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Abstract

Project Code : MRG5580245

Project Title : Graph Theoretic Approach to Modeling Growth of Thin Films under
Molecular Beam Epitaxy Technique

Investigator : Asst. Prof. Surachate Limkumnerd, Ph.D. Chulalongkorn University
E-mail Address : surachate.l@chula.ac.th

Project Period : July 2012 — July 2014

Interests in thin-film fabrication for industrial applications have driven both
theoretical and computational aspects of modeling its growth. One of the earliest
attempts toward understanding the morphological structure of a film's surface is through
a class of solid-on-solid limited-mobility growth models such as Family, Wolf-Villain or
Das Sarma-Tamborenea models which have produced fascinating surface roughening
behaviors. These models however restrict the motion of an incidence atom to be within
the neighborhood of its landing site which renders them inapt for simulating long-
distance surface diffusion such as that observed in thin film growth using molecular-
beam epitaxy (MBE) technique. Naive extension of these models by repeatedly applying
the local diffusion rules for each hop to simulate large diffusion length can be
computationally very costly when certain statistical aspects are demanded. We present
a graph theoretic approach to simulating long-range diffusion-attachment growth model.
Using Markovian assumption and given a local diffusion bias, we derive the transition
probabilities for a random walker to traverse from one lattice site to the others after a
large, possibly infinite, number of steps. Only computation with linear-time complexity is
required for the surface morphology calculation without other probabilistic measures.
The formalism is applied, as illustrations, to simulate surface growth on a two-
dimensional flat substrate and around a screw dislocation under the modified Wolf-
Villain diffusion rule. A rectangular spiral ridge is observed in the latter case with a
smooth front feature similar to that obtained from simulations using the well-known
multiple registration technique. An algorithm for computing the inverse of a class of sub-

stochastic matrices is derived as a corollary.

Keywords : random walk, molecular-beam epitaxy, Markov process, graph theory
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Executive Summary

Due to the energy crisis looming the nation, research on alternative fuels is
pivotal for the country's industrial and financial prosperity. Thin-film solar cells have
shown great promises primarily for their relatively low production cost, endurance, and
compatibility to Thailand's natural climate. Experimentation on thin-film solar cells,
dating back a few decades ago, has sped up recently at the university level and in
research institutions such as the Research Center in Thin Film Physics. To much
dismay, theoretical and computational efforts on this subject have been lacking and thus
are unable to provide fruitful and testable contributions to the experiment. Questions,
such as what is an ideal condition for film of particular crystalline structure to grow
smoothly or given an initial substrate profile what would be its eventual structure after
growth, have never been thoroughly understood. Initial steps have been taken in trying
to model thin film growth using molecular beam epitaxy technique using several toy
models. These models, though easily implemented and recently modified to represent
myriad lattice structures, fail to realistically recreate atomic behaviors at high enough
temperature scales, where atoms diffuse for an appreciable distance, due to insufficient
computational resource and naive algorithms. In this work the principle investigator
proposes a novel approach to modelling epitaxially grown thin film. Using techniques in
graph theory and stochastic processes, the method offers a new way to model long-
range diffusion-attachment film growth together with growth's statistics. The study
should be beneficial not only to solar cell fabrication but to other fields of thin film

technology where surface properties are of considerable importance.
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1 Introduction & Objectives

Limited mobility solid-on-solid diffusion models as means to study surface
growth continue to attract much interest even after decades of investigations
both computationally and analytically. In Wolf-Villain (WV) model [45],
adatom moves in the direction that mazimizes its coordination number in the
next discrete time step; while in Das Sarma-Tamborenea (DT) model [14], it
moves to increase the number provided that the current one is not sufficiently
high. In both models, and others like them, adatom moves one lateral step
before coming to a halt. Despite their simplicity, they are found to yield con-
sistent simulation results with more realistic finite-temperature model using
Arrhenius hopping rate [13, 40] and low-temperature MBE experiments [31].
These models, however, are inadequate as tools to investigate surface evolu-

tion in cases where each adatom undergoes a large number of hops before it



is embedded as part of the surface. The simplest extension these models to
mimic a large diffusion length by repeated applications of one-step motion
cannot avoid prescribing an ad-hoc maximum cutoff distance, and often is
too computationally intensive for problems which require large-scale and/or
long-time simulations. Furthermore this basic approach does not give any
statistics of the growth in any straightforward way. A more systematic ap-
proach is needed. The aim of this paper is to present a graph-based method to
model long-ranged solid-on-solid diffusion-attachment surface growth where,
one at a time, an adatom is deposited onto a surface where each hop is deter-
mined by the local environment and is independent upon the previous ones.
Our method can, in principle, provide statistics such as the average mean free
path of growth particles and give the most probable surface pattern under
any given lattice structure and local diffusion rule.

Graph theory has been at the core of mathematics and computer science
and has recently fueled considerable interests in understanding the behaviors
of complex networks [28, 39, 2, 7]. One of the theory’s vast applications is in
the development of random walks on graphs [25, 10] where a random walker
traverses from one vertex to subsequent ones along (possibly weighted) edges
connecting them. To use this idea to model surface growth on lattice due to
long-range adatom diffusion, we construct a graph whose vertex ¢ represents
a lattice position and stores in it relevant lattice-dependent properties (such
as atomic height at that point). An edge connecting two neighboring vertices
1 and k signifies a non-zero probability P;, of an adatom, if present at 7, would
hop to k. This hop thus decreases the height value stored in ¢, and increases
that stored in k£ by one unit. The weight of each edge can be obtained, as
is the case here, from a chosen diffusion model such as WV or DT, or from
a more realistic calculation using density functional theory. Through this
graph, we establish the most likely final position of a deposited atom whose
trip begins at i, and the average number of hops it takes to get there. By
repeating this process, the surface is evolved.

To test our method, we choose to apply it to simulating the spiral sur-
face growth around a screw dislocation commonly observed in MBE grown

films with lattice mismatch at the film-substrate interface such as that of



GaN based devices [20, 32, 12], or certain semiconductor materials [38],
and is known to provide a mechanism for driving the growth of a class of
nanowires [27]. Unlike the spiral growth in the limit of fast desorption, where
the ridge motion can be determined locally and is well described by Burton—
Cabrera—Frank (BCF) model [8, 9], the minimal desorption limit where parti-
cle’s diffusion length is comparable to the system size still presents a modeling
challenge. Theoretical and computational investigations of spiral growth in
this regime are typically carried out in a continuum limit using a phase-field
method [34, 49]. This method although provides an analytical handle to
the problem, it suffers from the shortcomings of a continuum formulation,
e.g., when accounting for system’s anisotropy. Kinetic Monte-Carlo (kMC)
method has also been chosen to explore the spiral growth [48, 47]. In order
to suppress microscopic noise, either the use of multiple-registration [46, 41]
or atomic evaporation [48, 47| schemes must be implemented. The latter,
though more realistic, is less practical at the extremely low supersaturation

limit being considered.

2 Mathematical construct

The mathematical question underlying our modeling of particle diffusion with
possibly infinite diffusion length amounts to finding the probability that a
random walker beginning its journey at position ¢ on a lattice would reach
far-away point j by traveling along the edges connecting them. Edges linking,
say, vertex ¢ to its neighbors are not necessary of equal weights. Biased or
asymmetric walks are accounted for by having directed weighted edges. This
type of walks is required for modeling diffusion in the presence of fields such
as in electromigration [4] or when adatoms sensitively react to local atomic
configurations. The Markovian assumption that each step the walker takes is
independent of the previous one was proven to be quite accurate [44]. If only
nearest-neighbor hopping is allowed, only edges linking nearest neighbors are
present and the graph structure matches the structure of the lattice surface.
In principle one can incorporate long atomic jumps by including edges linking

remote sites with a suitably weight factor. This type of jumps has been



observed experimentally with fairly significant jump rates [3, 29, 24]. For
simplicity we shall only limit ourselves to one random walker. This allows us
to easily define system’s state at a given time by the lattice position of the
walker. A more complicated scheme is required to define a state should one

choose to model, e.g., clustered or collective diffusion [30].
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Figure 1: A graph representation of a transition matrix whose vertices
symbolize states of the system in terms of adatom’s position. Fach arrow
depicts an edge linking two positions whose transition probability from one
to the other is non-zero. The probability is derived from WV diffusion rule on
a circularly shaped substrate with a screw dislocation. One can see the trace
of the underlying simple cubic lattice structure from the graph. Vertices and
edges in red (dark gray) show a part of the graph which is strongly connected.
These vertices form a class.

In this section, we shall outline the relevant portions of discrete time
Markov chain needed for the modeling and state our graph algorithm for

computing the infinite-hop transition matrix. For an illustrative purpose,
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we shall phrase the problem in the language of crystal growth where an
adatom wanders from point ¢ to point j according to a given set of diffusion
rules by hopping between atomic positions (vertices) linking ¢ and j. Let a
lattice configuration, some lattice-dependent property which influences the

—

probability of the adatom such as atomic heights, be described by H =
{H;}. Define a one-step transition matrix P(H) whose element Pm(ﬁ ) gives
a transition probability for an atom at ¢ to go to one of the connecting sites k
which usually is a nearest neighboring lattice site. A non-zero element P, is
thus equivalent to having a directed edge with a corresponding probabilistic
weight connecting vertex ¢ to vertex k£ of a graph as shown, for example, in
Fig 1. We also account for in-place hopping through the matrix element P,
(represented graphically by a vertex with self loop). Since the adatom must
go somewhere ), P, = 1 which makes P a stochastic matrix. Knowing PP,
one can easily find the transition probability from ¢ to j if the atom takes

exactly n hops using

n) (n—1)
]Dz(] = § :Pikpkj = Pikl"'Pkn_ljv (1)
k k1,k2,....kn—1

or simply, P = P" in matrix notation. Since we are interested in the long

diffusion limit, we shall investigate in particular the case where n — oo.

2.1 Lattice site classification

Given the state of height configuration H, one can classify lattice position j
(or system’s state) according to the limiting behavior of P> into transient
class (denoted by T) or recurrent class (denoted by R). In case of finite
number of system’s states [18] (which is particularly relevant for modeling
Markov processes on a computer), j is transient if P = 0 and recurrent

otherwise 1. Loosely speaking, if one lets an adatom wander for a very long

In particular these recurrent states are non-null. For j € R, it is non-null if u; =
oo nk7j is finite. Here F}} is the first passage probability which denotes the likelihood
that a walker starting at ¢ will end up at j for the first time after exactly n hops. Thus p;
gives mean recurrence time of state j or the expected value of the time of the first visit to
j from j.



time, it will end up at one of the recurrent sites. It is easy to see that there
must be at least one such site, otherwise P;° = 0 for all j with edge(s)
directed from . This would lead to Zj P> = 0 and we would reach a
contradiction because the adatom starting from ¢ must go somewhere. The
real merit of this classification is that it can be done through permuting rows
and columns of P which amounts to relabeling of lattice positions, and prior
to the actual computation of P itself.

If P is reducible, i.e., if there exists at least one transient site, then by
definition one can find a non-unique permutation matrix @; that transforms
P into a block triangular form such that Q] - P- Q1 = (§ ¥ ), where X and
7. are square matrices, and O is a matrix with all elements being zero. If X
and 7 are reducible still, then we can apply another symmetric permutation
to them. If during the process there exist rows with nonzero entries only in
diagonal blocks, these rows can be permuted to the bottom of the modified
transition matrix. Finally we shall arrive at the upper-triangular block form
or the canonical form for reducible matrices [26] of a system via permutation

matrix @ formed from the products of previous permutation matrices:

_ Pr.;r Pr.
P-q'-p.q=( " T, (2)
0] IP'R—>R
where
Ty Tip Ty,
~ O T, Ty,
]PT_,T - 9 (3)
O O T,
S11 Sir R, O
IPT—>7?, - e P IPR*R =
St 1 St r ) Rr

Each diagonal block matrix T4, ..., T} is either irreducible or O and Ry, ..., R,

are irreducible and stochastic. In the language of graphs, the graph represen-



tation of matrix A is irreducible if there is a sequence of directed edges linking
every pair of vertices together, i.e., the graph is strongly connected. As an
example, the vertices and edges highlighted in red (dark gray) in Fig. 1 make
up a subgraph which is strongly connected. Thus their transition matrix
representation is irreducible.

Through the application of @), the newly ordered, one-step transition ma-
trix P shows the separations of lattice sites into ¢ transient classes Tq,..., 7T,
and r recurrent classes Ry, ..., R,. The form also effectively suggests from
which transient classes is a site in a recurrent class accessible 2. It is therefore
of paramount importance to devise an algorithm to construct Q). We shall

postpone this discussion to Section 2.3.

2.2 Limiting lattice transitions

To arrive at the limiting transition probability matrix IP*°, one is interested in
examining the possibility of transitions between elements in 7 and/or R. We
shall state without proofs these results [26], some of which are most evident
from the structure of P in Equations (2) and (3). The following transitions
from 7 to j lead to vanishing probability, P = 0: (a) 4,7 € T, (b) i € Ry
but j € Ro, and (¢) i € R and j € T. In other words, after a large number
of hops, if a random walker beginning its trip from any of the transient
classes, it will eventually go to a recurrent class. If, however, it already
starts its journey in one of the recurrent classes, it will stay there forever.
The remarkable theorem due to Oskar Perron and Georg Froebenius [33, 16]
enables us to compute the limiting probability distribution of the latter case
when it exists, and otherwise provides the fraction of time the walker spends
on each site in the class.

When a random walker starts its trip within a recurrent class, say Ry
with m members, whose transition matrix is given by Ry, that the infinite-

hop limit of the transition matrix ]R]‘io = lim,,_ ]R’]% exists depends on the

2Mathematically speaking, site j is said to be accessible from i (i — j) if there is a
non-zero probability that, starting from i, the adatom will reach j at some future hop
(Pi(j") > 0 for some n > 0). Sites ¢ and j communicate with each other (i <+ j) if and only
if 1 = j and j — 4, which can happen only when both i and j belong to the same class.



periodicity of Ry. Since Ry is irreducible, it is aperiodic if there is only one
eigenvalue with modulus 1 and the limit exists, otherwise it is periodic and the
limit does not exist. A good example of a periodic matrix is (‘1) (1)), where each
self multiplication gives the result which fluctuates between itself and the
identity matrix. Physically speaking, if a walker enters this class, its position
at later times will oscillate between one of the two sites indefinitely. The
period of this chain is therefore two. More generally the period coincides with
the number of eigenvalues of modulus 1 3. Once in a class, the probability
distribution of the walker’s positions is not constant in time but continually
progresses from subclass to subclass and eventually returns to the original
distribution after going through all p subclasses. In practice classifying a
recurrent class by its periodicity is simple; a non-negative irreducible matrix
is aperiodic if there is at least one positive element along the diagonal [26].
When the limit exists,

T Tfy c0 Tfy,
T Tyt Tfy
T 1
Foem— | b o
Th Tfy 0 Tfy

where ey is a vector whose elements are all 1, and 7 is a unique Perron vector
satisfying ]RJT -1y = 1y, with all positive elements and properly normalized
so that ||7y||; = 1. This vector represents the distribution of probabilities
that the walker will be at a particular site eventually. On the other hand,

when Ry is periodic, efﬂ; in (4) is the solution to the Cesaro average, i.e.,

1+R,+R2+...+R"
! ! f:efﬂ';. (5)

Cr = fim, .
Matrix element [Cy];; represents the portion of time that the walker hops
onto j irrespectively of its starting position i. Henceforth, for the sake of

theoretical discussion, whenever we examine infinite-hop probability within

3 Alternatively one can find the period p from the characteristic equation of Ry without
directly computing its eigenvalues. See Ref. [26] for proof.



a recurrent class, we shall adopt the Cesaro average interpretation in place
of R}” when the latter does not exist.

The remaining question is to determine how probable it is for a walker
to end up in one of the above recurrent classes if it starts from a transient
class. Suppose the hop starts from a site in 7;, the walker might have to
visit subsequent intermediate transient classes 7,,’s, for all m connecting s
to recurrent class R¢. The total probability will ultimately involve how long
the walker spends in each class as it traverses. Let matrix element [IM,];;
denotes the expected total number of hops onto site j € T, given that the
first hop starts at ¢ € T, and T, be the transition probability matrix among
members in 7,. Since the walker will either hop onto j with probability [T7];;
in which case the hop value is 1, or it won’t which brings the hop value to 0.
This means [T7];; also represents the expected number of hop the walker will
step onto j on the n'" step. Thus the total number of times the walker steps

onto 7 on average is calculated from the total contributions from all steps:

M, = iTs = (]1 - TS)il (6)

The non-negativity and irreducibility of Ty, and the fact that all of its eigen-
values have modulus strictly less than 1 ensure that the above Neumann
series exists and is positive definite [26]. Matrix 1 — T is an example of
what’s called M-matriz, and often emerges in relation to systems involving
linear or nonlinear equations in many areas including solving finite difference
methods, problems in operations research, and Markov processes [6].
Consider a transient class 7,1 which can be reached only from 7;. The
probability that a walker starting at site i € T, will wander to j € T,, after
an infinite number of hops must equal the expected period that the walker
is going to spend on some site k € T, times the probability that it will exit

T, through k into 7., 1, summing over all transitory sites k’s:

D Mk [Ty ]y = My - Ty g1 (7)
keTs



It is easy to extend the result in (7) to the case where there are other in-
termediate transient classes and/or more than one route for the walker to
take until it reaches some chosen transient class T,. Let p = {p1,...,pm}
be a path that connects transient class 7, to 7, via m intermediate classes
Tprs--s Tp,. The exiting probability matrix is given by summing over the

contributions from all such paths according to

IP:(ai:t = Z M, - Ty, - My, - Ty py -+ My, - T, 2 (8)
p

Moreover the probability that the walker in 7, will transit to Ry is simply
M, - S, ;. Combining this result with (8), we finally arrive at the expression
for the probability that a walker starting from a site in 7, will be entrapped

in Ry after a large number of hops:
Y= 2P M- SosRY ©)

The sum ) _ is taken over all possible 7,’s from which R can be accessible.

The result of this analysis can be summarized by the following matrix,

O - 0 S5 - S
oo _ O - O S5 - S | (10)
O -+ O Rf )
O --- 0O O R

together with $3°% as defined in (9), and R as in (4) with the appropriate
limit interpretation. Given initial state vector v;, after a large number of

hops, the system’s probability distribution is therefore

vy = v, P>, (11)

10



2.3 Graph algorithms

The analysis so far has made full use of the canonical form for reducible
matrices. The question thus arises: is there a way to systematically find a
permutation which would cast a reducible matrix into its canonical form?
Fortunately in graph theory there exists a set of algorithms which does ex-
actly this. Initially one can find a permutation which could swap indices in
such a way that strongly connected components (or lattice sites in this case)
are grouped together into appropriate classes. Algorithms such as Tarjan’s
and Gabow’s exist to do this with linear-time complexity [5, 11]. At this
point, the relationship between classes can be represented by a non-unique

Directed Acyclic Graph (DAG).

Figure 2: The directed acyclic graph (DAG) of the graph shown in Fig. 1.
Each vertex represents a class of strongly connected components, and each
edge connects two classes with non-vanishing transition probability from one
to the other. Vertex 19, for example, represents the subgraph in Fig. 1 that
is highlighted in red (dark gray).

Let G = (V, E) be a DAG with a set of vertices V' = {1,2,...,t+r} and
a set of edges F. Vertex i represents a transition matrix of type (a) T; for all
i whose outdegree is positive (deg™ (i) > 0); or (b) R; if i is a sink (deg™ (i) =
0). The underlying graphs of these matrices are, by construction, strongly
connected which make them irreducible. Edge (i,j) connecting vertex i to
j represents transition matrix of type (a) T;; from T; to T; if deg™(j) > 0;
or (b) $,; from 7; to R; if j is a sink. An example of such a graph is
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shown in Fig. 2. Vertices in a DAG have a natural ordering which could best
be visualized by a layered tree, pointing one way from vertices of transient
classes to those of recurrent classes. A topological sorting [22, 42] can be
performed in linear time (O(|V] + |E|)) to yield a permutation of classes
from transient to recurrent. By composing the two permutations together,
one obtains a permutation which takes a reducible matrix to its canonical
form. In practice it is not important to topologically sort DAG to obtain
the full canonical form to efficiently compute elements of P*>. The ordering
of M, - T,; terms in Equation (7) only requires that they appear in the
same sequence as the underlying DAG. Topological sorting simply relabels
the class numbers in order of appearance which yields no new information,
and thus is unnecessary.

In cases where a prescribed diffusion rule prohibits self hopping (P;; #
0,Vi), the limiting probability transition may not exist for some recurrent
class R;. If preferred, one can determine the period of R; directly from
its underlying subgraph G!. From graph theoretic perspective, G* is peri-
odic with period p if and only if it can be partitioned into p smaller graphs
GY, ..., G} such that (a) if vertex m is in G}, and an edge (m, n) connects m

; and (b) p is the largest possible

to n then it’s implied that n is in Gékﬂ)modp,

integer with this property. This makes sure that each transition takes the
walker to a new class before it returns to the original class after p successive
transitions. An aperiodic recurrent class is one where such partition is not
possible. The proof of the above theorem and the graph algorithm for finding
the period of these “cyclically moving classes” are given in Ref. [21].

To employ G in the limiting probability calculation, we start by assigning
appropriate matrices to all vertices and edges. Let S = {j|deg™(j) = 0} be
the set of all sinks of G. We then assign matrix IM; to each vertex i ¢ S,
or R for i € S. Each edge (i, 7) is prescribed by transition matrix T ; for
j¢S,and S, for j € S. To compute the limiting probability that a walker
would reach a site in one of the recurrent classes in S, we begin by giving
the walker his initial probability distribution vector v, at the starting class.
This vector contains only one non-zero component of value 1 at the position

corresponding to the dropped site. Then we scan the graph from the starting
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vertex (which may or may not be the source) to the sinks. As we traverse the
graph to vertex s, we would have accrued all the probability contributions
along that path prior to reaching s. The probability distribution v, stored

at each vertex as it’s visited would be

>o.ve M, T, if s ¢S,
Vg = (12)
(>, v M, -S,,)-R® ifses.

The above summation ) is taken over all incoming vertices r that point
toward s. In a special case where the graph is made up of just one vertex, the
final distribution is simply the Perron vector m,. It should be emphasized
that direct computations of all the My are not necessary. One only needs
to calculate x = v, - M, which is equivalent to solving the system of linear
equations of the form (1 —T)-x = v,. There exists many iterative schemes
to determine x such as Jacobi method and successive over-relaxation (SOR)
method [6, 43|, or one could solve them using the equivalent constrained min-
imization method. As an illustration, according to the highlighted subgraph
of G as shown in Fig. 2 (thick arrows), vertex 2 would receive probability

vector vo whose value equals
vy = Vig - Mg - T19,3 - M3 - TS,Q + rJI‘19,4 -IMy - T4,2
+ (T19,6 Mg - T 5 + Tig7 - My - T7,5) M5 - Ts2|.

Vector vy can be interpreted as the probability that a walker would reach
each site in transient class 75 given its initial probability distribution of vig in
class T19. By the time sink 1 is reached, the limiting probability distribution

vector vy can readily be obtained from the v,’s of its immediate predecessors:

vi = |ve-Msy-Sy1 +vs- Mg Sg1

+ vy Mg - Sg1 +vis - Mis-Si51] - Ry
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Other aspects of graph algorithm will be discussed in the respective sections
as we examine the modeling problems. Reader interested in seeing the con-
nection between DAG and the matrix inversion of the form (1 — A)~! where

A is sub-stochastic should take a look in Appendix A.

3 Modeling

The formalism outlined in the previous section shall be applied to simulate
long-range diffusion-attachment solid-on-solid growth on a two-dimensional
substrate. For simplicity, the underlying lattice structure is simple cubic—
though other crystalline structures are of no fundamental differences. Two
examples shall be considered: (1) growth on an initially flat substrate, and (2)
growth around a screw dislocation. For each initial profile of the substrate,
graph g, similar to what’s shown in Fig. 1, is constructed where a vertex
represents a lattice position and an edge links a pair of adjacent neighbors
together. Each vertex contains a number representing the height of the stack
of atoms at that site. This implies that overhangs and voids are prohibited.
An edge (i,k) contains probability Pj; that if an atom is deposited at i, it
would move to k. For illustrative purposes, Wolf—Villain diffusion model is
chosen to prescribe such weight. According to the model [45], an adatom will
try to move in such a way that the lateral coordination number is maximized.
Should there be more than one such directions, the probability is divided
equally among them. A slight alteration is made to the rule by including
the coordination number at the present position into consideration so that
in-place hopping is possible (P; # 0). This modification permits the limiting
transition probability R2° to always exist in our analyses. The underlying
graph ¢ of the transition matrix IP serves as the starting point of all of our
simulations. We shall examine the surface growth evolution of the examples
when each incidence atom, one at a time, performs a random walk on the
surface where the direction of each step is given by the modified WV model
until the atom becomes a part of the surface. The final resting position of
the atom is chosen from one where the atom has visited most frequently.

Before we discuss problem-specific modelings, it is a good idea to consider
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Figure 3: Diffusion rule for the modified Wolf-Villain model is shown on
a sample of a one-dimensional substrate with periodic boundary conditions
together with the associated directed acyclic graph. Atoms are deposited
from the top and can move at most one step to the side. The arrows depict
possible hop directions given the incidence positions. The self-looping arrows
designate hopping in-place which is added in this modified version.

a simple example. Fig. 3 shows the side view of a one-dimensional lattice
with periodic boundary conditions at an instant in time. According to our
modified Wolf-Villain model, the arrow(s) on top of each surface position
indicate possible directions that an atom, if dropped there, would move with
the probability inversely proportional to the number of arrows at that point.
Lattice positions are labeled by the numbers at the base. The one-step

transition matrix is given by

1/31/3 0 0 0 0 1/3
0 0 1 0 0 0 O
0 0 1 0 0 0 0
P=|0 0 1/20 1/2 0 0
0 0 0 0 1/2 1/2 0
0 0 0 0 1/2 1/2 0
0O 0 0 0 0 1 0

This example is simple enough that there is no need to cast P into its canon-
ical form. It is clear from the structure of the matrix that the transient
classes are {1}, {2}, {4} and {7}, and the recurrent classes are {3} and {5,6}

(which are also our sinks). Since each transient class only contains one mem-
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ber, matrix M, is extremely simple; My = 1/(1 — P ) for s € {1,2,4,7}.
The recurrent matrices are Ry® = {1}, and R5 4, = (%; }g) Matrices P$5*
and 3% can be calculated from Equations (8) and (9) with the help of the
DAG shown in Fig. 3. For example given that an atom starts its trip at site
1, the probability P7% that it will end up at site 3 can be computed in the

following way:

PPy = 87% = PYS° - My - Pyg - RY
=(M;-Pyo)-My-Pos- R

1 1 1 1
=|—FX3 X1x1=—=
-3 3/1-0 2

The resulting limiting transition probability matrix for this initial configura-

tion is given by

00 1/2 0 1/4 1/4 0
00 1 0 0 0 0
00 1 0 0 0 0
P*=100 1/2 0 1/4 1/4 0
0 0 0 1/2 1/2 0
0 0 0 1/2 1/2 0
0 0 0 1/2 1/2 0

According to P>, an atom falling onto site ¢ will eventually end up at site 3, 5
or 6 with probabilities as listed on the i*" row if one applies the modified WV
rule repeatedly. Moreover, provided that an atom is likely to fall anywhere,
site 3 is the most likely eventual resting place (because the third column of
this matrix yields the largest sum) with the probability of 3/7.

Let us examine the structure of the sinks obtained from the modified
WYV model in a general two-dimensional substrate. Most of the time, a
sink (recurrent) class only contains one member (like site 3 in our simple
example above). This member is the representation of a kink site. Thus the
task of computing Perron vectors to represent the R2° matrices is removed.

Essentially these matrices are simply {1}. In a few rare cases we could have a
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situation where two (site 5 and 6 in the above example), three or four kinks
facing each other creating an area of two to four sites whose coordination
numbers equal one another, and are higher than those of their surrounding
neighbors’. Each vertex within a class with two (four) elements has two
(three) edges, one pointing to itself and the rest point(s) to its neighbor(s).
The limiting recurrent matrix R$° in this case would be a 2 x 2 (4 x 4) matrix
with all elements being 1/2 (1/4). In the case of three elements, there is one
vertex with three outgoing edges, while the other two only contain two edges.
The Perron vector used in Eq. (4) comprises two of 2/7 and one of 3/7. Only
in this last case is the weight not distributed evenly and the walker would
more likely go there. Fortunately these cases never crop up in the analyses

of the two-dimensional problems considered below.

3.1 Growth on flat substrate

Here we consider the surface growth on an initially flat rectangular surface
with the periodic boundary conditions, and apply the algorithm discussed in
the previous section to find the most likely site that each atom would likely
be. Two different methods shall be used: (I) each deposition site is chosen
randomly and the algorithm gives its most probable final position; and (II)
the most probable final position of all initial sites shall be chosen. Notice
that the first atom to be dropped onto the surface will as likely be at any
one site as another. Thus, for a visual purpose, we put it at the center of
the surface. This atom will act as the seed to which subsequent atoms can
attach themselves in the process of island formation.

In Method I, for each iteration, the simulation scheme starts by randomly
selecting a starting position 5. Then only the subgraph of ¢ whose compo-
nents can be reached from 7, is extracted. This process helps keep only the
relevant irreducible classes for future computations. Subsequently the DAG
G of this subgraph is constructed by grouping strongly connected compo-
nents together. We choose the eventual resting position by looking for j
which yields the greatest P7;. From the structure of GG, one of three things
could happen: (a) there is only one class thus G is the sink; (b) G only con-
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tains one sink and j will inevitably be in that sink; or (¢) G contains multiple
sinks and further calculation needs to determine the most likely sink that j
would eventually lie. It is only this last case that an actual calculation in
the form outlined in Sec. 2.3 is performed if all one wishes is to get the final
position of the adatom without calculating any statistics. Once all vy, Vs € S
are obtained, the chosen sink is the one whose member has the greatest value
among all elements in all sink classes. Should there be more than one such
members, the chosen site is selected randomly from that list. We then in-
crement the atomic height at that site by one unit and the whole routine is
repeated. Method II is similar to Method I except for one important point;
our initial probability distribution v; is given by (1/N){1,..., 1}, instead of

having one non-zero element at a random position .

3.2 Growth around a screw dislocation

In modeling the surface growth around a screw dislocation, we decide upon
a circularly shaped substrate of radius r with free boundary. This choice en-
sures that any rectangular pattern that might emerge from the growth is due
to the underlying lattice structure and not due to the shape of the boundary.
Sites along the rim of the disk only connects with those within; thus they con-
tain less nearest neighbors than the ones within the disk. The total number of
lattice positions is approximately 7r2. We first initialize the height of all lat-
tice points according to h(z,y) = (b/27) tan~!(y/z). Traversing around the
dislocation core at (0,0) once in the clockwise (counter-clockwise) direction
will result in a height increment (decrement) approaching b at large distance
from the core. In order to specify the coordination number at each point on
the lattice, one needs to specify the criterion for height difference between
any adjacent sites. If the height difference between two nearest-neighboring
sites is smaller than 0.20, we consider them as living on the same plane, and
an adatom on top of the shorter site will not receive the coordination num-
ber count from the taller one. The simulation procedures in this case are
the same as that of the flat surface. After the most probable site is found
in either Method I or Method II, we increase its height by b to match the
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magnitude of the Burgers vector. Then the process is repeated.

4 Results and discussions

Figure 4: Surface of size 20 x 20 lattice sites with periodic boundary condi-
tions after 113 atoms (black squares) are deposited using (a) Method I, and
(b) Method II.

The evolution in the case of growth on a flat substrate gives rise to one-
island formation. In Method I, subsequent atoms attach themselves to the
initial single-atom island since this is the only place where they can maximize
their coordination number. The most probable final position of each newly
deposited atom given by our algorithm tends to be the kink site that is
closest to the dropped position. This results in an island surface with jagged
island boundary as shown in Fig. 4 (a). The island will continue to grow
until the first layer is completely filled up. This happens because there is
no mechanism, e.g., Ehrlich-Schwoebel-like barrier, to prevent an adatom
dropped on top of the island from hopping down to a lower layer where
it could increase its coordination number. After the complete first layer is
filled, the growth process repeats itself again and again, giving us a perfect

layer-by-layer growth.
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In Method II, the growth of the freshly deposited layer is largely symmet-
rical. Identifying the plane of the substrate to be (001), atoms collectively
tend to form an island whose boundaries grow outward in a rectangular
fashion with growth fronts perpendicular to the [110], [110], [110] and [110]
directions as can be seen in Fig. 4 (b). Unlike the previous case, the shape of
the island is generally very compact. The development of the growth fronts
can be observed since the early stage in the simulation. These orientations
are favorable to incoming adatoms than others since they provide more lat-
eral kink sites which result in higher coordination numbers than if the front
were one of [100], [010], [100] or [010]. As in the previous method, the surface
is filled up one layer at a time.

The simulation result of the surface growth around a screw dislocation
shows a more interesting dynamics. We initially align the ridge so that it
extends radially outward from the dislocation core at (0,0) along the [010]
direction. When viewed from the top, the ridge starts spiraling outward in
the clockwise direction (since the atomic height difference is h(z = 07) —
h(x = 07) = +b along the ridge) as more and more atoms are attracted
toward its left side. The surface evolution according to Method I, like the
flat substrate case, gives a very rough spiral ridge. The randomness of each
deposition causes the atomic incorporation to occur at the nearest kink site
which may be anywhere. This makes it difficult to describe how the surface
grows generally. More importantly, the growth does not reflect the shape
observed in actual experiments where the spiral ridge fronts are of well-
defined compact geometrical form [20, 32, 12].

Result from Method II, on the other hand, does not suffer from this
setback. During its first revolution, whose development is depicted in Fig. 5
(b) and (c), the spiral ridge looks like a four-pointed star whose boundary
is concave. These concave fronts are filled up quickly afterward into straight
edges orienting along the preferred directions making the spiral rectangular
in appearance. The growth fonts are exactly the same as those seen in the
case of flat substrate growth. As time progresses, more and more steps are
generated and the surface looks like a rectangular pyramid. The distance

between adjacent steps also decreases with time, as is typical seen in actual
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growth experiment [17, 38] and also in the phase-field simulation [23]. With
this particular boundary condition, we observe the stationary state when
the width of successive steps is exactly one. Since the details of the growth
evolution depend largely on the chosen diffusion rule (the modified WV in
this case) and the boundary conditions, we shall postpone the full analyses
of the dependence of surface growth on these choices for our future work.

It should be mentioned that the strange initial ‘side-branching’ spiral
has never been observed elsewhere, either in the phase-field modeling or
in energetic-based kMC simulations of growth around a dislocation. We
believe that this artifact is specific to our choice of diffusion rule. The shape,
however, is similar to a two-dimensional kMC growth simulation around a
nucleation site with atoms having a short average mean free path [48]. By
employing a multiple registration scheme, the island boundary was smoothed
out and the dendritic feature with four side branches could be seen. We
believe that their striking resemblance albeit different physical processes may
not be a coincidence but an implication about a connection between our
probabilistic approach and the approach using short-distance diffusion with
multiple registration scheme . As a noise reduction technique, the scheme
allows for a more probable site to be chosen since atom must visit a site
repeatedly up to a certain number before it becomes a part of the surface.
Thus to some degree, the two approaches are similar. Further investigation
is needed in order to quantify this connection.

As a demonstration of our probabilistic approach, Fig. 6 shows the mean
free path A, or the average number of hops an atom makes until its incorpo-
ration to the most likely spot on the spiral ridge, computed through Method
I. The simulations were performed on the substrate of radius r = 10, 15 and
20 atomic spacings bringing the total number of sites to N = 316, 716 and
1264 respectively. About 6N atoms were sequentially dropped in each case.
Points on the graph are the results of the average over 800, 400 and 300 runs
respectively. All three graphs are more or less on top of one another except

for the tail of the r = 10 case. Due to its small size, the system reaches its

4The latter was recently shown to be equivalent, and could provide an alternative
approach to, simulating collective diffusion phenomenon on thin film growth [1].
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stationary state long before the other two cases. The very first atom has
to hop on the order of N ~ r? before it reaches the dislocation ridge. The
number of hops decreases very rapidly as the ridge starts to spiral. We notice
a series of plateaus starting approximately at every N*' atoms. A drop in
the number of hops to the next plateau occurs as one or more of the ridge
fronts are filled up and straightened out. Inside of a plateau region, new
atoms take on average the same number of hops before reaching the spiral
as its fronts propagate outward. This process continues until the stationary
state is reached at which point atoms most likely would take at most a few
hops before being incorporated into the spiral ridge. As points of reference,
we include the shapes of the substrate, simulated by Method II, after N*®,
2N 6N™ atoms are absorbed into the spiral.

A few remarks are in order before we end this section. In principle it
is possible to obtain Fig. 6 using the conventional approach by directly ap-
plying the WV diffusion rule to each step until an atom no longer moves,
while recording its hop number. Doing so repeatedly in order to achieve
the same statistics presented here, however, would be computationally very
costly. We were able to produce the data used to create the above graphs
using about four days of computer time on a single core processor. If one is
not interested in carrying out any statistical computations and only wants
the evolution of the height profile, a much larger system can be simulated
within a reasonable time. As mentioned earlier, in most cases the eventual
resting site for each deposited atom may be obtained with minimal computa-
tion by simply looking at the structure of the underlying DAG. Finally, the
technique presented in this work deals primarily with statistics of random
walk on lattices given a local diffusion rule. Readers interested in practical
tools for simulating thin film growth on an actual physical system should
look into many recent developments aimed toward improving efficiency and
accuracy of the conventional kMC algorithm. Amar et al. make use of clever
parallel programming techniques to extend kMC over larger length and time
scales [35], and are able to achieve simulation time that scales as, not the
usual polynomial, but the logarithm of system size [36]. For a smaller system

that demands full trajectories of deposited atoms, molecular dynamics (MD)
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is generally utilized. Several accelerated dynamics algorithms have been pro-
posed to speed up direct integrations of Newton’s equations, more notably
using temperature-accelerated MD technique [37]. Other attempts such as
one that tries to approximate the MD methods to be used in conjunction with
kMC calculations have also shown impressive speed improvement on long-
time/large-scale systems over the conventional kMC approach [19]. Readers
wishing to see theoretical basis submolonolayer growth kinetics and follow
recent developments in cluster growth on surfaces should consult Ref. [15]

and references therein.

5 Conclusion

Based on Markovian hypothesis and Froebenius theorem, the limiting prob-
ability transition matrix for a random walker starting his trip with a given
initial probability profile is obtained. We devised graph algorithms to au-
tomate the process so that it could be implemented on a computer. In the
process, we discover an algorithm for finding the inverse of a certain class
of stochastic matrices. Finally the formalism is applied to solid-on-solid,
diffusion-attachment type of surface growth on a two-dimensional flat sub-
strate and around a screw dislocation. The latter gives a usual spiral ridge
with rectangular shape reflecting the underlying crystal structure in the limit
where atoms are set to emerge at the most probable lattice positions during
growth. The result also suggests an interesting connection with the widely-

used multiple registration technique in kMC simulations.

A DAG and matrix inversion

An algorithm such as that of Tarjan’s which casts a matrix into the corre-
sponding directed acyclic graph from where permutation matrix Q could be
constructed, offers a new way of computing an inverse of a certain class of

matrix. It is well known that the inverse of a triangular block matrix is given

23



By By 71_ By' —Bi'-B,-B;' (13)
O B;) \O B;! ‘

We shall use Eq. (13) as a basis for our analysis.

We are interested in finding the inverse of matrix D = 1 — A where A is a
sub-stochastic matrix whose summation of elements in each row is less than
or equal to 1. We start by obtaining @ through Tarjan’s algorithm. Matrix

Q can be used to turn A, through a simple change-of-basis, into

Ty Tig - Ty
~ o T, --- T
A=Q A Q= : -
O -~ O T,

Matrix A would have the same structure as, e.g., ]1~DTHT shown in Eq. (3),
where each T; and T ; are irreducible. Fig. 7 gives an example of the under-
lying DAG of A for t = 6, assuming that all of the upper triangular block
matrices are non-zero.

Let M; = (1 —T;)~! and S(i, ) be the set of all possible subsets of {i, 7+
1,...,7} with i and j as the first and the last elements, and is listed in in-
creasing order. For example, S(1,4) = {{1,2,3,4},{1,2,4},{1,3,4},{1,4}}.

One can recursively apply Eq. (13) to compute the inverse of

1-T, —Ty, - —Ty,

_ - O 1-T, -~ -T

D=1-A=| o 2 (14)
O - O 1-T,

It is straightforward to show that the (i, 7)™ block component of D! is given

24



(

IM; =7,
N [Is]—1
[]Dil]i,j = q M- Z H (Tskvskﬂ ) Msk-‘rl) 1 <7, (15)
s€S(4,7) k=1
(O i > .

The sum in the case of i < j is taken over all members s of S(i,j), where
s denotes the k™ element of s and || s || denotes the number of elements.
Once the inverses of all block elements are computed and the whole D!
is assembled, one can simply perform another change of basis to shuffle all
elements back to their original orders.

Eq. (15) may be conveniently read off from the structure of the DAG of
A. To obtain the (4,7)™" block component, one simply traverses the graph
from node 7 to j through all possible routes. Each visit to node k corresponds
with IMj,. Each passage through an edge from [ to m corresponds with T;,,.
The final result is the sum over these routes. This method amounts to graph
traversal which is a common routine in graph programming.

Our method of finding an inverse not only is simple, but also reveals
the fundamental structure of the matrix. Moreover, in some problems, only
a small subset of inverse matrix elements are needed. Our method would
tremendously reduce the amount of computation because only a few IM,’s
may be required. Finally we should point out that directly finding A~! is
not much harder than finding D~!. The additional difficulty arises in keeping
track of extra minus signs that crops up depending on whether the number of
T;,,’s in an expression is odd or even. This could be done simply by counting

the number of nodes visited during the traversal.
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Figure 5: Growth around a screw dislocation starting from (a) initial profile,
then after (b) 200 atoms, (c) 400 atoms, and (d) 600 atoms are deposited.
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Figure 6: The average mean free path A simulated by Method I and mea-
sured in the units of the respected number of sites N is plot as a function
of subsequent drops up to the 6 N*" atom for circular substrate of radius 10,
15 and 20 as shown in blue (black), red (dark gray) and green (light gray)
respectively. The surface profile after every N*' deposited atoms simulated
by Method II are shown as points of reference.
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Figure 7: An example of a directed acyclic graph representing a matrix in
its canonical form.
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Interest in thin-film fabrication for industrial applications have driven both theoretical and computational
aspects of modeling its growth. One of the earliest attempts toward understanding the morphological structure
of a film’s surface is through a class of solid-on-solid limited-mobility growth models such as the Family,
Wolf-Villain, or Das Sarma—Tamborenea models, which have produced fascinating surface roughening behaviors.
These models, however, restrict the motion of an incidence atom to be within the neighborhood of its landing
site, which renders them inept for simulating long-distance surface diffusion such as that observed in thin-film
growth using a molecular-beam epitaxy technique. Naive extension of these models by repeatedly applying
the local diffusion rules for each hop to simulate large diffusion length can be computationally very costly
when certain statistical aspects are demanded. We present a graph-theoretic approach to simulating a long-range
diffusion-attachment growth model. Using the Markovian assumption and given a local diffusion bias, we derive
the transition probabilities for a random walker to traverse from one lattice site to the others after a large, possibly
infinite, number of steps. Only computation with linear-time complexity is required for the surface morphology
calculation without other probabilistic measures. The formalism is applied, as illustrations, to simulate surface
growth on a two-dimensional flat substrate and around a screw dislocation under the modified Wolf-Villain
diffusion rule. A rectangular spiral ridge is observed in the latter case with a smooth front feature similar to that
obtained from simulations using the well-known multiple registration technique. An algorithm for computing the
inverse of a class of substochastic matrices is derived as a corollary.

DOI: 10.1103/PhysRevE.89.032402

I. INTRODUCTION

Limited mobility solid-on-solid diffusion models as means
to study surface growth continue to attract much interest
even after decades of investigations both computationally
and analytically. In the Wolf-Villain (WV) model [1], an
adatom moves in the direction that maximizes its coordination
number in the next discrete time step, while in the Das
Sarma—Tamborenea (DT) model [2], it moves to increase the
number, provided that the current one is not sufficiently high.
In both models, and others like them, an adatom moves one
lateral step before coming to a halt. Despite their simplicity,
they are found to yield consistent simulation results with more
realistic finite-temperature model using Arrhenius hopping
rate [3] and low-temperature molecular-beam epitaxy (MBE)
experiments [4]. These models, however, are inadequate as
tools to investigate surface evolution in cases where each
adatom undergoes a large number of hops before it is
embedded as part of the surface. The simplest extension of
these models to mimic a large diffusion length by repeated
applications of one-step motion cannot avoid prescribing an ad
hoc maximum cutoff distance, and often is too computationally
intensive for problems which require large-scale and/or long-
time simulations. Furthermore, this basic approach does not
give any statistics of the growth in any straightforward way. A
more systematic approach is needed. The aim of this paper
is to present a graph-based method to model long-ranged
solid-on-solid diffusion-attachment surface growth where, one
at a time, an adatom is deposited onto a surface where each

“surachate.1@chula.ac.th

1539-3755/2014/89(3)/032402(11)

032402-1

PACS number(s): 81.15.Aa, 68.35.Fx, 68.55.A—

hop is determined by the local environment and is independent
of the previous ones. Our method can, in principle, provide
statistics, such as the average mean free path of growth
particles, and give the most probable surface pattern under
any given lattice structure and local diffusion rule.

Graph theory has been at the core of mathematics and com-
puter science and has recently fueled considerable interests in
understanding the behaviors of complex networks [5]. One of
the theory’s vast applications is in the development of random
walks on graphs [6] where a random walker traverses from
one vertex to subsequent ones along (possibly weighted) edges
connecting them. To use this idea to model surface growth on
a lattice due to long-range adatom diffusion, we construct a
graph whose vertex i represents a lattice position and stores in
it relevant lattice-dependent properties (such as atomic height
at that point). An edge connecting two neighboring vertices
i and k signifies a nonzero probability P;; of an adatom; if
present at i, it would hop to k. This hop thus decreases the
height value stored in i and increases that stored in k by one
unit. The weight of each edge can be obtained, as is the case
here, from a chosen diffusion model such as WV or DT or from
a more realistic calculation using density functional theory.
Through this graph, we establish the most likely final position
of a deposited atom whose trip begins at i, and the average
number of hops it takes to get there. By repeating this process,
the surface is evolved.

To test our method, we choose to apply it to simulating the
spiral surface growth around a screw dislocation commonly
observed in MBE grown films with lattice mismatch at the
film-substrate interface, such as that of GaN-based devices [7]
or certain semiconductor materials [8], and is known to provide
amechanism for driving the growth of a class of nanowires [9].

©2014 American Physical Society
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Unlike the spiral growth in the limit of fast desorption,
where the ridge motion can be determined locally and is well
described by the Burton-Cabrera-Frank (BCF) model [10], the
minimal desorption limit where the particle’s diffusion length
is comparable to the system size still presents a modeling
challenge. Theoretical and computational investigations of
spiral growth in this regime are typically carried out in a
continuum limit using a phase-field method [11]. This method,
although it provides an analytical handle to the problem,
suffers from the shortcomings of a continuum formulation,
e.g., when accounting for system’s anisotropy. The kinetic
Monte Carlo (kMC) method has also been chosen to explore
the spiral growth [12]. In order to suppress microscopic
noise, either the use of multiple-registration [13] or atomic
evaporation [12] schemes must be implemented. The latter,
though more realistic, is less practical at the extremely low
supersaturation limit being considered.

The paper is organized as follows. The mathematical
structures will be discussed in Sec. II where surface sites are
classified (Sec. Il A) and the limiting lattice transitions are
calculated (Sec. II B). Implementation and graph algorithms
will be mentioned in Sec. IIC. The formalism is applied
using the modified Wolf-Villain model on a two-dimensional
solid-on-solid surface growth on an originally flat substrate
(Sec. IIT A) and around a single screw dislocation (Sec. III B).
Results will be discussed in Sec. IV, followed by concluding
remarks in Sec. V.

II. MATHEMATICAL CONSTRUCT

The mathematical question underlying our modeling of par-
ticle diffusion with possibly infinite diffusion length amounts
to finding the probability that a random walker beginning its
journey at position i on a lattice would reach the far-away
point j by traveling along the edges connecting them. Edges
linking, say, vertex i to its neighbors are not necessarily of
equal weights. Biased or asymmetric walks are accounted
for by having directed weighted edges. This type of walk is
required for modeling diffusion in the presence of fields such
as in electromigration [14] or when adatoms sensitively react
to local atomic configurations. The Markovian assumption that
each step the walker takes is independent of the previous one
was proven to be quite accurate [15]. If only nearest-neighbor
hopping is allowed, only edges linking nearest neighbors
are present and the graph structure matches the structure
of the lattice surface. In principle one can incorporate long
atomic jumps by including edges linking remote sites with a
suitable weight factor. This type of jump has been observed
experimentally with fairly significant jump rates [16]. For
simplicity, we shall only limit ourselves to one random walker.
This allows us to easily define a system’s state at a given
time by the lattice position of the walker. A more complicated
scheme is required to define a state should one choose to model,
e.g., clustered or collective diffusion [17].

In this section, we shall outline the relevant portions of
discrete time Markov chain needed for the modeling and state
our graph algorithm for computing the infinite-hop transition
matrix. For an illustrative purpose, we shall phrase the problem
in the language of crystal growth where an adatom wanders
from point i to point j according to a given set of diffusion

PHYSICAL REVIEW E 89, 032402 (2014)

FIG. 1. (Color online) A graph representation of a transition
matrix whose vertices symbolize states of the system in terms of an
adatom’s position. Each arrow depicts an edge linking two positions
whose transition probability from one to the other is nonzero. The
probability is derived from WYV diffusion rule on a circularly shaped
substrate with a screw dislocation. One can see the trace of the
underlying simple cubic lattice structure from the graph. Vertices and
edges in red (dark gray) show a part of the graph which is strongly
connected. These vertices form a class.

rules by hopping between atomic positions (vertices) linking
i and j. Let a lattice configuration, some lattice-dependent
property which influences the probability of the adatom
such as atomic heights, be described by H = {H;}. Define
a one-step transition matrix IP(I?) whose element Pik(I:I)
gives a transition probability for an atom at i to go to one of
the connecting sites k which usually is a nearest-neighboring
lattice site. A nonzero element P;, is thus equivalent to having
a directed edge with a corresponding probabilistic weight
connecting vertex i to vertex k of a graph as shown, for
example, in Fig. 1. We also account for in-place hopping
through the matrix element P, (represented graphically by
a vertex with self-loop). Since the adatom must go somewhere
>« P, = 1, which makes PP a stochastic matrix. Knowing PP,
one can easily find the transition probability from i to j if the
atom takes exactly n hops using

PP =) PubiV = )
k

ki.ko,..kn1

Py By (D

or, simply, P® =P" in matrix notation. Since we are
interested in the long diffusion limit, we shall investigate in
particular the case where n — 0.

A. Lattice site classification

Given the state of height configuration H, one can classify
lattice position j (or the system’s state) according to the
limiting behavior of IP*° into transient class (denoted by 7') or
recurrent class (denoted by R). In the case of a finite number
of a system’s states [18] (which is particularly relevant for
modeling Markov processes on a computer), j is transient if

032402-2
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P* =0 and recurrent otherwise.! Loosely speaking, if one
lets an adatom wander for a very long time, it will end up
at one of the recurrent sites. It is easy to see that there must
be at least one such site, otherwise Pfj.o =0 for all j with
edge(s) directed from i. This would lead to ) i Pl.‘jo =0 and
we would reach a contradiction because the adatom starting
from i must go somewhere. The real merit of this classification
is that it can be done through permuting rows and columns of
P which amounts to relabeling of lattice positions, and prior
to the actual computation of IP* itself.

If P is reducible, i.e., if there exists at least one transient site,
then by definition one can find a nonunique permutation matrix
Q, that transforms IP into a block triangular form such that
QT P-Q = (?é ;f), where X and Z are square matrices,
and O is a matrix with all elements being zero. If X and
Z. are reducible still, then we can apply another symmetric
permutation to them. If during the process there exist rows
with nonzero entries only in diagonal blocks, these rows can
be permuted to the bottom of the modified transition matrix.
Finally, we shall arrive at the upper-triangular block form or
the canonical form for reducible matrices [19] of a system via
permutation matrix @ formed from the products of previous
permutation matrices,

- Pr.r Pr.
P-q-p.=( 7 77, @)
() Pror
where
T, T, --- Ty,
~ O T, - Ty,
Pror=1]. . . B
o --- O T
Si1 o0 Sy
Progr=| : B 3)
S o Sy
R, O
Pror = .
O R,

Each diagonal block matrix Ty, ..., T; is either irreducible
or O and Ry, ...,R, are irreducible and stochastic. In the
language of graphs, the graph representation of matrix A is
irreducible if there is a sequence of directed edges linking every
pair of vertices together, i.e., the graph is strongly connected.
As an example, the vertices and edges highlighted in red (dark
gray) in Fig. 1 make up a subgraph which is strongly connected.
Thus their transition matrix representation is irreducible.

'In particular these recurrent states are non-null. For j € R, it is
non-nu.ll. if u; = Yoo nFy; is .ﬁni.te. Here F}j is the first passage
probability which denotes the likelihood that a walker starting at i
will end up at j for the first time after exactly n hops. Thus u; gives
mean recurrence time of state j or the expected value of the time of

the first visit to j from j.

PHYSICAL REVIEW E 89, 032402 (2014)

Through the application of Q, the newly ordered, one-step
transition matrix P shows the separations of lattice sites
into ¢ transient classes 7i,...,7;, and r recurrent classes
Ri, ..., R.. The form also effectively suggests from which
transient classes is a site in a recurrent class accessible.” It is
therefore of paramount importance to devise an algorithm to
construct Q. We shall postpone this discussion to Sec. II C.

B. Limiting lattice transitions

To arrive at the limiting transition probability matrix P,
one is interested in examining the possibility of transitions
between elements in 7 and/or R. We shall state without
proofs these results [19], some of which are most evident
from the structure of P in Egs. (2) and (3). The following
transitions from i to j lead to vanishing probability, Pi‘;.o =0
(@i,je7,b)ieR butjeRy,and(c)i e Rand j € 7.
In other words, after a large number of hops, if a random
walker beginning its trip from any of the transient classes, it
will eventually go to a recurrent class. If, however, it already
starts its journey in one of the recurrent classes, it will stay
there forever. The remarkable theorem due to Oskar Perron
and Georg Froebenius [20] enables us to compute the limiting
probability distribution of the latter case when it exists and
otherwise provides the fraction of time the walker spends on
each site in the class.

When a random walker starts its trip within a recurrent
class, say, Ry with m members, whose transition matrix is
given by R s, the fact that the infinite-hop limit of the transition
matrix ]Rj’f = lim,_, oo R’} exists depends on the periodicity of
Ry. Since Ry is irreducible, it is aperiodic if there is only
one eigenvalue with modulus 1 and the limit exists, otherwise
it is periodic and the limit does not exist. A good example

of a periodic matrix is ((1) (1)), where each self-multiplication

gives the result which fluctuates between itself and the identity
matrix. Physically speaking, if a walker enters this class, its
position at later times will oscillate between one of the two
sites indefinitely. The period of this chain is therefore 2. More
generally, the period coincides with the number of eigenvalues
of modulus 1.> Once in a class, the probability distribution of
the walker’s positions is not constant in time but continually
progresses from subclass to subclass and eventually returns to
the original distribution after going through all p subclasses.
In practice classifying a recurrent class by its periodicity is
simple; a non-negative irreducible matrix is aperiodic if there
is at least one positive element along the diagonal [19].

2Mathematically speaking, site j is said to be accessible from i
(i — j) if there is a nonzero probability that, starting from i, the
adatom will reach j at some future hop (P,.(j") > 0 for some n > 0).
Sites i and j communicate with each other (i <> j) if and only if
i — jand j — i, which can happen only when both i and j belong
to the same class.

3 Alternatively one can find the period p from the characteristic
equation of IRy without directly computing its eigenvalues. See
Ref. [19] for proof.

032402-3



SURACHATE LIMKUMNERD

When the limit exists,

TH T o T,

Tr Tp T T,
F=emy= ; : . @)

Tp T o T,

where ey is a vector whose elements are all 1, and 7 is
a unique Perron vector satisfying ]R}— -my =my, with all
positive elements and properly normalized so || ][, = 1.
This vector represents the distribution of probabilities that
the walker will be at a particular site eventually. On the other
hand, when R is periodic, e fn-; in (4) is the solution to the
Cesaro average, i.e.,

_ 1+Ry+Ry+---+ R}
C; = lim .

n—o0 n

=emy. (5

Matrix element [C];; represents the portion of time that the
walker hops onto j irrespectively of its starting position i.
Henceforth, for the sake of theoretical discussion, whenever
we examine infinite-hop probability within a recurrent class,
we shall adopt the Cesaro average interpretation in place of
R when the latter does not exist.

The remaining question is to determine how probable it is
for a walker to end up in one of the above recurrent classes if it
starts from a transient class. Suppose the hop starts from a site
in 75, the walker might have to visit subsequent intermediate
transient classes 7,,’s, for all m connecting s to recurrent class
R . The total probability will ultimately involve how long
the walker spends in each class as it traverses. Let matrix
element [IM,];; denote the expected total number of hops onto
site j € 7 given that the first hop starts at i € 7; and T be
the transition probability matrix among members in 7;. Since
the walker will either hop onto j with probability [T%];;, in
which case the hop value is 1, or it will not, which brings the
hop value to 0. This means [T ];; also represents the expected
number of hop the walker will step onto j on the n™" step. Thus
the total number of times the walker steps onto j on average
is calculated from the total contributions from all steps,

M, =) Ty=(1-T,)". 6)
n=0

The non-negativity and irreducibility of T and the fact that all
of its eigenvalues have modulus strictly less than 1 ensure that
the above Neumann series exists and is positive definite [19].
Matrix 1 — Ty is an example of what is called the M matrix
and often emerges in relation to systems involving linear or
nonlinear equations in many areas, including solving finite
difference methods, problems in operations research, and
Markov processes [21].

Consider a transient class 7;; which can be reached only
from 7. The probability that a walker starting at site i € 7
will wander to j € 7, after an infinite number of hops must
equal the expected period that the walker is going to spend
on some site k € 7; times the probability that it will exit 7
through k into 7y, summing over all transitory sites k’s,

D I Jil Ty o1l = (M - T o115 )
keT;
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It is easy to extend the result in (7) to the case where there
are other intermediate transient classes and/or more than one
route for the walker to take until it reaches some chosen
transient class 7. Letp = {p1, ..., pn} be a path that connects
transient class 7 to 7, via m intermediate classes 7,,, ..., 7, .
The exiting probability matrix is given by summing over the
contributions from all such paths according to

M, Ty, . (8)

Pt = ZIMS Typy - My, - T, -
p

Moreover, the probability that the walker in 7, will transit to

R is simply M, - S, ;. Combining this result with (8), we

finally arrive at the expression for the probability that a walker

starting from a site in 7, will be entrapped in R s after a large

number of hops,

= Z]P;X;t M, - S,y - RY. 9)
X

The sum ) is taken over all possible 7,’s from which R,
can be accessible.

The result of this analysis can be summarized by the
following matrix:

0O - 0§ ... S
e O -« 0 $ ... 8
P = ’ 1, 0
O -+ 0 Ry 0
O --- 0 O R

r

together with S;?f)f as defined in (9) and IR;’P as in (4) with
the appropriate limit interpretation. Given initial state vector
v;, after a large number of hops, the system’s probability
distribution is therefore

=00

vi=v,-P. (11)

C. Graph algorithms

The analysis so far has made full use of the canonical form
for reducible matrices. The question thus arises: Is there a
way to systematically find a permutation which would cast a
reducible matrix into its canonical form? Fortunately, in graph
theory there exists a set of algorithms which does exactly this.
Initially, one can find a permutation which could swap indices
in such a way that strongly connected components (or lattice
sites in this case) are grouped together into appropriate classes.
Algorithms such as Tarjan’s and Gabow’s exist to do this with
linear-time complexity [22]. At this point, the relationship
between classes can be represented by a nonunique directed
acyclic graph (DAG).

Let G = (V,E) be a DAG with a set of vertices V =
{1,2,...,t +r} and a set of edges E. Vertex i represents a
transition matrix of type (a) T; for all i whose outdegree is
positive [deg™ (i) > 0] or (b) R; if i is a sink [deg™(i) = 0].
The underlying graphs of these matrices are, by construction,
strongly connected, which make them irreducible. Edge (i, j)
connecting vertex i to j represents transition matrix of type
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FIG. 2. (Color online) The directed acyclic graph (DAG) of the
graph shown in Fig. 1. Each vertex represents a class of strongly
connected components, and each edge connects two classes with
nonvanishing transition probability from one to the other. Vertex 19,
for example, represents the subgraph in Fig. 1 that is highlighted in
red (dark gray).

(a) T; ; from 7; to 7T; if deg™(j) > 0 or (b) 5 ; from 7; to
R; if j is a sink. An example of such a graph is shown
in Fig. 2. Vertices in a DAG have a natural ordering which
could best be visualized by a layered tree, pointing one way
from vertices of transient classes to those of recurrent classes.
A topological sorting [23] can be performed in linear time
[O( V| + |E|)] to yield a permutation of classes from transient
to recurrent. By composing the two permutations together, one
obtains a permutation which takes a reducible matrix to its
canonical form. In practice, it is not important to topologically
sort DAG to obtain the full canonical form to efficiently
compute elements of P™. The ordering of M, - T, ; terms
in Eq. (7) only requires that they appear in the same sequence
as the underlying DAG. Topological sorting simply relabels
the class numbers in order of appearance, which yields no new
information and thus is unnecessary.

In cases where a prescribed diffusion rule prohibits self-
hopping (P;; # 0,Vi), the limiting probability transition may
not exist for some recurrent class R;. If preferred, one can
determine the period of R; directly from its underlying
subgraph G'. From a graph-theoretic perspective, G' is
periodic with period p if and only if it can be partitioned
into p smaller graphs G, ...,G", such that (a) if vertex m is

in G} and an edge (m,n) connects m to n then it is implied
that  is in Gfk +1mod p and (b) p is the largest possible integer
with this property. This makes sure that each transition takes
the walker to a new class before it returns to the original class
after p successive transitions. An aperiodic recurrent class is
one where such partition is not possible. The proof of the above
theorem and the graph algorithm for finding the period of these
“cyclically moving classes” are given in Ref. [24].

To employ G in the limiting probability calculation, we start
by assigning appropriate matrices to all vertices and edges.
Let S = {j| deg™(j) = 0} be the set of all sinks of G. We then
assign matrix IM; to each vertex i ¢ S, or R fori € S. Each
edge (i,j) is prescribed by transition matrix T; ; for j ¢ §
and S; ; for j € S. To compute the limiting probability that a
walker would reach a site in one of the recurrent classesin S, we
begin by giving the walker his initial probability distribution
vector vy at the starting class. This vector contains only one
nonzero component of value 1 at the position corresponding
to the dropped site. Then we scan the graph from the starting
vertex (which may or may not be the source) to the sinks. As
we traverse the graph to vertex s, we would have accrued all
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the probability contributions along that path prior to reaching
s. The probability distribution v, stored at each vertex as it is
visited would be

S v M, T, if
Ve = (X, v, - M, -8,,) - R® if

s ¢S,

12
s e S. (12)

The above summation ) _, is taken over all incoming vertices
r that point toward s. In a special case where the graph is made
up of just one vertex, the final distribution is simply the Perron
vector 7. It should be emphasized that direct computations
of all the M, are not necessary. One only needs to calculate
x = v, - M,, which is equivalent to solving the system of linear
equations of the form (1 — T))-x = v,. There exist many
iterative schemes to determine x such as the Jacobi method
and the successive over-relaxation (SOR) method [21,25],
or one could solve them using the equivalent constrained
minimization method. As an illustration, according to the
highlighted subgraph of G as shown in Fig. 2 (thick arrows),
vertex 2 would receive probability vector v, whose value
equals

Vo =Vig - Mg - [Ti93 - M3z - T35+ Tig4 - My- Ty,
+ (T9,6 - Mg - T 5 + Ty97 - My - T75) - IMs - Ts5].

Vector v, can be interpreted as the probability that a walker
would reach each site in transient class 7, given its initial
probability distribution of vig in class 779. By the time sink 1
is reached, the limiting probability distribution vector v; can
readily be obtained from the v, ’s of its immediate predecessors
as follows:

vi=[vy- My -8y +vg-IMg-S8g
+vo-Mog-So 1 +vis-Mis- 31511 RS

Other aspects of graph algorithm will be discussed in the
respective sections as we examine the modeling problems.
Readers interested in seeing the connection between DAG
and the matrix inversion of the form (1 — A)~!, where A is
substochastic, should take a look at the Appendix.

III. MODELING

The formalism outlined in the previous section shall be
applied to simulate long-range diffusion-attachment solid-on-
solid growth on a two-dimensional substrate. For simplicity,
the underlying lattice structure is simple cubic—though other
crystalline structures are of no fundamental difference. Two
examples shall be considered: (1) growth on an initially flat
substrate and (2) growth around a screw dislocation. For each
initial profile of the substrate, graph g, similarly to what is
shown in Fig. 1, is constructed where a vertex represents a
lattice position and an edge links a pair of adjacent neighbors
together. Each vertex contains a number representing the
height of the stack of atoms at that site. This implies that
overhangs and voids are prohibited. An edge (i,k) contains
probability P;; that if an atom is deposited at i, it would
move to k. For illustrative purposes, the Wolf-Villain diffusion
model is chosen to prescribe such a weight. According to the
model [1], an adatom will try to move in such a way that
the lateral coordination number is maximized. Should there
be more than one such direction, the probability is divided
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FIG. 3. Diffusion rule for the modified Wolf-Villain model is
shown on a sample of a one-dimensional substrate with periodic
boundary conditions together with the associated directed acyclic
graph. Atoms are deposited from the top and can move at most one
step to the side. The arrows depict possible hop directions given
the incidence positions. The self-looping arrows designate hopping
in-place, which is added in this modified version.

equally among them. A slight alteration is made to the rule by
including the coordination number at the present position into
consideration so in-place hopping is possible (P;; # 0). This
modification permits the limiting transition probability IRS° to
always exist in our analyses. The underlying graph g of the
transition matrix IP serves as the starting point of all of our
simulations. We shall examine the surface growth evolution
of the examples when each incidence atom, one at a time,
performs a random walk on the surface where the direction of
each step is given by the modified WV model until the atom
becomes a part of the surface. The final resting position of
the atom is chosen from one where the atom has visited most
frequently.

Before we discuss problem-specific modelings, it is a good
idea to consider a simple example. Figure 3 shows the side view
of a one-dimensional lattice with periodic boundary conditions
at an instant in time. According to our modified Wolf-Villain
model, the arrow(s) on top of each surface position indicate
possible directions that an atom, if dropped there, would move
with the probability inversely proportional to the number
of arrows at that point. Lattice positions are labeled by
the numbers at the base. The one-step transition matrix is
given by

13 13 0 0 0 0 1/3
O 0 1 0 0 0 0
o 0 1 0 0 0 0
P=|0o o0 12 0 12 0 0
0 0 0 0 12 1/2 0
0O 0 0 0 12 1/2 0
o 0 0 0 0 I 0

This example is simple enough that there is no need to cast
PP into its canonical form. It is clear from the structure of the
matrix that the transient classes are {1},{2},{4}, and {7} and the
recurrent classes are {3} and {5,6} (which are also our sinks).
Since each transient class only contains one member, matrix
M is extremely simple; Mg = 1/(1 — P, ) fors € {1,2,4,7}.

The recurrent matrices are R{° = {1} and ]R‘{’;()] = (}ﬁ :Z)

Matrices IP‘;"‘)‘Ct and $7°; can be calculated from Egs. (8) and (9)
with the help of the DAG shown in Fig. 3. For example, given
that an atom starts its trip at site 1, the probability IP{%; that it
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will end up at site 3 can be computed in the following way:

PP =57% = P9 - M, - Pos - RS
=M -Pi5)- M, -Pys- RS

1 1 1 1
= X = X1x1=-.
1—% 3/1-0 2

The resulting limiting transition probability matrix for this
initial configuration is given by

0 0 1/2 0 1/4 1/4 0
00 1 0 0 0 O
00 1 0 0 0 0
P*=|0 0 1/2 0 1/4 1/4 0
00 0 0 1/2 1/2 0
00 0 0 1/2 1/2 0
00 0 0 1/2 1/2 0

According to P*, an atom falling onto site i will eventually
end up at site 3, 5, or 6 with probabilities as listed on the i th
row if one applies the modified WV rule repeatedly. Moreover,
provided that an atom is likely to fall anywhere, site 3 is the
most likely eventual resting place (because the third column of
this matrix yields the largest sum) with the probability of 3/7.
Let us examine the structure of the sinks obtained from the
modified WV model in a general two-dimensional substrate.
Most of the time, a sink (recurrent) class only contains one
member (like site 3 in our simple example above). This
member is the representation of a kink site. Thus the task
of computing Perron vectors to represent the IRS® matrices
is removed. Essentially, these matrices are simply {1}. In a
few rare cases we could have a situation where two (sites 5
and 6 in the above example), three, or four kinks facing each
other create an area of two to four sites whose coordination
numbers equal one another and are higher than those of their
surrounding neighbors’. Each vertex within a class with two
(four) elements has two (three) edges, one pointing to itself
and the rest point(s) to its neighbor(s). The limiting recurrent
matrix RJ° in this case would be a 2 x 2 (4 x 4) matrix with
all elements being 1/2 (1/4). In the case of three elements,
there is one vertex with three outgoing edges, while the other
two only contain two edges. The Perron vector used in Eq. (4)
comprises two of 2/7 and one of 3/7. Only in this last case is
the weight not distributed evenly and the walker would more
likely go there. Fortunately, these cases never crop up in the
analyses of the two-dimensional problems considered below.

A. Growth on flat substrate

Here we consider the surface growth on an initially flat
rectangular surface with the periodic boundary conditions and
apply the algorithm discussed in the previous section to find
the most likely site that each atom would likely be. Two
different methods shall be used: (I) each deposition site is
chosen randomly and the algorithm gives its most probable
final position and (II) the most probable final position of all
initial sites shall be chosen. Notice that the first atom to be
dropped onto the surface will as likely be at any one site as
another. Thus, for a visual purpose, we put it at the center of
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the surface. This atom will act as the seed to which subsequent
atoms can attach themselves in the process of island formation.

In Method I, for each iteration, the simulation scheme starts
by randomly selecting a starting position iy. Then only the
subgraph of g whose components can be reached from i is
extracted. This process helps keep only the relevant irreducible
classes for future computations. Subsequently, the DAG G of
this subgraph is constructed by grouping strongly connected
components together. We choose the eventual resting position
by looking for j which yields the greatest P, . From the
structure of G, one of three things could happen: (a) there is
only one class thus G is the sink, (b) G only contains one
sink and j will inevitably be in that sink, or (c) G contains
multiple sinks and further calculation needs to determine the
most likely sink that j would eventually lie. It is only this last
case that an actual calculation in the form outlined in Sec. I C
is performed if all one wishes is to get the final position of
the adatom without calculating any statistics. Once all v,,Vs €
S are obtained, the chosen sink is the one whose member
has the greatest value among all elements in all sink classes.
Should there be more than one such members, the chosen
site is selected randomly from that list. We then increment
the atomic height at that site by one unit and the whole routine
is repeated. Method II is similar to Method I except for one
important point; our initial probability distribution v; is given
by (1/N){1,...,1} instead of having one nonzero element at
a random position .

B. Growth around a screw dislocation

In modeling the surface growth around a screw dislocation,
we decide upon a circularly shaped substrate of radius r with
free boundary. This choice ensures that any rectangular pattern
that might emerge from the growth is due to the underlying
lattice structure and not due to the shape of the boundary.
Sites along the rim of the disk only connect with those
within; thus they contain fewer nearest neighbors than the
ones within the disk. The total number of lattice positions is
approximately 772, We first initialize the height of all lattice
points according to h(x,y) = (b/2m)tan~!(y/x). Traversing
around the dislocation core at (0,0) once in the clockwise
(counterclockwise) direction will result in a height increment
(decrement) approaching b at large distance from the core. In
order to specify the coordination number at each point on the
lattice, one needs to specify the criterion for height difference
between any adjacent sites. If the height difference between
two nearest-neighboring sites is smaller than 0.2b, we consider
them as living on the same plane, and an adatom on top of the
shorter site will not receive the coordination number count
from the taller one. The simulation procedures in this case are
the same as that of the flat surface. After the most probable site
is found in either Method I or Method II, we increase its height
by b to match the magnitude of the Burgers vector. Then the
process is repeated.

IV. RESULTS AND DISCUSSIONS

The evolution in the case of growth on a flat substrate gives
rise to one-island formation. In Method I, subsequent atoms
attach themselves to the initial single-atom island since this is
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FIG. 4. Surface of size 20 x 20 lattice sites with periodic bound-
ary conditions after 113 atoms (black squares) are deposited using
(a) Method I and (b) Method II.

the only place where they can maximize their coordination
number. The most probable final position of each newly
deposited atom given by our algorithm tends to be the kink site
that is closest to the dropped position. This results in an island
surface with jagged island boundary as shown in Fig. 4(a). The
island will continue to grow until the first layer is completely
filled up. This happens because there is no mechanism, e.g.,
Ehrlich-Schwoebel-like barrier, to prevent an adatom dropped
on top of the island from hopping down to a lower layer where
it could increase its coordination number. After the complete
first layer is filled, the growth process repeats itself again and
again, giving us a perfect layer-by-layer growth.

In Method II, the growth of the freshly deposited layer
is largely symmetrical. Identifying the plane of the substrate
to be (001), atoms collectively tend to form an island whose
boundaries grow outward in a rectangular fashion with growth
fronts perpendicular to the [110], [110], [110], and [110]
directions as can be seen in Fig. 4(b). Unlike the previous
case, the shape of the island is generally very compact. The
development of the growth fronts can be observed since the
early stage in the simulation. These orientations are favorable
to incoming adatoms than others since they provide more
lateral kink sites which result in higher coordination numbers
than if the front were one of [100], [010], [100], or [010]. As
in the previous method, the surface is filled up one layer at
a time.

The simulation result of the surface growth around a
screw dislocation shows a more interesting dynamics. We
initially align the ridge so it extends radially outward from
the dislocation core at (0,0) along the [010] direction. When
viewed from the top, the ridge starts spiraling outward in
the clockwise direction (since the atomic height difference is
h(x = 0") — h(x = 07) = +b along the ridge) as more and
more atoms are attracted toward its left side. The surface
evolution according to Method I, like the flat substrate case,
gives a very rough spiral ridge. The randomness of each
deposition causes the atomic incorporation to occur at the
nearest kink site which may be anywhere. This makes it
difficult to describe how the surface grows generally. More
importantly, the growth does not reflect the shape observed
in actual experiments where the spiral ridge fronts are of
well-defined compact geometrical form [7].
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FIG. 5. (Color online) Growth around a screw dislocation start-
ing from (a) initial profile and then after (b) 200 atoms, (c) 400 atoms,
and (d) 600 atoms are deposited.

The result from Method II, on the other hand, does not
suffer from this setback. During its first revolution, whose
development is depicted in Figs. 5(b) and 5(c), the spiral ridge
looks like a four-pointed star whose boundary is concave.
These concave fronts are filled up quickly afterward into
straight edges orienting along the preferred directions, making
the spiral rectangular in appearance. The growth fonts are
exactly the same as those seen in the case of flat substrate
growth. As time progresses, more and more steps are generated
and the surface looks like a rectangular pyramid. The distance
between adjacent steps also decreases with time, as is typical
seen in actual growth experiment [8,26] and also in the
phase-field simulation [27]. With this particular boundary
condition, we observe the stationary state when the width of
successive steps is exactly 1. Since the details of the growth
evolution depend largely on the chosen diffusion rule (the
modified WV in this case) and the boundary conditions, we
shall postpone the full analyses of the dependence of surface
growth on these choices for our future work.

It should be mentioned that the strange initial “side-
branching” spiral has never been observed elsewhere, either
in the phase-field modeling or in energetic-based kMC
simulations of growth around a dislocation. We believe that
this artifact is specific to our choice of diffusion rule. The
shape, however, is similar to a two-dimensional kMC growth
simulation around a nucleation site with atoms having a
short average mean free path [12]. By employing a multiple
registration scheme, the island boundary was smoothed out
and the dendritic feature with four side branches could be
seen. We believe that their striking resemblance albeit different
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FIG. 6. (Color online) The average mean free path A simulated
by Method I and measured in the units of the respected number of
sites N is plot as a function of subsequent drops up to the 6N™
atom for circular substrate of radius 10, 15, and 20 as shown in blue
(black), red (dark gray), and green (light gray), respectively. The
surface profile after every N deposited atoms simulated by Method
II are shown as points of reference.

physical processes may not be a coincidence but an implication
about a connection between our probabilistic approach and
the approach using short-distance diffusion with a multiple
registration scheme.* As a noise reduction technique, the
scheme allows for a more probable site to be chosen since
an atom must visit a site repeatedly up to a certain number
before it becomes a part of the surface. Thus, to some degree,
the two approaches are similar. Further investigation is needed
in order to quantify this connection.

As a demonstration of our probabilistic approach, Fig. 6
shows the mean free path A, or the average number of hops an
atom makes until its incorporation to the most likely spot on the
spiral ridge, computed through Method I. The simulations were
performed on the substrate of radius » = 10, 15, and 20 atomic
spacings, bringing the total number of sites to N = 316, 716,
and 1264, respectively. About 6N atoms were sequentially
dropped in each case. Points on the graph are the results of
the average over 800, 400, and 300 runs respectively. All
three graphs are more or less on top of one another except
for the tail of the » = 10 case. Due to its small size, the system
reaches its stationary state long before the other two cases.
The very first atom has to hop on the order of N ~ r? before
it reaches the dislocation ridge. The number of hops decreases
very rapidly as the ridge starts to spiral. We notice a series of
plateaus starting approximately at every N atoms. A drop in
the number of hops to the next plateau occurs as one or more
of the ridge fronts are filled up and straightened out. Inside a
plateau region, new atoms take on average the same number of
hops before reaching the spiral as its fronts propagate outward.
This process continues until the stationary state is reached at
which point atoms most likely would take at most a few hops
before being incorporated into the spiral ridge. As points of

“4The latter was recently shown to be equivalent and could provide an
alternative approach to simulating collective diffusion phenomenon
on thin-film growth [28].
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reference, we include the shapes of the substrate, simulated by
Method 11, after N, 2N™ .. 6 N atoms are absorbed into
the spiral.

A few remarks are in order before we end this section. In
principle, it is possible to obtain Fig. 6 using the conventional
approach by directly applying the WV diffusion rule to each
step until an atom no longer moves, while recording its hop
number. Doing so repeatedly in order to achieve the same
statistics presented here, however, would be computationally
very costly. We were able to produce the data used to create
the above graphs using about four days of computer time on
a single core processor. If one is not interested in carrying out
any statistical computations and only wants the evolution of the
height profile, a much larger system can be simulated within
a reasonable time. As mentioned earlier, in most cases the
eventual resting site for each deposited atom may be obtained
with minimal computation by simply looking at the structure
of the underlying DAG. Finally, the technique presented in this
work deals primarily with statistics of random walk on lattices
given a local diffusion rule. Readers interested in practical
tools for simulating thin film growth on an actual physical
system should look into many recent developments aimed
toward improving efficiency and accuracy of the conventional
kMC algorithm. Amar ef al. make use of clever parallel
programming techniques to extend kMC over larger length
and time scales [29] and are able to achieve simulation time
that scales as, not the usual polynomial, but the logarithm
of system size [30]. For a smaller system that demands full
trajectories of deposited atoms, molecular dynamics (MD) is
generally utilized. Several accelerated dynamics algorithms
have been proposed to speed up direct integrations of Newton’s
equations, more notably using temperature-accelerated MD
technique [31]. Other attempts such as one that tries to approx-
imate the MD methods to be used in conjunction with kMC
calculations have also shown impressive speed improvement
on long-time/large-scale systems over the conventional kMC
approach [32]. Readers wishing to see theoretical basis sub-
molonolayer growth kinetics and follow recent developments
in cluster growth on surfaces should consult Ref. [33] and
references therein.

V. CONCLUSION

Based on the Markovian hypothesis and Froebenius theo-
rem, the limiting probability transition matrix for a random
walker starting a trip with a given initial probability profile
is obtained. We devised graph algorithms to automate the
process so it could be implemented on a computer. In the
process, we discovered an algorithm for finding the inverse of
a certain class of stochastic matrices. Finally, the formalism
is applied to solid-on-solid, diffusion-attachment type of
surface growth on a two-dimensional flat substrate and around
a screw dislocation. The latter gives a usual spiral ridge
with a rectangular shape reflecting the underlying crystal
structure in the limit where atoms are set to emerge at the
most probable lattice positions during growth. The result
also suggests an interesting connection with the widely used
multiple registration technique in kMC simulations.
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APPENDIX: DAG AND MATRIX INVERSION

An algorithm such as that of Tarjan’s which casts a matrix
into the corresponding directed acyclic graph from where
permutation matrix @ could be constructed offers a new way
of computing an inverse of a certain class of matrix. It is well
known that the inverse of a triangular block matrix is given by

(Bl Bz) L (Bll —B;! ‘]Bz'IB31>, (A1)
O B (D) B!
We shall use Eq. (A1) as a basis for our analysis.

We are interested in finding the inverse of matrix D =
1 — A, where A is a substochastic matrix whose summation
of elements in each row is less than or equal to 1. We start by

obtaining @ through Tarjan’s algorithm. Matrix @ can be used
to turn A, through a simple change of basis, into

T, Ty, --- Ty,
B O T, - T
A=Q"-A-Q=

O ... 0 T,

Matrix A would have the same structure as,e.g., ]?’7%7 shown
in Eq. (3), where each T; and T; ; are irreducible. Figure 7
gives an example of the underlying DAG of A for 1 =6,
assuming that all of the upper triangular block matrices are
nonzero.

Let M; = (1 — T,)~! and S(i, j) be the set of all possible
subsets of {i,i + 1,...,j} with i and j as the first and the last
elements and listed in increasing order; for example, S(1,4) =
{{1,2,3,4},{1,2,4},{1,3,4},{1,4}}. One can recursively apply

FIG. 7. An example of a directed acyclic graph representing a
matrix in its canonical form.
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Eq. (A1) to compute the inverse of

]I—Tl —Tl,z _Tl,t

- N O 1-T, Ty,
D=1-A=| | . (A2)

O O 1-T,

It is straightforward to show that the (i, /)™ block component
of D is given by

]Mi i = j9
~-1 sl|—1 . .
D Jij =M, - Zses(i,j) n}l=”1 (Tseos04 - MSk+|) 1<
(0] i>j.

(A3)

The sum in the case of i < j is taken over all members s of
S(i, j), where s; denotes the k™ element of s and || s || denotes
the number of elements. Once the inverses of all block elements
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are computed and the whole D s assembled, one can simply
perform another change of basis to shuffle all elements back
to their original orders.

Equation (A3) may be conveniently read off from the struc-
ture of the DAG of A.. To obtain the (i, j ) block component,
one simply traverses the graph from node i to j through all
possible routes. Each visit to node k corresponds with M.
Each passage through an edge from / to m corresponds with
T, ,»- The final result is the sum over these routes. This method
amounts to graph traversal, which is acommon routine in graph
programming.

Our method of finding an inverse not only is simple but also
reveals the fundamental structure of the matrix. Moreover,
in some problems, only a small subset of inverse matrix
elements are needed. Our method would tremendously reduce
the amount of computation because only a few IM;’s may be
required. Finally, we should point out that directly finding A ~!
is not much harder than finding D~!. The additional difficulty
arises in keeping track of extra minus signs that crops up
depending on whether the number of T, ,,’s in an expression
is odd or even. This could be done simply by counting the
number of nodes visited during the traversal.
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