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[. Introduction

1. Introduction to the research problem and its significance

1.1 Finding a zero of monotone operators

Numerous problems in mathematics and physical sciences can be recasted in
terms of fixed point problem for nonexpansive mappings. For instance, if the
nonexpansive mappings are projections into some closed and convex sets, then the
fixed point problem becomes the famous convex feasibility problem. The problem of
finding a fixed point of a nonexpansive is equivalent to the problem of finding a zero
of monotone operator. In fact, theory of monotone operator is very important in
nonlinear analysis and is connected with theory of differential equations. It is well
know that many physically significant problems can be modeled by the initial-value
problems. Typical examples where such evolution equations occur can be found in
the heat and wave equations or Schrodinger equations. On the other hand, a variety
of problems, including convex programming and variational inequalities, can be
formulated as finding a zero of monotone operators.

Then the problem of finding a solution x € H with 0 € Tx, where H is a
Hilbert space has been investigated by many researchers. One popular method of
solving 0eTx is “the proximal point algorithm” of Rockafellar [1] which is
recognized as a powerful and successful algorithm in finding a zero of monotone
operators.

Starting from any initial guess X, € H , this proximal point algorithm
generates a sequence {xk} given by

X =J, (X +e), (1)
where JrT =(I+7rT)" for all ¥>0 is the resolvent of Ton the space H .
Rockafellar proved the weak convergence of his algorithm (1) provided that the
regularization sequence {ck} remains bounded away from zero and the error

sequence {ek} satisfies the condition i”eku <.
k=0

Guler [2] gave an example showing that Rockafellar algorithm (1)did not

converges strongly in an infinite dimensional Hilbert space. An interesting topic is



“how to modify the proximal point algorithm (1)so that strong convergence is
guaranteed”. In 2006, Xu [3] proposed the following regularization for the proximal
point algorithm

Xy = J:: (AQu+A-4)x, +e), k=0, (2)
which essentially includes so called prox-Tikhonov algorithm introduced by Lehdili
and Moudafi [4] as special cases. In 2010, Boikanyo and Morosanu [5] noted that the
proximal point algorithm (2)is equivalent to

xkﬂ=ﬂ.ku+(1—ﬂ.k).l::(xk)+ek, k=0, 3)

they proved that {xk} is strongly convergent if 4, — 0, Z/lk =00 and
k=0

i”eku <00 or HekH/ﬂ.k — 0. Afterwards, they further put the following open
k=0

question:

Open Questions: Can one design a proximal point algorithm by choosing appropriate
parameter A, such that strong convergence of {xk} is preserved, for HZkH — 0 and
e, bounded ?

Recently, in 2011, Yao and Shahzad [6] proposed the following regularization

for the proximal point algorithm with general errors

X = A, +5k‘]:: (x,)+Ae, k=0, 4)
they proved the strong convergence theorem for the problem of finding a zero of
maximal monotone operator in Hilbert spaces which affirmatively answer the open
question put forth by Boikanyo and Morosanu [5].

In this project, motivated and inspired by the works in literature, we construct
the new iterative algorithm for finding a common element of the new general system
of variational inequalities and the set of fixed points of nonexpansive mappings in
Banach spaces. We also apply our main results with the problem of approximating a

zero point of operators in Banach spaces.
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1.2 New general system of variational inequalities in Banach spaces

Let X be a real Banach space, and X* be its dual space. Let C be a subset of X and
T be a self-mapping of C. We use F'(T') to denote the set of fixed points of 7. The duality
mapping J : X — 2% is defined by J(z) = {z* € X*|(x,2*) = ||z|]?, |z*|| = ||=||}, Yz € X.
If X is a Hilbert space, then J = I, where [ is the identity mapping. It is well-known that
if X is smooth, then J is single -valued, which is denoted by j.

Recall that a mapping f : C' — C'is a contraction on C, if there exists a constant
a € (0,1) such that [|f(z) — f(y)| < allz —y|, Vz,y € C. We use llc to denote the
collection of all contractions on C. This is Ilc = {f|f : C' — C a contraction}. A mapping
T : C — C is said to be nonexpansive, if |T(x) — T(y)|| < ||z —y|, Vz,y € C. Let
A : C — X be a nonlinear mapping. Then A is called

(i) L-Lipschitz continuous (or Lipschitzian), if there exists a constant L > 0 such that
|Az — Ay|| < Lllz — yl|, Y,y e C;

(ii) accretive if there exists j(z —y) € J(x — y) such that

1) a- inverse strongly accretive if there exist j(z —y) € J(x — y) and a > 0 such that
l if th ist j J d 0 such th
<Am - Ay,]((E - y)> > Oé”AiL’ - AyH27 V.’L’,y € C;

(iv) relazed (c,d)- cocoercive if there exist j(z —y) € J(x — y) and two constants ¢,d > 0
such that
(Az — Ay, j(z —y)) = (—o)|| Az — Ay|]* + d||z — y||*, Va,y € C.

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that

the classical variational inequality is to find x* € C such that
(Az*,x —2*) >0, VzeC,

where A : C — H is a nonlinear mapping. Variational inequality theory has emerged as
an important tool in studying a wide class of obstacle, unilateral, free, moving, equilibrium
problems arising in several branches of pure and applied sciences in a unified and general
framework. The variational inequality problem has been extensively studied in the litera-
ture, see [1, 2, 3, 4, 5, 6, 7, 8] and the references cited therein.

In 2006, Aoyama et al. [9] first considered the following generalized variational in-
equality problem in Banach spaces. Let A : C — X be an accretive operator. Find a point
x* € C such that

(Az*,j(x —x¥)) >0, VzeC. (5)



The problem (5) is very interesting as it is connected with the fixed point problem for
nonlinear mapping and the problem of finding a zero point of an accretive operator in
Banach spaces, see [10, 11, 12, 13] and the references cited therein.

In 2010, Yao et al. [l4] introduced the following system of general variational
inequalities in Banach spaces. For given two operators A, B : C' — X, they considered the
problem of finding (z*,y*) € C' x C such that

{ (Ay” +a” =y jlw =) 20, Ve eC, -

(Bx* +y* —z*, j(x —y*)) >0, VaxeC,

which is called the system of general variational inequalities in a real Banach space and the
set of solutions of the problem (6) denoted by €. Yao et al. proved the following strong

convergence theorem.

Theorem YNNLY. Let C be a nonempty closed convexr subset of a uniformly convex and
2-uniformly smooth Banach space X which admits a weakly sequentially continuous duality
mapping. Let Q¢ be the sunny nonexpansive retraction from X onto C. Let the mappings
A, B:C — X be a-inverse-strongly accretive with oo > K? and -inverse-strongly accretive
with B > K2, respectively with Qy # (). For a given xo € C, let the sequence {x,} be

generated iterative by

Yn = QC(xn - B-Tn)a
Tptl = QpU + BrnTn + 'YnQC(yn - AQN)7 n >0,

where {an}, {Bn} and {v,} are three sequences in (0,1). Suppose the sequences {cu},{5n}
and {yn} satisfy the following conditions

(1) an+ Bn+mm =1, ¥n >0;

(i) limy oo 0y = 0 and Y07 1 oy = 005

(iii) 0 < liminf,, o0 By < limsup,,_,o Bn < 1.
Then {x,} converges strongly to Q'u where Q' is the sunny nonexpansive retraction of C

onto €.

In 2011, Katchang and Kumam [15] introduced the following system of general
variational inequalities in Banach spaces. For given two operators A, B : C — X, they
considered the problem of finding (z*,y*) € C' x C such that

{ ANy  + 2" —y*, j(x —2*)) >0, VxeC, %

(uBx* +y* —a*, j(x —y*)) >0, VaeC,
which is called the system of general variational inequalities in a real Banach space and
the set of solutions of the problem (7) denoted by Q9. Katchang and Kumam proved the

following strong convergence theorem.



Theorem KK. Let C be a nonempty closed convex subset of a uniformly conver and 2-
uniformly smooth Banach space X which admits a weakly sequentially continuous duality
mapping. Let S : C — C be a nonexpansive mapping and Qc be a sunny nonexpansive
retraction from X onto C. Let the mappings A, B : C — X be (-inverse-strongly accretive
with B > AK? and v-inverse-strongly accretive with v > ukK?, respectively and K be the
2-uniformly smooth constant of X. Let f be a contraction of C' into itself with coefficient
a €10,1). Suppose F := Qo[ F(S) # 0. For a given xo = x € C, let the sequence {x,} be
generated iterative by
{ Yn = Qc(zn — pBzy),

Tny1 = anf(2n) + Butn + WSQc(Yn — AMyn), n >0,
where {an}, {Bn} and {v,} are three sequences in (0,1). Suppose the sequences {ay},{Bn}
and {v,} satisfy the following conditions

(i) an + B+ =1, Vn > 0;

(i) limp o0 0 = 0 and Y07 | ay = 005

(iii) 0 < liminf, o By < limsup,_ . Bn < 1.
Then {x,} converges strongly to & = Qrf(z) and (Z,y) is a solution of the problem (7),

where §y = Qc(T — uBZ) and QF is the sunny nonexpansive retraction of C' onto F.

The problem of finding solutions of (7) by using iterative methods has been studied by
many others, see [10, 17, 18, 19] and the references cited therein.

In this project, we focus on the problem of finding (z*,y*,2*) € C x C x C such
that

(MAY + 2" —y*j(r— %)) >0, Vxel,
(AoAoz* +y* — 2" j(x —y*)) >0, Vxel, (8)
(AN3Asx* + z* —a*, j(x — 2%)) >0, VaeC,

which is called a new general system of variational inequalities in Banach spaces, where
A; : C — X are three mappings, A; > 0 for all ¢ = 1,2,3. In particular, if A3 = 0 and
z* = x*, then problem (8) reduces to problem (7). If we add up the requirement that A; = 1
for i = 1,2, then problem (8) reduces to problem (6).

In this project, motivated and inspired by the idea of Katchang and Kumam [15] and
Yao et al. [14], we introduce a new iterative method for finding a common element of the
set of solutions of a new general system of variational inequalities in Banach spaces for two
different relaxed cocoercive mappings and the set of fixed points of a nonexpansive mapping
in a real 2-uniformly smooth and uniformly convex Banach spaces. We prove the strong

convergence of the proposed iterative algorithm without the condition of weakly sequentially



continuous duality mapping. Our result improves and extends the corresponding results

announced by many others.
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Objectives

2.1.

To construct and study new iterative algorithms for finding a common
element of the new general system of variational inequalities and the set

of fixed points of nonexpansive mappings in Banach spaces.

2.2 To apply the main results in objective 2.1 with the problem of
approximating a zero point of operators in Banach spaces.

2.3. To construct and study a new iterative algorithm for finding a common
element of the new general system of variational inequalities and the set
of fixed points of nonexpansive mapping in Hilbert spaces.

Methodology

3.1.  Collect and study all research papers, books and articles in various

journals related to the proximal point algorithms for finding a zero of
maximal monotone operators and finding a common fixed point of a
finite family of nonexpansive mappings in both Hilbert spaces and Banach
spaces.

3.2. Collect and study various knowledge concerning fixed point theory and
applications by attending seminars, meeting, and conferences related to
fixed point theory and applications

3.3. Apply the problem of finding common fixed point of nonexpansive
mappings in Banach spaces with the problem of approximating a zero point
of operators in Banach spaces.

3.4.  Write research papers concerning our research problems and submit to the
international journals.

3.5.  Write research report for every sixth months and report to TRF.
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Abstract

In this paper, we study a new iterative method for finding a common element of the
set of solutions of a new general system of variational inequalities for two different
relaxed cocoercive mappings and the set of fixed points of a nonexpansive mapping
in real 2-uniformly smooth and uniformly convex Banach spaces. We prove the strong
convergence of the proposed iterative method without the condition of weakly
sequentially continuous duality mapping. Our result improves and extends the
corresponding results announced by many others.
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1 Introduction

Let X be a real Banach space and X* be its dual space. Let C be a subset of X and let T
be a self-mapping of C. We use F(T) to denote the set of fixed points of T. The duality
mapping / : X — 2X" is defined by J(x) = {x* € X*|(x,x*) = ||x||%, [|*]| = x]|}, Yx € X. If X
is a Hilbert space, then J = I, where [ is the identity mapping. It is well-known that if X is
smooth, then J is single-valued, which is denoted by .

Recall that a mapping f : C — C is a contraction on C, if there exists a constant & € (0,1)
such that |f(x) — (W) < aflx -y, Vx,y € C. We use Il¢ to denote the collection of all
contractions on C. This is I1¢ = {f|f : C — C a contraction}. A mapping T : C — C is said
to be nonexpansive if | T(x) — T(y)|| < |lx —y|l, Vx,y € C. Let A : C — X be a nonlinear
mapping. Then A is called

(i) L-Lipschitz continuous (or Lipschitzian) if there exists a constant L > 0 such that

Ax — Ayl < Lllx-yl, Vx,yeC

(ii) accretive if there exists j(x — y) € J(x — y) such that
(Ax — Ay, j(x —y)) >0, Vx,yeC;

(iii) «-inverse strongly accretive if there exist j(x — y) € J(x — y) and @ > 0 such that
(Ax - Ay,j(x - y)) > allAx - Ay|*>, Vx,y€C;

© 2013 Imnang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
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(iv) relaxed (c,d)-cocoercive if there exist j(x — y) € J(x — y) and two constants ¢,d > 0
such that

(Ax - Ay, j(x - y)) = (=0)|Ax - Ay|)* + dlx - y|>, Vx,yeC.

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that the
classical variational inequality is to find x* € C such that

(Ax*,x-x*)>0, VxeC, (11)

where A : C — H is a nonlinear mapping. Variational inequality theory has emerged as an
important tool in studying a wide class of obstacle, unilateral, free, moving, equilibrium
problems arising in several branches of pure and applied sciences in a unified and gen-
eral framework. The variational inequality problem has been extensively studied in the
literature; see [1-8] and the references cited therein.

In 2006, Aoyama et al. [9] first considered the following generalized variational inequal-
ity problem in Banach spaces. Let A : C — X be an accretive operator. Find a pointx* € C
such that

(Ax*,j(x —x*)) >0, VxeC. 1.2)

Problem (1.2) is very interesting as it is connected with the fixed point problem for a non-
linear mapping and the problem of finding a zero point of an accretive operator in Banach
spaces; see [10—13] and the references cited therein.

In 2010, Yao et al. [14] introduced the following system of general variational inequalities
in Banach spaces. For given two operators A, B: C — X, they considered the problem of
finding (x*,5*) € C x C such that

(Ay* +x* —y*,j(x —x*)) >0, VxeC, 13)
(Bx* +y* =%, j(x—y*)) >0, VxeC, .

which is called the system of general variational inequalities in a real Banach space and
the set of solutions of problem (1.3) denoted by £2;. Yao et al. proved the following strong

convergence theorem.

Theorem YNNLY Let C be a nonempty closed convex subset of a uniformly convex and
2-uniformly smooth Banach space X which admits a weakly sequentially continuous dual-
ity mapping. Let Qc be the sunny nonexpansive retraction from X onto C. Let the mappings
A,B: C — X be a-inverse-strongly accretive with o > K? and B-inverse-strongly accretive
with B > K2, respectively, with Q, # . For a given x, € C, let the sequence {x,} be generated
iteratively by

Yn = QC(xn _an):
Xp+l = Oyl + ﬂnxn + ynQC(yn _Ayn)r n= 0;

where {a,}, {B,} and {y,} are three sequences in (0,1). Suppose that the sequences {c,}, { B}
and {y,} satisfy the following conditions:
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@) an+PBu+yn=1,Yn>0;
(i) lim,— o0, =0 and y oo oy = 00;
(iii) 0 <liminf,_ o B, <limsup,_ . B, <1

Then {x,} converges strongly to Q'u where Q' is the sunny nonexpansive retraction of C
onto 2.

In 2011, Katchang and Kumam [15] introduced the following system of general varia-
tional inequalities in Banach spaces. For given two operators A,B: C — X, they consid-
ered the problem of finding (x*,y*) € C x C such that

(AAY* +x* —y*,j(x —x*)) >0, VxeC(C, 14)
(UBx* +y* —x*,j(x—y")) =0, YreC, '

which is called the system of general variational inequalities in a real Banach space and
the set of solutions of problem (1.4) denoted by £2,. Katchang and Kumam proved the
following strong convergence theorem.

Theorem KK Let C be a nonempty closed convex subset of a uniformly convex and
2-uniformly smooth Banach space X which admits a weakly sequentially continuous dual-
ity mapping. Let S : C — C be a nonexpansive mapping and Q¢ be a sunny nonexpansive
retraction from X onto C. Let the mappings A,B: C — X be B-inverse-strongly accretive
with B > AK? and y-inverse-strongly accretive with y > uK?, respectively, and let K be
the 2-uniformly smooth constant of X. Let f be a contraction of C into itself with coefficient
a € [0,1). Suppose that F := Q, N F(S) # (. For a given xy = x € C, let the sequence {x,} be
generated iteratively by

Yn = Qc (o, — uBxy),
Xntl = anf(xn) + Buxn + VVISQC()/H - )\Ayn): n>0,

where {a,}, {B,} and {y,} are three sequences in (0,1). Suppose that the sequences {a,,}, { B}
and {y,} satisfy the following conditions:
(i) ap+PBp+vu=1,Vn=>0;
(ii) limy—oo0t, =0and ) - ay = 00;
(iii) 0 <liminf,_ B, <limsup,_, . Bn <1
Then {x,} converges strongly to x = Qpf(x) and (x,y) is a solution of problem (1.4), where
¥y = Qc(x — uBx) and Qr is the sunny nonexpansive retraction of C onto F.

The problem of finding solutions of (1.4) by using iterative methods has been studied by
many others; see [16—19] and the references cited therein.
In this paper, we focus on the problem of finding (x*,y*,z*) € C x C x C such that

(MAY* +x* —y5,jx—x*)) >0, VxeC,
(ApAnZ* + " = 2", j(x —y*)) >0, VxeC, (L5)

(A3Asx™ + 2" —x*,j(x —2*)) >0, VxeC,

which is called a new general system of variational inequalities in Banach spaces, where

A;: C — X are three mappings, A; > 0 for all i = 1,2, 3. In particular, if A3 = 0 and z* = x™,
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then problem (1.5) reduces to problem (1.4). If we add up the requirement that A; = 1 for
i =1,2, then problem (1.5) reduces to problem (1.3).

In this paper, motivated and inspired by the idea of Katchang and Kumam [15] and Yao
et al. [14], we introduce a new iterative method for finding a common element of the set of
solutions of a new general system of variational inequalities in Banach spaces for two dif-
ferent relaxed cocoercive mappings and the set of fixed points of a nonexpansive mapping
in real 2-uniformly smooth and uniformly convex Banach spaces. We prove the strong
convergence of the proposed iterative algorithm without the condition of weakly sequen-
tially continuous duality mapping. Our result improves and extends the corresponding

results announced by many others.

2 Preliminaries
In this section, we recall the well-known results and give some useful lemmas that are used
in the next section.

Let X be a Banach space and let U = {x € X : ||x|| = 1} be a unit sphere of X. X is said
to be uniformly convex if for each € € (0, 2], there exists a constant § > 0 such that for any
x,yel,

lx—y|l > € implies H%Hfl—&

The norm on X is said to be Gdteaux differentiable if the limit

. X+ ty|| — [|x
R

t—0 t (21)

exists for each x,y € U and in this case X is said to be smooth. X is said to have a uniformly
Frechet differentiable norm if the limit (2.1) is attained uniformly for x,y € U and in this
case X is said to be uniformly smooth. We define a function p : [0, 00) — [0, 00), called the

modulus of smoothness of X, as follows:

1
p(t) = sup{§(||x+y|| +lx=yll) -1:xyeX, Izl =1L |yl = T}.

It is known that X is uniformly smooth if and only if lim,_,¢ p(tr)/t = 0. Let g be a fixed
real number with 1 < ¢ < 2. Then a Banach space X is said to be g-uniformly smooth if
there exists a constant ¢ > 0 such that p(tr) < ¢t? for all T > 0. For g > 1, the generalized
duality mapping J, : X — 2% is defined by

Jo@) = {f € X*: (e f) = %l If 1l = X7}, Vx e X.

In particular, if g = 2, the mapping J; is called the normalized duality mapping (or duality
mapping), and usually we write J, = J. If X is a Hilbert space, then J = I. Further, we have
the following properties of the generalized duality mapping J,.

(1) J4(x) = llx]|77%J2(x) for all x € X with x # 0.

(2) J,(tx) = t171,(x) for all x € X and ¢ € [0, 00).

(3) Jo(—x) = —J;(x) for all x € X.
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It is known that if X is smooth, then J is a single-valued function, which is denoted by ;.
Recall that the duality mapping j is said to be weakly sequentially continuous if for each
{x,} C X with x,, — x, we have j(x,,) — j(x) weakly-*. We know that if X admits a weakly
sequentially continuous duality mapping, then X is smooth. For details, see [20].

Lemma 2.1 [21] Let X be a q-uniformly smooth Banach space with 1 < q < 2. Then
e+ 117 < %17 + gy, T4 () + 201 Kp117
forall x,y € X, where K is the q-uniformly smooth constant of X.

Lemma 2.2 [22] In a Banach space X, the following inequality holds:
I+ 901> < llxl* + 2(n,j(x +9)),  Vx,yeX,

where j(x +y) € J(x + ¥).

Lemma 2.3 [23] Assume that {a,} is a sequence of nonnegative real numbers such that
anit == yu)an + 8, n=1,

where {y,} is a sequence in (0,1) and {8, } is a sequence such that
(1) thil Yn = O0;
(i) imsup,_, o 8,/yn <0 0r Y 21 |84 < 00.

Then lim,—, o a,, = 0.

Let C be a nonempty closed convex subset of a smooth Banach space X and let D be a
nonempty subset of C. A mapping Q : C — D is said to be sunny if

Q(Qx + t(x — Qw)) = Qx,

whenever Qx + t(x — Qx) € C forx € C and ¢ > 0. A mapping Q : C — D is called a retrac-
tion if Qx = x for all x € D. Furthermore, Q is a sunny nonexpansive retraction from C onto
D if Q is a retraction from C onto D, which is also sunny and nonexpansive. A subset D
of C is called a sunny nonexpansive retraction of C if there exists a sunny nonexpansive
retraction from C onto D.

It is well known that if X is a Hilbert space, then a sunny nonexpansive retraction Qc is

coincident with the metric projection from X onto C.

Lemma 2.4 [24] Let C be a closed convex subset of a smooth Banach space X. Let D be a
nonempty subset of C and Q : C — D be a retraction. Then the following are equivalent:
(a) Q is sunny and nonexpansive.
(b) 1Qx - Qyl*> < {x—,j(Qx - Qy)), Vx,y € C.
(© (x—Qx,jly—Qx))<0,Vxe C,yeD.

Lemma 2.5 [25] If X is strictly convex and uniformly smooth and if T : C — C is a non-
expansive mapping having a nonempty fixed point set F(T), then the set F(T) is a sunny
nonexpansive retraction of C.
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Lemma 2.6 [26] Let {x,} and {y,} be bounded sequences in a Banach space X and let
{b,} be a sequence in [0,1] with 0 < liminf,_. - b, <limsup,_, ., b, < 1. Suppose that X, =
(1= by)yu + bux, for all integers n > 1 and limsup,,_, o (1¥ie1 = Yull = %01 — %4 11) < 0. Then

1imn—>oo "yn _xn” =0.

Lemma 2.7 [27] Let C be a closed convex subset of a strictly convex Banach space X. Let
Ty and T, be two nonexpansive mappings from C into itself with F(T1) N F(T3) # (. Define
a mapping S by

Sx=ATix+(1-N)Twx, VxeC,
where A is a constant in (0,1). Then S is nonexpansive and F(S) = F(T1) N F(T3).

Lemma 2.8 [28] Let X be a real smooth and uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing, continuous and convex function g : [0,2r] — R such
that g(0) = 0 and g(||x - yll) < lI|* = 2{x,j(») + Iy|I* for all x,y € B,.

Lemma 2.9 [23] Let X be a uniformly smooth Banach space, let C be a closed convex subset
of X, let T : C — C be a nonexpansive mapping with F(T) # ) and let f € T¢c. Then the
sequence {x;} defined by x; = tf (x;) + (1 —t) Tx, converges strongly to a pointin F(T) ast — 0.
If we define a mapping Q : Il — F(T) by Q(f) := lim_ ¢ x;, Vf € ¢, then Q(f) solves the
following variational inequality:

(T-HQN.J(QN -p)) <0, Vfelc,peF(T).

Lemma 2.10 [17] Let C be a nonempty closed convex subset of a real 2-uniformly
smooth Banach space X. Let the mapping A : C — X be relaxed (c,d)-cocoercive and L4-
Lipschitzian. Then we have

| (= 24)% = (1 = 2A4)y|” < 1= I + 2(AeL - 2d + K222LY) % -y,

2
d—clLy

where 1. > 0 and K is the 2-uniformly smooth constant of X. In particular, if 0 <A < —75,
A

then I — LA is a nonexpansive mapping.

In order to prove our main result, the next lemma is crucial for proving the main theo-

rem.

Lemma 2.11 Let C be a nonempty closed convex subset of a real 2-uniformly smooth
Banach space X with the 2-uniformly smooth constant K. Let Qc be the sunny nonex-
pansive retraction from X onto C and let A; : C — X be a relaxed (c;,d;)-cocoercive and
L;-Lipschitzian mapping for i =1,2,3. Let G : C — C be a mapping defined by

G(®) = Qc[Qc(Qc(x — A3A3x) — A2A2Qc(x — A3A3x))

- 1A1Qc(Qc(x — A3A3x) — 1245 Qc(x — A3Asx))], VxeC.

Ifo<A; < d}gfﬁz foralli=1,2,3, then G: C — C is nonexpansive.
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Proof Forallx,y € C, by Lemma 2.10, we have

|G@) = G = [Qc[Qc(Qel = A3A3)x = 1242Qc I - 3A3)x)
- MA1Qc(QcU = A3A3)x — 12A2Qc (I — A3A3)x) ]
- Qc[Qc(Qcll - 13A43)y — 224,Qc(I - A3A3)y)
—1A1Qc(Qc(l = A343)y = 22A2Qcl — 23A3)y) ] |
< 1Qc(Qcl = A3A3)x — 12 A2Qc( — A3A3)x)
- MA1Qc(Qcl — A3A3)x — AA2Qc (I — A3As3)x)
= [Qc(Qc(I = 2343)y — 22A42Qc (I - A3A3)y)
—1A1Qc(Qc(l = A343)y — 22A2Qcl — A3A3)y) ] |
= | (I = MADQcU - 2242)Qc - A3A3)x
= (I = MADQC - 12A2)Qc(l - A3As)y |

=< ”x - )’”,
which implies that G is nonexpansive. O

Lemma 2.12 [29] Let C be a nonempty closed convex subset of a real smooth Banach
space X. Let Qc be the sunny nonexpansive retraction from X onto C. Let A; : C — X be
three possibly nonlinear mappings. For given x*,y*,z* € C, (x*,y*,2*) is a solution of prob-
lem (1.5) if and only if x* € F(G), y* = Qc(z* — AyA2z*) and z* = Qc(x* — A3A3x™), where G
is the mapping defined as in Lemma 2.11.

3 Main results
We are now in a position to state and prove our main result.

Theorem 3.1 Let X be a uniformly convex and 2-uniformly smooth Banach space with
the 2-uniformly smooth constant K, let C be a nonempty closed convex subset of X and
Qc be a sunny nonexpansive retraction from X onto C. Let the mappings A; : C — X be
relaxed (c;, d;)-cocoercive and L;-Lipschitzian with 0 < A; < %52‘2 foralli=1,2,3. Let f
be a contractive mapping with the constant o € (0,1) and let S : C — C be a nonexpansive
mapping such that Q = F(S) N F(G) # 0, where G is the mapping defined as in Lemma 2.11.

For a given x, € C, let {x,}, {y,} and {z,} be the sequences generated by

Zn = Qc(®y — A3Azx,),
In = Qc(zn — A2A2zy), (3.1)
Xn+l = anf(xn) +bux, + (1 —ay — bn)SQC(yn - )\lAlyn)» n>1,

where {a,} and {b,} are two sequences in (0,1) such that
(C1) limyooa,=0andy . a, = o0;
(C2) 0<liminf, b, <limsup,_, . b, <1.
Then {x,} converges strongly to q € 2, which solves the following variational inequality:

([a-f@.jlg-p) <0, Yfelcpe.
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Proof Step 1. We show that {x,} is bounded.
Let x* € Q and t, = Qc(y, — 21A1Yy). It follows from Lemma 2.12 that

&" = Qc[Qc(Qc (¥ — A3A43x™) — 224, Qc (2" — A3A3x"))

- MA1Qc(Qc (" — A3Asx™) — 2242 Qc (" — A3A3x™))].
Put y* = Qc(z* — A2A,z*) and z* = Q¢ (x* — A3A3x™). Then x* = Qc(y* — 11 A1y*) and
X1 = Anf () + bpxy + (1 - a, — b,)Sty,.
From Lemma 2.10, we have I — 1;A; (i = 1,2, 3) is nonexpansive. Therefore

l2n = x*| = | Qe = MALYn) = Qe (v* = MAy*)|| < |yu - 57|
= | Qclzn — 22422,) — Qc(2" — A2Ar2")|| < [|2a - 2°|

= | Qc(xn — A3A3x,) — Qc(x* — A3A3x™) | < [|x, —#* | (3.2)
and ||St,, — x*|| < ||t — x*||. It follows from (3.2) that

|1 = &% | = || @nf (n) + by + (1 = @y — b) Sty — x* |
< |[f (o) = 6| + b0 — 2| + (L= — )| 0 — "
< au||[f () =& | + @ = an) || %0 — x|
< ety = || + a[f(6F) = 2| + (1 - @) s — 7

—a ) ] + (1=t - )5, -]
By induction, we have

IIf (x7) — x|
1 _ )

xl—x*”}.

||xn+1 —x* ” < max{

Therefore, {x,} is bounded. Hence {y,,}, {z,}, {£.}, {A1yn}, {A2z,}, (St} {f (x,,)} and {Asx,,}
are also bounded.

Step 2. We show that lim,,_, oo [|%,41 — %] = 0.

By nonexpansiveness of Q¢ and I — };A; (i = 1,2, 3), we have

i1 = tall = | QcWni1 = MAYn1) = Qcn — MALyn) |
< yner = yull
= | Qc(zni — 22A22n41) — Qc(2n — 22A2z,) |
=< llzns1 = 2ull
= | Qe — A3As%41) — Qclotn — A3Azx,) |

= ||xn+l _xn”' (33)
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Let w, = %, neN. Then x,,1 = b,x, + 1 - b,)w, for all n € N and

Xn+2 — bn+1xn+1 Xn+l — bnxn

Wyl — Wy = 1= by - 1-b,
anitf ®ne1) + (L= @pi1 = bpi1) St anf (%) + (1 —a, — b,)St,
) 1= by ) 1-b,
Apsl

=12 p - () = Stuns) + 77 (Stu = f(en)) + Stuns = St (3.4)

By (3.3), (3.4) and nonexpansiveness of S, we have

H Stn _f(xn) ” .

W1 = wall = %01 — %4l < 1- b Hf(xnﬂ) St ” +
By this together with (C1) and (C2), we obtain that

Limsup ([Wy1 — Wyl = %0 — %[l < 0.
n—0oQ0

Hence, by Lemma 2.6, we get |x,, — w,|| — 0 as n — oo. Consequently,
lim %41 — %, = lim (1= b,)[lwy, — x4 = 0. (3.5)
n—00 n—00

Step 3. We show that lim,,_, o, [|Sx;, — x| =0
Since

Xp+l —Xp = Ay (f(xn) - xn) + (1 —ay — bn)(Stn _xn);
therefore
|St, —x,|| > 0 asn— oo. (3.6)

Next, we prove that lim,,_,  [|%, — £,]| = 0. From Lemma 2.1 and nonexpansiveness of Qc,
we have

|20 =2 = | Qelon — AsAsx,) — Qc(x* — AsAsx®) |
< |0 =" = A3 (Asx, - Asa®) |
< Jln =% |* = 2x5(A5, — Asa®, (%, —2*))
+2K202 | Agx, — Asx®|?
< o = = 205 (s | Ao — Asa” | + s [0 —*[)
+2K%32|| Asx, — Asx*|)?

2\3d
< ||xn —x* “2 + 2)\3C3 HA?,xn —Agx* ||2 - 3 3

2 s, - 0 |
+2K202 | Agx, — Asx®|?

d
= [l —a*|* = 225 (L—z —c —1<213> |Asx, — Asa*|* (37)
3
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and

|yn =y ”2 = | Qclzn — 22422,) = Qc(2* — A2A12Y) ||2
< |lzn = 2" = 22 (A2zn — Asz") ||2
<|zu-2* ||2 —2h9(A2zy — Arz",j(zu — 2¥))
+2K203 | Aszy — AoZ* |
BT YA VR S T
+ 2203 [ Anzy — AnZ* |

2hrds
L

< HZ” -z ”2 + 2X9Cs ||Agz,, —AzZ>k “2 - ”AzZn —A2Z* ”2

+2K22 || Az, - AoZ"|?

d
= HZ”‘ - Z* ”2 - 2)\.2<L—§ —C2 —KZ)\.2> ||A2z,, —AzZ* ”2 (38)
2

Similarly, we have

£ — x* ||2 = | Qclyn — MA1yn) — Qc(¥* = MAYY) ”2
= o=y = (A - A") |’
= =5 ” = 22(A13n - A"y - 57)
+ 2602 Ay - Ay
< lyw=9"1” = 20 (=1 | Avy = Ary*||” + i |y - *])
+ 2202 Ay - Ayt

2hd
<=y I + 2 | Arys A [F = =57 [ Awyn - Ay |
1
+ 202 Ay - A
d
= yw—y|* - 214 (L—; —a —K%) 4w, - A*|)*. (3.9)
1

Substituting (3.7) and (3.8) into (3.9), we have

ds

[ta—x*|? < [0 -] - ”3(? o _mg) L
3

— 21 <d—§ - - 1<2x2> |Asz, — Anz* |
L2

d
-2 (L—§ - - 1(%) Ay — Ary*||”. (3.10)
1
By the convexity of | - ||?, we obtain
6041 — x* ||2 = || anf (%n) + bux + (1 = @y — by)Sty — * ||2
<a, Hf(xn) —x* ||2 +b, ||x,, —x* ||2 +(1-a,- b,,)”St,, —x* ||2

<a, Hf(x,,) —x* ”2 +b, ||x,, —x* ||2 +(1-a,-b,) ||t,, —x* H2 (3.11)
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Substituting (3.10) into (3.11), we have
2 2 2
o =27 [|” = @ o) = 27" + b - 27
® |2 d3 2 |2
+(1-a,-b,) ||xn —x || —2)3 7 —c3—K°\3 ||A3x,, —Asx H
3
d 2
2 (L_; o m) [ A2 — Ao’
2

d
~ 2 (L—; -q —1<2A1) |A1yn — Ary* ||2)
1

= an|[f ) — 2" + L= @) Jn -2

— (1 —-a,; — bn)2A3 (j—i —C3 — ](2)»3> HAgxn —A3x* ”2
3

~ (L= ay—by)2s (‘Z—j - - 1(2A2> | A2z, — Anz*||?
2

2
’

d.
—(1-a, - b,)2h (L—§ —a - 1<2A1> | Ay, - Ay
1

which implies

(1—a, — by)223 (% —c3— 1<2x3) |Asx, — Asx*|*
3
d2 2 « |12
+ (1 —a,; — bn)2A2<L—2 —C -K )»2) HAZZ,, —A2Z ”
2

d
+ (1 —-a,; — bn)Z)q <L—; —-C — I(z)\q) ||A1yn —Aly* ||2
1
< a[fGea) =+ e =2 | = [t =7
=ay |Lf(xn) -x* ”2 + 1% — x|l (”xn -x* ” + “xnﬂ -x* ||)
By the conditions (C1), (C2), (3.5) and 0 < A; < % for each i = 1,2, 3, we obtain

lim ”Agx,, — Azx* H =0, lim ”A2z,, —Ayz" ” =0 and
n—0o0 n— o0

(3.12)
Jim [[Ary, - Ay = 0.

Let r = sup,o {llx, = x*[I, 120 = 2*II, |y = ¥*|l, |t — x*[|}. By Lemma 2.4(b) and Lemma 2.8,
we obtain

2 — &* ||2 = | Qcyn — A1) — Qc (v* — MAY*) ”2
< (n = MAyn = (V" = MAYY), (80 - x¥))
=(yn =% j(tn — %)) = M{Aryn — Ary",j (- 7))
1 * * * *
< U=y 1"+ ltw =21 =gy = = (62 =) )]

+ (A" = Ay j(tn — 7)),
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which implies

[t =" < Iy =" = &(ly = 7" = (& ="))
+ 2A1<A1y* —Aly,,,j(t,, - x*))
< yn =y I* ~&(lyn =" = (ta =) )
+ 20 [Awy* = Avyu || 0 — 2. (3.13)

And

lyn =% = || Qclen — 22Azz,) — Qc(2* = AaAsz") |
<(zn = 2242z, — (2" = 12A22"),j(yu — "))
= (20— 2% j(yn = ¥")) - A2(A2zn — A2, j (3 — %))
1 * * * *
< Sllen =217+ [y =" - glllan =2 = Gu =) )]

+ Kz(Azz* - Azzn’j(yn - y*)>’

which implies

lpn =5 [1” < lzn = 2** = g(l2n = 2" = (=) )
+ 2k2<A2z* —A22,j(Vn —y*))
<z -21" - gz -2 - (4 -5))
+ 24 | A2z = Aoz | |y — ¥ |- (3.14)

Similarly, we have

|20 = 2| = | Qe — A3Asx,) — Qc(x* - AsAsx®) ||
< (wn = AaAsxy — (2 — A3Asx*),j(2, - 2¥))
o e~ ) A~ A e~ )
1
< Sl =17+ Jaw =2 ~ gl " = (2 = 2) )]

+ A3(Asx* — Asxp, j(20 — 2%))s
which implies

=2 1" < o =2~ g (Jotn =" = (& =2) )
+ 2A3(A3x* —Aanrj(zn - Z*)>
N (o))

+ 20| Asx™ — Asaxy | || 20 — 2*. (3.15)
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From (3.11), (3.13), (3.14) and (3.15), we have

s =2 ” < @£ en) =" |+ bl 27| + 0= = ) | 0 =2
< @[ f @) = || + b0 — 5|
+W=an=b)[[3a -7 " -l =5 - (ta = 2")])
+ 20 |Ary” = Avy| [ - [ ]
< @ [f ) = || + b0 — 5|
+(W=an=b) |z -2 ~g(lz ~2 = (u=5")])
+2h2[[ A2z — Aoz [y = 5" = ([ =" - (ta = 27) )
+ 20 | A" = Avy |80 - 27]]
< an|[fGon) = 2* | + b s — 5]
+ (U=ay = b,)[[xn =" = g0 — 2" = (= 2"))
+ 23] Asx”™ — Asw | |20 = 27| = g ([ 2n — 2° = (3 = ") [)
+ 2] Aoz” = Aoz [y = 5[ ~ & ([lyn = " = (tn = 27) [)
+ 20 Ay — Avya || £ - 27 ]
= a, |[f ) =& |* + (1= @) | — |
+ (U= an = by) (20 [ Ary” = Avya | [ - 27)
+ (L= ay = by) (202 A2z” ~ Aoz [y - y*[)
+(1—a, — by) (223 | Asx™ — Asx,| |20 — 2*||)
~ (U =a,=b)g(|yn =y = (b —2")])
-(-a,-b, g(llzn-Z*-(yn—y*)ll)
( ),

(A =an-b)g(||xn -5 = (24— 2%)
which implies

(U =an=b)g(|yn -y = (ta =) [[) + A =@y = bug([|2n = 2" = (ra - 57)[))

(L= an = b)g(n %" = (20 - 2)|)

< a||f (%) - x* H2 + || — x* H2 — |1 — x* HZ
+ (L= ay = by) (27 | Ary* = Avy | || 80 — ¥
+ (1= ay = by) (222 A2z” — Aoz [ - 7))
b (L — by) (20| A = Agi| |20 - 2°])

< @ |[fGen) = 2| + 1960 = i | (|0 = 2| + |1 — %)
== B2 A - Al 1o ])
+ (L= ay = by) (222 A2z” — Aoz [y - 7))
b (L - by) (20 | Asx* = As| [ 20 - 2'])-
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By the conditions (C1), (C2), (3.5) and (3.12), we obtain

Jim g(|yn-y" = (& =2 [) =0, lim g(lzu-2"= (u=y7)[) =0 and

n—00

lim g(||%, —a* - (2. - 2*)||) = 0.

n—00

It follows from the properties of g that

Jim [y, =y* = (& =#7)[ =0, lim [l - 2"~ (3 =y")[ =0 and
Jim [, - 5" = (20 - 2°) | = 0.

Therefore

It = tall = o =20 = (" = 2°) [ + 2w =20 = (=" =57

+ |y —ta—(y =5*)| >0 asn— oo (3.16)
By (3.6) and (3.16), we have

5% = xnll < 11S% = Stull + 1St — Xl

< |l%y = tull + ISt —x4]l — 0 asn— oo. (3.17)
Define a mapping W: C — C as
Wx=nSx+(1-n)Gx, VxeC,

where 7 is a constant in (0,1). Then it follows from Lemma 2.7 that F(W) = F(G) N F(S)

and W is nonexpansive. From (3.16) and (3.17), we have

llocn — Wyl = ”xn - (ﬂan +(1- n)Gxn) ”
= [ n(n = Sx) + (1= ) (%, — Gax,) |
< nllxn = Sxull + (1 =)l — Gyl

= nllxy — Sxull + L= n)llxy — £l > 0 asn — oo. (3.18)
Step 4. We claim that

limsup(f (q) - q,j(x, — q)) < 0, (3.19)

n—0oQ

where g = lim;_, ¢ x; with x; being the fixed point of the contraction
x> tf(x) + (1 —£) Wa.
From Lemma 2.9, we have g € F(W) = F(G) N F(S) = 2 and

(U-Hajg-p) =<0, Yfelcpe.
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Since x; = tf (x;) + (1 — £) Wx;, we have

lloe — 2l = | () + (1 = £) Wk, — 2,

= || Q-8 (W, —x,) + t(f(xt) —xn) ||

It follows from (3.18) and Lemma 2.2 that

e = all® = || (L= £)(Wate — ) + £(F () — %) |

< (1= )| Wiy — l|® + 2{f (%) — 20, (3% — %)

< (L= £ (1| Wat, — Watyl| + 1| Wat, — 6, ]1)°
+ 26{f (%) — %r (%0 — %))

= (1= 0)* (| Wity = Wa ||” + 21| Wity — Wi ||| Wk — %] + [| Wiy, — %)
+ 2t(f(xt) — X, (e — x,,)) + Zt(xt — Xy (2 — x,,))

< (=2t + ) [l = 2 )* + A= £ (2010 = % [[1| Wy — | + || Wt — ]|?)
+ 2t(f(xt) — X, (e — xy,)) + 2t — x4

= (14 %) llxe = x> + fu(8) + 28(f (x2) — 2, (% — %))y (3.20)

where f,(£) = (1 — £)2(2|%; — % || + || Wa,, — %, [1) || Wax, — %, ]| — 0 as n — oo. It follows from

(3.20) that
. t (1)
(xt —f (), j (o _xn)) = 5 [t — %1 +f2 (3.21)
t
Let n — o0 in (3.21), we obtain that
t
lim sup(xt —f(xe), j(xe — xn)> < EM’ (3.22)
n—o0

where M > 0 is a constant such that M > ||x; — x,||? for all £ € (0,1) and # > 1. Let t — 0
in (3.22), we obtain

lim sup lim sup<xt — f ), jlxe — xn)> <0. (3.23)

t—0 n—00

On the other hand, we have

(f@)-a.jxn—a)={f(q) - -9)-{f) n— %))
+ (f(q — %)) - (f(q — %2, j (% — %¢))
+{f (@) = %0, (% — %)) = {f (%) — %0, jo6n — )

+{f (%) = e, jo6n — 5))
= (f((/Z) = q,j(n = q) = j(xn _xt)> + (xt —q,j(%n _xt)>
+{f(q) = f (0e), joen — x0)) + (f (%) = %2, (% — %))
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It follows that

limsuplf (q) - q,j(xs — q)) < limsup(f(q) — q,j(x, — q) — j(x, — %,))

+ [l — gl lim sup [lx, — x| + e[l — g | lim sup [|xc, — x|
n— 00 n—oo

+ lim sup{f (%) — %4, (% — %))

n—00

Noticing that j is norm-to-norm uniformly continuous on a bounded subset of C, it follows

from (3.23) and lim,_, g %; = g that
limsup(f(q) - ¢,j(x, — q)) = lim sup lim sup{f (q) — q,j(x — q)) < 0.
n—00 t—0 n—00

Hence (3.19) holds.
Step 5. Finally, we show that x,, — g as n — oo.

From (3.2), we have

%41 — Q||2 = <xn+1 —= G j(Xns1 — 61))
= {(an(f ®n) = q) + bu(xn — @) + (1 = @y — by)(Stu — 9),j(Xn1 — q))
= an(f (%n) = (@), (tns1 — @)) + buloen — 4, j (i1 — 7))
+ (L= an = b)(Stu — 4,j(%ne1 — @) + anlf (@) = 4,j(%ni1 — 7))
< ana||l%n = glllixXns1 = qll + bullxn — qllllxp1 — 4|l
+ (L= an —b)[ISty — qll %1 — gl + anlf (@) — 4,j(ni1 — 7))
< anetllxy = gllI%n1 = gll + bullxn = gl 1%041 = gl
+ (L= an = b))% = qll1%ne1 — qll + anlf (@) = @, j(ni1 — )

= (1 —ay(1- Ol)) %2 = gl 1% —qll + ﬂn(f(q) = qj (%1 — 61))

1-a,1-a) .

= +(||xn - 61||2 + ||xn+l - Q||2) + ﬂn<f(61) - q’](xn+1 - q))
1-a,01-a) 1 .

< + o, —qll* + 5 I = ql* + anlf (@) — @, j%ns1 — )

which implies

)Z(f (@) - 4,jxni1 —9) .

”xn+1_q”2§ (1_ﬂn(1_a))”xn_q”2+ﬂn(1_a 1w

It follows from Lemma 2.3, (3.19) and condition (C1) that {x,} converges strongly to q.
This completes the proof. g

Example 3.2 Let X =R and C = [0,1]. Define the mappings S,f : C — C and A;, A3, A3 :
C — X as follows:

S(x) = g, fx)= ;—C +3, Ailx) = x, As(x) =2x and Asz(x) = 3x.
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1
51
Ay is relaxed (%,1)—Cocoercive and 1-Lipschitzian, A, is relaxed (i,2)-cocoercive and

Then it is obvious that S is nonexpansive, f is contractive with a constant o =

2-Lipschitzian and As is relaxed (%,3)—Cocoercive and 3-Lipschitzian. In this case, we
have Q = F(S) N F(G) = {0}. In the terms of Theorem 3.1, we choose the parameters A,
A2, A3. Then the sequence {x,} generated by (3.1) converges to g = 0 € €2, which solves the
following variational inequality:

(¢-/@.jqa-p)<0, Vpeq.
Let A3 = 0 in Theorem 3.1, we obtain the following result.

Corollary 3.3 Let X be a uniformly convex and 2-uniformly smooth Banach space with
the 2-uniformly smooth constant K, let C be a nonempty closed convex subset of X and Q¢
a sunny nonexpansive retraction from X onto C. Let the mappings A; : C — X be relaxed
d;;é’z Joralli=1,2. Let f be a contrac-
tive mapping with the constant o € (0,1) and let S : C — C be a nonexpansive mapping
such that F = F(S) N Qy # ), where Q2 is the set of solutions of problem (1.4). For a given

x1 € C, let {x,} and {y,} be the sequences generated by

(¢, d;)-cocoercive and L;-Lipschitzian with 0 < A; <

Yn = Qc(xn — AaAaxy),
Xn+l = ar(f(xn) + bnxn + (1 —ay — bn)SQC(yn - )\lAlyn); n=> 1;

where {a,} and {b,} are two sequences in (0,1) such that
(C1) limyoca,=0andy - a, = o0;
(C2) 0<liminf,, b, <limsup,_, . b, <1.
Then {x,} converges strongly to q € F, which solves the following variational inequality:

(g-f@,jlq-p) <0, YfeMcpeF.

Remark 3.4 (i) Since L? for all p > 2 is uniformly convex and 2-uniformly smooth, we see
that Theorem 3.1 is applicable to L? for all p > 2.

(ii) The problem of finding solutions for a finite number of variational inequalities can
use the same idea of a new general system of variational inequalities in Banach spaces.
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Abstract

We present the strong convergence theorems for the viscosity iter-
ative scheme for finding a common element of the solution set of the
system of general variational inequalities for two arbitrary nonlinear
mappings and the fixed point set of a nonexpansive mapping in real 2-
uniformly smooth and uniformly convex Banach spaces. Furthermore,
we apply our main result with the problem of approximating a zero
point of accretive operators and a fixed point of strictly pseudocontrac-
tive mappings in Banach spaces. The main results presented in this
paper improve and extend some results in the literature.

Keywords: Strong convergence; General variational inequality; Zero point;
Nonexpansive mapping
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1 Introduction

Let X be a real Banach space and X™ be its dual space. Let C' be a subset
of X and let T be a self-mapping of C. We use F(T') to denote the set of fixed
points of T. Let U = {x € X : ||z|| = 1} be a unit sphere of X. X is said to
be uniformly convez if for each e € (0, 2], there exists a constant § > 0 such
that for any x,y € U,

|z — y|| > € implies ||$T+y|| <1-6.

The norm on X is said to be Gateauzr differentiable if the limit

ety ]
t—0 t

(1.1)

exists for each x,y € U and in this case X is said to be smooth. X is said
to have a uniformly Frechet differentiable norm if the limit (1.1) is attained
uniformly for x,y € U and in this case X is said to be uniformly smooth. We
define a function p : [0, 00) — [0, 00), called the modulus of smoothness of X,
as follows:

1
p(r) =sup{S(llz +yll +llo —yl) = 1: 2,y € X, 2 =1, llyll = 7}.

It is known that X is uniformly smooth if and only if lim,_,o p(7)/7 = 0. Let
q be a fixed real number with 1 < ¢ < 2. Then a Banach space X is said to be
q-uniformly smooth if there exists a constant ¢ > 0 such that p(7) < e7? for all
7> 0. For ¢ > 1, the generalized duality mapping J, : X — 2% is defined by

Jo(@) ={f € X" (&, f) = =% |Ifll = ll=]|"""}, Vo€ X

In particular, if ¢ = 2, the mapping J5 is called the normalized duality map-
ping (or duality mapping), and usually we write Jo = J. If X is a Hilbert
space, then J = I. Further, we have the following properties of the generalized
duality mapping J,:

(1) J,(z) = ||z||92J2(2) for all z € X with z # 0.

(2) J,(tx) =t J,(z) for all x € X and t € [0, 00).

(3) Jy(—x) = —Jy(x) for all x € X.

It is known that if X is smooth, then .J is a single-valued function, which
is denoted by j. Recall that the duality mapping j is said to be weakly se-
quentially continuous if for each {z,} C X with z, — x weakly, we have
Jj(x,) — j(x) weakly-x. We know that if X admits a weakly sequentially
continuous duality mapping, then X is smooth. Recall that a mapping f :
C — C is a contraction on C, if there exists a constant a € (0,1) such that
| f(x) = fy)] < al|lz—yl|, Vz,y € C. We use Il¢ to denote the collection of
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all contractions on C'. This is I = {f|f : C' — C a contraction}. A mapping
T :C — Cis said to be nonexpansive, if ||T'(z) —T(y)|| < ||z —vyl|, Vz,y € C.
Let A: C' — X be a nonlinear mapping. Then A is called

(i) L-Lipschitz continuous (or Lipschitzian) if there exists a constant L > 0
such that
[Az — Ayl < Lllz —yll, Vo,yeC;

(ii) accretive if there exists j(z — y) € J(x — y) such that
<AJ,‘ - Ay,j(l’ - y)) > 07 Vl’,y € O;

(iii) a- inverse strongly accretive if there exist j(z —y) € J(x —y) and a > 0
such that
(Az — Ay, j(x —y)) = ol Az — Ay|?, Va,y € C;

(iv) relazed (c,d)- cocoercive if there exist j(z —y) € J(xr — y) and two
constants ¢, d > 0 such that
(Ar = Ay, j(x —y)) = (=) Ax — Ay[|* + d||lz — y|?, Y,y €C.

Let C' be a nonempty closed convex subset of a real Hilbert space H. Recall
that the classical variational inequality is to find x* € C such that

(Az*,x —2*) >0, Vo eC,

where A : C' — H is a nonlinear mapping. Variational inequality theory has
emerged as an important tool in studying a wide class of obstacle, unilateral,
free, moving, equilibrium problems arising in several branches of pure and ap-
plied sciences in a unified and general framework. The variational inequality
problem has been extensively studied in the literature (see [1, 2, 3]).

In 2006, Aoyama et al. [4] first considered the following generalized varia-
tional inequality problem in Banach spaces. Let A : C' — X be an accretive
operator. Find a point * € C such that

(Az*, j(z — x%)) >0, VzeC. (1.2)

The set of solutions of problem (1.2) denoted by S(C, A). The problem (1.2)
is very interesting as it is connected with the fixed point problem for nonlinear
mapping and the problem of finding a zero point of an accretive operator in
Banach spaces (see [4]). For the problem of finding a zero point of a nonlinear
mapping (see [5, 6, 7]).

In 2010, Yao et al. [8] introduced the following system of general variational
inequalities in Banach spaces. For given two operators A;, Ay : C' — X, they
considered the problem of finding (z*,y*) € C' x C such that

* * ok g — %)) >

(Agz* +y* —a*, j(x —y*)) > 0, VxeC,
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which is called the system of general variational inequalities in a real Banach
space. Recently, Katchang and Kumam [9] introduced the following system
of general variational inequalities in Banach spaces. For given two operators
Ay, Ay : C' — X, they considered the problem of finding (z*,y*) € C' x C such
that

{ (MAWY +a2* =y j(z—2%)) >0, Vzel, (1.4)

(Ao Agz* +y* — 2, j(x —y*)) >0, Vx e C,

which is called the system of general variational inequalities in a real Banach
space. The problem of finding solutions of (1.4) by using iterative methods
has been studied by many others (see [10, 11, 12, 13]).

In this paper, motivated and inspired by the idea of Yao et al. [8] and
Katchang and Kumam [9], we introduce a new iterative method for finding a
common element of the set of solutions of the system of general variational
inequalities in Banach spaces for two arbitrary nonlinear mappings and the
set of fixed points of a nonexpansive mapping in real 2- uniformly smooth
and uniformly convex Banach spaces. We prove the strong convergence of the
proposed iterative algorithm without the condition of weakly sequentially con-
tinuous duality mapping. Our result improves and extends the recent results
of Yao et al. [8] and Katchang and Kumam [9].

2 Preliminaries

In this section, we recall the well-known results and give some useful lem-
mas that are used in the next section.

Lemma 2.1. (see [14]). Let X be a g-uniformly smooth Banach space with
1<q<2 Then

2+ yl|* < llzl|* + gy, Jo(x)) + 2| Ky|*
for all z,y € X, where K is the q-uniformly smooth constant of X.
Lemma 2.2. (see [15]). In a Banach space X, the following inequality holds:
lz + yll* < ll=l* + 2{y, j(x +y)), Yo,y € X,
where j(x +y) € J(x +y).

Lemma 2.3. (see [16]). Assume that {a,} is a sequence of nonnegative real
numbers such that
Ap41 S (1 - ’Yn)an + 5717 n Z 17
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where {7,} is a sequence in (0,1) and {4, } is a sequence such that
(i) 220:1 Tn = O0;
(ii) Hmsup,,_,s 0n/7m < 0 0r Y7 [0,] < 0.

Then lim,, ., a,, = 0.

Let C' be a nonempty closed convex subset of a smooth Banach space X
and let D be a nonempty subset of C. A mapping @ : C' — D is said to be
sunny if

Q(Qx +t(z — Qu)) = Qx,
whenever Qz + t(z — Qz) € C for x € C and t > 0. A mapping Q : C — D
is called a retraction if Qx = z for all x € D. Furthermore, () is a sunny
nonexpansive retraction from C' onto D if () is a retraction from C' onto D,
which is also sunny and nonexpansive. A subset D of C' is called a sunny
nonexpansive retraction of C' if there exists a sunny nonexpansive retraction
from C' onto D.

It is well known that if X is a Hilbert space, then a sunny nonexpansive
retraction ()¢ is coincident with the metric projection from X onto C.

Lemma 2.4. (see [17]). Let C be a closed convex subset of a smooth Banach
space X. Let D be a nonempty subset of C' and @) : C' — D be a retraction.
Then the following are equivalent:

(a) @ is sunny and nonexpansive.

(b) @z — QulP < (z — 1, 7(Q — Qu)) Var,y € C.

() (x— Qu,j(y— Qx)) <0, Vo € C,y € D.

Lemma 2.5. (see [18]). If X is strictly convex and uniformly smooth and
if T': C'— C is a nonexpansive mapping having a nonempty fixed point set
F(T), then the set F'(T) is a sunny nonexpansive retraction of C.

Lemma 2.6. (see [19]). Let {z,} and {y,} be bounded sequences in a Ba-
nach space X and let {b,} be a sequence in [0,1] with 0 < liminf, ,, b, <
limsup,,_,. b, < 1. Suppose that x,1 = (1—b,)y,+byx, for all integersn > 1
and lim sup,,_, o (|Yn+1 — Ynll = [|Tnt1 — n]|) < 0. Then, lim, o0 ||yn — zn|| = 0.

Lemma 2.7. (see [20]). Let C be a closed convex subset of a strictly convex
Banach space X. Let Ty and T, be two nonexpansive mappings from C' into

itself with F(Ty) (N F(Ty) # 0. Define a mapping S by
Sz =Tz + (1 - N1z, VreCl,
where X is a constant in (0,1). Then S is nonexpansive and F'(S) = F(T1) () F(T3).

Lemma 2.8. (see [21]). Let X be a real smooth and uniformly convex Banach
space and let r > 0. Then there exists a strictly increasing, continuous and
convex function g : [0,2r] — R such that g(0) = 0 and g(||z —y||) < ||z||* —
2(x,j(y)) + lyll* for all x,y € B,.
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Lemma 2.9. (see [16]). Let X be a uniformly smooth Banach space, C' be a
closed convex subset of X, T : C — C' be a nonexpansive mapping with F(T) #
0 and let f € M. Then the sequence {x;} defined by x, = tf(x;) + (1 — t)Txy
converges strongly to a point in F(T) as t — 0. If we define a mapping
Q : llec — F(T) by Q(f) = limyyox, Vf € Ilg, then Q(f) solves the

following variational inequality:

(I =NR), 1 Q) —p)) <0, Vfelle, pe F(T).
Next, we prove a lemma which is very useful for our consideration.

Lemma 2.10. Let C' be a nonempty closed convex subset of a real Banach space
X and let A\i, \y > 0 and Ay, Ay : C — X be two mappings. Let G : C — C be
defined by

G(z) = QolQc(x — A Asx) — MA1Qc(x — N Asz)], Vo € C.
If I — M\ Ay and I — My Ay are nonexpansive mappings, then G is nonexpansive.

Proof. For any x,y € C, we have

1G(z) = G| = 1Qc|@c(z — AdsAsz) — MA1Qc(x — A2 Arz)]
— QclQc(y — A2A2y) — MA1Qc(y — A2 Azy)]||
< [[Qc(z — AAaw) — MAIQc(z — AaAsx)
— (Qc(y — AaAzy) — MAIQc(y — A2 Azy)||
= [[(1 = AA)Qc(I — AgAs)z — (I — MAN)Qc(I — AAq)y|
< [lz =yl

This show that GG is a nonexpansive mapping. O

Lemma 2.11. (see [9]). Let C be a nonempty closed convex subset of a real
smooth Banach space X. Let Q¢ be the sunny nonexpansive retraction from
X onto C. Let A1, Ay : C — X be two possibly nonlinear mappings. For
given z*,y* € C, (z*,y*) is a solution of problem (1.4) if and only if z* =
Qo(y" — MAry") where y* = Qo(z™ — Ao Asz™).

Remark 2.1. From Lemma 2.11, we note that
7" = QclQc(r™ — AAsx™) — M AL1Qc (2" — A Axx™)],

which implies that z* is a fixed point of the mapping G, which defined as in
Lemma 2.10.
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3 Main results

We are now in a position to state and prove our main result.

Theorem 3.1. Let X be a uniformly convex and 2-uniformly smooth Banach
space with the 2-uniformly smooth constant K, let C' be a nonempty closed
convex subset of X and Q¢ be a sunny nonexpansive retraction from X onto
C. Let A1, Ay : C — X be two mappings. Let [ be a contractive mapping with
the constant o € (0,1) and let S : C — C be a nonexpansive mapping such
that Q = F(S)NF(G) # 0, where G is the mapping defined as in Lemma
2.10. For a given x1 € C, let {z,} and {y,} be the sequences generated by

Yn = QC(In - )\2A2In>7
Tpt1 = anf(-rn> + bnxn + CnSQC(yn - /\lAlyn)a n Z 17

where {a,}, {b,} and {c,} are three sequences in (0,1) such that

(i) ap+b,+c, =1, Yn>1;

(i) limy, oo ap =0 and Y 7| a, = 00;

(iii) 0 < liminf, o b, < limsup,,_,. b, < 1.
If I—\1 Ay, I—X\y Ay are nonexpansive and lim,, o [|A1y,—A1y*|| = lim,, o || Aoz, —
Asz*|| = 0 for all z* € Q and y* = Qc(a* — AoAgx™). Then {z,} converges
strongly to q € 0, which solves the following variational inequality:

(q—f(@),jlg—p)) <0, Vfele, peq.

Proof. Step 1. We show that {z,} is bounded.
Let z* € Q and t,, = Qc(yn — M A1y,). It follows from Lemma 2.11 that

= QolQc(x" — A Asx™) — MA1Qc(x™ — Ay Agx™)).
Put y* = Qc(z* — A2 Asz*), then z* = Qo (y* — M A1y*) and
Tpi1 = anf(Tn) + bp2pn + ¢ Sty,.
Since I — N\;A; (i = 1,2) and Q¢ are nonexpansive. Therefore

[tn — 2" = [|Qc(yn — MA1Yn) — Qo (v — MAy™) || < lyn — ¥l
= |Qc(zn — Ao Asry,) — Qo (™ — Ao Asx™)|| < ||z — 27| (3.1)

and ||St, — z*|| < ||t, — 2*||. It follows that

lanf(2n) + butn + ¢ St, — 27|

| f(2n) = 2" + ballzn — 27| 4 cnlltn — 27|

anll f(7n) — 2| + (1 = an)||zn — 27|

anc||zn — x| + anl[f(27) — 27| + (1 = an)||lzn — 27|
an|| f (%) — 2% + (1 — an(1 — a)) ||z, — 27]|.

[Zns1 — ]|

VANVANVAN
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By induction, we have

201 — 27| < max

[ f(z") — =] ‘
T llz =271}

Therefore, {z,} is bounded. Hence {y,}, {t.}, {Aiyn}, {Asx,}, {St.} and
{f(z,)} are also bounded.

Step 2. We show that lim,, o ||2n11 — z,|] = 0.
By nonexpansiveness of Q¢ and I — A\ A; (i = 1,2), we have

[tnr1 — toll = [[Qo(Ynr1 — MALYns1) — Qo (yn — AMA1yy) ||
< Nns1 = Unll = Qe (Tngr — A2 Asni1) — Qo(Tn — Ao Aoy, ||
< ltni1 = 2l (32)
Let w,, = Z£=ba?n 'y N. Then Tpi1 = by + (1 — by)w, for all n € N and

1-by,

Tp+2 — bn—&-lxn—f—l Tp+1 — bnxn

Wp41 — Wy = 1— bn+1 - 1— bn
_ anJrlf(anLl) + Cn+15tn+1 N anf<xn) + CnStn
1— bn+1 1— bn
anp Qp,
= —Jrl(f(xn-i-l) - Stn-ﬁ-l) + (Stn - f(xn)) + Stn-ﬁ-l — St
1— bn+1 1-— bn
(3.3)
By (3.2), (3.3) and nonexpansiveness of S, we have
Ant1 n
[wnir = wnll = l[2nt1 = 2l < =M f(#n41) = Stasall + 1S5t = f(xn)]-
1-— bn+1 1 - bn
By this together with the conditions (ii) and (iii), we obtain that
lim sup ||wp41 — Wy — [|[Tne1 — 20| < 0.
n—oo
Hence, by Lemma 2.6, we get ||z, — w,|| — 0 as n — oco. Consequently,
lim ||z,41 — 2] = lim (1 = b,)||w, — ,|| = 0. (3.4)
n—oo n—oo

Step 3. We show that lim,, , ||Sx, — x| = 0.
Since

Tpt+l — Tp = an(f(xn) - xn) + Cn(‘Stn - xn)7
it follows from (3.4) and the conditions (i)-(iii) that

ISt — 2] — 0
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as n — 00.(3.5)Let r = sup,,> 1 {||zn — 2|, [|yn — ¥*||, [|[tn — 2*||}. By Lemma
2.4 (b) and Lemma 2.8, we obtain

Itn — 2| = |Qc(yn — MA1yn) — Qo(y™ — M Ay
S <yn - AlAlyn - (y* - )\lAly*)7j(tn - [E*)>
= (W — Y J(tn — 27)) — M{Aryn — Ary™, j(tn — 27))
1 * * * *
< Sllyn -y 12+ It, — 2*1” — g(lyn — y* — (t, — 27)])]
+ M (A" — Ay, §(tn — 7)),

which implies

It — 21 < llym — ¥*1* = g(llyn — v = (tn — 29)||)
+ 22X (A1y* — Ay, J(t, — %))
<Mlyn = y*1* = g(llyn — v = (tn — 2%)||)
+ 22X | Ay — Avyal| |1t — 2*|. (3.6)

Similarly, we have

1yn — y* I = |Qc (20 — Ao Aszy) — Qo(x* — Ao Asz™)|?
<A(xp, — AgAsxy, — (" — XN A2™), (Y — ¥7))
= (Tn — 2", j(Yn — ¥")) — Aa(A2Tn — A22™, j(Yn — ¥"))
1 * * * *
< §[||$n — 2P+ llyn — 1P = 9(lzn — 2 = (0 — y)|)]

+ )\2<A2x* — AQZEn,j(yn - y*)>7

which implies

g = oI <l — 21 = g(llzn — 2" = (g0 — y)II)
+ 200 (Aox™ — Aoy, j(yn — Y))
<|lzn —2*|1? = gllzn — 2" = (yu —y)I)
+ 20| Asz™ — Aswy |||y — v7 . (3.7)
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From (3.6), (3.7) and the convexity of ||.||?, we have

|21 — 2 < anll (@) = 2*|° + ballzn — 2*|° + ¢y [tn — 27|12

< apl| f(zn) — 17*”2 + bl zn — 5E*||2
+ cnlllyn — v I = g(llyn — y* — (tn — 27)|))
+2M Ay — Avyalll[tn — 7]

< anl| f(2n) — x*||2 + bol|Tn — I*HQ
+cnlllzn — 2*|* = g([lzn — 2" = (yn — y)II)
+ 22| A2z” — Aol lyn — y*I| — 9(llyn — v* — (£ — 27)])
+ 20| Avy” — Avynl|||[tn — 27|]

= an| f(2n) = 2*|* + (1 = ap) |2, — 2|2
+ 2c, M| Ay — Awyalllltn — 2% + 2¢p A0 | Az™ — Ay [|[yn — y7||
—cng(lyn —y* = (ta — 29)) — cng(llzn — 2" = (yu — "))

which implies

ng([[yn —y" = (tn — 2)|) + cag(llzn — 2" = (yo — y)I)
< ap f(an) = 2P + 2 — 27 |* — [|2pa — 2"

+ 2ca A1 [|Ary" — Avynl[[Itn — 27| 4+ 2cp 0] Aoz™ — Aoy |[lyn — ¥
< apll f(2n) = 2|+ ln = Zopa [ (|20 — 2* [ + [[2000 — 27|

+ 2ep M| Ay — Avyalllltn — 27| + 2cp Aol Agz™ — Agzyl||lyn — v

By the conditions (ii)-(iii), (3.4) and lim,, 0 || A1yn — A1y*]| = limy,— 00 || Aoy, —
Ayx*|| = 0, we obtain

Tim gy, — 3" — (b —2)) =0 and lim g(|la, — 2 — (g, — 9)) = 0.
It follows from the properties of g that
Jim lyn —y* = (ta —27)[| = 0 and lim [l — 2" — (yn —y7)[| = 0.

Hence

[ = tall < llzn —yn — (@ =y )|+ lyn — tn — (¥ —27)[| = 0 as n — oc.
(3.8)

By (3.5) and (3.8), we have

152y — || < [|Sxy — St + (| St — 24|
< |lwn — tol| + [|Stn — xn]] = 0 as n — oo. (3.9)
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Define a mapping W : C' — C as
Wz =nSx+ (1—-n)Gzx, Yz eC,

where 7 is a constant in (0, 1). Then, it follows from Lemma 2.7 that F(W) =
F(G) F(S) and W is nonexpansive. From (3.8) and (3.9), we have

|20 — Wan|| = |lzn — (nSzn + (1 — 1)Gry)||
= lIn(zn = Szn) + (1 = n)(zn — G|
<nllzn — Szall + (1 —n)llan — Gy ||
= ||z, — Sxn|| + (1 —n)|lxn —tn]| >0 asn — oco.  (3.10)

Step 4. We claim that

limsup(f(q) — ¢,4(x, —q)) <0, (3.11)

n—o0

where ¢ = lim;_,o x; with z; being the fixed point of the contraction
z—tf(z)+ (1 —t)Wa.
From Lemma 2.9, we have ¢ € F(W) = F(G)( F(S) = Q and
(I =f)g,jlg—p)) <0, Vfellg, peQ.
Since zy = tf(x;) + (1 — t)Way, we have

[z = @nll = (1t (1) + (1 = )Wy — ]
= [T =)Wy — wn) + t(f (1) — x)|-

It follows from (3.10) and Lemma 2.2 that

oy — 2l = (1 = )W — ) + 1) — 2

(1= P, — 2l + 26F(22) — 7, 1 — 20))

(1= (W = Wan|| + [Wan — 2al)* + 26(f (21) — 20, j (20 — T0))

= (1= *(|Way = Wan|* + 2[Wa, = Wan[[|Way — zall + [Wan — 2]?)
+2t(f(xy) — mg, (20 — T0)) + 2(xs — Ty, (2 — )

< (=2t + )l — zall* + (1= 1) Qll2e — 2 Wan — 20l + W — 20|
+ 2t (f(20) — 20, (20 — 20)) + 2|20 — 2]

= (L4 ) Jwe — @nll* + fult) + 26(f (we) — 21, j(2e — 20)), (3.12)

where f,,(t) = (1 —=6)?(2|lz; — zn|| + Wz, — 20| [W ez, — 2] = 0 as n — oo.
It follows from (3.12) that

<
<

(e — fl2e), j(1 — T00)) < %||$t—$n||2+fn2—(tt>. (3.13)
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Let n — oo in (3.13), we obtain that

limsup(z; — f(24), (2 — 2n)) < S M, (3.14)

t

n—o0 2

where M > 0 is a constant such that M > ||x; — z,]|* for all ¢t € (0,1) and
n > 1. Let t — 0 in (3.14), we obtain

lim sup lim sup(x; — f(a), j(z: — x,,)) < 0. (3.15)

t—0 n—00

On the other hand, we have

(fl@) —aq,§(xn —q)) = (f(@) = ¢, (xn — q)) — {f(q@) — ¢, §(2n — 2))

It follows that

limsup(f(q) — ¢, (zn — q))

n—oo
< limsup(f(q) — ¢,5(xn — q) = j(n — 2)) + ||z — g|[limsup ||z, — 2
n—oo n—oo

+ aflze — gl limsup [z, — @] + limsup(f(z:) — @, j(zn — 21)).

n—oo n—oo

Noticing that j is norm-to-norm uniformly continuous on a bounded subset of
C, it follows from (3.15) and lim;_,o x; = ¢ that

limsup(f(q) — ¢, j(z, — q)) = limsuplimsup(f(q) — ¢, j(zn —q)) < 0.

n— 00 t—0 n—o00

Hence (3.11) holds.
Step 5. Finally, we show that z, — ¢ as n — oo.
From (3.1), we have

|Znt1 — C]Hz = (Tnt1 = ¢, J(Tns1 — q))

= <an(f<mn) - Q) + bn(xn - Q) + Cn(Stn - Q)7j($n+1 - Q)>

= a,(f(2n) = £(0):J(ns1 — @) + bnlTn — ¢, j(Tns1 — @)
+ Cn<Stn - th(xn-&-l - Q)> + an<f(Q) - Q>j($n+l - Q)>
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< apallzn, — gl — all + ballzn — qlll| 7041 — 4|
+ el St = gll[[nir = all + an(f (@) = ¢ J (201 — q))
< ano|lzy = qll|znr1 = all + ballzn — qll[[zni1 — 4l
+ eallzn — glllznir — all + anlf(q) — ¢, 5 (Tn1 — q))
= (1 —an(1 — a))llzn — glllznsr — all + an(f(@) — ¢, (Tns1 — @)

)

< 27O gl 4 s — al) + 0 (@) — 4.5 — )
1- )

(1-«

- 2
an(l —« 1 )

< Ll O g 4 Ll — al + (@) — .3 — 1),

which implies

2(f(q) —q,J(xn41 — ¢
s~ < (1= a1 — ) — a + (1 — @) 2L =S 20D
It follows from Lemma 2.3, (3.11) and the condition (ii) that {z,} converges
strongly to ¢q. This completes the proof. O

The following examples show that there are mappings A; and Ay which
satisfy those conditions in Theorem 3.1.

Let X be a uniformly convex and 2-uniformly smooth Banach space with
the 2-uniformly smooth constant K, let C' be a nonempty closed convex subset
of X. Let A, Ay : C — X be aj—inverse strongly accretive and as—inverse
strongly accretive, respectively. If 0 < A\ < & and 0 < Ay < £%, then we
have

(1) I — A\ A; and I — A\ Ay are nonexpansive and

(2) || A1yn — A1y*|| = 0 and ||Asz, — Asz™|| — 0 as n — oo for all z* € )
and y* = Qc(z* — M\ Asx™) where {x,} and {y,} are two sequences defined as
in Theorem 3.1.

Proof. (1) For any x,y € C, it follows from Lemma 2.1 that

(T = XAz = (I = Ayl = llz —y = M(Aiz — Ayy)|?
<o —yll* = 2\ (Aiz — Ary, (@ — ) + 20 K2 Ay — Ayy)?
<o =yl = 2\ [|Arz — Ayyl® + 20 K?[| Ay — Ayy)?

= ||z — y|I* + 20 (M K? — oy)|| A1 — Ayl

It clear that if 0 < A\; < 2%, then I — A\{ A; is nonexpansive. Similarly, we can
show that I — Ay A, is nonexpansive.
(2) Let {z,} and {y,} be the sequences defined as in Theorem 3.1. From
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Lemma 2.1, nonexpansiveness of S, Q¢ and the convexity of ||.||?, we obtain

|Znt1 — I*HQ < an| f(zn) — x*HQ + bpll2n — x*||2 + cnlltn — x*HQ
< @l f(@n) = @17 + ballzn — 2" + calllyn — ¥ = M(Arya — A1y")|I?]
< an| f(zn) — x*”Q + by @y — $*||2
+ calllyn — Z/*H2 — 22 (A1yn — Ay, J(yn — ¥7)) + 2K2)\12’|A1yn - Aly*Hz]
< g f(20) = 2*|° + bp|l2n — 27|
+ealllyn =y 1P = 2Man | Ay — Ary|P + 202 K2 (| Avyn — Avy’|?]
= ag || f(xa) = 2" | + ballwn — 2*[1° + callyn — y*|1?
— 2, M (o — M K?)|| Avyn — Ay |2
< an| f(zn) — x*||2 + b ||lzn — x*||2 + callzn — 2" — Ao(Agwy — A2$*>”2
— 2,1 (o — M K?) || Avyn — Ay |]?
< ap || f(7n) — "E*”Q + bnl|Tn — I*HQ
+ cnlllzn — 2||* — 22 (Agzy, — Aga™j(x, — 2*)) + 202 K?|| Ag,, — Agz™||?]
— 2c, M\ (a1 — M K?)|| Ay, — At
< an| f(zn) — I*HQ + bpl|2, — x*”Q
+ cnll|zn — 2||* — 2X000|| Aoz, — Asx™||? 4+ 2022 K2 Ag,, — Agz*||?]
— 2, M (o — M K?)|| Avyn — Ay |2
= a|| f(xn) = 2*|* + (1 = an)llan — 27| = 2c,h1 (1 = ME?) | Avyn — Ary™||?
— 2c, A0 (g — Mo K?) || Aoz, — Agz™*|?.

Which implies that

2Cn)\1(CY1 — )\1K2)]|A1yn — Aly*HQ -+ 2Cn)\2(a2 — )\QKQ)”AQ.Z'n — Ag.%*”z
< an|| f(zn) — x*Hz + |20 — 1‘*”2 — |zps1 — IL‘*H2

< anllf(@n) = 2"1* + llzn — @psa [ (20 — 27| + |lns1 — 27)-

From (i)-(iii) and (3.4), we obtain || A1y, — A1y*|| = 0 and || Asx,, — Asx™|| — 0
as n — oo. [

Let X be a uniformly convex and 2-uniformly smooth Banach space with
the 2-uniformly smooth constant K, let C' be a nonempty closed convex subset
of X. Let A; : C — X be relaxed (cf, d})-cocoercive and L;—Lipschitzian and
Ay : C — X be relaxed (¢}, d5)-cocoercive and Lo—Lipschitzian. If 0 < A\; <
% and 0 < Ay < %, then we have

(1) I — M\ A; and T — Mg Ay are nonexpansive and

(2) [JA1yn — A1y*]| — 0 and || Az, — Agz™|| — 0 as n — oo for all 2* € Q

and y* = Qc(z* — Ao Asz™) where {x,} and {y,} are two sequences defined as
in Theorem 3.1.
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Proof. (1) For any x,y € C, it follows from Lemma 2.1 that

(I = XAz — (I = Ayl = llz —y — M(diz — Ayy)|?

<o =yl = 20 (Ayz — Ayy, (@ — y)) + 20 °K2|| Ay — Ayy]?

<z —yl* = 2x (=i Az — Avyl]® + di |z — yII?) + 20 ° K2 (| Ay — Ayy)?
<z = yl* + 2006 Ln? = Mdy + K2\ Ly?) [z — g1,

Kk 2
It clear that if 0 < A\ < 4 ;IL; , then I — A\{A; is nonexpansive. Similarly,
K2I,

we can show that I — A3 Ay is nonexpansive.
(2) Let {z,} and {y,} be the sequences defined as in Theorem 3.1. From
Lemma 2.1, nonexpansiveness of S, Q¢ and the convexity of ||.||?, we obtain

[Zn11 — 2|7 < anl| f(n) = 2|7 + ballzy — 2*|° + col[tn — 2|12
< anllf(wn) = 2|+ bullzn = 2N + calllyn — ¥ = M (Aryn — Ary")||’]
< ap| fwn) = 2| + bl — 2"
+ calllyn — ?J*H2 — 22\ ( Ay — Ay 5 (Y — y7)) + 2K2>\12HA1% - Aly*HQ]
< an| f(zn) — I*HQ + bpl|x, — :E*||2
+eallyn =y IP = 20 (=il Ay — Ay |1 + dillyn — y7|7)
+ 202K Ay, — Aryt]
< ap| fwn) = 2| + bl — 2"
Iyt

A n_A * (|2
L2 [ Ary 1yl

+ enlllyn — y7II* + 20l Avyn — Avy"|* —

+ 207 K2 || Avyn — A7)
= ap|| f(xn) — 2> + bullzn — 2> + callyn — v |17

d; X
—2e (1 = = MK A — Ay
1
< anllf(@n) = 2|2 + bullon — 277 + eallrn — 2 = Aa(Agzn — Agz)|?
d; X
= 2e (1 = ¢ = MK [ A — Ay
1

< anlf () — 2| + bullen — 2°?
+ cuf|lzn — x*||2 — 22X (Ao, — Agx™, j(x, — x¥))
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+ 2K Agar, — Aga®||?]
d*
— 2cn/\1(L_12 - CT - >\1K2)||A1yn - Aly*l|2
1

< ap | f(zn) = 2| + bulln — 2*?
+ Cnlllzn — 2%))? = 2X0a(=C|| Asn — Aga®||? + d5|| 20 — 2*|?)
+ 2K202 | Az, — Agz™|)?]
d*
- QCn/\l(L—l

2
1

< | f(zn) = 2| + bulln — 27

—c = )\1K2)||A13/n - A1y*||2

2o
L2

+ eul||ln — gz:*||2 + 2905 || Ag,, — AQI'*HQ — ||Asz,, — Aga:*||2

+ 2K\ Agzy, — Agz*||?]

_ zcm(g—l’f? = MK Ay, — Ay
= | f(2a) — 2|2 + (1 = a)[lza — 2|

_ QC"M% = MK Ay, — Ay

d
— QCn/\Q(L—22 — C; — )\2K2)||A2l’n — AQI*HQ.
2

Which implies that

d*
2en (775 = € = MEP) [ Ay — Avy|”

1

dx
+ 2Cn)\2(L—22 - C; - )\2K2)||A2xn — A2$*||2

2

< anllf(@n) = 2|° + ll2n — 27 = l|2nss — 27|
n
)

< anllf(@n) = 27I* + 2w — asa (e — 27 + lngs — 27))-

From (i)-(iii) and (3.4), we obtain || A1y, — A1y*|| — 0 and || Asx,, — Asz™|| — 0
as n — oo. [l

By using the same proof as in Example 3 and Example 3, we obtain the
following example.

Let X be a uniformly convex and 2-uniformly smooth Banach space with
the 2-uniformly smooth constant K, let C' be a nonempty closed convex subset
of X. Let A; : C — X be a—inverse strongly accretive and Ay : C' — X be
relaxed (c, d)-cocoercive and L—Lipschitzian. If 0 < A\; < 3% and 0 < Ay <
%, then we have

(1) I — A\ Ay and I — A\ Ay are nonexpansive and

(2) [JA1yn — A1y*]| — 0 and || Az, — Asz™|| — 0 as n — oo for all z* € Q
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and y* = Qc(x* — My Asx*) where {x,} and {y,} are two sequences defined as
in Theorem 3.1.

Let A be the class of all a;-inverse-strongly accretive mappings from C' into
X, B the class of all as-inverse-strongly accretive mappings from C into X, C
the class of all L-Lipschitzian and relaxed (c, d)-cocoercive mappings from C
into X and D the class of all L;-Lipschitzian and relaxed (c*, d*)-cocoercive
mappings from C' into X.

From Theorem 3.1, Example 3 - 3, we obtain the following result.

Corollary 3.2. Let X be a uniformly convexr and 2-uniformly smooth Banach
space with the 2-uniformly smooth constant K, let C' be a nonempty closed
convex subset of X and Q¢ a sunny nonexpansive retraction from X onto C.
Let Ay, Ay : C'— X be two mappings satisfying one of the following conditions:

(1) A16A7A26870<)\1<% and0<)\2<%;

(2) A €C, Ay €D, 0< A < G and 0.< Ny < T 18

(3) A1 €A A €C,0< A <% and 0 < Ay < e
Let f be a contractive mapping with the constant o € (0,1) and S : C' — C
a nonexpansive mapping such that Q = F(S)F(G) # 0, where G is the
mapping defined as in Lemma 2.10. For a given x1 € C, let {z,} and {y,} be

the sequences generated by

{ Yn = QC’(xn - )\2A2$n)>

Tp+1 = anf($n) + bnxn + CnSQC(yn - )\1A1yn)a n 2 17

where {a,},{b,} and {c,} are three sequences in (0,1). If the conditions (i)-
(#ii) in Theorem 3.1 hold, then {z,} converges strongly to q € S0, which solves
the following variational inequality:

(q— f(q),i(g—p)) <0, Vfellg, pe.

Remark 3.1. Corollary 3.2 improves and extends Theorem 3.4 of Katchang
and Kumam [9] and Theorem 3.1 of Yao et al. [8].

4 Applications

Using Corollary 3.2, we prove two theorems in a real Banach space.

In a real Banach space X, we recall that an accretive operator T is m-
accretive if R(I 4+ rT) = X for all » > 0, where I is the identity operator. The
set of zero of T is denoted by T-1(0), that T-'(0) = {z € D(T) : 0 € T(2)}.
We denote the resolvent of T by JI' = (I + rT)~! for each r > 0, it is known
that if T" is m-accretive then JT : X — X is nonexpansive and F(J!) = T-1(0)
for each r > 0.
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Theorem 4.1. Let X be a uniformly convex and 2-uniformly smooth Banach
space with the 2-uniformly smooth constant K. Let A : X — X be an (-
B

inverse-strongly accretive mapping with 0 < A < 5 and f be a contraction of

E into itself with the constant o € (0,1). Let T be an m-accretive mapping
such that @ = A=1(0)T~(0) # 0. For a given v, € C, let {z,} and {y,} be

the sequences generated by

Yn = Tp — NAx,,,
Tpt+1 = anf<wn) + bnxn + CnJ;(yn - )‘Ayn)v n Z 1a

where {a,},{b,} and {c,} are three sequences in (0,1). If the conditions (i)-
(i11) in Theorem 3.1 hold, then {x,} converges strongly to q € Q, which solves
the following variational inequality:

(¢—f(q),j(@g—p)) <0, Vfellg, pe

Proof. We have A = A\ = \,A = A = Ay, C = X and Qx = I. In this
case, we have A71(0) = F(I — MA) = S(X, A) (see [4]). We want to show
that S(X,A) = F(G). Indeed, it is sufficient to show that FI(G) C S(X, A).
Let z* € F(G), then x* = y* — AMAy*, where y* = x* — MAz*. We claim that
x* = y*. Assume that z* # y*, therefore Ax* # 0, Ay* # 0 and Ay* — Ax* # 0.
It follows from Example 3(1) that

l2* = y|I* = |1 = AA)y™ — (I — AA)"]*
< ly* = 2"|* + 20K = B)|Ay” — Az™|* < |ly* — 2”|?,

which hence leads to a contradiction. This show that x* = y*, therefore
" € F(I — MA) = S(X,A) = A71(0). Thus, by Corollary 3.2, we obtain the
desired result. O]

Let C be a nonempty closed convex subset of X. A mapping T : C' — C k-
strictly pseudocontractive (see [22]) if for each z,y € C, there exists a constant
k>0 and j(z,y) € J(x,y) such that

(Te =Ty, jx —y)) < llz—ylI* =kl = T)z — (I = T)ylI*. (4.1)
It is clear that (4.1) is equivalent to the following:
(I =T)x— (I =Ty j(x—y)) > kIl(I = T)x — (I - T)y*.

Hence, if T is k-strictly pseudocontractive then (I — T') is k-inverse-strongly
accretive mapping.

Theorem 4.2. Let X be a uniformly convex and 2-uniformly smooth Banach
space with the 2-uniformly smooth constant K, let C' be a nonempty closed



Strong convergence of a viscosity iterative algorithm 2607

convex subset and a sunny nonexpansive retraction of X. Let the mappings
T, Ty : C'— C be ky-strictly pseudocontractive and ko-strictly pseudocontrac-
tive with 0 < A\ < % and 0 < Ay < %, respectively. Let f be a contractive
mapping with the constant o € (0,1) and S : C' — C' a nonexpansive mapping
such that Q@ = F(S) N F(G) # 0, where G is the mapping defined as in Lemma

2.10. For a given x, € C, let {x,} and {y,} be the sequences generated by

Yn = (1 = A)zp + Ao Tox,,
Lp41 = anf(xn) + by, + CnS((l - /\1>yn + Allen>7 n>1,

where {an}, {b,} and {c,} are three sequences in (0,1). If the conditions (i)-
(#i) in Theorem 3.1 hold, then {z,} converges strongly to q € S0, which solves
the following variational inequality:

(q— f(q),j(g—p)) <0, Vfellg, pe.

Proof. Let Ay =1—"T) and Ay = I —T5, then A; is ki-strictly pseudocontrac-
tive and Aj is ko-strictly pseudocontractive, respectively. Since C' is a sunny
nonexpansive retraction of X, there exists a sunny nonexpansive retraction Q¢
such that

Qc(lfn - )\2A2$n) =T, — A Aoz, = (1 - )\2)!% + XTI,
and

QC(yn - )\1Alyn) =UYn — >\1A1yn = (1 - Al)yn + Allen-
Therefore, the conclusion follows immediately from Corollary 3.2. n
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1. Introduction

The study of variational inequality problem is an interesting and fascinating
branch of applicable mathematics with a wide range of applications industry,
finance, economics, optimization, social, regional, pure and applied science. A
closely related subject of current interest is the problem of finding common
elements in the fixed point set of nonlinear operators and in the solution set
of monotone variational inequalities; see [1, 2, 3] and the references therein.
For the past years, many existence results and iterative algorithms for various
variational inequality and variational inclusion problems have been extended
and generalized in various directions using and innovative techniques; see [4, 5,
6, 7] and the references therein.

Motivated by recent work going in this direction. In this paper, we introduce
a new iterative scheme for finding a common element of the set of solutions of
a new general system of variational inequalities, the set of solutions of a mixed
equilibrium problem and the set of fixed points of a nonexpansive mapping in a
real Hilbert space. Furthermore, we prove that the sequence generated by the
iterative scheme converges strongly to a common element of those three sets
under some control conditions. The results presented in this paper extend and
improve the corresponding results of [6] and many others.

2. Preliminaries

Let H be a real Hilbert space with inner product (.,.) and let C' be a nonempty
closed convex subset of H. A mapping 7' : C' — C' is said to be nonexpansive
mapping if ||Tx — Ty|| < ||z — y|| for all z,y € C. The fixed point set of T’
is denoted by F(T') := {x € C : Tz = x}. A mapping A : C — H is called
a-inverse-strongly monotone, if there exists a positive real number a > 0 such
that
(Ax — Ay, x —3y) > a||Az — Ay|)?, Vz,y e C.

Let A; : C' — H for all i = 1,2,3 be three mappings, then we consider the new
general system of variational inequalities of finding (z*,y*,2*) € C x C x C
such that

MAY* +2* —y*x—a*) >0, Veedl,

(NAgz* +y* — 2"z —y*) >0, Vel (2.1)

(AsAsx™ + 2" —a*,x — 2*) >0, Yz e’

where \; > 0 for all : = 1, 2, 3.
Some special cases:
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(I) If A3 = 0 and z* = z*, then problem (2.1) reduces to find (z*,y*) € C'xC
such that

{ <)‘1A1y +x —y,$—$>20, VxEC, (22)

(AoAgx* +y* —a*,x —y*) >0, Vrel,

which is called a general system of variational inequalities and defined by the
authors in [6]. The set of solutions of problem (2.2) denoted by GVI(C, Ay, As).

(IT) If A3 =0, 2* = 2* and A; = Ay := A, then problem (2.2) reduces to
find (2*,y*) € C x C such that

* * * _ * >
{(AlAy +a* -y —a*) >0, Vredl, (2.3)

(AoAz* +y* —x*,x —y*) >0, VxeC,

which is called the new system of variational inequalities, and defined by the
author in [7].

(IT1) If A3 = Ay =0, 2" = y* = 2%, A} := A and A\; = 1, then problem
(2.3) reduces to find z* € C such that

(Az*,x —2*) >0, VzeC,

which is called the variational inequality problem.

Let ¢ : C — R|J{+o0} be a proper extended real-valued function and F
be a bifunction from C' x C' to R, where R is the set of real numbers. In 2008,
Ceng and Yao [8], introduced the mized equilibrium problem which is to find
x € C such that

F(x,y) +¢(y) > ¢(x), VyeC. (2.4)

The set of solution of problem (2.4) is denoted by M EP(F, ). It is easy to see
that x is a solution of problem (2.4) implies that € domp = {x € C' | p(x) <
+oo}. If ¢ =0, then the problem (2.4) reduces to find = € C such that

which is called the equilibrium problem. The set of solution of (2.5) is denoted
by EP(F'). In recent yeas, the equilibrium problem has been intensively studied
by many authors (see, for example [1, 9, 10] and references therein).

We recall the well-known results and give some useful lemmas that are used
in the next section.

For every point z € H, there exists a unique nearest point in C', denoted
by Pcx, such that ||z — Poz| < [z —y|, Yy € C. Pc is called the metric
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projection of H onto C. It is well known that P is a nonexpansive mapping of
H onto C' and satisfies

(x —y, Pox — Poy) > ||Pcx — Poyl|?, Va,y € H. (2.6)
Obviously, this immediately implies that
Iz —y) = (Pez — Pey)|” < llz — yl* — ||Pex — Peyl®, Yo,y e H. (2.7)
Recall that, Pox is characterized by the following properties: Pox € C,
(¢ — Pox,y — Pox) <0 and [lz — y||* > ||& — Pez|® + ||Pox —y*,  (2.8)

forall x € H and y € C.
For solving the mixed equilibrium problem, let us assume the following
assumptions for the bifunction F, ¢ and the set C:
(Al) F(xz,z) =0 for all x € C;
(A2) F is monotone, i.e. F(x,y)+ F(y,z) <0 for all z,y € C;
(A3) For each y € C, z +— F(z,y) is weakly upper semicontinuous;
(A4) For each x € C, y — F(x,y) is convex;
(A5) For each x € C, y — F(x,y) is lower semicontinuous;
(B1) For each € H and r > 0, there exist a bounded subset D, C C and
Y. € C such that for any z € C'\ D,,

Flo,a) + 9(0a) + ~{ya = 22— 2) < 9(2),

(B2) C is a bounded set.
In the sequel we shall need to use the following lemma.

Lemma 2.1. ([11]) Let C be a nonempty closed convex subset of H. Let F'
be a bifunction from C'x C' to R satistying (A1)-(A5) and let ¢ : C — R|J{+o0}
be a proper lower semicontinuous and convex function. Assume that either (B1)
or (B2) holds. For r > 0 and = € H, define a mapping T, : H — C' as follows.

Tie) = {2 € O3 Fla) 4 ol) + 1y =252 2 (), Ve O

for all x € H. Then the following conclusions hold:
(1) For each x € H, T, (x) # O;

(2) T) is single-valued;

(3) T, is firmly nonexpansive, i.e. for any x,y € H,

T () — TT(Z’J)H2 <(Trx —Try,x —y);

(4) F(T;) = MEP(F, ¢);
(5) MEP(F, ) is closed and convex.
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Lemma 2.2. ([12]) Let H be an inner product space. Then, for all
x,y,z € H and o, 8,7 € [0,1] with o + 5+ v = 1, we have

laz + By +yz)|* = allz|* + Bllyll* +~]12]* — aBlla -yl
—ayflz —2|* = Brlly — 2.

Lemma 2.3. In a real Hilbert space H, there holds the inequality
lz +yl* < [le|® + 2{y, = +y), Va,yeH.

Lemma 2.4. ([13]) Assume {a,} is a sequence of nonnegative real numbers
such that ap+1 < (1 — 7, )an + 6,, where {7, } is a sequence in (0,1) and {6, }
is a sequence such that

(1) 2onz1 Y =o00; (i) imsup, o 0n/ym < 0 or 37774 [6,] < 00,

Then lim,, o a, = 0.

Lemma 2.5. ([14]) Let {z,,} and {y,} be bounded sequences in a Ba-
nach space X and let {b,} be a sequence in [0,1] with 0 < liminf, ,. b, <
limsup,,_,. bn < 1. Suppose x,+1 = (1 — by)yn + bz, for all integers n > 1
and lim sup,, ;oo ([[Yn+1 = Ynl = |[Zn41 — 2 ||) < 0. Then, limp o0 ||y — 2al| = 0.

Lemma 2.6. ([15]) Demi-closedness principle. Assume that T is a non-
expansive self~-mapping of a nonempty closed convex subset C' of a real Hilbert
space H. If T has a fixed point, then I — T is demi-closed: that is, when-
ever {x,} is a sequence in C' converging weakly to some x € C (for short,
x, — x € C), and the sequence {(I —T')x,} converges strongly to some y (for
short, (I — Tz, — vy), it follows that (I — T)x = y. Here I is the identity
operator of H.

Lemma 2.7. ([16]) Let C be a nonempty closed and convex subset of a
real Hilbert space H and A; : C' — H be three possibly nonlinear mappings,
for i =1,2,3. Define a mapping G : C' — C' as follows:

G(CC) = PC [PC (Pc(CC — )\3A3.’E) — )\QAQPc'(CC — )\3A3$C))
— AlAlpc(Pc(x — )\3143.%) — )\2A2P0({L‘ — )\3143.%))], Ve e C.

For given x*,y*, z* € C, (z*,y*, 2*) is a solution of problem (2.1) if and only if
¥ € F(Q), y* = Po(z* — M\yAsz") and z* = Po(x* — AgAszx™).

Throughout this paper, the set of fixed points of the mapping G is denoted
by GVI(C, Al, AQ, Ag)
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3. Main Results

In this section, we prove our strong convergence theorem. The next lemma is
crucial for proving the main theorem.

Lemma 3.1. Let C' be a nonempty closed and convex subset of a real
Hilbert space H and let A; : C — H be «; -inverse-strongly monotone map-
pings, for i = 1,2,3. If \; € (0,2qy], for all i = 1,2,3, then G : C — C'is
nonexpansive , where G is the mapping defined as in Lemma 2.7.

Proof. For all z,y € C, we have

1G(2) = G| = [|1Po[Po(Pe(I — A3A3)z — Ao As Pe(I — A3As)z)

— MALPe(Po(I — M3Az)z — MgAs Po(I — A3As3)z)]
— Po[Po(Po(I — A343)y — Ao AsPo(I — A3A3)y)
— MALPo(Po(I — A3Asz)y — Ao AaPo(I — A3A3)y) |||

< ||Pe (Pc(f — A3Asz)z — Mg A Po(I — )\3A3)x)
— M A1 P (Po(I — A3As)x — MAsPo(I — A\3As)z)
— [Po(Po(I — X343)y — AgAs Po(I — A3A3)y)
— M AP (Po(I — M3A3)y — Mo AsPo(I — A3A3)y) |||

= (I = M A1) Po(I — Mo As)Po(I — A\3A3)x
— (I — MAY)Po(I — MayA2)Po(I — M343)y]. (3.1)

It is well known that if A : C' — H be a-inverse-strongly monotone, then I —\A
is nonexpansive for all A € (0,2a]. By our assumption, we obtain I — \;A; is
nonexpansive for all i = 1,2, 3. It follows that (I — A\ A1)Pco(I — A2A2)Po(I —
A3A3) is nonexpansive. Therefore, from (3.1), we obtain immediately that the
mapping G is nonexpansive. U

Theorem 3.2. Let C be a nonempty closed and convex subset of a real
Hilbert space H. Let F be a function from C x C to R satisfying (Al)-
(A5) and ¢ : C — R|J{+o0} be a proper lower semicontinuous and con-
vex function. Let the mappings A; : C — H be «;-inverse-strongly mono-
tone, for all i = 1,2,3 and T be a nonexpansive self-mapping of C such
that Q = F(T )ﬂGVI(C A1, A2, A3)() MEP(F,¢) # 0. Assume that ei-
ther (B1) or (B2) holds and that v is an arbitrary point in C. Let x1 € C and
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{zn} {yn}, {zn}, {un} be the sequences generated by

F(unay) + (P(y) - (,D(Un) + i<y — Up, Up — xn> >0, Vye C,

Zn = PC(un - )\3A3un)a
Yn = PC(ZTL - )\2A2zn)u
Tng1 = apU + bpxy + (1 — ap — bp)TPo(yn — M A1yn), n>1,

where \; € (0,2q;), for all i = 1,2,3 and {a,}, {b,} are two sequences in [0, 1]
and {r,} C (0,00) satisfying

(C1) limp o0 @, = 0 and Y07 | a, = 00;

(C2) 0 < liminf, 00 by, < limsup,, oo by < 1;

(C3) liminf,, 0o 7 > 0 and limy, o0 |71 — 70| = 0.

Then {z,} converges strongly to T = Pqu and (Z,7,Z) is a solution of
problem (2.1), where §y = Po(Z — A2 A9Z) and Z = Po(T — A3AsT).

Proof. Step 1. We claim that {z,} is bounded.
Let z* € Q and {7,, } be a sequence of mappings defined as in Lemma 2.1. It
follows from Lemma 2.7 that

.’E* = PC [PC (Pc(CC* — )\3A3.’E*) — )\QAgpc(CC* — )\3A3.’E*))
— )\1A1PC (Pc(CC* - )\3A3.’E*) - )\QAgpc(.’E* — )\3A3£C*))] .

Put y* = Po(z* — AaAsz"), 2* = Po(a* — \gAsa®) and ty = Po(yn — MA1ya).
Then z* = Po(y* — A\ A1y™*) and

By nonexpansiveness of I — \; (i = 1,2, 3), we have

It — 2| = |[Pc( — MA)yn — Po(I — A ADy"||
<y —y*|| = 1Pl — A2A2)z, — Po(I — A2 A2)2™||
<lzn — 2| = || Pc(I — A3A3)uy, — Po(I — A3As)z™||
< Nwn — 2| = Ty, 20 — T 2™ || < |2 — 27, (3.2)

which implies that

|zt — 2% = ||anv + bpxn + (1 — ay — by)Tt, — 27|
< apllv — 2% + bpllen — 27| + (1 = an — bn)[[tn — 27|

< apllv = 27| + bpllzn — 27 + (1 = an = bp) |20 — 27
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< max{[jv — 7|, [lz1 — 2"[|}.

Thus, {x,} is bounded. Consequently, the sequences {y,}, {zn}, {tn}, {4A1yn},
{Asz,}, {Asu,} and {T't,} are also bounded.

Step 2. We claim that ||x,41 — zn| — 0 as n — oo.
By nonexpansiveness of Po and I — A\ A; (i = 1,2,3), we have

[tn+1 — tall = 1P (Yn+1 — AtAryn+1) — Po(yn — Atdayn)ll < [Ynt+1 — ynll
= |Po(znt+1 — A2A22n41) — Polzn — A2A2zn)|| < [|2n41 — 2n|
= || Po(unt1 — A3Asup+1) — Po(un — A3Aszuy,)||
< ung1 — unll- (3.3)

On the other hand, from w, = T}, ,x, € domy and u, 1 =T}, Tpi1 € domy,
we have

1
F(un,y) + ¢(y) — p(uy) + T—<y — Up, Uy — Tp) 20, VyeC, (3.4)
and

1
F(un—I—lay)+(p(y)_(p(un—l—l)"i_E(y_un—i—laun—l—l —Tpt1) >0, Vy e C. (3.5)
n

Putting y = up41 in (3.4) and y = u,, in (3.5), we have
1
F(unyunJrl) + Qp(unJrl) - @(un) + _<un+1 — Up, Unp — -Tn> > 07
n
and
1

T'n+1

F(un+1, un) + Sp(un) - Sp(unJrl) + <un — Un+1, Un+1 — xn+1> > 0.

From the monotonicity of F', we obtain that

Up — Tp Up4+1 — Tnt1
<un+1 — Unp, - Z 07

Tn Tn+1
and hence

Tn

<un+1 — U, Uy — Unp41 T Unt+1 — T — (unJrl - xn+1)> > 0.

Tn+1

Then, we have

||un+1 - unH2 < <un+1 — Up, Tptl — Tn + (1 -



ITERATIVE ALGORITHM FOR SOLVING THE NEW SYSTEM... 201

r
< s = 0l Bt = 2l + 1= " s = ] .
Tn+1
and hence
[tuns1 — unll < |[Znt1 — znll + ITn+1 = Toll|Unt1 — Total]- (3.6)
T'n+1
It follows from (3.3) and (3.6) that
tn+1 — tull < |zng1 — zull + Tn+1 = Toll[unt1 — Tosa |- (3.7)
Tn+1

Let zp4+1 = bpxy + (1 — by)w, for all n > 1. Then, we obtain

_ Tp42 — bny1Tn41 Tnt1 — bnTy
Wp+1 — Wp = -

1— byt 1—b,
_ Gnp1v+ (1 —ap+1 — bpg1)Ttngr _apv+ (1 —ay —0b,)Tty,
1— bn+1 1- bn
- JL”T“(U — Ttpi1) + 1a—”b(Ttn — )+ Ttupr — Tto. (3.8)
— Un+1 — Un

By (3.7) and (3.8), we have

an+1

a
[wps1 = wall = l#n1 = @nll € ——5——lv = Tty + ——— Tt — ||
1 —bnt1 1—-0b,
+ [[tn1 = tall = [[#n41 — 0|
an+41 Qp
< ———|v—-Tt Tt, —
ST, 10 Tl 71Tt = ol
1
+ Irn1 = rallluntr — znga |-
Tn+1

This together with (C1)-(C3), we obtain that

lim sup [wns1 — wn| = [2as1 — 2a] < 0.
n—oo

Hence, by Lemma 2.5, we get ||z, — wy,| — 0 as n — oco. Consequently,
nlggo [Tn41 — an|| = nlggo(l = bp)|[wn — an|| = 0. (3.9)

Step 3. We claim that ||Tt,, — t,|| — 0 as n — 0.
Since
Tl — Tp = ap(v — ) + (1 — ap — by) (Tt — x4),
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therefore
ITt, —zn]| = 0 as n — oo. (3.10)

Next, we prove that lim, o ||, — up|| = 0. From Lemma 2.1(3), we have
[un — x*HQ =T, zn — Trnx*HQ < (Tr,on — Ty, 2%, xn — %)
* * 1 * *
= (un — 2%, 2n — 2*) = S{|lup — 2 + [Jzn — ¥ = |20 — ual?}-
2
Hence
g — [P < flan — 2|1 = [Jan — un . (3.11)
From Lemma 2.2, (3.2) and (3.11), we have
*)2 *112 x (2 *12
Jnsr — 212 < anllo — 212 + bullwn — 212 + (1 = an — bo)lltn — 2°]
< apllv - x*HQ + b Ty — x*HQ + (1 = an — by)|lun — x*HQ
< apllv = 2*|? + byl — ¥
+ (1 = ap —by) [Hxn - x*H2 = |lzn — unHQ]
< apllv - x*HQ + [Jon — x*HQ — (1 —an —by)||zy — unH2
It follows that
(1= an = ba)[Jzn — unl® < anllo— 2% + [l2n — 2*|? = |21 — 2
< apllv — 2 + (J2n — 2| + [2ns1 — 2 )| 2nt1 — zal-
From the conditions (C1), (C2) and (3.9), we obtain

lim [z, — un| = 0. (3.12)

n—oo

By (3.10) and (3.12), we have
1Tty — upl| < || Tty — x| + ||zn — un|| — 0, as n — oo. (3.13)

Next, we show that ||Ajy, — A1y*|| — 0, ||A2z, — A22*|| — 0 and || Asu, —
Asz*|| — 0, as n — oo.
From (3.2) and A; is ag-inverse-strongly monotone mapping, we have
st — 212 < anllo — 212 + bullzn — 2717 + (1= a — by tn — 7
= apllv — 2| + b2y — 2"
+ (1= an — bp) | Po(yn — MAryn) — Po(y* — MAry)|)?

< apllv — 2" + bl — 2|
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+ (L= an = b)) (yn — MAryn) — (" = M A
< apllv — 2*|* + by lan — 2*|

+ (1= an = bn) [llyn — y*I* + M (A1 — 201) [ Aryn — Ary*|]
< apllv — &*|* + ||z, — 22
+ (1= ay — bp) MM — 200) || A1y, — Avy™|2 (3.14)

Similarly, since A; are a;-inverse-strongly monotone mappings for ¢ = 2, 3,
Itn — z*|| < ||lyn — v*|| and ||y, — v*|| < ||zn — 2*||, we can show that

|zns1 — 2% < anllo — 2|1 + [lan — 2*|
+ (1 — Ay — bn))\g()\g — QQQ)HAQZTL — AQZ*HQ (315)

and

241 — 2*|* < anllv — 2*|* + ||z — 2*|
+ (1 — Qp — bn))\g()\g — 2043)\|A3un — A3$C*||2. (316)
From (3.14), (3.15) and (3.16), we have
—(1 = an —by) A1 (M1 — QO‘I)HAIZ/n_Aly*”Q < apllv — x*”Q
+ ([|zn — 2| + |21 — 2" [|n+1 — 20l
—(1 = ap — by)Aa(A2 — 2@2)||Agzn—Agz*||2 < apllv— x*H2

+ (|zn — 2| + [|Tn41 — ¥ |n4+1 — 20|
and

—(1 —ayp — by)As(A3 — 2043)|]A3un—A3:L’*H2 < apllv — x*HQ

+ (lzn = 2| + 201 = ¥ Dllznta — 2nll-
This together with (C1), (C2) and (3.9), we obtain that
lim HAlyn_Aly*H = lim ||A2Zn_AQZ*|| = lim ||A3un—A3:c*H =0. (317)
n—o0 n—o0 n—o0

Next, we prove that ||Tt, — t,]| = 0 as n — oco. From (2.6), (3.2) and
nonexpansiveness of I — Ao Ao and I — A\3A3, we get

9 — ¥ 1> = |Pc(2n — A2A22n) — Po(2" — A2 A22™)|?
< (zn — AaAozy) — (2% — NA22™), yn — ¥")

1 * * *
=5 [11(zn — A2A225) — (2" — A2 A22™)* + llym — y*II°
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— (20 = Ao Azzn) — (2" = Ao A2z") = (yn — y")|I’]
< 3 llzn = =12+ llgm — °I?
— 120 = yn) = (" = ¥) = Aa(Aaz — A227)|%]
< %[H%’n =22+ lyn = ¥ = (20 — ) — (2" = y")II?
+ 200 ((2n — yn) — (2" — y"), Aoz — Ag2™) — A%HAgzn — Agz*HQ],
and

lon — 27112 = 1P (tn — AgAgin) — Pola™ — AgAga™)|
< ((up — A3Asuy) — (2" — AgAszx™), 2z, — 2¥)
= 2 [l — Asdgn) — (& — X Asz) | + flen — =
— [[(up, — AgAsuy) — (x* — AgAzx™) — (2, — z*)HQ]
< 5 llun =21 + o — =°J?
— (= 2n) = (& = ) = X3(Azup — Azz™)|?]
< %[Hxn = @2+l = 2P = [l(un — 20) = (2" = 2|2
+ 23 ((up, — 2n) — (" — 2%), Aguy, — Agx™) — A%HAgun — Agx*HQ].
Therefore

lyn = o117 < llzn = 22 = ll(zn = ) = (2" =)

+2X0((2n, — yn) — (2 — y¥), Aoz, — A22™) (3.18)
and
Iz = 2°|1* < |l — 217 = [ (un — 20) — (& = 2%)||?
+ 23 ((up, — 2n) — (x* — 2¥), Agu, — Azx™). (3.19)

From (3.18) and (3.19), we have

[#ni1 — 21> < anllo = 2 + bpllan — 2> + (1 = an = ba)lyn — v
< aglo = 2*|* + ballwg — 22
+ (1= ap = ba) [len — 21 = [|(z0 — yn) — (=" =)
+ 200 ((zn, — yn) — (2* — y¥), Aoz, — Agz*>]

< apllv = 2|* + [lwn — 27|
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— (I =an = bu)[|(2n — yn) — (2" = y*)”2
+ (1= an = bn)2X2[|(2n — yn) — (27 = y") ||| A22n — A227||

and
Jnsr — 22 < anllo — &2 + bl — 22 + (1 — an — by 20 — 2
< anllv — @*|* + by [y, — 2|
+ (1= ap = bp)[llzn — 2|7 = [[(un — 20) — (2" = 2)|I?
+ 203 {(un, — 2n) — (z* — 2%), Agup, — Azz™)]
< anllv — 2*|* + [y — 2"
— (L= an —bp)|[(un — 25) — (2% — Z*)HQ

+ (1 — apn, — bp) 23| (up, — 2n) — (2™ = 2%)|||| Aguy — Azz™||.
Hence

(1= an — bp)||(zn — yn) — (2" — )2
< apllv— 2 + (1 — an — bp)22a | (20 — yn) — (2% — y*)|| | A22n — Azz*||

+ (l[zn — 2| + |zn41 — 2" () |2n+1 — 20l
and

(1 —an —bp)||(un — 2n) — (x* - Z*)HQ
< anllo—a*|* + (1 = an = b2)2X3]|(un — 20) — (2* — 2°)[|[| Azun — Azz*|

+ ([lzn = 27 + [lentr — 2" Dlznsr — 2.
This together with (C1), (C2), (3.9) and (3.17), we obtain

lim |[(zn —yn) = (2" =) = lim [(un —20) = (2" = 27) = 0. (3.20)

n—oo

Therefore

[(un = yn) = (2" =y ) < [[(zn —yn) = " =)
+ || (up, — 2n) — (" = 2%)|| = 0 as n — oco. (3.21)

From Lemma 2.3 and (2.7), it follows that

[(yn — tn) + (@ = y")* = [ (yn — MA1yn) — (v* — M Ary*)
— [Po(yn — MA1yn) — Po(y* — MAS)] + M(Ary, — Aiy®)|?
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< Nyn — MAryn) — (U — MAY") — [Po(yn — MAryn) — Po(y® — MAy)]|?
+ 201 {A1yn — A1y", (Y — t) + (2" — 47))
<y = MAryn) = (" = MA)|? = [[Po(yn — MAiyn) — Pely* — MiAiy®)|?
+ 2A1[[A1yn — A1y ([ [[(yn — ta) + (2" — y") ||
< yn — AMA1yn) — (v = MAY)|)? = 1T Pe(yn — M Aryy)
—TPo(y* — M Ay
+2M1[[Aryn — Ay ([[[(yn — tn) + (27 = y7)||
< (Yn — MAryn) — (¥° — M Ary")
— (Tt — =) [Iltyn — MAryn) — (" = MAw*) || + | Tt, — 2]
+ 2A1[[A1yn — A1y ([[[(yn — ta) + (2" — y7)||
= |lun — Tty + 2" —y" — (un — yn)
= M (A1yn — Ay 1y — AMAyn) — (0 = MAw)| + [T, — 2]
+ 2A | A1y — Ayt (yn — t0) + (27 = y9)||-

This together with (3.13),(3.17) and (3.21), we obtain ||(yn, —t,)+(z*—y*)|| = 0
as n — oo. This together with (3.13) and (3.20), we obtain that

1Ttn — tull < Tty — unll + [[(un — 2n) — (@ = 2%)[| + 1(zn — yn) — (2" = ¥")|
+ [(yn — tn) + (2" —y*)|| = 0, as n — oo. (3.22)

Step4. We claim that limsup,, . (v — T,z, — %) < 0, where T = Pqu.
Indeed, since {t,} and {T't,} are two bounded sequences in C, we can choose
a subsequence {t,,} of {t,,} such that ¢,, = z € C and

limsup(v —Z,Tt, — %) = lim (v — 7, Tt,, — ).
n—00 100
Since limy, o || T, — tn|| = 0, we obtain that T't,, — z as i — oo.

Next, we show that z € Q.

Since t,, — z and ||T't,, —t,|| — 0, we obtain by Lemma 2.6 that z € F(T).

From (3.22) and (3.10), we obtain

It — znll < || Tty — tul| + [| Tt — 0| — 0, as n — oo.

Furthermore, by Lemma 3.1, we have G : C' — C' is nonexpansive. Then, we
have

[tn — G(ta) || = [P (yn — ArA1yn) — G(tn)|
= ”PC [Pc(zn — )\QAQZn) — )\1A1P0(Zn — )\QAQZn)] — G(tn)”
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= || Pe[Po(Pe(un — AsAsun) — Ao AsPo(u, — AsAzuy,))

— M AL Pe(Po(un — AsAstin) — Ao A Po(uy, — AsAsun))] — Gltn)|
= [G(un) = G(tn)|| < [Jun — ta]
< Nlun = 2|l + [[2n — tall,

hence lim,,_, [[t, —G(t,)|| = 0. Again by Lemma 2.6, we have z € GVI(C, Ay,
Ag, A3).

Since t,,, — z and ||x,,—t,|| — 0, we obtain that x,, — z. From |lu,—x,| —
0, we also obtain that u,, — z. By using the same argument as that in the proof
of [11, Theorem 3.1, pp. 1825, we can show that z € MEP(F,y). Therefore
z €.

On the other hand, it follows from (2.8), (3.10) and Tt,, — z as i — o
that

limsup(v — 7, z, — T) = limsup(v — Z,Tt, — T) = lim (v — T, Tt,, — T)
n—oo n—oo 1— 00

=(v-7,z—7) <0. (3.23)

Step 5. We claim that z, — T as n — oo.
Since

|Tnt1 — EHQ = (anv + bpxy + (1 — ap — b)) Tty — T, xpy1 — T)

an(V — T, Tpy1 — T) + bp{xn — T, Tpt1 — T)
+ (1 —ap, —by)(Tt, — T, 241 — T)

—~

_ 1 _ _
< an(0 = B, 201 = 7) + Sbull7n = T + nsr 7

+ 5 (0= an = ba)(tn ~ ZIP + lansr — 7I?)
< anfo ~ %, 2ner B + gballlzn — I + aner — 7?)
4 5 (0= an = b) (7 — I + nsr — 7?)
= anfo = T 71— )+ 5 (1~ an)(lwn — 7P + lanss 7,

which implies that
|E— EHQ < (1—ap)|z, — EHQ +2a, (v — T, xpy1 — T).

This together with (C1) and (3.23), we have by Lemma 2.4 that {z,,} converges
strongly to T. This completes the proof. U
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If o = 0 in Theorem 3.2, then, we obtain the following result.

Corollary 3.3. Let C' be a nonempty closed and convex subset of a
real Hilbert space H and F' be a function from C' x C' to R satisfying (Al)-
(A5). Let the mappings A; : C — H be «;-inverse-strongly monotone, for
all i = 1,2,3 and T be a nonexpansive self-mapping of C' such that ) =
F(TYNGVI(C, A1, A2, A3) Y EP(F) # O. Let v,zy € C and {zp}, {yn}, {zn}
be the sequences generated by

F(umy) + %<y — Un, Up — xn> >0, Vyed,

zn = Po(x, — A3Aszzy,),

Yn = PC(Zn - )\2A2zn)a

Tpt1 = apv + bpzy + (1 — ap — by) T Po(yn — M1 A1yn), n> 1.

If \; € (0,20), for all i = 1,2,3 and the sequences {a,}, {b,} and {r,} are
as in Theorem 3.2, then {x,} converges strongly to T = Pov and (T,7,%) Is a
solution of problem (2.1), where § = Po(Z — My A9Z) and Z = Po(T — A\3A3T).

If A3 =0, =0, F(z,y) =0and r,, =1 for all z,y € C and all n € N in
Theorem 3.2, then z, = x,,. By Theorem 3.2, we obtain the following result.

Corollary 3.4. [6, Theorem 3.1] Let C' be a nonempty closed and convex
subset of a real Hilbert space H. Let the mappings Ay, As : C — H be a1-
inverse-strongly monotone and as-inverse-strongly monotone, respectively. Let
T be a nonexpansive self-mapping of C such that Q = F(T) GV I(C, A1, As) #
(. Assume that v is an arbitrary point in C. Let x; € C' and {z,}, {yn} be
the sequences generated by

{ Yn = PC(xn - )\2A2xn)a
Tpt1 = ap + bpzy + (1 — ap — by) T Po(yn — M1 A1yn), n> 1.

If Ay € (0,2a1), A2 € (0,2c0) and the sequences {a,}, {b,} are as in Theorem
3.2, then {z,} converges strongly to T = Pqu and (Z,7) is a solution of problem
(2.2), where y = Pc(f — )\QAQT).
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