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Abstract

Project Code : MRG5680117

Project Title : Polarizabilities and matrix elements of Ca” and Yb"
Investigator : Dr. Jirakan Nunkaew Chiang Mai University
E-mail Address : jn8h@virginia.edu

Project Period : 2 years

In the first experiment, we observe the microwave transitions of
calcium from the 4snf states to the 4s(n+1)d, 4sng, 4snh, 4sni, and 4snk
states for 18 < n < 23 using delayed field ionization as the state selective
detection technique. The observed intervals between the | >5 states can

be analyzed to extract the Ca" ionic dipole («,) and quadrupole (a,)

polarizabilities using two non-adiabatic core polarization models. Using
these two models we determine the ionic dipole and quadrupole

polarizabilities to be 75.3a; <a, <76.9a; and 206a, <o, <1590a,,

respectively.

In the second experiment, we use selective laser excitation to an
autoionizing state to observe the microwave transitions of Ba from the
6sng Rydberg states to the 6snh, 6sni and 6snk states for 15 < n < 18. We
extract the dipole and quadrupole polarizabilities of Ba® from the
measured Al intervals of the Ba 6snl states of |>5 using a nonadiabatic
core polarization model. The values we determine for the dipole and
quadrupole polarizabilities are o, =124.81(25) a, and «, =2478(50) a,,

respectively.
Keywords: Rydberg atoms, autoionization, indirect spin-orbit coupling,

Stark states, isolated core excitation
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I. EXECUTIVE SUMMARY

In recent years, many Nobel Prizes in Physics have been awarded to physicists in the field
of Atomic, Molecular and Optical Physics (AMO) for their efforts in studying and controlling
the dynamics of atomic systems such as the Bose-Einstein Condensation (BEC) and the
optical frequency comb technique. In 2012, the Nobel Prize in Physics was awarded to Serge
Haroche and David J. Wineland for ground-breaking experimental methods that enable
measuring and manipulation of individual quantum systems. Haroche uses Rydberg atoms
to control and measure the microwave photon in the cavity. While the success of controlling
and manipulating the atomic systems is very exciting, many basic atomic measurements are
still needed to further improve or create new ideas and experimental techniques. We will
focus our interests on the dynamics and the properties of Rydberg atoms. The properties
and interactions of Rydberg atoms have implications in many scientific fields. Rydberg
atoms are candidates for realizing a quantum computer due to their strong interactions with
each other. In interstellar space and in plasmas, atoms are commonly found in Rydberg
states. Therefore, Rydberg atoms properties are important in determining the properties of
plasma and radiation sources for astronomers [1].

In this project, the elements we study are calcium and barium. Due to the difficulty
in optically accessing the high angular momentum Rydberg states of ytterbium, we have
changed the element from ytterbium to barium. We measure the dipole ay and quadrupole
a, polarizabilities of barium ion, Ba™, using the selective photo-excitation to autoionizing
states technique. We also measure the dipole ay and quadrupole o, polarizabilities of calcium
ion, Ca', using delayed field ionization (DFI) technique.

It is possible to extract the dipole a4 and quadrupole ¢, polarizabilities from the intervals
between high ¢ Rydberg states of the atom, states of high enough ¢ that the Rydberg electron
does not penetrate the ionic core [2-5]. We follow the usual convention that n and ¢ are
the principal and orbital angular momentum quantum numbers of the Rydberg electron.
In these non-penetrating states, the energy shifts from the hydrogenic levels arise from
polarization of the core by the field from the Rydberg electron. In Rydberg states of lower
¢, the electron comes closer to the core at the inner turning point of its orbit, and the energy
shift is larger. Thus, measuring the A/ intervals yields the polarizabilities of the ionic core.

An excellent recent summary of core polarization analysis has been given by Lundeen [5].



Objective

1. Measure the energy intervals between the high angular momentum Rydberg states.

2. Use the measured energy intervals between the high angular momentum Rydberg
states to determine the dipole (o) and quadrupole (¢,) polarizabilities of barium ion,

Ba™, and calcium ion, Ca™.

3. Continue the study of the properties and dynamics of Rydberg atoms.

II. THE IONIC DIPOLE AND QUADRUPOLE POLARIZABILITIES OF CAL-
CIUM

A. Experimental Approach

We excite neutral Ca atoms in a thermal beam from the ground state to a Rydberg
state using three laser beams. The Ca beam intersects the laser beams at a 90 degree angle
between two parallel horizontal copper plates separated by 1.2-cm long ceramic standoffs.
The laser beams are focused to 1 mm diameters where they intersect the Ca beam. Ground
state 4s? atoms are excited to the 4s4p, 4s4d, and 4snf states by 422.791 nm, 732.816 nm,
and ~ 850 nm laser pulses, respectively, as shown in Fig. 1. The last laser is tunable over the
range from 847 to 857 nm to excite the 4snf states of 18 < n < 23. A 1-us long microwave
pulse starts 50 ns after the last laser pulse to excite the 4snf state to the 4sng and 4snh
states by the one-photon and two-photon transitions, respectively. The 4snf — 4sni and
4snf — 4snk transitions are the three-photon and four-photon transitions. To drive the
three-photon and four-photon excitations, in addition to a 1-us microwave pulse, we use
a continuous wave (cw) radio frequency (RF) field of frequency between 3.5 and 5 GHz.
The RF and microwave fields are generated by a Hewlett-Packard (HP) 8257D analog signal
generator and 83620A synthesized sweep generator, respectively. The microwave sweep
generator produces a cw output from 10 MHz to 20 GHz, which is formed into pulses by
a General Microwave DM862D switch. The required microwave frequencies to drive the
transitions range from 23 to 75 GHz. Therefore, several frequency multipliers; a Narda
DBS 2640X220 active doubler, a Narda DBS 4060X410 active quadrupler and a Pacific
Millimeter V2WO0 passive doubler are used to multiply the synthesizer frequency to the



desired frequency. The power output of the frequency multipliers ranges from 5 mW to 100
mW. The microwaves propagate through WR28 waveguide and a waveguide feedthrough to
a WR28 horn inside the vacuum chamber. The cw RF propagates through a coaxial cable
and a SMA feedthrough to the coaxial-to-waveguide adapter and is launched by a WR187
horn inside the chamber.

To discriminate between the 4snf states of £ > 3 and the 4snf state, we take advantage
of the ¢ dependence of the lifetimes of Ca Rydberg atoms. The higher angular momentum
Rydberg states live longer than the lower ones [6], and we use the technique of delayed field
ionization (DFI). The lifetime of the 4s25f state has been measured to be ~2.5(5) us [6],
and using the n3 scaling law we find that the lifetimes of the 4sn f states of 18 < n < 23 fall
in the range from 0.9 to 1.9 us. Therefore, if we wait long enough after the microwave pulse,
more than 5us, atoms in the 4snf states decay significantly compared to atoms in the 4snf
states of ¢ > 3. Typically, we apply a negative high voltage pulse to the bottom plate 8 to
10 ps after the microwave pulse to field ionize the surviving Rydberg atoms and drive the
resulting electrons to the microchannel plate (MCP) detector. The timing of the experiment
is shown in Fig. 2. Using this approach a large increase in the number of detected atoms is
observed when the microwave field drives the transition from the 4snf state at resonance.
To detect transitions from the 4snf states to the 4s(n + 1)d states we take advantage of
the fact that the lifetimes of the 4s(n + 1)d states are an order of magnitude shorter than
those of the 4snf states. A delay of only 2 us is used, and a decrease in signal is observed
at resonance. Frequency shifts due to the stray electric field are minimized by observing
the microwave resonance with different bias voltages on the plates and fitting the resonant
frequencies to a quadratic bias voltage dependence. We then set the bias voltage to the
minimum frequency shift. In this experiment, the frequency shift due to the stray electric
field is in all cases less than 1 MHz. The experiment is repeated every 50 ms, and the signals

are averaged over many laser shots.



B. Experimental Observations
1.  One Photon 4snf — 4sng Intervals

For the one-photon transition, 4snf — 4sng, the microwave power was attenuated until
the power broadening was eliminated. We observed one resonant peak for each n. Since the
optical excitation is to the 4snf ' Fy state we assign the states we observe in the microwave
transitions as Gy states. A typical resonance is shown in Fig. 3, and the observed intervals
are given in Table I. We did not attempt to eliminate the Earth’s magnetic field. In
the Earth’s magnetic field one might expect linewidths of ~ 2 — 3 MHz. However, the
typical linewidth of a 'F3 —! G4 resonance is ~1 MHz, the transform limited linewidth of
a 1 ps microwave pulse. The narrow linewidths occur because the one photon transitions
are between the two singlet states, which have the same Landé g; factors. Hence, all the

Am; = 0 transitions occur at the same frequency, resulting in the narrow lines [7].

TABLE I. nf — ng observed frequencies

n Observed Frequency (MHz)

18 72 891.40(1)
19 62 222.19(1)
20 53 150.84(2)
21 46 053.01(25)
22 40 147.03(1)
23 35 462.65(5)

2. Two Photon 4snf — 4snh Intervals

For the two-photon transition, 4snf — 4snh, we observed two resonant peaks for each
n suggesting that the higher ¢ states, £ > 5, are not singlets and triplets. The states are
described by coupling the total angular momentum of the core j_; to the orbital angular

momentum ¢ of the Rydberg electron to form K. Explicitly,

—

K=j.+7. (1)
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The splitting between the two K levels is due to the indirect spin orbit splitting [8, 9].
We ignore the spin of the Rydberg electron. For the Ca 4snf states, j. = 1/2, therefore
K = (£1/2. Hence, for each ¢ state we observe two transitions from the 4snf to the
4snl states, corresponding to K = ¢+ 1/2 and K = ¢ — 1/2. To correct for the small
AC Stark shift due to the microwave field, 1.8 MHz at the highest power we used, the
resonances were observed at different microwave powers, and the resonance frequencies were
extrapolated linearly to zero microwave power to obtain unshifted 4snf — 4snh intervals.
Typical resonances for the two-photon transitions are shown in Fig. 4, and the observed
intervals are given in Table II. The typical linewidth of the resonances is 2-3 MHz. The
linewidth is due to the Earth’s magnetic field since the 4snh states are no longer singlets

and triplets.

TABLE II. nf — nh observed intervals and nh K splittings

n K =9/2 (MHz) K =11/2 (MHz) K splitting (MHz)
18 95 296.36(6) 95 312.53(9) 16.17(11)

19 81 300.49(6) 81 314.41(3) 13.92(7)

20 69 905.16(18) 69 917.62(13) 12.46(22)

21 60 536.07(10) 60 546.51(9) 10.44(13)

22 52 761.38(96) 52 770.12(12) 8.74(97)

23 46 261.65(18) 46 269.19(5) 7.54(19)

3. Three Photon 4snf — 4sni Intervals

For the three-photon transitions, a single microwave field does not have enough power
to drive the three photon 4snf — 4sni transitions. Therefore, the three-photon transitions
were driven by using two microwave photons and one RF photon. The RF frequency of 3.5-5
GHz frequency was fixed near the 4snh — 4sni frequency, and the microwave frequency was
swept. We verified that the observed resonances were indeed the 4snf — 4sn: transitions
by varying the RF frequency within +£5 MHz and sweeping the microwave frequency for
each RF frequency. For each RF frequency, the 4snf — 4sni interval, given by twice the

microwave frequency plus the RF frequency, was approximately constant, with only a slight



difference in frequency due to the AC Stark shift. A typical three-photon resonance is shown
in Fig. 6. In Fig. 6, we do not see the K splitting, because the K splitting in the 4sni states
is not resolvable. Since most of the K splitting is from the dipole term, we can estimate the
K splitting in the 4sni states using the adiabatic dipole term of Eqgs. (37) and (38a) and
ignoring the quadrupole term of Eq. (38b) of Ref. [8]. Explicitly,

B 2(20 + 1)A4p<7“*6)ng<4s|r|4p>2

K, = : 2
‘ 9(W4s - W4p)3 ( )

where Ay, is the fine structure splitting of the Ca™ 4p state, (r~%),, is the expectation value
of 1/7% of the nf Rydberg state, (4s|r|4p) is the Ca™ radial matrix element, Wy, is the energy
of the Ca™ 4s state and Wy, is the energy of the Ca™ 4p state. Since we have measured
the K splitting in the 4snh states, we can use Eq. (2) to estimate the K splitting in the
4snq states. The ratio between the K splitting in the 4sn: and 4snh states is the ratio
(r=0),:/(r=%),» = 0.2. Therefore, the K splitting in the 4sni states varies from 4 to 2 MHz
as n increases from 18 to 23, which is not resolvable in our experiment due to the Earth’s
magnetic field.

In the three-photon transitions there are both RF and microwave power shifts. To elim-
inate the AC Stark shift from both fields, we observed the resonances at different RF and
microwave powers. For a given microwave power, we observed resonances at different RF
powers. We extrapolated the observed frequencies linearly to obtain the resonance frequency
at zero RF power for a given microwave power. We repeated the same procedure for several
microwave powers. The resonance frequencies at zero RF power of several microwave powers
were extrapolated to obtain the resonance frequencies at zero RF and microwave powers.
Typical power extrapolations are shown in Fig. 5, a typical resonance is shown in Fig. 6,

and the unshifted intervals are given in Table III.

4.  Four Photon 4snf — 4snk Intervals

The 4snf — 4snk four-photon transitions were excited using two microwave photons
and two RF photons. The RF frequency was fixed near the 4snh — 4snk resonance while
the microwave frequency was swept in the vicinity of the 4snf — 4snh resonance. Similar
to the three-photon excitation, we verified that the observed resonances were the 4snf —

4snk transitions by varying the RF frequency within 45 MHz and sweeping the microwave



TABLE III. nf — ni observed intervals

n Observed Frequency (MHz)

18 102 558.95(54)
19 87 488.41(40)
20 75 223.05(15)
21 65 141.32(78)
22 56 766.61(69)
23 49 771.37(26)

frequency for each RF frequency. For each RF frequency, the 4snf — 4snk interval was
given by twice the microwave frequency plus twice the RF frequency and was approximately
constant. We eliminated the AC Stark shifts using the process discussed for the three-
photon transitions. Typical signals for four-photon transitions are shown in Fig. 7, and the
unshifted intervals are given in Table IV. Using Eq. (2), we estimate the K splitting in the
4snk states to be on the order of 1 MHz for 18 < n < 20, which cannot be resolved in this

experiment.

TABLE IV. nf — nk observed intervals

n Observed Frequency (MHz)

18 105 362.90(52)
19 89 879.91(7)
20 77 278.61(15)

5. One Photon 4snf — 4s(n + 1)d Intervals

We have observed the 4snf — 4s(n+1)d transitions for n =19, 20, and 21. In this region
the 4snd ' Dy Rydberg states are perturbed by their interaction with the 3d* ' Dy state [10].
The perturbation results in shorter lifetimes and rapidly changing quantum defects. For
19 < n < 21 the 4snd ' D, states lie close enough in energy to the 4snf 'F3 states that
the 4snf — 4s(n + 1)d frequencies are within the microwave frequency range that we can

generate. A typical resonance is shown in Fig. 8, and the observed intervals are presented
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in Table V.

TABLE V. nf — (n + 1)d observed intervals

n Observed Frequency (MHz)

19 84 377.04(4)
20 49 143.13(12)
21 24 542.36(4)

C. Discussion

We use the adiabatic expansion method [11] and direct calculation method to determine
the values of a4 and o, [13]. Tables XIII and XIV show values of oy and «, from this work
and other experimental and theoretical work. The uncertainties for our values represent the
uncertainties from the fits of the data to the two models. The values labelled . are from the
adiabatic expansion method and the values are from the direct calculation method. There
are three experimental results for ay to which we can compare ours. The value of ref. [6] is
based on the measurement of the 4snf — 4sng intervals. The analysis of these data relied
heavily on a more complex theoretical model, which was probably inadequate to represent
the 4sng states. The value of a4 given in ref. [14] was obtained by assuming that the 4snh
quantum defects arise solely from the dipole polarizability and applying the adiabatic core
polarization model. Since the quadrupole polarizability is small and the nonadiabatic effect
on the dipole polarization cancels its effect to some extent, this approach yields a value for
ag close to the value we obtained by analyzing our data using the adiabatic approximation
method of Mayer and Mayer [3]. In ref. [15] lifetime measurements of the Ca™ 4p; states
were used to obtain the oscillator strengths of the 4s — 4p; transitions, taking into account
the small branching ratios for decay to the 3d; states. The oscillator strengths of the 4s —4p;
transitions were then used to calculate the value of ay. The resulting value of a4 is too small
due to the neglect of higher lying Ca™ Np states and the dipole polarizability of Ca®™™, but
when this omission is taken into account it is consistent with our value for «yy. The theoretical
values for ay from refs. [12] and [16] fall within our experimental bounds given in Eq. (3),

while the theoretical value of ref. [17] is clearly outside the bounds.
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To our knowledge, our values of «, are the first experimental values. As shown in Table
XIV, our value obtained by the adiabatic expansion method is twice the theoretical value,
and the value obtained by the direct calculation method is a factor of four smaller than
the theoretical value. Since a large fraction, two thirds, of the quadrupole polarizability is
due to the Ca't 3d states, an alternative check of the calculated quadrupole polarizability
is the lifetime of the Cat 3d state, which decays by quadrupole radiation. The measured
lifetime is in good agreement with the calculated lifetime, supporting the validity of the
calculation of «,. It is worth noting that if the value of k; for the 4snh states is reduced
to 98.35% of the current k4 value we would obtain oy = 75.3(1) a3 and «, = 878(15) ag, in
excellent agreement with the recent theoretical values. In view of the sensitivity of the direct
calculation approach to the numerical calculations of k; and the large discrepancy between
our value of o, and the theoretical values, we view the direct calculation values of Tables
XIIT and XIV as upper and lower bounds for o,y and «, respectively. As a consequence, we

report bounds for ag and «a,. Explicitly,
75.3 ay < ag < 76.9 ap (3)

and

206 aj < a, < 1590 a;. (4)

Our ability to specify agq and «y is limited by our confidence in the core polarization
models. Two experimental avenues can be explored to minimize this problem. The first is
measuring higher ¢ intervals in which the non adiabatic corrections are not as large, as done
by Lundeen et al. for other atoms [5]. The second is high resolution laser spectroscopy of the
Ca 4snd ' Dy states. Absolute measurements of their energies, good to 10 MHz, would locate
the 4snd levels relative to the hydrogenic nf levels. The microwave measurements reported
here could then be used to locate the Ca 4snf levels relative to the H nf levels, and the
present data could then be analyzed in terms of the displacements of the energies from the
hydrogenic levels, instead of the differences in the displacements. The 4snh states could be
dropped from the analysis, substantially reducing the uncertainty due to the non-adiabatic
corrections.

Making measurements involving higher ¢ states should minimize the non adiabatic effects,
allowing a better determination of the polarizabilities. However, it is not obvious that

the discrepancy between the theoretical and experimental values will disappear. Intervals



TABLE VI. The Ca™ 4s dipole polarizability (ag) obtained from this work and other theoretical

and experimental results.

ag (aj)
This workge 75.32(4)
This workg,. 76.9(3)
Expt. [6] 87(2)
Expt. [14] 75.3(4)
Expt. [15] 70.89(15)
Theory [12] 76.1(5)
Theory [17] 73.0(1.5)
Theory [16] 75.49

TABLE VIIL The Ca™ 4s quadrupole polarizability (o) obtained from this work and other theo-

retical results.

aq (ag)
This workee 1590(40)
This workg, 206(9)
Theory [12] 871(4)
Theory [16] 875.1

between the high ¢ Ba 6snf levels have been measured, but the value of o, extracted by
the direct calculation method is a factor of two smaller than the theoretical value, a similar
discrepancy to that reported here for Ca [19]. Determining the source of these discrepancies is
a worthy theoretical challenge. The output and the detailed data analysis of the experiment

can be found at [18].

D. Conclusion

We have measured A/{ intervals of Ca 4snf — 4snf, 18 <n < 23 and 4 < /¢ < 7 using a
microwave and RF resonance approach. We have used these measurements to place bounds

on the Ca™ dipole and quadrupole polarizabilities. The Ca™ 4s dipole and quadrupole

10



polarizabilities are 75.3 a3 < oy < 76.9 a3 and 206 af < «, < 1590 aj. The Ca™ 4s
dipole polarizability agrees well with recent theoretical values. However, we are not able
to place tight bounds on the Ca® 4s quadrupole polarizability due to uncertainties in the
core polarization analyses. We hope this work will motivate theoretical work to reexamine
the problem of core polarization analysis and, more generally, the source of the discrepancy

between the experimental and theoretical values of a.
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FIG. 1. Laser excitation scheme of the experiment.
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FIG. 2. The timing sequence of the experiment.
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FIG. 3. One-photon 4522 f — 4522g resonance. The linewidth of the resonance is ~1 MHz which

is a transform limited linewidth of a 1 us microwave pulse.
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FIG. 4. Two-photon 4s18f — 4s18h resonances. The two resonances are separated by the K

splitting of the 4s18h state.
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FIG. 5. The extrapolation of the three photon 4s19f — 4s19i transition to zero RF and microwave
powers. (a) At relative microwave power 0.63, resonances were observed at different RF powers
to obtain the resonance frequency at zero RF power. (b) Several zero RF power resonances were

obtained at different microwave powers and extrapolated to zero RF and microwave powers.
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FIG. 6. Three-photon 4519f — 4s19:¢ resonance at relative microwave power 0.63 and at relative
RF power 1.0. The K splitting of the 4519¢ states cannot be resolved due to the Earth’s magnetic

field broadening.
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FIG. 7. Four-photon 4519 f — 4519k resonance at 0.178 relative microwave power and 0.794 relative

RF power. The K splitting of the 4519k states is on the order of 1 MHz and cannot be resolved.
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FIG. 8. One-photon 4s19f — 4520d resonance.
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III. THE IONIC DIPOLE AND QUADRUPOLE POLARIZABILITIES OF BAR-
IUM

A. The microwave A/ transitions and their detection using isolated core excitation

(ICE)

The A¢ microwave transitions we observe are shown in Fig. 9. The 6sng G, state is
populated by laser excitation, and we drive the microwave transitions to the 6snf¢ states
of 5 < ¢ < 7. The higher /¢ states are not singlets and triplets. Rather, the total angular
momentum of the core j; is coupled to the orbital angular momentum 7 of the Rydberg
electron to form K. Explicitly,

— —

K=7j.+1¢. (5)

We ignore the spin of the Rydberg electron. Since j. = 1/2, K = ¢ 4+ 1/2, and for each ¢
state we observe two transitions, as shown in Fig. 9. The splitting between the two K levels

is due to the indirect spin orbit splitting [8, 9].

6snh 6sni 6snk
K=15/2
K=13/2 ﬁ
Ke11/2 K=11/2
§/ K=9/2

6sng G,

FIG. 9. The Ba 6sn/, £ > 4 states showing the microwave transitions and the K splittings due to

the indirect spin orbit coupling of the 6snf, £ > 5, Rydberg states.

Detection of the Ba 6snl — 6snf’ transitions (¢ > ¢) is based on the difference in
the optical cross sections of the 6snf — 6p;jonl and 6snl’ — 6p;onl’ ICE transitions.
Previously, Cooke and Gallagher used the substantial difference in the wavelengths of the
Sr 5snd — bpnd and bsnf — 5pnf ICE transitions to detect the Sr 5s(n + 2)d — bsnf
microwave transitions [25]. In ICE of the 6snf state, the 6s electron absorbs the photon

while the nf electron is a spectator. The 6s — 6p;/» transition of the inner electron is
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essentially the Bat 65 — 6p; /2 transition, with an oscillator strength of 1/3. The oscillator
strength is spread over the spectral width of the 6p;/onf state, which is determined by its

autoionization rate. In this case, the peak optical cross section is given by

A2A

— 6
ST (6)
where A is the Einstein A coefficient for the Ba®™ 6s — 6p; /2 transition, I',, is the au-

Opeak =

toionization rate of the 6p;/onf state, and A is the wavelength of the transition, 493.5 nm
in this case. We have implicitly assumed that the autoionization rates of the 6p, ,nf states
exceed their radiative decay rates, which is in all cases simply the radiative decay rate of
the Ba™ 6p; /2 state. For the 6p;/ont states of interest this condition is easily met. However,
for n > 30 the autoionization rate of a 6p,/onf state of £ = 7 is less than the radiative decay
rate, and this method of detection will no longer work [26].

The autoionization rates of the Ba 6p; onf states of £ > 4 decrease by roughly a factor of
five with each increase in £ of one [27]. Accordingly, the cross section for the 6snf — 6p;jonl
ICE transition increases by a factor of five for each increase in ¢ of one. Even if the center
frequencies of the ICE transitions are the same, approximately the ionic 6s — 6p; /s fre-
quency, it is possible to observe transitions between the 6snf and 6snf’ states, as shown in
Fig. 10. Fig. 10 is drawn assuming the two ICE transitions occur at the ionic frequency
and that ¢/ = ¢ + 1, so the ICE cross sections and widths differ by a factor of five. The
linewidth of the laser driving the ICE transition must be less than the width of the 6p; on/
state, and the power of the laser must also be kept below saturation of the 6snt’ — 6p;jont’
transition. If the laser linewidth is less than the 6p;/9nf’ linewidth and the 6snt’ — 6p; ont’
transition is not saturated, an atom in the 6snf’ state is five times as likely as one in the
6snl state to undergo the ICE transition when the ICE laser is tuned to the peak of the
cross sections, at the ionic frequency. In short, with the ICE laser tuned to the peak of
the cross sections, driving the 6snf — 6snf’ microwave transition can result in a fivefold
increase in the autoionization signal at the 6snf — 6snf’ microwave resonance. Alternatively,
the ICE laser can be tuned to the wing of the 6sné — 6p;onf transition, in which case the
microwave 6snf — 6snf’ transition results in a decrease in the autoionization signal.

In Ba, the 6snf — 6p; onf transition frequencies depend on both n and ¢. Fig. 11 shows
the (-dependence of the 6s17¢ — 6p,/217¢, /=4 and 5, ICE cross sections. We do not show

the 6s17¢ — 6p;/217¢ ICE cross sections for £ > 5 since the peak cross sections are so much
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FIG. 10. (a) The 6snf — 6snf’ microwave transition can be detected using the difference in the
two ICE cross sections. (b) The ICE cross sections of the 6snf — 6p;/onf and 6snt’ — 6p; jont’
transitions. With the ICE laser tuned to the peak of the cross sections, driving the 6snf — 6snf’
microwave transition can result in a fivefold increase in the autoionization signal at the 6snf —6snt’

microwave resonance if ¢/ = ¢+ 1.

higher. We do, however, show the location of the ¢ = 6 ICE transition. The higher ¢ ICE
transitions lie closer to the ion 6s — 6p; /2 transition at 20261.56 cm™'. Since the 6s17g and
6s17h ICE transitions are not superimposed, at the peak of the 6s17h ICE transition the
ratio of the cross sections is not five, but ten. While the increased selectivity is attractive,
the displacement of the ICE transitions with ¢ does complicate finding the ICE transitions
for higher ¢ states. In this case the most straightforward approach might be to set the ICE
laser to the high frequency side of the 65179 — 6p;/217g transition and look for a decrease in
the autoionization signal to detect the 6s17g — 6517/ microwave transitions. However, we
have used a different approach. Since the frequencies of the transitions from the Ba 6s518¢
state to the 6s18h, 6518i, and 6518k states are known [21], we set the microwave frequency
to the 65189 — 6518¢ resonance and scanned the ICE laser to find the 6518¢ — 6p; 218/
ICE transition, which occurs at the frequency vy, given by

Vp = Vjpp + &Sn%’ (7)
where v, is the Ba® 6s — 6p; /2 frequency, and ¢, and d,, are the quantum defects of the

6snl and 6p;/onl states, respectively. When n is decreased by one the change in the ICE
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frequency, Avy, is given by

8o, =0
Ay =320 (8)

For n =18 and ¢ = 5, Ay, = 2.5 GHz, which is small compared to the 10 GHz width of the

nt

6p1/218h state. In short, knowing the £ = 5, 6, and 7 ICE frequencies for n = 18 allows us

to predict them accurately enough to make the n = 17, 16, and 15 measurements.

relative cross section

3.0 n

2.5
2.0

1.5
1.0

0.5

2 4 6 8 10
ICE transition frequency-20260 cm™! (cm™)

FIG. 11. (Color online) The ICE cross sections for the 6s17¢ and 6s17h states. The wider ICE cross
section is the 6s17g — 6p;/517g transition. The narrower ICE cross section is the 6s17h — 6p; 217h
transition. The arrow shows the location of the 6s17i — 6p; /917i ICE transition. The dashed line

shows the location of the ionic 6s — 6p; o transition frequency.

B. Experimental Approach

We prepare 6sng barium Rydberg states by exciting neutral barium atoms in a beam
with four laser pulses. The excitation scheme from the ground state 6s? to the 6sng state is
shown in Fig.12. Photo-ions and electrons are produced, so the excitation is performed in a

small electric field, less than 100 V/cm, to remove them.
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FIG. 12. Laser excitation scheme of the experiment.

As shown by the timing diagram of Fig. 13 after the four laser pulses, we turn off
the electric field and wait 200 ns for any ringing from the electronics to dissipate. It is
important that there be no stray electric field on the Rydberg atoms during the microwave
pulse to avoid Stark shifts of our observed intervals. To drive the 6sng — 6snh and 6sng —
6sne transitions, we apply a single 1 ps pulse of microwaves; while for the 6sng — 6snk
transitions, we use a continuous radio frequency (RF) field in addition to a 1 us microwave
pulse. When the microwave pulse ends, we immediately apply a ~493.5 nm frequency
doubled, dye-amplified diode laser pulse, which excites the 6snf atoms to the autoionizing
6p1/onl states. The 6p;/onf atoms autoionize quickly, and we apply an electric field ramp
to drive the resulting ions to the microchannel plate detector. The peak of the field ramp is
high enough to ionize bound 6snf atoms of n > 16, but the signal from bound state atoms
arrives 1 us later than the signal from autoionizing atoms. The two signals are temporally
well resolved, and we set the gate of the gated integrator on the autoionization signal.

This excitation and detection cycle is repeated every 50 ms, and our signals are averaged

over many laser shots.
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p Time
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FIG. 13. The timing sequence for the lasers, microwaves, and RF signals. (a) Small electric field
to clear photo-ions (b) Four laser pulses to drive the 65> — 6sng transition (c) 1 us MW pulse (d)

ICE laser pulse (e) Electric field ramp

C. Experimental Observations

1. One Photon Intervals

To obtain the single photon intervals, we started from the known 6s18g — 6s18h tran-
sitions. We used a high microwave power at the 65189 — 6s18h resonance to equilibrate
the populations, and we swept the diode laser frequency to find the frequency of the
6518h — 6p1/218h ICE transition. With the laser set to the ICE frequency we then at-
tenuated the microwave power and scanned the microwave frequency to repeat the earlier
measurements. To find the 6sng — 6snh transitions of n < 18, we changed the diode laser
frequency from its n = 18 value using Eq. (7) and scanned the microwave frequency at
high power to find a small resonance signal. We then optimized the signal by adjusting the
diode laser frequency with the microwave frequency set to the 6sng — 6snh frequency. Once
we found the optimal diode laser frequency, we performed our microwave scans at reduced
microwave power.

Typical resonances, for n = 15, are shown in Fig. 14. There are two resonances, cor-

responding to the two possible values of K for the 6s15h state. The one-photon transition
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frequencies for 6sng to 6snh, 15 < n < 18 are shown in Table VIII.

TABLE VIII. ng — nh observed frequencies and K splittings

n K =9/2 (MHz) K =11/2 (MHz) K splitting (MHz)

18 40 180.0(6) 41 147.4(7)
17 47 367.4(6) 48 547.2(6)
16 56 489.4(6) 57 959.0(5)
15 68 185.8(5) 70 063.6(5)

967.4(9)
1179.8(8)
1469.6(8)
1877.8(7)

-2.50

lon signals (arb units)

1 2

68180 68190 70050
Frequency (MHz)

FIG. 14. The single photon 6s15g — 6s15h transitions.

splitting.

2. Two Photon Intervals

70060 70070

The two peaks are separated by the K

The procedure used for the two photon transitions from 6sng to 6sni was similar to that

used for the one photon transitions. Using the known 6518g — 6s518: transition frequencies

we found the ICE wavelength for 6518, which could then be adjusted for lower n using Eq.

(7). The two photon 6sng — 6sni transition occurs via a virtual intermediate state, and

there is a small but measurable AC Stark shift due to the microwave field. To obtain the

unshifted intervals, we took measurements at multiple microwave powers and extrapolated
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our results to zero microwave power. With the available microwave power the maximum
AC Stark shift was 1.65 MHz. The uncertainties are those given by the statistical fits to

the power extrapolations. Typical two photon resonances, for n = 15, are shown in Fig. 15.

TABLE IX. ng — ni observed intervals and K splittings

n K =11/2 (MHz) K =13/2 (MHz) K splitting (MHz)

18 51422.9(3) 51 654.6(3) 231.7(4)

17 60 667.8(6) 60 926.7(8) 258.9(10)

16 72 375.6(3) 72 669.2(3) 293.6(4)

15 87 359.8(4) 87 691.3(3) 331.5(5)
87320 . 87(‘340 . 871":60 . g 876‘380 . 87;00 . 87;20

Frequency (MHz)

FIG. 15. The two photon transitions 6s159 — 6s15i. The two resonances are separated by the K

splitting of the 6s15:¢ state.

3. Three Photon Intervals

We located the 6snk — 6p;/onk ICE transitions in essentially the same manner used

to find the 6snh — 6p;/onh and 6sni — 6p;/oni ICE transitions. We do not have enough
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TABLE X. ng — nk frequencies and intervals

n K approximate RF approximate microwave
frequency (MHz) frequency (MHz) extrapolated interval(MHz)

18 13/2 4920 25 750 56 388.0(20)

15/2 4640 25 895 56 424.5(30)
17 13/2 5750 30 390 66 521.1(12)

15/2 5750 30 400 66 562.4(17)
16 13/2 7050 36 125 79 351.4(17)

15/2 7050 36 150 79 393.0(20)
15 13/2 8300 43 720 95 739.1(20)

15/2 8100 43 875 95 798.9(20)

microwave power to drive the three photon 6sng —6snk transitions using a single microwave
field. Instead, we use two frequencies. One is close to the two photon 6sng —6sni microwave
frequency, and the other is close to the 6sni — 6snk frequency, which, for clarity, we term
a radio frequency (RF), even though it can be as high as 8.3 GHz. In all cases, the RF
frequency was fixed and the microwave frequency swept. We verified that if we changed the
RF frequency the 6sng — 6snk intervals were given by twice the microwave frequency plus
the RF frequency, indicating that the resonance was due to two microwave photons and one
RF photon.

There are now two AC Stark shifts, due to the microwave and RF fields. We performed
microwave frequency sweeps at different microwave powers and constant RF power, allowing
us to extrapolate the observed resonance frequencies to zero microwave power for a given
RF power. We repeated this procedure for several different RF powers to extrapolate to
zero microwave and RF power. Our fit for the 6s17¢g — 6517k, K = 15/2 transition
is shown in Fig. 16. As expected, the RF power shift is more important since the RF
field is nearly resonant with a one photon transition. In Table III we give the measured
intervals after extrapolation, as well as the approximate microwave and RF frequencies
used. The uncertainties in our reported intervals correspond to the uncertainties of the

power extrapolations.
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FIG. 16. The extrapolation of the three photon 6s17g — 6517k K = 15/2 transition to zero power.
(a) Resonances were recorded for multiple microwave powers at each RF power to determine the
zero microwave power resonance frequency for each RF power. (b) These zero microwave power
frequencies were then extrapolated to find the zero power interval, assuming a linear plus quadratic

RF power shift, as shown.
IV. CORE POLARIZATION ANALYSIS OF THE DATA

The adiabatic core polarization model of Mayer and Mayer provides an instructive starting
point for the analysis. In it, the energy by which a Ba 6snf Rydberg state lies below the
hydrogenic energy of —1/2n? is given by [3]

1 1
Wpol,nf - _éad<'r_4>nf - §aq<r_6>n€7 (9)

where a4 and «, are the dipole and quadrupole polarizabilities of the Ba* ionic core, and
(r~1),¢ and (r=%),, are the expectation values of the squares of the nf Rydberg electron’s
field and field gradient at the core. The model is termed adiabatic because it is based on
the assumption that the Rydberg electron is slowly moving compared to the electrons in the
core, providing an essentially static field.

For comparison to experimental data, it is convenient to use Edlen’s form of Eq (9) [4]:
Wpol,né - _adpnﬁ - aanﬁQnﬁa (10)

where

Py = R{r "), (11)



<7F6>n€
(r=)ne’

and R is the Rydberg constant for Ba; R = 109736.88 cm~!. Experimentally, we observe

the Al energy intervals, AW, o1 nee = Woolner — Wpolne, between Ba 6snl and 6snl’ states of

the same n, and we can express the observed intervals in terms of Eq. (10) using

AW ol nere o ta APQ e
AP, CTCAP

Here AP,y = Py — Py, and APQpr = PpyQne — PopQne. The Al intervals are largely

(13)

determined by the dipole polarizability, and in Eq. (13) we have removed the variation due
to the dipole polarizability by dividing by AP, . Plotting the left hand side of Eq. (13) vs
APQ e /AP,y yields a graph with intercept ay and slope oy. In Fig. 17, we have plotted
Eq. (13) for the Ba 6snf ¢ — ¢ + 1 intervals of £ > 5. The experimental intervals are taken
from Gallagher et al [21], Snow and Lundeen [22], and this work. The ¢ — ¢ + 1 intervals
of £ > 6, n=17 and 20, the high ¢ intervals, at APQ,p /AP, < 0.002 fall on a line, as
expected, but the £ = 6 — ¢ = 7, ni—nk, intervals at APQ e /APy == 0.0025 lie distinctly
above the line, and the { = 5 — ¢ = 6, nh — ni, intervals, at APQ,u /AP ~ 0.0053,
lie well below the line. The latter two sets of data are displaced from the line due to the
breakdown of the adiabatic assumption implicit in Eq. (9).

Almost immediately after the appearance of the paper by Mayer and Mayer van Vleck
and Whitelaw pointed out that Eq. (9) is valid only in the limiting case in which the excited
states of the ionic core are far above its ground state. Furthermore, the polarization shifts
are are not first order shifts, as implied by Eq. (9), but second order shifts. To understand
their approach, it is useful to think of the Ba atom as consisting of an inert, but polarizable
Ba™* core and two valence electrons. In this case the dipole and quadrupole polarization
shifts of the 6snf state are due to the dipole and quadrupole couplings of the 6snf state
to the doubly excited NLn{ states. Here NL is the state of Ba™, and n¢ is the state of
the Rydberg electron. The energy shifts are readily calculated in second order perturbation
theory by summing the contributions of all the coupled N Lnf' states, including continua.
For example, the quadrupole polarization energy of the Ba 6s520¢ state comes from the
quadrupole couplings to doubly excited Ba Ndnl' states with ¢/ =4, 6, and 8, as shown
schematically in Fig. 18. Summing over all the coupled Ndn/' states yields the quadrupole
polarization shift. As shown in Fig. 18 for the specific case of N = 6, A is the energy range
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FIG. 17. The adiabatic plot of the measured A/ intervals using Eq. (13).

spanned by the n¢’ states associated with an Nd ion state, and €2 is the energy difference
between the Ba™ 6s and Nd states. If A < Q for all N, the sum reduces to ay,(r=5)s,/2,
as in Eq. (9). Thus, a more precise statement of the adiabatic requirement is A < Q) for
all NL. For the Ba Ndnt states of N > 5 the adiabatic requirement is reasonably well
satisfied, but for N = 5 it is not.

The most important quadrupole couplings by far are those between the 6snf and 5dn'¢’
states. As an example we consider the 6s20i state, which is coupled to the 5dng, 5dni, and
5dnt states. These states are not energetically removed from the 6s20i¢ state by the Ba™
65—5d interval of ~ 5000 cm ™!, as assumed in the adiabatic model, but by a range of energies
comparable to the ion interval. In this case A = 2, and the adiabatic model fails, as shown
graphically in Fig. 17. Nonetheless, using hydrogenic wavefunctions it is straightforward to
calculate the energy shift due to the quadrupole coupling to the 5dnf’ states and compare it
to that expected from the adiabatic model, yielding the ratio, or correction factor, k,. Thus
we can write the quadrupole polarization shift of the 6520i states due to the 5dnf’ states as
kqa;<r_6>20¢ /2, where « is the part of the quadrupole polarizability due to the Ba™ 5d state.
An analogous procedure can be carried out for the dipole polarization shift, leading to the

correction factor k4. An important point to keep in mind is that k; and k, correct for the
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FIG. 18. Energy level diagram showing the quadrupole coupling of the 6520: state to Ndnt' states
(¢" = 4,6 and 8). The Ba™ 6s ground state energy is set to zero. A is the energy spread of the n¢’
states, and (2 is the 6s — Nd ion energy spacing, shown here for N = 6. The adiabatic requirement,

A < €, is clearly not satisfied for N = 5.

non adiabatic effects in the dipole and quadrupole polarization energy shifts, respectively.
They are not corrections to the polarizabilities. Thus, for example, the non adiabatic effect
in the dipole polarization energy affects both a4 and «.

With the realization that the polarization energy shifts are simply derived from second
order perturbation theory we can understand why the ni — nk and nh — ni intervals are
displaced as they are in Fig. 17. A 6sni state has a very strong quadrupole interaction with

L above the 6sni state. For this reason,

the low lying 5dbg state which is only ~ 1000 cm™
the quadrupole polarization energy shift is greater than expected from the adiabatic model,
and the ni — nk points lie above the line in Fig 17. The nh — ni intervals lie below the line
in Fig. 17 because the 6snh states have a strong quadrupole interaction with the 5d4 f state
which lies ~ 1000 cm~! below the 6520h state. The quadrupole interaction shifts the 6s20h
state up in energy, changing the sign of the quadrupole polarization shift.

The high ¢ points in Fig. 17 at APQ e /AP, < 0.001 fit a straight line fairly well, and
we can extract values for aq and o, from the intercept and slope of the line through these
points, which we term the apparent polarizabilities. The values we obtain are o/’ =123.67(6)

ag and agPP=1047(63) aj. These values are too small, due to neglect of the nonadiabatic

corrections, and for this reason we term the extracted values the apparent polarizabilities.
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To extract the correct values of oy and «, for Bat from the Al intervals of the Ba 6sn/
states, we must account for the nonadiabatic effects, which are prominent in Fig. 17. There
are several approaches, and we first describe our approach. We start by noting that the
contributions to the Ba™ 65 polarizabilities from Ba™ states above the 6p and 5d states are
essentially adiabatic, as are those from Ba™". We assume the nonadiabatic effects to arise
only from the 6p and 5d states of Ba™, as done by Snow and Lundeen [23]. Accordingly, we
write the analog to Eq. (9) as

1 1
Weolne = =5 (agha + ) (r™ e — 5 (aghky + ag)(r%) e, (14)

where aj is the part of the dipole polarizability due to the 6p state of the Ba™ ion, af, is the
part of the quadrupole polarizability due to the 5d state of the Ba™ ion, o} is the part of the
dipole polarizability due to the higher p states of the Ba™ ion and the dipole polarizability
of Bat™, and a is the part of the quadrupole polarizability due to the higher d states of the
Ba™ ion and the quadrupole polarizability of Ba™*. The nonadiabatic effects are taken into
account by introducing the correction factors k4 and k, [21, 23]. In principle, the k4 and k,
factors completely eliminate the nonadiabatic effects. It is straightforward to calculate ky
and k, if we assume the outer electron to be hydrogenic. Our calculated values of k; are
given in Table XI, and to three significant digits there is no n dependence. The n dependent

k, values are presented in Table XII.

TABLE XI. k; calculated values

n =5 =6 (=17 {=38 ‘=9 ¢=10 (=11

15 0.955278  0.969324  0.979127

16 0.955326  0.969248  0.978992

17 0.955494  0.969194  0.978904  0.984568  0.987537  0.989361

18 0.955404  0.969168  0.978870

19 0.955470  0.969141 0.978841

20 0.955510  0.969136  0.978841 0.981743  0.984323  0.985240  0.987553
21 0.955543  0.969128  0.978847

22 0.955584  0.969126

23 0.955619
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If we define the quantities P/, and @, as follows
ne = kaPue, (15)
and

, k
an = k_anb (16)
d

the energy difference between the ¢ states of the same n can be written as
AWpol,n@% = O/dAPT/LEf/ + Oé/d/APnfgl + Oé;APIQ;LZg/ + Oé;/APQn[gl (17)

where AWooinee, APy, and APQuy are as defined earlier, AP/, = P/, — P/, and
AP'Qryy = PQy — Prp@p. 1f we group the o and « terms with the observed en-
ergy intervals and divide Eq. (17) by AFP},, we obtain the following expression:

1 1
AWpornere — agA Py — af AP Qe
/
APy

AP O
/ / ntl’
=)+ o, ———"—, (18)
! AP?QM’

which is the nonadiabatic analog of Eq. (13).

If we know oy and ag, we can extract a; and « from their linear relationship with
the measured A/ intervals, using the center of gravity of each 6snf state. From Ref. [29],
o = 10.15(53) af, and o = 814(11) af. Fig. 19(a) shows the fit of the experimental data to
Eq. (18) using our calculated AP, g, APQp e, AP,y and AP'Q;, . In Fig. 11 and in all

similar plots, for the nh — ni and ni — nk intervals n increases from 15 to 21 as AP'Q)'/AP’

TABLE XII. k, calculated values

n l= =6 (=17
15 -0.982 1.439 1.032
16 -0.889 1.473 1.039
17 -0.818 1.503 1.044
18 -0.761 1.531 1.050
19 -0.715 1.555 1.054
20 -0.678 1.577 1.058
21 -0.647 1.596 1.061
22 -0.620 1.614

23 -0.598
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increases. Unlike Fig. 17, the experimental data can be fit reasonably well by a straight
line, and from Fig. 19(a), we obtain o/ = 114.47(7) af and o), = 1725(14) af. While Fig.
19(a) is an enormous improvement over Fig. 17, the data clearly do not fit the model, as

shown by the residuals in Fig. 19(b).
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FIG. 19. (a) Graph of Woolne'e %APIT"“ g 2P ?"“ . The symbols H, e, and A are the

nee’ nee!

data points presenting the nh — ni, ni — nk and high ¢ intervals, respectively. For the nh — ni
and ni — nk intervals n increases monotonically from 15 to 21 as AP'Q’'/AP’ increases. The
high ¢ intervals are for n = 17 and 20. The linear fit yields the y-intercept and the slope which
are the values of aj; and oy, respectively. From the graph, we obtain o = 114.47(7) aj and
o), = 1725(14) af}, and (b) the plot displays the residuals relative to the fit, which is the zero line.

Due to the obvious systematic variations of the residuals, shown in Fig. 19(b), the
uncertainties of the values of aj and «j are larger than the uncertainties from the fit. To
understand these uncertainties we have fit the data in other ways. The first is to remove
the lower ¢ intervals, which have larger nonadiabatic corrections, from the fit. In Fig. 20(a)
we show the fit obtained by removing the nh — ni intervals from Fig. 19(a). The resulting
values, oy = 114.66(12) af and o, = 1664(36) ag, are not very different from those extracted
from Fig. 19(a). The residuals are shown in Fig. 20(b). There are several points to note
about Fig. 20(b). First, we note that there is a discontinuity between n = 18 and n = 19

in the ni — nk points, which may be due to a perturbation of the energy levels, which we
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can not hope to fit. Second, we believe the n =20/ =7 -/ =8 and { =10 — ¢ = 11
points to be in error. We shall return to this point. Finally, if the two n = 20 points and the
discontinuity at n = 18 are ignored, the systematic variation of the residuals is essentially
gone. If we remove the ni — nk intervals from Fig. 20(a), leaving only the high ¢ intervals
from Snow and Lundeen, we obtain the plot of Fig. 21, which yields o/, = 115.08(16) a3 and
ay, = 1160(170) aj. With this restricted set of data the scatter is now clearly more important
than any systematic variation. Inspection of the / =7 — ¢ = 8 points of Fig. 13 shows why
we believe the n = 20 points to be suspect. The two £ = 7 — ¢ = 8 points by themselves
imply an impossible negative quadrupole polarizability, as do the £ = 10 — ¢ = 11 and
either of the ¢/ =9 — ¢ = 10 points.

124
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< > 00 4 24 %
= 118} = o« o e arn
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= ; 041
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FIG. 20. (a) Plot obtained by removing the nh — ni intervals from the data in Fig. 19(a). For
the ni — nk intervals n increases monotonically from 15 to 21 as AP'Q'/AP’ increases. The high
¢ points are for n = 17 (o) and n = 20 (A). From the graph, we obtain o/, = 114.66(12) a3 and
o), = 1664(36) af. (b) The residuals of (a). There is far less systematic variation of the residuals

than in Fig. 19(b).

An alternative approach is to fit the Al intervals for each n state separately, and in Fig.
22 we show the values of o and o], extracted from the data shown in Fig. 19(a). Only for
n = 17 and 20 are there more than two A/ intervals, so only in those two cases can we show
uncertainties for the fits. We expect that if we had more points the uncertainties of the other

n states would be similar. If we disregard the obvious outliers at n = 18 and 21, there is no
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FIG. 21. Plot of high ¢ intervals from Fig. 19(a) for n = 17 () and n = 20 (A). From the graph,

we obtain a; = 115.08(16) aj and o, = 1160(170) ag.

monotonic increase or decrease in the value of o;, and the average value, oy = 114.51(2) a3,

is similar to the value extracted from Fig. 19(a). The n = 18 intervals were measured in two
different experiments, so we do not think the n = 18 points are displaced from the others
due to an experimental problem, but for a physical reason. As already noted, the ni — nk
residuals of Fig. 20(b) exhibit a discontinuity at n = 18, which might be a sign of a series

perturbation. The n = 21 points in Fig. 22 probably reflect experimental error.

In contrast to the relatively constant values of o/, shown in Fig. 22, the extracted values
of a; show a clear n dependence, and we suspect that its origin lies in our calculation of
k,, especially for ¢ = 5. There are several sources of error in calculations of k4 and k,. We
have ignored the spin orbit splittings of the Ba™ 6p and 5d states, and we have assumed the
outer electron to be hydrogenic. The latter assumption leads to incorrect energies, and more
important, incorrect wavefunctions. For this problem, matrix elements of inverse powers of
r are required, which in turn requires wavefunctions accurate at small r. Unfortunately,
there is no simple method to generate non hydrogenic wavefunctions which are accurate at

small r.

Irrespective of the source of the variation in 04; seen in Fig. 22, it is clear that we can not
extract a value of o from these data, and the value of aj is also suspect. Accordingly, we

have fit the ni —nk and higher ¢ intervals of Fig. 20(a) for n = 17 and 20, the only n values
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FIG. 22. Graph showing the values of (a) o), and (b) oy extracted from Al intervals for each n.
Disregarding the obvious outliers at n = 18 and 21, there is no monotonic increase or decrease in
the value of o/}, and the average value is o/, = 114.51(2) a3. A value of oy, cannot be extracted
from (b). Only n = 17 and 20 have more than two data points (the nh — ni, ni — nk and high ¢

intervals), and therefore only their uncertainties can be shown.

for which we have more than one Al interval. For n = 17 we obtain o/, = 114.62(5) a3 and
o, = 1640(23) af, and for n = 20 o/ = 114.73(27) aj and o}, = 1650(120) aj. The n = 17
data lie almost perfectly on a straight line, while the n = 20 data are more scattered. The
important point is that o exhibits no n dependence. Thus we conclude that the fit of Fig.
20(a) provides the best values for o/, and /. The high ¢ data shown in Fig 21 exhibit no
systematic problem, but the high ¢ intervals are more susceptible to Stark shifts and are not

as sensitive to the quadrupole polarizability as are the lower ¢ intervals.

To account for possible systematic effects in the determination of aj and «; we increase
their uncertainties from the fit shown in Fig. 20(a) to encompass the residuals shown in Fig.
20(b) except the two n = 20 points mentioned previously. The results are o/, = 114.66(25)
aj and o] = 1664(50). Adding them to o/ and « to obtain the ionic Ba® dipole and
quadrupole polarizabilities oy = 124.81(25) aj and a, = 2478(50) aj, respectively.

It is useful to compare our values to those obtained from other measurements and theory.
In Table XIII we present the values obtained for a4, and in Table XIV, we present the

values for a; and ay. Our value for oy agrees with the theoretical value to within the
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and experimental results.

TABLE XIII. The Bat 6s dipole polarizability (cg) obtained from this work and other theoretical

ag (af)
Core polarization
This work 124.81(25)
Expt. [21] 125.5(10)
Expt. [23] 124.30(16)
Expt. [11] 123.88(5)
K splitting
Expt. [§] 121.3(66)
Expt. [28] 123.88(5)
Theory [29] 124.15

theoretical uncertainty, but our value for ¢, is half the theoretical value. It is perhaps more
interesting to compare the experimental results. Two methods have been used to extract
the polarizabilities, polarization analysis of the A/ intervals and analysis of the K splittings.
Analysis of the K splittings yields the Ba™ 6s — 6p and 6s — 5d radial matrix elements, from
which aj and «; are easily computed. To the values of aj and «; given in ref. [8] we have
added the theoretical values o/} = 10.15 a3 and oy = 814 a) yielding the values of ay and
oy given in Tables XIIT and XIV. While it is possible to make good measurements of the
K splittings, they arise completely from the nonadiabatic effects, and their analysis is much
more complicated than a polarization analysis of A¢ intervals. For this reason, we choose to

compare our results to those of Snow and Lundeen, ref. [11].

Using essentially the same data as we have used here, Snow and Lundeen [11] arrived
at a value of a4 distinctly smaller than ours and a value of a, almost twice ours. To
understand the origin of the differences it is useful to use four different methods to analyze
the data. Specifically, we consider ignoring the non adiabatic effects, using the adiabatic
expansion method, introducing k, and using the adiabatic expansion method to account for
nonadiabatic effect in the dipole polarization energy, and finally introducing both &, and k.
For simplicity, we label these methods I, II, III, and IV, respectively. Method III is similar

to that used by Snow and Lundeen, and IV is similar to ours.
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TABLE XIV. The Ba™ 6s quadrupole polarizability (a;) and the contribution of the Ba™ 5d state

(af]) to it.
o (a) o (a3)
Core polarization
This work 1664(50) 2478(50)
Expt. [21] 2050(100)
Expt. [11] 1524(8) 4420(250)
Expt. [23] 1828(88) 2462(361)
K splitting
Expt. [§] 1562(93) 2376(93)
Expt. [28] 3606(250) 4420(250)
Theory [29] 3368(34) 4182(34)

If we restrict our attention to only the high ¢ intervals, it is not unreasonable to think
that the data can be fit by ignoring the non adiabatic effects, method I, and using Eq.
(13). The straight line through the high ¢ points of Fig. 17 is precisely this fit. It yields
ag = o’ = 123.67 aj and a, = PP = 1047 af.

In the adiabatic expansion method, method II, the polarization energy of Eq. (9) is

replaced by

1 1

Wpol,n( = —§Oéd<’l"_4>ng - E(O./q - 651)<T_6>ng...., (19)

where the ellipsis indicates terms containing expectation values of higher inverse powers of
r. The most important difference, from our present point of view, is the presence of 63; in
the (r=®) term, which is due to the non adiabatic effect in the dipole polarization energy.
It appears in the same way as the quadrupole polarizability, and for Ba ; = 605(25) aj.
The higher inverse powers of r represent higher order terms due to the nonadiabatic effect
in the dipole polarization energy, the nonadiabatic effect in the quadrupole polarization
energy, and higher multipole terms. As Snow and Lundeen have shown, these terms can
be represented by higher order terms in (r=%)/(r=*), or equivalently, in APQ/AP, so that
the data points of Fig. 17 no longer need to be fit by a straight line. Application of the
adiabatic expansion method is based on the assumption that the expansion is convergent.

Inspection of Fig. 17 suggests that very high order terms in APQ /AP will be required to
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fit the data, indicating that the adiabatic expansion is almost certainly not convergent in
this case. However, it should be applicable if we again restrict our attention to the high
¢ states. Fitting the high ¢ data of Fig. 17 to the first two terms of Eq. (19) leads to
ag = o’ = 123.67 ag and ag = o + 63 = 4677 ag.

The deviation of the factors k; and k, from unity is an indication of the severity of the
nonadiabatic effects. Inspection of Tables XI and XII shows that 0.955 < k; < 0.990 while
kq ranges from -.0982 to 1.614, suggesting that the non adiabatic effect in the quadrupole
polarization energy is by far the worse problem. Accordingly, we treat the data using method
ITI, treating the non adiabatic effects in the quadrupole and dipole polarization energies by
k, and an adiabatic expansion, respectively. This approach is approximately that used by
Snow and Lundeen. It differs in that Snow and Lundeen, and we as well, separated the
polarizabilities into two parts, for example o, = af, + ay. To display most clearly the effect
of introducing first k, and then k4 we here assume that aj and o both vanish, so that
ay = ag and a; = a4 Since ay = 0.92ay, this approximation is excellent for a4, and it
is not unreasonable for o,. In Fig. 23 using solid circles (o) we use method III to plot
the high ¢ and ni — nk intervals using the values of k, given in Table XII. Since we are
now introducing k,, and later shall introduce k4, as the horizontal and vertical axes we use
AP'Q /AP, and AWy nee/ AP, . From the definitions of P' and @' it is evident that
P and @) are simply the special cases of P’ and ()’ for k; = k, = 1. The dominant effect of
the introduction of k, is to move points horizontally on the plot, which removes the glaring
problem due to the non adiabatic effects, the seemingly random distribution of points in
Fig. 17. Now in Fig. 23 the solid circles (o) all line along a straight line. In method
IIT the adiabatic expansion only needs to account for the nonadiabatic effect on the dipole

polarization. Accordingly, we fit the solid circles (o) to

!/
AWpol,nZ’é - AP ney!

= — — 2
APy @t (2 = 65) APy (20)

The intercept of the fit line is oy = 123.33(11) a3, and the slope s, = 1430(35) aj. The
quadrupole polarizability, o, = s, 4 651 = 5060 af, is the slope of the broken line in Fig. 23.

To show the effect of using k4 as well as k,, method IV, in Fig. 23 we also plot, as
solid squares (M), the high ¢ and ni — nk intervals. The introduction of k; has two effects,
both of which are evident in Fig. 23. First, it raises all the points by 1-3%, since kg < 1
and AP" < AP. The effect is to raise the value of ag; ag = 125.28(8) a3. Second, since
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TABLE XV. The Ba* 6s dipole (og) and quadrupole polarizabilities () extracted from different

methods of data analysis.

Analysis method ag (ad) aq (ag)
Method I: ignore non adiabatic 123.67(6) 1047(63)
Method II: adiabatic expansion 123.67(6) 4680(160)
Method III: k, and adiabatic expansion 123.33(11) 5060(150)
Method IV: kg and k, 125.28(8) 2138(23)
Snow and Lundeen [11] 123.88(5) 4420(250)
This work 124.81(25) 2478(50)

kg falls further below one as ¢ is decreased, the slope of the line through the points is
increased. In this method the slope (of the line through the square points) is a,, = 2138(23)
ag. The nonadiabatic effect in the dipole polarization energy on «, is the difference between
the slopes of the lines through the squares and circles in Fig. 23, 708 a}, much less than

63 = 3630 al.

In Table XV we have collected the results from the four analyses and presented them
together with the values of Snow and Lundeen and ourselves. Methods I, II, and III yield
essentially the same value of ay, which implies that the adiabatic expansion method, or a
modification which does not introduce kg4, has almost no effect on the value of a4 extracted.
These values are also very close to the value obtained by Snow and Lundeen. The introduc-
tion of kg, in method IV, vertically displaces the points in Fig. 23 and increases the value of
ag extracted to very nearly match our value. The quadrupole polarizabilities extracted by
methods II and III are both much larger than those obtained by methods I and IV, due to
the inclusion of 63; in the extracted value. These values are close to the value obtained by
Snow and Lundeen. Method IV yields a value of oy similar to our value and much smaller
than methods II and III. From Table XV it is evident that the difference between the values
of both a4 and o, extracted by Snow and Lundeen and ourselves is due almost entirely to

the treatment of the non adiabatic effect in the dipole polarization.
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FIG. 23. Comparison between the use of method III to treat the ni — nk and the high ¢ intervals
(o) and method IV to treat the intervals (). Here we assume a; and oy both vanish. The
introduction of k; in method III removes the nonadiabatic effect in the quadrupole polarization
energy, and all the data points fall on a line, unlike the plot of Fig. 9. The intercept of the
fit line gives oy = 123.33(11) ag. Adding 647 from the nonadiabatic correction to the dipole
polarization energy to the slope of the fit line give the broken line, which has slope o, = 5060 ag.
The introduction of k4 as well as k; in method IV both raises the points and increases the slope of

the fit line. the resulting intercept and slope are g = 125.28(8) a3 and a, = 2138(24) aJ.
A. Conclusion

We have demonstrated that ICE laser excitation to autoionizing states can be used to
detect microwave transitions between high angular momentum Rydberg states of alkaline-
earth atoms, even though the ICE transitions are badly overlapped. We have used this
technique to measure A/ intervals between Ba 6snf states of 15 < n < 18 and 5 < ¢ <
7. Combining these measurements with other measurements of Ba Af intervals, we have
extracted the Ba' polarizabilities gy = 124.81(25) af and «a, = 2478(50) aj. These values
disagree with recently reported experimental values due to the difference in the treatment
of the nonadiabatic effects. In principle, the model we have used exactly accounts for
the nonadiabatic effects by the introduction of the correction factors k; and k,, which are
calculated numerically. The calculations can be improved by better numerical techniques,

the inclusion of spin-orbit coupling, and the use of non hydrogenic wavefunctions where
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required. We hope this work will stimulate theoretical activity along these lines.
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We use selective laser excitation to an autoionizing state to observe the microwave transitions of Ba from the
6sng Rydberg states to the 6snh, 6sni, and 6snk states for 15 < n < 18. We extract the dipole and quadrupole
polarizabilities of Bat from the measured A{ intervals of the Ba 6sn{ states of £ > 5 using a nonadiabatic core
polarization model. The values we determine for the dipole and quadrupole polarizabilities are oy = 124.81(25)a;

and o, = 2478(50)a;, respectively.

DOI: 10.1103/PhysRevA.89.062503

I. INTRODUCTION

One of the largest frequency shifts in present-day atomic
clocks is the blackbody radiation shift [1-4]. Since 300 K
blackbody radiation is low in frequency, the blackbody shift
is predominantly determined by the static polarizability of the
atom or ion used in the clock. For many alkaline-earth-metal
ions used in atomic clocks, there are no measurements of
the ionic dipole and quadrupole polarizabilities to serve as
benchmarks for calculations of the blackbody shifts. It is
possible to extract these polarizabilities from the intervals
between high-¢ Rydberg states of the atom, states of high
enough ¢ that the Rydberg electron does not penetrate the
ionic core [5-8]. We follow the usual convention that n and
£ are the principal and orbital angular momentum quantum
numbers of the Rydberg electron. In these nonpenetrating
states, the energy shifts from the hydrogenic levels arise from
polarization of the core by the field from the Rydberg electron.
In Rydberg states of lower ¢, the electron comes closer to the
core at the inner turning point of its orbit, and the energy
shift is larger. Thus, measuring the AZ intervals yields the
polarizabilities of the ionic core. An excellent recent summary
of core polarization analysis has been given by Lundeen [8].

Several methods have been employed to detect transitions
between the high-¢ states of alkaline-earth-metal atoms.
Selective field ionization has been used by Gentile et al. to
measure the 4snf intervals in Ca [9]. Gallagher ef al. and
Nunkaew et al. have used delayed field ionization to detect
the Ba 6sn¢ and Sr 5snf intervals [10,11]. Snow and Lundeen
have used resonant excitation Stark ionization spectroscopy
(RESIS) to measure the Ba 6snf and Mg 3snf intervals
[12,13]. Field ionization is useful for states of n ~ 20, and
RESIS can be used for states which can be populated by
driving transitions from n = 9 and 10 using a CO, laser. Here
we point out that the optical excitation to an autoionizing
state by isolated core excitation (ICE) can be used to detect
A{ intervals of alkaline-earth-metal atoms over a much wider
range of n [14]. The basis of this notion is that the rapid
increase in the ICE cross section with £ allows the microwave
AL transitions between the bound states to be detected,
even when the ICE transitions for different £ states occur at
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essentially the same wavelength. Here we report the use of this
technique to measure the Ba 6sng-6snh-6sni-6snk intervals
for 15 < n < 18. This technique should be applicable for all
Ba states of n < 30.

II. THE MICROWAVE A¢ TRANSITIONS
AND THEIR DETECTION USING ICE

The A{ microwave transitions we observe are shown in
Fig. 1. The 6sng 'Gy state is populated by laser excitation,
and we drive the microwave transitions to the 6snf states of
5 < £ < 7. The higher-£ states are not singlets and triplets.
Rather, the total angular momentum of the core f( is coupled
to the orbital angular momentum € of the Rydberg electron to
form K . Explicitly,

K=j.+¢ (1)

We ignore the spin of the Rydberg electron. Since j. = 1/2,
K = ¢ £ 1/2, and for each ¢ state we observe two transitions,
as shown in Fig. 1. The splitting between the two K levels is
due to the indirect spin-orbit splitting [15,16].

Detection of the Ba 6snf — 6snf’ transitions (£’ > £) is
based on the difference in the optical cross sections of the
6snl — 6piont and 6snt’ — 6p;ont’ ICE transitions. Pre-
viously, Cooke and Gallagher used the substantial difference
in the wavelengths of the Sr Ssnd — Spnd and Ssnf — Spnf
ICE transitions to detect the St 5s(n + 2)d — Ssnf microwave
transitions [17]. In ICE of the 6sn{ state, the 6s electron
absorbs the photon while the n¢ electron is a spectator. The
6s — 6py,, transition of the inner electron is essentially the
Ba® 65 — 6p; /2 transition, with an oscillator strength of 1/3.
The oscillator strength is spread over the spectral width of the
6p1/2nt state, which is determined by its autoionization rate.
In this case, the peak optical cross section is given by

AZA
lof =—,
peak 8 Fne

2

where A is the Einstein A coefficient for the Ba™ 65 — 6p;
transition, I',,¢ is the autoionization rate of the 6p;,n state,
and A is the wavelength of the transition, 493.5 nm in this case.
We have implicitly assumed that the autoionization rates of the
6p1,2nl states exceed their radiative decay rates, which is in
all cases simply the radiative decay rate of the Ba™ 6, , state.

©2014 American Physical Society
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FIG. 1. The Ba 6snf, ¢ > 4, states showing the microwave
transitions and the K splittings due to the indirect spin-orbit coupling
of the 6sn¢, £ > 5, Rydberg states.

For the 6p;/on¢ states of interest this condition is easily met.
However, for n > 30 the autoionization rate of a 6 pyon¢ state
of £ = 7 is less than the radiative decay rate, and this method
of detection will no longer work [18].

The autoionization rates of the Ba 6p;/;n¢ states of £ > 4
decrease by roughly a factor of 5 with each increase in ¢
of 1 [19]. Accordingly, the cross section for the 6snf —
6p1,ont ICE transition increases by a factor of 5 for each
increase in £ of 1. Even if the center frequencies of the ICE
transitions are the same, approximately the ionic 65 — 6p1,»
frequency, it is possible to observe transitions between the
6snl and 6snf’ states, as shown in Fig. 2. Figure 2 is
drawn assuming the two ICE transitions occur at the ionic
frequency and that ¢’ = £ + 1, so the ICE cross sections and
widths differ by a factor of 5. The linewidth of the laser
driving the ICE transition must be less than the width of
the 6p;/ont state, and the power of the laser must also be
kept below saturation of the 6snl’ — 6p;,nt’ transition. If
the laser linewidth is less than the 6p; on€’ linewidth and the
6snl’ — 6p|,onl’ transition is not saturated, an atom in the
6snl’ state is five times as likely as one in the 6sn¢ state to
undergo the ICE transition when the ICE laser is tuned to the
peak of the cross sections, at the ionic frequency. In short,
with the ICE laser tuned to the peak of the cross sections,
driving the 6snf — 6sn¢’ microwave transition can result in a
fivefold increase in the autoionization signal at the 6snf-6sn’
microwave resonance. Alternatively, the ICE laser can be tuned
to the wing of the 6snf — 6p;,,nf transition, in which case
the microwave 6snf — 6snf’ transition results in a decrease
in the autoionization signal.

6snl’— 6p;/,nl’

6py/onl’
6py/onl P

6snl— 6py/,nl

ICE photoexcitation cross section

6snl il el Wion
(a) (b)

FIG. 2. (a) The 6snf — 6snf’ microwave transition can be
detected using the difference in the two ICE cross sections. (b) The
ICE cross sections of the 6snf — 6p;,nl and 6snl’ — 6p;,pnt’
transitions. With the ICE laser tuned to the peak of the cross sections,
driving the 6snf — 6sn{¢’ microwave transition can resultin a fivefold
increase in the autoionization signal at the 6snf-6snf’ microwave
resonance if £/ = £ + 1.
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relative cross section

ICE transition frequency-20260 cm! (cm'!)

FIG. 3. (Color online) The ICE cross sections for the 6s17g and
6517h states. The wider ICE cross section is the 6s17g — 6p,,,17g
transition. The narrower ICE cross section is the 65174 — 6p,,,17h
transition. The arrow shows the location of the 6s17i — 6p;,17i ICE
transition. The dashed line shows the location of the ionic 65 — 6p,
transition frequency.

In Ba, the 6snf — 6p;,onf transition frequencies depend
on both n and ¢. Figure 3 shows the ¢ dependence of the
6s17¢ — 6p(217¢, £ =4 and 5, ICE cross sections. We
do not show the 6517¢ — 6p;,217¢ ICE cross sections for
£ > 5 since the peak cross sections are so much higher. We
do, however, show the location of the £ = 6 ICE transition.
The higher-¢ ICE transitions lie closer to the ion 65-6p; >
transition at 20 261.56 cm~!. Since the 6s17g and 6s17h
ICE transitions are not superimposed, at the peak of the
6s17h ICE transition the ratio of the cross sections is not
5, but 10. While the increased selectivity is attractive, the
displacement of the ICE transitions with ¢ does complicate
finding the ICE transitions for higher-¢ states. In this case
the most straightforward approach might be to set the ICE
laser to the high-frequency side of the 6s17g — 6p;217g
transition and look for a decrease in the autoionization signal
to detect the 6517¢ — 6517¢ microwave transitions. However,
we have used a different approach. Since the frequencies of the
transitions from the Ba 6s18g state to the 6518k, 6s18i, and
6518k states are known [10], we set the microwave frequency
to the 65s18g — 6s518¢ resonance and scanned the ICE laser
to find the 6518¢ — 6p;,,18¢ ICE transition, which occurs at
the frequency vy, given by

8¢, — &,

n3

V¢ = Vion + ’ (3)
where v, is the Ba™ 65-6 p; ,2 frequency, and 6, and & ¢, are the
quantum defects of the 6snf and 6p;,onf states, respectively.
When n is decreased by 1 the change in the ICE frequency,
Avy, is given by

8¢, — 8¢,

T @

For n =18 and ¢ =15, Av, =2.5 GHz, which is small
compared to the 10 GHz width of the 6p;,,18h state. In short,
knowing the £ = 5, 6, and 7 ICE frequencies for n = 18 allows
us to predict them accurately enough to make the n = 17, 16,
and 15 measurements.

A\}g=3
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FIG. 4. Laser excitation scheme of the experiment.

III. EXPERIMENTAL APPROACH

We prepare 6sng barium Rydberg states by exciting neutral
barium atoms in a beam with four laser pulses. The excitation
scheme from the ground state 65 to the 6sng state is shown in
Fig. 4. Photoions and electrons are produced, so the excitation
is performed in a small electric field, less than 100 V/cm, to
remove them.

As shown by the timing diagram of Fig. 5 after the four
laser pulses, we turn off the electric field and wait 200 ns for
any ringing from the electronics to dissipate. It is important that
there be no stray electric field on the Rydberg atoms during the
microwave pulse to avoid Stark shifts of our observed intervals.
To drive the 6sng — 6snh and 6sng — 6sni transitions, we
apply asingle 1 us pulse of microwaves; while for the 6sng —
6snk transitions, we use a continuous radio-frequency (rf) field
in addition to a 1 ps microwave pulse. When the microwave
pulse ends, we immediately apply a ~493.5 nm frequency-
doubled, dye-amplified diode laser pulse, which excites the
6snf atoms to the autoionizing 6p;,,nt states. The 6p;,ntl
atoms autoionize quickly, and we apply an electric field ramp
to drive the resulting ions to the microchannel plate detector.
The peak of the field ramp is high enough to ionize bound 6sn¢

(e)

(a) (d)

‘ Electric Field
~1ps

FIG. 5. (Color online) The timing sequence for the lasers, mi-
crowaves, and rf signals. (a) Small electric field to clear photoions.
(b) Four laser pulses to drive the 65> — 6sng transition. (c) 1 us
microwave pulse. (d) ICE laser pulse (e) Electric field ramp.

Electric Field (c)

» T
P Time

(b} ~200ns lus

atoms of n > 16, but the signal from bound-state atoms arrives
1 ws later than the signal from autoionizing atoms. The two
signals are temporally well resolved, and we set the gate of the
gated integrator on the autoionization signal. This excitation
and detection cycle is repeated every 50 ms, and our signals
are averaged over many laser shots.

IV. EXPERIMENTAL OBSERVATIONS

A. One-photon intervals

To obtain the single-photon intervals, we started from the
known 6s18g-6s18h transition. We used a high microwave
power at the 6s518g-6s18h resonance to equilibrate the
populations, and we swept the diode laser frequency to
find the frequency of the 65184 — 6p;,,18h ICE transition.
With the laser set to the ICE frequency we then attenuated
the microwave power and scanned the microwave frequency
to repeat the earlier measurements. To find the 6sng-6snh
transitions of n < 18, we changed the diode laser frequency
fromits n = 18 value using Eq. (3) and scanned the microwave
frequency at high power to find a small resonance signal.
We then optimized the signal by adjusting the diode laser
frequency with the microwave frequency set to the 6sng-6snh
frequency. Once we found the optimal diode laser frequency,
we performed our microwave scans at reduced microwave
power.

Typical resonances, for n = 15, are shown in Fig. 6. There
are two resonances, corresponding to the two possible values
of K for the 6515 state. The one-photon transition frequencies
for 6sng to 6snh, 15 < n < 18, are shown in Table 1.

TABLE 1. ng-nh observed frequencies and K splittings.

n K =9/2 (MHz) K =11/2 (MHz) K splitting (MHz)

18 40180.0(6) 41147.4(7) 967.4(9)
17 47367.4(6) 48547.2(6) 1179.8(8)
16 56489.4(6) 57959.0(5) 1469.6(8)
15 68185.8(5) 70063.6(5) 1877.8(7)
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FIG. 6. The single-photon 6s15g — 6s15h transitions. The two
peaks are separated by the K splitting.

B. Two-photon intervals

The procedure used for the two-photon transitions from
6sng to 6sni was similar to that used for the one-photon tran-
sitions. Using the known 6518g-6s18i transition frequencies
we found the ICE wavelength for 6s18i, which could then be
adjusted for lower n using Eq. (3). The two-photon 6sng-6sni
transition occurs via a virtual intermediate state, and there is a
small but measurable ac Stark shift due to the microwave field.
To obtain the unshifted intervals, we took measurements at
multiple microwave powers and extrapolated our results to zero
microwave power. With the available microwave power the
maximum ac Stark shift was 1.65 MHz. The uncertainties are
those given by the statistical fits to the power extrapolations.
Typical two-photon resonances, for n = 15, are shown in
Fig. 7. The two-photon transition frequencies for 6sng to 6sni,
15 < n < 18 are shown in Table II.

C. Three-photon intervals

We located the 6snk — 6p;,nk ICE transitions in es-
sentially the same manner used to find the 6snh — 6p;,onh

lon signals (arb. units)

-1.5

R 1 R 1 R /) 1 R 1 R 1
87320 87340 87360 i 87680 87700 87720

Frequency (MHz)

FIG. 7. The two-photon transitions 6s15¢ — 6s15i. The two
resonances are separated by the K splitting of the 6s15i state.
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TABLE II. ng-ni observed intervals and K splittings.

n K =11/2(MHz) K =13/2(MHz) K splitting (MHz)

18 51422.9(3) 51654.6(3) 231.7(4)
17 60667.8(6) 60926.7(8) 258.9(10)
16 72375.6(3) 72669.2(3) 293.6(4)
15 87359.8(4) 87691.3(3) 331.5(5)

and 6sni — 6p,oni ICE transitions. We do not have enough
microwave power to drive the three-photon 6sng-6snk tran-
sitions using a single microwave field. Instead, we use
two frequencies. One is close to the two-photon 6sng-6sni
microwave frequency, and the other is close to the 6sni-6snk
frequency, which, for clarity, we term a radio frequency (rf),
even though it can be as high as 8.3 GHz. In all cases, the
rf frequency was fixed and the microwave frequency swept.
We verified that if we changed the rf frequency the 6sng-6snk
intervals were given by twice the microwave frequency plus
the rf frequency, indicating that the resonance was due to two
microwave photons and one rf photon.

There are now two ac Stark shifts, due to the microwave
and rf fields. We performed microwave frequency sweeps at
different microwave powers and constant rf power, allowing
us to extrapolate the observed resonance frequencies to zero
microwave power for a given rf power. We repeated this
procedure for several different rf powers to extrapolate to
zero microwave and rf power. Our fit for the 6s17g — 6517k,
K =15/2, transition is shown in Fig. 8. As expected, the
rf power shift is more important since the rf field is nearly
resonant with a one-photon transition. In Table III we give the
measured intervals after extrapolation, as well as the approxi-
mate microwave and rf frequencies used. The uncertainties in
our reported intervals correspond to the uncertainties of the
power extrapolations.

V. CORE POLARIZATION ANALYSIS OF THE DATA

The adiabatic core polarization model of Mayer and Mayer
provides an instructive starting point for the analysis. In it,
the energy by which a Ba 6sn¢ Rydberg state lies below the
hydrogenic energy of —1/2n? is given by [5]

1 —4 1 —6
Wholne = —7% (r=")ne — 2% (r")ne, %)

where o4 and o, are the dipole and quadrupole polarizabilities
of the Bat ionic core, and (r—*),, and (r—%),, are the
expectation values of the squares of the n¢ Rydberg electron’s
field and field gradient at the core. The model is termed
adiabatic because it is based on the assumption that the
Rydberg electron is slowly moving compared to the electrons
in the core, providing an essentially static field.

For comparison to experimental data, it is convenient to use
Edlen’s form of Eq. (5) [7]:

Wpol,n@ = _adPnZ — Qy P QnZa (6)
where
Py = R(r74>n(1a (7)
<r76>ni
nt = s 8
Q ‘ (”74);1( ( )
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FIG. 8. The extrapolation of the three-photon 6s5s17g — 6s17k, K = 15/2, transition to zero power. (a) Resonances were recorded for
multiple microwave powers at each rf power to determine the zero-microwave-power resonance frequency for each rf power. (b) These
zero-microwave-power frequencies were then extrapolated to find the zero-power interval, assuming a linear plus quadratic rf power shift, as

shown.

and R is the Rydberg constant for Ba; R = 109 736.88 cm ™.
Experimentally, we observe the Af{ energy intervals
AWpolnee = Wpol.ne — Wpolne between Ba 6snf and 6snt’
states of the same n, and we can express the observed intervals
in terms of Eq. (6) using

AWpolnere — g +a AP Qner . ©)

APyeer APyee
Here APye = Ppg — Pueyand AP Qo = Prg Qne — Poe Qner-
The Af intervals are largely determined by the dipole
polarizability, and in Eq. (9) we have removed the variation
due to the dipole polarizability by dividing by A P,¢,. Plotting
the left-hand side of Eq. (9) vs AP Qe /AP, yields a
graph with intercept oy and slope «,. In Fig. 9, we have
plotted Eq. (9) for the Ba 6snf £ — £ 4 1 intervals of £ > 5.
The experimental intervals are taken from Gallagher er al.
[10], Snow and Lundeen [12], and this work. The £ — £ + 1
intervals of £ > 6, n = 17 and 20, the high-£ intervals, at
AP Qe /APy < 0.002 fall on a line, as expected, but
the £ =6 — € =7, ni-nk, intervals at AP Q,ppr/APpe =
0.0025 lie distinctly above the line, and the £ =5 — £ = 6,
nh-ni, intervals, at AP Q00 / A Py =~ 0.0053, lie well below
the line. The latter two sets of data are displaced from the line
due to the breakdown of the adiabatic assumption implicit in
Eq. (9).

Almost immediately after the appearance of the paper by
Mayer and Mayer, van Vleck and Whitelaw [6] pointed out
that Eq. (5) is valid only in the limiting case in which the
excited states of the ionic core are far above its ground state.
Furthermore, the polarization shifts are are not first-order
shifts, as implied by Eq. (5), but second-order shifts. To
understand their approach, it is useful to think of the Ba
atom as consisting of an inert, but polarizable, Ba** core and
two valence electrons. In this case the dipole and quadrupole
polarization shifts of the 6sn¢ state are due to the dipole and
quadrupole couplings of the 6sn/ state to the doubly excited
NLnt states. Here NL is the state of Ba™, and n€’ is the
state of the Rydberg electron. The energy shifts are readily
calculated in second-order perturbation theory by summing
the contributions of all the coupled NLn{¢ states, including
continua. For example, the quadrupole polarization energy of
the Ba 6s20i state comes from the quadrupole couplings to
doubly excited Ba Ndnt’ states with £’ = 4, 6, and 8, as shown
schematically in Fig. 10. Summing over all the coupled Ndn¢’
states yields the quadrupole polarization shift. As shown in
Fig. 10 for the specific case of N = 6, A is the energy range
spanned by the n¢’ states associated with an Nd ion state,
and Q is the energy difference between the Ba™ 6s and Nd
states. If A < Q for all N, the sum reduces to a (r=%)20: /2,
as in Eq. (5). Thus, a more precise statement of the adiabatic
requirement is A < 2 for all N L. For the Ba Ndn{’ states of

TABLE IIl. ng-nk frequencies and intervals.

Approximate rf Approximate microwave

n K frequency (MHz) frequency (MHz) Extrapolated interval (MHz)
18 1372 4920 25750 56388.0(20)

15/2 4640 25895 56424.5(30)
17 1372 5750 30390 66521.1(12)

15/2 5750 30400 66562.4(17)
16 13/2 7050 36125 79351.4(17)

1572 7050 36150 79393.0(20)
15 13/2 8300 43720 95739.1(20)

15/2 8100 43875 95798.9(20)
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FIG. 9. The adiabatic plot of the measured AZ intervals using
Eq. (9).

N > 5 the adiabatic requirement is reasonably well satisfied,
but for N = 5 itis not.

The most important quadrupole couplings by far are those
between the 6snf and 5dn’¢’ states. As an example we
consider the 6s520i state, which is coupled to the S5dng,
5dni, and 5dnt states. These states are not energetically
removed from the 6520i state by the Bat 6s-5d interval of
~5000 cm~!, as assumed in the adiabatic model, but by a
range of energies comparable to the ion interval. In this case
A = Q, and the adiabatic model fails, as shown graphically
in Fig. 9. Nonetheless, using hydrogenic wave functions it
is straightforward to calculate the energy shift due to the
quadrupole coupling to the 5dn¢’ states and compare it to
that expected from the adiabatic model, yielding the ratio,
or correction factor, k,. Thus we can write the quadrupole
polarization shift of the 6520i states due to the 5dn’ states
as kg (r=%)20; /2, where a, is the part of the quadrupole
polarizability due to the Ba™ 5d state. An analogous procedure
can be carried out for the dipole polarization shift, leading to
the correction factor k;. An important point to keep in mind is
that k; and k, correct for the nonadiabatic effects in the dipole
and quadrupole polarization energy shifts, respectively. They
are not corrections to the polarizabilities. Thus, for example,

50000 -

| autod
40000 ——6dnl’
30000
'E |
£ 20000
>
. ]
S
S 10000+
w . Lide5d
5dnl’
04
-10000 -

FIG. 10. Energy level diagram showing the quadrupole coupling
of the 6520i state to Ndnt' states (¢’ =4, 6, and 8). The Ba*t 6s
ground-state energy is set to zero. A is the energy spread of the n¢’
states, and €2 is the 6s5-Nd ion energy spacing, shown here for N = 6.
The adiabatic requirement A < €2 is clearly not satisfied for N = 5.
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the nonadiabatic effect in the dipole polarization energy affects
both o4 and «,.

With the realization that the polarization energy shifts
are simply derived from second-order perturbation theory
we can understand why the ni-nk and nh-ni intervals are
displaced as they are in Fig. 9. A 6sni state has a very strong
quadrupole interaction with the low-lying 5d5g state which is
only ~1000 cm~! above the 6sni state. For this reason, the
quadrupole polarization energy shift is greater than expected
from the adiabatic model, and the ni-nk points lie above the
line in Fig. 9. The nh-ni intervals lie below the line in Fig. 9
because the 6snh states have a strong quadrupole interaction
with the 5d4 f state which lies ~1000 cm~! below the 6520h
state. The quadrupole interaction shifts the 65204 state up in
energy, changing the sign of the quadrupole polarization shift.

The high-¢ points in Fig. 9 at AP Q¢ / A Pyee < 0.001 fit
a straight line fairly well, and we can extract values for oy
and «, from the intercept and slope of the line through these
points, which we term the apparent polarizabilities. The values
we obtain are o’ = 123.67(6)a; and oy’ = 1047(63)a;.
These values are too small, due to neglect of the nonadiabatic
corrections, and for this reason we term the extracted values
the apparent polarizabilities.

To extract the correct values of g and o for Ba™ from
the A/ intervals of the Ba 6sn{ states, we must account for
the nonadiabatic effects, which are prominent in Fig. 9. There
are several approaches, and we first describe our approach.
We start by noting that the contributions to the Ba™ 6s
polarizabilities from Ba™ states above the 6p and 5d states
are essentially adiabatic, as are those from BaZt. We assume
the nonadiabatic effects to arise only from the 6 p and 5d states
of Ba™, as done by Snow and Lundeen [13]. Accordingly, we
write the analog to Eq. (5) as

Wholne = —5(atyka + ) (r e — (kg + ) (r®)ue,

(10)

where o/, is the part of the dipole polarizability due to the
6p state of the Ba™ ion, a; is the part of the quadrupole
polarizability due to the 5d state of the Ba™ ion, « is the
part of the dipole polarizability due to the higher-p states of
the Ba™ ion and the dipole polarizability of Ba>*, and ay is
the part of the quadrupole polarizability due to the higher-d
states of the Ba™ ion and the quadrupole polarizability of Ba>*.
The nonadiabatic effects are taken into account by introducing
the correction factors k; and k, [10,13]. In principle, the k,
and k, factors completely eliminate the nonadiabatic effects.
It is straightforward to calculate k; and k, if we assume the
outer electron to be hydrogenic. Our calculated values of k;
are given in Table IV, and to three significant digits there is
no n dependence. The n-dependent k, values are presented in
Table V.
If we define the quantities P/, and Q/, as follows:

P;;e =k Py (11
and
k
0, = k—"Qne, (12)
d
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TABLE IV. k, calculated values.

n =5 =6 =1 =38 =9 =10 =11
15 0.955278 0.969324 0.979127

16 0.955326 0.969248 0.978992

17 0.955494 0.969194 0.978904 0.984568 0.987537 0.989361

18 0.955404 0.969168 0.978870

19 0.955470 0.969141 0.978841

20 0.955510 0.969136 0.978841 0.981743 0.984323 0.985240 0.987553
21 0.955543 0.969128 0.978847

22 0.955584 0.969126

23 0.955619

the energy difference between the £ states of the same n can and «/ are larger than the uncertainties from the fit. To

be written as
’ ’ "
AWpoLng'g = adAPnU’ + OldAPnu/

+a, AP Oy + g AP Queers  (13)

where AWyo1 00, APyge, and AP Q¢ are as defined earlier,
APy = Py — Py and AP'QL, = P, 0 — Py Q. I
we group the o and (x(’]’ terms with the observed energy
intervals and divide Eq. (13) by A P;,,, we obtain the following
expression:

AWpornee — g APy — ag AP Quee ., ,AP'Q,,
=a) +o, —2E
AP, 7 AP,
(14

which is the nonadiabatic analog of Eq. (9).

If we know « and o, we can extract oy and o, from
their linear relationship with the measured AZ intervals, using
the center of gravity of each 6sn¢ state. From Ref. [20], o) =
10.15(53)ag and &) = 814(11)ag. Figure 11(a) shows the fit of
the experimental data to Eq. (14) using our calculated A P, ¢/,
APQ, o, AP, ,p,and AP'Q) . InFig. 11 and in all similar
plots, for the nh-ni and ni-nk intervals n increases from 15 to
21as AP’Q’/A P’ increases. Unlike in Fig. 9, the experimental
data can be fitted reasonably well by a straight line, and from
Fig. 11(a), we obtain o, = 114.47(7)a8 and oté] = 1725(14)(13.
While Fig. 11(a) is an enormous improvement over Fig. 9, the
data clearly do not fit the model, as shown by the residuals in
Fig. 11(b).

Due to the obvious systematic variations of the residuals,
shown in Fig. 11(b), the uncertainties of the values of 0‘:1

TABLE V. k, calculated values.

n £=5 =06 =17
15 —0.982 1.439 1.032
16 —0.889 1.473 1.039
17 —0.818 1.503 1.044
18 —0.761 1.531 1.050
19 —-0.715 1.555 1.054
20 —0.678 1.577 1.058
21 —0.647 1.596 1.061
22 —0.620 1.614

23 —0.598

q
understand these uncertainties we have fitted the data in other

ways. The first is to remove the lower-£ intervals, which have
larger nonadiabatic corrections, from the fit. In Fig. 12(a)
we show the fit obtained by removing the nh-ni intervals
from Fig. 11(a). The resulting values, o, = 114.66(12)a3 and
a; = 1664(36)a8, are not very different from those extracted
from Fig. 11(a). The residuals are shown in Fig. 12(b). There
are several points to note about Fig. 12(b). First, we note
that there is a discontinuity between n = 18 and n = 19 in
the ni-nk points, which may be due to a perturbation of the
energy levels, which we cannot hope to fit. Second, we believe
then=20¢=7— £ =8 and £ = 10 — £ = 11 points to
be in error. We shall return to this point. Finally, if the two
n = 20 points and the discontinuity at n = 18 are ignored,
the systematic variation of the residuals is essentially gone.
If we remove the ni-nk intervals from Fig. 12(a), leaving
only the high-¢ intervals from Snow and Lundeen, we obtain
the plot of Fig. 13, which yields o) = 115.08(16)a3 and
a; = 1160(170)a8. With this restricted set of data the scatter
is now clearly more important than any systematic variation.
Inspection of the £ =7 — £ =8 points of Fig. 13 shows
why we believe the n = 20 points to be suspect. The two
¢ =7 — £ =8 points by themselves imply an impossible
negative quadrupole polarizability,asdothe £ = 10 — £ = 11
and either of the £ = 9 — £ = 10 points.

An alternative approach is to fit the A intervals for each
n state separately, and in Fig. 14 we show the values of o),
and o, extracted from the data shown in Fig. 11(a). Only for
n = 17 and 20 are there more than two AZ¢ intervals, so only
in those two cases can we show uncertainties for the fits. We
expect that if we had more points the uncertainties of the other
n states would be similar. If we disregard the obvious outliers
at n = 18 and 21, there is no monotonic increase or decrease
in the value of o/, and the average value, o, = 114.51(2)a8 ,
is similar to the value extracted from Fig. 11(a). The n = 18
intervals were measured in two different experiments, so we
do not think the n = 18 points are displaced from the others
due to an experimental problem, but for a physical reason.
As already noted, the ni-nk residuals of Fig. 12(b) exhibit
a discontinuity at n = 18, which might be a sign of a series
perturbation. The n = 21 points in Fig. 14 probably reflect
experimental error.

In contrast to the relatively constant values of -, shown in
Fig. 14, the extracted values of a"{ show a clear n dependence,
and we suspect that its origin lies in our calculation of &,
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"o/ AP, The symbols m, e, and A are the data points

presenting the nh-ni, ni-nk, and high-¢ intervals, respectively. For the nh-ni and ni-nk intervals n increases monotonically from 15 to 21 as
AP'Q'/AP' increases. The high-£ intervals are for n = 17 and 20. The linear fit yields the y intercept and the slope, which are the values of
o and o, respectively. From the graph, we obtain o = 114.47(7)a] and o, = 1725(14)a3, and in (b) the plot displays the residuals relative

to the fit, which is the zero line.

especially for £ = 5. There are several sources of error in
calculations of k; and k,. We have ignored the spin-orbit
splittings of the Ba™ 6p and 5d states, and we have assumed
the outer electron to be hydrogenic. The latter assumption
leads to incorrect energies, and, more important, incorrect
wave functions. For this problem, matrix elements of inverse
powers of r are required, which in turn requires wave functions
accurate at small . Unfortunately, there is no simple method
to generate nonhydrogenic wave functions which are accurate
at small r.

Irrespective of the source of the variation in o, seen in
Fig. 14, it is clear that we cannot extract a value of a; from
these data, and the value of a;l is also suspect. Accordingly,
we have fitted the ni-nk and higher-£ intervals of Fig. 12(a)
for n = 17 and 20, the only n values for which we have more
than one A interval. For n = 17 we obtain o, = 114.62(5)a8
and o, = 1640(23)ay, and for n = 20 &/, = 114.73(27)a] and
o, = 1650(120)(13. The n = 17 data lie almost perfectly on a
straight line, while the n = 20 data are more scattered. The
important point is that o, exhibits no n dependence. Thus we
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114 1 1 1 1
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AP'Q'/AP’
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conclude that the fit of Fig. 12(a) provides the best values for o/,
and o/ . The high-£ data shown in Fig. 13 exhibit no systematic
problem, but the high-£ intervals are more susceptible to Stark
shifts and are not as sensitive to the quadrupole polarizability
as are the lower-{ intervals.

To account for possible systematic effects in the de-
termination of o and &, we increase their uncertainties
from the fit shown in Fig. 12(a) to encompass the residuals
shown in Fig. 12(b) except the two n = 20 points men-
tioned previously. The results are o) = 114.66(25)618 and
a; = 1664(50). Adding them to «; and a;’ we obtain the ionic
Ba™ dipole and quadrupole polarizabilities oy = 124.81 (25)a8
and o, = 2478(50)aj, respectively.

It is useful to compare our values to those obtained from
other measurements and theory. In Table VI we present the
values obtained for o4, and in Table VII, we present the values
for oz(; and «,. Our value for oy agrees with the theoretical
value to within the theoretical uncertainty, but our value for
a, is half the theoretical value. It is perhaps more interesting
to compare the experimental results. Two methods have been

0.8}
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e 9510 LT
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© ° [ ] n nt
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FIG. 12. (a) Plot obtained by removing the nh-ni intervals from the data in Fig. 11(a). For the ni-nk intervals n increases monotonically
from 15 to 21 as AP’'Q’/A P’ increases. The high-¢ points are for n = 17 (e) and n = 20 (A). From the graph, we obtain o, = 114.66(12)a;
and a(’] = 1664(36)a8. (b) The residuals of (a). There is far less systematic variation of the residuals than in Fig. 11(b).
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FIG. 13. Plot of high-¢ intervals from Fig. 11(a) for n = 17 (e)
and n = 20 (A). From the graph, we obtain o, = 115‘08(16)a3 and
o, = 1160(170)a;.

used to extract the polarizabilities, polarization analysis of
the A{ intervals and analysis of the K splittings. Analysis
of the K splittings yields the Bat 6s-6p and 6s-5d radial
matrix elements, from which o/, and o, are easily computed.
To the values of «); and at’] given in Ref. [16] we have added

the theoretical values ] = 10.15a8 and o] = 814a3 yielding
the values of oy and o, given in Tables VI and VII. While it
is possible to make good measurements of the K splittings,
they arise completely from the nonadiabatic effects, and their
analysis is much more complicated than a polarization analysis
of AZ intervals. For this reason, we choose to compare our
results to those of Snow and Lundeen, Ref. [21].

Using essentially the same data as we have used here, Snow
and Lundeen [21] arrived at a value of «; distinctly smaller
than ours and a value of ¢, almost twice ours. To understand
the origin of the differences it is useful to use four different
methods to analyze the data. Specifically, we consider ignoring
the nonadiabatic effects, using the adiabatic expansion method,
introducing k, and using the adiabatic expansion method to

3
0

1147}
114.6
114.5 L] {. "
114.4]

1143} - n

1840 — . . . . ; ;
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) a
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1640 L L L L L L
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o

FIG. 14. Graph showing the values of (a) o), and (b) oz:] extracted
from A{ intervals for each n. Disregarding the obvious outliers at
n = 18 and 21, there is no monotonic increase or decrease in the
value of o}, and the average value is &/, = 114.51(2)a;. A value of
a(; cannot be extracted from (b). Only n = 17 and 20 have more than
two data points (the nh-ni, ni-nk, and high-¢ intervals), and therefore
only their uncertainties can be shown.
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TABLE VI. The Ba' 6s dipole polarizability («;) obtained from
this work, and other theoretical and experimental results.

o (units of ag)

Core polarization

This work 124.81(25)
Expt. [10] 125.5(10)
Expt. [13] 124.30(16)
Expt. [21] 123.88(5)
K splitting

Expt. [16] 121.3(66)
Expt. [22] 123.88(5)
Theory [20] 124.15

account for nonadiabatic effects in the dipole polarization
energy, and finally introducing both &, and k. For simplicity,
we label these methods I, 11, III, and IV, respectively. Method
III is similar to that used by Snow and Lundeen, and 1V is
similar to ours.

If we restrict our attention to only the high-£ intervals, it is
not unreasonable to think that the data can be fitted by ignoring
the nonadiabatic effects, method I, and using Eq. (9). The
straight line through the high-¢ points of Fig. 9 is precisely this
fit. It yields oy = )" = 123.67a] and o, = g™ = 1047a;.

In the adiabatic expansion method, method II, the polariza-
tion energy of Eq. (5) is replaced by

Wootne = —50ta(r e — 2oy — 6B e -+, (15)

where the ellipsis indicates terms containing expectation
values of higher inverse powers of r. The most important
difference, from our present point of view, is the presence of
6, in the (r %) term, which is due to the nonadiabatic effect
in the dipole polarization energy. It appears in the same way as
the quadrupole polarizability, and for Ba i = 605(25)a; [21].
The higher inverse powers of r represent higher-order terms
due to the nonadiabatic effect in the dipole polarization energy,
the nonadiabatic effect in the quadrupole polarization energy,
and higher multipole terms. As Snow and Lundeen have
shown, these terms can be represented by higher-order terms
in (r~%)/(r~*), or equivalently, in AP Q/AP, so that the data
points of Fig. 9 no longer need to be fitted by a straight line.
Application of the adiabatic expansion method is based on
the assumption that the expansion is convergent. Inspection of
Fig. 9 suggests that very high-order termsin AP Q /A P will be

TABLE VII. The Ba®™ 6s quadrupole polarizability (e,) and the
contribution of the Ba™ 5d state (a(’l) to it.

o, (units of ag) o, (units of a3)

Core polarization

This work 1664(50) 2478(50)
Expt. [10] 2050(100)
Expt. [21] 1524(8) 4420(250)
Expt. [13] 1828(88) 2462(361)
K splitting
Expt. [16] 1562(93) 2376(93)
Expt. [22] 3606(250) 4420(250)
Theory [20] 3368(34) 4182(34)
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FIG. 15. Comparison between the use of method III to treat the
ni-nk and the high-¢ intervals (o) and method IV to treat the intervals
(M). Here we assume that o] and oz;’ both vanish. The introduction of
k, in method III removes the nonadiabatic effect in the quadrupole
polarization energy, and all the data points fall on a line, unlike the plot
of Fig. 9. The intercept of the fit line gives &y = 123.33(11)a3. Adding
6, from the nonadiabatic correction to the dipole polarization energy
to the slope of the fit line give the broken line, which has slope
&, = 5060a;. The introduction of k, as well as k, in method IV both
raises the points and increases the slope of the fit line; the resulting
intercept and slope are oy = 125.28(8):18 and o, = 2138(24)a3.

required to fit the data, indicating that the adiabatic expansion
is almost certainly not convergent in this case. However, it
should be applicable if we again restrict our attention to the
high-¢ states. Fitting the high-¢ data of Fig. 9 to the first
two terms of Eq. (15) leads to oy = o = 123.67a; and
a, = o + 6B = 46774;.

The deviation of the factors k; and k, from unity is
an indication of the severity of the nonadiabatic effects.
Inspection of Tables IV and V shows that 0.955 < k; < 0.990
while k, ranges from —0.0982 to 1.614, suggesting that the
nonadiabatic effect in the quadrupole polarization energy is by
far the worse problem. Accordingly, we treat the data using
method III, treating the nonadiabatic effects in the quadrupole
and dipole polarization energies by k, and an adiabatic
expansion, respectively. This approach is approximately that
used by Snow and Lundeen. It differs in that Snow and
Lundeen, and we as well, separated the polarizabilities into
two parts, for example, oy = o + ;. To display most clearly
the effect of introducing first k, and then k; we here assume
thato/; and oc(’; both vanish, so that o, = oz and (xc’[ = ay. Since
o), = 0.92ay, this approximation is excellent for ¢4, and it is
not unreasonable for «,. In Fig. 15 using solid circles (o) we
use method III to plot the high-¢ and ni-nk intervals using the
values of k, given in Table V. Since we are now introducing
k4, and later shall introduce kg4, as the horizontal and vertical
axes, we use AP'Q!,,/AP,,, and AWpoi np¢/AP,,,. From
the definitions of P’ and Q' itis evident that P and Q are simply
the special cases of P’ and Q' for k; = k; = 1. The dominant
effect of the introduction of k, is to move points horizontally
on the plot, which removes the glaring problem due to the
nonadiabatic effects, the seemingly random distribution of
points in Fig. 9. Now in Fig. 15 the solid circles (e) all lie
along a straight line. In method III the adiabatic expansion
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TABLE VIII. The Ba* 6s dipole («;) and quadrupole polarizabil-
ities (o) extracted from different methods of data analysis.

Analysis method oy (units of a3) o, (units of a3)

Method I: ignore nonadiabatic 123.67(6) 1047(63)

Method II: adiabatic expansion 123.67(6) 4680(160)

Method III: k, and adiabatic 123.33(11) 5060(150)
expansion

Method IV: k; and k&, 125.28(8) 2138(23)

Snow and Lundeen [21] 123.88(5) 4420(250)

This work 124.81(25) 2478(50)

needs to account only for the nonadiabatic effect on the dipole
polarization. Accordingly, we fit the solid circles (e) to

AWpolnee AP QL
——— =g + (g — 6f)——"—. (16)
APy APy

The intercept of the fit line is oy = 123.33(1 l)ag , and the
slope s, = 1430(35)(1(5). The quadrupole polarizability «, =
sy + 61 = 5060q; is the slope of the broken line in Fig. 15.

To show the effect of using k; as well as k,, method IV, in
Fig. 15 we also plot, as solid squares (M), the high-¢ and ni-nk
intervals. The introduction of k; has two effects, both of which
are evident in Fig. 15. First, it raises all the points by 1%—3%,
since k; < 1 and AP’ < AP. The effect is to raise the value
of ay; oy = 125.28(8)(18. Second, since k, falls further below
1 as ¢ is decreased, the slope of the line through the points
is increased. In this method the slope (of the line through the
square points) is a; = 2138(23)513. The nonadiabatic effect in
the dipole polarization energy on «,, is the difference between
the slopes of the lines through the squares and circles in Fig. 15,
708aj, much less than 68, = 3630a;.

In Table VIII we have collected the results from the four
analyses and presented them together with the values of
Snow and Lundeen and ourselves. Methods I, II, and III
yield essentially the same value of «;, which implies that the
adiabatic expansion method, or a modification which does not
introduce k4, has almost no effect on the value of o, extracted.
These values are also very close to the value obtained by
Snow and Lundeen. The introduction of k;, in method IV,
vertically displaces the points in Fig. 15 and increases the value
of a4 extracted to very nearly match our value. The quadrupole
polarizabilities extracted by methods II and III are both much
larger than those obtained by methods I and IV, due to the
inclusion of 68; in the extracted value. These values are close
to the value obtained by Snow and Lundeen. Method IV yields
a value of o, similar to our value and much smaller than those
of methods II and III. From Table VIII it is evident that the
difference between the values of both «; and «, extracted by
Snow and Lundeen and ourselves is due almost entirely to the
treatment of the nonadiabatic effect in the dipole polarization.

VI. CONCLUSION

We have demonstrated that ICE laser excitation to au-
toionizing states can be used to detect microwave transitions
between high-angular-momentum Rydberg states of alkaline-
earth-metal atoms, even though the ICE transitions are badly
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overlapped. We have used this technique to measure A{ in-
tervals between Ba 6snf statesof 15 <n < 18and 5 <€ < 7.
Combining these measurements with other measurements of
Ba A intervals, we have extracted the Ba™ polarizabili-
ties oy = 124.81(25)a; and o, = 2478(50)a;. These values
disagree with recently reported experimental values due to
the difference in the treatment of the nonadiabatic effects.
In principle, the model we have used exactly accounts for
the nonadiabatic effects by the introduction of the correction
factors k; and k,, which are calculated numerically. The
calculations can be improved by better numerical techniques,
the inclusion of spin-orbit coupling, and the use of nonhydro-

PHYSICAL REVIEW A 89, 062503 (2014)

genic wave functions where required. We hope this work will
stimulate theoretical activity along these lines.
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We observe the microwave transitions of calcium from the 4snf states to the 4s(n + 1)d, 4sng, 4snh, 4sni,
and 4snk states for 18 < n < 23 using delayed field ionization as the state selective detection technique. The
observed intervals between the £ > 5 states can be analyzed to extract the Ca® ionic dipole («4) and quadrupole
(at,) polarizabilities using two nonadiabatic core polarization models. Using these two models we determine the
ionic dipole and quadrupole polarizabilities to be 75.3a; < oy < 76.9a3 and 20643 < a, < 159043, respectively.

DOI: 10.1103/PhysRevA.91.042503

I. INTRODUCTION

In recent years, much effort has been invested in developing
a precise optical frequency standard, and a proposed candidate
is the quadrupole 4s;/, — 3ds transition of the Ca'tion [1,2].
An additional attraction of Ca™ is that it can be cooled by
Doppler cooling to very low temperatures by using this tran-
sition in conjunction with the dipole allowed 3ds;» — 3p3,2
transition [1]. The absolute frequency of the Ca™ 4s, 12— 3ds)»
transition has been measured with an uncertainty of 1 Hz, a
fractional accuracy of one part in 10'3, which is within a factor
of 3 of the fractional uncertainty of the present Cs clock [3].
While an optical transition provides a transition with a higher
quality factor, the transition also has a much larger blackbody
radiation (BBR) shift, and the BBR shift is one of the largest
shifts in an optical clock. In the Ca™ clock transition the BBR
shiftis calculated to be 0.4 Hz at room temperature, 7 = 300 K
[1,2,4]. Since the BBR shift is unavoidable and scales as T*
[5], it is essential to understand it well.

The BBR shift is proportional to the difference in the dipole
polarizabilities a4 of the two ionic states of the clock transition.
While it is possible to calculate the polarizabilities, due to the
charge of the ion the polarizabilities are difficult to measure
directly, and other approaches must be used to check the
validity of the calculations. While measurements of oscillator
strengths and lifetimes are often used, an alternative approach
is one initially suggested by Mayer and Mayer, measuring
the energy intervals between higher £ Rydberg states of the
neutral atom [6]. Here £ is the orbital angular momentum
of the Rydberg electron. The field and gradient from the
Rydberg electron polarize the ionic core, depressing the energy
levels below the hydrogenic energy of —1/2n?, where n is the
principal quantum number of the Rydberg electron. We use
atomic units unless specified otherwise. Since an electron in a
lower £ state comes closer to the ionic core, the polarization
shift increases with decreasing £. This approach is only valid if
the Rydberg electron does not penetrate the ionic core, which
is why it is limited to high ¢ states. The inner turning point of a
Rydberg nf atom is given by ry = £(£ + 1)/2, and ry = 15ag
for £ = 5. Since the Ca™ 451/, wave function is similar in size
to the H 1s wave function, less than 0.02% of the ground-state
probability distribution is found at radial distances beyond
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r = 15ay, so it seems that Ca 4sn states of £ > 5 should be
nonpenetrating states. Here r is the distance of the Rydberg
electron from the ionic core.

Here we report measurements of the Ca 4snf — 4sng —
4snh — 4sni — 4snk intervals, made using a delayed field
ionization approach. Our data show that the adiabatic model
of Mayer and Mayer is inadequate, and we have fit our
measurements to two core polarization models which take
into account the nonadiabatic effects not considered in the
approach of Mayer and Mayer. These analyses yield values
for the dipole polarizability in reasonable agreement with
the calculated value. However, the two values we extract for
the quadrupole polarizability are much smaller and much
larger than the calculated value. We have also measured
the 4snf — 4s(n + 1)d intervals. These intervals, combined
with high-resolution optical spectroscopy could allow a better
determination of the Ca™ polarizabilities. In the sections which
follow we describe our approach, present our experimental
results, and analyze them using several variants of core
polarization analysis.

II. EXPERIMENTAL APPROACH

We excite neutral Ca atoms in a thermal beam from the
ground state to a Rydberg state using three laser beams. The
Ca beam intersects the laser beams at a 90° angle between
two parallel horizontal copper plates separated by 1.2-cm-long
ceramic standoffs. The laser beams are focused to 1 mm
diameters where they intersect the Ca beam. Ground-state
452 atoms are excited to the 4s54p, 4s4d, and 4snf states
by 422.791 nm, 732.816 nm, and ~850 nm laser pulses,
respectively, as shown in Fig. 1. The last laser is tunable over
the range from 847 to 857 nm to excite the 4snf states of
18 < n < 23. A 1-us-long microwave pulse starts 50 ns after
the last laser pulse to excite the 4snf state to the 4sng and
4snh states by the one-photon and two-photon transitions,
respectively. The 4snf — 4sni and 4snf — 4snk transitions
are the three-photon and four-photon transitions. To drive
the three-photon and four-photon excitations, in addition to
a 1 us microwave pulse, we use a continuous wave (cw) radio
frequency (rf) field of frequency between 3.5 and 5 GHz. The
rf and microwave fields are generated by a Hewlett-Packard
(HP) 8257D analog signal generator and 83620A synthesized
sweep generator, respectively. The microwave sweep generator
produces a cw output from 10 MHz to 20 GHz, which is

©2015 American Physical Society
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FIG. 1. Laser excitation scheme of the experiment.

formed into pulses by a General Microwave DM862D switch.
The required microwave frequencies to drive the transitions
range from 23 to 75 GHz. Therefore, several frequency
multipliers, a Narda DBS 2640X220 active doubler, a Narda
DBS 4060X410 active quadrupler, and a Pacific Millimeter
V2WO passive doubler, are used to multiply the synthesizer
frequency to the desired frequency. The power output of
the frequency multipliers ranges from 5 mW to 100 mW.
The microwaves propagate through WR28 waveguide and a
waveguide feedthrough to a WR28 horn inside the vacuum
chamber. The cw rf propagates through a coaxial cable and a
SMA feedthrough to the coaxial-to-waveguide adapter and is
launched by a WR187 horn inside the chamber.

To discriminate between the 4snf states of £ > 3 and the
4snf state, we take advantage of the ¢ dependence of the
lifetimes of Ca Rydberg atoms. The higher angular momentum
Rydberg states live longer than the lower ones [7,8], and we use
the technique of delayed field ionization (DFI). The lifetime of
the 4525 f state has been measured to be ~2.5(5) us [8], and
using the n? scaling law we find that the lifetimes of the 4snf
states of 18 < n < 23 fall in the range from 0.9 to 1.9 us.
Therefore, if we wait long enough after the microwave pulse,
more than 5 pus, atoms in the 4snf states decay significantly
compared to atoms in the 4snf states of ¢ > 3. Typically,
we apply a negative high voltage pulse to the bottom plate
8 to 10 ws after the microwave pulse to field ionize the
surviving Rydberg atoms and drive the resulting electrons to
the microchannel plate (MCP) detector. The timing of the
experiment is shown in Fig. 2. Using this approach a large
increase in the number of detected atoms is observed when
the microwave field drives the transition from the 4snf state
at resonance. To detect transitions from the 4snf states to
the 4s(n + 1)d states we take advantage of the fact that the
lifetimes of the 4s(n + 1)d states are an order of magnitude
shorter than those of the 4snf states. A delay of only 2 us

Laser

mw

~8-10 us < >

1us

£

50 ns
Field ionization pulse

FIG. 2. Timing sequence of the experiment.
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FIG. 3. One-photon 4522 f — 4s22¢ resonance. The linewidth
of the resonance is ~1 MHz which is a transform limited linewidth
of a 1 s microwave pulse.

is used, and a decrease in signal is observed at resonance.
Frequency shifts due to the stray electric field are minimized
by observing the microwave resonance with different bias
voltages on the plates and fitting the resonant frequencies to
a quadratic bias voltage dependence. We then set the bias
voltage to the minimum frequency shift. In this experiment,
the frequency shift due to the stray electric field is in all cases
less than 1 MHz. The experiment is repeated every 50 ms, and
the signals are averaged over many laser shots.

III. EXPERIMENTAL OBSERVATIONS

A. One-photon 4snf — 4sng intervals

For the one-photon transition, 4snf — 4sng, the mi-
crowave power was attenuated until the power broadening
was eliminated. We observed one resonant peak for each
n. Since the optical excitation is to the 4snf 'F; state we
assign the states we observe in the microwave transitions as
IG, states. A typical resonance is shown in Fig. 3, and the
observed intervals are given in Table I. We did not attempt to
eliminate the Earth’s magnetic field. In the Earth’s magnetic
field one might expect linewidths of ~2-3 MHz. However,
the typical linewidth of a 'F; — !G4 resonance is ~1 MHz, the
transform limited linewidth of a 1 s microwave pulse. The
narrow linewidths occur because the one-photon transitions are
between the two singlet states, which have the same Landé g;
factors. Hence all the Am; = O transitions occur at the same
frequency, resulting in the narrow lines [9].

TABLE L. nf — ng observed frequencies.

n Observed frequency (MHz)
18 72891.40(1)

19 62222.19(1)

20 53150.84(2)

21 46053.01(25)

22 40147.03(1)

23 35462.65(5)
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FIG. 4. Two-photon 4518 f — 4s18h resonances. The two reso-
nances are separated by the K splitting of the 4518A state.

B. Two-photon 4snf — 4snh intervals

For the two-photon transition, 4snf — 4snh, we observed
two resonant peaks for each n suggesting that the higher
£ states, £ > 5, are not singlets and triplets. The states are
described by coupling the total angular momentum of the core
fc to the orbital angular momentum € of the Rydberg electron
to form K. Explicitly,

-

K=j.+¢ (1)

The splitting between the two K levels is due to the indirect
spin orbit splitting [10,11]. We ignore the spin of the Rydberg
electron. For the Ca 4sn/ states, j. = 1/2; therefore, K = £ &+
1/2. Hence, for each ¢ state we observe two transitions from
the 4snf to the 4sn{ states, correspondingto K = £ + 1/2 and
K = ¢ — 1/2. To correct for the small ac Stark shift due to the
microwave field, 1.8 MHz at the highest power we used, the
resonances were observed at different microwave powers, and
the resonance frequencies were extrapolated linearly to zero
microwave power to obtain unshifted 4snf — 4snh intervals.
Typical resonances for the two-photon transitions are shown
in Fig. 4, and the observed intervals are given in Table II. The
typical linewidth of the resonances is 2—-3 MHz. The linewidth
is due to the Earth’s magnetic field since the 4snh states are
no longer singlets and triplets.

C. Three-photon 4snf — 4sni intervals

For the three-photon transitions, a single microwave field
does not have enough power to drive the three-photon

TABLE II. nf — nh observed intervals and nh K splittings.

n K =9/2 (MHz) K =11/2 (MHz) K splitting (MHz)

18 95296.36(6) 95312.53(9) 16.17(11)
19 81300.49(6) 81314.41(3) 13.92(7)

20 69905.16(18) 69917.62(13) 12.46(22)
21 60536.07(10) 60546.51(9) 10.44(13)
22 52761.38(96) 52770.12(12) 8.74(97)
23 46261.65(18) 46269.19(5) 7.54(19)
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FIG. 5. Three-photon 4519 f — 4519/ resonance at relative mi-
crowave power 0.63 and at relative rf power 1.0. The K splitting of
the 4519i states cannot be resolved due to the Earth’s magnetic-field
broadening.

4snf — 4sni transitions. Therefore, the three-photon tran-
sitions were driven by using two microwave photons and one
rf photon. The tf frequency of 3.5-5 GHz frequency was
fixed near the 4snh — 4sni frequency, and the microwave
frequency was swept. We verified that the observed resonances
were indeed the 4snf — 4sni transitions by varying the
rf frequency within =5 MHz and sweeping the microwave
frequency for each rf frequency. For each rf frequency,
the 4snf — 4sni interval, given by twice the microwave
frequency plus the rf frequency, was approximately constant,
with only a slight difference in frequency due to the ac Stark
shift. A typical three-photon resonance is shown in Fig. 5. In
Fig. 5, we do not see the K splitting, because the K splitting in
the 4sni states is not resolvable. Since most of the K splitting
is from the dipole term, we can estimate the K splitting in
the 4sni states using the adiabatic dipole term of Eqs. (37)
and (38a) and ignoring the quadrupole term of Eq. (38b) of
Ref. [10]. Explicitly,

_ 2204 DAY ldslr4p)?
" O Wiy — Wap)?

) 2)

where Ay, is the fine-structure splitting of the Cat 4p state,
(r=6),,¢ is the expectation value of 1/r° of the n¢ Rydberg state,
(4s|r|4p) is the Ca™ radial matrix element, Wy, is the energy
of the Ca™ 4s state, and Wy, is the energy of the Ca™ 4 p state.
Since we have measured the K splitting in the 4snh states, we
can use Eq. (2) to estimate the K splitting in the 4sni states.
The ratio between the K splitting in the 4sni and 4snh states
is the ratio (r‘ﬁ)ni/(r_6),1h = 0.2. Therefore, the K splitting
in the 4sni states varies from 4 to 2 MHz as n increases from
18 to 23, which is not resolvable in our experiment due to the
Earth’s magnetic field.

In the three-photon transitions there are both rf and
microwave power shifts. To eliminate the ac Stark shift from
both fields, we observed the resonances at different rf and
microwave powers. For a given microwave power, we observed
resonances at different rf powers. We extrapolated the observed
frequencies linearly to obtain the resonance frequency at zero
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FIG. 6. Extrapolation of the three-photon 4519 f — 4s19i transition to zero rf and microwave powers. (a) At relative microwave power
0.63, resonances were observed at different rf powers to obtain the resonance frequency at zero rf power. (b) Several zero rf power resonances
were obtained at different microwave powers and extrapolated to zero rf and microwave powers.

rf power for a given microwave power. We repeated the
same procedure for several microwave powers. The resonance
frequencies at zero rf power of several microwave powers
were extrapolated to obtain the resonance frequencies at zero
rf and microwave powers. A typical resonance is shown in
Fig. 6, typical power extrapolations are shown in Fig. 5, and
the unshifted intervals are given in Table III.

D. Four-photon 4snf — 4snk intervals

The 4snf — 4snk four-photon transitions were excited
using two microwave photons and two rf photons. The
rf frequency was fixed near the 4snh — 4snk resonance,
while the microwave frequency was swept in the vicinity
of the 4snf — 4snh resonance. Similar to the three-photon
excitation, we verified that the observed resonances were the
4snf — 4snk transitions by varying the 1f frequency within
+5 MHz and sweeping the microwave frequency for each rf
frequency. For each rf frequency, the 4snf — 4snk interval
was given by twice the microwave frequency plus twice the rf
frequency and was approximately constant. We eliminated the
ac Stark shifts using the process discussed for the three-photon
transitions. Typical signals for four-photon transitions are
shown in Fig. 7, and the unshifted intervals are given in
Table IV. Using Eq. (2), we estimate the K splitting in the
4snk states to be on the order of 1 MHz for 18 < n < 20,
which cannot be resolved in this experiment.

TABLE III. nf — ni observed intervals.

n Observed frequency (MHz)
18 102558.95(54)
19 87488.41(40)
20 75223.05(15)
21 65141.32(78)
22 56766.61(69)
23 49771.37(26)

E. One-photon 4snf — 4s(n + 1)d intervals

We have observed the 4snf — 4s(n + 1)d transitions for
n = 19, 20, and 21. In this region the 4snd 'D, Rydberg states
are perturbed by their interaction with the 3d? 1D, state [12].
The perturbation results in shorter lifetimes and rapidly
changing quantum defects. For 19 < n < 21 the 4snd 'D,
states lie close enough in energy to the 4snf 'F states that
the 4snf — 4s(n + 1)d frequencies are within the microwave
frequency range that we can generate. A typical resonance is
shown in Fig. 8, and the observed intervals are presented in
Table V.

IV. DATA ANALYSIS

We analyze the measured A¢ intervals using several
variants of the core polarization model. First, we use the
core polarization model as originally introduced by Mayer
and Mayer [6]. In the high angular momentum 4snf Rydberg
states of £ > 4, the Rydberg n¢ electron is assumed to be in
a hydrogenic n¢ state which does not penetrate the Ca™ core.

1.4

Electron signals (arb. units)

89882 89884

Interval (MHz)

2.4 L
89878 89880 89886

FIG. 7. Four-photon4s19 f — 4519k resonance at 0.178 relative
microwave power and 0.794 relative rf power. The K splitting of the
4519k states is on the order of 1 MHz and cannot be resolved.
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TABLE IV. nf — nk observed intervals.
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TABLE V. nf — (n + 1)d observed intervals.

n Observed frequency (MHz) n Observed frequency (MHz)
18 105362.90(52) 19 84377.04(4)

19 89879.91(7) 20 49143.13(12)

20 77278.61(15) 21 24542.36(4)

Furthermore, the Rydberg electron is assumed to move slowly
compared to the electrons in the ionic core. Thus we term this
model the adiabatic core polarization model. The presence of
the Rydberg electron leads to a quasistatic electric field and
gradient at the Ca™ core, and, due to the dipole and quadrupole
polarizabilities of the core, the energy levels of the Ca 4sn¢
states are depressed below the hydrogenic energy, —1/2n>.
The polarization energy shift is given by [6]

Wpol,nK = _%ad<r74)nl - %aq (776)%’ 3
where o4 and o, are the dipole and quadrupole polarizabilities
of the Ca™ 4s core, and (r~*),,, and (r~°),, are the expectation
values of the squares of the nf¢ Rydberg electron’s field
and field gradient at the core. Since the Rydberg electron is
assumed to be in a hydrogenic state, analytic expressions exist
for these expectation values. We can write Eq. (3) in Edlen’s
experimentally convenient form as [13]

Woolne = —0q Pog — g PQ,yy, 4
where
Pue = Realr e &)
and
(r=®)ue
One = = (6)
Here Rc, is the Rydberg constant for Ca, Rc, =

109735.81 cm™'. Since we measure the intervals between the
4snf and 4sn(€ + 1), £ > 3, states of the same n, we express
the difference between the core polarization energies of 4snf
and 4sn(£ + 1) states of the same n as follows:

AW, / AP y
polnte _ +a, Oie ’ 7
APyp APyp
0
‘e 0.8
=
£
& 04
(2]
g
S 00l
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°
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FIG. 8. One-photon 4519 f — 4s520d resonance.

where AWpol,n(Z’Z = Wpol,n(i’ - Wpol,nﬁa APy = Py — Puy,

and APQ,;p = PueQne — Poo Qner. APy and APQ,,, are

easily calculated, and A Wy ¢ is the measured 4snl — 4snt’
Wool.nee

. . A APQ, .y
interval. Figure 9 shows the graph of versus ——=24~e
g grap AP, AP

using the measured nh — ni (A) and ni — nk (M) intervals.
For the 4snh states in which the K =9/2 and 11/2 states
are resolved, we use the centers of gravity in our calculation.
As suggested by Eq. (7), by plotting %"‘Zf'[ versus %’Z,‘/,
the values of dipole and quadrupole polgrizabilities can be
extracted from the y intercept and slope of a line through the
data points, as shown in Fig. 9. The resulting Ca* 4s dipole
and quadrupole polarizabilities are oy = 75.32(4)a3 and
o, = —257(8)ay, respectively. In this, its simplest form, the
adiabatic core polarization model yields a negative quadrupole
polarizability, which is impossible.

van Vleck and Whitelaw pointed out that the polarization
energy shift of Eq. (3) is a limiting case of a second-order shift
due to the higher multipole terms in the Coulomb interaction
between the Rydberg nf electron and the ion core [14].
For example, the dipole polarization energy of a Ca 4sn/
state comes from the dipole coupling to Npn'(¢ + 1) and
Npe(£ £ 1) bound and continuum states, as shown in Fig. 10.
By considering only the two valence electrons we are implicitly
ignoring inner-shell excited states of Ca, which amounts to
ignoring the contribution of the Ca™ polarizability to the Ca™
polarizability. The shift due to the higher lying Npn'(£ £ 1)
and Npe(£ £ 1) states is readily calculated in second-order
perturbation theory by summing over N and n’, and integrating

75.50
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74.75

74.50

AWI/AP

74.25

74.00

0.000 . 0.001 . 0.002 . 0.003 . 0.004 . 0.005 . 0.006
APQ/AP

FIG. 9. Adiabatic plot of the measured nh — ni (A) and ni — nk
(M) intervals using Eq. (7). There are three data points for the ni — nk
(M) intervals, 18 < n < 20, and six data points for the nh — ni (A)
intervals, 18 < n < 23. A fit to the straight line yields the y intercept
and slope, which are o; and o, respectively. The resulting fit values
are oy = 75.32(4)a] and o, = —257(8)a;.
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FIG. 10. Energy levels of the Rydberg states converging to the
Ca' 4s and Np states and the continua associated with the latter. A
4snf Rydberg state is dipole coupled to Npn'(¢ & 1) states which
span an energy range A. If A <« Wy,_y,, the adiabatic approximation
is valid.

over €. The sum over n’ and the integral over € span an energy
range A, as shown by Fig. 10. If

A K Wys_np, 3

for all N, the result of Mayer and Mayer is recovered. For
example, the dipole polarization energy shift is given by the
dipole term of Eq. (3). Equation (8) is a more precise statement
of the adiabatic condition. For alkali-metal atoms, in which the
excited states of the ion are all at high energies, the requirement
of Eq. (8) is easily met, and the adiabatic approximation works
well. For alkaline-earth atoms this requirement is not met, and
the adiabatic approximation fails, as is evident in Fig. 9.

To correct for the nonadiabatic effects and extract the core
polarizabilities from the A{ intervals there are two approaches
we can take. One is the adiabatic expansion method, which
can be viewed as an expansion in powers of A /Wy,_y,. The
attraction of this approach is that we are only calculating the
corrections to the analytic shifts obtained using hydrogenic
expectation values. The potential problem is convergence of
the expansion. The alternative approach is the direct numerical
calculation of the hydrogenic matrix elements for the dipole
and quadrupole interactions, as exemplified in Fig. 10. This
approach is in principle exact, but since the entire energy shift
is calculated numerically, small errors are important.

In the adiabatic expansion approach the higher-order terms
in the expansion appear as expectation values of higher inverse
powers of 7. If the expansion is to converge, these terms should
become smaller with increasing order. While this condition is
met for the high £ states, it is not for the 4snh states. In
the nonadiabatic correction to the dipole polarization energy
the (r—%),, term is larger than the (r~°),, term. In short, the
expansion is nonconvergent, and we cannot use this method
to analyze our data. However, using the leading correction
term for the dipole polarization energy provides a bound for
the polarizabilities. The leading term in the correction to the
dipole polarization energy has a (r ~%),,, dependence and is thus
indistinguishable from the quadrupole polarization energy.
With the inclusion of this term, Eq. (7) becomes

Avaol,nu’ APQnN/ (9)
APnM' APnN’ ’

where 81 = 0.95a4/(2W4,—45) [15]. The numerical factor of
0.95 comes from the fact that 5% of «; comes from higher-

=ag + (g — 681)
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TABLE VI. k, calculated values.

n =5 =6 =7
18 0.956528 0.972293 0.982680
19 0.956518 0.972178 0.982543
20 0.956500 0.972111 0.982437
21 0.956437 0.972033

22 0.956453 0.971906

23 0.956423 0.971892

lying np states of Ca* and Ca™ [16]. We calculate 68, to
be 1850(40)a3 . Including the leading term in the adiabatic
expansion simply raises the value of o, by 68y, yielding o, =
1590(40)a8. The value of o, is unchanged. Since the 68
correction term in Eq. (9) overcorrects for the nonadiabatic
effect, these values are lower and upper bounds to a; and «,
respectively.

The alternative approach is the direct calculation of the
multipole interactions, as shown in Fig. 10 for the dipole
interaction. As an approximation we assume that all the dipole
and quadrupole polarization energies of the Ca 4sn{ states
come from the couplings to the Ca 4pn’¢’ and 3dn’¢’ states.
For both the dipole and quadrupole shifts, we find the ratio of
the explicitly calculated shift to that predicted by the adiabatic
model. These ratios, the nonadiabatic factors k; and k,, are
then used to correct the adiabatic model. Explicitly, we rewrite
Eq. (3) as

e (10)

The nonadiabatic factors k; and k, are defined in Eqgs. (17.25)
and (17.26) of Ref. [17]. Both are calculated numerically using
a Numerov algorithm to calculate hydrogenic wave functions.
The calculated values of k; and k, are given in Tables VI
and VII, respectively. There are sum rules for the sums of
the squares of the matrix elements [14], and using them we
estimate the percentage uncertainties in kg and &, to be 0.3%
for both values. As shown in Table VI, to three significant
digits, there is no n dependence in k;. As shown in Table VII,
to four significant digits, there is #» dependence in k, for £ = 5
and £ = 6 butnot for £ = 7. We can express Eq. (10) in Edlen’s
form as follows:

1 4 1
Wholne = —5ka@a(r ™ )ne — 3kqaq(r

Woolne = —ta Py — g P’ Q) (1T)

where
,:e =ky4P (12)

TABLE VIIL. k, calculated values.
n {=5 L=6 =1
18 0.9780 0.9273 0.9376
19 0.9797 0.9277 0.9376
20 0.9812 0.9284 0.9376
21 0.9824 0.9284
22 0.9835 0.9287
23 0.9845 0.9292
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FIG. 11. Nonadiabatic plot of the measured nh — ni (A)andni —
nk (M) intervals using Eq. (14). There are three data points for the
ni — nk (W) intervals, 18 < n < 20, and six data points for the nh —
ni (A)intervals, 18 < n < 23. A linear fit (solid line) gives values for
the y intercept and slope of 76.99(7)a8 and 228(12)ag, respectively.
When we take into account the overcorrection of k;, we obtain the
data points (e) and the lower fit line (broken line), which leads to our
final values of oy = 76.91(5)a3 and , = 206(9)ag.

and
/ kq
Qe = k—Qn6~ (13)
d

Hence the difference between the core polarization energy of
4snf and 4snt’ of the same n is

AWpol,nZ’( o AP 1/1@11’
AP, AP,
where A/“fpol,,,gre i§ de/ﬁned ifl Ec,l (M, APy =Py — Py,
and AP QnM’ = Pnl nt Pn@’ Qn["

/

=0og + , (14)

We plot %’,‘ff" versus — PQ/”f" in Fig. 11 using the nh —
ni (A) and ni K(nk () measured intervals. From Fig. 11,
the intercept and slope of the graph yield fit values of oy =
76.99(7)ai and o, = 228(12)ay, respectively, shown by the
solid line.

At this point it is useful to compare Figs. 9 and 11, in
particular the points on the solid line in Fig. 11. There is almost
no difference in the horizontal positions of the data points but
a large difference in their vertical positions, leading to very
different values for «,. The difference in the vertical positions
comes from substituting AP’ for AP, i.e., introducing kg,
the nonadiabatic correction to the dipole polarization energy.
The small difference in the horizontal positions of the points
in the two graphs indicates that the introduction of k,,
the nonadiabatic correction for the quadrupole polarization
energy, has a negligible effect for these A{ intervals. The
uncertainties in the fit in Fig. 11 do not reflect the uncertainty
in the calculation of k;. When it is taken into account the values
we obtain are oy = 77.0(3)a] and o, = 228(12)a;.

We now return to our assumption that the polarization shifts
are due entirely to the couplings to the 4pn’f’ and 3dn’¢’
states. This assumption is equivalent to assuming the Ca™
polarizabilities arise entirely from the Ca™ 4p and 3d states.
The calculations of Safronova and Safronova indicate that 95%
of oy is due to the 4p state, and 58% of «, is due to the 3d
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TABLE VIII. Ca™ 4s dipole polarizability (c;) obtained from this
work and other theoretical and experimental results.

(2] (613)
This work,, 75.32(4)
This work, 76.9(3)
Expt. [8] 87(2)
Expt. [18] 75.3(4)
Expt. [19] 70.89(15)
Theory [16] 76.1(5)
Theory [21] 73.0(1.5)
Theory [20] 75.49

state [16]. Thus in k; and k, we have overcorrected. Inspecting
Figs. 9 and 11 we can see that the overcorrection due to k, is
insignificant, but that due to k,; is important. Accordingly, we
have reduced the correction due to k; by 5%, resulting in the
broken line in Fig. 11. This modification leads to the values
ag = 76.91(5)a; and o, = 206(9)ay. When the uncertainty in
the calculation of k, is taken into account the values we obtain
are ag = 76.9(3)a8 and o, = 206(9)418. As we shall discuss
shortly, we believe these values to be upper and lower bounds
to g and oy

V. DISCUSSION

Tables VIII and IX show values of oy and &, from this work
and other experimental and theoretical work. The uncertainties
for our values represent the uncertainties from the fits of the
data to the two models. The values labeled ,. are from the
adiabatic expansion method, Eq. (9), and the values labeled
dc are from the direct calculation method, Eq. (14). There are
three experimental results for oy to which we can compare
ours. The value of Ref. [8] is based on the measurement of
the 4snf — 4sng intervals. The analysis of these data relied
heavily on a more complex theoretical model, which was
probably inadequate to represent the 4sng states. The value of
oy given in Ref. [18] was obtained by assuming that the 4snh
quantum defects arise solely from the dipole polarizability
and applying the adiabatic core polarization model. Since the
quadrupole polarizability is small and the nonadiabatic effect
on the dipole polarization cancels its effect to some extent, this
approach yields a value for «; close to the value we obtained
from Fig. 9. In Ref. [19] lifetime measurements of the Ca™ 4p;
states were used to obtain the oscillator strengths of the
4s — 4p; transitions, taking into account the small branching
ratios for decay to the 3d; states. The oscillator strengths of
the 45 — 4p; transitions were then used to calculate the value

TABLEIX. Ca™ 4s quadrupole polarizability (e, ) obtained from
this work and other theoretical results.

o, (@)
This work,, 1590(40)
This worky, 206(9)
Theory [16] 871(4)
Theory [20] 875.1
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of «y. The resulting value of o is too small due to the neglect
of higher-lying Ca™ Np states and the dipole polarizability of
Ca™, but when this omission is taken into account it is
consistent with our value for «,. The theoretical values for o,
from Refs. [16] and [20] fall within our experimental bounds
given in Eq. (15), while the theoretical value of Ref. [21] is
clearly outside the bounds.

As shown in Table IX, our value for o, obtained by the
adiabatic expansion method is twice the theoretical value,
and the value obtained by the direct calculation method is
a factor of 4 smaller than the theoretical value. Since a large
fraction, two-thirds, of the quadrupole polarizability is due
to the Ca™ 3d states, an alternative check of the calculated
quadrupole polarizability is the lifetime of the Ca™t 3d state,
which decays by quadrupole radiation. The measured lifetime
is in good agreement with the calculated lifetime, supporting
the validity of the calculation of «,. It is worth noting that
if the value of k; for the 4snh states is reduced to 98.35%
of the current k; value we would obtain oy = 75.3(1)a3
and oy = 878(15)a3 , in excellent agreement with the recent
theoretical values. In view of the sensitivity of the direct
calculation approach to the numerical calculations of k; and the
large discrepancy between our value of «, and the theoretical
values, we view the direct calculation values of Tables VIII
and IX as upper and lower bounds for oy and «,,, respectively.
As a consequence, we report bounds for ¢z and «,. Explicitly,

75.3a) < aq < 76.9a] (15)
and
2064y < a, < 1590a;. (16)

Our ability to specify a; and o, is limited by our confidence
in the core polarization models. Two experimental avenues can
be explored to minimize this problem. The first is measuring
higher ¢ intervals in which the nonadiabatic corrections are
not as large, as done by Lundeen et al. for other atoms [22].
The second is high-resolution laser spectroscopy of the Ca
4snd 'D, states. Absolute measurements of their energies,
good to 10 MHz, would locate the 4snd levels relative
to the hydrogenic nf levels. The microwave measurements
reported here could then be used to locate the Ca 4snf levels
relative to the H n¢ levels, and the present data could then

PHYSICAL REVIEW A 91, 042503 (2015)

be analyzed in terms of the displacements of the energies
from the hydrogenic levels, instead of the differences in the
displacements. The 4snh states could be dropped from the
analysis, substantially reducing the uncertainty due to the non-
adiabatic corrections.

Making measurements involving higher ¢ states should
minimize the nonadiabatic effects, allowing a better deter-
mination of the polarizabilities. However, it is not obvious
that the discrepancy between the theoretical and experimental
values will disappear. Intervals between the high £ Ba 6sn¢
levels have been measured, but the value of o, extracted by
the direct calculation method is a factor of 2 smaller than the
theoretical value, a similar discrepancy to that reported here
for Ca [23]. Determining the source of these discrepancies is
a worthy theoretical challenge.

VI. CONCLUSION

We have measured Af{ intervals of Ca 4snf — 4snd,
18 <n <23, and 4 < ¢ <7 using a microwave and 1f
resonance approach. We have used these measurements to
place bounds on the Ca* dipole and quadrupole polariz-
abilities. The Ca™ 4s dipole and quadrupole polarizabilities
are 75.3a3 < aq < 76.9a3 and 206a; < oy < 1590a;. The
Ca™ 4s dipole polarizability agrees well with recent theoretical
values. However, we are not able to place tight bounds on the
Ca' 4s quadrupole polarizability due to uncertainties in the
core polarization analyses. We hope this work will motivate
theoretical work to reexamine the problem of core polarization
analysis and, more generally, the source of the discrepancy
between the experimental and theoretical values of .
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