<\

3
I

\‘

4|2
2
o

Final Report

Project Title: A program analysis framework to
increase the performance and effectiveness of
asymmetric race detection and toleration

By Paruj Ratanaworabhan

February, 2015

Contract No.

Final Report

A program analysis framework to increase the
performance and effectiveness of asymmetric race
detection and toleration

Researcher Institute
Paruj Ratanaworabhan Kasetsart University

This project is supported by the Thailand Research Fund

Abstract

Project Code:

Project Title: A program analysis framework to increase the
performance and effectiveness of asymmetric race detection and
toleration

Investigator: Paruj Ratanaworabhan
E-mail Address: paruj.r@ku.ac.th
Project Period: 12 months

Abstract: As multicore processors become ubiquitous, parallel
programs that exploit those extra cores are expected to be
prevalent. However, parallel programming is not an easy
undertaking. At present, programmers find that it is already hard
enough to correctly program in conventional sequential mode.
Parallel programming worsens the status quo as it introduces
additional errors that are not found in sequential programming.
These are, for example, deadlock, atomicity violation, and data
races. This project will focus on data races, specifically asymmetric
data races. In general, a race is defined as a condition where
multiple threads access a shared memory location without
synchronization and there is at least one write among the
accesses. Asymmetric races occur when one thread correctly
protects a shared variable using a lock while another thread
accesses the same variable improperly due to a synchronization
error (e.g., not taking a lock, taking the wrong lock, taking a lock
late, etc.).

Asymmetric races are common and developers in software houses
like Microsoft constantly have problems with them. There are two
reasons for this. First, usually a programmer’s local reasoning
about concurrency, e.g., taking proper locks to protect shared
variables, is correct. Errors due to taking wrong locks or no locks
lie outside of the programmer’s code, for example, in third party

libraries. Given that lock-based programs rely on convention, this
phenomenon is understandable. The second reason has to do with
legacy code. As software evolves, assumptions about a piece of
code may be invalidated. For instance, a library may have been
written assuming a single-threaded environment, but later the
requirements change and multiple threads use it. An expedient
response to this change is to demand that all clients wrap their
calls to the library, acquiring locks before entry and releasing them
on exit. Because this solution requires that all clients be changed,
races can be introduced when clients fail to follow the proper
locking discipline.

This project tackles asymmetric data races in locked-based
parallel programs, specifically those written in unsafe languages
such as C or C++ that use add-on libraries for threading and
synchronization. At present, a large installed code base of such
programs exists and programmers continue to write parallel code
in this paradigm. The project aims to increase the efficiency and
effectiveness of an asymmetric race detector and tolerator.

Keywords: Asymmetric race toleration and detection, static and
dynamic program analysis, dynamic instrumentation

Executive Summary

Asymmetric races are data races caused when one thread
accesses a shared variable guarded by a lock in a critical section
and another thread accesses the same shared variable without
holding the same lock. Asymmetric races are common and usually
harmful. They often arise when well-tested code interacts with
buggy legacy code or third-party libraries. Existing solutions for
tolerating asymmetric races, whether based on software or
hardware, have some limitations: they require either complier
support, or application changes, or new hardware to be added to
commercial hardware platforms.

This project proposes a consistent execution model for critical
sections in lock-based multi-threaded programs. During the
consistent execution of a critical section, two conditions are
satisfied: (1) shared variables read in the critical section are not
written outside and (2) shared variables written in the critical
section are not read and written outside. As a result, asymmetric
races can never occur. Based on this consistent execution model,
we present a new software-based scheme, called ARace, to
dynamically ensure that all critical sections are consistently
executed by exploiting write buffering and shared variable
protection. ARace can be directly applied to binary code and
requires no additional compiler support or application changes. We
have implemented ARace based on dynamic binary
instrumentation and evaluated it with the applications from
SPLASH-2 and Phoenix. Our results show that ARace guarantees
the absence of asymmetric races while incurring only about 1x
overhead on average.

Objectives

The main objective of this project is to build a software tool that is
able to better detect and tolerate asymmetric data races. We
achieve our main objective through three steps:

1.Develop a theory for and design a program dynamic analyzer,
ARace, to increase the performance and effectiveness of
asymmetric race detection and toleration.

2.Implement ARace based on Pin, a dynamic binary
instrumentation framework from Intel.

3.Evaluate ARace against two widely adopted benchmarking
suites, SPLASH-2 and Phoenix, from Stanford University

Research Methodology

Our research methodology follows the outline below:

- Surveying related work

- Developing the underlying theory for and designing the software
tool that will satisfy our objectives

 Implementing the software tool based on the theory and design
developed in the previous step

- Evaluating the effectiveness of our software tool using
comprehensive benchmark programs

Related Work

The existence of data races makes multi-threaded programs error-
prone. When two threads access a shared variable without any
synchronization, where one of the accesses is a write, a data race
happens. Data races may cause multi-threaded programs to
exhibit undesired behaviors. Some data races escaping from in-
house testing may be catastrophic in the real world, as is the case
for the Northeastern U.S. electricity blackout.

There has been a plenty of research on dealing with data races.
These research efforts fall into two categories: prior detection and
post tolerance. The former detects and removes data races as
aggressively as possible during in-house testing, while the latter
tolerates data races in production runs. Despite extensive in-house
testing, some data races still lurk around in released products.
Thus, the latter techniques are invaluable in practice.

There is one class of data races, called asymmetric races, which
occur at the time when one thread accesses a shared variable
inside a critical section protected by a lock and another thread also
accesses the same shared variable due to a synchronization error
(e.g., outside any critical section or inside a critical section but not

protected by the same lock). The figure below illustrates an
asymmetric race.

Thread 1

S1: Lock (L) ;
S2: if (!ptr) {
S3: ptr = malloc (); Thread 2
S4: }

4—— 357: ptr = NULL;
S5: *ptr = var;
S6: Unlock (L);

Figure 1. An asymmetric race

In this example, ptr is a shared variable. The two reads to ptr in
thread 1 are inside a critical section protected by a lock L but the
write to ptr in thread 2 is not inside any critical section. This race
may lead to inconsistent results when reading ptr in thread 1
during different program executions. This happens when the write
to ptr in thread 2 takes place between the first read to ptr at S2 and
the second read to ptr at S5 in thread 1.

Asymmetric races are common in real applications and usually
harmful. Among the harmful data races found, about 20% are
estimated to be asymmetric races. The developer usually expects
the accesses to shared variables to be made inside critical
sections guarded by appropriate locks. Unfortunately, asymmetric
races often arise when the developer’s code interacts eventually
with the other code from third-party libraries or legacy binaries.
The latter code may be originally written only for single-threaded
applications in mind. Thus, the presence of asymmetric races is
often beyond the developer’s control.

Although prior detection is useful for detecting and removing some
asymmetric races, post tolerance can be more attractive. Many
asymmetric races happen only when well-tested code interacts
with legacy binaries or third-party libraries, whose source may be
unavailable. In addition, due to their asymmetric nature,
asymmetric races, which cannot be found during prior detection,

can be better prevented with post tolerance. A simple way to
tolerate asymmetric races is to prevent another thread from
accessing a shared variable if some thread is accessing it in a
critical section, avoiding corrupting the shared variable.

We will now look at prior work related to the area of asymmetric
races.

Asymmetric Races

ToleRace [1-4] is the first proposed software scheme for detecting
and tolerating asymmetric races. ToleRace copies two shadows, v’
and v”, for each shared variable v accessed in a critical section
when a thread T1 executes the critical section. Then T1 accesses
v’ in the critical section. At the same time, another thread T2 can
accesses Vv outside the critical section. After T1 has reached the
end of the critical section, ToleRace compares the values of v and
v”. Then ToleRace decides which value of v and v’ should be
reserved as the new value of v: (1) if T1 can be serialized before
T2, the value of v is reserved; (2) if T2 can be serialized before T1,
the value of v’ is reserved; (3) if T1 and T2 cannot be serialized,
ToleRace has to interrupt the execution of the program. ToleRace
can tolerate asymmetric races in the former two cases but is
inadequate in the last case ([5] illustrates one such example).

ISOLATOR [5] is another software scheme. At the beginning of a
critical section, any page p that will be accessed in the critical
section is copied to a shadow page p’. Then ISOLATOR protects p
by making it inaccessible. The accesses to p in the critical section
are redirected to p’. The accesses to p not in the critical section
will cause page fault exceptions. At the end of the critical section,
ISOLATOR copies the content from p’ to p, and unprotects p to be
accessible. ISOLATOR needs compiler support or even application
changes so that pages can be shadowed appropriately. Besides,
for every shadow page, ISOLATOR uses a temporary page to copy
it back. However, if there are multiple shadow pages, the atomicity
of copying them back is not guaranteed in ISOLATOR.

Pacman [6] also aims to asymmetric races. The main difference
between Pacman and above two schemes is that Pacman is
based on hardware. Pacman exploits cache coherence hardware
to protect cache lines that contain variables accessed in a critical
section. If instructions not in the critical section try to access these
cache lines, they will fail and have to wait. Pacman needs
additional hardware support to exploit cache coherence. Besides,
Pacman has no knowledge about critical sections. That is because
critical sections have no difference with normal code from a
hardware perspective. Compared with software-based schemes,
Pacman is unintrusive and has negligible execution overhead.
Nevertheless, it is not yet supported by current computer
platforms.

Transactional Memory

Transactional Memory (TM) is another way to provide atomicity for
lock-free data structures. In TM, an atomic region is considered as
a transaction and the transaction is executed speculatively. At the
end of the transaction, TM checks whether there is conflict. If yes,
TM aborts the transaction and rolls back to re-execute the
transaction. Otherwise, the transaction is committed. TM needs to
handle side effect operations effectively during rollback, which is
still an open problem. TM can be implemented based on hardware
[7], software [8], or hybrid [9].

Data Race Detection

There is a large body of research focusing on data race detection,
both static and dynamic. Static detections use program analysis
techniques, like type-based checking [10], static flow analysis [11],
or lockset analysis [12]. One inherent drawback of static detections
is that a lot of false positives are reported. Dynamic detections are
mainly based on the lock-set algorithm [13], happens-before
analysis [14] or hybrid of the two [15]. Although dynamic detections
have fewer false positives than static detections, they have the
challenge of coverage.

If we focus on the three systems most closely related to ours,
ToleRace, ISOLATOR, and Pacman, we see the following
shortcomings:

- ToleRace cannot tolerate a case of asymmetric race where the
two executing threads T1 and T2 cannot be serialized, and,
hence, needs to interrupt the execution of the program.

* ISOLATOR requires compiler support or even application
changes so that pages can be shadowed appropriately. This
scheme is ineffective unless the source of a program is available.
Unfortunately, asymmetric races are often triggered when well-
tested code interacts with legacy binaries or third-party libraries.

- Pacman is a hardware-based scheme that is uninstrusive and
induces negligible slowdown. However, it is not yet supported by
current computer platforms.

To overcome the imitations inherent in the three aforementioned
schemes, this project proposes a consistent execution model for
critical sections in lock-based multi-threaded programs. During the
consistent execution of a critical section, two conditions are
satisfied: (1) shared variables read in the critical section are not
written outside and (2) shared variables written in the critical
section are not read and written outside. As a result, asymmetric
races can never occur. Based on this consistent execution model,
we present a new software-based scheme, called ARace, to
dynamically ensure that all critical sections are consistently
executed by exploiting write buffering and shared variable
protection. ARace works on-the-fly, requires no additional compiler
support or application changes, and can be deployed even when
the source code of a program is not available. We have
implemented ARace based on dynamic binary instrumentation.
Our results show that ARace guarantees the absence of
asymmetric races with acceptable performance overhead.

There are fundamental differences between ARace and
Transactional Memory (TM). Even though both use write buffers,
ARace does not need to detect versions and conflicts during the
execution of a critical section, because it protects the shared
variables read in the critical section. When there are conflicts, TM
must abort a transaction and rollback. During rollback, TM needs
to handle side effect operations effectively, which is still an open
problem. In contrast, there is no notion of abort-and-rollback in
ARace, because its program executions are not speculative.

1.P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. Zorn, R.
Nagpal, and K. Pattabiraman. Detecting and Tolerating
Asymmetric Races. In PPoPP, 20009.

2.P. Ratanaworabhan, D. Kirovski, and R. Nagpal. Efficient
Runtime Detection and Toleration of Asymmetric Races. In IEEE
Trans. on Comput., Vol. 61, No. 4, 2012.

3.P. Ratanaworabhan, M. Burtscher, D. Kirovshi, and B. Zorn.
Hardware Supprot for Enforcing Isolation in Lock-Based Parallel
Programs. In ICS, 2012.

4.D. Kirovski, B. Zorn, R. Nagpal, and K. Pattabiraman. An Oracle
for Tolerating and Detecting Asymmetric Races. Microsoft
Research Technical Report MSR-TR-2007-122, 2007.

5.S. Rajamani, G. Ramalingam, V. P. Ranganath, and K. Vaswani.
ISOLATOR: Dyamically Ensuring Isolation in Concurrent
Programs. In ASPLOS, 20009.

6.S. Qi, N. Otsuki, L. O. Nogueira, A. Muzahid, and J. Torrellas.
Pacman: Tolerating Asymmetric Data Races with Unintrusive
Hardware. In HPCA, 2012.

7.L. Baugh, N. Neelakantam, and C. Zilles. Using Hardware
Memory Protection to Build a High-Performance, Strongly-
Atomic Hybrid Transactional Memory. In ISCA, 2008.

8.V. Gramoli, R. Guerraoui, and V. Trigonakis. TM2C: A Software
Transactional Memory for Many-Cores. In EuroSys, 2012.

9.C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson,
J. Casper, C. Kozyrakis, and K. Olukotun. An Effective Hybrid
Transactional Memory System with Strong Isolation Guarantees.
In ISCA, 2007.

10.C. Boyapati and M. C. Rinarad. A Parameterized Type System
for Race-Free Java Programs. In OOPSLA, 2001.

11.D. Engler and K. Ashcraft. RacerX: Effective, Static Detection of
Race Conditions and Deadlocks. In SOSP, 2003.

12.P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: Context-
Sensitive Correlation Analysis for Race Detection. In PLDI, 2006.

13.S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.
Andersom. Eraser: A Dynamic Data Race Detector for
Multithreaded Programs. In ACM Trans. Comput. Syst., 1997.

14.E. Schonberg. On-the-fly Detection of Access Anomalies. In
PLDI, 1989.

15.A. Muzahid, D. S. Gracia, S. Qi, and J. Torrellas. SigRace:
Signature-Based Data Race Detection. In ISCA, 20009.

Theory and Design

Qverview
ARace exploits two techniques to ensure that the execution © of a
critical section = is consistent, where = = <A\, ®, [>. The first is

Write Buffer. The writes to any ¢ in ® during © are redirected to
the write buffer. The write buffer is written back to original shared
variables when the last instruction in © is executed. By this way, the
intermediate statuses of any ¢ in ® generated by instructions in ©
are hidden, and instructions not in © can only see the final result of
¢ after O is finished.

Another technique utilized by ARace is Shared Variable
Protection. Any ¢ in ® read by instructions in © is protected to be
read-only. When © is executed, if an instruction not in © tries to
modify ¢ after instructions in © have read ¢, it will fail. Then it has
to wait for the finish of ©. Any protected ¢ is unprotected to be
writeable when the last instruction in © is executed.

To prohibit inconsistent statuses of shared variables, ARace forbids
two critical sections that access same shared variables from being
executed concurrently. For two critical sections =1 = <A+, @4, 1>
and =2 = </Mo, ®o, 2>, if ®1 n 2 = G, then any ©4 of =1 and any O>
of =2 are not allowed to be executed concurrently. Otherwise, if ®1 n

o, = @, then any ©1 of =y and any @2 of =2 can be executed
concurrently. Note, if =1 and =»> are protected by the same lock,
then any ©1 of =1 and any O2 of => will not be executed
concurrently even if ®1 n ®2 = Q.

Figure 2 illustrates the main steps of ARace. The numbers in the
ring manifest the happen-before order of the steps. In this example,
X and Y are shared variables accessed in the critical section. S1
indicates that this is a critical section. When S2 is executed, the
shared variable X is protected to be read-only firstly (1). Then S2
can read the value of X (2). When S3 is executed, a new write
buffer item, Y’ is allocated to cache the writes to Y (see details in
next subsection) (3). When S4 is executed, Y’ in the write buffer is
written back to Y (4), and X is unprotected to be writeable (5).

original memory

} ®pr0tected to <Qunprotected to

X .
be read-only be writeable
S1l: Lock(L); Y

S2: varl = X;
S3: Y = var2;

write buffer
S4: Unlock (L); o

Figure 2. Main steps of ARace

Write Buffer

The write buffer is a thread private storage, allocated at thread
starting and freed at thread exiting. It is constructed by write buffer
items and is indexed by the memory addresses of shared variables.
The size of each write buffer item is not fixed, and depends on the
access size of instructions in ©. Each ¢ in ® written by instructions
in © is mapped to a unique write buffer item. The write buffer item
corresponding to ¢ is allocated at the first time that ¢ is written by
some instruction y in ©. The size of the firstly allocated item is the
same as the access size to ¢ in y. In some programming
languages, for example C/C++, it is allowed to access some bits of
variables. Hence, ¢ may not be accommodated in the firstly
allocated item. To address this problem, when the access size to ¢

in instructions after y is bigger than the size of previous allocated
item, ARace will allocate a new write buffer item to accommodate
the bigger size and copy the content from the old item to the new
item. Then, the following accesses to ¢ are redirected to the new
item.

Atomicity of Writing Back The write buffer item corresponding to
¢ is written back to ¢ when the last instruction in © is executed. If
the process of writing back is not atomic, an inconsistent execution
will be introduced. Figure 3 illustrates this situation. S3 and S4 read
shared variable X and Y when S1 and S2 write back new values to
X and Y. After this execution interleaving, vari and var2 are
respectively 1 and 0, which violates sequential consistence. To
guarantee the atomicity of writing back, ARace protects all
corresponding shared variables to be unreadable and unwriteable
at the beginning of writing back, i.e. X and Y are protected to be
unreadable and unwriteable before S1 and S2 are executed in this
example.

Init: X =Y = 0;

Thread 1
Thread 2
S1: Write back X with 1;
~a S3: varl = X;
S4: varz2 =Y;
/

S2: Write back Y with 2;

Figure 3. An example of writing back

After above protecting, ARace cannot write back write buffer items
to corresponding shared variables directly. Fortunately, most
modern operating systems, like Windows, UNIX, or Linux, support
mapping the same physical memory at multiple virtual pages in a
process’s address space. To write back a write buffer item to
corresponding shared variable ¢, ARace allocates a new virtual
page, called swap page, to map the physical page of original
virtual page that contains ¢. The swap page is both readable and
writeable. ARace writes back the write buffer item corresponding to
¢ to the swap page with the same offset of ¢ in original virtual
page. Actually, with the help of one swap page, ARace can write

back items whose corresponding shared variables lie in the same
page, which is more efficient than writing back items one by one.

The protected shared variables are unprotected to be readable and
writeable after the writing back process finishes. Then instructions
not in © will read consistent status of shared variables. Besides,
after the writing back process, the write buffer items allocated
during © are freed for following executions of critical sections.

Shared Variable Protecting

To prevent instructions not in © from corrupting shared variable ¢
read by instructions in ©, ¢ is protected to be read-only. When the
last instruction in © is executed, ¢ is unprotected to be writeable. In
most modern operating systems, memory is protected at a page
granularity. Thus ARace has to protect the whole page that contains
¢ when it needs to protect ¢. If ¢ lies in two pages, all of these two
pages are protected. And the protected pages are unprotected to
be writeable at the end of ©.

False Sharing For two different critical sections =1 = <A+, ®4, N>
and =2 = <M\, Oo, 2>, if 1 n 2 = G, then any ©+ of =1 and any ©>
of => can be executed concurrently. However, shared variable ¢+ in
®+ read by instructions in ©1 and ¢2 in ®2 read by instructions in ©2
may be allocated in the same page, called p. If ©1 and @2 are
executed by two different threads T1 and T2 concurrently, p will be
protected repeatedly. More to the point, assuming T1 finishes ©1
before T2 finishes Oq, if T1 unprotects p to be writeable at the end of
©1, O2 will be at the risk of inconsistent.

To solve above false sharing problem, ARace uses a global shared
structure, called globalPage, to record which pages have been
protected to be read-only so far. Each protected page has a thread
list L to record which threads have read shared variables in this
page in critical sections. In addition, every thread in ARace has a
local storage S to record the pages that contains shared variables it
has read in critical sections. Algorithm 1 and Algorithm 2
respectively illustrate the processes of shared variable protecting
and share variable unprotecting.

ngorithm 1. protect sv (1, v, size)

Algorithm 2. unprotect sv ()

read by t, and the size of v
Output none

Input: thread t, shared variable v

Input: thread ¢ to exit a critical
section
Output none

: P =pages (v, size);
: for each p in P do
Lock (globaiPageLock);

protect p;
add p to globalPage,
end if
addrtop.L;
Unlock (globalPagelock);
10: addptot.S;
11: end for

®RADYN B W

o

if (» is not in globalPagé then

:foreachpint.S do
Lock (globaiPageLock);
deletet from p.L;
if p.L is empty then
unprotect p;
delete p from globalPage
end if
Unlock (globalPageLock);
deletep from 1.S;
: end for

SN AWD S

—

Algorithm 3. redirect_access (ins, 1)

Input: instruction ins in a critical section thread ¢ executingins
Output if ins accesses shared variable, memory address after redirecting

1: type= instruction_type (ins);

W

9: endif
11: endif
13: protect_sv (¢, addr, size);

14: return &addr,
15: end if

19: end if

21: protect_sv (t, addr, size);

25: endif
26: end if

10: return &rwritebuffer(addr);

2:if ((typeis Read_SV) or (typeis Write_SV)) then

addr = shared_variable_address (ins);

4: size =shared_variable_size (ins);

5: if (addr is in t.writebuffer) then

6: if (size > t.writebuffer(addr).size) then

7: allocatea new item in t.writebuffer for (addr, size);

8 copy the content from old item to new item and free old item

12: if ((typeis Read_SV) and (type is not Write_SV)) then

16: if ((typeis not Read SV) and (typeis Write_SV)) then
17: allocate a new item in t.writebuffer for (addr, size);
18: return &rwritebuffer(addr);

20: if ((typeis Read_SV) and (type is Write_SV)) then
22: allocate a new item in z.writebuffer for (addr, size);

23: copythe content from addrto new item;
24: return &t writebuffer(addr);

When the page that contains ¢ is protected, instructions not in ©
can only read the content in this page. If there is an instruction not
in © that tries to modify any content in this page, it will receive page
fault exception. Then ARace suspends the thread in page fault
handler. The suspended thread will resume its execution when the

page is writeable.

Lazy Unprotecting If O is executed frequently, the page p
containing ¢ is also protected and unprotected frequently. Actually,
except instructions in ©, if there is no instruction modifying any
content in p, it does not need to unprotect p at the end of ©. To
utilize this feature, ARace-LU is proposed. ARace-LU is ARace with
Lazy Unprotecting (LU). LU puts off unprotecting p until there is an
instruction not in © that modifies contents in p. During this process,
although © is executed multiple times, p is protected and
unprotected only once.

Although LU will decrease the number of unnecessary protecting
and unprotecting of p, it may also introduce additional page fault
exceptions on p. For example, there are instructions not in ©
modifying contents in p after every ©. The performance evaluation
of ARace and ARace-LU will be presented later in this report.

Access Redirecting

ARace examines each instruction y in © to check whether it
accesses some shared variable ¢ in ®. If yes, ARace will redirect
the access. Algorithm 3 illustrates the process of access
redirecting.

For most RISC architectures, like MIPS or Alpha, instructions have
only two memory access types: reading and writing. But for CISC
architectures, it is different. For example, instructions in 1A-32 have
three memory access types: reading, writing, and readwriting. The
last access type means one instruction can read and then write the
memory. The redirecting algorithm in ARace supports all access
types in these architectures.

Lock Variable Mapping

Lock variables, like A in A, are used to implement lock
synchronizations. In most current popular programming languages,
including C/C++, Java, and C#, programmers can define lock
variables like normal variables. From the view of the compiler, lock
variables have no difference with normal variables. Therefore, lock
variable A in A may be allocated in the same page with shared
variable ¢ in ®. If instructions in © read ¢, ARace needs to protect

the page that contains ¢ to be read-only. Thus, A is also protected
to be read-only. Figure 4 illustrates this case.

Thread 1 Thread 2 pagep
S1: Lock (L1); S4: Lock (L2); X
S2: varl = X; S5: var2 = Y;
S3: Unlock (L1); —m»
S6: Lock (L1); Y

S7: Z = var3;
S8: Unlock (L1);
S9: Unlock (L2);

Ll

Figure 4. A deadlock example

In this example, =1 = <A1, ®4, 1>, where Ay = {L1}, ©1={X}, 1 =
{S1, S2, S3}, and =2 = <Az, ®o, ['>>, where A2 ={L1, L2}, ®o={Y, Z},
> = {S4, S5, S6, S7, S8, S9}. Because there is no branch type
instruction in 1 and 2, =+ and =2 both have only sequential
executions. Suppose they are respectively ©1 executed by T+ and
©2 executed by T.. ©1 and ©2 can be executed concurrently
because ®1 n ®2 = .

Assume that X, Y and L1 are allocated in the same page p as
illustrated in Figure 4. Consider the following execution interleaving
between ©1 and ©2: S1 is executed between S4 and S6. Then S6
has to wait for S3 to acquire lock L1. Due to the end of ©4, before
S3 is executed, T tries to unprotect p to be writeable. However,
because of T», the thread list L of p is not null after erasing T+1. Thus
p is still read-only when S3 is executed. L1 will not be released
successfully until p is writeable, which means T2 have finished Q.
However, if L1 cannot be acquired at S6, T2 will not finish ©-.
Therefore, a deadlock status happens.

To avoid this unintended deadlock status, ARace exploits a Lock
Variable Mapping Table (LVMT) to map every lock variable A in A
to a new lock variable A’, where A'¢A. A’ has the same memory
size with A, and is in an independent memory region, which is
always readable and writeable. LVMT is a one-to-one mapping
table illustrated in Figure 5. Each term of LVMT has information for
mapping: memory addresses of A and A’. When Lock/Unlock

instruction in © accesses A, the memory address of A is used to
search LVMT to find A’. Then A is replaced by A’, and the
probability of deadlock status is eliminated.

original locks

LVMT
A Id| Ori. | New new locks
S &n &y] M
7L2 —> 2 &7&2 &7»2' > 7w2'
3| &y [&b] 5
A3

Figure 5. Lock Variable Mapping Table

Ad Hoc Synchronizations

In many multi-threaded programs, ad hoc synchronizations are
widely used by developers. If one of the synchronization pairs is in
a critical section, the ad hoc synchronization itself constructs an
asymmetric race. Figure 6 is an example of this case. In this
example, S3 and S6 construct an asymmetric race: AR(S3, S6).

Under ARace, AR(S3, S6) will not be triggered. But, thread 1 will
never exit the loop if it executes S3 before thread 2 executes S6.
That is because syncFlag belongs to the shared variable set of the
critical section, and if thread 1 reads different values from syncFlag,
the execution of the critical section will be inconsistent. Actually,
shared variables like syncFlag are only used for ad hoc
synchronizations. Thus there is no need to guarantee the
consistent statuses of these variables in critical sections. ARace
utilizes techniques proposed in a related work by W. Xiong et al.
“Ad Hoc Synchronization Considered Harmful”’, OSDI, 2010, to
detect shared variables like syncFlag accessed in a critical section,
and deletes them from the shared variable set of the critical section.

Init: syncFlag = TRUE;

Thread 1 Thread 2
S1: Lock (L); S6: syncFlag = FALSE;
S2: ...
S3: while (syncFlag) { };/
S4

S5: Unlock (L) ;
Figure 6. An asymmetric race with ad hoc
synchronization

Implementation

We choose Pin to implement ARace. Pin is a dynamic binary
instrumentation framework from Intel. The targets of Pin are the
IA-32 and x86-64 instruction set architectures. It is extensively used
in a plenty of research. Pin instruments programs at run time. Thus
it needs no recompiling of programs.

ARace is implemented as a Pintool, including two main
components: instrumentation engine and analysis engine. The
instrumentation engine is used to instrument instructions and
routines. The analysis engine contains access redirecting, write
buffer, shared variable protecting, and lock variable mapping.
Figure 7 illustrates the framework of the implementation.

The target multi-threaded programs are compiled on [A-32
architecture with pthreads library. The pthreads library is a widely
used multi-threaded library. Although the platform and multi-
threaded library are specific in our implementation, we believe that
ARace scheme is general enough for other platforms and multi-
threaded libraries.

(Target Multi-threaded Programs)

II Analysis Engine

Mapping

I : Shared

:]?1,1 ?t:[eer Variable Lock

| Protecting Variable
[

|

C Access Redirecting)
\

C Instrumentation Engine
_
(Pin

Figure 7. Implementation framework

I

Shared Variables

Because we have no any prior knowledge about that which variable
is shared variable, a conservative policy is adopted: regarding all
non-stack variables as shared variables. Although this policy may
introduce some false positives, it does not affect the accuracy. In
addition, this policy is more efficient than determining if a variable is
a shared variable at run time.

Critical Sections & Lock Variables

In pthreads library, the points of entering and exiting a critical
section are indicated by calling pthread_mutex_lock and
pthread _mutex_unlock routines. For pthread_mutex_trylock
routine, if the calling thread acquires the lock successfully, we also
consider the following instructions are executed in a critical section.

Lock variables are those arguments passed to above routines with
pthread_mutex_t structure in pthreads. The original lock variables
passed to above routines are replaced by new lock variables via
LVMT. So it is not the original lock variables but the new lock
variables are really accessed in these routines. In our
implementation, above three routines are all instrumented.

Moreover, current implementation of ARace utilizes techniques
proposed by A. Jannesari and W. F. Tichy in “Identifying Ad-hoc
Synchronization for Enhanced Race Detection.”, in IPDPS, 2010, to
identify critical sections enclosed by user-defined Lock/Unlock calls.

Conditional Variables

Besides lock variables, conditional variables are another important
class of synchronizations. Conditional variables are generally
accessed in critical sections. Figure 8 is a typical example using
conditional variable from application radix in SPLASH-2 [28]. In this
example, the accesses to conditional variable C is protected by lock
L. This creates an illusion that the critical section protected by the
same lock can be executed concurrently.

Init: flag = 0;

Thread 1 Thread 2
S1: Lock (L) ; So6: Lock (L) ;
S2: 1if(flag == 0) S7: flag = 1;
S3: wait(C, L), €—— S8: broadcast (C);
S4: flag = 0; S9: Unlock (L) ;

S5: Unlock (L) ;
Figure 8. An example of conditional variable

In fact, the illusion is not true. The reason is that wait(C, L) is
implemented as following:

Unlock (L),

Wait on C;

Lock (L),

Therefore, we just need to treat Unlock/Lock in conditional variable
waiting operations as the point of critical section exiting or entering.

Critical Section Instrumentation

Instructions executed in critical sections are instrumented to
redirect the accesses to shared variables. It is implemented by
rewriting the operands of these instructions. Some instructions in

IA-32, like MOVS series, or CMPS series, have multiple memory
operands. Thus we have to rewrite all memory operands of these
instructions. The operands are converted from its original
addressing mode to the base register addressing mode via Pin’s
scratch registers. A routine is inserted for each memory operand in
one instruction to obtain the address after redirecting. Pin’s scratch
registers are filled up with the return value of this routine. Then the
memory operands of this instruction are rewritten.

Routine Calls in Critical Sections

Routines called inside critical sections also need to be instrumented
to redirect the accesses to shared variables, while there is no need
to instrument routines called outside critical sections. In practice,
the same routine may be called both inside and outside critical
sections. If a routine is called outside critical sections at the first
time, it will never be instrumented. That is because the routine used
to instrument in Pin is executed only at the first time that the routine
to be instrumented is executed.

To overcome this limitation, we define a rule for instrumenting
routines: once a routine has been executed in a critical section, it
will always be instrumented, or it will never be instrumented. We
record a Boolean flag F; for every routine r. F;is initialized when ris
called first time with the value if ris called in a critical section. If ris
called in a critical section at the first time, its Fris TRUE. Otherwise
its Fris FALSE.

All call instructions executed in a critical section are examined. For
direct call instructions, the callee routine ris known at instrumenting
time, and is fixed. Thus we just need to check F; of r. If Fris FALSE,
the uninstrumented code cache of r in Pin is invalidated and the
routine used to instrument in Pin is re-executed to instrument r.
Then Fris set to TRUE, which means r has been executed in some
critical section. For indirect call instructions, the callee routine ris
not fixed. Thus we insert a routine to obtain the callee routines. The
inserted routine is executed every time the indirect call instruction is
executed.

System Calls
System calls executed in a critical section may also access shared

variables. For example,
Lock(L);

gettimeofday (&tv, NULL);
Unlock(L);

where tvis a shared variable defined in user space but accessed in
kernel space. However, the address of tv should not be delivered to
the kernel. That is because the page containing tv may have been
protected to be read-only. If the address of tv is delivered to the
kernel, when the kernel writes the system call result to tv, it will fail.
This failure may never happen in executions without ARace. Beside
system calls inside critical sections, system calls outside critical
sections have the same problem.

To avoid unexpected failures of system calls, our implementation
wraps system calls that access variables in user space. The real
addresses delivered to the kernel are from new variables. If the
system call is executed in a critical section and the original variable
is shared, the new variable is allocated in the write buffer. And the
system call result is written back along with other write buffer items.
Otherwise, the new variable is allocated in an independent memory
region that is always readable and writeable, and is written back to
the original variable immediately after the execution of the system
call.

Evaluation

Experimental Setup

We evaluate ARace with all 14 applications from SPLASH-2 and all
8 applications from Phoenix. For SPLASH-2 applications, we use
their default inputs but increase the size to lengthen the runtime
when necessary. Phoenix is a shared memory implementation of
Google’s MapReduce programming model for multi-core chips and
shared-memory multiprocessors. The source code of Phoenix is

downloaded from the website. Every application in Phoenix has
three versions: MapReduce, Pthreads and Sequential. We use the
MapReduce version with the large dataset to evaluate ARace.
Besides, we also use two real multi-threaded applications, Pbzip2
and Aget, to evaluate ARace.

To eliminate the impact of performance fluctuations due to random
factors, each application from SPLASH-2 and Phoenix is tested for
ten times, and the final result is the arithmetic average of these ten
times.

All of our evaluations are conducted on a HP laptop computer with
Intel(R) Core(TM)2 Duo CPU T7250 2.00 GHz, 2 MB L2 Cache,
and 1 GB main memory. The operating system is 32 bit Fedora 14,
which is a Red Hat-sponsored community project. The version of
the Linux kernel is 2.6.35. The compiler is gcc with version 4.5.1.
Applications from SPLASH-2 and Phoenix are complied with the
default options in Makefiles. The two real applications are also
complied with their default options. In addition, the performance is
measured by the elapsed time via the command “time” when each
application runs alone on the platform.

Result

Critical Section Characterization

TABLE 1: CRITICAL SECTION CHARACTERIZATION

Applications #LOFk #Lock [#CS #Inst |#Read SV|#Write SV |#ReadWrite %Inst
Active|Total [executed|per CS |perlCS |perl CS SVperlCS |[in CS

cholesky 7 7 91| 112,51 7.64 2.7 0] 0.00
fft 1 1 2| 5535 9.5 1.5 0] 0.00
lu-con 1 1 21 5535 9.5 1.5 0] 0.00
lu-non 1 1 2 5495 6.5 1.5 0] 0.00
radix 4 6 12| 336.25 4.08 1.25 0] 0.00
barnes 2049] 2050] 686646] 265.68 15.54 15.57 0] 033
fmm 2051] 2052] 330980| 481.32 21.46 24491 0.000012] 0.21
ocean-con 2 6 2416] 16.13 491 0.91 0] 0.00
ocean-non 3 6 89044] 15.33 477 0.77 0] 0.00
radiosity 3914] 3915| 3212879| 21.06 6.29 243 0] 0.24
raytrace 5 51 196133] 21.94 345 1.16 0] 0.00
volrend 5 67| 70766 252 4 1 0] 0.02
water-nsquared 517 521 41301 2778 58.49 8.93 0] 0.06
water-spatial 70 70 2035 5542 9.38 1.49 0 0.01
histogram 2 4 21718 61.51 8.95 2.98 0] 0.02
kmeans 2 4 341715 129.68 13.17 5.21 24279591 0.00
linear regression 2 4 8538 60.76 8.88 2.94 0 0.00
matrix_multiply 2 4 369 83.14 7.43 34] 0897019 0.00
pca 2 4 7432| 3349.73 192.74 475.16 19.12] 0.08
reverse_index 2 4 6790 149.88 21.35 13.5 0] 0.01
string_match 2 4 8537| 243.12 12.76 3.91 2911 0.00
word count 4 7 2143 93.35 6.53 1.76 0l 0.00

TABLE 1 presents the critical section characterization of
applications from SPLASH-2 and Phoenix. The second and third
columns are respectively the number of active lock and total lock.
They represent lock variables used in critical sections, and lock
variables initialized. These two columns show that there are locks
initialized but not used. The fourth column shows the number of
critical sections dynamically executed. Some applications, including
radiosity, barnes, and kmeans, execute many critical sections. The
fifth column is the number of dynamic instructions per critical
section. The following three columns show the numbers of
instructions reading, writing and readwriting shared variables per

critical section. And the last column shows the percentage of total
dynamic instructions executed in critical sections.

Performance

TABLE 2: EXECUTION STATISTICS OF ARACE

Applications [[#fault #fau.It Aault . |#invalidate #p.a £e
static |dynamic written back

cholesky 166 32 134 42 110
ftt 4 2 2 13 3
lu-con 4 2 2 13

lu-non 2 1 1 13

radix 3 2 1 22 12
bames 23470 2 23468 21 1599015
fmm 194838 7] 194831 56 330038
ocean-con 18211 5 18206 13 23871
ocean-non 57898] 13378 44520 13 66167
radiosity 1314821 4] 1314817 29 3150186
raytrace 8599 14 8585 13 203094
volrend 45 13 32 37 70751
water-nsquared 9566 5 9561 13 4195
water-spatial 528 4 524 53 2587
histogram 9 5 4 14 43172
kmeans 504386] 83560 420826 38 932763
linear regression 10 7 3 14 16812
matrix multiply 116 4 112 48 583
pca 26725 8 26717 42 36441
reverse index 164047 6] 164041 14 13316
string match 8285 4 8281 41 25087,
word count 45 20 25 15 3758

In this section, we study the performance of ARace and ARace-LU
on applications from SPLASH-2 and Phoenix. Figure 9 presents the
performance results. All execution times are normalized to the
runtime with Pin.

There are four bars for each application. The first bar is the
normalized native runtime. The second bar is the base, runtime
with Pin. The third and fourth bars respectively indicate the
normalized runtime with ARace and ARace-LU. For applications
that execute many critical sections except radiosity, ARace only

incurs about 4x overhead. But for radiosity, ARace incurs about 36x
overhead, which is the worst case. On average, ARace incurs only
about 1x overhead to the runs with Pin. This performance of ARace
is competitive, especially for applications that require a high level of
security.

363 354
m Native mPin ARace m ARacelU

’ 7 |

o = N W H» OO O N O©
PR S T SN TR T S |

Qo o) & N S o
£ S SS & Q,o° &

& &£ & & & N
o o e N AN

(‘40

Figure 10. Overhead proportion of ARac

As expected, lazy unprotecting reduces the overhead of ARace for
some applications, i.e. barnes, radiosity, string_match, etc.
Unfortunately, it also increases the overhead for other applications,
i.e. fmm, reverse_index, etc. This demonstrates that lazy
unprotecting is mild for some applications but wild for some other
applications.

TABLE Il presents some execution statistics of ARace. The second
column shows the number of page faults introduced by ARace. The
third and fourth columns respectively indicate the number of page
faults on static data and dynamic heap. For most applications,
except ocean-non and kmeans, most of page faults happen on
dynamic heap. The fifth column demonstrates that the amount of
code cache invalidated by ARace is very tiny. The sixth column

presents the total number of pages that are written back at the end
of critical sections. Except the first five applications, the numbers
are large. The reason is that all writes to shared variables in critical
sections are cached in the write buffer by ARace.

To study the overhead proportion of each component in ARace, we
also gather the relative ratio of execution times of each component.
Figure 10 presents the relative ratio of six components in ARace:
initialization, instrumentation, access redirecting, writing back, page
fault handler and lock mapping. The initialization work is done by
Pin before the application starts. And the page fault handler is the
handler that a thread executes when it receives a page fault
exception. Except cholesky and linear_regression, the rest
applications fall into two categories. In one category, the main part
of the overhead is instrumentation, i.e. fft, lu-con, lu-non, and radix.
In another category, the main part of the overhead is access
redirecting, i.e. barnes, radiosity, string_match, etc. This difference
results from the number of dynamically executed critical sections,
which in second category is far more than that in first category. For
cholesky, the number of executed critical sections is between the
first category and the second category. Thus, the relative ratio of
instrumentation and access redirecting nearly equals one.
However, for linear_regression, the main part of the overhead is
writing back. By studying the source code of this application, we
found that it emits many shared intermediate statuses in a map
callback function which is executed in a critical section. Thus ARace
has to write back these statuses at the end of the critical section,
which will introduce a lot of overhead. Figure 10 also shows that the
proportion of the overhead introduced by initialization, page fault
hander and lock mapping is not high.

Real Applications

Two real multi-threaded applications, Pbzip2 and Aget, are also
used to evaluate ARace. Pbzip2 is a parallel implementation of the
bzip2 file compressor. Aget is a multi-threaded http download
accelerator [48]. To evaluate ARace, we use Pbzip2 to compress a
73MB file with tar format and download a 321MB file from a local

web server via Aget. These two applications are tested with 1, 2, 4,
and 8 threads.

Effectiveness

During the evaluation of Pbzip2, ARace found a known real
asymmetric race bug. The bug is illustrated in Figure 11. This bug
takes place when thread 1 writes to fifo during thread 2 reading
from fifo in the critical section guarded by the lock fifo->mut. ARace
prevents this bug by protecting fifo to be read-only when thread 2
executes the critical section.

Thread 1 Thread 2
void main () { void *consumer () {
fifo->empty = 1; for (;7) {

lock (fifo->mut) ;

queueDelete (fifo); oo
fifo = NULL; —— if(allDone == 1) {

... unlock (fifo->mut);
} return NULL ;

}

}
Figure 11. A real asymmetric race bug in Pbzip2

Performance
Figure 12 presents the execution time of the two applications. The
results show that the overheads introduced by ARace are

acceptable for real applications.

. H.wuve
2 = Pozip2 : .
B9 - ARace '
& & 15- |
?; 10 -]
it 1 RN N
O" T T T 1 T T T
1 2 4 8
Number of threads

Figure 12. Performance of real applications

Conclusion

In this project, we propose a consistent execution model for critical
sections in lock-based multi-threaded programs. Asymmetric races
can never be triggered under this model. Based on this consistent
execution model, a new software-based scheme ARace is
presented to dynamically tolerate asymmetric races. Unlike
previous schemes, ARace can guarantee the absence of
asymmetric races. In addition, ARace can be directly applied to
program binaries and requires no compiler support and application
changes. We also present an implementation of ARace based on
dynamic binary instrumentation. The results show that the
performance of ARace is competitive.

To prohibit inconsistent statuses of shared variables, two critical
sections accessing same shared variables are not allowed to be
executed concurrently. Actually, ARace has no prior knowledge
about the shared variable set of a critical section. One feasible
solution is training ARace on-the-fly. At the first few times that a
critical section is executed, ARace collects shared variables
accessed in this critical section. During the training stage, critical
sections are executed sequentially. After training, critical sections
can be executed concurrently. We leave this work as part of future
work.

Output

Wenwen Wang, Chenggang Wu, Paruj Ratanaworabhan, Xiang
Yuan, Zhenjiang Wang, Jianjun Li, and Xiaobing Feng,
“Dynamically Tolerating and Detecting Asymmetric Races”, Journal
of Computer Research and Development, 51(8): 1748-1763, 2014.

Scopus

Author details

< Return to search results 1of2 Next> S Print 55 Email
{mm]
Ratanawo rabhan’ Pa ruj Follow this Author h-index: @ View h-graph
7
Kasetsart University, Bangkok, Thailand View potential author matches
Author ID: 9637167700 ®
Other name formats: Documents by author
Subject area: (Computer Science) CEngineering) CMathematics) CMedicine) CDecision Sciences)
Document and 5 " 22 Analyze author output
citation trends:
O
% g W Documents Total citations
o w
o @ Citations
361 by 292 documents
Yy
0 0
2009 2019 View citation overview

Years

L\ Get citation alerts 4 Add to ORCID ® S Edit author profile

22 Documents Cited by 292 documents 27 co-authors Author history Topics

View in search results format > Sort on: Date (newest) v
Exportall Addalltolist Setdocumentalert Set document feed
Document title Authors Year Source Cited by
Exploiting Extra CPU Cores to Detect NOP Sleds ~ Phringmongkol, N., 2019 10th International Conference on Information and 0
Using Sandboxed Execution Ratanaworabhan, P. Communication Technology for Embedded Systems, IC-
ICTES 2019 - Proceedings
8695955
View abstract «» View at Publisher Related documents
Using Document Classification to Improve the Sornsoontorn, C., Rimcharoen, S., 2018 ICSEC 2017 - 21st International Computer Science and 0
Performance of a Plagiarism Checker: A Case for Leelathakul, N., Kawtrakul, A., Engineering Conference 2017, Proceeding
Thai language documents Ratanaworabhan, P. 8443906, pp. 219-223
View abstract «» View at Publisher Related documents
A new approach to extracting sport highlight Suksai, P., Ratanaworabhan, P. 2017 20th International Computer Science and Engineering 2
Conference: Smart Ubiquitos Computing and Knowledge,
ICSEC 2016
7859876
View abstract »» View at Publisher Related documents
A parser generator using the grammar flow graph Nakwijit, P., Ratanaworabhan, P. 2016 ICSEC 2015 - 19th International Computer Science and 0

Engineering Conference: Hybrid Cloud Computing: A New
Approach for Big Data Era
7401403

View abstract v View at Publisher Related documents

https://www.scopus.com/home.uri?zone=header&origin=searchbasic
https://www.scopus.com/results/authorNamesList.uri?origin=searchauthorlookup&src=al&edit=&poppUp=&basicTab=&affiliationTab=&advancedTab=&st1=ratanaworabhan&st2=&institute=&orcidId=&authSubject=LFSC&_authSubject=on&authSubject=HLSC&_authSubject=on&authSubject=PHSC&_authSubject=on&authSubject=SOSC&_authSubject=on&s=AUTHLASTNAME%28ratanaworabhan%29&sdt=al&sot=al&searchId=75660f73db9c6a08103d3e685d5f8c85&exactSearch=off&sid=75660f73db9c6a08103d3e685d5f8c85
javascript:submitAuthorFormForClickedLinks('NextButton');
https://www.scopus.com/affil/profile.uri?afid=60021944
https://www.scopus.com/standard/help.uri?topic=11214&anchor=anchor
https://www.scopus.com/search/submit/author.uri?author=Ratanaworabhan%2c+Paruj&origin=AuthorProfile&zone=documentsTab&authorId=9637167700
https://www.scopus.com/record/display.uri?eid=2-s2.0-85065434109&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57208652033&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fICTEmSys.2019.8695955&locationID=2&categoryID=4&eid=2-s2.0-85065434109&issn=&linkType=ViewAtPublisher&year=2019&origin=authorProfile&dig=ce04851914ef768e6b2b80d8973d1557&recordRank=1&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-85065434109&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-85053464828&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=1&citeCnt=0&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57203900825&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=15754464900&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=23567210500&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=6602383203&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fICSEC.2017.8443906&locationID=2&categoryID=4&eid=2-s2.0-85053464828&issn=&linkType=ViewAtPublisher&year=2018&origin=authorProfile&dig=2953c34be4121fb044505d2ae67d68e1&recordRank=2&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-85053464828&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-85016176205&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=2&citeCnt=2&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57193737405&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-85016176205&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fICSEC.2016.7859876&locationID=2&categoryID=4&eid=2-s2.0-85016176205&issn=&linkType=ViewAtPublisher&year=2017&origin=authorProfile&dig=e6c66f37d9c26ab147260745ac1d1ae2&recordRank=3&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-85016176205&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-84964324803&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=3&citeCnt=0&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57188958126&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fICSEC.2015.7401403&locationID=2&categoryID=4&eid=2-s2.0-84964324803&issn=&linkType=ViewAtPublisher&year=2016&origin=authorProfile&dig=d4ae9975ed6bdb9181c58f167bd30381&recordRank=4&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84964324803&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem

Document title Authors Year Source Cited by
A case for malware that make antivirus irrelevant Thamsirarak, N., Seethongchuen, 2015 ECTI-CON 2015 - 2015 12th International Conference on 2
T., Ratanaworabhan, P. Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology
7206972
View abstract «» View at Publisher Related documents
High-quality web-based volume rendering in Wangkaoom, K., Ratanaworabhan, 2015 ECTI-CON 2015 - 2015 12th International Conference on 3
real-time P., Thongvigitmanee, S.S. Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology
7207091
View abstract v View at Publisher Related documents
Simple optimizations for LAMMPS Kaewtes, V., Ratanaworabhan, P. 2014 2014 International Computer Science and Engineering 0
Conference, ICSEC 2014
6978132, pp. 73-77
View abstract «» View at Publisher Related documents
Dynamically tolerating and detecting asymmetric Wang, W., Wu, C., 2014 Jisuanji Yanjiu yu Fazhan/Computer Research and 1

races Ratanaworabhan, P, (...), Li, J.,

Feng, X.

Hide abstract A View at Publisher Related documents

Development
51(8), pp. 1748-1763

Asymmetric races are a common type of data races. They are triggered when a thread accesses a shared variable in a critical section, and another thread
accesses the same shared variable not in any critical section, or in a critical section guarded by a different lock. Asymmetric races in multi-threaded
programs are usually harmful. To solve the problem introduced by asymmetric races, ARace is proposed. ARace utilizes shared variable protecting and
write buffer to dynamically tolerate and detect asymmetric races. Shared variable protecting is used to protect shared variables that are read-only and
read-before-write in critical sections, and these shared variables should not be modified out of critical sections; write buffer is used to buffer the writing
operations to shared variables in critical sections. ARace can not only tolerate asymmetric races triggered by shared variable accesses in and out of critical
sections, but also detect asymmetric races triggered by shared variable accesses in concurrent critical sections. ARace can be directly applied to binary
code and requires neither additional compiler support nor hardware support. In addition, an implementation based on dynamic binary instrumentation
is also proposed. The experimental results demonstrate that ARace guarantees the tolerance and detection of asymmetric races while incurring acceptable

performance and memory overhead.

Functional cache simulator for multicore Ratanaworabhan, P.

View abstract v View at Publisher Related documents

Hardware support for enforcing isolation in lock-

based parallel programs Kirovski, D., Zorn, B.

View abstract v View at Publisher Related documents

Efficient Runtime Detection and Toleration of
Asymmetric Races Kirovski, D., (...), Nagpal, R.,

Pattabiraman, K.

View abstract v View at Publisher Related documents

gFPC: A self-tuning compression algorithm

View abstract v View at Publisher Related documents

Ratanaworabhan, P., Burtscher, M.,

Ratanaworabhan, P., Burtscher, M.,

Burtscher, M., Ratanaworabhan, P. 2010

2012 2012 9th International Conference on Electrical 2
Engineering/Electronics, Computer, Telecommunications
and Information Technology, ECTI-CON 2012

6254278

2012 Proceedings of the International Conference on 1
Supercomputing
pp. 301-310

2012 IEEE Transactions on Computers 4

61(4), pp. 548-562

Data Compression Conference Proceedings 7
5453485, pp. 396-405

https://www.scopus.com/record/display.uri?eid=2-s2.0-84956999956&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=4&citeCnt=2&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57095052400&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57095037700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-84956999956&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fECTICon.2015.7206972&locationID=2&categoryID=4&eid=2-s2.0-84956999956&issn=&linkType=ViewAtPublisher&year=2015&origin=authorProfile&dig=f7fbf09764270b57a369c26cc60eefcb&recordRank=5&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84956999956&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-84956974891&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=5&citeCnt=3&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=55902759900&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=35318932300&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-84956974891&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fECTICon.2015.7207091&locationID=2&categoryID=4&eid=2-s2.0-84956974891&issn=&linkType=ViewAtPublisher&year=2015&origin=authorProfile&dig=ffe1c69d81be492d2d38910257e486f3&recordRank=6&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84956974891&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-84988227228&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=6&citeCnt=0&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57191243712&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fICSEC.2014.6978132&locationID=2&categoryID=4&eid=2-s2.0-84988227228&issn=&linkType=ViewAtPublisher&year=2014&origin=authorProfile&dig=4280a4efe00cac02efef55fe81300b10&recordRank=7&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84988227228&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-84907804429&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=7&citeCnt=1&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=55839570700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57189926569&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57196156873&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=55624716100&zone=
https://www.scopus.com/sourceid/26714?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-84907804429&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.7544%2fissn1000-1239.2014.20130123&locationID=2&categoryID=4&eid=2-s2.0-84907804429&issn=10001239&linkType=ViewAtPublisher&year=2014&origin=authorProfile&dig=01857e4832a3c8ddfa778ee44fcf75f4&recordRank=8&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84907804429&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-84866760653&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=8&citeCnt=2&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-84866760653&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fECTICon.2012.6254278&locationID=2&categoryID=4&eid=2-s2.0-84866760653&issn=&linkType=ViewAtPublisher&year=2012&origin=authorProfile&dig=3af424e403f93c78c612033e5f04f7c6&recordRank=9&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84866760653&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-84864040013&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=9&citeCnt=1&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7005117176&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7007162266&zone=
https://www.scopus.com/sourceid/56825?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-84864040013&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1145%2f2304576.2304618&locationID=2&categoryID=4&eid=2-s2.0-84864040013&issn=&linkType=ViewAtPublisher&year=2012&origin=authorProfile&dig=d4ab6d5582f05a167e8874cfb6bbcd08&recordRank=10&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-84864040013&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-85008538388&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=10&citeCnt=4&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7005117176&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004650279&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=8887951000&zone=
https://www.scopus.com/sourceid/25033?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-85008538388&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fTC.2011.48&locationID=2&categoryID=4&eid=2-s2.0-85008538388&issn=00189340&linkType=ViewAtPublisher&year=2012&origin=authorProfile&dig=f3bd56c3ae6240fcb95d5936a3ad54ee&recordRank=11&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-85008538388&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-77952706638&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=11&citeCnt=7&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/sourceid/13706?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-77952706638&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fDCC.2010.42&locationID=2&categoryID=4&eid=2-s2.0-77952706638&issn=10680314&linkType=ViewAtPublisher&year=2010&origin=authorProfile&dig=f1b850233f606dd2199bbc9f2d4e7f48&recordRank=12&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-77952706638&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem

Document title

Authors Year

Source Cited by

pFPC: A parallel compressor for floating-point
data

View abstract Related documents

Detecting and tolerating asymmetric races

Burtscher, M., Ratanaworabhan, P. 2009

Ratanaworabhan, P., Burtscher, M., 2009
Kirovski, D., (...), Nagpal, R.,
Pattabiraman, K.

View abstract v View at Publisher Related documents

pFPC: A parallel compressor for floating-point
data

Burtscher, M., Ratanaworabhan, P. 2009

View abstract v View at Publisher Related documents

Detecting and tolerating asymmetric races

Ratanaworabhan, P., Burtscher, M., 2009
Kirovski, D., (...), Nagpal, R.,
Pattabiraman, K.

View abstract v View at Publisher Related documents

FPC: A high-speed compressor for double-
precision floating-point data

Burtscher, M., Ratanaworabhan, P. 2009

View abstract v View at Publisher Related documents

Program phase detection based on critical basic

block transitions

Ratanaworabhan, P., Burtscher, M. 2008

View abstract v View at Publisher Related documents

High throughput compression of double-
precision floating-point data

Burtscher, M., Ratanaworabhan, P. 2007

View abstract v View at Publisher Related documents

Load instruction characterization and acceleration Ratanaworabhan, P., Burtscher, M. 2006

of the BioPerf programs

View abstract v View at Publisher Related documents

20
Display: results per page

Data Compression Conference Proceedings 8
4976448, pp. 43-52

ACM SIGPLAN Notices 5
44(4), pp. 173-184

Proceedings - 2009 Data Compression Conference, DCC 2
2009
4976448, pp. 43-52

Proceedings of the ACM SIGPLAN Symposium on Principles 42
and Practice of Parallel Programming, PPOPP

pp. 173-184

|IEEE Transactions on Computers 95

58(1), pp. 18-31

ISPASS 2008 - IEEE International Symposium on 8
Performance Analysis of Systems and Software
4510734, pp. 11-21

Data Compression Conference Proceedings 52
4148768, pp. 293-302

Proceedings of the 2006 IEEE International Symposium on 4
Workload Characterization, 1ISWC - 2006
4086135, pp. 71-79

= ~ Top of page

The data displayed above is compiled exclusively from documents indexed in the Scopus database. To request corrections to any inaccuracies

or provide any further feedback, please use the Author Feedback Wizard .

About Scopus

What is Scopus
Content coverage
Scopus blog
Scopus API

Privacy matters

Language
BABICTIDER S
EHRE R X
IREISERE P

Pycckun a3bik

Customer Service

Help

Contact us

https://www.scopus.com/record/display.uri?eid=2-s2.0-77957737173&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=12&citeCnt=8&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/sourceid/13706?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-77957737173&src=s&origin=resultslist
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-77957737173&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-70350599977&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=13&citeCnt=5&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7005117176&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004650279&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=8887951000&zone=
https://www.scopus.com/sourceid/19700185000?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-70350599977&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=http://dx.doi.org/10.1145/1594835.1504202&locationID=2&categoryID=4&eid=2-s2.0-70350599977&issn=15232867&linkType=ViewAtPublisher&year=2009&origin=resultslist&dig=4c10806fcece8731c75e358c1de66427&recordRank=14
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-70350599977&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-67650680278&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=14&citeCnt=2&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-67650680278&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fDCC.2009.43&locationID=2&categoryID=4&eid=2-s2.0-67650680278&issn=&linkType=ViewAtPublisher&year=2009&origin=authorProfile&dig=21eb6c5861971e0e538432c31f9d56b5&recordRank=15&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-67650680278&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-67650178060&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=15&citeCnt=42&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7005117176&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004650279&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=8887951000&zone=
https://www.scopus.com/sourceid/57354?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-67650178060&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1145%2f1504176.1504202&locationID=2&categoryID=4&eid=2-s2.0-67650178060&issn=&linkType=ViewAtPublisher&year=2009&origin=authorProfile&dig=3757c45ca3b98fbde5713e5ed043315e&recordRank=16&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-67650178060&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-57349117031&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=16&citeCnt=95&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/sourceid/25033?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-57349117031&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fTC.2008.131&locationID=2&categoryID=4&eid=2-s2.0-57349117031&issn=00189340&linkType=ViewAtPublisher&year=2009&origin=authorProfile&dig=42537b30ad0cfaefe235c5cd85f4f4e8&recordRank=17&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-57349117031&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-52249105104&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=17&citeCnt=8&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-52249105104&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fISPASS.2008.4510734&locationID=2&categoryID=4&eid=2-s2.0-52249105104&issn=&linkType=ViewAtPublisher&year=2008&origin=authorProfile&dig=79899e4518071eff6331d66f1bb29d1d&recordRank=18&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-52249105104&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-34547626759&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=18&citeCnt=52&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/sourceid/13706?origin=resultslist
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-34547626759&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fDCC.2007.44&locationID=2&categoryID=4&eid=2-s2.0-34547626759&issn=10680314&linkType=ViewAtPublisher&year=2007&origin=authorProfile&dig=b298a7158ab094d36f9ed0af2cb803aa&recordRank=19&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-34547626759&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/record/display.uri?eid=2-s2.0-48449089101&origin=resultslist&sort=plf-f&src=s&sid=97de452bdecbaaf974c6bb77ebde9a29&sot=autdocs&sdt=autdocs&sl=17&s=AU-ID%289637167700%29&relpos=19&citeCnt=4&searchTerm=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=9637167700&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=7004268074&zone=
https://www.scopus.com/search/submit/citedby.uri?eid=2-s2.0-48449089101&src=s&origin=resultslist
https://www.scopus.com/redirect/linking.uri?targetURL=https%3a%2f%2fdoi.org%2f10.1109%2fIISWC.2006.302731&locationID=2&categoryID=4&eid=2-s2.0-48449089101&issn=&linkType=ViewAtPublisher&year=2006&origin=authorProfile&dig=d7a55b10d175d4e6efdcf070e041a43f&recordRank=20&zone=documentsTab
https://www.scopus.com/search/submit/mlt.uri?eid=2-s2.0-48449089101&src=s&all=true&origin=resultslist&method=ref&zone=resultsListItem
https://www.scopus.com/standard/help.uri?topic=14550
https://www.elsevier.com/online-tools/scopus
https://www.elsevier.com/online-tools/scopus/content-overview/
https://blog.scopus.com/
https://dev.elsevier.com/
https://www.elsevier.com/about/our-business/policies/privacy-principles
https://www.scopus.com/personalization/switch/Japanese.uri?origin=AuthorProfile&zone=footer&locale=ja_JP
https://www.scopus.com/personalization/switch/Chinese.uri?origin=AuthorProfile&zone=footer&locale=zh_CN
https://www.scopus.com/personalization/switch/Chinese.uri?origin=AuthorProfile&zone=footer&locale=zh_TW
https://www.scopus.com/personalization/switch/Russian.uri?origin=AuthorProfile&zone=footer&locale=ru_RU
https://www.scopus.com/standard/contactUs.uri?pageOrigin=footer
https://www.scopus.com/standard/contactForm.uri?pageOrigin=footer

ELSEVIER Terms and conditions 2 Privacy policy »

Copyright © 2019 Elsevier B.V . All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the RELX
use of cookies.

https://www.elsevier.com/
https://www.elsevier.com/locate/termsandconditions
https://www.elsevier.com/locate/privacypolicy
https://www.elsevier.com/
https://www.scopus.com/cookies/policy.uri
http://www.relx.com/

Dynamically Tolerating Asymmetric Races in
Lock-Based Multi-threaded Programs

Wenwen Wang', Chenggang Wu', Paruj Ratanaworabhan’, Jingling Xue®, Xiang Yuan', Zhenjiang Wang', Jianjun Li’

'State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
*Faculty of Engineering, Kasetsart University
3School of Computer Science and Engineering, University of New South Wales
{wangwenwen, wucg, yuanxiang, wangzhenjiang, lijianjun}@ict.ac.cn, paruj.r@ku.ac.th, jingling@cse.unsw.edu.au

Abstract—Asymmetric races are data races caused when one
thread accesses a shared variable guarded by a lock in a
critical section and another thread accesses the same shared
variable without holding the same lock. Asymmetric races
are common and usually harmful. They often arise when
well-tested code interacts with buggy legacy code or third-
party libraries. Existing solutions for tolerating asymmetric
races, whether based on software or hardware, have some
limitations: they require either compiler support, or
application changes, or new hardware to be added to
commercial hardware platforms.

This paper proposes a consistent execution model for
critical sections in lock-based multi-threaded programs.
During the consistent execution of a critical section, two
conditions are satisfied: (1) shared variables read in the
critical section are not written outside and (2) shared
variables written in the critical section are not read and
written outside. As a result, asymmetric races can never
occur. Based on this consistent execution model, we present
a new software-based scheme, called ARace, to dynamically
ensure that all critical sections are consistently executed by
exploiting write buffering and shared variable protection.
ARace can be directly applied to binary code and requires
neither additional compiler support nor application changes.
We have implemented ARace based on dynamic binary
instrumentation and evaluated it with the applications from
SPLASH-2 and Phoenix. Our results show that ARace
guarantees the absence of asymmetric races while incurring
only about 1x overhead on average.

Keywords-asymmetric race; race tolerance; runtime
supprot; dynamic instrumentation

1. INTRODUCTION

The existence of data races makes multi-threaded
programs error-prone. When two threads access a shared
variable without any synchronization, where one of the
accesses is a write, a data race happens. Data races may
cause multi-threaded programs to exhibit undesired
behaviors. Some data races escaping from in-house testing
may be catastrophic in the real world, as is the case for the
Northeastern U.S. electricity blackout [33].

There has been a plenty of research on dealing with
data races [1-4, 12, 13]. These research efforts fall into two
categories: prior detection and post tolerance. The former
detects and removes data races as aggressively as possible
during in-house testing, while the latter tolerates data races

in production runs. Despite extensive in-house testing,
some data races still lurk around in released products [20].
Thus, the latter techniques are invaluable in practice.

There is one class of data races, called asymmetric
races, which occur at the time when one thread accesses a
shared variable inside a critical section protected by a lock
and another thread also accesses the same shared variable
due to a synchronization error (e.g., outside any critical
section or inside a critical section but not protected by the
same lock) [15]. Figure 1 illustrates an asymmetric race. In
this example, ptr is a shared variable. The two reads to
ptr in thread | are inside a critical section protected by a
lock L but the write to ptr in thread 2 is not inside any
critical section. This race may lead to inconsistent results
when reading ptr in thread 1 during different program
executions. This happens when the write to ptr in thread
2 takes place between the first read to ptr at S2 and the
second read to ptr at S5 in thread 1.

Thread 1
S1: Lock (L) ;
S2: if (!ptr) {
S3: ptr = malloc(); Thread 2

S4: }

4—— S7: ptr = NULL;
S5: *ptr = var;
S6: Unlock(L);

Figure 1. An asymmetric race

Asymmetric races are common in real applications and
usually harmful [15]. Among the harmful data races found,
about 20% are estimated to be asymmetric races [14]. The
developer usually expects the accesses to shared variables
to be made inside critical sections guarded by appropriate
locks. Unfortunately, asymmetric races often arise when
the developer’s code interacts eventually with the other
code from third-party libraries or legacy binaries. The
latter code may be originally written only for single-
threaded applications in mind. Thus, the presence of
asymmetric races is often beyond the developer’s control.

Although prior detection is useful for detecting and
removing some asymmetric races, post tolerance can be
more attractive. That is because many asymmetric races
happen only when well-tested code interacts with legacy
binaries or third-party libraries, whose source may be
unavailable. In addition, due to their asymmetric nature,
asymmetric races, which cannot be found during prior

detection, can be better prevented with post tolerance. A
simple way to tolerate asymmetric races is to prevent
another thread from accessing a shared variable if some
thread is accessing it in a critical section, avoiding
corrupting the shared variable.

There are three schemes specifically aiming to tolerate
asymmetric races: software-based ToleRace [15],
ISOLATOR [21], and hardware-based Pacman [14].

ToleRace makes two copies v' and v"” for each shared
variable v accessed in a critical section when a thread T,
executes the critical section. During the execution of the
critical section, T; reads from and writes to v'. Meanwhile,
another thread T, can read from and write to v outside the
critical section. After T, has reached the end of the critical
section, ToleRace compares the values of v and v” and
takes one of the following three actions: (1) if T; can be
serialized before T,, reserve the value of v; (2) if T, can be
serialized before T, copy the value from v’ to v; (3) if T,
and T, cannot be serialized, interrupt the execution of the
program. ToleRace can tolerate asymmetric races in the
former two cases but is inadequate in the last case.

ISOLATOR copies each page that contains shared
variables accessed in a critical section to a shadow page
and protects the original page by making it inaccessible
when a thread T, executes the critical section. Then T,
operates only on the shadow page of each page in the
critical section. If another thread T, tries to access an
original page, then it will be instructed (via an exception)
to wait for T,. After T, has reached the end of the critical
section, ISOLATOR copies the contents in every shadow
page back to its original page and unprotects the original
page by making it accessible again. ISOLATOR requires
compiler support or even application changes so that pages
can be shadowed appropriately. This scheme is ineffective
unless the source of a program is available. Unfortunately,
asymmetric races are often triggered when well-tested
code interacts with legacy binaries or third-party libraries.

Pacman utilizes additional cache coherence hardware
to protect variables accessed in a critical section.
Compared with the two software-based schemes discussed
above, this hardware-based scheme is uninstrusive and
induces negligible slowdown. However, it is not yet
supported by current commercial computer platforms.

To overcome the limitations inherent in the three
aforementioned schemes, this paper proposes a consistent
execution model for critical sections in lock-based multi-
threaded programs. During the consistent execution of a
critical section, two conditions are satisfied: (1) shared
variables read in the critical section are not written outside
and (2) shared variables written in the critical section are
not read and written outside. As a result, asymmetric races
can never occur. Based on this consistent execution model,
we present a new software-based scheme, called ARace,
to dynamically ensure that all critical sections are
consistently executed by exploiting write buffering and
shared variable protection. ARace works on-the-fly,
requires neither additional compiler support nor
application changes, and can be deployed even when the
source code of a program is not available. We have

implemented ARace based on dynamic binary
instrumentation. Our results show that ARace guarantees
the absence of asymmetric races with acceptable
performance overhead.

There are fundamental differences between ARace and
Transactional Memory (TM) [34]. Even though both use
write buffers, ARace does not need to detect versions and
conflicts during the execution of a critical section, because
it protects the shared variables read in the critical section.
When there are conflicts, TM must abort a transaction and
rollback. During rollback, TM needs to handle side effect
operations effectively, which is still an open problem. In
contrast, there is no notion of abort-and-rollback in ARace,
because its program executions are not speculative.

This paper makes following contributions:

e We propose a consistent execution model for
critical sections in lock-based multi-threaded
programs.

e We present a new software-based scheme ARace
to dynamically tolerate asymmetric races.

e We describe an implementation of ARace and
show that it is effective with small overhead.

The rest of this paper is organized as follows. Section

II describes the background. Sections III and IV describe
the architecture and implementation of ARace. Section V
evaluates ARace. Section VI discusses related work.
Finally, Section VII concludes and discusses future work.

II. BACKGROUND

In this section, we define a simple programming
language and describe the consistent execution model.

A. Definitions

1) Multi-threaded Programs
A multi-threaded program is a quadruple P = <1, &, @,
7>, where /1 is a finite set of lock variables: {A;, A, ...}, &
is a finite set of shared variables: {¢y, s, ...}, and @is a
finite set of threads: {T;, T,, ...}. Each thread T is a finite
set of local variables: {t;, 15, ...}. T is a finite set of
instructions: {yi, v, ...}. The operand of an instruction can
be a constant ¢ or a variable. Each instruction in 7 belongs
to one of the following operations:
e T; « ¢ :writing local variable t; with the value of a
constant ¢, where t;e T, and T, e @,
e 71 < ¢ : reading the value from shared variable ;
to local variable 1;, where ¢je @, 1ie T,, and T,e ¥,
e ;< T : writing shared variable ¢; with the value
of local variable 1;, where ¢;je &, 17¢ T,, and

T,e &
e 1 < ArithOrLogic(t, 15, ..., 1)) : arithmetic or
logical operation on local variables 1, T, ..., Tj

and writing the result to local variable T1;, where t;,
T, T2, -, Tj€ Ty and Toe @,

e BranchEQ(y,, 7, 1j)) : branching next to be
executed instruction to vy if the values of local
variables t; and 7; are equal, where yie 7, 1, Tje T,
and T,e ¢

e Lock(A) : acquiring lock 2, if it is not acquired by
any thread in ¢, or blocking until it is released,
where A e 7,

e Unlock(})) : releasing lock A; if it is acquired by
the thread that is executing this instruction, or
blocking, where A; e .

An execution of P is that threads in ¥ execute
instructions in 7, denoted as A. A is an ordered list:
01<0y<...< Oy, where any 6 = T vy, Te ¥, and ye T.
T y means that thread T executes instruction y. §;< §;
means that 6; happens before ;. The execution space of P
is the set of A: {A}, Ay, ...}.

In this paper, we assume that properly synchronized
multi-threaded programs adhere to the data-race-free 0
model [37]. With this model, the hardware appears
sequentially consistent with respect to the programs even
though it may be weakly ordered in reality.

2) Critical Sections

Now, we give the formal definition of a critical section
based on above programming language. A critical section
in P, where P = </, ¢, ¥, >, is a triple E = <A, ©, ['>,
where A is the set of lock variables and A < 1; ® is the set
of shared variables and ® = &; I is the set of instructions
and I'c 7. An execution of Z is that some thread T in ¥
executes the instructions in I', denoted as ®. ® is also an
ordered list: ;< 0,< ... < 0,, where any 6 = T vy, and
ve I'. For the convenience of description, we also say that
thread T executes ® and instruction vy is in ©. Besides, if 6,
=T viand 0, = T+ 7;, we can conclude that y; = Lock(})
and y; = Unlock()h), where L e A. In other words, any
execution of a given critical section E is enclosed by
instructions acquiring and releasing some fixed lock L. We
say that 2 is protected by lock A, or each shared variable ¢
in @ is protected by lock A.

3) Asymmetric Races

Given a multi-threaded program P, where P = <1, &, U@,
7>, assume that two instructions y, and yq in 7 access the
same shared variable ¢ in @ and at least one is writing to @.
If v, and vy, satisfy any one of the following conditions, we
say that they construct an asymmetric race, denoted as
AR, 7).

e v, is in some critical section in P, but there is no

critical section in P that contains v;

® Y4 is in some critical section in P, but there is no
critical section in P that contains v,;

e v, and y, are in critical sections in P protected by
different locks, but y, and 7y, are not in critical
sections in P protected by the same lock.

All of the three requirements imply that at least one of
¥p and v is in a critical section. Suppose v, (Yqis the same)
of AR(y,, Yq) s in a critical section Z in P, where Z = <A,
®, I'> and y,e I'. Thus vy, is either not in a critical section
or in a critical section different with E. ® is an execution
of Z by some thread T, in ¥, and ® =0, < 0,< ... < 0,. 7,
is firstly executed at O in ®: 0¢= T, vy, where 1 <f<n.
A is an execution of P and A = 8; < 8y < ... < 0. A
contains ®, and 0, = §;, 0, = §;, Oy = &, where 1 <i<k <j

< m. If there exists a § in A satisfying: 8y < & < ;, where &
=Ty vq and Tye ¥, we say that AR(y,, vq) is triggered
in A.

B. Consistent Execution Model

Given a critical section E, where E = <A, ®, >, in a
multi-threaded program P, where P =<1, ¢, ¥, 7>, @ is an
execution of = by some thread T, in ¥, and ® =
0, < 0,< ...<0, A is an execution of P and A =
81< 8, ... < dy. A contains 0, and 6, = §;, 8, = §;, where
1 <i1<j<m 0 in O accesses shared variable ¢: 0; =
Tar> vp, where 1 <f<n, pe @, and y, e I'. Besides, 0¢ = §y,
where 1 < k < j. If the following two conditions are
satisfied for any f and any ¢, we say that ® in A is
consistent or ® in A is a consistent execution of =.

o Ify, =1, < ¢, where 1,e T, then there is no § in

A satisfying following conditions: &, < 6 < 9,
where 6 = Ty g, Vg = @ < Ty, Toe ¥, Yqe 7, and
Tp € Tb;

e Ify,= ¢ « 1, where t,e T, then there is no 6 in
A satisfying following conditions: 8 < & < Jj,
where 6 = Tpt> Yg, Yq = @ < Tp OF Vg = Tp < O,
Tbe (g), Yq€ T, and Tp € Tb.

The first condition means that reading instructions in ®
always read consistent statuses of ¢, because ¢ is not
written by instructions not in ®. The second condition
means that any intermediate status of ¢ generated by
writing instructions in ® is not read and written by
instructions not in ©. If any one of the two conditions is
not satisfied, we say O in A is inconsistent or ® in A is an
inconsistent execution of Z. Asymmetric races will be
triggered in A if ® in A is inconsistent. Note, ® can be
consistent in A;, but inconsistent in A,, where A; and A,
are two different executions of P. It depends on A; and A,.

From a programmer’s perspective, the executions of a
critical section are always consistent, because they are
protected by the lock. But the existence of ill-behaved
legacy code and third-party libraries destroys this
consistence. They may access shared variables at any time,
due to no mutually exclusive condition with the accesses
in proper critical sections. These unsafe accesses will
probably introduce harmful asymmetric races.

III. ARACE

A. Overview

ARace exploits two techniques to ensure that the
execution ® of a critical section = is consistent, where = =
<A, @, I'>. The first is Write Buffering. The writes to any
¢ in @ during O are redirected to the write buffer. The
write buffer is written back to original shared variables
when the last instruction in ® is executed. By this way, the
intermediate statuses of any ¢ in @ generated by
instructions in ® are hidden, and instructions not in ® can
only see the final result of ¢ after ® is finished.

Another technique utilized by ARace is Shared
Variable Protection. Any ¢ in ® read by instructions in ®
is protected to be read-only. When ® is executed, if an

instruction not in ® tries to modify ¢ after instructions in
O have read ¢, it will fail. Then it has to wait for the finish
of ®. Any protected ¢ is unprotected to be writeable when
the last instruction in ® is executed.

To prohibit inconsistent statuses of shared variables,
ARace forbids two critical sections that access same
shared variables from being executed concurrently. For
two critical sections Z; = <A, ®;, I';> and &, = <A,, O,
I[>, if ®; N ©, # @, then any O, of E; and any ®, of &,
are not allowed to be executed concurrently. Otherwise, if
@, N ©, = @, then any O, of Z| and any O, of =, can be
executed concurrently. Note, if Z; and E, are protected by
the same lock, then any ®, of E, and any ®, of =, will not
be executed concurrently even if ®; N @, =@,

Figure 2 illustrates the main steps of ARace. The
numbers in the ring manifest the happen-before order of
the steps. In this example, X and Y are shared variables
accessed in the critical section. S1 indicates that this is a
critical section. When S2 is executed, the shared variable
X is protected to be read-only firstly (1). Then S2 can read
the value of X (2). When S3 is executed, a new write
buffer item, Y', is allocated to cache the writes to Y (see
details in next subsection) (3). When S4 is executed, Y' in
the write buffer is written back to Y (4), and X is
unprotected to be writeable (5).

original memory

= protected to ®unpr0tected to
} be read-only be writeable

S1: Lock(L); v

S2: varl = X;
S3: Y = var2;
write buffer
S4: Unlock(L);
Y T

Figure 2. Main steps of ARace

B. Write Buffer

The write buffer is a thread private storage, allocated at
thread starting and freed at thread exiting. It is constructed
by write buffer items and is indexed by the memory
addresses of shared variables. The size of each write buffer
item is not fixed, and depends on the access size of
instructions in ®. Each ¢ in @ written by instructions in ®
is mapped to a unique write buffer item. The write buffer
item corresponding to ¢ is allocated at the first time when
¢ is written by some instruction y in ®. The size of the

firstly allocated item is the same as the access size to ¢ in y.

In some programming languages, for example C/C++, it is
allowed to access some bits of variables. Hence, ¢
probably cannot be accommodated in the firstly allocated
item. To address this problem, when the access size to ¢ in
the instruction after y is bigger than the size of previous
allocated item, ARace will allocate a new write buffer item
to accommodate the bigger size and copy the contents
from the old item to the new one. Then, the following
accesses to ¢ are redirected to the new item.

Atomicity of Writing Back The write buffer item
corresponding to ¢ is written back to ¢ when the last
instruction in © is executed. If the process of writing back
is not atomic, an inconsistent execution will be introduced.
Figure 3 illustrates this situation. S3 and S4 read shared
variables X and Y when S1 and S2 write back new values
to X and Y. After this execution interleaving, varl and
var2 are respectively 1 and O, which is an inconsistent
result. To guarantee the atomicity of writing back, ARace
protects all corresponding shared variables to be
unreadable and unwriteable at the beginning of writing
back, i.e. X and Y are protected to be unreadable and
unwriteable before S1 and S2 are executed in this
example.

Init: X =Y = 0;

Thread 1 Thread 2

S1: Write back X with 1;~ 5
S

«

S2: Write back Y with 2;

: varl
S4: var2

X;
Y;
Figure 3. An example of writing back

After above protecting, ARace cannot write back write
buffer items to corresponding shared variables directly.
Fortunately, most modern operating systems, like UNIX,
Linux, or Windows, support mapping the same physical
memory at multiple virtual pages in a process’s address
space [26]. To write back a write buffer item to
corresponding shared variable @, ARace allocates a new
virtual page, called swap page, to map the physical page
of original virtual page that contains @. The swap page is
both readable and writeable. ARace writes back the write
buffer item corresponding to ¢ to the swap page with the
same offset of ¢ in original virtual page. Actually, with the
help of one swap page, ARace can write back items whose
corresponding shared variables lie in the same page, which
is more efficient than writing back items one by one.

The protected shared variables are unprotected to be
readable and writeable after the writing back process. Then
instructions not in ® will read a consistent status of shared
variables. Besides, after the writing back process, the write
buffer items allocated during @ are freed for following
executions of critical sections.

C. Shared Variable Protecting

To prevent instructions not in ® from corrupting
shared variable ¢ read by instructions in @, ¢ is protected
to be read-only. When the last instruction in © is executed,
¢ is unprotected to be writeable. In most modern operating
systems, memory is protected at a page granularity. Thus
ARace has to protect the whole page that contains ¢ when
it needs to protect @. If ¢ lies in two pages, all of these two
pages are protected. And the protected pages are
unprotected to be writeable at the end of ©.

False Sharing For two different critical sections E; =
<A1, (D], F1> and 32: <A2, (Dz, T2>, if (D] N (I)z = @, then
any ®; of E;, and any ©®, of &, can be executed
concurrently. However, shared variable ¢; in ®; read by
instructions in @, and ¢, in ®, read by instructions in ®,

Algorithm 1. protect sv (¢, v, size) |Algorithm 2. unprotect_sv (7)

Input: thread ¢, shared variable v|Input: thread ¢ to exit a critical
read by ¢, and the size of v section

Output: none Output: none

1: P = pages (v, size); 1: for each p in ¢.S do
2: for each p in P do 2: Lock (globalPage.Lock);
3: Lock (globalPage.Lock); 3: delete ¢ from p.L;
4: if (p is not in globalPage) then | 4: if p.L is empty then
5: protect p to be read-only; 5: unprotect p to be writeable;
6: add p to globalPage; 6: delete p from globalPage;
7: endif 7: end if
8: addrtop.L; 8: Unlock (globalPage.Lock);
9: Unlock (globalPage.Lock); 9: delete p from ¢.S;

10: addptotS; 10: end for

11: end for
Algorithm 3. redirect access (ins, f)

Input: instruction ins in a critical section, thread ¢ executing ins
Output: if ins accesses shared variable, memory address after redirecting

1: type = instruction_type (ins);

2:if ((type is Read_SV) or (type is Write_SV)) then

3: addr = shared_variable_address (ins);

4: size =shared variable_size (ins);

5: if (addr is in t.writebuffer) then

6: if (size > t.writebuffer(addr).size) then

7 allocate a new item in z.writebuffer for (addr, size);
8: if (fype is Read SV) then

9: protect_sv (¢, addr, size);

10: copy the contents from addr to new item;

11: end if

12: copy the contents from old item to new item and free old item;
13: endif

14: return &t.writebuffer(addr);

15: end if

16: if ((type is Read_SV) and (#ype is not Write_SV)) then
17: protect sv (t, addr, size),

18: return addr;

19: end if

20: if ((type is not Read_SV) and (#ype is Write_SV)) then
21: allocate a new item in t.writebuffer for (addr, size),
22: return &t.writebuffer(addr);

23: endif

24: if ((type is Read_SV) and (type is Write_SV)) then

25: protect_sv (t, addr, size);

26: allocate a new item in t.writebuffer for (addr, size);
27: copy the contents from addr to new item;

28: return &t.writebuffer(addr);

29: end if

30: end if

may be allocated in the same page, called p. If ®, and O,
are executed by two different threads T; and T,
concurrently, p will be protected repeatedly. More to the
point, assuming T, finishes ®, before T, finishes ®,, if T,
unprotects p to be writeable at the end of ®,, ®, will be at
the risk of being inconsistent.

To solve above false sharing problem, ARace uses a
global shared structure, called globalPage, to record which
pages have been protected to be read-only so far. Each
protected page has a thread list L to record which threads
have read shared variables in this page in critical sections.
In addition, each thread in ARace has a local storage S to
record the pages containing shared variables that it has
read in critical sections. Algorithm 1 and Algorithm 2
respectively illustrate the processes of shared variable
protecting and share variable unprotecting.

When the page that contains ¢ is protected, instructions
not in ® can only read the contents in this page. If there is

an instruction not in ® that tries to modify any content in
this page, it will receive a page fault exception. Then
ARace suspends the thread that executes this instruction in
page fault handler. The suspended thread will resume its
execution when the page is writeable.

Lazy Unprotecting If © is executed frequently, the
page p that contains ¢ is also protected and unprotected
frequently. Actually, except instructions in O, if there is no
instruction modifying any content in p, it does not need to
unprotect p at the end of @. To utilize this feature, ARace-
LU is proposed. ARace-LU is ARace with Lazy
Unprotecting (LU). LU puts off unprotecting p until there
is an instruction not in ® that modifies the contents in p.
During this process, although ® is executed multiple times,
p is protected and unprotected only once.

Although LU can decrease the number of unnecessary
protecting and unprotecting of p, it may also introduce
additional page fault exceptions on p. For example, there
are instructions not in ® modifying the contents in p after
every ®. The performance of ARace and ARace-LU are
evaluated in Section V.

D. Access Redirecting

ARace examines each instruction y in ® to check
whether it accesses some shared variable ¢ in @. If so,
ARace will redirect the access. Algorithm 3 illustrates the
process of access redirecting.

For most RISC architectures, like MIPS or Alpha,
instructions have only two memory access types: reading
and writing. But for CISC architectures, it is different. For
example, instructions in IA-32 have three memory access
types: reading, writing, and readwriting. The last access
type means one instruction can read and then write the
memory. The redirecting algorithm in ARace supports all
access types in these architectures.

E. Lock Variable Mapping

Lock variables, like A in A, are used to implement lock
synchronizations. In most current popular programming
languages, including C/C++, Java, and C#, programmers
can define lock variables like normal variables. From the
view of the compiler, lock variables have no difference
with normal variables. Therefore, lock variable A in A may
be allocated in the same page with shared variable ¢ in ©.
If instructions in ® read @, ARace needs to protect the
page that contains ¢ to be read-only. Thus, A is also
protected to be read-only. Figure 4 illustrates this case.

Thread 1 Thread 2 pagepy
S1: Lock(Ll); S4: Lock(L2); X
S2: varl = X; S5: var2 = Y;
S3: Unlock(Ll); —»
S6: Lock(Ll); Y
S7: Z = var3;
S8: Unlock(Ll);
S9: Unlock(L2); T
Figure 4. A deadlock example

In this example, E; = <A;, ®, ['|>, where A; = {L1},
(DI = {X}, Fl = {Sl, S2, 53}, and Ez = <A2, (D2, F2>,
where Az = {Ll, LZ}, (D2: {Y, Z}, rz = {54, S5, S6, S7,

S8, S9}. Because there is no branch type instruction in I'y
and I',, | and E, both have only sequential executions.
Suppose they are respectively ®; executed by T, and ®,
executed by T,. ®; and @, can be executed concurrently
because ®; N O, = Q.

Assume that X, Y, and L1 are allocated in the same
page p as illustrated in Figure 4. Consider the following
execution interleaving between ®, and ®,: S1 is executed
between S4 and S6. Then S6 has to wait for S3 to acquire
lock L1. Due to the end of ©;, before S3 is executed, T,
tries to unprotect p to be writeable. However, because of
T,, the thread list L of p is not empty after erasing T,. Thus
p is still read-only when S3 is executed. L1 will not be
released successfully until p is writeable, which means T,
has finished ®,. However, if L1 cannot be acquired at S6,
T, will not finish ®,. Therefore, a deadlock status happens.

To avoid this unintended deadlock status, ARace
exploits a Lock Variable Mapping Table (LVMT) to
map each lock variable A in A to a new lock variable A’,
where ' ¢ A. A’ has the same memory size with A, and is in
an independent memory region, which is always readable
and writeable. LVMT is a one-to-one mapping table
illustrated in Figure 5. Each term of LVMT has the
information for mapping: memory addresses of A and A'.
When Lock/Unlock instruction in © accesses A, the
memory address of A is used to search LVMT to find A"
Then A is replaced by A, and the probability of deadlock
status is eliminated.

original locks

LVMT
M] Id| Ori. [New new locks
1 &n [en 1 M
}‘12 > 2 &}\,2 &)\,2’ —>)\’2’
/ 3| &\ | &M —] v
A3

Figure 5. Lock Variable Mapping Table

F. Ad Hoc Synchronizations

In many multi-threaded programs, ad hoc
synchronizations are widely used by developers [22]. If
one of the synchronization pairs is in a critical section, the
ad hoc synchronization itself constructs an asymmetric
race. Figure 6 is an example of this case. In this example,
S3 and S6 construct an asymmetric race: AR(S3, S6).

Under ARace, AR(S3, S6) will not be triggered. But,
thread 1 will never exit the loop if it executes S3 before
thread 2 executes S6. That is because syncFlag belongs
to the shared variable set of the critical section, and if
thread 1 reads different values from syncFlag, the
execution of the critical section will be inconsistent.
Actually, shared variables like syncFlag are only used
for ad hoc synchronizations [22]. Thus there is no need to
guarantee the consistent statuses of these variables in
critical sections. ARace utilizes techniques proposed in [22,

31, 32] to detect shared variables like syncFlag
accessed in a critical section, and deletes them from the
shared variable set of the critical section.

Init: syncFlag = TRUE;
Thread 1 Thread 2
S1l: Lock(L); S6: syncFlag = FALSE;
S2: ...
S3: while(syncFlag) {};
S4: ...
S5: Unlock (L) ;
Figure 6. An asymmetric race with ad hoc
synchronization

IV. IMPLEMENTATION

We choose Pin [27] to implement ARace. Pin is a
dynamic binary instrumentation framework from Intel.
The targets of Pin are the IA-32 and x86-64 instruction set
architectures. It is extensively used in research work for
dynamic program analysis. Pin instruments programs at
run time. Thus it needs no recompiling of programs.

ARace is implemented as a Pintool, including two
main components: instrumentation engine and analysis
engine. The instrumentation engine is used to instrument
instructions and routines. The analysis engine contains
access redirecting, write buffer, shared variable protecting,
and lock wvariable mapping. Figure 7 illustrates the
framework of the implementation.

The target multi-threaded programs are compiled on
IA-32 architecture with pthreads library, which is a widely
used multi-threaded library. Although the platform and
multi-threaded library are somewhat specific in our
implementation, we believe that ARace scheme is general
enough for other platforms and multi-threaded libraries.

(Target Multi-threaded Programs j

(" Pintool A
Analysis Engine

. Shared

];xl]l ?ft:r ‘ Variable ‘ Lock

3 Protecting Variable

‘ Mapping

(Access Redirecting)

C Instrumentation Engine)
- J
[Pin j

Figure 7. Implementation framework

A. Shared Variables

Because we have no any prior knowledge about that
which variable is a shared variable, a conservative policy
is adopted: regarding all non-stack variables as shared
variables. Although this policy may introduce some false
positives, it does not affect the accuracy. In addition, this
policy is more efficient than determining if a variable is a
shared variable at run time.

B. Critical Sections & Lock Variables

In pthreads library, the points of entering and exiting a
critical section are indicated by calling
pthread_mutex_lock and pthread mutex unlock routines.
For pthread mutex_trylock routine, if the calling thread
acquires the lock successfully, we also consider the
following instructions are executed in a critical section.

Lock variables are those arguments passed to above
routines with pthread mutex_t structure in pthreads. The
original lock variables passed to above routines are
replaced by the new lock variables via LVMT. So it is not
the original lock variables but the new lock variables are
really accessed in these routines. In our implementation,
above three routines are all instrumented.

Moreover, current implementation of ARace utilizes
techniques proposed in [31, 32] to identify critical sections
enclosed by user-defined Lock/Unlock calls.

C. Conditional Variables

Besides lock variables, conditional variables are
another important class of synchronizations. Conditional
variables are generally accessed in critical sections. Figure
8 is a typical example using conditional variable from
application radix in SPLASH-2 [28]. In this example, the

accesses to conditional variable C are protected by a lock L.

This creates an illusion that critical sections protected by
the same lock can be executed concurrently.

Init: flag = 0;

Thread 1 Thread 2
Sl: Lock(L); S6: Lock(L);
S2: if (flag == 0) S7: flag = 1;
S3: cond wait(C, L); €—— S8: cond broadcast (C);
S4: flag = 0; S9: Unlock (L) ;

S5: Unlock(L);
Figure 8. An example of conditional variable

In fact, the illusion is not true. The reason is that
cond wait (C, L) isimplemented as following:

Unlock (L),

Wait on C;

Lock (L),

Therefore, we just need to treat Unlock/Lock in
conditional variable waiting operations as the point of
critical section exiting or entering.

D. Critical Section Instrumentation

Instructions executed in critical sections are
instrumented to redirect the accesses to shared variables. It
is implemented by rewriting the memory operands of these
instructions. Some instructions in IA-32, like MOVS series,
or CMPS series, have multiple memory operands. Thus we
have to rewrite all memory operands of these instructions.
The memory operands are converted from their original
addressing modes to the base register addressing mode via
Pin’s scratch registers. A routine is inserted for each
memory operand in one instruction to obtain the address
after redirecting. One of Pin’s scratch registers is filled up
with the return value of this routine. Then the memory
operand of this instruction is rewritten.

E. Routine Calls in Critical Sections

Routines called inside critical sections also need to be
instrumented to redirect the accesses to shared variables,
while there is no need to instrument routines called outside
critical sections. In practice, the same routine may be
called both inside and outside critical sections. If a routine
is called outside critical sections at the first time, it will
never be instrumented. That is because the routine for
instrumenting in Pin is executed only at the first time when
the routine to be instrumented is executed.

To overcome this limitation, we define a rule for
instrumenting routines: once a routine has been executed
in a critical section, it will always be instrumented, or it
will never be instrumented. We record a Boolean flag F,
for every routine r. F, is initialized when 7 is called at the
first time with the value if » is called in a critical section. If
r is called in a critical section at the first time, its F, is
TRUE. Otherwise its F, is FALSE.

All call instructions executed in a critical section are
examined. For direct call instructions, the callee routine
r is known at the instrumenting time, and is fixed. Thus we
just need to check F, of r. If F, is FALSE, the
uninstrumented code cache of » in Pin is invalidated and
the routine for instrumenting in Pin is re-executed to
instrument 7. Then F, is set to TRUE, which means 7 has
been executed in some critical section. For indirect call
instructions, the callee routine r is not fixed. Thus we
insert a routine to obtain the callee routines. The inserted
routine is executed every time the indirect call
instruction is executed.

F. System Calls

System calls executed in a critical section may also
access shared variables. For example,
Lock (L),

gettimeofday (&tv, NULL),

Unlock (L),

where tv is a shared variable defined in user space but
accessed in kernel space. However, the address of v
should not be delivered to the kernel. That is because the
page that contains v may have been protected to be read-
only. If the address of #v is delivered to the kernel, when
the kernel writes the system call result to v, it will fail.
This failure may never happen in executions without
ARace. Beside system calls inside critical sections, system
calls outside critical sections also have the same problem.

To avoid these unexpected failures of system calls, our
implementation wraps system calls that access variables in
user space. The real addresses delivered to the kernel are
from the new variables. If the system call is executed in a
critical section and the original variable is shared, the new
variable is allocated in the write buffer. And the system
call result is written back along with other write buffer
items. Otherwise, the new variable is allocated in an
independent memory region that is always readable and

writeable, and is written back to the original variable
immediately after the execution of the system call.

V. EVALUATION

A. Experimental Setup

We evaluate ARace with all 14 applications from
SPLASH-2 [28] and all 8 applications from Phoenix [29].
For SPLASH-2 applications, we use their default inputs
but increase the size to lengthen the runtime when
necessary. Phoenix is a shared memory implementation of
Google’s MapReduce programming model for multi-core
chips and shared-memory multiprocessors. The source
code of Phoenix is downloaded from the website [30].
Each application in Phoenix has three versions:
MapReduce, Pthreads, and Sequential. We use the
MapReduce version with the large dataset to evaluate
ARace. Besides, we also use two real multi-threaded

applications, Pbzip2 [39] and Aget [48], to evaluate ARace.

To eliminate the impact of performance fluctuations
due to random factors, each application from SPLASH-2
and Phoenix is tested for ten times, and the final result is
the arithmetic average of these ten times.

All of our evaluations are conducted on a HP laptop
computer with Intel(R) Core(TM)2 Duo CPU T7250 2.00
GHz, 2 MB L2 Cache, and 1 GB main memory. The
operating system is 32 bit Fedora 14, which is a Red Hat-
sponsored community project. The version of the Linux
kernel is 2.6.35. The compiler is gcc with version 4.5.1.
Applications from SPLASH-2 and Phoenix are complied
with the default options in Makefiles. The two real
applications are also complied with their default options.
In addition, the performance is measured by the elapsed
time via the command “time -p” when each application
runs alone on the platform.

B. Critical Section Characterization

TABLE L CRITICAL SECTION CHARACTERIZATION

Application: #Ln}ck #Lock[#CS #Inst [#Read SV|#Write SV [#ReadWrite %Inst
PPUCAlions o tive [total [executed| per CS |[perl CS |perl CS SV perl CS [in CS
cholesky 7 7 91| 112.51 7.64 2.7 0] 0.00]
fft 1 1 2| 5535 9.5 1.5 0] 0.00]
lu-con 1 1 2| 5535 9.5 1.5 0] 0.00]
lu-non 1 1 2| 549.5 6.5 1.5 0 0.00]
radix 4 6 12| 336.25 4.08 1.25 0] 0.00]
barnes 2049| 2050] 686646| 265.68 15.54 15.57 0] 0.33
fmm 2051] 2052| 330980] 481.32] 21.46 24.49] 0.000012| 0.21
ocean-con 2 6| 2416] 16.13 4.91 0.91 0] 0.00]
ocean-non 3 6| 89044] 15.33 4.77 0.77 0] 0.00]
radiosity 3914| 3915[3212879] 21.06 6.29 2.43 0] 0.24
raytrace 5 5| 196133] 21.94 345 1.16 0] 0.00]
volrend 5| 67| 70766] 252 4 1 0] 0.02
(water-nsquared 5171 521 4130 277.8 58.49) 8.93 0] 0.06]
water-spatial 70] 70] 2035 55.42 9.38 1.49 0] 0.01
thistogram 2 4] 21718 61.51 8.95 2.98 0f 0.02]
kmeans 2 4] 341715] 129.68 13.17 5.21| 2.427959] 0.00]
linear_regression 2| 4 8538 60.76 8.88 2.94 0 0.00]
imatrix_multiply 2| 4 369| 83.14 7.43 3.4 0.897019] 0.00]
[pca 2 4 7432(3349.7] 192.74 475.16 19.12] 0.08
reverse_index 2 4 6790] 149.88 21.35 13.5 0l 0.01
string _match 2 4 8537| 243.12] 12.76 391 2.91] 0.00]
word count 4] 7| 2143] 93.35 6.53 1.76 0] 0.00]

TABLE I presents the critical section characterization
of applications from SPLASH-2 and Phoenix. The second
and third columns are respectively the number of active
locks and total locks. They represent lock variables used in
critical sections, and lock variables only initialized. These
two columns demonstrate that there are locks initialized
but not used. The fourth column shows the total number of
critical sections dynamically executed. Some applications,
including radiosity, barnes, kmeans, and fimmm, execute a
plenty of critical sections. The fifth column is the average
number of dynamic instructions per critical section. The
following three columns present the average numbers of
instructions reading, writing, and readwriting shared
variables per critical section. And the last column shows
the total percentage of dynamic instructions executed in
critical sections.

C. Performance

TABLE II. EXECUTION STATISTICS OF ARACE
Applications [{#fault #fal.llt ffault . _|#invalidate p age

static |dynamic written back
cholesky 166 32 134 42 110
fft 4 2 2 13 3
lu-con 4 2 2 13 3
lu-non 2 1 1 13 3
radix 3 2 1 22 12]
barnes 23470 2| 23468 21 1599015
fmm 194838 7| 194831 56 330038]
ocean-con 18211 5| 18206 13 23871
ocean-non 57898] 13378] 44520 13 66167,
radiosity 1314821 4] 1314817 29 3150186
raytrace 8599 14 8585 13 203094
volrend 45 13 32 37 70751
water-nsquared 9566 5 9561 13 4195
water-spatial 528 4 524 53 2587
histogram 9 5 4 14 43172
kmeans 504386] 83560] 420826 38 932763
linear regression 10 7 3 14 16812]
matrix_multiply 116 4 112 48 583
pca 26725 8] 26717 42 36441
reverse index 164047 6] 164041 14 13316
string_match 8285 4 8281 41 25087
word count 45 20 25 15 3758

In this section, we study the performance of ARace and
ARace-LU on applications from SPLASH-2 and Phoenix.
Figure 9 presents the performance results. All execution
times are normalized to the runtimes with Pin.

There are four bars for each application. The first bar is
the normalized native runtime. The second bar is the base,
runtime with Pin. The third and fourth bars respectively
indicate the normalized runtime with ARace and ARace-
LU. For applications that execute many critical sections
except radiosity, ARace only incurs about 4x overhead.
But for radiosity, ARace incurs about 35x overhead, which
is the worst case. On average, ARace incurs only about 1x
overhead to the run with Pin. This performance of ARace
is competitive, especially for applications that require a
high level of security.

:'Jlllllllill

N & &

S E S F S ¢S S F S
S W S < b

%

M Native M Pin ARace M ARace-LU

aiula l|i|l|l|lllll|1l.l alalalal

> > & N Y 2> S BN X
&8 & & S © & & £ S (8?
N K & & & S & ¢ N
N & S & & & e/ ; > ©
e & <& & & N
3 s & Z & K
K R & S
& <&

&

Figure 9. Normalized execution times of ARace and ARace-LU

Minitialization Minstrumentation M accessredirecting Mwriting back Mpage fault handler Mlock mapping

100%
80%
60%
40%
20%

0%

Figure 10. Overhead proportion of ARace

As expected, lazy unprotecting reduces the overhead of
ARace for some applications, i.e. barnes, radiosity,
string_match, etc. Unfortunately, it also increases the
overhead for other applications, i.e. fimm, reverse_index,
etc. This demonstrates that lazy unprotecting is mild for
some applications but wild for some other applications.

TABLE II presents some execution statistics of ARace.
The second column shows the total number of page faults
introduced by ARace. The third and fourth columns
respectively indicate the number of page faults on static
data and dynamic heap. For most applications, except
ocean-non and kmeans, most of page faults happen on
dynamic heap. The fifth column demonstrates that the
amount of code cache invalidated by ARace is very tiny.
The sixth column presents the total number of pages that
are written back at the end of critical sections. Except the
first five applications, the numbers are large. The reason is
that all writes to shared variables in critical sections are
cached in the write buffer by ARace.

To study the overhead proportion of each component
in ARace, we also gather the relative ratio of execution
times of each component. Figure 10 presents the relative
ratio of six components in ARace: initialization,
instrumentation, access redirecting, writing back, page
fault handler, and lock mapping. The initialization work is
done by Pin before the application starts. And the page
fault handler is the handler that a thread executes when it
receives a page fault exception. Except cholesky and
linear_regression, the rest applications fall into two

categories. In one category, the main part of the overhead
is instrumentation, i.e. fft, lu-con, lu-non, and radix. In
another category, the main part of the overhead is access
redirecting, 1.e. barnes, radiosity, string_match, etc. This
difference results from the number of dynamically
executed critical sections, which in second category is far
more than that in first category. For cholesky, the number
of executed critical sections is between the first category
and the second category. Thus, the relative ratio of
instrumentation and access redirecting nearly equals one.
However, for linear regression, the main part of the
overhead is writing back. By studying the source code of
this application, we found that it emits many shared
intermediate statuses in a callback function which is
executed in a critical section. Thus ARace has to write
back these statuses at the end of the critical section, which
will introduce a lot of overhead. Figure 10 also shows that
the proportion of the overheads introduced by initialization,
page fault hander, and lock mapping is not high.

D. Real Applications

Two real multi-threaded applications, Pbzip2 and Aget,
are also used to evaluate ARace. Pbzip2 is a parallel
implementation of the bzip2 file compressor [39]. Aget is
a multi-threaded http download accelerator [48]. To
evaluate ARace, we use Pbzip2 to compress a 73MB file
with tar format and download a 321MB file from a local
web server via Aget. These two applications are tested
with 1, 2, 4, and 8 threads.

1) Effectiveness

During the evaluation of Pbzip2, ARace found a
known real asymmetric race bug. The bug is illustrated in
Figure 11. This bug takes place when thread 1 writes to
fifo during thread 2 reading from f£ifo in the critical
section protected by the lock fifo->mut. ARace
prevents this bug by protecting fifo to be read-only
when thread 2 executes the critical section.

Thread 1 Thread 2

void main () { void *consumer () {

fifo->empty = 1; for(;;){
lock (fifo->mut) ;
queueDelete (fifo) ;
fifo = NULL; —» if(allDone == 1) {
e unlock (fifo->mut) ;
} return NULL;
}

o
L
Figure 11. A real asymmetric race bug in Pbzip2

2) Performance

Figure 12 presents the execution times of the two
applications. The results show that the overheads
introduced by ARace are acceptable for real applications.

M Native M Native
HPin
ARace

25 Pbzip2 B Pin 25 Aget

ARace

Executiontime
(seconds)

1 2 4 8 1 2 4 8
Number of threads

Figure 12. Performance of real applications

Number of threads

VI. RELATED WORK

A. Asymmetric Races

ToleRace [15-17, 19] is the first proposed software
scheme for detecting and tolerating asymmetric races.
ToleRace copies two shadows, v' and v”, for each shared
variable v accessed in a critical section when a thread T,
executes the critical section. Then T, accesses V' in the
critical section. At the same time, another thread T, can
access v outside the critical section. After T, has reached
the end of the critical section, ToleRace compares the
values of v and v". Then ToleRace decides which value of
v and v’ should be reserved as the new value of v: (1) if T
can be serialized before T, the value of v is reserved; (2) if
T, can be serialized before T, the value of v’ is reserved;
(3) if Ty and T, cannot be serialized, ToleRace has to
interrupt the execution of the program. ToleRace can
tolerate asymmetric races in the former two cases but is
inadequate in the last case ([21] illustrates one such
example). Compared with ToleRace, although there is
performance penalty, ARace can tolerate these asymmetric
races correctly. The reason is that T, is not allowed to
access v when T, executes the critical section.

ISOLATOR [21] is another software scheme. At the
beginning of a critical section, any page p that contains

shared variables accessed in the critical section is copied to
a shadow page p'. Then ISOLATOR protects p by making
it inaccessible. The accesses to p in the critical section are
redirected to p'. The accesses to p not in the critical section
will cause page fault exceptions. At the end of the critical
section, ISOLATOR copies the contents from p'to p, and
unprotects p to be accessible. ISOLATOR needs compiler
support or even application changes so that pages can be
shadowed appropriately. In contrast, ARace has no such
restriction, because it is directly applied to program
binaries. Besides, for every shadow page, ISOLATOR
uses a temporary page to copy it back. However, if there
are multiple shadow pages, the atomicity of copying them
back is not guaranteed in ISOLATOR. In ARace, we use
another way to write back write buffer items, which can
guarantee the atomicity of writing back.

Pacman [14] also aims to asymmetric races. The main
difference between Pacman and above two schemes is that
Pacman is based on hardware. Pacman exploits cache
coherence hardware to protect cache lines that contain
variables accessed in a critical section. If instructions not
in the critical section try to access these cache lines, they
will fail and have to wait. Pacman needs additional
hardware support to exploit cache coherence. Besides,
Pacman has no knowledge about critical sections. That is
because critical sections have no difference with normal
code from the perspective of hardware. Compared with
software-based schemes, Pacman is uninstrusive and has
negligible execution overhead. Nevertheless, it is not yet
supported by current computer platforms.

B. Transactional Memory

Transactional Memory (TM) is another way to provide
atomicity for lock-free data structures [34]. In TM, an
atomic region is considered as a transaction and the
transaction is executed speculatively. At the end of the
transaction, TM checks whether there are conflicts. If so,
TM aborts the transaction and rolls back to re-execute the
transaction. Otherwise, the transaction is committed. TM
needs to handle side effect operations effectively during
rollback, which is still an open problem. TM can be
implemented based on hardware [23, 26, 40, 42], software
[50, 44, 45], or hybrid [63, 57, 52, 54]. The difference
between ARace and TM is that ARace does not need
speculative execution, rollback, version management, and
timestamp support.

C. Data Race Detection

There is a large body of research focusing on data race
detection, including static and dynamic. Static detections
use program analysis techniques, like type-based checking
[59, 55, 56, 58], static flow analysis [1, 2], or lockset
analysis [35, 60]. One inherent drawback of static
detections is that a lot of false positives are reported.
Dynamic detections are mainly based on the lock-set
algorithm [3, 51, 18, 20, 41], happens-before analysis [43,
36, 47], or hybrid of the two [24, 53, 49, 4]. Although
dynamic detections have fewer false positives than static

detections, they have the challenge of coverage. Different
with the prior detection, ARace is a post tolerance scheme.

D. Other Related Work

There are also some other related research work to
facilitate debugging and diagnosing of multi-threaded
programs, including studying concurrency bugs [6],
classifying benign and harmful data races [10, 61],
avoiding atomicity violations [7-9, 25, 38, 46], avoiding
deadlock [62], and surviving or bypassing software
failures [5, 11-13, 64]. Different with these techniques,
ARace specially aims to dynamically tolerate asymmetric
races in lock-based multi-threaded programs.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a consistent execution model
for critical sections in lock-based multi-threaded programs.
Asymmetric races can never be triggered under this model.
Based on this consistent execution model, a new software-
based scheme ARace is presented to dynamically tolerate
asymmetric races. Unlike previous schemes, ARace can
guarantee the absence of asymmetric races. In addition,
ARace can be directly applied to program binaries and
requires neither additional support from the compiler nor
application changes. We also present an implementation of
ARace based on dynamic binary instrumentation. The
results show that the performance of ARace is competitive.

As described in section III, to prohibit inconsistent
statuses of shared variables, two critical sections that
access same shared variables are not allowed to be
executed concurrently. Actually, ARace has no prior
knowledge about the shared variable set of a critical
section. One feasible solution is training ARace on-the-fly.
At the first few times when a critical section is executed,
ARace collects shared variables accessed in this critical
section. During the training stage, critical sections are
executed sequentially. After training, critical sections can
be executed concurrently. In addition, with the help of
prior knowledge about the share variable set of a critical
section, ARace can protect shared variables read in the
critical section at the point of entering the critical section,
which will prevent a few potential races. We leave this
work as part of future work.

Another future direction is to reduce the overhead
introduced by ARace, for example, via dynamic program
analysis or with the aid of data race detections.

REFERENCES
[1] D. Engler and K. Ashcraft. RacerX: Effective, Static Detection of
Race Conditions and Deadlocks. In SOSP, 2003.
[2] M. Naik, A. Aiken, and J. Whaley. Effective Static Race Detection
for Java. In PLDI, 2006.
[3] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.

Andersom. Eraser: A Dynamic Data Race Detector for
Multithreaded Programs. In ACM Trans. Comput. Syst., 1997.

[4] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient
Detection of Data Race Conditions via Adaptive Tracking. In
SOSP, 2005.

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

(23]

[26]

(27]

F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating Bugs as
Allergies — A Safe Method to Survive Software Failures. In SOSP,
2005.

S. Lu, S. Park, E. Seo and Y. Zhou. Learning from Mistakes — A
Comprehensive Study on Real World Concurrency Bug
Characteristics. In ASPLOS, 2008.

S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity
Violations via Access Interleaving Invariants. In ASPLOS, 2006.

S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y.
Zhou. MUVI : Automatically Inferring Multi-Variable Access
Correlations and Detecting Related Semantic and Concurrency
Bugs. In SOSP, 2007.

B. Lucia, J. Devietti, K. Stauss, and L. Ceze. Atom-Aid: Detecting
and Surviving Atomicity Violations. In /SCA4, 2008.

S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder.
Automatically Classifying Benign and Harmful Data Races Using
Replay Analysis. In PLDI, 2007.

J. Yu and S. Narayanasamy. Tolerating Concurrency Bugs Using
Transactions as Lifeguards. In MICRO, 2010.

K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy.
Detecting and Surviving Data Races using Complementary
Schedules. In SOSP, 2011.

J. Wu, H. Cui, and J. Yang. Bypassing Races in Live Applications
with Execution Filters. In OSDI, 2010.

S. Qi, N. Otsuki, L. O. Nogueira, A. Muzahid, and J. Torrellas.
Pacman: Tolerating Asymmetric Data Races with Unintrusive
Hardware. In HPCA, 2012.

P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. Zorn, R. Nagpal,
and K. Pattabiraman. Detecting and Tolerating Asymmetric Races.
In PPoPP, 2009.

P. Ratanaworabhan, D. Kirovski, and R. Nagpal. Efficient Runtime
Detection and Toleration of Asymmetric Races. In /EEE Trans. on
Comput., Vol. 61, No. 4,2012.

P. Ratanaworabhan, M. Burtscher, D. Kirovshi, and B. Zorn.
Hardware Supprot for Enforcing Isolation in Lock-Based Parallel
Programs. In ICS, 2012.

J. Erichson, M. Musuvathi, S. Burckhardt, and K. Olynyk.
Effective Data-Race Detection for the Kernel. In OSDI,
http://usenix.org/event/osdil0/tech/slides/erickson.pdf, 2010.

D. Kirovski, B. Zorn, R. Nagpal, and K. Pattabiraman. An Oracle
for Tolerating and Detecting Asymmetric Races. Microsoft
Research Technical Report MSR-TR-2007-122, 2007.

T. Sheng, N. Vachharajani, S. Eranian, R. Hundt, W. Chen, and W.
Zheng. RACEZ: A Lightweight and Non-Invasive Race Detection
Tool for Production Applications. In /CSE, 2011.

S. Rajamani, G. Ramalingam, V. P. Ranganath, and K. Vaswani.
ISOLATOR: Dyamically Ensuring Isolation in Concurrent
Programs. In ASPLOS, 2009.

W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad Hoc
Synchronization Considered Harmful. In OSDI, 2010.

L. Baugh, N. Neelakantam, and C. Zilles. Using Hardware
Memory Protection to Build a High-Performance, Strongly-Atomic
Hybrid Transactional Memory. In ISCA, 2008.

A. Muzahid, D. S. Gracia, S. Qi, and J. Torrellas. SigRace:
Signature-Based Data Race Detection. In ISCA, 2009.

A. Muzahid, N. Otsuki, and J. Torrellas. AtomTracker: A
Comprehensive Approach to Atomic Region Inference and
Violation Detection. In MICRO, 2010.

M. Abadi, T. Harris, and M. Mehrara. Transactional Memory with
Strong Atomicity using off-the-shelf Memory Protection Hardware.
In PPoPP, 2009.

C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building
Customized Program Analysis Tools with Dynamic
instrumentation. In PLDI, 2005.

(28]

[29]

[30]

[31]

[32]

[33

—

[34]

[35

[k}

[36]
[37]

[38]

[47]
[48]
[49]
[50]
[51]
[52]

[53

—

[54]

[55

[}

[56]

S. Woo, M. Ohara, E. Torrie, J. Singh and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In ISCA, 1995.

C. Ranger, R. Raghuraman, A. Penmestsa, G. Bradski, and C.
Kozyrakis. Evaluating MapReduce for Multi-core and
Multiprocessor Systems. In HPCA, 2007.

The Phoenix System for MapReduce
http://mapreduce.stanford.edu/

Programming.

C. Tian, V. Nagarajan, R. Gupta, and S. Tallam. Dynamic
Recognition of Synchronization Operations for Improved Data
Race Detection. In ISST4, 2008.

A. Jannesari and W. F. Tichy. Identifying Ad-hoc Synchronization
for Enhanced Race Detection. In /PDPS, 2010.

Software Bug Contributed to Blackout. SecurityFocus.
http://'www.securityfocus.com/news/8032
M. Herlihy and J. E. B. Moss. Transactional Memory:

Architectural Support for Lock-free Data Structures. In /SCA4, 1993.
P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: Context-
Sensitive Correlation Analysis for Race Detection. In PLDI, 2006.
S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer.
Detecting Data Races on Weak Memory Systems. In ISCA, 1991.
S. V. Adve and M. D. Hill. Weak Ordering — A New Definition. In
1SCA4, 1990.

R. Agarwal, A. Sasturkar, L. Wang, and S. Stoller. Optimized Run-
Time Race Detection and Atomicity Checking Using Partial
Discovered Types. In ASE, 2005.

Parallel BZIP2. http://compression.ca/pbzip2

M. Lupon, G. Magklis, A. Gonzalez. A Dynamically Adaptable
Hardware Transactional Memory. In MICRO, 2010.

X. Xie and J. Xue. AccuLock: Accurate and Efficient Detection of
Data Races. In CGO, 2011.

B. Khan, M. Horsnell, M. Lujan, and I. Watson. Scalable Object-
Aware Hardware Transactional Memory. In Euro-Par, 2010.

E. Schonberg. On-the-fly Detection of Access Anomalies. In PLDI,
1989.

V. Gramoli, R. Guerraoui, and V. Trigonakis. TM?C: A Software
Transactional Memory for Many-Cores. In EuroSys, 2012.

B. Saha, A. Adi-Tabatabai, and Q. Jacobson. Architectural Support
for Software Transactional Memory. In MICRO, 2006.

G. Upadhyaya, S. P. Midkiff, and V. S. Pai. Using Data Structure
Knowledge for Efficient Lock Generation and Strong Atomicity.
In PPoPP, 2010.

A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy. Helgrind+:
An Efficient Dynamic Race Detector. In /PDPS, 2009.

Aget: Multithreaded HTTP
http://www.enderunix.org/aget

Download Accelerator.
A. Dinning and E. Schonberg. Detecting Access Anomalies in
Programs with Critical Sections. In PADD, 1991.

Z. He, X. Yu, and B. Hong. Profiling-based Adaptive Contention
Management for Software Transactional Memory. In /PDPS, 2012.
C. von Praun and T. Gross. Object Race Detection. In OOPSLA,
2001.

S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen.
Hybrid Transactional Memory. In PPoPP, 2006.

R. O’Callahan and J. Choi. Hybrid Dynamic Data Race Detection.
In PPoPP, 2003.

P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D.
Nussbaum. Hybrid Transactional Memory. In ASPLOS, 2006.

C. Flanagan and S. N. Freund. Type-based Race Detection for Java.
In PLDI, 2000.

H. A. Andrade and B. Sanders. An Approach to Compositional
Model Checking. In /PDPS, 2002.

[57]

[58

=

[59]

[60

=

[61

—

[62]

[63

—

[64]

C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson, J.
Casper, C. Kozyrakis, and K. Olukotun. An Effective Hybrid
Transactional Memory System with Strong Isolation Guarantees.
In ISCA4, 2007.

C. Boyapati and M. C. Rinarad. A Parameterized Type System for
Race-Free Java Programs. In OOPSLA, 2001.

D. Grossman. Type-Safe Multithreading in Cyclone. In TLDI,
2003.

N. Sterling. Warlock: A Static Data Race Analysis Tool. In
USENIX Winter Technical Conference, 1993.

B. Kasikei, C. Zamfir, and G. Candea. Data Races vs. Data Race
Bugs: Telling the Difference with Portend. In ASPLOS, 2012.

K. Agrawal, J. Buhler, P. Li, and R. Chamberlain. Efficient
Deadlock Avoidance for Streaming Computations with Filtering.
In PPoPP, 2012.

T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer.
Optimizing Hybrid Transactional Memory: The Importance of
Nonspeculative Operations. In SPAA4, 2011.

J. Oh, C. J. Hughes, G. Venkataramani, M. Prvulovic. LIME: A
Framework for Debugging Load Imbalance in Multi-threaded
Execution. In ICSE, 2011.

RIS KR DOI.10. 7544/issn1000-1239. 2014, 20130123

Journal of Computer Research and Development

51(8): 1748-1763, 2014

NEBERMEMETFRAFEZ S

FXX? #AK' Pary Ratanaworabhan’ # #'" Fikia' Z2EF'

OGN RS S E R E A E Oh EA R AR dEa 100190)
PR E B RF dERT 100049)
SRR T RS FEEZ24 10900)

(wangwenwen@ict. ac. cn)

Dynamically Tolerating and Detecting Asymmetric Races

Wang Wenwen''?, Wu Chenggang', Paruj Ratanaworabhan®, Yuan Xiang'"*

Li Jianjun', and Feng Xiaobing'

Bk

» Wang Zhenjiang',

"(Key Laboratory of Computer System and Architecture (Institute of Computing Technology. Chinese Academy of

Sciences), Beijing 100190)
2 (University of Chinese Academy of Sciences, Beijing 100049)
*(Faculty of Engineering » Kasetsart University, Bangkok, Tailand 10900)

Abstract Asymmetric races are a common type of data races. They are triggered when a thread

accesses a shared variable in a critical section, and another thread accesses the same shared variable
not in any critical section, or in a critical section guarded by a different lock. Asymmetric races in
multi-threaded programs are usually harmful. To solve the problem introduced by asymmetric races,
ARace is proposed. ARace utilizes shared variable protecting and write buffer to dynamically tolerate
and detect asymmetric races. Shared variable protecting is used to protect shared variables that are
read-only and read-before-write in critical sections, and these shared variables should not be modified
out of critical sections; write buffer is used to buffer the writing operations to shared variables in
critical sections. ARace can not only tolerate asymmetric races triggered by shared variable accesses in
and out of critical sections, but also detect asymmetric races triggered by shared variable accesses in
concurrent critical sections. ARace can be directly applied to binary code and requires neither
additional compiler support nor hardware support. In addition, an implementation based on dynamic
binary instrumentation is also proposed. The experimental results demonstrate that ARace guarantees
the tolerance and detection of asymmetric races while incurring acceptable performance and memory

overhead.

Key words asymmetric race; tolerating and detecting; write buffer; page protecting; dynamic binary

instrumentation

HE FNHRRELFABEZFF AT RLGER. E—AZBREBRE AR EAALF “‘fét,i”v
= AERAREBE KRR RARGEFE AR AL E XA LT F R T TR EESF. 5

RSP ETHRUELTFEERRETY. AT HRESRLETFIANGRAM, - ET ARace. ’6%’&
RMEFEIRPAEEZFRARDEEZ AN ESFHBELF L P EFTXESHPATRPEREA

W EHE:2013-02-01;1& R HHA:2013-06-26

EEWA EHE AN SRR LRI LT H (2012AA010901) ; H K A KB %54 FAER S H AT H (61100011) ; B K A KRR 2%

R AR FAERE R4S H (60925009)

IR B ARG A X BRI e

1749

Rt BN EFEST FEXEEFTEGBRREIMSEEEFYREATEZAEBREASETE S
8 5 #4E. ARace RATAZZBERE A A FRIFZ M ey AU EZEF, ETASHFLBREZ
18] 4 3F x AR 2 A 5 St AT A M. ARace BL R AR #AZ B R X AL Fe 20 3F 509 X L AR MU SRR A 0 2
B EBRBT —FAd S H R EEE R EI ARace 195 k. £ %2 R A9 . ARace £RIER
2 Fo A) AF 2F AR RCHE SE F 09 B BF L 5F R B NAR K 09 MRk T AR A R AT 4K

E@iE ENHREEZE; RN BE TR ; AR ;50 &5 =30 4640

REZESES TP311

T AR Bl A 22 A% Ak BRAR 1 N A S THT FL i A
R B Zevi I Z R ARTR Y 1 1 T BOR R E N. BAR £
LARFEFF AT LSS 0 A 2 2 A AR R BT IR R IR 2
b R D0 H A g 5 R0 I X R AR T A0 E
PRIME. X2 K Ry« D A8 g 5 R IR A% g8 B2 A7 R) 2o 72
HETE I IR ME 7E 2 R AR T TP RSRAEAE ; 2) 2R
PP b 23 5] A — 23T 1Y S BORE Y B 0 O R
(concurrency bug), @l B8 3w F . FE B R F 1w
5 LA R b 9 553X fdi 45 22 e BE B P 10 I & A
TR X T 15 58 R AT R 5 0 R X

i 55 A Z R P AR A 5 5. P
TE B 5 A o = T8 WA 2 AR A B AT AT (W) 28 Y 1 0
T IRl 7 (0] AH) A4 e =248 L OF B b = — A
e B HAE. B T e il 2 AR AR R AR
FRIY GBI AT . A 26 BRBUTE © A A1 7 il v i 4
I8 58 A 3 235 | 2 2 R AR I v GOME R Sl 1 n 20
2 80 AR AR Y B2 97 % %5 Therac-25 S EHY 47
FHE 2003 AETb 9 M XA R AL {55 L S T DL
2012 4E 4 35 75 1 Facebook Ji% 22 37 5 o] it 4
FECE AT A A R AR R 34 2 B RCTE AR Y
s 5

TERE TE 4 h A — J AR X R B 58 4L P
TEHE X PR B 5 4 2 A7 AR B 52 S 0 P AT R]
Horp — AN TR S XA T 55— DA TR A XA 5
EATEAR RS A G XN, 1 &l 7 — 4
X BR B 52 A 5 S), Fovh per R SR R AR
Ty XF per UG RIZEBE L ORAP B9 I A DX Y, 62 T
Xf prr IR A TEARAT I AL XN, 28 T FE G A XN

Ty
S1. Lock(L);
S2.if (1 prr) {

S3. ptr =malloc(); i

s <«—— S7.ptr=NULL;

S5. *ptr =var;
S6. Unlock (L);

Fig. 1 Asymmetric race example.

F1 AEXT FR B 4 S 41

Vila) per BF, Ty 0] LASHE 247 & k. 40 iR T, %t
ptr BEMAE T XF per B YR TR Z (0] (& 1
KR B4 T ¥ 2 BRI por, BT
FER.

A% FR B 5 A R AR B UL A B v 4 R, O
H— 2 S BORT U R SRS 14 3 i A &
B FE R WA f R R B E S b 20 60 A A B R
Jp X RO e . — Ok UL R P RUFE T R 2R R
Fr st o 25 R BE A A 3 % B0 3 B2 AR 0 1 37)
RV AN EC o S A US| O N I 5 S AR e
2t B5E T S5 AT A 1 5. 480 n Sk [6 Tk A B
(3 & AR UEAT G0 K B 27 6 22 A FR R R 2 ol
FRE T 03 38U BRI B B S Ak L B R — o
BIF A T4 0k, e 5 st ™= s F e
=7 BEARAS AE T L Al 2 iy st AR RS AN A =
ARH B A 22 e L ik 2 AR X PR BRI 5 4. XS R 2 4
(AR 7 400 46 3 31 B T B8 AU A BT X % 4 9 H A7 R
P A AR KB AR T & el B rh i A B A o 4
AR E A 75 3R X FREHE 52 4 AN 1T i .

£ TE AR X R B 55 4 1) 22 AR PR P 7R A T 2
W IS — g S i A Al X BB BE . X Ok L 7R
ZARTRFE T P R [2R R 22 1) B $RAT 38 8 A7 7 R
SEME. B 2 TR L A AR R B SE 4 AE 3 R
ANFE LR AT 3C & T 1 fil & 15 L.

TEE 2Ca) MR RE T, fE Il A X N X per dE
Frs e it LR A T, XF prr B Bk 2 7 A X FR B d
TE s AEE 2(b) (o) WL AR Ty XF per BB
BIRAFELRE T, PATIE R X Z 0 M Z 5, Bk
fil & A X BRECHE 5

JIT V8 B0 285 25 2 AR X BRSO 55 4 L R A 2 AR
P BT b B v 38 o B A [R) 2 R 22 1) 0 R4 T 22
B T B AR X B B T G ik R R RT RE . e R/ 2
o BRI LA BT E R 2 (D) EE 2 (o) BT
LSBT 3K AN B X AR B S G i sh A R 2.

1750

HENMR S R B 2014, 51(8)

T,

T,

h <«—— S7.pr=NULL; N
S1. Lock(L); S1.Lock(L); S1. Lock(L);
S2.if (! ptr){ S2.if (! ptr) { S2.if (! ptr){
S3. ptr=malloc(); T S3. ptr=malloc(); S3. ptr=malloc();
83 <«<——— S7.ptr=NULL; ggi _ S4.3 _
S5. %t =var; . *ptr=var; S5. *ptr=var;
14 J S6. Unlock (L); S6. Unlock (L); Ty

S6. Unlock (L);

(a) Triggered

(b) Not triggered

<«— S7.ptr=NULL;

(c) Not triggered

Fig. 2 Different interleavings of asymmetric race.

Bl 2 O [l AT 3 B 5 20 Al X B 40 3 4 ik % 1 00

T R T 22 2 R R I R AR X B R e
Gl AR AR A SCHE T — B s 25 7 2 R Il Ak
Xt Bk B 5 G 9 5% : ARace. B il 245 B {4
I 22 infr DX f 52 B % AR K ds 32 4 1) 3 S A 2
R LT AR B O T ORI S DA U A S
Ja 5 R LA B B 1k S B A I SR X MR
B G2 b X T G A7 i St IX A 0 3 5278 g 5 R AR,
ARace AL AT LAZE 201l 71X A Fil 51X 40 2 18]
AR X B B 5 4 i al LA I il B DX 22 [a]) Al X
PR B 35 4 IE AT A DI . ARace BEAS 4 451 72 15 U8 AR A
T P i 1) SR o A AN MRS B 1F 119 3285 LA
ARSCiB B T — i 2o gl 2] A B R 52)
ARace (77 %, L 45 R KW, ARace 78 ff IE % 2
ARSI A X PR ECHE S 4 1 [R) I R 51 AR R g
REJT 59 F1 N A7 T 85

1 ARace

R T BN AS A AR AR X AR BOHE 5 4, ARace
et FHT P 000G B R R Sl A i (R S R X

T AR T R AP TR AP I S A i FE X A A
FeBL R E A AR L 2 AR A I A DN X s gk
A Z AT ARace X EATTHEAT R LLIAE 1Bl B IX
HPIYL R B AT A 2R IR Il A X, ARace
X EATTHEAT i DR AP Z 05 i 5 XA) 2 A8 A AT LA
XFEATHEAT B L

LR AR i F X P R e S AR R B R AR S 2%
. AR IR I S IXCE , ARace 23445 22 o
DX A P 2 T 1) 4) S = A v gl e X R T
3, ARace gl A DA R 7E I A DX P 77 Az i 2k 52 728
rh AR S AT 11 S5 DX A1 1) 26 24X fig 31 5 sk 3k
TEAR I B ZOIRE.

3R T ARace M FE TAEAL TR, BB P 1K
B RSB RAEAENEE Y. R . X
Y SZAE G XN Vs 0] e SR L ST R 2

— AR IX 5 Y S2 AT, D ARace X X 47}
1. QX AT AR G @ 2 S3 Bk H AT BT, ARace 1
B2 al X A i — AN S b XY (I, 2. 2
T CHTEAXEZAEY WE @Y S48 AT
i, ARace #4528 uf X 30 Y5 [0 3 4G 7 & Y
Ot X.

Original Memory

@ Protected to

X } be Read-only
S1. Lock(L);

@) Y @ Unprotected to
S2.varl=X; be Writeable
S3.Y=var2;

Write Buff
S4. Unlock (L); ity
Y

Fig. 3 System overview of ARace.

Kl 3 ARace i EH TAEAL TR

1.1 HEZTEHRP
T BH Ak e 5 DX A 8 42 R 18 i S DX 2 s A
SeBE A B AR i, ARace B 2 3t 52 AR L 4
S BRI I B X 3 S R 4 i 2
EAS SRR A R X T E IR A X,
ARace 7EZ 2 1B) 35 A0 2 i 5 X A i 47 2 52 A8
YRR B R BARERAE RS D WA R IR P
S LLNAE I R EE T Y. R, 24 ARace 75 2R
PR AR B o B T AR o TR
FEO0 AR o 98 24 INAE 0 AN o 78 A A 5L
)30 FEAL s ARace 5T 22 40 I A7 3 28 P A7 DUER (R 37
k.

B ALRE T A1 T, 3 & AT A I8 B4R 4
Wi 5 X I BT S iy = A 5 o) v, TE (A
—ANT p LR T R T, SRt p AT TUOR P,
M2 p s EE Ry BHEREWZE NIRRT E T,
Z AR e AR A7 T, 1B s AL IXIEX p gt
AT ORI Z J5 s T, 4 1 I fih % AF % FR 280 4 58 4 19
NI

IR B ARG A X BRI e

g T e bR R, ARace 4 IB2E B 2 B4R B
R HBEIR S BT 8 R AR — 4 R R S5
globalPage v, H & A4~ GO ¥ A — 4> 4 2 Bk &
Lo 0 sl 28 e i B X P 352 a3 4> T A A T
AT, LAk, ARace iy 5 AR L 1 200 7 1im 5t
DX 5 Y O B A s B DU SO SR AR RA A
fefig S . B 1 M 2 4p AR 1 A e R
TR DR AP B HEAS T
k1., HLEARRY protect sv(t,v,size).
k5 A : thread ¢,shared variable v read by ¢,and
the size of w.
@D P=pages(v,size);
@ for each p in P do
Lock(globalPage. Lock) ;
if(p is not in globalPage) then
protect p;
add p to globalPage;
end if
add ¢ to p. L;
Unlock (globalPage. Lock) ;
add p tot. S;
@ end for
Bk 2. AT unprotect sv(t).
i A : thread ¢ to exit acritical section.
D for each p in . S do
Lock(globalPage. Lock) ;
delete ¢ from p. L;

©O©®Oe6e

if p. L is empty then
unprotect p;
delete p from globalPage;
end if
Unlock (globalPage. Lock) ;
delete p from ¢z. S;
@ end for
TSR A i B DX A B b AT IS 4 R R Y
BLORAP Y NAF DL p 5023 15 B b O 4 R AR DR AL S
Br b n 2 im B XA R A B 2 p P RN A,
TR 22 3f LA SEE A Wi S X 85 R I AR DR 7 o XA gl T
DA /DA 3 AFAR S I 5 D XE p $EAT DR 47 F i
PRAP B U 3 A DR AP A A7 0T B9 BIL) B A A 58 i
{847 (lazy unprotecting, LU). ARace-LU #EiR p #)
AR LA I A AN R AR XS p N A AT
Rk, AR ARace-1LU RE % W 2 £ 577 AL £ 7) IR
BB R E WAl GE S o] ABUSMY IR S 5 3 Sk

CHCECECRSECHERCT)

IS 2 % ARace Ml ARace-LU #1744,
1.2 EZMKX

B9 ph XS — BT 352 7] 5 A X, 7E ARace
Je I 3 BC L B IR HAE R AN 1A 4 B

Write Buffer
Items

Shared Variables Access Information

A A
r Y A

Id | Address | Size | Cached Value | Tid | Ip |Lock Set

Id | Address | Size | Cached Value | Tid | Ip |Lock Set

Fig. 4 Structure of write buffer.

B4 GG X m a5

B gz vp X R 2% v XA R, A % i X
Xof B — > e AR g I HLAE A 3 5) bk AT
Kol Vinl. 85 58 wh X IR R /N2 AN [. X
TR A7 T S A R) /. il B XN Y 4R A 5
—REILEATE o I}, ARace ¥t £ 5 2% vh X 1 H:
S — AW X I o I B oo B RNFITFE A3 v
A5 18] R /N S — B
Sy TR I K i B X 2 [R) B R X R B T
ARace 7ERA S 2% o X W1 I 0 SRR BB X% 5 22 o
X T f% 3 — YR 35 1) B 15 &, (access information) ; 28
5 8 A AR R AR A BB . AR VI R B
NE X I}, ARace BB LB IZABEMNEA RS
G 2% ph IX I g s 1 AR5 02 A AR). an 2R AR]
R E S G2 o I AT U R) L OF SRS 2% o IX
T 1) 5) 45 B WK, ARace gk — 20 L #8
LR Y R I B B NS 22 i DX I g i i)
GREACE. R BA 3 ARace HLIA X
PR 0] 22 8] 4775 R FR B 52 4 5 I 3 W Y 5
[5) (8 3 20 A5 AR g A T 45 R A7 i 5. iX B ARace
IF A R A AR i) D () S AU, AR X AT e 2]
A —SE g AR SCHRLS] 2 0 i A R L X 2K TF R
I 5 DX 22) 8 =1 X6 B B30 3 4 78 S B A Al i /0
U, R 7 53 v LLAR $E ARace IR 5 1R & &) i UE
X LR R
212 3B I A X), ARace #4528 o X %
R4 BC 1Y S 9% v DX 30U])65 R 1) Ji iy e =2 AR
L TR I B X AR O . ARace H7E ZE R R) i
HPZ i FE DI A AT 5 WA X2 O A R AR 4L
AR N 2 A X AT 5 [,] B8 2 T s —
SR AR B T S BRI B S g T — AN XY ST
i, o A T, 78 S3 Ml S5 A4b 5 Il 3L AR prr, 28
2 T, 1€ S8 AL i) ptr. UNIR ARace 7£ T, 1B H N ZE

1752

HENMR S R B 2014, 51(8)

Il X5 [l e X N R 5 2% o X 30, 0B 4 5k TG
Dok 2 T BOR T B RS Y AR X R SE A (R S
ik TR
Ty
S1.Lock(Ly);

S2. Lock(Ly);
S3. ptr = malloc();
S4. Unlock (Ly); 7

<«— S7. Lock(Ly);
S5. #ptr =local ; S8. ptr = NULL;
S6. Unlock (Ly); S9. Unlock (Ly);

Fig. 5 Asymmetric race in nested critical section.

[EIICI & R S IPNUE | O R 7% 5 € Aoy

ARace 7E #4755 [l # AR, 75 ZARUES [0 5 2
1 I PR X AN R i S]2 5 3 AT 45 R
A —3PE. B 6 45t T A 5 [l iy 5C 4], 2
Ty FER I BB 6 S g2 X AR i X AY
BBE 20 5) X A1 Y v, R R T, 43 3%
X MY WES)RH A & local, 1 local,. i FEE 6
WSk BT R B AT S8 B s Local, R local, () f 445
HKE Ay R 1R 0, ORI AR Ty 51 A R A I — Pk
JEMW R, A T RIES [F 3k 8 s P . ARace 7E
HEAT S Wl Z [8 5] A 2 S AR R A O R]
ARG XN RES R ZAR X Y
PRI AR AT AT S

Tnit: X =7 =0;
T
1k h N
S1. Write back X with 1;
rite back AW L ™\ $3. Jocal, = X5
S4.localy; =Y ;
e 2

S2. Write back Y with 2;
Fig. 6 An example of writing back.

6 A5 [S

Zoad Lk Z 5. ARace th B HEITE
MR, H2, K BARHRAE R 4.) 4n UNIX,
Linux LA Windows &, ¥4 37 357 5 B~ 4 2 10 it S5
) 0 AR M hE S [R 2 A LT o TS [ks
AR o XN I E 2% o X ", ARace 1 5640 i — 4>
BT M FUL 0T, SR K 3 A B 09 i UL 0T B S B o BTAE
() 46 400 5T X N7 Y) B 0. XA ARace BT L
MR o 76 5 0h R 300 P A i B8 L o' 5 [l 313X A4S B
B R 42 BT, S2 PR F . ARace W] DA LA 0T B AT S
[l AE 3 bb DA 2% o X 0 (g e =2 AR) Shy PR
75 B & 20 A5 it B 45 RS - ARace BE i
53 TC P R 400 00, I A O 47 008 26 4 O 4P Sl O BT 2R T

B3 .

p—

3 HETEPHEEER

ARace X llm 5t DX PN 19 45 45 48 2 JEAT K A L F) B
HIEA Vs Ia) e 228 1. a0 Rz 48 4 Vi 0] 2 5248 44,
ARace X} FFEAT U5 0] B 1] 5 75 WA iE 47 4F o] 45
YE. Vi 1) 85) W53 3 B,
% 3. YiMERE N redirect_access(ins,t).

&I\ : instruction ins in a critical section,thread

=)

t executing ins;
it : if ins accesses shared variable, memory
address after redirecting.
@ type=instruction_type(ins);
@ if((type is Read_SV) or (type is Write_
SV)) then
addr=shared_variable_address(ins) ;
size=shared_variable_size(ins) ;
if (addr is in write buffer) then
if (size>writebuf fer(addr). size) then
allocate a new item in write buffer for
(addr,size);
if (zype is Read_SV) then

protect_sv(t,addr,size);

0066

copy the contents from addr to new item;
end if

copy the contents from old item to new

® 6 6 e

item and free old item;
end if

detect asymmetric race and update access

® ©

information;

return &writebu f fer(addr) ;

end if
if ((type is Read_SV) and (rype is not
Write_SV)) then

protect_sv(t,addr,size);

e 6 6

return addr;
end if
if ((type is not Read SV) and (zype is
Write_SV)) then
allocate a new item in write buffer for
(addr,size);

record access information;

© 6 6 &

®

return &writebu f fer(addr) ;
end if
if ((type is Read_SV) and (zype is Write_
SV)) then

(SIS

IR B ARG A X BRI e

1753

@ protect_sv(t,addr,size);
allocate a new item in write buffer for
(addr,size);

copy the contents from addr to new item;
record access information;
return &writebu f fer(addr) ;
end if

@ end if

Sk 3 MR AR R 0 AR T) A AR R 2 B,
HEAT AN [R) 9 B 5[] R T RO 20 17 48 4 SR TSR AL
(reduced instruction set computer, RISC) {& £ 4%
. MIPS, ALPHA #l PowerPC 45, & & LA
PR A7 5 20 BN N AF NS N AE. (B X T & 448
A2 (complex instruction set computer, CISC)
KRR LM Bl TA-32, 48 47 LLAT 3 Fh s £7 5 =
BENAEVE WA RS NAF . o e 3 Mife 5 e
VFIE 2 BN AE AR5 5 W AF. ARace ™ i 0] 8
FE [0] 592 AR 4 4 0k e 2 AR B i 7) 28 L 93) R AT
AbFE L P ARace SZHF B iR 2 R fF 2R AL
1.4 $EEME

Z 2R Z 18] 1 B) 20 2 e g B ke S B RS
TE S HT AT 09 K HS 4 g B2 18 5 L 24 C/C+H+,
Java Fl C# 55, F2)% 01 v] DG e S 58 A8 1 I8 HE 8
SCRIAZ B N i 19 i 4) B2 OR AR B8 o A o 7
FEBA X). PR, 331 i R 3 2 AR] DA 43 EAE
[F] — A~ A7 AP 21l 51X P 2 A IR R 4 3k 52
PR AP A AE U 8 25 9 N A O rh i B
EFEA YN HER A, B/ 7 /AR T — AR
S

® e 6 6

pagep
T Ty >

S1. Lock(Ly); S4. Lock(Ly); X
S2.local,= X ; S5.local,=Y ;
S3. Unlock (Ly); —>

S6. Lock(Ly); Y

S7.Z=localsy;

S8. Unlock (Ly);

S9. Unlock (Ly); L

Fig. 7 A deadlock example.
&7 AR 0 e S AR AR] — AN TP S B SE

TESE) A B XY Mg & Ly #0001
TER —AWAEL p p. B IEERE T FZds T, i
THATLE T M T, IR AATIRF X T, £E S6 4t
SR T BT Ly, Ty AEIR H il 5 X (PUAT S8 2
D22 R p RS R T T TR 1E s
FIXNHATFEMER T,)5 . p BERREER L 558 F

25 I p JF IR B EOE R R B o TR RS, X
SECT, ORI R Ly o PR R R i B R A AR
AT EEAE. T M T, A0 B4 FF A8)7 #F A FE 8
R Tk R FEBUIR A ARace f F — 81 AR
H 558 (lock variable mapping table, LVMT) %
PR LB B R L ok LR L A AR
KNI HL e — Hh 7 i1 w332] 55 1 P A X35
. gl 8 R LVMT 24— — B Ay g 3% &
(5 — 00 sk L B HG I i L7 PN A7 ik 2428
FRi#E L Lock/Unlock Xt L #4715 n] B, ARace 5t H
L (g A7 bk A5 4 LVMT RL3R S L ik . % J5
W LRl L7 SXRERRTH PR T LR SEA 0 nT e

Original Locks
LVMT

New Locks

L Id| Ori. | New
1 \ 5 ’
1| &L, | &L7 "] Ly

Iy > 2| &L, | &L, > Iy

/3 &Ly | &Ly —| 7
3
Ly

Fig. 8 Lock variable mapping table.
8 PiAE B

1.5 BEXET

TE— S Z LB T i BT B T R ERE Y
TR, AR & A RZED . A o 2B
(8 — i 7E I 5 DX IR 4 B a8) 26 A% B i))i 1
JEXTFR A v 4. il 9 s, A IR S2 Fn S
A B T AR X BR B S 4

Init: syncFlag =TRUE;
T, T,
S1.Lock(L); S4. syncFlag =FALSE;
S2. while(syncFlag){};

S3. Unlock(L);

Fig. 9 An asymmetric race with ad hoc synchronization.

B9 —A A AR X AR 32 5+ 1Y 1 52 LIl

BARTE ARace T IAT - A 23 fish % 31X AT X Bk K
Pasa g AER L WURERE T, $hAT S2 fEgkdE T, AT
S4 ZHT R4 Ty ¥ ToikB 1 S2 4y while 7 35
X I syncFlag BRI R SRS T, Joik it
BTN, bR B AR syncFlag X FER) R 228 i
AR I 5k 52 B 22 4R B 22 1) [) 25) PR Ot 9
FEAE M DX DR 4 4 3L A8 B ARace fff I SCHR

1754

HENMR S R B 2014, 51(8)

[8-10 48 th 1y 75 3 R WM syncFlag X HE Y[R 22 22
I A EATHEAT BRI I RE IR 5 X PN A48 2 5
AT L3) [A] A5 A8 i B4 R L DA T AN 23 R A TG BR 45
PR,

AKATN 4 ARace I —Fh e 7 20 T &
T) A AR ik Lk B] Pint RS2 ARace.
Pin J& Intel 7 & 0 sh 25 —EHl4fAERESL , IF 832
Mo H T3 AR ¥ 40 B (9 58 . Pin il i X R
(1 — 1 AR A AT 3l A5 B R 4 A L ke S B A A T 2
o K B DR« DR AN 5 2 8 e 1) U5 QR R R g

ARace B3 B2 —> Pintool, & F 24L& P4
BBY < A AE TR A4 5 A 5 1 R X g 4 A
PREGHATIEE , 73 AT 51 A& 5 2 ph X L2 AR R
P U) FE A 1) DA R AR i O AL & 10 R T
T HEAHELL o H AR 2 & BB Y 1 1A-32 °F
& B pthreads i #E4T % 1% » pthreads JEJ& — 1
Bz R 2 LR

(Target Concurrent Programs]
N

S S S s e S O e e e
Analysis Engine

| |
: |
| . Shared
| e Variable Lock |l
| utter Protecting Variable |
' |
|
/

Mapping

Instrumentation Engine)

()
()

Fig. 10 Implementation framework of ARace.

K 10 ARace SZ B FEACHE 42

2.1 HETE

N A b AR] W — AR e R Sk
AR, PR S AR SR IR T 0T SR Il B X
PR RS 4 J H AR DX Bl 725 R K4 X A2 R D 1R) B
AL BIBON g R Dy) e AR L BARIZ R) RE 2 5
A — L] H B I AR ARace B IEHfE.
2.2 ImRRMAPLE

1E pthreads JE o, 2 7 4 1) 38 3 98 F % o6 B0
pthread mutex lock Fll pthread mutex unlock Hf
AFIBR Hy 1l FE X X T2 R L prhread _mutex _trylock
T 2R 9 R B 25 SBORH R 8 8, IR 4 8] £k AR

BN R A B IX R

BEAR R RS b g DR R I HEA
pthread_mutex _t %5 ¥ 09280, 76 L ik P2 ok 8K
i D A A 7 e T 1% B A e R S A AR
38 I 0 R LA B R G b bk A R LVMT 3K 45,
W AE A PR B R B D U] 4 J2 B A A AR e T RN
JE U 1) A o

Ah , ARace 119 52 806 0] LA SCHR[9-10 142
HH A 5 3 SR TR Fh R B S SR AR AT R R s
1) bR ES TR B SR Il 5 X A A
2.3 EHTE

bR TS A A AR R R AN - R B AR
Z a5 WL TR A X — ok Ul B P AR AR I AL X
P AR S i AT U In). &1 11 45 T SPLASH-2-
() radix B 7 o 4l 2% 1 A ik R A7 W) 25 09 S). A
AT SRR B C BT R BB L R X
BERE = T — P i, BIDAH [B O 4 04 ifs A DX mT LA
A R AR I & AT

Init: flag=0;
T, Ty
S1.Lock(L); S6. Lock(L);
S2.if (flag==0) S7. flag=1;

S3. cond wait(C,L); <—— S8. cond_broadcast(C);
S4. flag=0; S9. Unlock (L);

S5. Unlock (L);

Fig. 11 An example of conditional variable.

BIL) SR B AT R 25

S bk R A R L DO SRR R AR A
PAE cond _wait(C,L) N BRI 2 .

Unlock (L)

Wait on C;

Lock(L);
BT LA s U5 B 2% 0 78 1 S5 RF 8 4B 19 Unlock [Lock
PR S IG AR X IE B A1k A bR R R]. 76 pthreads
FErh AT B R R JE BR B pthread mutex _unlock
usercnt| _pthread mutex cond_lock.
2.4 5 XHEME

TE I B4 X P X S 52 A8 5) 1 48 4 il i 3 25
Ao A B AT PN A R A R DL S B Sk A
[F) A B). TA-32 F & i — 2E 48 4, 1 MOVS
FRINHES M CMPS R84 55 /] LA Z D N7
VEHL. XoF T3k 26454, BT A 11 A A7 4V B 1 T 2 9l o
H.ONENABRERNES SR X N AR
U A A AE B O A Pin vl i 2 A7 &% E AT
A A RO T A R UIAT I A N A 4R

IR B ARG A X BRI e

1755

VEBOIWEAE A — A~ oA BOR 4K BOH 55 1) J5 7 ik
Iz M HEAE 3R PUE LA Pin mf (1 I B 25 47 25
XREE AT LS BN 4R & WA ERE BN S

2.5 IEREAHMEEEH

TE I 5 DX P9 B 18 T 0% R 50t 5 R A7 4 L DA
S BN I 2 AR g U 1)) 7 A 1) {HR L 7 I A X AR
WA) oA B B A W B AT A M. PR b Rl — A~ R
HT 58 W7 I S DX P9 B, SCAE I B DX A 1 .
R — A~ R 1 U R AE I B XA, B il
Ji AT BE 2 TE I A DX P9 B A B AN S A
XS KA Pin H T 4 A A9 R SCI0FE 5 378 A o BRER
— R Bl A AT

h T AR b AR AR A AY SR BR A A S B A AR
T LRy PRSI R S SC— A RN . — R BOTE i A IX
PR B 2 — B AL BN 2 5 B T e &1
e S DX A 3 5 5 D) 82 7 328 S 23 WA A 7 o 2
A g U) AT B R [R] 220, Ty 2) T 2 AR
JEAE G X P PAT , Q0 SRS L st nT DL AR L, R
PEAT L RE 0] 5 A0S Ll 4k 2k UE AT I A2). X PR T
T S 7 I 55 DX P9 B 9 R £ BRI B BRAR L A
M AH R 2 5 TR I 5 X A9k 08 FH A, SEBR B O 2k
A7 A T AR e [9 5).

BEAPRE r Bl sk — AR Fro 76 r 55 1 IR
BV FH I AR B - 2 7 2 A I A X P Bl R Fr
FIoIG . AR » 55 1 e HZ 7RG L IX N, Fr
Bk o) 46k iy TRUE. 5 W, Fr 5k % %0 16 16 N
FALSE. 7£1lfi 5t X P $AT B 4 5% call 15 4 3975 2 bk
KA. XFF B call 84, H H AR R £k~ 2 [
I ELYE A BE R A A0y, R Rk A - (19 Fr {4,
W Frj& FALSE, I8 2 1 56 2k 21 (invalidate)
Code Cache 15 XJ I 1) A AT AL AR5 4R 5 =
BAT Pin v 4 A) PRI LA SEBLXE - A 4 .
&G Frix 8N TRUE, X E/R r BLEIRR
X Py g o8 . 6T la] 82 call 84, HAR FREL r 2 A [
FE N T ZEAE % 48 A B AT B 3 A — > R
Bk 3R B r S BT N B9 Fr AH, IF e B8 3R 5 78 %t
Fr A TR A
2.6 RZEIEA

FE NG FE DX AT 1 22 48 08 F A 7T B 1) 4k =2
A5 b i

Lock(L);
gettimeo fday(&.tv,NULL) ;

Unlock (L) ;

Lrpsro JEAE TP 25 18] SOOI A N A 25 1) B 18 ek
LR, SR, ARace /N N0 to (4 3 0k B 42 1%
8 25 N A X N N o BITAE I TN A7 504 AT RE 2 22 98
ARace {4 HBDRA. AR B o B hE AL 6
2 WA IR A e A R GE IR B 45 2R 5 B o I AL
SR AR KR DR AE BT R IE AT I — R AR
SRR BR T A I XN IRAT B R GE A A L A i
P HMIAT 0 22 G2 8 FH A TR G)

T 3k G 3 AN ST B) AR G 0 R R AR SE B
ARace I . 7 B0 IR LE 5 7] 7 25 a] S g 3L 2 e
ARG BT e & G T A R) il —
AL R IR 2R A8 R kAR Dy RS B =
WAl i 25 A A SR 2R G 9 PR A i B DX P SR A T OF
Hoz s je 3L A8 B IR A 76 5 2 v X rh 23 S B
ARt IR AR IR i S DX (] 2 i ik 28 1 5 75 D)
AT LA AP — A e o A A O R L R AR R ST
PR R AT 58 I 32 RIDRE 1287 728 1 5 [3] J 4 A2

B OF m

3 LIGHE

3.1 XWIREF
® 14 T BRI IR AR SR B
B ik 2 7. S5 5 # A Intel® Core™ 2 Duo
T7250 2.00 GHz W) 4 ¥ &8, 2 MB i) — 9% 2% 4% 1
1GB W F 47 #-1E R G2 32 i Fedora 14, W MR
AJE 2. 6. 35 GiiFdw e GCC-4.5. 1.
Table 1 Experimental Environment

R1 RERE

Platform and
Arguments
Benchmarks

Processor Intel® Core™ 2 Duo T7250 2. 00 GHz
1.2 Cache/MB 2

Memory/GB 1

0s 32b Fedora 14, Linux-2. 6. 35
Compiler GCC4.5.1
SPLASH-2 default input, just incease input size
when necessary
Phoenix MapReduce version, large input size

pbzip2, compress a 73 MB tar file

aget, download a 321 MB file from a local
Real Apps

http server

pfscan, find a string in a directory containg
227 MB files

3K 2L 7 A 5 SPLASH-2M* 1 Phoenix™

1756

HENMR S R B 2014, 51(8)

MR, L SCSEBR Y 2 4 78 N 2 7. Phoenix H1 ()
N F A MapReduce, Pthreads #1 Sequential 3
ASRRAS . B tp MapReduce #l1 Pthreads Fi A< ¥4 i
pthreads E #4743, 1X L ¥k £ MapReduce WA i
Frma. 52 bR i) £ 2k #2 N B ¥ A 45 « pbzip2t',
aget'"™ Fl pfscan''®. pbzip2 & 3L {4 K 45 #% bzip2
FAT LI s aget JE— N2 LM hetp T 4% ; plscan
SEIFAT R SO A% L AT LASE B SO find , grep 45
Jitie.

DARR Sy Y M AE 2o B i 2 time-p” R 15
R TR &R Ge b — S Bl AL 3R A R 0k Be A
WP Y iE 1T 2 i PR I Z i 1 7 4.

3.2 ImfRR4HE

2 g th T IR Y B A A DR . Ho
55 3 FNFNEE 4 B 43 52 1 Bl i 4 AR e R R B AR
HHCH BT 51 2R R R G B AR R R 3 Y
PR L 3K P A B 3R AR T T AR A R E R il
FHRY A2 55 58 5 P2 sh AT Im A X ECH L\l
DL Y — S R Y AT 1 R a1 i A DA 431
4N radiosity il barnes; 5 6 1| J& - 3 78 & AN I 5L X
PIPHAT IR 38 250 J5 T 3 51 43) 2 7 35 78 B 4 1l 5
XN AT 32 V55 DA S i3 5 e 2 0 i 48 280G R m
— B 45 T AR I BN AT 98 A H0 SV TE 48
1 53 L.

Table 2 Critical Section Characterization

R2 GRAXHEHENE
Suites Benchmarks # L(.)ck = Lock #CS #* In,‘st £ Read‘ SV # Wrin? SV # ReadWr‘ife ‘ Ir‘lst
Active Total Executed per CS per CS per CS SV per CS in CS/%
cholesky 7 7 91 112.51 7.64 2.7 0 0. 00
ft 1 1 2 553.5 9.5 1.5 0 0.00
lu-con 1 1 2 553.5 9.5 1.5 0 0. 00
lu-non 1 1 2 549.5 6.5 1.5 0 0. 00
radix 4 6 13 303.77 58. 69 2. 54 1. 54 0.00
barnes 2049 2050 686 646 265.68 15.54 15.57 0 0.33
fmm 2051 2052 330980 481. 32 21.46 24.49 0.000012 0.21
SPLLASH-2
ocean-con 2 6 2416 16.13 4.91 0.91 0 0.00
ocean-non 3 6 89044 15.33 4.77 0.77 0 0. 00
radiosity 3914 3915 3212879 21.06 6.29 2.43 0 0.24
raytrace 5 5 196133 21.94 3.45 1. 16 0 0.00
volrend 5 67 70766 25.2 1 1 0 0.02
water-nsquared 517 521 4130 277.8 58.49 8.93 0 0. 06
water-spatial 70 70 2035 55.42 9. 38 1. 49 0 0.01
histogram 2 4 21718 61.51 8.95 2.98 0 0.02
kmeans 2 4 341715 129. 68 13.17 5.21 2.43 0. 00
linear_regression 2 4 8538 60. 76 8. 88 2.94 0 0. 00
matrix_multiply 2 4 369 83. 14 7.43 3.4 0.90 0.00
Phoenix
pca 2 4 7432 3349.73 192.74 475.16 19.12 0.08
reverse_index 2 4 6790 149. 88 21. 35 13.5 0 0.01
string_match 2 4 8537 243.12 12.76 3.91 2.91 0.00
word_count 4 7 2143 93. 35 6.53 1.76 0 0.00
pbzip2 3 3 680 132.22 16.07 3.33 1. 26 0. 00
Real Apps aget 1 1 82947 7.01 2.00 1,00 0.000 024 0.59
plscan 4 4 14977 21.71 5.70 1.67 1. 00 0.00

3.3 HEREF
Pl 12 4 th T R I — BT). T

ARace (52 B IF A M T Pin CAT LU] 30 09 J7 %
BT HD PO B DL Pin B $0FT B[] S B Al X 2%

IR B ARG A X BRI e

1757

&I I HEAT I — fb. 50 B 26 4 AT
Hrp s 1 AR RRT IR A2 17 I), 5 2 AR 2 Pin 1
IBATHFE] L, 58 3 AR ANEE 4 AR 435Il & ARace 1 ARace-
LU fyizf7ifial. I 12 Hha] PUE L BR T radiosity,
ARace 5| AW PEBETT 89 S 78 3 A% LA, 100 X T
radiosity, ARace 5| A W PERE FF #5 fe K, £ 17. 2 £%
it EY K E X T Pin, ARace 5| A B 1 fig

BIAUA 490 A AT X BEWT ARace 7630 25 25 20 FIAS I

5

A% R E A B 4 1 RIS L 5 1A B P BB T R R K.

13 45 H T 5 ARace # ., ARace-LLU J 7>
R E AR H i 5 DI DR 470 5 gk 47 P9 A7 0T R 2K
B LA RS) DU S OB NI 13 Rl DR
AR ARace-LU 38 /b T i A FUR HY ik 5t DX, X 5t
AT HEAT OR3P 5 i O 7 19 B, AR) s 389 o Y T T
SRR E. XAETE 2. 1 5% ARace-LU 47 1 1)
AT A R MW A .

g 18.21||19.2 O Native ® Pin ©O ARace O ARace-LU
g 4
E
M3
el
8
5 2
£
=l o) o)) o o o
0 172} L w o
faurt =1 f=1 >_< o o B\ e e = o Z < »® <= k=] o =1 Z
F B EECEESESEEEEEEE LSRR S 2
s 2 2 F B 'EEREEEEEE - -
= - S 3§ 8 F 2 g f 8 E2 & & o' | < = =
o 53 Q = [~ Q = 2] on = o
e 8 L8 = o | =g S m
g S (= 2 E =]
g 7 8 £ o @
< —
= £ E
Benchmark
Fig. 12 Normalized run time.
Bl 12 H—fkiyz 7t
10
17 O #Fault Increased ® #Protect & Unprotect Decreased
10°
5 10°
t 10t
=
2 0 NN
10
10" e ' I
10° | .
& £ 2 % 8 S 2 28 T8 T F 9 2 =8 X =S BN B S
FEEESEESEZEEEEEEEEREEEER 8
s 2 =2 " 8 S £%5 %79 29 & E 8 3 = B 9 8 %
= S 8 8 8 5 3 L og X & & 2]
o Q O = S o = 5 | 27~
S o ORI =R 5 & ©
L = o g 2 E =
s S s g @
= g E
Benchmark

Fig.
A 13

34T ARace [—Sig fT I FdE. 55 3 41
W8T ARace 5 A K K T I 58 B W LLR
WL R4 R . ARace B A 5 % R BOE AR
25 4 BRI 5 5140 g T TE RS B A sh 2
M 1) DU SR B AR 6 31 ARace FE AT T AR
. 2% Code Cache H A 4 AE o8 EK I OB 56 7 41
45T ARace #EAT U OR3P R OR300 B I e
— B 45 T ARace 15 I A X 45 HAF 5 [0 (9 T 1 B

13 Execution characterization of ARace-LLU.

ARace-LU iz 17 %5 5

B, AT A LI K 6. ARace 75 5 [fl 19 U 45 H
B2 B PR AT A I I P e 36 22 B i 5
BB A7 46 2B b X o
T 25 A H7 ARace % 543 31 A1 1 fig

B P 10 SO T ARace % 354336 17 I 1] B9 FE X H
5. 3Lrp) B A 3 43 Cinitialization) 5 76 AT I ik
R AT 52 A JH T4 Pin Y4790 U4 4L 5 0T 5 % A
B 43 (page Tault handler) Ji 75 22 B 1 1 9 19 57 50

HENMR S R B 2014, 51(8)

1758

Table 3 Execution Statistics of ARace

#z 3 ARace WiZ1THH4F 1%

= Page
Written Back

Fault . # Protect &
. . # Invalid
Static Dynamic Unprotect

= Fault

= Fault

Benchmarks

Suites

442 36

44

cholesky

14

fft

14

lu-con

14

lu-non

40

24

radix

4376954 1956 805

22

barnes

661096 10

62

mm

SPLASH-2

1745

9664

14

ocean-con

64119

356176

14

ocean-non

32 17740892 4464 888

103639

103639

radiosity

203010

80245

14

10

11

raytrace

70751

240564

42

volrend

56470 4195

14

water-nsquared

14156 3060

60

water-spatial

43172

86872

histogram

1366 860 539550

42

20943 1282

22225

kmeans

16812

34152

gression

linear re

474

1476

ply

matrix_multi

Phoenix

14 336

29728

46

111

111

pca

13316

105904

33413

33413

reverse_index

16 810

34148

43

string_match

8572 3758

16

word_count

1266

66

28

28

pbzip2

82078 41309

aget 37428 37428 14

Real Apps

164 845

64511 18950 24 363788

83461

pfscan

Access Redirecting B Writing Back

O Lock Mapping

O Initialization @ Instrumentation

& Page Fault Handler

T
| El A=)
Y7222 7222222722=))

V222772277222222772227222222772227222227722224
7277772722227 7272222727727
7772777722227
7227722722227 772722227277227722727727
A =

V7727727272222222722272222 2727222722277

LN ——
| 1] |

7777227722222777272222227222722222227 2=,

uonodold peayIaaQ

ueosyd

1o8e

zdizqd

JUNOY pIoM
yojew Suus
XOpUI 9SISARI
eod

Adnnuw xryew
uorssaIgar reaur|
sueauny
werdoisiy
[eneds-1ojem
parenbsu-1ajem
puaIfoA

oenAer

] Asorper

Uou-ueado

UO0J-UB300

] wuy

] seureq

Benchmark

Overhead proportion of ARace.

Fig. 14

14 ARace £33 1 BE FT 85 19 AH X L 4]

IR B ARG A X BRI e

1759

JF & A T S H B AT

MIE 14 thaf LIF H . B T cholesky #l linear _
regression , 4 A AR P FE AT DLy g RS, A2 55 1
Zerp PERE T 11 32 243 3 J2 4 BE (instrumentation)
B 4n fft, lu-con, lu-non, radix il pbzip2 &% ; 7 A 4}
— v PERE I A 1Y 32 IR 43 02 U7] 2) Caccess
redirecting) ,] 41 barnes,radiosity Fil string match
AL PP X EZ R AR T LA 2 BRRBIT R IR IX
N Bl S PAT Y 48 4 Bt B TR A B0 L i i KT
1 28R, % TF cholesky Hil linear regression, & 1]
ML BIZESS 1 2RSS 2 2822 [a), DA Ut 4 A i) 2
JE [] (4 B[] B A7) B B B2 3. NIET 14 TRk n] LUE S
f T — SR P, B 1] (writing back) & 14 B8 T 55 1)
I, B U0 radiosity, volrend 1 pfscan %, X f&

PR A7 53 DX P A R ok e 2 A0 o 9 5 AL A L A
14 vt vl DU 00 B4k L DU T S5 8 Ak 28RN 1 A%
B (lock mapping) 51 A B9 M B8 FF #5 3 A K.
3.4 NEFH

F ALK T ARace fEiz Tt BN £E S H
L H P 3 P G X BN AE 26 4 5102
globalPage Z544 & HI W N 173 55 5 91 W R FEFAA A7
it S o5 HA A 56 6 51 R A A% o e 3k o5 A N AE
BS54 R S A G TR A R RTI 4 5 22 R AR
4 Al LUE . ARace 5 I A — AR AR /)N . o
5 KB barnes t HF 169 KB.

15 45 T ARace A7 I 85 4 B2 T B 46 BT
T NAESVEL A 40 L. WL 15 F Al UE . ARace
S NAETF 8397 0. 1% LUF.

Table 4 Memory Overhead of ARace

x4 ARaceINESLSH=E B
Suites Benchmarks Write Buffer Page Info Thread Page Info Lock Total
cholesky 528 112 56 168 864
fft 88 16 16 24 144
lu-con 88 16 16 24 144
lu-non 88 16 16 24 144
radix 88 16 16 96 216
barnes 123080 448 136 49176 172 840
fmm 176 48 24 49224 49472
SPLLASH-2
ocean-con 88 16 16 48 168
ocean-non 88 16 16 72 192
radiosity 22836 256 104 93936 117132
raytrace 208 144 64 120 536
volrend 792 32 16 120 960
water-nsquared 18576 240 72 12408 31296
water-spatial 144 96 32 1680 1952
histogram 176 16 16 48 256
kmeans 220 16 16 48 300
linear_regression 176 16 16 48 256
matrix_multiply 132 16 16 48 212
Phoenix
peca 176 16 16 48 256
reverse_index 176 112 112 48 448
string_match 132 16 16 48 212
word_count 132 16 16 96 260
pbzip2 44 16 8 72 140
Real Apps aget 88 8 8 24 128
pfscan 176 16 16 96 304

1760 IR SRR 2014, 51(8)
g
5 06 5. 82
g 0.5 —
2
8 0.4
g 03
=
¢ 0.2
© 0.1
E, .
g 0.0 ._._- m I_._l_._
) ®n —) - -
:" gerszi58 3 8 EBEELiT838 52
3 I8 §SE IS EmEBE EESgET &y
S = 2 S ﬁw—gg»oo--{;‘gggs P& S a S
S 2 8§ BE R P2 48 & & g o B 3
Sl r 2 = B 5 £ ¢ 53]
2 = 5 & 5 @ ©
= g8
Benchmark
Fig. 15 Memory overhead of ARace.
& 15 ARace Y N A7IT 44
3.5 AR HC16 1 32 H9HIR. AT aget B2 0 B ECHYHE

16 45 T ARace 7R HE 7 A W] £k R B Y
AAFT S PERETT 85 0N T 8 B9 AL LS B T aget
FRIF 2R AR B 1 10, PR IX HLJE i 4t 2o iR

0.7 0. 04
= Jpp— £
= 0.6 3
£ o r,_é.{// "%
15 [
2 0.4 —8— 3
< lo.oz
S 0.3 1)
§ 0.2 5
€ 0'1 —— Performance Overhead | ©- 01 E
g - —=— Memory Overhead =
0.0 3
1 2 4 8 16 32 000
Number of Thread
(a) Pbzip2
R 25 0.12
> =
g 20 —~ - 3
£ b
5. Pa———— {o.08 &
S - 2
g 10 — ~ 2
g oy —— Performance Overhead | 0-04 g
e -#— Memory Overhead s
£ 0.0 . . 0. 00
1 2 4 8
Number of Thread
(b) Aget
= g —— Performance Overhead oy 0-10
3 —=— Memory Overhead vz 10.08 §
j:: 6 .___.___—I//] g
g y 10.06 §
o / J =
8 4 o
g 10.04 E\
E 1 £
2 4 (5]
ﬁ ~ 0. 02 s
(=W
0 0. 00
1 2 4 8 16 32
Number of Thread
(c) Pfscan
Fig. 16 Scalability of ARace.

&l 16 ARace 7§ &

ARace 5 A B N FE FF 55 32 W T B X 02 RS 4
TR P A B BT T 0% o8 A7 e i B 2 2 R 00 i
iR BT T ARace.

& 16] DLk B, B A 4R AR B0 B . ARace
SUA P e T 85 0P AF TE 55 00 388 0 i B2 34 OR R X
FKW ARace HA B AT k.

4 MEXIIE

4.1 EXNMRYFBEBES

H i PR X 35 060 FR £ 8 58 4 B9 A 98 32 22
A2 T AT AR X 2L 0 2 S B A AN TR
AT LK EAT o0 o W6 28« B8 T 3R 09 Jr i R R 1
BB A 0% . Hev s 5 T AR 0 O i b e B AR
i ToleRace 811 ISOLATORM ; 3L F 8 44 11
J7 85 Fe B AT AR e 19 S Pacman™ . R I 43 51 TE 40

4.

MAR T, 3 Alm A X B, ToleRace hy £ 4~ 7
LK P 5 1) A 3k SR AR o BB A A o A
o IEE] v BES] o T G v=0" =7 T, 1
I B X P X o 57) A8 B X o B 7 Il 5 i T
BF S FE NG A X AN AT R R T, 758K W] L IE & v 7]
ARG 0. Y T, R IE A X BT, ToleRace L v
Ao B M. WHR v F1 0" M %, ToleRace A hy % A fish
R AR FREE 35 4 s W] ToleRace 75 AR 48 & A2 1Y
A X BRI T 4 1) AR P S AR B o 1Y R A
fH: DR T, AT LR TR T, Z 07, I8 4
AR o B2 R T, B PAT Rl LA AT AR R T,
ZH B2 E R O EE] 0 D WR T, # AT A

IR B ARG A X BRI e

1761

T, WPAT L H171L . A4 ToleRace ¥ 2¢ 11 72 7
I PRAT 5 PR B T i 25 280 ik Al i B B i 5 4. S B
5 3 AR AR B T S AR S PR R Y R AR L
(00 330 DR O R A I B X PN X s 22 70 e 1E AT U
[E A A e i i S A L R R R R I AR
. UGSk i S B X A AE R 2 A Sl AR Y U
5] I8 2 43 A7 AR K BB e G 1 B 25 AR 4 L 3X
WAHRKIRH T ToleRace 1A 2L fig

ISOLATOR fi 5% F 01 o 5 2% AE 4 Fr 5 o
g M T, o ARG B X AL ISOLATOR & il 43
ANTE NG X P9 1 1)) S =2 00 31 6 1 0 5% 7 00, I
B F R AL = U B A AT SRS, T, FE I AR IX N
Xof e 22 0T B 7 0] A 18 AR X A B Y R - O 1).
I W SR AR I R X AN AT R R T, 2R
MR AL R4 T, A2 E T, 8
A X, 2 T 3B s 5 X A, ISOLATOR ¥ fir A
BT UL N RS B = T, AR R I TR E
AEDRZS X RE W B 2209 T, b AT Lo 3t 52 01 gk 47
B T 2k AT R A R TRk
ISOLATOR 75 % 88 77 i IR AR i4E 17 3687 g 3% o %
THREBRFEETET TBRERFEOFEMAL. XK
KIEH T ISOLATOR fy i FH 3 [l 3 2 B R A7 7
AR X PR B T 4 00 R G R AR AR 1R R G kRS
1 o) it = AR A0 2R = 7 R AR A 45 Y1l B IX 5 i)
£ AR U ISOLATOR Je ik il 5 il 24 1
T B TR R L X R AR 2 5 BOR — 0 Bt
SEIL.BLAN YA I K S DX [7 1) A [) e =2
A i, ISOLATOR i £ 78 8 4 it 7 i

LR A I F A8 T R AN A Pacman 2 3
T 0 A 1) B 25 25 L AR X FR s 55 4 19 U %8, Pacman
i 3 7E Ab B A% cache HYS AR A1 4B 14 ok W i 2
AL PR LR Z 18] 14 cache — BUVE A A5 o DT 9 il Ak B 2%
Xof AR B A 7 IR L 2T S R Bh 2 2 2 R X B B
S 4. IR AR B A S 78 I 3 DX P AT 19 4 4 TN 7 Il
BLIX AN AT W) 48 4 B X 5. At , Pacman 75 224}
Z 2 PE (4N pthreads FEAE) FATE 2, LUR s iE A
ol 3R I A XA R B0 . B4R Pacman il 3 B 0
BIAI B RE A AR T 30 A 25 2 A X RR B 5 4 i Mg
FEES H 2 R T A0 Rl b BEES b B X 2 R
HE L FTLL Pacman {1588 TG ik B N #E LA 14 Ak
HRES L. B, FE R AR 04 5 R St el X R B0l S
Gru] A) 8k AR A 6L

4.2 EHZNF

4 N1+ (transactional memory, TM) & 5 —
255 ARace MM AFFE TAE™ . £ TM H, i F X
W E AR F 5 I B 5 0] IR L AT, 7E
H LR TM K A 3 55 TEPAT L R o 2 AR TE
Xof e AR B) wp oS s . W AR A A, TM K £ 5
(abort)iZ = 55 K FHAT I A1 (roll back) T 47 1%
5 AL TM #8232 1% 55 55 1 AT, 3555 N AP 4%
RS 0 5 5XAT DA 43 o 6 R 3 T o |
DA R F O IR A

AR TM WA 1 ARace BRI EZwhIX , (H 2
TM F 824t —Fh L, L DR IE T 81 85 4 45 4
) 1 T ARace T2 S e 22 2 B 5 b AE XS
FREHE T8 4 1) 25 22 TR DN 1) .

ARace [52 BLHLE AT TM A3 4% 7 X). 3¢ 2 A
H ARace 1A BALIAT I F DX, A T B0 s S DX
AT R FERER 5 1 TM 7 [BIR (1) 3o 72 rp 75 2 250
Ak PRI 26 A @A (side effect) B9 #RAE . B HT X A3 4%
JEANAINBMERE . I Ah, ARace fifi F§ LVMT fif g
FRFP PUAT R B TP W AE) L B) (UL 2.4 95D, 3K 4l
s TM A 8 21 i] 2.
4.3 HIEZHKEN

1% G2 19 B S 4 A) Agf 2 3 3 R T 4 A A T 1
S B SCHE B A A DAl O i AN T L B
T A I LA AT DL A Sy e 2 AR 0 A S 2 A N 2
R Rl SE S R A o o VT v N7 (1 B S = e)
R GRS WA AT DA B A AT AR
T3 W 7 B AN i S ARG T — A A R B
BETERE IR IR (false positive). B 25K I 3= 38
BT B4 A BIEYY | happens-before 43 HH L DL I
TR EAR R S A I AR B B AR T Y
% N (SRS Py ivalll Tl i s i e S (PSR
B BB 5 4 4G T A L . ARace 1 %6 #0932 2 JE X Bk
A58 4, IF 0 X U 5 A IR AT 3h A A AL RS

5 % it

ASCERN T MR T 2 LR R s
4 2RI AR X B R He 32 4 (19 7 5 ARace. ‘Bl
S AR B ORI RS 2 i DX T B AR L S B R AR R R
Bl e P 1 A2 A, 5 2 A 177 M 1 . ARace
ANACRT LA 2l B X P9 I B DX Ah 2 (8] R AR X AR
SO T A 3 AT UK I 2K e 51X 22 [8] B 3R X6 AR

1762

HENMR S R B 2014, 51(8)

TE P IEAT AR, AN, ARace AR AT 4] F2 5 PR A
Gt 1PF e ANBE 1) SCRF. A SCR 45 T ARace) — il
BT g A 3 A A S B O XS R als R
ARace 725 2 FUA I AF XS K B 56 4 09 [7] 10 I R
FIAAR I B P RE TT 45 AN 77T 55

2 % X W

[1] Leveson N G, Turner C S. An investigation of the Therac-25
accidents [J]. Computer, 1993, 26(7); 18-41

[2] Security Focus. Software bug contributed to blackout
[EB/OL]. [2004-02-127. http://www. securityfocus. com/
news/8032

[3] PC World. Nasdaq's facebook glitch came from race
conditions [EB/OL]. [2012-09-217. http://www. pcworld.
com/article/255911/nasdaqs_facebook glitch came from race
conditions. html

[4] Ratanaworabhan P, Burtscher M, Kirovski D, et al.
Detecting and tolerating asymmetric races [C] //Proc of
PPoPP’09. New York: ACM, 2009 173-184

[5] Qi Shanxiang, Otsuki N, Nogueira L. O, et al. Pacman:
Tolerating asymmetric data races with unintrusive hardware
[C] //Proc of HPCA’12. Piscataway, NJ: IEEE, 2012: 1-12

[6] LuS, Park S, Seo E, et al. Learning from mistakes—A
comprehensive study on real world concurrency bug
characteristics [C] //Proc of ASPLOS’08. New York: ACM,
2008 329-339

[7] Abadi M, Harris T, Mehrara M. Transactional memory
with strong atomicity using off-the-shell memory protection
hardware [C] //Proc of PPoPP’09. New York: ACM, 2009
185-195

[8] Xiong W, Park S, Zhang J, et al. Ad hoc synchronization
considered harmful [C] //Proc of OSDI'10. Berkeley:
USENIX, 2010: 1-14

[9] Tian C, Nagarajan V, Gupta R, et al. Dynamic recognition
of synchronization operations for improved data race detection
[C] /[Proc of ISSTA’08. New York: ACM, 2008. 143-153

[10] Jannesari A, Tichy W F. Identifying ad-hoc synchronization
for enhanced race detection [C] //Proc of IPDPS’10.
Piscataway, NJ. IEEE, 2010. 1-10

[11] Luk C, Cohn R, Muth R, et al. Pin: Building customized
program analysis tools with dynamic instrumentation [C] //
Proc of PLDI'05. New York: ACM, 2005: 190-200

[12] Woo S, Ohara M, Torrie E, et al. The SPLASH-2

programs: Characterization and methodological
considerations [C] //Proc of ISCA’95. New York: ACM,
1995 24-36

[13] Ranger C, Raghuraman R, Penmestsa A, et al. Evaluating
MapReduce for multi-core and multiprocessor systems [C] //

Proc of HPCA’07. Piscataway, NJ: IEEE, 2007 13-24

[14]

[15]

[16]

[17]

(18]

(191

[20]

[21]

[22]

[23]

[24]

[26]

[27]

(28]

[29]

[30]

Pbzip2. Parallel bzip2 [EB/OL]. [2012-09-207. http://
compression. ca/pbzip2

Aget. Multithreaded HTTP download accelerator [EB/OL].
[2013-01-20]. http://www. enderunix. org/aget

Pfscan. Parallel file scanner [EB/OL]. [2013-01-25 J.
http://ostatic. com/pfscan

Ratanaworabhan P, Kirovski D, Nagpal R, et al. Efficient
runtime detection and toleration of asymmetric races [J].
IEEE Trans on Computer, 2012, 61(4);: 548-562
Ratanaworabhan P, Burscher M, Kirovshi D, et al
Hardware support for enforcing isolation in lock-based
parallel programs [C] //Proc of ICS’12. New York: ACM,
2012 301-310

Rajamani S, Ramalingam G, Ranganath V P, et al.
ISOLATOR: Dynamic ensuring isolation in concurrent
programs [C] //Proc of ASPLOS09. New York: ACM,
2009. 181-192

Herlihy M, Moss J. Transactional memory: Architectural
support for lock-free data structures [C] //Proc of ISCA’93.
New York: ACM, 1993. 289-300

Lupon M, Magklis G, Gonzalez A. A dynamically adaptable
hardware transactional memory [C] //Proc of MICRO’10.
Piscataway, NJ: IEEE, 2010. 27-38

Khan B, Horsnell M, Lujan M, et al. Scalable object-aware
hardware transactional memory [C] //Proc of Euro-Par’10.
Berlin: Springer, 2010: 268-279

Saha B, Adi-Tabatabai A, Jacobson Q. Architectural
support for software transactional memory [C] //Proc of
MICRO’06. Piscataway, NJ: IEEE, 2006 185-196

Kumar S, Chu M, Hughes C J, et al. Hybrid transactional
memory [C] //Proc of PPoPP’06. New York: ACM, 2006.
209-220

Damron P, Fedorova A, Lev Y, et al. Hybrid transactional
memory [C] //Proc of ASPLOS06. New York: ACM,
2006 336-346

Flanagan C, Freund S N. Type-based race detection for Java
[C] //Proc of PLDI'00. New York: ACM, 2000: 219-232
Huo Wei, Yu Hongtao, Feng Xiaobing, et al. Static race
detection of interrupt-driven programs [J]. Journal of
Computer Research and Development, 2011, 48(12): 2290-
2299 (in Chinese)

CEERG, TUbVE, Wmete, 4. Fr AR b b oK 2h 2 7 /) B0
e l)]. ITEMBIR SRR, 2011, 48(12): 2290-2299)
Pratikakis P, Foster] S, Hicks M. LOCKSMITH . Context-
sensitive correlation analysis for race detection [C] //Proc of
PLDI'06. New York: ACM, 2006 320-331

Savage S, Burrows M, Nelson G, et al. Eraser: A dynamic
data race detector for multithreaded programs [J]. ACM
Trans on Computer Systems, 1997, 15(4). 391411

Adve SV, Hill M D, Miller B P, et al. Detecting data races
on weak memory systems [C] [/Proc of ISCA’91. New
York: ACM, 1991: 234-243

IR B ARG A X BRI e

1763

O’Callahan R, Choi J. Hybrid dynamic data race detection
[C] //Proc of PPoPP’03. New York: ACM, 2003 167-178

Wang Wenwen, born in 1986. PhD
candidate. His main research interests
include multicore programming, dynamic

optimization, and binary translation.

Wu Chenggang, born in 1969. PhD and
associate professor. Senior member of China
Computer Federation. His main research
interests include dynamic optimization and

binary translation (wucg@ict. ac. cn).

Paruj Ratanaworabhan, born in 1970. PhD
and lecturer at the Department of
Computer Engineering, Kasetsart University
in Thailand. His current research focus is on

system security and multicore programming

(paruj. r@ku. ac. th).

Yuan Xiang. born in 1984, PhD candidate.
His main research interests include
dynamic optimization and binary translation

(yuanxiang@ict. ac. cn).

Wang Zhenjiang, born in 1983. PhD and
assistant professor. His main research
interests include dynamic optimization and
binary translation (wangzhenjiang @ ict.

ac. cn).

Li Jianjun, born in 1984. PhD. His main
research interests include program analysis
and dynamic optimization (lijianjun @ ict.

ac. cn).

Feng Xiaobing. born in 1969. Professor.
Member of China Computer Federation.
His main research interests include
compiler techniques and programming

environment ({xb@ict. ac. cn).

	1
	2
	3
	4

