

โครงการพัฒนาเทคนิควิเคราะห์ที่ง่าย รวดเร็ว และราคาถูกสำหรับตรวจวัด กรดซาลิไซลิกในเภสัชภัณฑ์โดยใช้ควอนตัมดอท

ดร. โอภาส บุญเกิด มหาวิทยาลัยสงขลานครินทร์

รายงานวิจัยฉบับสมบูรณ์

โครงการพัฒนาเทคนิควิเคราะห์ที่ง่าย รวดเร็ว และราคาถูกสำหรับตรวจวัด กรดซาลิไซลิกในเภสัชภัณฑ์โดยใช้ควอนตัมดอท

ดร. โอภาส บุญเกิด มหาวิทยาลัยสงขลานครินทร์รศ. ดร. เพริศพิชญ์ คณาธารณา มหาวิทยาลัยสงขลานครินทร์

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา สำนักงานกองทุนสนับสนุนการวิจัยและ มหาวิทยาลัยสงขลานครินทร์ (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

รหัสโครงการ: MRG5680045

ชื่อโครงการ: พัฒนาเทคนิควิเคราะห์ที่ง่าย รวดเร็ว และราคาถูกสำหรับตรวจวัดกรดซาลิไซลิกในเภสัชภัณฑ์

โดยใช้ควอนตัมดอท

ชื่อนักวิจัย: ดร. โอภาส บุญเกิด

ระยะเวลาโครงการ: 3 มิถุนายน 2556 ถึง 2 มิถุนายน 2558

โครงการนี้เป็นการพัฒนาวิธีการตรวจวัดกรดซาลิไซลิกในตัวอย่างเภสัชภัณฑ์ที่ทำได้ง่าย ใช้งานได้ สะดวกและรวดเร็ว โดยอาศัยหลักการตรวจวัดสัญญาณฟลูออเรสเซนต์ที่ลดลงของควอนตัมดอทเมื่อเกิด อันตรกิริยากับกรดซาลิไซลิก ภายใต้สภาวะที่เหมาะสมของการตรวจวัดที่ pH 5.5 อุณหภูมิ 25 องศา เซลเซียส ความเข้มข้นของควอนตัมดอท 0.4 ไมโครโมลาร์ และเวลาในการทำปฏิกิริยา 1 นาที โดยสัญญาณ ฟลูออเรสเซนต์ของควอนตัมดอทลดลงตามความเข้มข้นของกรดซาลิไซลิกซึ่งมีช่วงความเป็นเส้นตรงของการ ตรวจวัดตั้งแต่ 0.5-40 ไมโครกรัมต่อมิลลิลิตร และมีขีดจำกัดของการตรวจวัดเท่ากับ 0.15 ไมโครกรัมต่อ มิลลิลิตร วิธีการตรวจวัดสอดคล้องกับวิธีมาตรฐาน (เทคนิคโครมาโทกราฟีของเหลวสมรรถนะสูง) ให้ร้อยละของการ ได้กลับคืนที่ดีอยู่ในช่วง 99±3 ถึง 105±9 เปอร์เซ็นต์ มีค่าความเที่ยงที่ดีโดยมีค่าเบี่ยงเบนมาตรฐานสัมพัทธ์ 2.6 เปอร์เซ็นต์ วิธีที่พัฒนาขึ้นเป็นวิธีที่ทำได้ง่าย สะดวก รวดเร็ว มีราคาถูก เป็นมิตรกับสิ่งแวดล้อม และมี ความไววิเคราะห์สูง สามารถประยุกต์ใช้ในการตรวจวัดกรดซาลิไซลิกในตัวอย่างเภสัชภัณฑ์ชนิดต่างๆ ได้โดย ไม่จำเป็นต้องมีขั้นตอนการเตรียมตัวอย่างที่ยุ่งยาก

Abstract

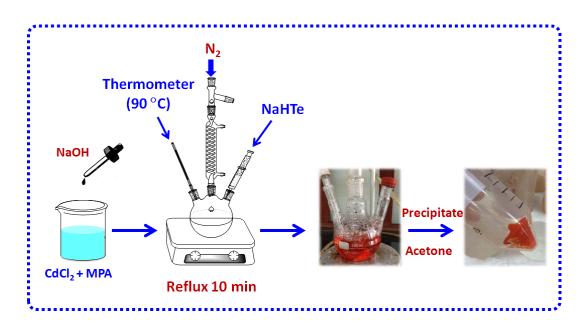
Mercaptopropionic acid capped cadmium telluride quantum dot (MPA-capped CdTe QDs) fluorescent probes were used for the determination of salicylic acid. The detection is based on the fluorescence quenching of MPA-capped CdTe QDs after interact with salicylic acid. Under optimum conditions, the quenched fluorescence intensity of MPA-capped CdTe QDs was linearly proportional to the concentration of salicylic acid in the range of 0.5–40 μ g mL⁻¹ and the limit of detection was 0.15 μ g mL⁻¹. The method was successfully applied to the determination of salicylic acid in pharmaceutical products, and satisfactory results were obtained that were in agreement with the HPLC method. The recovery of the method was in the range of 99±3 to105±9 %. The proposed method is simple, rapid, cost effective, highly sensitivity and eminently suitable for the quality control of pharmaceutical preparation.

Keywords (คำหลัก): Salicylic acid, Quantum dot, determination

Executive summary

กรดชาลิไซลิกเป็นสารที่ใช้กันอย่างแพร่หลายในทางเภสัชกรรมเพื่อใช้ในการฆ่าเชื้อ เช่นใช้ในการ รักษาโรคผิวหนัง เนื่องจากสารดังกล่าวสามารถฆ่าเชื้อราและแบคทีเรียได้หลายชนิดและมีความเถียรที่ดี แต่ อย่างไรก็ตามหากมีการใช้เป็นเวลานานหรือใช้ในปริมาณมากอาจจะส่งผลกระทบต่อสุขภาพของผู้ใช้ได้ เช่น ทำให้เกิดอาการคลื่นไส้ เวียนศีรษะ ซึ่งโดยทั่วไปปริมาณของกรดซาลิไซลิกในเภสัชภัณฑ์ไม่ควรเกิน 3 เปอร์เซ็นต์ ดังนั้นจึงจำเป็นต้องมีวิธีการตรวจวิเคราะห์ที่เหมาะสมเพื่อควบคุมคุณภาพและเพื่อความปลอดภัย ของผู้บริโภค โดยวิธีการทั่วไปที่นิยมใช้ในการตรวจวิเคราะห์กรดซาลิไซลิก คือเทคนิคโครมาโทกราฟีของเหลว สมรรถนะสูง แต่เทคนิคดังกล่าวต้องใช้เครื่องมือที่มีราคาแพง ต้องใช้ผู้ที่มีความชำนาญในการวิเคราะห์และใช้ เวลานาน ดังนั้นเพื่อลดปัญหาดังกล่าวโครงการวิจัยนี้จึงได้พัฒนาวิธีการตรวจวัดกรดซาลิไซลิก ที่สามารถทำ ได้ง่าย ราคาถูก โดยอาศัยหลักการวัดการเปล่งแสงฟลูออเรสเซนต์ที่ลดลงของควอนตัมดอทเมื่อเกิดปฏิกิริยา กับกรดซาลิไซลิก โดยใช้เทคนิคเปกโตรฟลูออโรมิเมทตรี

จากการศึกษาพบว่าสัญญาณฟลูออเรสเซนต์ของควอนตัมดอทลดลงตามความเข้มข้นของกรดซาลิไซ ลิกโดยสภาวะที่เหมาะสมของการตรวจวัดที่ pH 5.5 อุณหภูมิ 25 องศาเซลเซียส ความเข้มข้นของ ควอนตัมดอท 0.4 ไมโครโมลาร์ และเวลาในการทำปฏิกิริยา 1 นาที ให้ช่วงความเป็นเส้นตรงของการตรวจวัด ตั้งแต่ 0.5-40 ไมโครกรัมต่อมิลลิลิตร และมีขีดจำกัดของการตรวจวัดเท่ากับ 0.15 ไมโครกรัมต่อมิลลิลิตร วิธีการตรวจวัดที่พัฒนาขึ้นได้มีการประยุกต์ใช้ในการตรวจวัดกรดซาลิไซลิกในตัวอย่างเภสัชภัณฑ์ซึ่งให้ผลการ ตรวจวัดสอดคล้องกับวิธีมาตรฐาน (เทคนิคโครมาโทกราฟีของเหลวสมรรถนะสูง) ให้ร้อยละของการได้ กลับคืนอยู่ในช่วง 99±3 ถึง 105±9 เปอร์เซ็นต์ มีค่าความเที่ยงที่ดีโดยมีค่าเบี่ยงเบนมาตรฐานสัมพัทธ์ 2.6 เปอร์เซ็นต์ วิธีที่พัฒนาขึ้นเป็นวิธีที่ทำได้ง่าย ใช้งานได้สะดวก รวดเร็ว มีราคาถูก เป็นมิตรกับสิ่งแวดล้อม และ มีความไววิเคราะห์สูง สามารถประยุกต์ใช้ในการตรวจวัดกรดซาลิไซลิกในตัวอย่างเภสัชภัณฑ์ชนิดต่างๆ ได้ โดยไม่จำเป็นต้องมีขั้นตอนการเตรียมตัวอย่างที่ยุ่งยาก


วัตถุประสงค์ของโครงการ

เพื่อพัฒนาวิธีวิเคราะห์ ที่ง่าย รวดเร็ว มีราคาประหยัด เป็นมิตรกับสิ่งแวดล้อม และมีความไว วิเคราะห์สูงสำหรับตรวจวัดกรดซาลิไซลิกในตัวอย่างเภสัชภัณฑ์

ระเบียบวิธีวิจัย ประกอบด้วย

- 1. การสังเคราะห์ควอนตัมดอท (MPA-capped CdTe) โดยขั้นตอนการสังเคราะห์สามารถสรุปได้ดัง รูปที่ 1 ดังนี้
- เตรียมสารละลายผสมของ $CdCl_2$ และ MPA โดยปรับ pH เท่ากับ 11.50 ด้วยโซเดียมไฮ ดรอกไซด์

- นำสารละลายผสมมาให้ความร้อนโดยวิธีการรีฟลักซ์ที่อุณหภูมิ 90 องศาเซลเซียส จากนั้น ฉีดสารละลาย NaHTe ปริมาตร 0.5 มิลลิลิตรแล้วรีฟลักซ์เป็นเวลา 10 นาที
- นำสารละลายมาตกตะกอนด้วยอะซิโตนเพื่อกำจัด MPA และ Cd²⁺ ที่เหลือจากการทำ ปฏิกิริยาจะได้ควอนตัมดอทที่เป็นของแข็ง
- นำควอนตัมดอทเก็บไว้ในเดซิเคเตอร์ เมื่อต้องการใช้งานจึงนำมาละลายในสารละลายกรด ไฮโดรคลอริก pH 5.5

รูปที่ 1 แสดงขั้นตอนการสังเคราะห์ควอนตัมดอท

2. ศึกษาคุณสมบัติของควอนตัมดอทที่สังเคราะห์ได้

ศึกษาคุณสมบัติของควอนตัมดอทที่สังเคราะห์ได้โดยวัดการดูดกลืนแสงเพื่อนำมาคำนวณขนาดของ ควอนตัมดอทและดูลักษณะของควอนตัมดอทโดยใช้เครื่องอิเล็กตรอนแบบส่องผ่าน

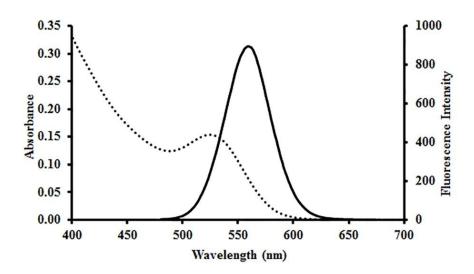
3. ขั้นตอนการตรวจวิเคราะห์

นำควอนตัมดอทที่สังเคราะห์ได้มาละลายในสารละลายกรดไฮโดรคลอริก pH 5.5 จากนั้นนำ สารละลายที่ได้ปริมาตร 100 ไมโครลิตร ผสมกับสารตัวอย่างปริมาตร 50 ไมโครลิตร ผสมสารละลายเป็น เวลา 1 นาที จากนั้นนำมาวิเคราะห์เชิงปริมาณโดยการวัดการเปล่งแสงพลูออเรสเซนต์ที่ลดลง

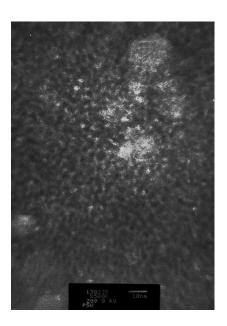
- 4. ศึกษาสภาวะที่เหมาะสมของการตรวจวัดเพื่อให้ได้ประสิทธิภาพของการตรวจวัดที่ดีที่สุด โดย ศึกษาปัจจัยที่เกี่ยวข้องได้แก่
 - pH ที่เหมาะสม
 - อุณหภูมิและระยะเวลาของการทำปฏิกิริยา
 - ศึกษาความเข้มข้นของควอนตัมดอทที่เหมาะสม

- 5. ศึกษาผลของตัวรบกวนที่อาจจะมีอยู่ในตัวอย่างจริงและอาจส่งผลรบกวนต่อการวิเคราะห์
- 6. ศึกษากลไกการ Quenching
- 7. ศึกษาการพิสูจน์การใช้ได้ของวิธี (Method Validation)
 - ช่วงความเป็นเส้นตรง (Linearity)
 - ขีดจำกัดของการตรวจวัด (Limit of detection)
 - ศึกษาความเที่ยงและความแม่นของวิธี (Precision and Accuracy)
- 8. เปรียบเทียบประสิทธิภาพของวิธีที่พัฒนาขึ้นกับวิธีมาตรฐาน (โครมาโทกราฟิสมรรถนะสูง)
- 9. การประยุกต์ใช้ในตัวอย่างจริง

โดยตรวจวิเคราะห์กรดซาลิไซลิกในเภสัชภัณฑ์ประเภทต่างๆ ที่มีจำหน่ายตามร้านขายยา


ผลการดำเนินงานของโครงการ

1. การสังเคราะห์และศึกษาคุณสมบัติของควอนตัมดอท (MPA-capped CdTe)

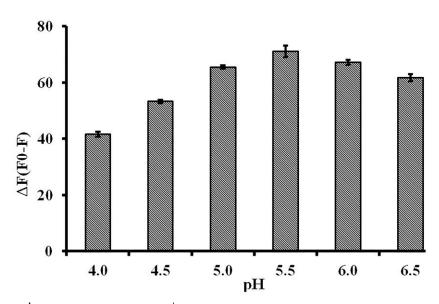

ศึกษาคุณสมบัติทางแสงของควอนตัมดอทที่สังเคราะห์ได้ด้วยการวัดค่าการดูดกลืนแสง อัลตราไวโอเลต-วิสิเบิลและสัญญาณฟลูออเรสเซนต์ (รูปที่ 2) จากการวัดค่าการดูดกลืนแสงของ ควอนตัมดอทที่สังเคราะห์ได้ในช่วงความยาวคลื่น 400-700 นาโนเมตรพบว่าความยาวคลื่นสูงสุดคือ 530 นา โนเมตร เมื่อคำนวณขนาดของควอนตัมดอทด้วยสมการที่ 1 (William et al., 2003, Liang et al., 2008) พบว่ามีขนาดประมาณ 2.98 นาโนเมตรซึ่งสอดคล้องกับขนาดของควอนตัมดอทที่ได้จากการดูด้วยกล้อง อิเล็กตรอนแบบส่องผ่าน (TEM) (รูปที่ 3) จากลักษณะสเปกตรัมของสัญญาณฟลูออเรสเซนต์ที่ได้มีลักษณะ แคบ และสมมาตรแสดงว่าควอนตัมดอทที่สังเคราะห์ได้มีขนาดที่ใกล้เคียงกัน

$$D = (9.8127 \times 10^{-7}) \lambda^{3} - (1.7147 \times 10^{-3}) \lambda^{2} + (1.0064) \lambda - 194.84$$
 (1)

เมื่อ D คือ ขนาดอนุภาคของควอนตัมดอท และ λ คือ ความยาวคลื่นที่ให้ค่าการดูดกลืนแสงสูงสุด

ร**ูปที่ 2** อัลตราไวโอเลต-วิสิเบิล (เส้นประ) และฟลูออเรสเซนต์ (เส้นที่บ) สเปกตรัมของควอนตัมดอท (MPA–capped CdTe QDs)

รูปที่ 3 ภาพถ่าย TEM ของควอนตัมดอท (MAP-capped CdTe QDs)


2. ศึกษาสภาวะที่เหมาะสมของการวิเคราะห์

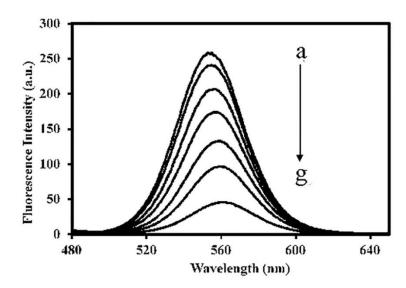
เพื่อให้ได้วิธีการตรวจวัดที่ รวดเร็ว สะดวกต่อการใช้งาน และมีความไววิเคราะห์สูง ดังนั้นจึงได้ศึกษา ปัจจัยต่างๆ ที่ส่งผลต่อการตรวจวัด ได้แก่ pH เวลาของการทำปฏิกิริยา และความเข้มข้นของควอนตัมดอท

จากการศึกษาผลของ pH ต่อสัญญาณฟลูออเรสเซนต์สำหรับตรวจวัดกรดซาลิไซลิก ดังแสดงในร**ูปที่ 4** พบว่า pH 5.5 เป็น pH ที่เหมาะสม เมื่อ pH น้อยกว่า 5.5 สัญญาณฟลูออเรสเซนต์มีการเปลี่ยนแปลงน้อย เนื่องจากที่ pH ต่ำจะมีการหลุดของ MPA ที่เคลือบอยู่บนผิวของควอนตัมดอทดังนั้นส่งผลให้ควอนตัมดอทไม่ สามารถกระจายตัวอยู่ในสารละลายได้จึงตกตะกอน (Bo and Ping, 2005) แต่เมื่อ pH มีค่ามากกว่า 5.5

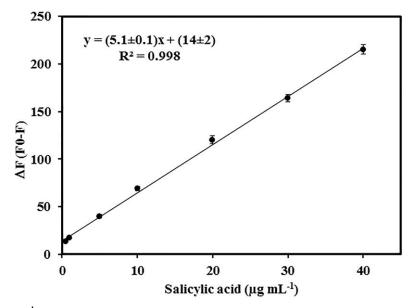
การเปลี่ยนแปลงสัญญาณฟลูออเรสเซนต์มีค่าลดลงเนื่องจาก Cd²⁺ ที่อยู่บนผิวของควอนตัมดอทเกิดอันตร กิริยากับ OH ในสารละลายทำให้เกิดเป็น Cd(OH)₂ เคลือบบนผิวของควอนตัมดอท (Zhang et al., 2009)

เวลาในการเกิดอันตรกิริยาระหว่างควอนตัมดอทและกรดซาลิไซลิกเกิดขึ้นอย่างรวดเร็วซึ่งในงานวิจัย นี้เลือกใช้เวลาในการเกิดปฏิกิริยา 1 นาที และใช้อุณหภูมิห้อง (25 องศาเซลเซียส) ในการตรวจวัดเพื่อความ สะดวกในการวิเคราะห์

ร**ูปที่ 4** ผลของ pH ต่อการเปลี่ยนแปลงสัญญาณฟลูออเรสเซนต์ของควอนตัมดอท


เนื่องจากความเข้มข้นของควอนตัมดอทมีผลต่อความไววิเคราะห์ของการตรวจวัดกรดซาลิไซลิกและ ช่วงความเป็นเส้นตรง (ตารางที่ 1) กรณีที่ความเข้มข้นของควอนตัมดอทต่ำส่งผลให้ความไววิเคราะห์ต่ำและ มีช่วงความเป็นเส้นตรงที่แคบ ถ้าความเข้มข้นของควอนตัมดอทมีค่าสูงมากจะไม่สามารถตรวจวัดกรดซาลิไซลิกที่ความเข้มข้นต่ำได้เนื่องจากปริมาณของกรดซาลิไซลิกไม่เพียงพอที่จะลดสัญญาณฟลูออเรสเซนต์ของ ควอนตัมดอท ดังนั้นในการพิจารณาเลือกความเข้มข้นของควอนตัมดอทที่เหมาะสมจะพิจารณาร่วมกัน ระหว่างความไววิเคราะห์กับช่วงความเป็นเส้นตรง โดยในงานวิจัยนี้เลือกใช้ความเข้มข้นของควอนตัมดอทที่ เหมาะสมคือ 4×10⁻⁷ โมลาร์

룝.	ע ע	ا و	v =	ч 🗢
ตารางท 1	ผลของความเขมขนของค	วอนตมดอทตอก	ารตรวจวดกรดซาส	าเซลก


ความเข้มข้นของ	ความไววิเคราะห์	ช่วงความเป็นเส้นตรง	
ควอนตัมดอท (M)	(a.u./ µg mL ⁻¹)	(µg mL ^{−1})	
1×10 ⁻⁷	2.4 ± 0.1	0.5 - 10.0	
2×10 ⁻⁷	4.9 ± 0.2	0.5 – 20.0	
4×10 ⁻⁷	5.1 ± 0.1	0.5 – 40.0	
6×10 ⁻⁷	5.7 ± 0.2	1.0 - 50.0	
8×10 ⁻⁷	6.4 ± 0.2	1.0 - 60.0	

3. ศึกษาช่วงความเป็นเส้นตรงและความไววิเคราะห์

ภายใต้สภาวะที่เหมาะสม ฟลูออเรสเซนต์สเปกตรัมของควอนตัมดอทลดลงเมื่อเพิ่มความเข้มข้นของ กรดซาลิไซลิก (รูปที่ 5) โดยมีช่วงความเป็นเส้นตรงของการตรวจวัดตั้งแต่ 0.5 ถึง 40 ไมโครกรัมต่อมิลลิลิตร (รูปที่ 6) และมีขีดจำกัดของการตรวจวัดเท่ากับ 0.15 ไมโครกรัมต่อมิลลิลิตร วิธีที่พัฒนาขึ้นมีความเที่ยงสูง โดยมีค่าเบี่ยงเบนมาตรฐานสัมพัทธ์เท่ากับ 2.6 เปอร์เซ็นต์ (n=10) และเมื่อเปรียบเทียบกับงานวิจัยที่ผ่านมา พบว่าวิธีที่พัฒนาขึ้นให้ขีดจำกัดของการตรวจวัดที่ต่ำกว่าดังแสดงในตารางที่ 2

ร**ูปที่ 5** ฟลูออเรสเซนต์สเปกตรัมของควอนตัมดอท (MPA–capped CdTe QDs) หลังจากเติมกรดซาลิไซลิก ความเข้มข้นต่างๆ a=0.50 μ g mL $^{-1}$; b=1.0 μ g mL $^{-1}$; c=5.0 μ g mL $^{-1}$; d=10.0 μ g mL $^{-1}$, e=20.0 μ g mL $^{-1}$; f=30.0 μ g mL $^{-1}$; g =40.0 μ g mL $^{-1}$

รูปที่ 6 กราฟมาตรฐานของ Δ F เทียบกับความเข้มข้นของกรดซาลิไซลิก

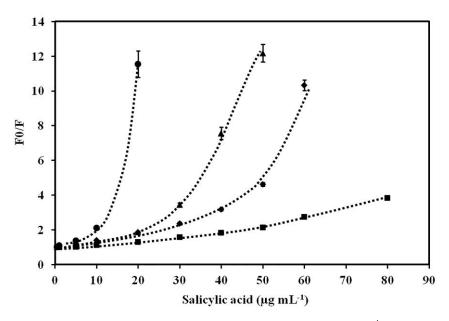
ตารางที่ 2 เปรียบเทียบประสิทธิภาพของวิธีที่พัฒนาขึ้นกับงานวิจัยอื่นๆ

วิธี	ขีดจำกัดการตรวจวัด (µg mL ⁻¹)	ช่วงความเป็น เส้นตรง(µg mL ⁻¹)	อ้างอิง
Biosensor	0.48	0.48–34.5	Martin and Dominguez, 1999
Capillary electrophoresis	2.07	3.2–96.7	Shapiro and Gutsche, 2003
Sequentail injection chromatography	1.0	3.1–300	Chocholouš et al., 2007
capillary zone electrophoresis	0.42	10–100	Gomez et al., 2003
Optical fiber probe	-	20–500	Loh et al., 2008
CdTe Quantumdots (Spectrofluorometer)	0.15	0.50–40	This work

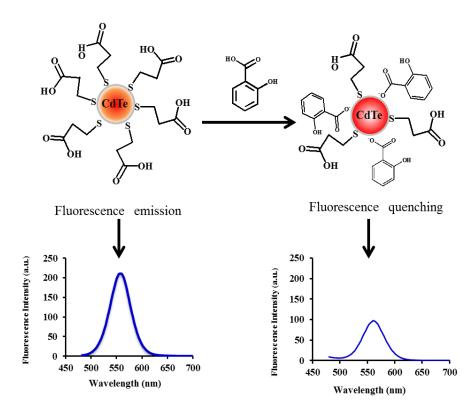
4. การศึกษาผลของตัวรบกวน

เนื่องจากสารประกอบอื่นๆที่มีอยู่ในตัวอย่างเภสัชภัณฑ์อาจมีผลต่อการลดลงของสัญญาณฟลูออเรส เซนต์ของควอนตัมดอท เพื่อศึกษาความเป็นไปได้ในการประยุกต์ใช้วิธีที่พัฒนาขึ้นสำหรับตรวจวัดกรดซาลิไซ ลิกในตัวอย่างเภสัชภัณฑ์จึงได้ศึกษาผลของตัวรบกวนดังแสดงใน**ตารางที่ 3** จะเห็นได้ว่าไอออนของโลหะบาง ชนิด เช่น Ag^+ , Cu^{2+} และ $Fe3^+$ ส่งผลต่อการลดลงของสัญญาณฟลูออเรสเซนต์ของควอนตัมดอท เนื่องจาก ไอออนที่มีขนาดเล็กเหล่านี้สามารถแพร่ผ่านชั้นของ MPA ที่เคลือบอยู่ที่ผิวของควอนตัมดอทแล้วเข้าไปเกิด อันตรกิริยากับแกนกลางของควอนตัมดอททำให้เกิดการแทนที่ Cd^{2+} ทำให้เกิดอนุภาคของ AgTe, CuTe และ FeTe เคลือบที่ผิวของควอนตัมดอท (Yuan et al., 2005) แต่อย่างไรก็ตามไอออนเหล่านี้มีปริมาณน้อย ในตัวอย่างเภสัชภัณฑ์และวิธีที่พัฒนาขึ้นนี้มีความไววิเคราะห์สูงทำให้สามารถเจือจางตัวอย่างได้ถึง 10,000 เท่า ดังนั้นวิธีที่พัฒนาขึ้นนี้สามารถประยุกต์ใช้ในการตรวจวัดกรดซาลิไซลิกในตัวอย่างทางเภสัชภัณฑ์ได้

ตารางที่ 3 ผลของไอออนและสารประกอบอินทรีย์ต่างๆ ต่อการลดลงของสัญญาณฟลูออเรสเซนต์ของ ควอนตัมดอทสำหรับการตรวจวัดกรดซาลิไซลิก


ไอออนโลหะ	อัตราส่วนของ ไอออนต่อกรด ซา ลิไซลิก	การเปลี่ยนแปลง ของสัญญาณฟลูออ เรสเซนต์ (%)	ไอออนโลหะ	อัตราส่วนของ ไอออนต่อกรด ซา ลิไซลิก	การเปลี่ยนแปลง ของสัญญาณฟลูออ เรสเซนต์ (%)
Zn ⁺ (SO ₄ ²⁻)	10	+1.3	Na ⁺ (NO ₃ ⁻)	10	-1.9
$Zn^{+}(Cl^{-})$	10	+2.8	Na ⁺ (SO ₄ ²⁻)	10	— 1.0
$Mg^{2+} (SO_4^{2-})$	10	+1.1	Na ⁺ (Cl ⁻)	10	-1.4
Ni ²⁺ (Cl̄)	10	+2.7	Fe ³⁺ (Cl ⁻)	0.1	+4.0
Ni ²⁺ (SO ₄ ²⁻)	10	+2.0	$Cu^{2+(}NO_3^{-)}$	0.01	+2.7
K ⁺ (Cl ⁻)	10	-3.9	Cu ²⁺ (Cl ⁻)	0.01	+2.8
K^{+} (Br $^{-}$)	10	-3.6	Cu ²⁺ (SO ₄ ²⁻)	0.01	+2.5
$K^{+}(SO_{4}^{2-})$	10	+1.9	$Ag^{+}(SO_{4}^{2-})$	0.01	+3.5
Ca ²⁺ (Cl ⁻)	10	- 4.8	Ag+ (NO_3)	0.01	+3.8
Glucose	10	+2.0	Mannitol	10	+1.0
Lactose	10	+1.8	EDTA	10	+0.6
Sucrose	10	+2.3	Glycerol	10	+1.4

5. ศึกษากลไกการตรวจวัด


การลดลงของสัญญาณฟลูออเรสเซนต์ของควอนตัมดอทสามารถเกิดขึ้นได้ 2 แบบ คือ dynamic และ static การลดลงแบบ dynamic เกิดขึ้นเนื่องจาก fluorophore และ quencher เข้าใกล้ชิดกันในขณะ เกิดสภาวะกระตุ้น ในขณะที่ static เกิดจากการเกิดสารเชิงซ้อนของ Fluorophore และ quencher (William et al., 2003) เพื่ออธิบายกลไกการลดลงของสัญญาณฟลูออเรสเซนต์ของควอนตัมดอทสำหรับ ตรวจวัดกรดชาลิไซลิกจึงอธิบายโดยสมาการ stern-Volmer (สมการที่ 2)

$$F0/F = 1 + Ksv[Q]$$
 (2)

เมื่อ F0 และ F คือ สัญญาณฟลูออเรสเซนต์ของควอนตัมดอทที่ไม่มีและมีกรดซาลิไซลิก ตามลำดับ Ksv คือ ค่าคงที่ stern-Volmer และ [Q] คือความเข้มข้นของกรดซาลิไซลิก ถ้าอันตรกิริยาของควอนตัมดอทและกรด ซาลิไซลิกเกิดแบบ dynamic เมื่อเขียนกราฟระหว่าง F0/F และ [Q] จะได้กราฟที่เป็นเส้นตรง แต่สำหรับ งานวิจัยนี้ได้ลักษณะกราฟที่โค้งเข้าหาแกน F0/F (รูปที่ 7) แสดงว่าอันตรกิริยาที่เกิดขึ้นเป็นทั้ง dynamic และ static (Liang et al, 2008) นอกจากนี้เมื่อพิจารณาสเปกตรัมพบว่าเมื่อความเข้มข้นของกรดซาลิไซลิก เพิ่มขึ้นลักษณะพีกจะเกิด red shift ซึ่งเกิดขึ้นเนื่องจากการรวมกันของควอนตัมดอทและ H⁺ ในสารละลาย และอีกเหตุผลหนึ่งคือ การเกิดอันตรกิริยา electrostatic ระหว่างหมู่ชาลิไซเลทของกรดซาลิไซลิกกับ แคดเมียมไอออนที่อยู่บนผิวของควอนตัมดอท (รูปที่ 8)

รูปที่ 7 stern–Volmer plot ระหว่าง F0/F และ ความเข้มข้นของกรดซาลิไซลิกที่ความเข้มข้นต่างๆ ของ ควอนตัมดอท 2×10^{-7} โมลาร์ (lacktriangle), 4×10^{-7} โมลาร์ (lacktriangle), 6×10^{-7} โมลาร์ (lacktriangle), 8×10^{-7} โมลาร์ (lacktriangle)

รูปที่ 8 แสดงหลักการตรวจวัดกรดซาลิไซลิก

6. การประยุกต์ใช้ในตัวอย่างจริง

ประยุกต์ใช้วิธีที่พัฒนาขึ้นตรวจวัดกรดซาลิไซลิกในตัวอย่างเภสัชภัณฑ์ชนิดต่างๆ ที่มีจำหน่ายในร้าน ยา โดยได้ศึกษาร้อยละของการได้กลับคืนจากการเติมสารมาตรฐานกรดซาลิซาลิกในตัวอย่างจริงพบว่าได้ร้อย ละของการได้กลับคืนอยู่ในช่วง 99 ถึง 105 เปอร์เซ็นต์ (ตารางที่ 4) นอกจากนี้ได้เปรียบเทียบวิธีที่พัฒนาขึ้น กับวิธีมาตรฐาน (โครมาโทกราฟีของเหลวสมรรถนะสูง) พบว่าผลการวิเคราะห์ที่ได้สอดคล้องกันดังแสดงใน ตารางที่ 5

ตารางที่ 4 ร้อยละของการได้กลับคืนของกรดซาลิไซลิกในตัวอย่างเภสัชภัณฑ์ (เจือจางตัวอย่าง 10000 เท่า)

กรดซาลิไซลิกในตัวอย่าง (µg mL ⁻¹)	เติม (µg mL ⁻¹)	ตรวจพบ (µg mL ⁻¹)	ร้อยละการได้ กลับคืน (%)
1.0	0.0	0.99±0.03	99±3
	2.0	3.05±0.09	105±9
	4.0	5.02±0.08	102±8
	8.0	9.01±0.07	101±7
2.0	0.0	2.03±0.07	102±3
	2.0	3.98±0.05	99±3
	4.0	6.03±0.06	102±3
	8.0	10.02±0.08	102±4

ตารางที่ 5 ผลการวิเคราะห์กรดซาลิไซลิกในตัวอย่างเภสัชภัณฑ์

ตัวอย่าง	ความเข้มข้นที่ระบุ (%)	วิธีที่พัฒนาขึ้น(%)	HPLC (%)
1	1	1.02±0.07	1.08±0.02
2	1	1.01±0.06	1.04±0.03
3	2	2.18±0.06	2.26±0.03
4	2	2.09±0.05	2.05±0.08

สรุปและอภิปรายผล

โครงการนี้เป็นการพัฒนาวิธีการตรวจวัดกรดชาลิไซลิกในตัวอย่างเภสัชภัณฑ์ที่ทำได้ง่าย ใช้งานได้ สะดวกและรวดเร็ว โดยอาศัยหลักการตรวจวัดสัญญาณฟลูออเรสเซนต์ที่ลดลงของควอนตัมดอทเมื่อเกิด อันตรกิริยากับกรดชาลิไซลิก โดยสัญญาณฟลูออเรสเซนต์ของควอนตัมดอทลดลงตามความเข้มข้นของกรดชาลิไซลิก ภายใต้สภาวะที่เหมาะสมของการตรวจวัดที่ pH 5.5 อุณหภูมิ 25 องศาเซลเซียส ความเข้มข้นของ ควอนตัมดอท 0.4 ไมโครโมลาร์ และเวลาในการทำปฏิกิริยา 1 นาที โดยให้ช่วงความเป็นเส้นตรงของการ ตรวจวัดตั้งแต่ 0.5-40 ไมโครกรัมต่อมิลลิลิตร มีขีดจำกัดของการตรวจวัดเท่ากับ 0.15 ไมโครกรัมต่อมิลลิลิตร วิธีการตรวจวัดที่พัฒนาขึ้นได้มีการประยุกต์ใช้ในการตรวจวัดกรดชาลิไซลิกในตัวอย่าเภสัชภัณฑ์ซึ่งให้ผลการ ตรวจวัดสอดคล้องกับวิธีมาตรฐาน (เทคนิคโครมาโทกราฟีของเหลวสมรรถนะสูง) ให้ร้อยละของการได้ กลับคืนอยู่ในช่วง 99±3 ถึง 105±9 เปอร์เซ็นต์ มีค่าความเที่ยงที่ดีโดยมีค่าเบี่ยงเบนมาตรฐานสัมพัทธ์ 2.6 เปอร์เซ็นต์ วิธีที่พัฒนาขึ้นเป็นวิธีที่ทำได้ง่าย สะดวก รวดเร็ว มีราคาถูก เป็นมิตรกับสิ่งแวดล้อม และมีความ ไววิเคราะห์สูง สามารถประยุกต์ใช้ในการตรวจวัดกรดชาลิไซลิกในตัวอย่างเภสัชภัณฑ์ชนิดต่างๆ ได้โดยไม่ จำเป็นต้องมีขั้นตอนการเตรียมตัวอย่างที่ยุ่งยาก

เอกสารอ้างอิง

Liang J, Cheng Y, Han H. Study on the interaction between bovine serum albumin and CdTe quantum dots with spectroscopic techniques. J. Mol. Struct. 2008;892:116–20.

William W, Lianhua Y, Wenzhuo Q, Peng X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 2003;14:2854–60.

Bo C, Ping Z. A new determining method of copper (II) ions at ng ml⁻¹ levels based on quenching of the water-soluble nanocrystals fluorescence. Anal. Bioanal. Chem. 2005; 381:986–92.

Zhang Y-h, Zhang H-s, Ma M, Guo X-f, Wang H. The influence of ligands on the preparation and optical properties of water-soluble CdTe quantum dots. Appl. Surf. Sci. 2009;255:4747–53.

Martín C, Domínguez E. A new enzyme electrode for quantification of salicylic acid in a FIA system. J. Pharm. Biomed. Anal.1999;19:107–13.

Shapiro AD, Gutsche AT. Capillary electrophoresis-based profiling and quantitation of total salicylic acid and related phenolics for analysis of early signaling in Arabidopsis disease resistance. Anal. Biochem. 2003;320:223–33.

Chocholouš P, Holík P, Šatínský D, Solich P. A novel application of OnyxTM monolithic column for simultaneous determination of salicylic acid and triamcinolone acetonide by sequential injection chromatography. Talanta 2007;72:854–58.

Gomez MR, Olsina RA, Martínez LD, Silva MF. Simultaneous determination of cloramphenicol, salicylic acid and resorcinol by capillary zone electrophoresis and its application to pharmaceutical dosage forms. Talanta 2003;61:233–38.

Loh HC, Ahmad M, Taib MN. A novel salicylic acid optical fibre probe fabrication. Sens. Actuator B. 2005;107:59–63.

Yuan J, Guo W, Wang E. Investigation of some critical parameters of buffer conditions for the development of quantum dots-based optical sensors. Anal. Chim. Acta 2008;630:174–80.

ภาคผนวก

Research article

Received: 19 June 2014.

Revised: 11 November 2014

Accepted: 28 December 2014

Published online in Wiley Online Library

(wileyonlinelibrary.com) DOI 10.1002/bio.2862

Mercaptopropionic acid-capped CdTe quantum dots as fluorescence probe for the determination of salicylic acid in pharmaceutical products

Opas Bunkoed^{a,b}* and Proespichaya Kanatharana^{a,b}

ABSTRACT: Mercaptopropionic acid (MPA)–capped cadmium telluride (CdTe) quantum dot (QDs) fluorescent probes were synthesized in aqueous solution and used for the determination of salicylic acid. The interaction between the MPA–capped CdTe QDs and salicylic acid was studied using fluorescence spectroscopy and some parameters that could modify the fluorescence were investigated to optimize the measurements. Under optimum conditions, the quenched fluorescence intensity of MPA–capped CdTe QDs was linearly proportional to the concentration of salicylic acid in the range of 0.5–40 μg mL⁻¹ with a coefficient of determination of 0.998, and the limit of detection was 0.15 μg mL⁻¹. The method was successfully applied to the determination of salicylic acid in pharmaceutical products, and satisfactory results were obtained that were in agreement with both the high pressure liquid chromatography (HPLC) method and the claimed values. The recovery of the method was in the range 99 ± 3% to 105 ± 9%. The proposed method is simple, rapid, cost effective, highly sensitivity and eminently suitable for the quality control of pharmaceutical preparation. The possible mechanisms for the observed quenching reaction was also discussed. Copyright © 2015 John Wiley & Sons, Ltd.

Keywords: quantum dot; fluorescence quenching; salicylic acid

Introduction

Salicylic acid is widely used as an anti-microbial and anti-fungal agent in many pharmaceutical products because of its broad spectrum with good stability and non-volatility. It is often used as a treatment for common skin diseases such as acne, callus and psoriasis and to ease aches and pains and reduce fevers (1). However, the long-time use with high doses of salicylic acid can cause nausea and dizziness (2). In fact, the amount of salicylic acid intake should be limited to 0.1—3%, as specified by the various pharmacopoeias (3). Hence, the determination of salicylic acid in pharmaceutical products is particularly important for both quality assurance and consumer safety.

Many methods have been reported for the determination of salicylic acid including high-performance liquid chromatography (4), gas chromatography (5), capillary electrophoresis (6) and amperometric biosensor (1). However, these methods tend to be expensive, time consuming, complicated and are rarely suitable for routine analysis. To overcome these problems, the fluorescence method has attracted interest as an alternative method due to its operational simplicity and high sensitivity. Some fluorescence methods have been reported for the determination of salicylic acid (7,8). In recent year, the fluorescence probe methods, quantum dots (QDs), have attracted considerable attention as novel fluorescence indicators. Compared with traditional organic fluorophores, QDs exhibit high photostability, controllable and narrow emission bands and produce high quantum yields (9,10), resulting in being widely used for the detection of some metal ions and small molecules, such as arsenic (III) (11), mercury (II) (12), copper (II) (13), Iron (II) (14), methimazole (15) kaempferol (16), dopamine (17) and levodopa (18). Various QDs have been synthesized such as CdTe (19), ZnSe (20), CdS (21) and CdSe/ZnS (22). Among these, CdTe has attracted much interest because it can be easily synthesized in aqueous medium under mild conditions with its particle size easily adjustable by control of the reaction time (23). To our knowledge, there has been no work reported for the determination of salicylic acid using MPA–capped CdTe QDs as a sensitive fluorescence probe.

In this work, we have developed a simple, rapid, cost-effective and sensitive analytical method for the determination of salicylic acid in pharmaceutical products. The method is based on the fluorescence quenching of MPA–capped CdTe QDs in the presence of salicylic acid. The mechanism of the proposed reaction is also discussed.

- * Correspondence to: O. Bunkoed, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand. E-mail: opas.b@psu.ac.th or opas1bunkoed@hotmail.com
- ^a Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- b Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

Abbreviations: HPLC, high performance liquid chromatography; PLS, partial least-squares; QD, quantum dot; TEM, transmission electron microscopy.

Experimental

Materials

All chemicals used were of analytical reagent grade. Tellurium powder ($-200\,$ mesh, 99.8%), sodium borohydride (NaBH4) and 3-mercaptopropionic acid (MPA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Salicylic acid was purchased from Ajax Chemicals Co. Ltd. (Sydney, Australia). CdCl2,2.5H2O was obtained from Asia Pacific Specialty Chemicals Co. Ltd. (NSW, Australia). Sodium hydroxide and acetone were purchased from RCI Labscan (Bangkok, Thailand). All aqueous solutions were prepared with deionized water (18.2 M Ω , Elgastat Maxima, ELGA, UK). A stock solution of 1000 μg mL $^{-1}$ of salicylic acid was prepared by dissolving it in deionized water, and was stored in a refrigerator at 5°C. Working solutions were prepared daily by suitable dilutions. Pharmaceutical products containing salicylic acid were obtained from a local drugstore (Hat Yai, Thailand).

Instrumentation

UV-vis absorption spectra were obtained using the Avantes Fiber Optic spectrometer (Eerbeek, The Netherlands), pH values were measured with a Sartorius pH meter (Goettingen, Germany). The samples for transmission electron microscopy (TEM) measurements were prepared by deposition of one drop of an aqueous dispersion on a copper gird and the solvent was removed by evaporation at room temperature (25°C). The image was acquired on a JEM-2010 transmission electron microscope (JEOL, Japan). Fluorescence measurements were performed using a RF-5301PC spectrofluorophotometer (Shimadzu, Japan). The slits for both excitation and emission monochromators were 5.0 nm in width. All optical measurements were performed at room temperature (25°C) under ambient conditions.

The HPLC experiments were performed using a Hewlett-Packard (Agilent Technologies, Germany) 1100 series HPLC system with a high-pressure binary pump, microvacuum degasser, autosampler, thermostated column compartment and diode array detectors (Agilent Technologies, Germany). Data acquisition and evaluations were performed using the Agilent ChemStation software (Agilent Technologies, Germany). The analysis of salicylic acid was operated on an Ultra C18 column (5 μm particle size, 250 mm \times 4.6 mm ID) (Restek, USA). The HPLC conditions were adapted from the report of Kees *et al.* (24), the mobile phase was 0.1% phosphoric acid: acetonitrile (60:40, v/v) at a flow rate of 0.60 mL min $^{-1}$, the column temperature was 30°C and the absorbance was monitored at 237 nm.

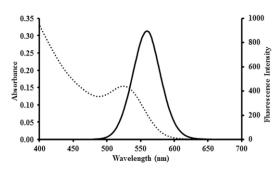
Preparation of sodium hydrogen telluride (NaHTe)

The NaHTe solution was produced by the reaction of Te powder with NaBH $_4$ in an ice bath. 0.10 g Te powder was mixed with 0.090 g NaBH $_4$, then 2.0 mL deoxygenized water was added while being continuously stirred. After 4 h, the black tellurium powder disappeared and a sodium tetraborate white precipitate appeared at the bottom of the tube. The resultant NaHTe in the clear supernatant was separated and used to prepare MPAcapped CdTe QDs (see below).

Preparation of MPA-capped CdTe QDs

The preparation of MPA—capped CdTe QDs was modified from the previously reported procedure (25). Briefly, 0.2 mmol of CdCl $_2$ was dissolved in 50 mL of deionized water and 0.34 mmol MPA was added. The solution was then adjusted to pH 11.5 with a 0.1 M NaOH solution. The solution was placed in a three-necked flask and nitrogen gas was bubbled through the solution for 30 min. Under magnetic stirring, a freshly prepared NaHTe solution was injected through a syring into the solution. The solution was then heated at 95°C and further refluxed under a flow of nitrogen gas for 20 min with a condenser attached. The resulting product was precipitated by acetone and with an excess of MPA and the Cd $^+$ that did not participate in the reaction was removed by centrifugation at 4000 rpm for 5 min. The resultant precipitate was re-dispersed in water and re-precipitated by acetone three times.

Procedures


MPA–capped CdTe QDs were dissolved in deionized water and the pH of the solution was adjusted to 5.5 with 0.05 mol L^{-1} HCl. One hundred microliters of MPA–capped CdTe QDs solution was mixed with various concentrations of salicylic acid solution (50 μ L). After 1 min, the fluorescence intensity of the MPA–capped CdTe QDs was measured. An excitation wavelength was fixed at 400 nm and the fluorescence emission spectrum of the mixture was determined over the range 480–700 nm. For the real sample analysis, the pharmaceutical samples were diluted with deionized water 10,000-fold without any sample preparation procedure.

Results and discussion

Characterization of MPA-capped CdTe QDs

The optical properties of MPA-capped CdTe QDs were characterized by fluorescence and UV-vis spectroscopy. The fluorescence and UV-vis absorption spectra of the MPA-capped CdTe QDs are shown in Fig. 1.

The fluorescence spectrum band was relatively narrow and symmetrical, and indicated that MPA-capped CdTe QDs are monodisperse and homogeneous. The emission band showed a maximum at 560 nm. The UV-vis absorption peak of the MPA-capped CdTe QDs was located at 530 nm. The

Figure 1. UV–vis absorption (dotted line) and fluorescence emission spectra (solid line) of the MPA–capped CdTe QDs.

size of the MPA-capped CdTe QDs was determined according to eqn (1):

$$\begin{split} D &= \left(9.8127 \times 10^{-7}\right) \lambda^3 - \left(1.7147 \times 10^{-3}\right) \lambda^2 \\ &+ \left(1.0064\right) \lambda - 194.84 \end{split} \tag{1}$$

where D (nm) is the size of MPA–capped CdTe QDs, and λ is the wavelength of the first excitonic absorption peak, the diameter of the MPA–capped CdTe QDs was estimated to be about 2.98 nm. The concentrations of the MPA–capped CdTe QDs were calculated using Lambert–Beer's law, A = ϵ bC, where A is the absorbance at the peak position of the first excitonic absorption peak, b (cm) is the part length of the radiation beam used for recording the absorption spectrum, C is the concentration of CdTe QDs (mol L $^{-1}$) and ϵ (L mol $^{-1}$ cm $^{-1}$) is the extinction coefficient per mole of the MPA-capped CdTe QDs at the first excitonic absorption peak, and was obtained from $\epsilon=10,043(D)^{2.12}$ (26,27).

The MPA–capped CdTe QDs were also characterized by TEM. As shown in Fig. 2, the TEM image shows clearly that these MPA–capped CdTe QDs were monodisperse, uniform and their appearance agreed with the above characterization on their size distribution and diameter.

Optimization of the analysis system

Effect of pH. It has been reported that the optical properties of QDs are sensitive to their surface, which is influenced by the surrounding environments such as pH and the existence of some molecules (9). Therefore, the influence of the pH on the fluorescence intensity of MPA–capped CdTe QDs for analysis of salicylic acid was investigated and the results are shown in Fig. 3. The most suitable pH for the MPA–capped CdTe QDs to react

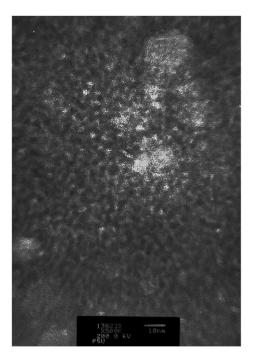
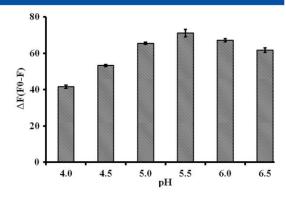



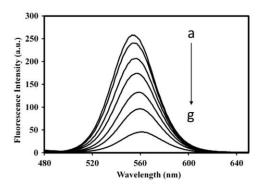
Figure 2. TEM image of MPA-capped CdTe QDs.

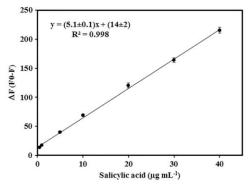
Figure 3. The effect of pH on the fluorescence intensity change (ΔF) of the MPA-capped CdTe QDs for the detection of salicylic acid.

with salicylic acid was 5.5. When the pH was lower than 5.5, the fluorescence intensity change ($\Delta F = FO - F$) decreased as a possible result of deconstruction of the Cd²⁺–MPA complex's annulus due to the protonation of the surface-binding thiolates (28). Increasing the pH to more than 5.5 resulted in a change in the fluorescence intensity of MPA–capped CdTe QDs that also decreased due to the interaction of Cd²⁺ on the surface of the CdTe QDs with OH⁻ in the solution, and which led to the formation of Cd(OH)₂ coated onto the surface of the CdTe QDs (19).

Reaction time and temperature. The reaction between the MPA–capped CdTe QDs and salicylic acid reached an equilibrium very quickly, within 1 min and after that the fluorescence signals slightly decreased. Therefore, fluorescence signals were recorded after mixing MPA–capped CdTe QDs and salicylic acid within 1 min. It was reported that temperature had an effect on the fluorescence intensity of the QDs (29). Therefore, all analytical studies were conducted at room temperature (25°C) for convenience.

Effect of MPA-capped CdTe QD concentration. The concentration of the MPA-capped CdTe QDs affected not only the intensity of the fluorescence but also the sensitivity of the analytical assay. The effect of the concentration of the MPA-capped CdTe QDs for the detection of salicylic acid was investigated and the results are shown in Table 1. If the concentration of the CdTe QDs was too low, the fluorescence intensity was very weak (low sensitivity), and resulted in a narrow linear range. However, at high concentrations of MPA-capped CdTe QDs, salicylic acid was not detected at low concentrations, as the lower amount of salicylic acid was not sufficient to quench the fluorescence intensity of the MPA-capped CdTe QDs. Therefore, the optimum


Table 1. Effect of the concentration of the MPA–capped CdTe QDs for the detection of salicylic acid						
CdTe QDs Sensitivity Linear range concentration (M) $(a.u./\mu g \ mL^{-1})$ $(\mu g \ mL^{-1})$						
1 × 10 ⁻⁷	2.4 ± 0.1	0.5-10.0				
2×10^{-7}	4.9 ± 0.2	0.5-20.0				
4×10^{-7}	5.1 ± 0.1	0.5-40.0				
6×10^{-7}	5.7 ± 0.2	1.0-50.0				
8×10^{-7}	6.4 ± 0.2	1.0-60.0				


concentration of CdTe QDs was between the sensitivity and the linear range. Hence, a concentration for CdTe QDs of 4×10^{-7} M was optimal and chosen for all future experiments.

Calibration and sensitivity

Under optimum conditions, the fluorescence spectrum of the MPA–capped CdTe QDs with various concentrations of salicylic acid were recorded, the results are shown in Fig. 4. The fluorescence intensity decreased with increase in salicylic acid concentration with a slight red shift of the maximum emission peak. Good linearity between the ΔF (F0 – F) and the concentration of salicylic acid was obtained in the range of 0.5–40.0 $\mu g\ mL^{-1}$ with a correlation coefficient of 0.996. The linear regression

Figure 4. Fluorescence spectrum of MPA–capped CdTe QDs after addition of salicylic acid at different concentrations: $a=0.50~\mu g/mL$; $b=1.0~\mu g/mL$; $c=5.0~\mu g/mL$; $d=10.0~\mu g/mL$, $e=20.0~\mu g/mL$; $f=30.0~\mu g/mL$; $g=40.0~\mu g/mL$.

Figure 5. Calibration curve of ΔF versus salicylic acid concentration.

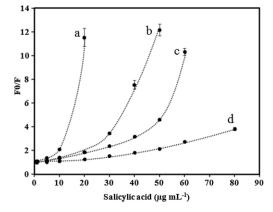
was $(5.1 \pm 0.1)x - (14 \pm 2)$ as shown in Fig. 5. The low detection limit was 0.15 μg mL⁻¹, calculated following IUPAC criteria, LOD = $3\sigma/k$, where σ is the standard deviation of the blank measurements (n=10) and k is the slope of calibration curve. The proposed method exhibited good precision with a relative standard deviation of 2.6% for 2.0 μg mL⁻¹ salicylic acid (n=10). Compared with the method developed previously, the present method had a lower detection limit for analysis of salicylic acid (Table 2).

Tolerance of foreign compounds

Some compounds have the potential to quench the intensity of fluorescence of MPA-capped CdTe QDs. To investigate the possibility of practical applications for the determination of salicylic acid in pharmaceutical products, the interference from some metals and small organic molecules was tested under optimum conditions. The results are shown in Table 3. Although, some metal ions such as Ag⁺, Cu²⁺ and Fe³⁺did quench the fluorescence of MPA-capped CdTe QDs this result was similar to a previous report (22,33) due to the ability of small cations to pass through the shell layer and interact with the core, and thus leading to a chemical displacement of the surface Cd²⁺ ions by Ag⁺, Cu²⁺ and Fe³⁺ to form AgTe, CuTe and FeTe particles on the surface of QDs core (34). However, these ions are usually present at very low concentration in pharmaceutical products. Moreover, the proposed method is highly sensitive to salicylic acid and samples can be diluted up to 10,000 times (salicylic acid in a pharmaceutical product is usually 1 or 2%). Therefore, these interferences can be diminished by diluting the samples. So, this method can be applied to detect salicylic acid in pharmaceutical products.

Mechanism of quenching

A variety of process can contribute to the quenching of fluorescence, including energy transfer, an excited state reaction, complex formation, and collisional quenching. There are two types of fluorescence quenching, dynamic, and static quenching. Dynamic quenching refers to a process in which the fluorophore and the quencher come into contact during the excited state, whereas static quenching refers to the formation of a fluorophore-quencher complex (27). To explain the possible quenching mechanism of the MPA-capped CdTe QDs and salicylic acid, the Stern-Volmer relationship was studied, eqn (2):


$$F0/F = 1 + Ksv[Q]$$
 (2)

where F0 and F are the fluorescence intensity in the absence and presence of salicylic acid, respectively. Ksv is the Stern–Volmer

Table 2. Comparison of the performance of the proposed method and other works						
Methods	Detection limit ($\mu g \ mL^{-1}$)	Linear range ($\mu g \ mL^{-1}$)	References			
Biosensor	0.48	0.48-34.5	(1)			
Capillary electrophoresis	2.07	3.2-96.7	(6)			
Sequential injection chromatography	1.0	3.1-300	(30)			
Capillary zone electrophoresis	0.42	10-100	(31)			
Optical fiber probe	_	20-500	(32)			
CdTe quantum dots (spectrofluorometer)	0.15	0.50-40	This work			

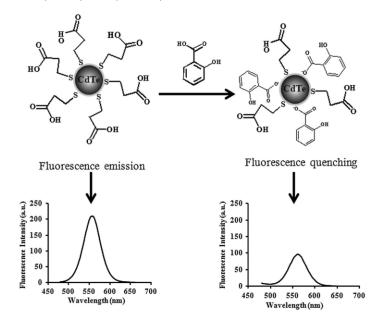


Table 3. Effects of foreign ions on the fluorescence of MPA–capped CdTe QDs for the detection of salicylic acid (2.0 mg L ⁻¹)						
Coexisting substances	Tolerance ratios	Change of ΔF (%)	Coexisting substances	Tolerance ratios	Change of ΔF (%)	
Zn ⁺ (SO ₄ ²⁻)	10	+1.3	Fe ³⁺ (Cl ⁻)	0.1	+4.0	
Zn ⁺ (Cl ⁻)	10	+2.8	Cu^{2+} (NO ₃ $^{-}$)	0.01	+2.7	
$Mg^{2+} (SO_4^{2-})$	10	+1.1	Cu ²⁺ (Cl ⁻)	0.01	+2.8	
Ni ²⁺ (Cl ⁻)	10	+2.7	$Cu^{2+} (SO_4^{2-})$	0.01	+2.5	
$Ni^{2+}(SO_4^{2-})$	10	+2.0	$Ag^{+} (SO_{4}^{2-})$	0.01	+3.5	
K ⁺ (Cl ⁻)	10	-3.9	$Ag+(NO_3^-)$	0.01	+3.8	
K ⁺ (Br ⁻)	10	-3.6	Glucose	10	+2.0	
K ⁺ (SO ₄ ²⁻)	10	+1.9	Lactose	10	+1.8	
Ca ²⁺ (Cl ⁻)	10	-4.8	Sucrose	10	+2.3	
$Na^+ (NO_3^-)$	10	-1.9	Mannitol	10	+1.0	
$Na^{+} (SO_4^{2-})$	10	-1.0	EDTA	10	+0.6	
Na ⁺ (Cl ⁻)	10	-1.4	Glycerol	10	+1.4	

Figure 6. The Stern–Volmer plot for the interaction of salicylic acid and the MPA-capped CdTe QDs at concentrations 0.2 μ M (a), 0.4 μ M (b), 0.6 μ M (c), or 0.8 μ M (d).

fluorescence quenching constant, which is related to the quenching efficiency of the quencher, and [Q] is the concentration of quencher (salicylic acid). If the Stern-Volmer description of the quenching mechanism of salicylic acid and MPA-capped QDs involves dynamic quenching, the plot of the F0/F as a function of [Q] should be linear. The upward Stern-Volmer plot (Fig. 6) showed there was a combination of both dynamic and static quenching (26,35). In addition, the emission spectrum of the QDs exhibited a red shift in the emission peak with the pH decreasing (increasing of the salicylic acid). The shift of the emission peak may result from the decomposition of the annulus of the Cd^{2+} -MPA complexes due to the protonation of the surface-binding thiolate. Then a portion of MPA dissociated from the CdTe QDs, resulting in the aggregation of the uncapped QDs. Another reason could be electrostatic interaction between the carboxylate group of salicylic acid and the cadmium ion (Cd²⁺) on the surface of the CdTe QDs (Fig. 7).

 $\textbf{Figure 7}. \hspace{0.2in} \textbf{Schematic illustration of the fluorescence quenching of MPA-capped CdTe QDs.} \\$

Table 4. Recovery of salicylic acid in pharmaceutical sample (dilution 1000-fold) Concentration Added Found Recovery of salicylic acid $(\mu g mL^{-1})$ $(\mu g mL^{-1})$ (%) in sample ($\mu g \ mL^{-1}$) 1.0 0.0 0.99 ± 0.03 99 ± 3 2.0 3.05 ± 0.09 105 ± 9 5.02 ± 0.08 102 + 84.0 8.0 9.01 ± 0.07 101 ± 7 2.0 0.0 2.03 ± 0.07 102 ± 3 99 ± 3 2.0 3.98 ± 0.05 4.0 6.03 ± 0.06 102 ± 3 10.02 ± 0.08 8.0 102 ± 4

Table 5. Analytical results for the determination of salicylic acid in pharmaceutical samplesSample Labeled value (%) This method (%) HPLC (%)11 1.02 ± 0.07 1.08 ± 0.02 21 1.01 ± 0.06 1.04 ± 0.03 32 2.18 ± 0.06 2.26 ± 0.03

 2.09 ± 0.05

 2.05 ± 0.08

2

Application

4

The proposed method was next applied to determine the salicylic acid concentration in some pharmaceutical products. The samples were measured without special treatment except for dilution with deionized water (10,000-fold). The recovery of the proposed method was evaluated by adding a known amount of standard salicylic acid to the real sample at four different levels. The average recovery (R) was defined by the equation $R = [(CT - CA)/C] \times 100\%$, where C is the amount of salicylic acid in samples, CA is the added amount of a standard solution of salicylic acid and CT is the amount of salicylic acid after addition of the standard solution to the samples (Table 4).

The recoveries were in the range of $99 \pm 3\%$ to $105 \pm 9\%$. The proposed method was also compared with the HPLC method. This showed that the proposed method agreed well with the HPLC method and the labeled values, as shown in Table 5. Therefore, the method can be recommended for the determination of salicylic acid in pharmaceutical preparations.

Conclusions

We have proposed and developed a new method for detecting salicylic acid based on the change to the fluorescence quenching of MPA-capped CdTe QDs. The advantages of the proposed method are that it is simple, rapid, cost effective, highly sensitivity, has a low detection limit and does not require any sample preparation step so there can be a high analytical throughput. The proposed method was successfully applied to the determination of salicylic acid in pharmaceutical samples with satisfactory results that agreed with the data on the labels. In addition, this method can be applied to detect salicylic in

other matrices such as urine and blood samples at concentrations as low as 0.5 $\mu g \ mL^{-1}.$

Acknowledgements

This work was supported by TRF-CHE grant (no. MRG5680045), the Thailand Research Fund, the Commission on Higher Education, Center of Excellence for Innovation in Chemistry (PERCH-CIC), the National Research University Project of Thailand, Trace Analysis and Biosensor Research Center, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand. The authors thank Dr Brian Hodgson, Prince of Songkla University, Hat Yai, Songkhla, Thailand for English proofreading.

References

- Martín C, Domínguez E. A new enzyme electrode for quantification of salicylic acid in a FIA system. J Pharm Biomed Anal 1999;19: 107-13.
- Long X, Chen F, Deng M. Determination of salicylic acid in human serum and urine samples by high-performance liquid chromatography with post-column Ru(bipy)3(2⁺)-Ce(SO4)₂ chemiluminescence detection. Anal Sci 2013;29:227 31.
- Torriero AA, Luco JM, Sereno L, Raba J. Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid. Talanta 2004;62:247–54.
- Pastor V, Vicent C, Cerezo M, Mauch-Mani B, Dean J, Flors V. Detection, characterization and quantification of salicylic acid conjugates in plant extracts by ESI tandem mass spectrometric techniques. Plant Physiol Biochem 2012;53:19

 –26.
- Engelberth J, Schmelz EA, Alborn HT, Cardoza YJ, Huang J, Tumlinson JH. Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Anal Biochem 2003;312:242-50.
- Shapiro AD, Gutsche AT. Capillary electrophoresis-based profiling and quantitation of total salicylic acid and related phenolics for analysis of early signaling in *Arabidopsis* disease resistance. Anal Biochem 2003;320:223—33.
- Navalón A, Blanc R, Del Olmo M, Vilchez JL. Simultaneous determination of naproxen, salicylic acid and acetylsalicylic acid by spectrofluorimetry using partial least-squares (PLS) multivariate calibration. Talanta 1999;48:469

 –75.
- Karim MM, Lee HS, Kim YS, Bae HS, Lee SH. Analysis of salicylic acid based on the fluorescence enhancement of the As(III)—salicylic acid system. Anal Chim Acta 2006;576:136—9.
- Chen Z, Ren X, Meng X, Zhang Y, Chen D, Tang F. Novel fluorescence method for detection of α-l-fucosidase based on CdTe quantum dots. Anal Chem 2012;84:4077–82.
- Rui T, Hyeran L, Samuel A. Induction of pH sensitivity on the fluorescence lifetime of quantum dots by NUR fluorescent dyes. J Am Chem Soc 2012;134:4545—8.
- Wang X, Lv Y, Hou X. A potential visual fluorescence probe for ultratrace arsenic (III) detection by using glutathione-capped CdTe quantum dots. Talanta 2011;84:382–6.
- Koneswaran M, Narayanaswamy R. Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury (II). Sens Actuator B 2009;139: 91–6.
- Chen S, Zhang X, Zhang Q, Hou X, Zhou Q, Yan J, Tan W. CdSe quantum dots decorated by mercaptosuccinic acid as fluorescence probe for Cu²⁺. J Lumin 2011;131:947–51.
- Wang RY, Wu J, Wang LJ, Wang R, Dou HJ. Spectrofluorometric determination of Iron II based on the fluorescence quenching of cadmium/tellurium quantum dots. Spectrosc Lett 2014;47:439

 –45.
- Dong F, Hu K, Han H, Liang J. A novel method for methimazole determination using CdSe quantum dots as fluorescence probes. Microchim Acta 2009;165:195–201.
- Tan X, Liu S, Shen Y, He Y, Yang J. Quantum dots based fluorescence probe for the sensitive determination of kaempferol. Spectrochim Acta A 2014;133:66

 –72.
- Zhao D, Song H, Hao L, Liu X, Zhang L, Lv Y. Luminescent ZnO quantum dots for sensitive and selective detection of dopamine. Talanta 2013;107:133–9.

- 18. Hu M, Yu H, Wei F, Xu G, Yang J, Cai Z, Hu Q. Citrate-capped Mnmodified CdSe/CdS quantum dots as luminescent probes for levodopa detection in aqueous solution. Spectrochim Acta A 2012;91: 130-5.
- 19. Zhang YH, Zhang HS, Ma M, Guo XF, Wang H. The influence of ligands on the preparation and optical properties of water-soluble CdTe quantum dots. Appl Surf Sci 2009;255:4747–53.

 Chen Z, Chen J, Liang Q, Wu D, Zeng Y, Jiang B. ZnSe quantum dots based fluorescence quenching method for determination of
- paeoniflorin. J Lumin 2014;145:569—74.

 21. Liu M, Xu L, Cheng W, Zeng Y, Yan Z. Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination. Spectrochim Acta A 2008;70:1198—202. Liu Z, Yin P, Gong H, Li P, Wang X, He Y. Determination of rifampicin
- based on fluorescence quenching of GSH capped CdTe/ZnS QDs. J Lumin 2012;132:2484-8.
- Jagadeeswari S, Asha Jhonsi M, Kathiravan A, Renganathan R. Photoinduced interaction between MPA capped CdTe QDs and certain anthraquinone dyes. J Lumin 2011;131:597-602.
- Kees F, Jehnich D, Grobecker H. Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by highperformance liquid chromatography. J Chromatogr B 1996;677:
- 25. Zou L, Gu Z, Nan Z, Zhang Y, Fang Z, Zhu W, Zhong X. Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase. J Mater Chem 2008;18:2807
- 26. Liang J, Cheng Y, Han H. Study on the interaction between bovine serum albumin and CdTe quantum dots with spectroscopic techniques. J Mol Struct 2008;892:116-20.

- Yu WW, Qu L, Gou W, Ping X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 2003;14:2854-60.
- Bo C, Ping Z. A new determining method of copper (II) ions at ng ml^{-1} levels based on quenching of the water-soluble nanocrystals fluorescence. Anal Bioanal Chem 2005; 381:986-92.
- Peng J, Hu X. A simple fluorescence quenching method for roxithromycin determination using CdTe quantum dots as probes. J Lumin 2011;13:952-5
- Chocholouš P, Holík P, Šatínský D, Solich P. A novel application of OnyxTM monolithic column for simultaneous determination of salicylic acid and triamcinolone acetonide by sequential injection chromatography. Talanta 2007;72:854-8.
- Gomez MR, Olsina RA, Martínez LD, Silva MF. Simultaneous determination of chloramphenicol, salicylic acid and resorcinol by capillary zone electrophoresis and its application to pharmaceutical dosage
- forms. Talanta 2003;61:233 8. Loh HC, Ahmad M, Taib MN. A novel salicylic acid optical fibre probe fabrication. Sens Actuator B 2005;107:59-63.
- Dong W, Shen HB, Liu XH, Li MJ, Li LS. CdSe/ZnS quantum dots based fluorescence quenching method for determination of paeonol. Spectrochim Acta A 2011;78:537—42.
- . Gan TT, Zhang YJ, Zhao NJ, Xiao X, Yin GF, Yu SH, Wang HB, Duan JB, Shi CY, Liu WQ. Hydrothermal synthetic mercaptopropionic stabled CdTe quantum dots as fluorescent probes for detection of Ag⁺. Spectrochim Acta A 2012;99:62-8.
- Yuan J, Guo W, Wang E. Investigation of some critical parameters of buffer conditions for the development of quantum dots-based optical sensors. Anal Chim Acta 2008;630:174–80.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ระบุชื่อผู้แต่ง ชื่อเรื่อง ชื่อวารสาร ปี เล่มที่ เลขที่ และหน้า) หรือผลงานตามที่คาดไว้ในสัญญาโครงการ

Opas Bunkoed, Proespichaya Kanatharana. Mercaptopropionic acid-capped CdTe quantum dots as fluorescence probe for the determination of salicylic acid in pharmaceutical products. Luminescence, 2015. Accepted, DOI: 10.1002/bio.2862

2. การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงวิชาการ

จากการศึกษาวิจัยของโครงการนี้มีประโยชน์ซึ่งสามารถนำไปพัฒนาต่อยอดเพื่อพัฒนาชุดทดสอบ สารชนิดอื่นได้ เช่น มีความเป็นไปได้ที่จะสามารถพัฒนาเป็นชุดทดสอบคอปเปอร์

กิตติกรรมประกาศ

โครงการวิจัยนี้ได้รับสนับสนุนจากสำนักงานคณะกรรมการการอุดมศึกษา (สกอ.) สำนักงานกองทุน สนับสนุนการวิจัย (สกว.) และมหาวิทยาสงขลานครินทร์

ผู้วิจัยขอขอบคุณ สถานวิจัยการวิเคราะห์สารปริมาณน้อยและไบโอเซนเซอร์ ภาควิชาเคมี คณะ วิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์สำหรับสถานที่ทำวิจัยและเครื่องมือวิจัยที่เกี่ยวข้อง

> โอภาส บุญเกิด พฤษภาคม 2558