. 

[2] M. Naik, A. Aiken, and J. Whaley. Effective Static Race Detection 
for Java. In PLDI, 2006. 

[3] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. 
Andersom. Eraser: A Dynamic Data Race Detector for 
Multithreaded Programs. In ACM Trans. Comput. Syst., 1997. 

[4] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient 
Detection of Data Race Conditions via Adaptive Tracking. In 
SOSP, 2005. 

[5] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating Bugs as 
Allergies – A Safe Method to Survive Software Failures. In SOSP, 
2005. 

[6] S. Lu, S. Park, E. Seo and Y. Zhou. Learning from Mistakes – A 
Comprehensive Study on Real World Concurrency Bug 
Characteristics. In ASPLOS, 2008. 

[7] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity 
Violations via Access Interleaving Invariants. In ASPLOS, 2006. 

[8] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. 
Zhou. MUVI : Automatically Inferring Multi-Variable Access 
Correlations and Detecting Related Semantic and Concurrency 
Bugs. In SOSP, 2007. 

[9] B. Lucia, J. Devietti, K. Stauss, and L. Ceze. Atom-Aid: Detecting 
and Surviving Atomicity Violations. In ISCA, 2008. 

[10] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder. 
Automatically Classifying Benign and Harmful Data Races Using 
Replay Analysis. In PLDI, 2007. 

[11] J. Yu and S. Narayanasamy. Tolerating Concurrency Bugs Using 
Transactions as Lifeguards. In MICRO, 2010. 

[12] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy. 
Detecting and Surviving Data Races using Complementary 
Schedules. In SOSP, 2011. 

[13] J. Wu, H. Cui, and J. Yang. Bypassing Races in Live Applications 
with Execution Filters. In OSDI, 2010. 

[14] S. Qi, N. Otsuki, L. O. Nogueira, A. Muzahid, and J. Torrellas. 
Pacman: Tolerating Asymmetric Data Races with Unintrusive 
Hardware. In HPCA, 2012. 

[15] P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. Zorn, R. Nagpal, 
and K. Pattabiraman. Detecting and Tolerating Asymmetric Races. 
In PPoPP, 2009. 

[16] P. Ratanaworabhan, D. Kirovski, and R. Nagpal. Efficient Runtime 
Detection and Toleration of Asymmetric Races. In IEEE Trans. on 
Comput., Vol. 61, No. 4, 2012. 

[17] P. Ratanaworabhan, M. Burtscher, D. Kirovshi, and B. Zorn. 
Hardware Supprot for Enforcing Isolation in Lock-Based Parallel 
Programs. In ICS, 2012. 

[18] J. Erichson, M. Musuvathi, S. Burckhardt, and K. Olynyk. 
Effective Data-Race Detection for the Kernel. In OSDI, 
http://usenix.org/event/osdi10/tech/slides/erickson.pdf, 2010. 

[19] D. Kirovski, B. Zorn, R. Nagpal, and K. Pattabiraman. An Oracle 
for Tolerating and Detecting Asymmetric Races. Microsoft 
Research Technical Report MSR-TR-2007-122, 2007. 

[20] T. Sheng, N. Vachharajani, S. Eranian, R. Hundt, W. Chen, and W. 
Zheng. RACEZ: A Lightweight and Non-Invasive Race Detection 
Tool for Production Applications. In ICSE, 2011. 

[21] S. Rajamani, G. Ramalingam, V. P. Ranganath, and K. Vaswani. 
ISOLATOR: Dyamically Ensuring Isolation in Concurrent 
Programs. In ASPLOS, 2009. 

[22] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad Hoc 
Synchronization Considered Harmful. In OSDI, 2010. 

[23] L. Baugh, N. Neelakantam, and C. Zilles. Using Hardware 
Memory Protection to Build a High-Performance, Strongly-Atomic 
Hybrid Transactional Memory. In ISCA, 2008. 

[24] A. Muzahid, D. S. Gracia, S. Qi, and J. Torrellas. SigRace: 
Signature-Based Data Race Detection. In ISCA, 2009. 

[25] A. Muzahid, N. Otsuki, and J. Torrellas. AtomTracker: A 
Comprehensive Approach to Atomic Region Inference and 
Violation Detection. In MICRO, 2010. 

[26] M. Abadi, T. Harris, and M. Mehrara. Transactional Memory with 
Strong Atomicity using off-the-shelf Memory Protection Hardware. 
In PPoPP, 2009. 

[27] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. 
Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building 
Customized Program Analysis Tools with Dynamic 
instrumentation. In PLDI, 2005. 



[28] S. Woo, M. Ohara, E. Torrie, J. Singh and A. Gupta. The 
SPLASH-2 Programs: Characterization and Methodological 
Considerations. In ISCA, 1995. 

[29] C. Ranger, R. Raghuraman, A. Penmestsa, G. Bradski, and C. 
Kozyrakis. Evaluating MapReduce for Multi-core and 
Multiprocessor Systems. In HPCA, 2007. 

[30] The Phoenix System for MapReduce Programming. 
http://mapreduce.stanford.edu/ 

[31] C. Tian, V. Nagarajan, R. Gupta, and S. Tallam. Dynamic 
Recognition of Synchronization Operations for Improved Data 
Race Detection. In ISSTA, 2008. 

[32] A. Jannesari and W. F. Tichy. Identifying Ad-hoc Synchronization 
for Enhanced Race Detection. In IPDPS, 2010. 

[33] Software Bug Contributed to Blackout. SecurityFocus. 
http://www.securityfocus.com/news/8032 

[34] M. Herlihy and J. E. B. Moss. Transactional Memory: 
Architectural Support for Lock-free Data Structures. In ISCA, 1993. 

[35] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: Context-
Sensitive Correlation Analysis for Race Detection. In PLDI, 2006. 

[36] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. 
Detecting Data Races on Weak Memory Systems. In ISCA, 1991. 

[37] S. V. Adve and M. D. Hill. Weak Ordering – A New Definition. In 
ISCA, 1990. 

[38] R. Agarwal, A. Sasturkar, L. Wang, and S. Stoller. Optimized Run-
Time Race Detection and Atomicity Checking Using Partial 
Discovered Types. In ASE, 2005. 

[39] Parallel BZIP2. http://compression.ca/pbzip2 

[40] M. Lupon, G. Magklis, A. Gonzalez. A Dynamically Adaptable 
Hardware Transactional Memory. In MICRO, 2010. 

[41] X. Xie and J. Xue. AccuLock: Accurate and Efficient Detection of 
Data Races. In CGO, 2011. 

[42] B. Khan, M. Horsnell, M. Lujan, and I. Watson. Scalable Object-
Aware Hardware Transactional Memory. In Euro-Par, 2010. 

[43] E. Schonberg. On-the-fly Detection of Access Anomalies. In PLDI, 
1989. 

[44] V. Gramoli, R. Guerraoui, and V. Trigonakis. TM2C: A Software 
Transactional Memory for Many-Cores. In EuroSys, 2012. 

[45] B. Saha, A. Adi-Tabatabai, and Q. Jacobson. Architectural Support 
for Software Transactional Memory. In MICRO, 2006. 

[46] G. Upadhyaya, S. P. Midkiff, and V. S. Pai. Using Data Structure 
Knowledge for Efficient Lock Generation and Strong Atomicity. 
In PPoPP, 2010. 

[47] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy. Helgrind+: 
An Efficient Dynamic Race Detector. In IPDPS, 2009. 

[48] Aget: Multithreaded HTTP Download Accelerator. 
http://www.enderunix.org/aget 

[49] A. Dinning and E. Schonberg. Detecting Access Anomalies in 
Programs with Critical Sections. In PADD, 1991. 

[50] Z. He, X. Yu, and B. Hong. Profiling-based Adaptive Contention 
Management for Software Transactional Memory. In IPDPS, 2012. 

[51] C. von Praun and T. Gross. Object Race Detection. In OOPSLA, 
2001. 

[52] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. 
Hybrid Transactional Memory. In PPoPP, 2006. 

[53] R. O’Callahan and J. Choi. Hybrid Dynamic Data Race Detection. 
In PPoPP, 2003. 

[54] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. 
Nussbaum. Hybrid Transactional Memory. In ASPLOS, 2006. 

[55] C. Flanagan and S. N. Freund. Type-based Race Detection for Java. 
In PLDI, 2000. 

[56] H. A. Andrade and B. Sanders. An Approach to Compositional 
Model Checking. In IPDPS, 2002. 

[57] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J. 
Casper, C. Kozyrakis, and K. Olukotun. An Effective Hybrid 
Transactional Memory System with Strong Isolation Guarantees. 
In ISCA, 2007. 

[58] C. Boyapati and M. C. Rinarad. A Parameterized Type System for 
Race-Free Java Programs. In OOPSLA, 2001. 

[59] D. Grossman. Type-Safe Multithreading in Cyclone. In TLDI, 
2003. 

[60] N. Sterling. Warlock: A Static Data Race Analysis Tool. In 
USENIX Winter Technical Conference, 1993. 

[61] B. Kasikci, C. Zamfir, and G. Candea. Data Races vs. Data Race 
Bugs: Telling the Difference with Portend. In ASPLOS, 2012. 

[62] K. Agrawal, J. Buhler, P. Li, and R. Chamberlain. Efficient 
Deadlock Avoidance for Streaming Computations with Filtering. 
In PPoPP, 2012. 

[63] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. 
Optimizing Hybrid Transactional Memory: The Importance of 
Nonspeculative Operations. In SPAA, 2011. 

[64] J. Oh, C. J. Hughes, G. Venkataramani, M. Prvulovic. LIME: A 
Framework for Debugging Load Imbalance in Multi-threaded 
Execution. In ICSE, 2011. 



书书书

!"#$%&'(

!"#

!

$%&'())

!

*++,$%%%-$./0&.%$)&.%$/%$./

1234,5627829

:

3;<4=<+<54>?5,@!<A<62

:

9<,; ($

"

B

#!

$')B$'C/

$

.%$)

!

!"#$

!

.%$/

D

%.

D

%$

%

%&#$

!

.%$/

D

%C

D

.C

!

'()*

!

)*

&

+,-

'

./0$%'(!12345

"

.%$.EE%$%0%$

#%

)*678923:;892345

"

C$$%%%$$

#%

)*6789

23<=:;892345

"

C%0.(%%0

#

+,-./012345678

!""

$

$

.

!

#$%

$

!

F543

G

=5;5,5H245I?5,

/

!

&

!

'

$

$

.

!

!()

$

!

*+,

$

!

-./

$

$

"

!"#>?@A)*BCDEF

"

G)89H!"/0$%I

#

!

JK

!

$%%$0%

#

.

"

G)89HL9

!

JK

!

$%%%)0

#

/

"

MNL9OP9H

!

Q)RS

!

$%0%%

#

"

H5,

J

H<,H<,

"

*>;&5>&>,

#

!

"

#$%&'$((

"

)*(+,$-&#

.

$#/!+-+'-&#

.

01

"

%%+-,&'2$'+1

K5,

J

K<,H<,

$

$

.

$

K38?<,

JJ

5,

J

$

$

F543

G

=5;5,5H245I?5,

/

$

L35,M*5,

J

$

$

.

$

K5,

J

N?<,

G

*5,

J

$

$

O*1*5,

G

3,

$

$

5,@P<,

J

M*52I*,

J

$

$

"

!"

#

$%&'(%)'(

#

'

*

+',

-

.)"(/

#

0)", %12 3(456)"4).("

"

710)6).)"'

*

+',

-

.)61

8

9"451':'

8#

$

+561"0"34%2",

#

'

*

/46"14"0

#$

;"6

<

61

8

$%%$0%

#

.

"

=16>"(06)

#

'

*

+561"0"34%2",

#

'

*

/46"14"0

$

;"6

<

61

8

$%%%)0

#

/

"

?%4.:)

#

'

*

@1

8

61""(61

8

$

!%0")0%()=16>"(06)

#

$

;%1

8

A'A

$

9%6:%12$%0%%

#

031-,$'-

!

E+

Q

99<;4*>45><+54<5>2992,;

Q:

<27@5;545><+&R?<

Q

54<;4*

JJ

<4<@H?<,5;?4<5@

5>><++<+5+?54<@A54*5I6<*,5>4*;*>56+<>;*2,

$

5,@5,2;?<4;?4<5@5>><++<+;?<+59<+?54<@A54*5I6<

,2;*,5,

Q

>4*;*>56+<>;*2,

$

24*,5>4*;*>56+<>;*2,

J

354@<@I

Q

5@*77<4<,;62>S&E+

Q

99<;4*>45><+*,

936;*-;?4<5@<@

:

42

J

459+54<3+3566

Q

?549736&R2+26A<;?<

:

42I6<9*,;42@3><@I

Q

5+

Q

99<;4*>45><+

$

E=5><*+

:

42

:

2+<@&E=5><3;*6*T<++?54<@A54*5I6<

:

42;<>;*,

J

5,@H4*;<I377<4;2@

Q

,59*>566

Q

;26<45;<

5,@@<;<>;5+

Q

99<;4*>45><+&U?54<@A54*5I6<

:

42;<>;*,

J

*+3+<@;2

:

42;<>;+?54<@A54*5I6<+;?5;54<

4<5@-2,6

Q

5,@4<5@-I<724<-H4*;<*,>4*;*>56+<>;*2,+

$

5,@;?<+<+?54<@A54*5I6<++?236@,2;I<92@*7*<@

23;27>4*;*>56+<>;*2,+

%

H4*;<I377<4*+3+<@;2I377<4;?<H4*;*,

J

2

:

<45;*2,+;2+?54<@A54*5I6<+*,

>4*;*>56+<>;*2,+&E=5><>5,,2;2,6

Q

;26<45;<5+

Q

99<;4*>45><+;4*

JJ

<4<@I

Q

+?54<@A54*5I6<5>><++<+*,

5,@23;27>4*;*>56+<>;*2,+

$

I3;56+2@<;<>;5+

Q

99<;4*>45><+;4*

JJ

<4<@I

Q

+?54<@A54*5I6<5>><++<+*,

>2,>344<,;>4*;*>56+<>;*2,+&E=5><>5,I<@*4<>;6

Q

5

::

6*<@;2I*,54

Q

>2@<5,@4<

V

3*4<+,<*;?<4

5@@*;*2,56>29

:

*6<4+3

::

24;,24?54@H54<+3

::

24;&#,5@@*;*2,

$

5,*9

:

6<9<,;5;*2,I5+<@2,@

Q

,59*>

I*,54

Q

*,+;439<,;5;*2,*+56+2

:

42

:

2+<@&R?<<W

:

<4*9<,;564<+36;+@<92,+;45;<;?5;E=5><

J

3545,;<<+

;?<;26<45,><5,@@<;<>;*2,275+

Q

99<;4*>45><+H?*6<*,>344*,

J

5>><

:

;5I6<

:

<472495,><5,@9<924

Q

2A<4?<5@&

4+

"

5*,/1

!

5+

Q

99<;4*>45><

%

;26<45;*,

J

5,@@<;<>;*,

J

%

H4*;<I377<4

%

:

5

J

<

:

42;<>;*,

J

%

@

Q

,59*>I*,54

Q

*,+;439<,;5;*2,

9

!

:

!

!"#$%&'($%&')*+,-./0

&

1*23456789:;<2=>?@

!

A

B*2345678BCDE.6789EFG:;H2=>?@F

!

IJKL!"#$%&'

&

M3

44N).!"#$%&'OO(PQ.

&

RLST!"#$%&'UV.;W

!

XYL

E=5><&

Z[

\=>?@]^_`ab8cdefg_hi!"#$%&'

&

j)

!

=>?@]^\k]^6789



lm_nmo`.=>?@

!

pqHr?@5678Bstu

"

`ab8\kav6789"=>?@

.`wx

&E=5><

Dyz{fg6789_678B|}.!"#$%&'

!

~z{"�K678|

}.!"#$%&'��hi

&E=5><

�D��4N���_���.��

!

GD���B��.�

�

&

�B

!

~XYL*+��de���������

E=5><

.��

&

���� ¡

!

E=5><

5]¢f

g_hi!"#$%&'.EF

!

�£UV¤¥.¦§¨©_9v¨©

&

;<=

!

!"#$%&'

"

fg_hi

"

`ab8

"

ª]^

"

de�����

>?@ABC

!

RF/$$

!!

T;U

$

VWXYZ[\]^_

$

`abcde

fghij

$

XkPPl]^_mUmno

&

p7X

kPPlqrstu_XYZ[\]vw

$

'xX

YZ[\]yz

$

{|}~e����Pl���

��

&

�|��

!

$

#

`}~e���?��Pl�P

G�`]��

$

`XkPPlG�7�`

%

.

#

XkP

Pl�������]��Pl=�]�'��

"

>2,>344<,>

Q

I3

J

#$

�

!

��� 

(

¡¢

(

£¤¥¦

§ro¨l¦§©

&

�ª«XkPPl]¬'e�

�­®¯�?��Pl°±��

&

��� ]�`ªXkPPl²³´=�

&

I

µ��� 

$

|¶·¸kP`¹º»¼½¾]¿À

Á

$

½ÂÃÄ­½]ÅÆÇÈ

$

�ÉÊGËÌº�¸

|~ÍÎ

&

��� qÏ�ªXkPPlÐÑ=�

PlÒÓÔ]��

&

º�ÕÖ`×'ØÙÚG]�

�� ���'DÛÜÝG]Þ�¥ßà

$

á�

.%

âã

B%

;äåæçèéê

R?<45>-.(

��]çè

ßà

)

$

*

$

.%%/

;Jëìí]Lîïðcßñ

)

.

*

ro

.%$.

;òóôõ]

P5><I22S

ö÷ø´Äù

)

/

*

©

$

��úû'Ü]àüýwþ|ÕÖ`ÿñÙÚG]

��� 

&

P*

J

&$

!

E+

Q

99<;4*>45><<W59

:

6<&

!

$

!

�®"��� Dá

`��� G

$

º��|�®"��� 

)

)

*

&

I

µ�®"��� 

$

#|�`��� ]·¸ÃÄ

$

ÊG�¸`$%í&

$

'(�¸)`$%í&

$

*+

úû`)½¢,-]$%í&

&

!

$

.=/�¸�

®"��� ]Dá

$

ÊG

-

)(

|ÅÆÇÈ

$

kP

9

$

®

-

)(

]ÃÄ`¢

$

,-]$%í&

$

kP

9

.

®

-

)(

]01)`»¼$%í&

B

2

9

$

`$%í&

ÃÄ

-

)(

Â

$

9

.

3qr®ú4�56

B

�7

9

.

®

-

)(

]56`

9

$

®

-

)(

]·8ÃÄ9:

"

!

$

G;

<I=

#$

>?

9

$

@�AB��]

-

)(

$

��Pl

��

B

�®"��� |²�C]��� �D

$

�

É�E���Pl=Ñ��

)

)

*

&

FG

)

(

*

H��I'

Ñ

$

`�C]ºJK¥]��� G

$

.%X

LMþ|

�®"��� 

&

�EUN

$

PlÒ`¬'XkPP

lÂ

$

�OqÏª_PQ]¢®ÅÆÇÈ]ÃÄ4

�,-

&

{|

$

2PläRÈ��LÂ

$

PlÒSS

�=ÑTU*�±¢]¿À

&

á�FG

)

C

*

®�¡¢

]�'��4�?!'Ñ

$

.'X

LM]��þ|V

¯PlÒTU*�±¢��]

&

(W

$

XªY�^_

Pl×HH�/Z[]\�

$

2ú&TÙäRe]

-^_äRø`Â

$

a�V¯TÙäRe]-^_

äR])bc¥

$

d'�®"��� 

&

��)bc

]äR`efé!ÂqÏggh®�?]��P

l

&

iW

$

ÑäLDÿñ¬'�PG]ïjké!/

0eÿñl_/0

$

aª«�®"��� )qmn

&

�`�®"��� ]XkPPl`o��P

G

$

�)�p�d'�®"��� 

&

�|��

$

`

XkPPlG

$

)½kP9:]o�øq�`)r

p¥

&

!

.

.=/!

$

G]�®"��� `

/

s

)½]kPo�øqÁ]d'¿À

&

`!

.

"

5

#

G

$

2kP

9

$

`$%í&®

-

)(

4

�ÃÄÂ

$

kP

9

.

®

-

)(

]56d'/�®"��

� 

%

'`!

.

"

I

#"

>

#

G

$

kP

9

.

®

-

)(

]56t

t'Ü`kP

9

$

o�$%í9ue9v

$

�iw

d'�®"��� 

&

Iµgx³y�®"��� 

$

#|`XkP

Plo��PG

$

z�{|)½kP9:]o�ø

q

$

}~�®"��� d']qÏ¥

&

�`!

.

G

$

{|kP]o�øq�!

.

"

I

#

*!

.

"

>

#$

#q

rDÑ®�¸�®"��� ]gx³y

&

0)'$

�FF©

!

gx³ye�\�®"��� 



P*

J

&.

!

!*77<4<,;*,;<46<5A*,

J

+275+

Q

99<;4*>45><&

!

.

!

)½o�øq��]�®"��� d'¿À

�/��2¯¢]XkPPlG�®"���

 ��]Äù

$

�F�=/�sgx³ye�\�

®"��� ]^�

!

E=5><&

úª_ÅÆÇÈ,-

e~�¦íUDÑ®�®"��� ]gx³ye

�\

&

ÅÆÇÈ,-_¯,-$%í&�Ae�A

v~]ÅÆÇÈ

$

����ÇÈ`$%íW�56

%

~�¦í_¯��$%í&®ÅÆÇÈ]~ÍÎ

&

E=5><

)gqr³y$%í&e$%íW9:]

�®"��� 

$

�qr®�'$%í9:]�®

"��� 4��\

&E=5><

�)��PlwäR

e}�\]��

$

a)���W�ñ]��

&

iW

$

�F��=/�sz�gx�4|��/0DÑ

E=5><

]^�

&

DE@7Ð�

$

E=5><

`,�³y

e�\�®"��� ]½Â

$

�w��²L]¥

Ï¬�e&�¬�

&

6

!

02$'+

�/gx³ye�\�®"��� 

$

E=5><

ª_·4��/0

!

ÅÆÇÈ,-e~�¦í

&

ÅÆÇÈ,-_¯,->�`$%í&�Ae

�Av~]ÅÆÇÈ

&

kP`$%í&A��ÅÆ

ÇÈ9u

$

E=5><

®úû4�,-

$

r��$%í

W]kP56úû

&

`kP�=$%íÂ

$

E=5><

�®úû4��,-

$

9v$%íW]kP�qr

®úû4�56

&

kP`$%í&®ÅÆÇÈ]~���`~�

¦íG

&

2kP�=$%íÂ

$

E=5><

�@~�¦

íG]&³~�B£f]ÅÆÇÈG

&

z��s^

 

$

E=5><

#qrÕÖ`$%í&ÙÜ]ÅÆÇÈ

G:¡x

$

¢'ª$%íW]kPgÏ£B��Å

ÆÇÈ]¤h¡x

&

!

/

¥¦/

E=5><

]§¨OÎ¾©

$

ª«G]

�¬Ð=­¾©'Ü]�v¨l

&

`�¸á¤G

$

C

e

D

|`$%í&�ÃÄ]ÅÆÇÈ

&U$

Ð��|

�¸$%í

%

2

U.

�o�Â

$

#

E=5><

®

C

4�,

-

$

$

C

qr�A®

%

%

2

U/

�o�Â

$

E=5><

`

~�¦íGt¯�¸�]~�¦í4

DE

"

C

.&.

°

#$

_¯��®ÅÆÇÈ

D

]~

%

&

2

U)

�o�

Â

$

E=5><

@~�¦í4

DE

~�B£fÇÈ

D

G

$

'

�,-

C&

P*

J

&/

!

U

Q

+;<92A<4A*<H27E=5><&

!

/

!

E=5><

]§¨OÎ¾©

676

!

DEFGHI

�/±�$%íW]kP56$%í&�Ae

�Av~]ÅÆÇÈ

$

E=5><

@��ÅÆÇÈ,-

��A¡x

&

2kP�=$%íÂ

$

���,-]Å

ÆÇÈ���,-�q~¡x

&

®¯²³$%í

$

E=5><

`kP�=¤W´$%íÂ�4�ÅÆÇ

È]�,-

&

`LµtÑäÍÎ>?G

$

&�],-

|r&�¶�·¸4�]

&

�i

$

2

E=5><

¹¨,

-Y¸ÅÆÇÈ

>

Â

$

#¹¨,-

>

I`]º¸&

�¶

B

�7

>

»�X¸&�¶

$

á�

>

`·¸&�¶

]¼%Z

$

E=5><

#¹¨½Iº��&�¶¾,-

¿U

&

Àé·¸kP

9

$

e

9

.

�'o�)½¢,-

]$%í

$

�Éúû¨A]ÅÆÇÈ

>

$

e

>

.

`½

�¸¶

-

G

B

�7

9

$

e

9

.

tt®

-

4�¶,-

$

>?

-

@��Bl,-

B

°B¨]|

$

�7

9

$

`

9

.

9u�=$%í

$

>?`

9

$

�=$%í�®

-

4

��,-9v

$

9

.

@b$d'�®"��� ]

ÁÂ

&

%('$

!"#$%&'(

!

.%$)

$

($

"

B

#



�/��j¦Äù

$

E=5><

@>�×H�,-

��A¡x]¶b

$

ÃÄ`�¸cÅÅÆ]@A

8

:'&%:F%

8

"

G

$

ÊGÆ¸¶bþº�¸kPÇÐ

$

$

ÃÄ>�`$%í&A��¸¶bGÅÆÇÈ

]kP

&

iW

$

E=5><

G]Æ¸kP

$

þ�@`$%

í&A�]

$

�ÉÈºÅÆÇÈ]¶b

$

ÃÄ`Éº

�Ê

/

G

&

"�

$

e"�

.

tt¥¦/ÅÆÇÈ,

-e�,-]2��P

&

J@

67

ÅÆÇÈ,-

-

(')"4)

+

0>

"

)

$

>

$

06G"

#

B

Ë�

!

;?4<5@)

$

+?54<@A54*5I6<>4<5@I

Q

)

$

5,@

;?<+*T<27>B

#

FY

-

%

8

"0

"

>

$

06G"

#%

$

724<5>?

-

*,F@2

%

$'4A

"

8

:'&%:F%

8

"B$'4A

#%

&

*7

"

-

*+,2;*,

8

:'&%:F%

8

"

#

;?<,

' !:

42;<>;

-

%

( !

5@@

-

;2

8

:'&%:F%

8

"

%

)

<,@*7

*

5@@);2

-

B$

%

+

=1:'4A

"

8

:'&%:F%

8

"B$'4A

#%

,

5@@

-

;2)B/

%

-./

<,@724

J@

87

�,-

.1

-

(')"4)

+

0>

"

)

#

B

Ë�

!

;?4<5@);2<W*;5>4*;*>56+<>;*2,B

#

724<5>?

-

*,)B/@2

$

$'4A

"

8

:'&%:F%

8

"B$'4A

#%

%

@<6<;<)7429

-

B$

%

&

*7

-

B$*+<9

:

;

Q

;?<,

' !

3,

:

42;<>;

-

%

( !

@<6<;<

-

7429

8

:'&%:F%

8

"

%

)

<,@*7

*

=1:'4A

"

8

:'&%:F%

8

"B$'4A

#%

+

@<6<;<

-

7429)B/

%

,

<,@724

�7Y¸$%í�ÌÍìo�

$

>?®^]¹

¨,-]&�¶

-

#��ÌÍì,-e�,-

B

D

Ûj

$

�7$%íW]kP¹º56

-

G]&³

$

>?#¹Î¨`$%í@ÏÂ�,-

-

$

�Ð#q

rÑÌ`4�e�=$%íÂ

$

®

-

4�,-e�

,-]8�

B

�s�,-&�¶]#|"�ÒÓ�

,-

"

65T

Q

3,

:

42;<>;*,

J

$

OZ

#

&E=5><-OZ

ÔÓ

-

]

�,-ÕBº$%íW]kP®

-

G]&³4�

56

B

p7

E=5><-OZ

ÏÖÑÌ,-e�,-]8

�

$

{|úaqÏ����W],-×�

&

]

/

°D

E���®

E=5><

e

E=5><-OZ

4�ØÙ

&

678

!

KLMN

~�¦í|�jqAq~]�Êí

$

`

E=5><

ÚgÂt¯

$

�=ÂÛå

$

Ê@A�!

)

I=

!

P*

J

&)

!

U;43>;34<27H4*;<I377<4&

!

)

!

~�¦í]@A

~�¦íV~�¦í4ÜÝ

$

Æ¸~�¦í4

®^�¸ÅÆÇÈ

$

�Éª_ÅÆÇÈ]ìÞ4�

ß�ÃÄ

&

Æ¸~�¦í4]Là|)áp]

$

�®

�¯�å]ÅÆÇÈ]Là

&

2$%í&]¶â]

�8~ÅÆÇÈ

>

Â

$

E=5><

#`~�¦íG�Ê

t¯�¸~�¦í4

>E

$

�É

>E

]Làe¶â®

>

]ÃÄLà|��]

&

�/�\�'$%í9:]�®"��� 

$

E=5><

`Æ¸~�¦í4jÃÄkP®ã~�¦

í4¤T�8ÃÄ]äå

"

5>><++*,72495;*2,

#!

k

Pæ

(

¶âìÞekP�º]¢çP

&

2kPÃÄY

¸~�¦í4Â

$

E=5><

è�ØÙãkP]kPæ

e~�¦í4GÃÄ]kPæ|é­½

&

�7­½

$

kPÕê®~�¦í44�ÃÄ

$

�°�~�¦í

4G]ÃÄäå

%

�7)½

$

E=5><

#4�¾ØÙ

ãkP2u�º]¢çPe~�¦í4GÃÄ]¢

çP|éºøç

&

�7¹ºøç

$

E=5><

#ë��

·8ÃÄ9:�`�®"��� 

$

�@�·8Ã

Ä]ìíäåÎ��\@74�îï

&

�ð

E=5><

�¹º�IÅÆÇÈ]ÃÄ�D

$

p7�qÏ��

����î

$

{|FG

)

(

*

H��I'Ñ

$

���'

$%í9:]�®"��� `DÛPlG��Ì

C

$

�iPlÒqrý�

E=5><

]îï²³´�ñ

���î

&

2kP�=$%íÂ

$

E=5><

@~�¦íGã

kPt¯]~�¦í4~�B®^]£fÅÆÇÈ

G

&

®¯²³$%í]¿À

$

E=5><

�`kP�=¤

W´$%íÂ�4�~�ÍÎ

&

�|���7`k

P�=&´$%íÂ#4�~�

$

qÏ�Uò®�

��®"��� ]�\

&

!

(

.=/�¸�Ð]D

á

$

ÊGkP

9

$

`

U/

e

U(

ZÃÄÅÆÇÈ

-

)(

$

k

P

9

.

`

UB

ZÃÄ

-

)(&

�7

E=5><

`

9

$

�=&´

$('$

�FF©

!

gx³ye�\�®"��� 



$%íÂ#~�

-

)(

®^]~�¦í4

$

>?#ó

��\���Pl=�]�®"��� 

"

!

(

G

;<I=

#

&

P*

J

&(

!

E+

Q

99<;4*>45><*,,<+;<@>4*;*>56+<>;*2,&

!

(

!

²³$%í��]�®"��� 

E=5><

`4�~�ÍÎÂ

$

¹¨,�~��P

]£¤¥

&

�|��)£¤]~����o�@7

])��¥

&

!

C

.=/)£¤~�]Dá

&

kP

9

$

`�=$%íÂ

$

@~�¦íGÅÆÇÈ

C

e

D

]�1tt~�B

C

e

D

G

$

½ÂkP

9

.

ttA

C

e

D

]1BÅµÇÈ

:'4%:

$

e

:'4%:

.

B

ôõ!

C

G;<I=]o�øq

$

:'4%:

$

e

:'4%:

.

]¤h@

7@tt|

$

e

%

$

�ePlÒÔö]¨l��¥

|¦§]

B

�/,�~��P]£¤¥

$

E=5><

`

4�~�9u

$

@¨~�]ÅÆÇÈ,-�)qA

)q~

B

`�¸á¤G

$

#|`~�9u@

C

e

D

,-�)qA)q~

B

P*

J

&C

!

E,<W59

:

6<27H4*;*,

J

I5>S&

!

C

!

)£¤~�Dá

H�j¦,-9v

$

E=5><

aó�Õê4�~

�ÍÎ

&

{|

$

LµtÑäÍÎ>?

$

á�

Z[#M

$

O*,3W

ro

K*,@2H+

©

$

þ��@÷¸ø[¶ùæ

B4PìÞú:G]X¸ûü¶

)

'

*

&

�/~�ÅÆ

ÇÈ

>

®^]~�¦í4

>E

$

E=5><

è�t¯�¸

�]ûü¶

$

7v@�¸�]ûü¶ùæB

>

I`

]£fûü¶®^]ø[¶

&

�Ð

$

E=5><

#qr

ý�

>

`£fûü¶G]ýf

$

@

>E

~�B�¸�

]ûü¶

&

DÛj

$

E=5><

qrr¶�÷þ4�~

�ÍÎ

$

�Ør~�¦í4

"

*ÅÆÇÈ

#

�÷þ4

�~�°±.ÿ

&

`~��P@Ïv

$

E=5><

Ûå

t¯]ûü¶

$

��,->��,-�)qA)q

~]ÅÆÇÈ

&

679

!

DEFGOPQRS

E=5><

®$%í&]Æ!¶â4��I

$

"#

Ê|éÃÄÅÆÇÈ

&

�7ã¶âÃÄÅÆÇÈ

$

E=5><

#®Ê4�ÃÄBp$

%

é%)4�»¼Í

Î

&

ÃÄBp$�"�

/

I=

&

J@

97

ÃÄBp$

("26("4)

+

%44"00

"

610

$

)

#

B

Ë�

!

*,+;43>;*2,610*,5>4*;*>56+<>;*2,

$

;?4<5@

)<W<>3;*,

J

610

%

Ë=

!

*76105>><++<++?54<@A54*5I6<

$

9<924

Q

5@@4<++57;<44<@*4<>;*,

J

B

#

)

#-

"Y610)(.4)6'1

+

)

#-

"

"

610

#%

$

*7

""

)

#-

"*+=<5@

+

U\

#

24

"

)

#-

"*+K4*;<

+

U\

##

;?<,

%

%22(Y05%("2

+

>%(6%&:"

+

%22("00

"

610

#%

&

06G"Y05%("2

+

>%(6%&:"

+

06G"

"

610

#%

'

*7

"

%22(*+*,H4*;<I377<4

#

;?<,

( !

*7

"

06G"

"

H(6)"&.

**

"(

"

%22(

#

B06G"

#

;?<,

) !

5662>5;<5,<H*;<9*,H4*;<I377<4724

"

%22(

$

06G"

#%

* !

*7

"

)

#-

"*+=<5@

+

U\

#

;?<,

+ !!

-

(')"4)

+

0>

"

)

$

%22(

$

06G"

#%

, !!

>2

:Q

;?<>2,;<,;+7429%22(;2,<H*;<9

%

-./ !

<,@*7

-.0 !

>2

:Q

;?<>2,;<,;+742926@*;<9;2,<H

*;<95,@74<<26@*;<9

%

-.1 !

<,@*7

-.2 !

@<;<>;5+

Q

99<;4*>45><5,@3

:

@5;<5>><++

*,72495;*2,

%

-.3 !

4<;34,]H(6)"&.

**

"(

"

%22(

#%

-.4

<,@*7

-.5

*7

""

)

#-

"*+=<5@

+

U\

#

5,@

"

)

#-

"*+,2;

K4*;<

+

U\

##

;?<,

-.6 !

-

(')"4)

+

0>

"

)

$

%22(

$

06G"

#%

-.7 !

4<;34,%22(

%

-89

<,@*7

-8/

*7

""

)

#-

"*+,2;=<5@

+

U\

#

5,@

"

)

#-

"*+

K4*;<

+

U\

##

;?<,

-80 !

5662>5;<5,<H*;<9*,H4*;<I377<4724

"

%22(

$

06G"

#%

-81 !

4<>24@5>><++*,72495;*2,

%

-82 !

4<;34,]H(6)"&.

**

"(

"

%22(

#%

-83

<,@*7

-84

*7

""

)

#-

"*+=<5@

+

U\

#

5,@

"

)

#-

"*+K4*;<

+

U\

##

;?<,

.('$

!"#$%&'(

!

.%$)

$

($

"

B

#



-85 !

-

(')"4)

+

0>

"

)

$

%22(

$

06G"

#%

-86 !

5662>5;<5,<H*;<9*,H4*;<I377<4724

"

%22(

$

06G"

#%

-87 !

>2

:Q

;?<>2,;<,;+7429%22(;2,<H*;<9

%

-:9 !

4<>24@5>><++*,72495;*2,

%

-:/ !

4<;34,]H(6)"&.

**

"(

"

%22(

#%

-:0

<,@*7

-:1

<,@*7

"�

/

ý�¶â®ÅÆÇÈÃÄ])½�D

$

4�)½]Bp$

B

®¯Lµt&'¶âç!"#

"

4<@3><@*,+;43>;*2,+<;>29

:

3;<4

$

=#U8

#

(>@

A

$

�

I7F/

$

3$FJ3

e

F'H"(F+

©

$

¶âgº

·sÃ�^ 

$

XA&�e~&�

B

{|®¯l)¶

âç!"#

"

>29

:

6<W*,+;43>;*2,+<;>29

:

3;<4

$

8#U8

#

(>@A

$

á�

73K/.

$

¶âqrº

/

sÃ�^ 

!

A&�

(

~&�eA~&�

$

ÊG]

/

sÃ�^ *

+¶â�A&�7v�~&�

B3L%4"

G]ÃÄB

p$"�ý�¶â®ÅÆÇÈ]ÃÄ�Dtt4�

Z[

$

�i

3L%4"

��j¦­sÃ��D

B

67:

!

TFGUV

XkP9:]¢½¾|z�¢ÇÈUDÑ]

&

`2u,�]Lµt}P-.G

$

/0

8

!

8^^

$

15A5

e

8

;

©

$

PlÒqr1p2nzÇÈ>Ðp

2¢ÇÈ

&

¢}�\]3¸U£

$

¢ÇÈenzÇÈ

�¹ºít

&

�i

$

¢ÇÈeÅÆÇÈqr�t¯`

½�¸&�¶G

&

2$%í&]kP�,-ÅÆÇ

È',-Y¸&�¶Â

$

a�½ã&�¶G]¢Ç

È½Â,-��A¡x

&

!

'

¥¦/�¸�Ð]

Dá

&

P*

J

&'

!

E@<5@62>S<W59

:

6<&

!

'

!

¢ÇÈeÅÆÇÈ`½�¸¶G��]¡¢

`iáG

$

ÅÆÇÈ

C

$

D

e¢ÇÈ

$

$

�t¯

`½�¸&�¶

-

G

B

45kP

9

$

ekP

9

.

]�

Áo�øq

!

9

$

e

9

.

�'o�$%í

$

9

.

`

UC

Z

©6

9

$

Ûå¢

$

$

B9

$

`�=$%íÂ

"

o�

U/

9

u

#

7��,-

-

�q~

B

7'

$

V¯

9

.

37`$

%í&o�

$

`8~

9

$

v

$

-

]kPÇÐ

$

37�

ú

$

�i

-

�¹º�9:ì�,-�q~¡x

B

�

��

9

$

ó�Ý;Ûå

$

$

$

��Ûå¢¹¨®¢Ç

È4�~ÍÎ

B9

$

e

9

.

­`©6

$

Pl4�¡¢

¡x

B

�/mnj¦¡¢¡x

$

E=5><

ª_�¸¢Ç

ÈùæÐ

"

62>SA54*5I6<95

::

*,

J

;5I6<

$

O\_R

#

@

¢ÇÈ

$

ùæB¢ÇÈ

$E

$

ÊG

$E

e

$

º­½]

Là

$

�É

$E

`�j<=]qAq~]&�í>

G

&

�!

B

I=

$

O\_R

|¸��ùæ]ùæÐ

$

ú

]Æ�4ÃÄW

$

oÊ®^]

$E

]&�ìÞ

B

2k

Pz�

$'4A

!

=1:'4A

®

$

4�ÃÄÂ

$

E=5><

#_

$

]&�ìÞI?

O\_R

r@«

$E

]ìÞ

$

7v

@

$

AB�

$E&

�Ð#}~/j¦¡¢]qÏ¥

&

P*

J

&B

!

O2>SA54*5I6<95

::

*,

J

;5I6<&

!

B

!

¢ÇÈùæÐ

67;

!

WRXYZ

`��XkPPlG

$

PlÒ�/CD¥Ï]

¹E

$

qÏ�ª_6p2½¾

)

B

*

&

�76p2½¾G

]�i`$%í&

$

>?6p2½¾�F#AÝ/

�®"��� 

&

�!

0

I=

$

6p2½¾

U.

e

U)

#AÝ/�®"��� 

&

P*

J

&0

!

E,5+

Q

99<;4*>45><H*;?5@?2>+

Q

,>?42,*T5;*2,&

!

0

!

�¸Èº�®"��� ]6p2½¾

p7`

E=5><

Áo�

$

)�d'�¸�®"�

�� 

$

{|

$

�7kP

9

$

o�

U.

`kP

9

.

o�

U)

9u

$

>?

9

$

@ó��=

U.

Z]

H?*6<

GH

$

�|��

0

#

14?:%

8

�,-Ý�A¡x

$

9

.

ó�®

ú4�56

&

DÛj

$

1

0

#

14?:%

8

�Ð]½¾ÇÈ

gg|_UDÑXkP9:½¾]

)

B

*

$

�i¹Î

¨`$%í&,-��ÅÆÇÈ

&E=5><

ª_FG

/('$

�FF©

!

gx³ye�\�®"��� 



)

B-$%

*

�=]^�UIt

0

#

14?:%

8

�Ð]½¾Ç

È

$

�É)®úû4�,-

&

�Ð$%í&]¶â#

qrAB½¾ÇÈ]¤�1

$

¢')�4�ó{©

6¡x

&

8

!

[

!!

\

�°JK

E=5><

]�sDÑ^ 

!

2¯gx�

4|��/0

&

�ðLMª_

F*,

)

$$

*

UDÑ

E=5><&

F*,

|

#,;<6

¬']gx�4|��NO

$

��PQ

ì^_¯gxPltR]$%G

&F*,

z�®Pl

]�4|äR4�gxXÂ��

$

UDÑ��OS

¹E];Ï

$

�i)¹¨Pl]wäReB�}�

&

E=5><

]DÑ|�¸

F*,;226

$

ú§¨/È·¸

µt

!

���TetR�T

&

���T_U®¶âe

U�4���

$

tR�T/È~�¦í

(

ÅÆÇÈ,

-

(

ÃÄBp$ro¢ÇÈùæ©

&

!

$%

¥¦/ã

DÑ]2�NO

$

ÊG5VXkPPl`

#E-/.

W

Xjª_

:

;?4<5@+

_4�}�

$

:

;?4<5@+

_|�¸

�PQª_]XkP_

&

P*

J

&$%

!

#9

:

6<9<,;5;*2,7459<H24S27E=5><&

!

$%

!

E=5><

DÑ]2�NO

876

!

DEFG

¢�4|äRj²�"#�¸ÇÈ|é|ÅÆ

ÇÈ

$

�i`DÑ�PG

$

Y®/�ÁZ[

!

$%í

&®cÅ��íegx\��íGÇÈÃÄ]¶

â

$

þ�ë�|ÃÄÅÆÇÈ

&

p7ãZ[qÏ��

����"

$

{ú�)�]^

E=5><

]:r¥

&

878

!

]^N/TFG

`

:

;?4<5@+

_G

$

Plttz��__U�

-

)5("%2

+

,.)"M

+

:'4A

e

-

)5("%2

+

,.)"M

+

.1:'4A

4

�e�=$%í

B

®¯_U�

-

)5("%2

+

,.)"M

+

)(

#

:'4A

$

�7�_kPÝ;@®­^]¢

$

>?�_kPa

�ë�|4�$%ío�

B

¢ÇÈ#|>��_.j¦_U�

(

�ÉSº

-

)5("%2

+

,.)"M

+

)

@A]`�

B

`�_j¦_U�

Â

$

£f]¢ÇÈ��]¢ÇÈAB

$

���]¢Ç

Èz�ª_£f¢ÇÈ]ìÞI?

O\_R

@«

&

�

i`j¦_U�G9:ÃÄ]|�]¢ÇÈ')|

£f]¢ÇÈ

&

iW

$

E=5><

]DÑ�qrª_FG

)

0-$%

*

�

=]^�UItVPlÒ6p2]@®¢eÛå¢

]U�

$

4'It6p2]$%íe¢ÇÈ

&

879

!

_`FG

~/¢ÇÈ9W

$

!ñÇÈ|(W��XkP

9:�C]½¾^ 

&

�EUN

$

PlSS`$%í

&®!ñÇÈ4�ÃÄ

&

!

$$

.=/

UFOEÙ -.

)

$.

*

]

45@*W

PlGª_!ñÇÈ4�½¾]Dá

&

`

�¸á¤G

$

®!ñÇÈ

+

]ÃÄ�¢

$

,-

&

�

Ð#ÙÜ/�s��

$

X­½¢,-]$%íqr

�)½kP�'o�

&

P*

J

&$$

!

E,<W59

:

6<27>2,@*;*2,56A54*5I6<&

!

$$

!

ª_!ñÇÈ4�½¾

DÛj

$

�s��|��]

$

��!ñÇÈ©6

ÍÎ

4'12

+

H%6)

"

+

$

$

#

]&µDÑ|

!

=1:'4A

"

$

#%

K5*;2,+

%

$'4A

"

$

#%

Ir

$

�¹@!ñÇÈ©6ÍÎG]

=1:'4A

!

$'4A

ÍÎ2Î$%í]�=e4�VaXq

B

`

-

)5("%20

_G

$

úûtt®^_U�

++

-

)5("%2

+

,.)"M

+

.1:'4A

+

.0"(41)

!

++

-

)5("%2

+

,.)"M

+

4'12

+

:'4AB

87:

!

]^Nab

`$%í&®ÅÆÇÈÃÄ]¶â

$

z�gx

��B~úû]&�ÍÎ�

$

rDÑ®ÅÆÇÈÃ

Ä]Bp$

&#E-/.

WXG]��¶â

$

�

_"\U

>b¶âe

8_FU

>b¶â©

$

qrºX¸&�Í

Î�

&

®¯��¶â

$

Iº]&�ÍÎ�þ¹¨�B

~

&

Iµ&�ÍÎ�]B~

$

#|@ã&�ÍÎ�£

f]cÞï 

$

56�ª_

F*,

G$Âd�\4�

d�\cÞ]ï 

&

`¶âÆ8o�Â

$

Æ¸&�Í

)('$

!"#$%&'(

!

.%$)

$

($

"

B

#



Î�þ����¸U�U@®ÊBp$v]ìÞ

$

�@ãìÞÎ�e�1f�

F*,

G]$Âd�\

$

�Ð#qrDÑ®¶â&�ÍÎ�]B~

&

87;

!

]^Ncde5fg

`$%í&��_]U�a¹¨4���

$

r

DÑ®ÅÆÇÈÃÄ]Bp$

&

{|

$

`$%íW�

�_]U�#¹ºÎ¨4���

&

DÛj

$

½�¸U

�qÏ�`$%í&��_

$

g`$%íW��_

&

�7�¸U�]

$

8��_|`$%íW

$

Xª9

vqÏ�`$%í&��_

$

>?úa)����

&

�|��

F*,

G_¯��]U�g`���U�]

�8��_Â�o�

&

�/õhj¦��]Å{¥

$

`DÑ]�PG

$

¹¨�U���p2�¸î%

!

�iU�`$%í

&��_

$

ú#��Õ���

$

Xª9vúqÏ�`

$%íW��_

%

é%újk)����

&

`®ÅÆ

ÇÈÃÄ4�Bp$9u

$

¹¨"#2ukP|é

|`$%í&o�

$

�7)|

$

#qrÕêe�

$

)

4�Bp$

%

�7|

$

#lm4�Bp$

&

�Ð®¯

>��`$%í&��_]U�

$

p7ú×H��

�

$

{|9v`$%íW��_Â

$

DÛj�)�4

�ÅÆÇÈÃÄ]Bp$

&

Æ¸U�

(

þÃÄ�¸Øn1

?(B

`

(

]

$

8

��_Â

$

ý�

(

|é|`$%í&��_®

?(

4

�efk

B

�7

(

]

$

8��_|`$%í&

$

?(

#�e f k �

R=Za

$

é %

$

?(

# � e f k �

PEOUaB

`$%í&o�]Æ!

>566

¶âþ¹¨�

�I

B

®¯Õê

>566

¶â

$

Ê5VU�

(

|áp]

$

�É`��Â|qo]

B

�i�¹�I

(

]

?(

1

B

�7

?(

|

PEOUa

$

>?è�¹¨pÿ

"

*,A56*@5;<

#

ò

82@<85>?<

G&

(

®^]w��]äR

$

7vB

�o�

F*,

G_¯��]U�

$

rDÑ®

(

]��

B

¤v�@

?(

éq�

R=Za

$

�Ð=

(

×H`$%

í&��_

B

®¯:ê

>566

¶â

$

5VU�

(

|)á

p]

$

�i¹¨`ã¶âÆ8o�Âþ���¸U

�U@®

(

oÊ®^]

?(

1

$

�ôõj¦�P®

?(

]14��I

B

87<

!

hifg

`$%í&o�]>?�_aºqÏÃÄÅÆ

ÇÈ

$

á�

!

$'4A

"

$

#%

,

8

"))6,"'

*

2%

#

"

])>

$

[ZOO

#%

,

=1:'4A

"

$

#%

ÊG

$

)>

|`_rú:p2�`&Yú:�56]

ÅÆÇÈ

B

7'

$

E=5><

)^ã@

)>

]ìÞÕê�

_.&Y

B

�|��

)>

I`]&�¶ºqÏ×H�

E=5><

,-��A¡x

B

�7Õê@

)>

]ìÞ�_

.&Y

$

>?`&Y@>?�_]@7~B

)>

Â#

�'Ü��

B

�s��`PlÕês�Â�E|)

�'Ü]

B

~/`$%í&o�]>?�_W

$

`$

%íWo�]>?�_aº½Ð]Äù

B

�/mn�s)Ôö]>?�_��

$

`DÑ

E=5><

Â

$

¹¨®>�ÃÄ_rú:p2]ÅÆÇ

È]>?�_4�/t

&

>?�_/t#|t¯�

¸�ÇÈ

$

�@ã�ÇÈ]ìÞÎ�>?�_]`

��_.&Y

&

�7>?�_|`$%í&o��

ÉãÇÈ|ÅÆÇÈ

$

>?#`~�¦íGt¯�

ÇÈ

$

�`kP�=$%íÂ~�B£fÇÈ

%

é%

qrÕêª_�¸$ÂÇÈÎ��ÇÈ

$

�`>?

�_o�uv=X@ã�ÇÈ~�B£fÇÈ

&

9

!

[j56

976

!

[jkl

Ð

$

.=/S(]DEHv

$

/0DEWXr

o\�Pl

&

DEWXwº

#,;<6

<

824<

R_

.!32

R'.(%.b%%c T̀

]Z[\

$

._d

]�x��e

$cd

]§�

%

ÍÎ>?|

/.

þ

P<@245$)

$

&Yy

�|

.&C&/(

%

}�\|

c88-)&(&$&

)$3(+6

!

=>

?

+,&%+#-$(=#@&,*#%+#-

m

6

!

[jkl

F65;72495,@

d<,>?954S+

E4

J

39<,;+

F42><++24 #,;<6

<

824<

R_

.!32R'.(%.&%%c T̀

O.85>?<

!

_d .

_<924

Q!

cd $

"U /.IP<@245$)

$

O*,3W-.&C&/(

829

:

*6<4 c88-)&(&$

UFOEÙ -.

@<7536;*,

:

3;

$

G

3+;*,><5+<*,

:

3;+*T<

H?<,,<><++54

Q

F?2<,*W _5

:

=<@3><A<4+*2,

$

654

J

<*,

:

3;+*T<

=<56E

::

+

:

IT*

:

.

$

>29

:

4<++5'/_d;547*6<

5

J

<;

$

@2H,625@5/.$_d7*6<7429562>56

?;;

:

+<4A<4

:

7+>5,

$

7*,@5+;4*,

J

*,5@*4<>;24

Q

>2,;5*,

J

..'_d7*6<+

\�Pl/0

UFOEÙ -.

)

$.

*

e

F?2<,*W

)

$/

*

G

(('$

�FF©

!

gx³ye�\�®"��� 



]Pl

$

roDÛ]XkP^_Pl

&F?2<,*W

G]

Æ¸Plº

_5

:

=<@3><

$

F;?4<5@+

e

U<

V

3<,;*56/

¸y�

$

ÊG

_5

:

=<@3><

e

F;?4<5@+

y�þª_

:

;?4<5@+

_4�}�

$

�ðLM

_5

:

=<@3><

y�4

�\�

&

DÛ]XkP^_Pl/0

!

:

IT*

:

.

)

$)

*

$

5

J

<;

)

$(

*

e

:

7+>5,

)

$C

*

&

:

IT*

:

.

|Fñz{\

IT*

:

.

]

��DÑ

%

5

J

<;

|�¸XkP]

?;;

:

Á|\

%

:

7+>5,

|��]Fñ}¥\

$

qrDÑFñ]

7*,@

$

J

4<

:

©

;Ï

&

\�Pl]¥Ïz�ª_~â

&

;*9<-

:

'

@«

&

�/}~>?G��V#���U]¥Ï��

$

\

�Plþs�X�

$

¤h¥Ï®X�]Wþ1

&

978

!

]^Nno

Ð

.

.=/\�Pl]gx$%í�¥

&

ÊG

]

/

be]

)

btt|Ýg]¢ÇÈe�Å]¢Ç

È�5

$

úûttÐ=Plª_]¢ÇÈe��]

¢ÇÈ

$

�·b]��Ð�PlG�`��{wª

_]¢ÇÈ

%

]

(

b|gxo�]$%í]�5

$

q

r£=

$

��\�Plo�/LÈ]$%íäR

$

á

�

45@*2+*;

Q

e

I54,<+

%

]

C

b|Wþ`Æ¸$%í

&o�]¶â�

%

vb

/

btt|Wþ`Æ¸$%

í&o�]A

(

~roA~ÅÆÇÈ]¶â�

%

¤v

�b.=/`$%í&o�]¶â�»�(¶â�

]�tØ

&

)$3(+8

!

A,&-&'$(B+'-&*#AC$,$'-+,&D$-&*#

m

8

!

]^N+,no

U3*;<+ d<,>?954S+

;

O2>S

E>;*A<

;

O2>S

R2;56

;

8U

aW<>3;<@

;

#,+;

:

<48U

;

=<5@U\

:

<48U

;

K4*;<U\

:

<48U

;

=<5@K4*;<

U\

:

<48U

#,+;

*,8U

!

X

UFOEÙ -.

F?2<,*W

=<56E

::

+

>?26<+S

Q

' ' 0$ $$.&($ '&C) .&' % %&%%

77; $ $ . ((/&( 0&( $&( % %&%%

63->2, $ $ . ((/&( 0&( $&( % %&%%

63-,2, $ $ . ()0&( C&( $&( % %&%%

45@*W ) C $/ /%/&'' (B&C0 .&() $&() %&%%

I54,<+ .%)0 .%(% CBCC)C .C(&CB $(&() $(&(' % %&//

799 .%($ .%(. //%0B% )B$&/. .$&)C .)&)0 %&%%%%$. %&.$

2><5,->2, . C .)$C $C&$/ )&0$ %&0$ % %&%%

2><5,-,2, / C B0%)) $(&// )&'' %&'' % %&%%

45@*2+*;

Q

/0$) /0$( /.$.B'0 .$&%C C&.0 .&)/ % %&.)

45

Q

;45>< ( ( $0C$// .$&0) /&)( $&$C % %&%%

A264<,@ ( C' '%'CC .(&. ) $ % %&%.

H5;<4-,+

V

354<@ ($' (.$ )$/% .''&B (B&)0 B&0/ % %&%C

H5;<4-+

:

5;*56 '% '% .%/( ((&). 0&/B $&)0 % %&%$

?*+;2

J

459 . ) .$'$B C$&($ B&0( .&0B % %&%.

S9<5,+ . ) /)$'$( $.0&CB $/&$' (&.$ .&)/ %&%%

6*,<54

+

4<

J

4<++*2, . ) B(/B C%&'C B&BB .&0) % %&%%

95;4*W

+

936;*

:

6

Q

. ) /C0 B/&$) '&)/ /&) %&0% %&%%

:

>5 . ) ')/. //)0&'/ $0.&') )'(&$C $0&$. %&%B

4<A<4+<

+

*,@<W . ) C'0% $)0&BB .$&/( $/&( % %&%$

+;4*,

J

+

95;>? . ) B(/' .)/&$. $.&'C /&0$ .&0$ %&%%

H24@

+

>23,; ) ' .$)/ 0/&/( C&(/ $&'C % %&%%

:

IT*

:

. / / CB% $/.&.. $C&%' /&// $&.C %&%%

5

J

<; $ $ B.0)' '&%$ .&%% $&%% %&%%%%.) %&(0

:

7+>5, ) ) $)0'' .$&'$ (&'% $&C' $&%% %&%%

979

!

opqr

!

$.

.=/\�Pl��k]o�Â:

&

V¯

E=5><

]DÑ�)��¯

F*,

"

qrª_t]^�

*OS

#$

�i�ðr

F*,

]o�Â:�2�

$

®­

C('$

!"#$%&'(

!

.%$)

$

($

"

B

#



s�Â:4���k

&

Æ¸\�PlÅº

)

ý�¤

$

ÊG]

$

ý|Pl£f]s�Â:

$

]

.

ý|

F*,

]

s�Â:

$

]

/

ýe]

)

ýtt|

E=5><

e

E=5><-

OZ

]s�Â:

&

¢!

$.

Gqr£=

$

~/

45@*2+*;

Q

$

E=5><

��]¥Ï¬� þ `

/

� r &

$

' ® ¯

45@*2+*;

Q

$

E=5><

��]¥Ï¬�¤L

$

`

$'b.

�

LM

&

WþU£

$

­®¯

F*,

$

E=5><

��]¥Ï¬

�gº

)0X

LM

&

�N�

E=5><

`gx³ye�\

�®"��� ]½Â

$

��]¥Ï¬��)L

&

!

$/

.=/&

E=5><

­Ø

$

E=5><-OZ

ÑÌ

]4�e�=$%íÂ,-&�,-&�¶b]8

�

$

ro�±]¶b×�8�

&

¢!

$/

Gqr£=

$

p7

E=5><-OZ

ÑÌ/4�e�=$%íÂ

$

®¶

b4�,-&�,-]8�

$

{½Âa�±/¶b

×�]8�

&

�eub

.&$

°®

E=5><-OZ

��]

tR@7|­�P]

&

P*

J

&$.

!

[24956*T<@43,;*9<&

!

$.

!

��k]s�Â:

P*

J

&$/

!

aW<>3;*2,>?545>;<4*T5;*2,27E=5><-OZ&

!

$/

!

E=5><-OZ

s��C

!!

Ð

/

.=/

E=5><

]��s�Â�¥

&

]

/

b

�=/

E=5><

��]�]¶b×�8�

$

qr£

=

$

®¯LµtPl

$

E=5><

��]×�8��)

X

%

]

)

be]

(

btt.=/`�x��egx

\j]¶b×�8�

%

]

C

b�

E=5><

`o��P

G

$

pÿ

82@<85>?<

Gw��U�]8�

%

]

'

b

.=/

E=5><

4�¶b,-e�,-]8�

%

¤v

�b.=/

E=5><

`$%í@ÏÂ~�]¶b�

�

&

®LµtPlUN

$

E=5><

¹¨~�]¶b¾Ø

ÙX

$

�|��Iº`$%í&®ÅÆÇÈ]~¾

���`~�¦íG

&

�/4�¾tR

E=5><

­µt��]¥Ï¬

�

$

!

$)

��ç/

E=5><

­µts�Â:]­®Ø

á

&

ÊG

$

efkµt

"

*,*;*56*T5;*2,

#

|`o�\�

PluuÝ]

$

_¯®

F*,

4�efk

%

¶b×�Z

[µt

"

:

5

J

<7536;?5,@6<4

#

|`kPÃÄ�,-¶

'('$

�FF©

!

gx³ye�\�®"��� 



)$3(+9

!

=>+'E-&*#B-$-&1-&'1*F02$'+

m

9

!

02$'+

dstuno

U3*;<+ d<,>?954S+

;

P536;

;

P536;

U;5;*>

;

P536;

!

Q

,59*>

;

#,A56*@

;

F42;<>;]

Z,

:

42;<>;

;

F5

J

<

K4*;;<,d5>S

UFOEÙ -.

F?2<,*W

=<56E

::

+

>?26<+S

Q

$ % $ )) )). /C

77; $ % $ $) B /

63->2, . % . $) B /

63-,2, $ $ % $) B /

45@*W % % % .) )% $(

I54,<+ . $ $ .. )/'C0() $0(CB%(

799 % % % C. CC$%0C $%

2><5,->2, % % % $) 0CC) $')(

2><5,-,2, % % % $) /(C$'C C)$$0

45@*2+*;

Q

$%/C/0 % $%/C/0 /. $'')%B0. ))C)BBB

45

Q

;45>< $$ $ $% $) B%.)(% .%/%$%

A264<,@ 0 $ B ). .)%(C) '%'($

H5;<4-,+

V

354<@ $ $ % $) (C)'% )$0(

H5;<4-+

:

5;*56 . $ $ C% $)$(C /%C%

?*+;2

J

459 $ % $ $( BCB'. )/$'.

S9<5,+ ....( .%0)/ $.B. ). $/CCBC% (/0((%

6*,<54

+

4<

J

4<++*2, % % % $( /)$(. $CB$.

95;4*W

+

936;*

:

6

Q

% % % (% $)'C )')

:

>5 $$$ % $$$ )C .0'.B $)//C

4<A<4+<

+

*,@<W //)$/ % //)$/ $( $%(0%) $//$C

+;4*,

J

+

95;>? % % % )/ /)$)B $CB$%

H24@

+

>23,; C ( $ $C B('. /'(B

:

IT*

:

. .B .B % CC $.CC )

5

J

<; /').B /').B % $) B.%'B )$/%0

:

7+>5, B/)C$ C)($$ $B0(% .) /C/'BB $C)B)(

P*

J

&$)

!

"A<4?<5@

:

42

:

24;*2,27E=5><&

!

$)

!

E=5><

­µt¥Ï¬�]­®Øá

B('$

!"#$%&'(

!

.%$)

$

($

"

B

#



�'Ü¶b×�Âo�]

&

¢!

$)

Gqr£=

$

~/

>?26<+S

Q

e

6*,<54

+

4<

J

4<++*2,

$

��]Pl2�qrt�·L�

&

`]

$

�G

$

¥Ï¬�]§¨µt|��

"

*,+;439<,;5;*2,

#$

á�

77;

$

63->2,

$

63-,2,

$

45@*W

e

:

IT*

:

.

©

%

`(W

��G

$

¥Ï¬�]§¨µt|ÃÄBp$

"

5>><++

4<@*4<>;*,

J

#$

á�

I54,<+

$

45@*2+*;

Q

e

+;4*,

J

+

95;>?

©

&

�sít]§¨£�`¯

$

]

.

�Pl`$%í

&gxo�]¶â�»�¶â�]ØákkL¯]

$

�Pl

&

®¯

>?26<+S

Q

e

6*,<54

+

4<

J

4<++*2,

$

úû

]Øá`]

$

�e]

.

�9:

$

�i��eÃÄB

p$]Â:ØáØÙêT

&

¢!

$)

G�qr£=

$

®¯��Pl

$

~�

"

H4*;*,

J

I5>S

#

a|¥Ï¬�]

B¨µt

$

á�

45@*2+*;

Q

$

A264<,@

e

:

7+>5,

©

$

�|

��$%í&ºLÈ®ÅÆÇÈ]~ÍÎ

&

iW

$

¢

!

$)

Gaqr£=efk

(

¶b×�Z[e¢ÇÈ

ùæ

"

62>S95

::

*,

J

#

��]¥Ï¬��)L

&

97:

!

cvqr

Ð

)

.=/

E=5><

`s��PG]&�»_

È

$

ÊG]

/

b�~�¦í»_]&�

%

]

)

b|

J

62I56F5

J

<

@A»_]&�

%

]

(

b�kPÉº�

Ê

U

»_]&�

%

]

C

b�¢ÇÈùæ»_]&�

%

¤v�b��Å»_]&�

$

�ub

)

b9e

&

¢Ð

)

Gqr£=

$

E=5><

»_]&��E¾²à

$

ÊG

¤L]

I54,<+

a�º

$C0ed&

!

$(

.=/

E=5><

]&�¬�»Pl£fI

¹&��È]�tØ

&

¢!

$(

Gqr£=

$

E=5><

��]&�¬�Wþ`

%b$X

rÁ

&

)$3(+:

!

G+%*,

"

H@+,C+$/*F02$'+

m

:

!

02$'+

dcvwgG

d

U3*;<+ d<,>?954S+ K4*;<d377<4 F5

J

<#,72 R?4<5@F5

J

<#,72 O2>S R2;56

UFOEÙ -.

F?2<,*W

=<56E

::

+

>?26<+S

Q

(.B $$. (C $CB BC)

77; BB $C $C .) $))

63->2, BB $C $C .) $))

63-,2, BB $C $C .) $))

45@*W BB $C $C 0C .$C

I54,<+ $./%B% ))B $/C )0$'C $'.B)%

799 $'C )B .) )0..) )0)'.

2><5,->2, BB $C $C )B $CB

2><5,-,2, BB $C $C '. $0.

45@*2+*;

Q

..B/C .(C $%) 0/0/C $$'$/.

45

Q

;45>< .%B $)) C) $.% (/C

A264<,@ '0. /. $C $.% 0C%

H5;<4-,+

V

354<@ $B('C .)% '. $.)%B /$.0C

H5;<4-+

:

5;*56 $)) 0C /. $CB% $0(.

?*+;2

J

459 $'C $C $C )B .(C

S9<5,+ ..% $C $C )B /%%

6*,<54

+

4<

J

4<++*2, $'C $C $C )B .(C

95;4*W

+

936;*

:

6

Q

$/. $C $C )B .$.

:

>5 $'C $C $C )B .(C

4<A<4+<

+

*,@<W $'C $$. $$. )B ))B

+;4*,

J

+

95;>? $/. $C $C )B .$.

H24@

+

>23,; $/. $C $C 0C .C%

:

IT*

:

. )) $C B '. $)%

5

J

<; BB B B .) $.B

:

7+>5, $'C $C $C 0C /%)

0('$

�FF©

!

gx³ye�\�®"��� 



P*

J

&$(

!

_<924

Q

2A<4?<5@27E=5><&

!

$(

!

E=5><

]&�¬�

97;

!

xyzo

P*

J

&$C

!

U>565I*6*;

Q

27E=5><&

!

$C

!

E=5><

]q�(¥

!

$C

.=/

E=5><

`\�Pl)½kP�]

!ñÁ

$

¥Ï¬�e&�¬�]Çk¿À

&

V¯

5

J

<;

Pl¨EkP�)��

$%

$

�i�ðó�.=kP

�

$C

e

/.

]��

&

®¯

5

J

<;

$

VWkP�]�±

$

E=5><

��]&�¬���Á�

$

�|��

$

�\

�Pl�FIª_]&��È

$

VWkP��±'

�±]�¸��/

E=5><&

V!

$C

qr'Ñ

$

VWkP�]�±

$

E=5><

��]¥Ï¬�e&�¬�]�±�¸þ)L

&

�

Ð�

E=5><

SºÙ�]q�(¥

&

:

!

{;|}

:76

!

2345678

5u)Ûj®�®"��� ]$%§¨|¢

gx³y^b��

&

ý���^�DÑ#|])½

$

L(qr@úût�·�

!

2¯ÿñ]^�e2¯

�ñ]^�

&

ÊG

$

2¯ÿñ]^�GØÙºäÐ¥

]|

R26<=5><

)

)

$

$'-$B

*

e

#U"OER"=

)

$0

*

%

2¯�ñ]

^�ØÙºäÐ¥]|

F5>95,

)

(

*

&

Ábttìí

JK

&

2kP

9

$

4�$%íÂ

$

R26<=5><

�Æ¸`

ã$%í&ÃÄ]ÅÆÇÈ

>

��·¸ê�

>E

e

>N

$

�l|

>

]1B

>E

e

>N

$

ª«

>Y>EY>NB9

$

`

$%í&®

>

]ÃÄ�56Ý®

>E

]ÃÄ

B

&i½

Â

$

`$%íWo�]kP

9

.

37qr:�ÃÄ

ÅÆÇÈ

>B

2

9

$

�=$%íÂ

$

R26<=5><

ØÙ

>

e

>N

]1

B

�7

>

e

>N

­©

$

R26<=5><

ë�¹ºd

'�®"��� 

%

é%

R26<=5><

¹¨ý�'Ü]

�®"��� ]�DU�pÅÆÇÈ

>

]¤h®

1

!

$

#

�7

9

$

]o�qr��kB

9

.

9u

$

>?

#,�

>

]1

%

.

#

�7

9

.

]o�qr��kB

9

$

9u

$

>?#l|

>E

]1B

>

%

/

#

�7

9

$

]o�e

%C'$

!"#$%&'(

!

.%$)

$

($

"

B

#



9

.

]o�ó���k

$

>?

R26<=5><

#h�Pl

]o�

$

��úó�³y���®"��� 

&

DÛ

j

$

]

/

��®"��� `DÛPlG|²�C

]

)

(

*

$

�|��Pl`$%í&®ÅÆÇÈ4�Ã

ÄÂ

$

SS��AãÅÆÇÈ

$

7v�~ãÅÆÇ

È

&

iW

$

�7$%í&�`®X¸ÅÆÇÈ]Ã

Ä

$

>?tR�®"��� ]�D���l)

$

�

aLL{|/

R26<=5><

]³yÏ 

&

#U"OER"=

ª_]¤¶U³y�®"���

 

&

2kP

9

$

4�$%íÂ

$

#U"OER"=

l|Æ

¸`$%í&ÃÄ]ÅÆ¶BÊ®^]]¤¶

$

�

@£f]ÅÆ¶éqÝ)q~¡x

&9

$

`$%í&

®ÅÆ¶]ÃÄ�56�®­^]]¤¶]ÃÄ

&

&i½Â

$

�7`$%íWo�]kP

9

.

7�5

6­½]ÅÆ¶

$

>?

9

.

@��±¡ÕB

9

$

�=

$%í

B

2

9

$

�=$%íÂ

$

#U"OER"=

@Iº

]¤¶]&³~�BÅÆ¶

$

7v½ÅÆ¶éq�

q~¡x

$

�Ð�±¡]

9

.

#qr®ÅÆ¶4�

56

&

V ¯ ¹ ¨ ® Å Æ ¶ 4 � B � Ø Å

$

� i

#U"OER"=

¹¨®Pl]wäR4�B�}�

$

®

¯Y�Pl¢Ë¹¨�O56Pl]wäR

&

�L

L{|/

#U"OER"=

]ª_£¤

$

�|���`

�®"��� ]Pl]wäRSS|ó�@«

]

$

á�TÙäRe]-^_äR©

&

2$%íÃÄ

X¸ÅÆ¶Â

$

#U"OER"=

ó�,�~�X¸]¤

¶BÅÆ¶]£¤¥

$

�Ð#���)��]o�

@7

&

iW

$

2·¸�'$%í½ÂÃÄ­½]ÅÆ

ÇÈÂ

$

#U"OER"=

��`¡¢]qÏ¥

&

ej¦·¸2¯ÿñ]^¥)½

$

F5>95,

|2

¯�ñ]gx³y�®"��� ]^¥

&F5>95,

z�`Z[\

>5>?<

G¦±�W]�ñU§¨XY

Z[\9:]

>5>?<

��¥zä

$

¢'¨|Z[\

®ÅÆÇÈ]ÃÄ

$

4'DÑgx³y�®"��

� 

&

¢�ñ3¸£

$

`$%í&o�]¶âe`$

%íWo�]¶â¹ºít

&

�i

$

F5>95,

¹¨®

XkP_

"

�

:

;?4<5@+

_©

#

4�56

$

rV=4�

*�=$%í]U��_

&

p7

F5>95,

z�¦±

�W]�ñ�©/gx³y�®"��� ]¥Ï

¬�

$

{|V¯5u]ªNZ[\j¹º���ñ

��

$

Ir

F5>95,

37ó�Õê^_`Ñº]Z

[\j

&

�i

$

¬'ÿñ]^�U���®"���

 ��]Äù#²ºÎ¨

&

:78

!

~�cv

ß«&�

"

;45,+5>;*2,569<924

Q

$

R_

#

|(�

�&

E=5><

­�]$%OÎ

)

.%

*

&

`

R_

G

$

£¤í

>�£Î|�¸ß«

$

�Éß«qr¬#ìo�

&

`

ß«@ÏÂ

$

R_

�Iß«`o��PG

$

|é�`

®ÅÆÇÈ]¦§ÃÄ

&

�7�`

$

R_

@­®

"

5I24;

#

ãß«]o���¯

"

4266I5>S

#

B�o�ã

ß«

%

é%

$

R_

#�øãß«]o�

&

ß«&�ô

õÊDÑ^ qrt�2¯�ñ

)

.$-..

*

(

2¯ÿñ

)

./

*

(

ro2¯ÿ�ñ°P

)

.)-.(

*

&

p7

R_

aºe

E=5><

�±]~�¦í

$

{|

R_

§¨|�²�s#|

$

_r,�ó¢��@A

]£¤¥

$

'

E=5><

%|¨��XkPPlG�®

"��� ]³ye�\Äù

&

E=5><

]DÑ#|e

R_

º�³ít

&

�|�

�

E=5><

¹º¬#o�$%í

$

)¹¨®$%í4

�­®e�¯

%

'

R_

`�¯]�PG¹¨ºÿì

Z[>�º´Î_

"

+*@<<77<>;

#

]ÍÎ

$

5u�37

|¸µë]�ù

)

)

*

&

iW

$

E=5><

ª_

O\_R

��

Plo��PG¶`]¡¢Äù

"

C

.&)

°

#$

�a

|

R_

G¹º·B]Äù

&

:79

!

567801

�?]��� �\#|z�PltR©^�

DÑ®��� ]�\

&

¢ª_^�])½j

$

��

� �\2�qrt��x�\egx�\·�

&

�x�\§¨ª_PltR/0

$

á�2¯�D]

�I

)

.C

*

(

�x,tR

)

.'

*

(

ro¢çPtR

)

.B

*

©

&

V

¯tR^�])&r

$

�x�\�¸áº]¸¹#

|�`LÈ]�î

"

756+<

:

2+*;*A<

#

&

gx�\§¨

2¯¢çP"�

)

.0

*

(

?5

::

<,+-I<724<

tR

)

/%

*

(

ro

�+]°P

)

/$

*

&

p7e�x�\­Ø

$

gx�\]

�î°Ì

$

{|gx�\b$Wº»¼Äù

&

&�?

]��� �\­Ø

$

E=5><

h®]§¨|�®"

��� 

$

�®����� 4�gx³ye�\

&

;

!

�

!!

�

�F�=/�s`2¯¢]XkPPlGgx

³ye�\�®"��� ]^�

E=5><&

úz�

ÅÆÇÈ,-e~�¦í·4/0

$

DÑ®�®"

��� ]³ye�\

&

&×º]^�­Ø

$

E=5><

)gqr³y$%í&e$%íW9:]�®"

��� 

$

�qr®�'$%í9:]�®"��

$C'$

�FF©

!

gx³ye�\�®"��� 



� 4��\

&

iW

$

E=5><

)��»¼PlwR

$

}�\e�ñ]��

&

�F�.=/

E=5><

]�s

2¯gx�4|��]DÑ^ 

&

DE��Ð�

$

E=5><

`³ye�\�®"��� ]½Â

$

�w

��²L]¥Ï¬�e&�¬�

&

� � � �

)

$

*

O<A<+2,[c

$

R34,<48U&E,*,A<+;*

J

5;*2,27;?<R?<45>-.(

5>>*@<,;+

)

1

*

&829

:

3;<4

$

$00/

$

.C

"

'

#!

$B)$

)

.

*

U<>34*;

Q

P2>3+& U27;H54< I3

J

>2,;4*I3;<@ ;2 I65>S23;

)

ad

!

"O

*

&

)

.%%)-%.-$.

*

&?;;

:

!

!!

HHH&+<>34*;

Q

72>3+&>29

!

,<H+

!

B%/.

)

/

*

F8 K246@& [5+@5

V

f+ 75><I22S

J

6*;>? >59< 7429 45><

>2,@*;*2,+

)

ad

!

"O

*

&

)

.%$.-%0-.$

*

&?;;

:

!

!!

HHH&

:

>H246@&

>29

!

54;*>6<

!

.((0$$

!

,5+@5

V

+

+

75><I22S

+

J

6*;>?

+

>59<

+

7429

+

45><

+

>2,@*;*2,+&?;96

)

)

*

=5;5,5H245I?5, F

$

d34;+>?<4 _

$

e*42A+S* !

$

<; 56&

!<;<>;*,

J

5,@;26<45;*,

J

5+

Q

99<;4*>45><+

)

8

*

!!

F42>27

FF2FFf%0&[<HL24S

!

E8_

$

.%%0

!

$'/$B)

)

(

*

g*U?5,W*5,

J

$

";+3S*[

$

[2

J

3<*45O "

$

<;56&F5>95,

!

R26<45;*,

J

5+

Q

99<;4*>@5;545><+H*;?3,*,;43+*A<?54@H54<

)

8

*

!!

F42>27 F̀8Ef$.&F*+>5;5H5

Q

$

[1

!

#aaa

$

.%$.

!

$$.

)

C

*

O3U

$

F54SU

$

U<2a

$

<;56&O<54,*,

J

7429 9*+;5S<+

-

E

>29

:

4<?<,+*A< +;3@

Q

2, 4<56 H246@ >2,>344<,>

Q

I3

J

>?545>;<4*+;*>+

)

8

*

!!

F42>27EUFO"Uf%B&[<HL24S

!

E8_

$

.%%B

!

/.0//0

)

'

*

EI5@*_

$

5̀44*+ R

$

_<?4545 _&R45,+5>;*2,569<924

Q

H*;?+;42,

J

5;29*>*;

Q

3+*,

J

277-;?<-+?<679<924

Q:

42;<>;*2,

?54@H54<

)

8

*

!!

F42>27FF2FFf%0&[<HL24S

!

E8_

$

.%%0

!

$B($0(

)

B

*

M*2,

J

K

$

F54SU

$

N?5,

J

1

$

<;56&E@?2>+

Q

,>?42,*T5;*2,

>2,+*@<4<@ ?549736

)

8

*

!!

F42> 27 "U!#f$%& d<4S<6<

Q

!

ZUa[#M

$

.%$%

!

$$)

)

0

*

R*5,8

$

[5

J

545

G

5,\

$

c3

:

;5=

$

<;56&!

Q

,59*>4<>2

J

,*;*2,

27+

Q

,>?42,*T5;*2,2

:

<45;*2,+724*9

:

42A<@@5;545><@<;<>;*2,

)

8

*

!!

F42>27#UUREf%B&[<HL24S

!

E8_

$

.%%B

!

$)/$(/

)

$%

*

15,,<+54*E

$

R*>?

Q

K P&#@<,;*7

Q

*,

J

5@-?2>+

Q

,>?42,*T5;*2,

724 <,?5,><@ 45>< @<;<>;*2,

)

8

*

!!

F42> 27 #F!FUf$%&

F*+>5;5H5

Q

$

[1

!

#aaa

$

.%$%

!

$$%

)

$$

*

O3S8

$

82?,=

$

_3;?=

$

<;56&F*,

!

d3*6@*,

J

>3+;29*T<@

:

42

J

4595,56

Q

+*+;226+H*;?@

Q

,59*>*,+;439<,;5;*2,

)

8

*

!!

F42>27FO!#f%(&[<HL24S

!

E8_

$

.%%(

!

$0%.%%

)

$.

*

K22 U

$

"?545 _

$

R244*< a

$

<; 56& R?< UFOEÙ -.

:

42

J

459+

!

8?545>;<4*T5;*2, 5,@ 9<;?2@262

J

*>56

>2,+*@<45;*2,+

)

8

*

!!

F42>27#U8Ef0(&[<H L24S

!

E8_

$

$00(

!

.)/C

)

$/

*

=5,

J

<48

$

=5

J

?34595,=

$

F<,9<+;+5E

$

<;56&aA5635;*,

J

_5

:

=<@3><724936;*->24<5,@936;*

:

42><++24+

Q

+;<9+

)

8

*

!!

F42>27 F̀8Ef%'&F*+>5;5H5

Q

$

[1

!

#aaa

$

.%%'

!

$/.)

)

$)

*

FIT*

:

.&F54566<6IT*

:

.

)

ad

!

"O

*

&

)

.%$.-%0-.%

*

&?;;

:

!

!!

>29

:

4<++*2,&>5

!:

IT*

:

.

)

$(

*

E

J

<;&_36;*;?4<5@<@`RRF@2H,625@5>><6<45;24

)

ad

!

"O

*

&

)

.%$/-%$-.%

*

&?;;

:

!

!!

HHH&<,@<43,*W&24

J!

5

J

<;

)

$C

*

F7+>5,&F54566<67*6< +>5,,<4

)

ad

!

"O

*

&

)

.%$/-%$-.(

*

&

?;;

:

!

!!

2+;5;*>&>29

!:

7+>5,

)

$'

*

=5;5,5H245I?5,F

$

e*42A+S*!

$

[5

J:

56=

$

<;56&a77*>*<,;

43,;*9<@<;<>;*2,5,@;26<45;*2,275+

Q

99<;4*>45><+

)

1

*

&

#aaaR45,+2,829

:

3;<4

$

.%$.

$

C$

"

)

#!

()B(C.

)

$B

*

=5;5,5H245I?5, F

$

d34+>?<4 _

$

e*42A+?* !

$

<; 56&

5̀4@H54< +3

::

24; 724 <,724>*,

J

*+265;*2, *, 62>S-I5+<@

:

54566<6

:

42

J

459+

)

8

*

!!

F42>27#8Uf$.&[<H L24S

!

E8_

$

.%$.

!

/%$/$%

)

$0

*

=5

G

595,*U

$

=5956*,

J

59 c

$

=5,

J

5,5;? \ F

$

<; 56&

#U"OER"=

!

!

Q

,59*> <,+34*,

J

*+265;*2, *, >2,>344<,;

:

42

J

459+

)

8

*

!!

F42>27 EUFO"Uf%0&[<H L24S

!

E8_

$

.%%0

!

$B$$0.

)

.%

*

<̀46*?

Q

_

$

_2++1&R45,+5>;*2,569<924

Q

!

E4>?*;<>;3456

+3

::

24;72462>S-74<<@5;5+;43>;34<+

)

8

*

!!

F42>27#U8Ef0/&

[<HL24S

!

E8_

$

$00/

!

.B0/%%

)

.$

*

O3

:

2,_

$

_5

J

S6*+c

$

c2,T56<TE&E@

Q

,59*>566

Q

5@5

:

;5I6<

?54@H54<;45,+5>;*2,569<924

Q

)

8

*

!!

F42>27 _#8="f$%&

F*+>5;5H5

Q

$

[1

!

#aaa

$

.%$%

!

.'/B

)

..

*

e?5,d

$

2̀4+,<66_

$

O3

G

5,_

$

<;56&U>565I6<2I

G

<>;-5H54<

?54@H54<;45,+5>;*2,569<924

Q

)

8

*

!!

F42>27a342-F54f$%&

d<46*,

!

U

:

4*,

J

<4

$

.%$%

!

.CB.'0

)

./

*

U5?5 d

$

E@*-R5I5;5I5* E

$

15>2I+2, g& E4>?*;<>;3456

+3

::

24;724+27;H54<;45,+5>;*2,56 9<924

Q

)

8

*

!!

F42>27

_#8="f%C&F*+>5;5H5

Q

$

[1

!

#aaa

$

.%%C

!

$B($0C

)

.)

*

e3954U

$

8?3_

$

3̀

J

?<+81

$

<;56&`

Q

I4*@;45,+5>;*2,56

9<924

Q

)

8

*

!!

F42>27FF2FFf%C&[<HL24S

!

E8_

$

.%%C

!

.%0..%

)

.(

*

!5942,F

$

P<@242A5E

$

O<AL

$

<;56&`

Q

I4*@;45,+5>;*2,56

9<924

Q

)

8

*

!!

F42>27 EUFO"Uf%C&[<H L24S

!

E8_

$

.%%C

!

//C/)C

)

.C

*

P65,5

J

5,8

$

P4<3,@U[&R

Q:

<-I5+<@45><@<;<>;*2,72415A5

)

8

*

!!

F42>27FO!#f%%&[<HL24S

!

E8_

$

.%%%

!

.$0./.

)

.'

*

3̀2K<*

$

L3 2̀,

J

;52

$

P<,

J

M*52I*,

J

$

<;56&U;5;*>45><

@<;<>;*2, 27*,;<443

:

;-@4*A<,

:

42

J

459+

)

1

*

&1234,56 27

829

:

3;<4=<+<54>?5,@!<A<62

:

9<,;

$

.%$$

$

)B

"

$.

#!

..0%

..00

"

*,8?*,<+<

#

"

½¾

$

¯¿À

$

ÁÂÃ

$

©

&

�x�\G#ÄgPl]��

� 

)

1

*

&

!"#$%&'(

$

.%$$

$

)B

"

$.

#!

..0%..00

#

)

.B

*

F45;*S5S*+F

$

P2+;<41U

$

*̀>S+_&O"8eU_#R̀

!

82,;<W;-

+<,+*;*A<>244<65;*2,5,56

Q

+*+72445><@<;<>;*2,

)

8

*

!!

F42>27

FO!#f%C&[<HL24S

!

E8_

$

.%%C

!

/.%//$

)

.0

*

U5A5

J

<U

$

d3442H+_

$

[<6+2,c

$

<;56&a45+<4

!

E@

Q

,59*>

@5;545><@<;<>;24724 936;*;?4<5@<@

:

42

J

459+

)

1

*

&E8_

R45,+2,829

:

3;<4U

Q

+;<9+

$

$00'

$

$(

"

)

#!

/0$)$$

)

/%

*

E@A<U\

$

*̀66_!

$

_*66<4dF

$

<;56&!<;<>;*,

J

@5;545><+

2, H<5S 9<924

Q

+

Q

+;<9+

)

8

*

!!

F42>27#U8Ef0$&[<H

L24S

!

E8_

$

$00$

!

./).)/

.C'$

!"#$%&'(

!

.%$)

$

($

"

B

#



)

/$

*

"f85665?5,=

$

8?2*1&`

Q

I4*@@

Q

,59*>@5;545><@<;<>;*2,

)

8

*

!!

F42>27FF2FFf%/&[<HL24S

!

E8_

$

.%%/

!

$C'$'B

I$#

.

I+#5+#

$

I24, *, $0BC& F?!

>5,@*@5;<& *̀+ 95*, 4<+<54>? *,;<4<+;+

*,>63@< 936;*>24<

:

42

J

4599*,

J

$

@

Q

,59*>

2

:

;*9*T5;*2,

$

5,@I*,54

Q

;45,+65;*2,&

IEAC+#

..

$#

.

$

I24,*,$0C0&F?!5,@

5++2>*5;<

:

427<++24&U<,*249<9I<4278?*,5

829

:

3;<4P<@<45;*2,& *̀+95*,4<+<54>?

*,;<4<+;+*,>63@<@

Q

,59*>2

:

;*9*T5;*2,5,@

I*,54

Q

;45,+65;*2,

"

H3>

J"

*>;&5>&>,

#

&

J$,E

K

2$-$#$5*,$3C$#

$

I24,*,$0'%&F?!

5,@ 6<>;34<4 5; ;?< !<

:

54;9<,; 27

829

:

3;<4a,

J

*,<<4*,

J

$

e5+<;+54;Z,*A<4+*;

Q

*,R?5*65,@&̀ *+>344<,;4<+<54>?72>3+*+2,

+

Q

+;<9+<>34*;

Q

5,@ 936;*>24<

:

42

J

4599*,

J

"

:

543

G

&4

"

S3&5>&;?

#

&

LE$#M&$#

.

$

I24,*,$0B)&F?!>5,@*@5;<&

*̀+ 95*, 4<+<54>? *,;<4<+;+ *,>63@<

@

Q

,59*>2

:

;*9*T5;*2,5,@I*,54

Q

;45,+65;*2,

"

Q

35,W*5,

J"

*>;&5>&>,

#

&

I$#

.

NC+#

K

&$#

.

$

I24,*,$0B/&F?!5,@

5++*+;5,;

:

427<++24& *̀+ 95*, 4<+<54>?

*,;<4<+;+*,>63@<@

Q

,59*>2

:

;*9*T5;*2,5,@

I*,54

Q

;45,+65;*2,

"

H5,

J

T?<,

G

*5,

J"

*>;&

5>&>,

#

&

O&P&$#

K

E#

$

I24,*,$0B)&F?!& *̀+95*,

4<+<54>?*,;<4<+;+*,>63@<

:

42

J

4595,56

Q

+*+

5,@@

Q

,59*>2

:

;*9*T5;*2,

"

6*

G

*5,

G

3,

"

*>;&

5>&>,

#

&

Q+#

.

M&$*3&#

.

$

I24,*,$0C0&F427<++24&

_<9I<4278?*,5 829

:

3;<4P<@<45;*2,&

*̀+ 95*, 4<+<54>? *,;<4<+;+ *,>63@<

>29

:

*6<4 ;<>?,*

V

3<+ 5,@

:

42

J

4599*,

J

<,A*42,9<,;

"

7WI

"

*>;&5>&>,

#

&

/C'$

�FF©

!

gx³ye�\�®"��� 


	1
	2
	3
	4

