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Abstract  
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 In the first experiment, we observe the microwave transitions of 

calcium from the 4snf states to the 4s(n+1)d, 4sng, 4snh, 4sni, and 4snk 

states for 18   n   23 using delayed field ionization as the state selective 

detection technique. The observed intervals between the 5l  states can 

be analyzed to extract the Ca
+
 ionic dipole (

d
 ) and quadrupole (

q
 ) 

polarizabilities using two non-adiabatic core polarization models. Using 

these two models we determine the ionic dipole and quadrupole 

polarizabilities to be 3

0

3

0
9.763.75 aa

d
  and 5

0

5

0
1590206 aa

q
 , 

respectively. 

 In the second experiment, we use selective laser excitation to an 

autoionizing state to observe the microwave transitions of Ba from the 

6sng Rydberg states to the 6snh, 6sni and 6snk states for 15   n   18. We 

extract the dipole and quadrupole polarizabilities of Ba
+
 from the 

measured l  intervals of the Ba 6snl states of  5l  using a nonadiabatic 

core polarization model. The values we determine for the dipole and 

quadrupole polarizabilities are 
d

  =124.81(25) 3

0
a  and 

q
  =2478(50) 5

0
a , 

respectively. 

Keywords: Rydberg atoms, autoionization, indirect spin-orbit coupling, 

Stark states, isolated core excitation 
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 ในงานวิจัยชิ้นแรกเราวัดการเปลี่ยนสถานะในช่วงคลื่นไมโครเวฟของแคลเซี่ยมจาก

สถานะ 4snf  ไปยังสถานะ (n+1)d, 4sng, 4snh, 4sni, และ 4snk  ส าหรับค่าเลข

ควอนตัมหลักระหว่าง 18 ถึง 23 โดยใช้เทคนิคการหน่วงเวลาของสนามไฟฟ้าในการท าให้

อะตอมแตกตัวเป็นไอออน ความต่างของระดับพลังงานระหว่างสถานะควอนตัมโมเมนตัม

เชิงมุมมากกว่า 5 ได้ถูกน ามาวิเคราะห์เพื่อหาค่าความสามารถในการโพลาไรซ์แบบไดโพล 

(
d

 ) และควอดดรูโพล (
q

 ) ของแคลเซี่ยมไอออนโดยใช้แบบจ าลองโพลาไรซ์แก่นไอออน

แบบไม่แอเดียบาติก 2 แบบ จากแบบจ าลองเราก าหนดค่าความสามารถในการโพลาไรซ์แบบ

ไดโพลของแคลเซี่ยมไอออนอยู่ระหว่าง 75.3 
d

a 3

0
 76.9 3

0
a และความสามารถในการ

โพลาไรซ์แบบควอดดรูโพลของแคลเซี่ยมไอออนอยู่ระหว่าง 206 
q

a 5

0
 1590 5

0
a   

ในงานวิจัยชิ้นที่สองเราใช้เทคนิคการเลือกสถานะการแตกตัวเป็นไอออนแบบอัตโนมัติ

โดยใช้เลเซอร์ในการกระตุ้นในการวัดการเปลี่ยนแปลงสถานะในช่วงคลื่นไมโครเวฟของแบเรี่ยม

จากสถานะริดเบิร์ก 6sng ไปยังสถานะ 6snh, 6sni และ 6snk ส าหรับค่าเลขควอนตัมหลัก

ระหว่าง 15 ถึง 18 เราวิเคราะห์ค่าความสามารถในการโพลาไรซ์แบบไดโพลและค่า

ความสามารถในการโพลาไรซ์แบบควอดดรูโพลของแบเรี่ยมไอออนจากการวัดความต่างของ

ระดับพลังงานระหว่างสถานะควอนตัมโมเมนตัมเชิงมุมมากกว่า 5 โดยใช้แบบจ าลองโพลาไรซ์

แก่นไอออนแบบไม่แอเดียบาติก ค่าความสามารถในการโพลาไรซ์แบบไดโพลของแบเรี่ยม

ไอออนที่วิเคราะห์ได้เท่ากับ 
d

  =124.81(25) 3

0
a   และค่าความสามารถในการโพลาไรซ์

แบบควอดดรูโพลของแบเรี่ยมไอออนที่วเิคราะหไ์ด้เท่ากับ 
q

  =2478(50) 5

0
a  

ค าหลัก : อะตอมริดเบิร์ก, การแตกตัวเป็นไอออนโดยอัตโนมัติ, การคู่ควบสปิน-ออร์บิทโดย

อ้อม, สถานะสตาร์ค, การกระตุน้แก่นไอออนแบบโดดเดี่ยว 



I. EXECUTIVE SUMMARY

In recent years, many Nobel Prizes in Physics have been awarded to physicists in the field

of Atomic, Molecular and Optical Physics (AMO) for their efforts in studying and controlling

the dynamics of atomic systems such as the Bose-Einstein Condensation (BEC) and the

optical frequency comb technique. In 2012, the Nobel Prize in Physics was awarded to Serge

Haroche and David J. Wineland for ground-breaking experimental methods that enable

measuring and manipulation of individual quantum systems. Haroche uses Rydberg atoms

to control and measure the microwave photon in the cavity. While the success of controlling

and manipulating the atomic systems is very exciting, many basic atomic measurements are

still needed to further improve or create new ideas and experimental techniques. We will

focus our interests on the dynamics and the properties of Rydberg atoms. The properties

and interactions of Rydberg atoms have implications in many scientific fields. Rydberg

atoms are candidates for realizing a quantum computer due to their strong interactions with

each other. In interstellar space and in plasmas, atoms are commonly found in Rydberg

states. Therefore, Rydberg atoms properties are important in determining the properties of

plasma and radiation sources for astronomers [1].

In this project, the elements we study are calcium and barium. Due to the difficulty

in optically accessing the high angular momentum Rydberg states of ytterbium, we have

changed the element from ytterbium to barium. We measure the dipole αd and quadrupole

αq polarizabilities of barium ion, Ba+, using the selective photo-excitation to autoionizing

states technique. We also measure the dipole αd and quadrupole αq polarizabilities of calcium

ion, Ca+, using delayed field ionization (DFI) technique.

It is possible to extract the dipole αd and quadrupole αq polarizabilities from the intervals

between high ℓ Rydberg states of the atom, states of high enough ℓ that the Rydberg electron

does not penetrate the ionic core [2–5]. We follow the usual convention that n and ℓ are

the principal and orbital angular momentum quantum numbers of the Rydberg electron.

In these non-penetrating states, the energy shifts from the hydrogenic levels arise from

polarization of the core by the field from the Rydberg electron. In Rydberg states of lower

ℓ, the electron comes closer to the core at the inner turning point of its orbit, and the energy

shift is larger. Thus, measuring the ∆ℓ intervals yields the polarizabilities of the ionic core.

An excellent recent summary of core polarization analysis has been given by Lundeen [5].
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Objective

1. Measure the energy intervals between the high angular momentum Rydberg states.

2. Use the measured energy intervals between the high angular momentum Rydberg

states to determine the dipole (αd) and quadrupole (αq) polarizabilities of barium ion,

Ba+, and calcium ion, Ca+.

3. Continue the study of the properties and dynamics of Rydberg atoms.

II. THE IONIC DIPOLE AND QUADRUPOLE POLARIZABILITIES OF CAL-

CIUM

A. Experimental Approach

We excite neutral Ca atoms in a thermal beam from the ground state to a Rydberg

state using three laser beams. The Ca beam intersects the laser beams at a 90 degree angle

between two parallel horizontal copper plates separated by 1.2-cm long ceramic standoffs.

The laser beams are focused to 1 mm diameters where they intersect the Ca beam. Ground

state 4s2 atoms are excited to the 4s4p, 4s4d, and 4snf states by 422.791 nm, 732.816 nm,

and ∼ 850 nm laser pulses, respectively, as shown in Fig. 1. The last laser is tunable over the

range from 847 to 857 nm to excite the 4snf states of 18 ≤ n ≤ 23. A 1-µs long microwave

pulse starts 50 ns after the last laser pulse to excite the 4snf state to the 4sng and 4snh

states by the one-photon and two-photon transitions, respectively. The 4snf → 4sni and

4snf → 4snk transitions are the three-photon and four-photon transitions. To drive the

three-photon and four-photon excitations, in addition to a 1-µs microwave pulse, we use

a continuous wave (cw) radio frequency (RF) field of frequency between 3.5 and 5 GHz.

The RF and microwave fields are generated by a Hewlett-Packard (HP) 8257D analog signal

generator and 83620A synthesized sweep generator, respectively. The microwave sweep

generator produces a cw output from 10 MHz to 20 GHz, which is formed into pulses by

a General Microwave DM862D switch. The required microwave frequencies to drive the

transitions range from 23 to 75 GHz. Therefore, several frequency multipliers; a Narda

DBS 2640X220 active doubler, a Narda DBS 4060X410 active quadrupler and a Pacific

Millimeter V2W0 passive doubler are used to multiply the synthesizer frequency to the
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desired frequency. The power output of the frequency multipliers ranges from 5 mW to 100

mW. The microwaves propagate through WR28 waveguide and a waveguide feedthrough to

a WR28 horn inside the vacuum chamber. The cw RF propagates through a coaxial cable

and a SMA feedthrough to the coaxial-to-waveguide adapter and is launched by a WR187

horn inside the chamber.

To discriminate between the 4snℓ states of ℓ > 3 and the 4snf state, we take advantage

of the ℓ dependence of the lifetimes of Ca Rydberg atoms. The higher angular momentum

Rydberg states live longer than the lower ones [6], and we use the technique of delayed field

ionization (DFI). The lifetime of the 4s25f state has been measured to be ∼2.5(5) µs [6],

and using the n3 scaling law we find that the lifetimes of the 4snf states of 18 ≤ n ≤ 23 fall

in the range from 0.9 to 1.9 µs. Therefore, if we wait long enough after the microwave pulse,

more than 5µs, atoms in the 4snf states decay significantly compared to atoms in the 4snℓ

states of ℓ > 3. Typically, we apply a negative high voltage pulse to the bottom plate 8 to

10 µs after the microwave pulse to field ionize the surviving Rydberg atoms and drive the

resulting electrons to the microchannel plate (MCP) detector. The timing of the experiment

is shown in Fig. 2. Using this approach a large increase in the number of detected atoms is

observed when the microwave field drives the transition from the 4snf state at resonance.

To detect transitions from the 4snf states to the 4s(n + 1)d states we take advantage of

the fact that the lifetimes of the 4s(n + 1)d states are an order of magnitude shorter than

those of the 4snf states. A delay of only 2 µs is used, and a decrease in signal is observed

at resonance. Frequency shifts due to the stray electric field are minimized by observing

the microwave resonance with different bias voltages on the plates and fitting the resonant

frequencies to a quadratic bias voltage dependence. We then set the bias voltage to the

minimum frequency shift. In this experiment, the frequency shift due to the stray electric

field is in all cases less than 1 MHz. The experiment is repeated every 50 ms, and the signals

are averaged over many laser shots.
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B. Experimental Observations

1. One Photon 4snf → 4sng Intervals

For the one-photon transition, 4snf → 4sng, the microwave power was attenuated until

the power broadening was eliminated. We observed one resonant peak for each n. Since the

optical excitation is to the 4snf 1F3 state we assign the states we observe in the microwave

transitions as 1G4 states. A typical resonance is shown in Fig. 3, and the observed intervals

are given in Table I. We did not attempt to eliminate the Earth’s magnetic field. In

the Earth’s magnetic field one might expect linewidths of ∼ 2 − 3 MHz. However, the

typical linewidth of a 1F3 −1 G4 resonance is ∼1 MHz, the transform limited linewidth of

a 1 µs microwave pulse. The narrow linewidths occur because the one photon transitions

are between the two singlet states, which have the same Landé gj factors. Hence, all the

∆mj = 0 transitions occur at the same frequency, resulting in the narrow lines [7].

TABLE I. nf − ng observed frequencies

n Observed Frequency (MHz)

18 72 891.40(1)

19 62 222.19(1)

20 53 150.84(2)

21 46 053.01(25)

22 40 147.03(1)

23 35 462.65(5)

2. Two Photon 4snf → 4snh Intervals

For the two-photon transition, 4snf → 4snh, we observed two resonant peaks for each

n suggesting that the higher ℓ states, ℓ ≥ 5, are not singlets and triplets. The states are

described by coupling the total angular momentum of the core j⃗c to the orbital angular

momentum ℓ⃗ of the Rydberg electron to form K⃗. Explicitly,

K⃗ = j⃗c + ℓ⃗. (1)
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The splitting between the two K levels is due to the indirect spin orbit splitting [8, 9].

We ignore the spin of the Rydberg electron. For the Ca 4snℓ states, jc = 1/2, therefore

K = ℓ ± 1/2. Hence, for each ℓ state we observe two transitions from the 4snf to the

4snℓ states, corresponding to K = ℓ + 1/2 and K = ℓ − 1/2. To correct for the small

AC Stark shift due to the microwave field, 1.8 MHz at the highest power we used, the

resonances were observed at different microwave powers, and the resonance frequencies were

extrapolated linearly to zero microwave power to obtain unshifted 4snf − 4snh intervals.

Typical resonances for the two-photon transitions are shown in Fig. 4, and the observed

intervals are given in Table II. The typical linewidth of the resonances is 2-3 MHz. The

linewidth is due to the Earth’s magnetic field since the 4snh states are no longer singlets

and triplets.

TABLE II. nf − nh observed intervals and nh K splittings

n K =9/2 (MHz) K =11/2 (MHz) K splitting (MHz)

18 95 296.36(6) 95 312.53(9) 16.17(11)

19 81 300.49(6) 81 314.41(3) 13.92(7)

20 69 905.16(18) 69 917.62(13) 12.46(22)

21 60 536.07(10) 60 546.51(9) 10.44(13)

22 52 761.38(96) 52 770.12(12) 8.74(97)

23 46 261.65(18) 46 269.19(5) 7.54(19)

3. Three Photon 4snf → 4sni Intervals

For the three-photon transitions, a single microwave field does not have enough power

to drive the three photon 4snf → 4sni transitions. Therefore, the three-photon transitions

were driven by using two microwave photons and one RF photon. The RF frequency of 3.5-5

GHz frequency was fixed near the 4snh− 4sni frequency, and the microwave frequency was

swept. We verified that the observed resonances were indeed the 4snf → 4sni transitions

by varying the RF frequency within ±5 MHz and sweeping the microwave frequency for

each RF frequency. For each RF frequency, the 4snf → 4sni interval, given by twice the

microwave frequency plus the RF frequency, was approximately constant, with only a slight
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difference in frequency due to the AC Stark shift. A typical three-photon resonance is shown

in Fig. 6. In Fig. 6, we do not see the K splitting, because the K splitting in the 4sni states

is not resolvable. Since most of the K splitting is from the dipole term, we can estimate the

K splitting in the 4sni states using the adiabatic dipole term of Eqs. (37) and (38a) and

ignoring the quadrupole term of Eq. (38b) of Ref. [8]. Explicitly,

Knℓ =
2(2ℓ+ 1)∆4p⟨r−6⟩nℓ⟨4s|r|4p⟩2

9(W4s −W4p)3
, (2)

where ∆4p is the fine structure splitting of the Ca+ 4p state, ⟨r−6⟩nℓ is the expectation value

of 1/r6 of the nℓ Rydberg state, ⟨4s|r|4p⟩ is the Ca+ radial matrix element, W4s is the energy

of the Ca+ 4s state and W4p is the energy of the Ca+ 4p state. Since we have measured

the K splitting in the 4snh states, we can use Eq. (2) to estimate the K splitting in the

4sni states. The ratio between the K splitting in the 4sni and 4snh states is the ratio

⟨r−6⟩ni/⟨r−6⟩nh = 0.2. Therefore, the K splitting in the 4sni states varies from 4 to 2 MHz

as n increases from 18 to 23, which is not resolvable in our experiment due to the Earth’s

magnetic field.

In the three-photon transitions there are both RF and microwave power shifts. To elim-

inate the AC Stark shift from both fields, we observed the resonances at different RF and

microwave powers. For a given microwave power, we observed resonances at different RF

powers. We extrapolated the observed frequencies linearly to obtain the resonance frequency

at zero RF power for a given microwave power. We repeated the same procedure for several

microwave powers. The resonance frequencies at zero RF power of several microwave powers

were extrapolated to obtain the resonance frequencies at zero RF and microwave powers.

Typical power extrapolations are shown in Fig. 5, a typical resonance is shown in Fig. 6,

and the unshifted intervals are given in Table III.

4. Four Photon 4snf → 4snk Intervals

The 4snf → 4snk four-photon transitions were excited using two microwave photons

and two RF photons. The RF frequency was fixed near the 4snh → 4snk resonance while

the microwave frequency was swept in the vicinity of the 4snf → 4snh resonance. Similar

to the three-photon excitation, we verified that the observed resonances were the 4snf →

4snk transitions by varying the RF frequency within ±5 MHz and sweeping the microwave
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TABLE III. nf − ni observed intervals

n Observed Frequency (MHz)

18 102 558.95(54)

19 87 488.41(40)

20 75 223.05(15)

21 65 141.32(78)

22 56 766.61(69)

23 49 771.37(26)

frequency for each RF frequency. For each RF frequency, the 4snf → 4snk interval was

given by twice the microwave frequency plus twice the RF frequency and was approximately

constant. We eliminated the AC Stark shifts using the process discussed for the three-

photon transitions. Typical signals for four-photon transitions are shown in Fig. 7, and the

unshifted intervals are given in Table IV. Using Eq. (2), we estimate the K splitting in the

4snk states to be on the order of 1 MHz for 18 ≤ n ≤ 20, which cannot be resolved in this

experiment.

TABLE IV. nf − nk observed intervals

n Observed Frequency (MHz)

18 105 362.90(52)

19 89 879.91(7)

20 77 278.61(15)

5. One Photon 4snf → 4s(n+ 1)d Intervals

We have observed the 4snf → 4s(n+1)d transitions for n =19, 20, and 21. In this region

the 4snd 1D2 Rydberg states are perturbed by their interaction with the 3d2 1D2 state [10].

The perturbation results in shorter lifetimes and rapidly changing quantum defects. For

19 ≤ n ≤ 21 the 4snd 1D2 states lie close enough in energy to the 4snf 1F3 states that

the 4snf → 4s(n + 1)d frequencies are within the microwave frequency range that we can

generate. A typical resonance is shown in Fig. 8, and the observed intervals are presented
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in Table V.

TABLE V. nf − (n+ 1)d observed intervals

n Observed Frequency (MHz)

19 84 377.04(4)

20 49 143.13(12)

21 24 542.36(4)

C. Discussion

We use the adiabatic expansion method [11] and direct calculation method to determine

the values of αd and αq [13]. Tables XIII and XIV show values of αd and αq from this work

and other experimental and theoretical work. The uncertainties for our values represent the

uncertainties from the fits of the data to the two models. The values labelled ae are from the

adiabatic expansion method and the values are from the direct calculation method. There

are three experimental results for αd to which we can compare ours. The value of ref. [6] is

based on the measurement of the 4snf → 4sng intervals. The analysis of these data relied

heavily on a more complex theoretical model, which was probably inadequate to represent

the 4sng states. The value of αd given in ref. [14] was obtained by assuming that the 4snh

quantum defects arise solely from the dipole polarizability and applying the adiabatic core

polarization model. Since the quadrupole polarizability is small and the nonadiabatic effect

on the dipole polarization cancels its effect to some extent, this approach yields a value for

αd close to the value we obtained by analyzing our data using the adiabatic approximation

method of Mayer and Mayer [3]. In ref. [15] lifetime measurements of the Ca+ 4pj states

were used to obtain the oscillator strengths of the 4s− 4pj transitions, taking into account

the small branching ratios for decay to the 3dj states. The oscillator strengths of the 4s−4pj

transitions were then used to calculate the value of αd. The resulting value of αd is too small

due to the neglect of higher lying Ca+ Np states and the dipole polarizability of Ca++, but

when this omission is taken into account it is consistent with our value for αd. The theoretical

values for αd from refs. [12] and [16] fall within our experimental bounds given in Eq. (3),

while the theoretical value of ref. [17] is clearly outside the bounds.
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To our knowledge, our values of αq are the first experimental values. As shown in Table

XIV, our value obtained by the adiabatic expansion method is twice the theoretical value,

and the value obtained by the direct calculation method is a factor of four smaller than

the theoretical value. Since a large fraction, two thirds, of the quadrupole polarizability is

due to the Ca+ 3d states, an alternative check of the calculated quadrupole polarizability

is the lifetime of the Ca+ 3d state, which decays by quadrupole radiation. The measured

lifetime is in good agreement with the calculated lifetime, supporting the validity of the

calculation of αq. It is worth noting that if the value of kd for the 4snh states is reduced

to 98.35% of the current kd value we would obtain αd = 75.3(1) a30 and αq = 878(15) a50, in

excellent agreement with the recent theoretical values. In view of the sensitivity of the direct

calculation approach to the numerical calculations of kd and the large discrepancy between

our value of αq and the theoretical values, we view the direct calculation values of Tables

XIII and XIV as upper and lower bounds for αd and αq, respectively. As a consequence, we

report bounds for αd and αq. Explicitly,

75.3 a30 < αd < 76.9 a30 (3)

and

206 a50 < αq < 1590 a50. (4)

Our ability to specify αd and αq is limited by our confidence in the core polarization

models. Two experimental avenues can be explored to minimize this problem. The first is

measuring higher ℓ intervals in which the non adiabatic corrections are not as large, as done

by Lundeen et al. for other atoms [5]. The second is high resolution laser spectroscopy of the

Ca 4snd 1D2 states. Absolute measurements of their energies, good to 10 MHz, would locate

the 4snd levels relative to the hydrogenic nℓ levels. The microwave measurements reported

here could then be used to locate the Ca 4snℓ levels relative to the H nℓ levels, and the

present data could then be analyzed in terms of the displacements of the energies from the

hydrogenic levels, instead of the differences in the displacements. The 4snh states could be

dropped from the analysis, substantially reducing the uncertainty due to the non-adiabatic

corrections.

Making measurements involving higher ℓ states should minimize the non adiabatic effects,

allowing a better determination of the polarizabilities. However, it is not obvious that

the discrepancy between the theoretical and experimental values will disappear. Intervals
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TABLE VI. The Ca+ 4s dipole polarizability (αd) obtained from this work and other theoretical

and experimental results.

αd (a30)

This workae 75.32(4)

This workdc 76.9(3)

Expt. [6] 87(2)

Expt. [14] 75.3(4)

Expt. [15] 70.89(15)

Theory [12] 76.1(5)

Theory [17] 73.0(1.5)

Theory [16] 75.49

TABLE VII. The Ca+ 4s quadrupole polarizability (αq) obtained from this work and other theo-

retical results.

αq (a50)

This workae 1590(40)

This workdc 206(9)

Theory [12] 871(4)

Theory [16] 875.1

between the high ℓ Ba 6snℓ levels have been measured, but the value of αq extracted by

the direct calculation method is a factor of two smaller than the theoretical value, a similar

discrepancy to that reported here for Ca [19]. Determining the source of these discrepancies is

a worthy theoretical challenge. The output and the detailed data analysis of the experiment

can be found at [18].

D. Conclusion

We have measured ∆ℓ intervals of Ca 4snf → 4snℓ, 18 ≤ n ≤ 23 and 4 ≤ ℓ ≤ 7 using a

microwave and RF resonance approach. We have used these measurements to place bounds

on the Ca+ dipole and quadrupole polarizabilities. The Ca+ 4s dipole and quadrupole

10



polarizabilities are 75.3 a30 < αd < 76.9 a30 and 206 a50 < αq < 1590 a50. The Ca+ 4s

dipole polarizability agrees well with recent theoretical values. However, we are not able

to place tight bounds on the Ca+ 4s quadrupole polarizability due to uncertainties in the

core polarization analyses. We hope this work will motivate theoretical work to reexamine

the problem of core polarization analysis and, more generally, the source of the discrepancy

between the experimental and theoretical values of αq.
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FIG. 1. Laser excitation scheme of the experiment.

FIG. 2. The timing sequence of the experiment.
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FIG. 3. One-photon 4s22f → 4s22g resonance. The linewidth of the resonance is ∼1 MHz which

is a transform limited linewidth of a 1 µs microwave pulse.
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FIG. 4. Two-photon 4s18f → 4s18h resonances. The two resonances are separated by the K

splitting of the 4s18h state.
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FIG. 5. The extrapolation of the three photon 4s19f → 4s19i transition to zero RF and microwave

powers. (a) At relative microwave power 0.63, resonances were observed at different RF powers

to obtain the resonance frequency at zero RF power. (b) Several zero RF power resonances were

obtained at different microwave powers and extrapolated to zero RF and microwave powers.
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FIG. 6. Three-photon 4s19f → 4s19i resonance at relative microwave power 0.63 and at relative

RF power 1.0. The K splitting of the 4s19i states cannot be resolved due to the Earth’s magnetic

field broadening.
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FIG. 7. Four-photon 4s19f → 4s19k resonance at 0.178 relative microwave power and 0.794 relative

RF power. The K splitting of the 4s19k states is on the order of 1 MHz and cannot be resolved.
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FIG. 8. One-photon 4s19f → 4s20d resonance.
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III. THE IONIC DIPOLE AND QUADRUPOLE POLARIZABILITIES OF BAR-

IUM

A. The microwave ∆ℓ transitions and their detection using isolated core excitation

(ICE)

The ∆ℓ microwave transitions we observe are shown in Fig. 9. The 6sng 1G4 state is

populated by laser excitation, and we drive the microwave transitions to the 6snℓ states

of 5 ≤ ℓ ≤ 7. The higher ℓ states are not singlets and triplets. Rather, the total angular

momentum of the core j⃗c is coupled to the orbital angular momentum ℓ⃗ of the Rydberg

electron to form K⃗. Explicitly,

K⃗ = j⃗c + ℓ⃗. (5)

We ignore the spin of the Rydberg electron. Since jc = 1/2, K = ℓ ± 1/2, and for each ℓ

state we observe two transitions, as shown in Fig. 9. The splitting between the two K levels

is due to the indirect spin orbit splitting [8, 9].

FIG. 9. The Ba 6snℓ, ℓ ≥ 4 states showing the microwave transitions and the K splittings due to

the indirect spin orbit coupling of the 6snℓ, ℓ ≥ 5, Rydberg states.

Detection of the Ba 6snℓ → 6snℓ′ transitions (ℓ′ > ℓ) is based on the difference in

the optical cross sections of the 6snℓ → 6p1/2nℓ and 6snℓ′ → 6p1/2nℓ
′ ICE transitions.

Previously, Cooke and Gallagher used the substantial difference in the wavelengths of the

Sr 5snd → 5pnd and 5snf → 5pnf ICE transitions to detect the Sr 5s(n + 2)d → 5snf

microwave transitions [25]. In ICE of the 6snℓ state, the 6s electron absorbs the photon

while the nℓ electron is a spectator. The 6s → 6p1/2 transition of the inner electron is
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essentially the Ba+ 6s → 6p1/2 transition, with an oscillator strength of 1/3. The oscillator

strength is spread over the spectral width of the 6p1/2nℓ state, which is determined by its

autoionization rate. In this case, the peak optical cross section is given by

σpeak =
λ2A

8πΓnℓ

, (6)

where A is the Einstein A coefficient for the Ba+ 6s −→ 6p1/2 transition, Γnℓ is the au-

toionization rate of the 6p1/2nℓ state, and λ is the wavelength of the transition, 493.5 nm

in this case. We have implicitly assumed that the autoionization rates of the 6p1/2nℓ states

exceed their radiative decay rates, which is in all cases simply the radiative decay rate of

the Ba+ 6p1/2 state. For the 6p1/2nℓ states of interest this condition is easily met. However,

for n ≥ 30 the autoionization rate of a 6p1/2nℓ state of ℓ = 7 is less than the radiative decay

rate, and this method of detection will no longer work [26].

The autoionization rates of the Ba 6p1/2nℓ states of ℓ ≥ 4 decrease by roughly a factor of

five with each increase in ℓ of one [27]. Accordingly, the cross section for the 6snℓ → 6p1/2nℓ

ICE transition increases by a factor of five for each increase in ℓ of one. Even if the center

frequencies of the ICE transitions are the same, approximately the ionic 6s → 6p1/2 fre-

quency, it is possible to observe transitions between the 6snℓ and 6snℓ′ states, as shown in

Fig. 10. Fig. 10 is drawn assuming the two ICE transitions occur at the ionic frequency

and that ℓ′ = ℓ + 1, so the ICE cross sections and widths differ by a factor of five. The

linewidth of the laser driving the ICE transition must be less than the width of the 6p1/2nℓ

state, and the power of the laser must also be kept below saturation of the 6snℓ′ → 6p1/2nℓ
′

transition. If the laser linewidth is less than the 6p1/2nℓ
′ linewidth and the 6snℓ′ → 6p1/2nℓ

′

transition is not saturated, an atom in the 6snℓ′ state is five times as likely as one in the

6snℓ state to undergo the ICE transition when the ICE laser is tuned to the peak of the

cross sections, at the ionic frequency. In short, with the ICE laser tuned to the peak of

the cross sections, driving the 6snℓ → 6snℓ′ microwave transition can result in a fivefold

increase in the autoionization signal at the 6snℓ−6snℓ′ microwave resonance. Alternatively,

the ICE laser can be tuned to the wing of the 6snℓ → 6p1/2nℓ transition, in which case the

microwave 6snℓ → 6snℓ′ transition results in a decrease in the autoionization signal.

In Ba, the 6snℓ → 6p1/2nℓ transition frequencies depend on both n and ℓ. Fig. 11 shows

the ℓ-dependence of the 6s17ℓ → 6p1/217ℓ, ℓ=4 and 5, ICE cross sections. We do not show

the 6s17ℓ → 6p1/217ℓ ICE cross sections for ℓ > 5 since the peak cross sections are so much
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(a) (b)

FIG. 10. (a) The 6snℓ → 6snℓ′ microwave transition can be detected using the difference in the

two ICE cross sections. (b) The ICE cross sections of the 6snℓ → 6p1/2nℓ and 6snℓ′ → 6p1/2nℓ
′

transitions. With the ICE laser tuned to the peak of the cross sections, driving the 6snℓ → 6snℓ′

microwave transition can result in a fivefold increase in the autoionization signal at the 6snℓ−6snℓ′

microwave resonance if ℓ′ = ℓ+ 1.

higher. We do, however, show the location of the ℓ = 6 ICE transition. The higher ℓ ICE

transitions lie closer to the ion 6s− 6p1/2 transition at 20261.56 cm−1. Since the 6s17g and

6s17h ICE transitions are not superimposed, at the peak of the 6s17h ICE transition the

ratio of the cross sections is not five, but ten. While the increased selectivity is attractive,

the displacement of the ICE transitions with ℓ does complicate finding the ICE transitions

for higher ℓ states. In this case the most straightforward approach might be to set the ICE

laser to the high frequency side of the 6s17g → 6p1/217g transition and look for a decrease in

the autoionization signal to detect the 6s17g → 6s17ℓ microwave transitions. However, we

have used a different approach. Since the frequencies of the transitions from the Ba 6s18g

state to the 6s18h, 6s18i, and 6s18k states are known [21], we set the microwave frequency

to the 6s18g → 6s18ℓ resonance and scanned the ICE laser to find the 6s18ℓ → 6p1/218ℓ

ICE transition, which occurs at the frequency νℓ, given by

νℓ = νion +
δℓs − δℓp

n3
, (7)

where νion is the Ba+ 6s − 6p1/2 frequency, and δℓs and δℓp are the quantum defects of the

6snℓ and 6p1/2nℓ states, respectively. When n is decreased by one the change in the ICE
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frequency, ∆νℓ, is given by

∆νℓ = 3
δℓs − δℓp

n4
. (8)

For n = 18 and ℓ = 5, ∆νℓ = 2.5 GHz, which is small compared to the 10 GHz width of the

6p1/218h state. In short, knowing the ℓ = 5, 6, and 7 ICE frequencies for n = 18 allows us

to predict them accurately enough to make the n = 17, 16, and 15 measurements.

FIG. 11. (Color online) The ICE cross sections for the 6s17g and 6s17h states. The wider ICE cross

section is the 6s17g → 6p1/217g transition. The narrower ICE cross section is the 6s17h → 6p1/217h

transition. The arrow shows the location of the 6s17i → 6p1/217i ICE transition. The dashed line

shows the location of the ionic 6s → 6p1/2 transition frequency.

B. Experimental Approach

We prepare 6sng barium Rydberg states by exciting neutral barium atoms in a beam

with four laser pulses. The excitation scheme from the ground state 6s2 to the 6sng state is

shown in Fig.12. Photo-ions and electrons are produced, so the excitation is performed in a

small electric field, less than 100 V/cm, to remove them.
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FIG. 12. Laser excitation scheme of the experiment.

As shown by the timing diagram of Fig. 13 after the four laser pulses, we turn off

the electric field and wait 200 ns for any ringing from the electronics to dissipate. It is

important that there be no stray electric field on the Rydberg atoms during the microwave

pulse to avoid Stark shifts of our observed intervals. To drive the 6sng → 6snh and 6sng →

6sni transitions, we apply a single 1 µs pulse of microwaves; while for the 6sng → 6snk

transitions, we use a continuous radio frequency (RF) field in addition to a 1 µs microwave

pulse. When the microwave pulse ends, we immediately apply a ∼493.5 nm frequency

doubled, dye-amplified diode laser pulse, which excites the 6snℓ atoms to the autoionizing

6p1/2nℓ states. The 6p1/2nℓ atoms autoionize quickly, and we apply an electric field ramp

to drive the resulting ions to the microchannel plate detector. The peak of the field ramp is

high enough to ionize bound 6snℓ atoms of n > 16, but the signal from bound state atoms

arrives 1 µs later than the signal from autoionizing atoms. The two signals are temporally

well resolved, and we set the gate of the gated integrator on the autoionization signal.

This excitation and detection cycle is repeated every 50 ms, and our signals are averaged

over many laser shots.
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FIG. 13. The timing sequence for the lasers, microwaves, and RF signals. (a) Small electric field

to clear photo-ions (b) Four laser pulses to drive the 6s2 → 6sng transition (c) 1 µs MW pulse (d)

ICE laser pulse (e) Electric field ramp

C. Experimental Observations

1. One Photon Intervals

To obtain the single photon intervals, we started from the known 6s18g − 6s18h tran-

sitions. We used a high microwave power at the 6s18g − 6s18h resonance to equilibrate

the populations, and we swept the diode laser frequency to find the frequency of the

6s18h → 6p1/218h ICE transition. With the laser set to the ICE frequency we then at-

tenuated the microwave power and scanned the microwave frequency to repeat the earlier

measurements. To find the 6sng − 6snh transitions of n < 18, we changed the diode laser

frequency from its n = 18 value using Eq. (7) and scanned the microwave frequency at

high power to find a small resonance signal. We then optimized the signal by adjusting the

diode laser frequency with the microwave frequency set to the 6sng− 6snh frequency. Once

we found the optimal diode laser frequency, we performed our microwave scans at reduced

microwave power.

Typical resonances, for n = 15, are shown in Fig. 14. There are two resonances, cor-

responding to the two possible values of K for the 6s15h state. The one-photon transition
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frequencies for 6sng to 6snh, 15 ≤ n ≤ 18 are shown in Table VIII.

TABLE VIII. ng − nh observed frequencies and K splittings

n K =9/2 (MHz) K =11/2 (MHz) K splitting (MHz)

18 40 180.0(6) 41 147.4(7) 967.4(9)

17 47 367.4(6) 48 547.2(6) 1179.8(8)

16 56 489.4(6) 57 959.0(5) 1469.6(8)

15 68 185.8(5) 70 063.6(5) 1877.8(7)
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FIG. 14. The single photon 6s15g → 6s15h transitions. The two peaks are separated by the K

splitting.

2. Two Photon Intervals

The procedure used for the two photon transitions from 6sng to 6sni was similar to that

used for the one photon transitions. Using the known 6s18g − 6s18i transition frequencies

we found the ICE wavelength for 6s18i, which could then be adjusted for lower n using Eq.

(7). The two photon 6sng − 6sni transition occurs via a virtual intermediate state, and

there is a small but measurable AC Stark shift due to the microwave field. To obtain the

unshifted intervals, we took measurements at multiple microwave powers and extrapolated
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our results to zero microwave power. With the available microwave power the maximum

AC Stark shift was 1.65 MHz. The uncertainties are those given by the statistical fits to

the power extrapolations. Typical two photon resonances, for n = 15, are shown in Fig. 15.

TABLE IX. ng − ni observed intervals and K splittings

n K =11/2 (MHz) K =13/2 (MHz) K splitting (MHz)

18 51 422.9(3) 51 654.6(3) 231.7(4)

17 60 667.8(6) 60 926.7(8) 258.9(10)

16 72 375.6(3) 72 669.2(3) 293.6(4)

15 87 359.8(4) 87 691.3(3) 331.5(5)
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FIG. 15. The two photon transitions 6s15g → 6s15i. The two resonances are separated by the K

splitting of the 6s15i state.

3. Three Photon Intervals

We located the 6snk → 6p1/2nk ICE transitions in essentially the same manner used

to find the 6snh → 6p1/2nh and 6sni → 6p1/2ni ICE transitions. We do not have enough
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TABLE X. ng − nk frequencies and intervals

n K approximate RF approximate microwave

frequency (MHz) frequency (MHz) extrapolated interval(MHz)

18 13/2 4920 25 750 56 388.0(20)

15/2 4640 25 895 56 424.5(30)

17 13/2 5750 30 390 66 521.1(12)

15/2 5750 30 400 66 562.4(17)

16 13/2 7050 36 125 79 351.4(17)

15/2 7050 36 150 79 393.0(20)

15 13/2 8300 43 720 95 739.1(20)

15/2 8100 43 875 95 798.9(20)

microwave power to drive the three photon 6sng−6snk transitions using a single microwave

field. Instead, we use two frequencies. One is close to the two photon 6sng−6sni microwave

frequency, and the other is close to the 6sni − 6snk frequency, which, for clarity, we term

a radio frequency (RF), even though it can be as high as 8.3 GHz. In all cases, the RF

frequency was fixed and the microwave frequency swept. We verified that if we changed the

RF frequency the 6sng − 6snk intervals were given by twice the microwave frequency plus

the RF frequency, indicating that the resonance was due to two microwave photons and one

RF photon.

There are now two AC Stark shifts, due to the microwave and RF fields. We performed

microwave frequency sweeps at different microwave powers and constant RF power, allowing

us to extrapolate the observed resonance frequencies to zero microwave power for a given

RF power. We repeated this procedure for several different RF powers to extrapolate to

zero microwave and RF power. Our fit for the 6s17g → 6s17k, K = 15/2 transition

is shown in Fig. 16. As expected, the RF power shift is more important since the RF

field is nearly resonant with a one photon transition. In Table III we give the measured

intervals after extrapolation, as well as the approximate microwave and RF frequencies

used. The uncertainties in our reported intervals correspond to the uncertainties of the

power extrapolations.
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FIG. 16. The extrapolation of the three photon 6s17g → 6s17k K = 15/2 transition to zero power.

(a) Resonances were recorded for multiple microwave powers at each RF power to determine the

zero microwave power resonance frequency for each RF power. (b) These zero microwave power

frequencies were then extrapolated to find the zero power interval, assuming a linear plus quadratic

RF power shift, as shown.

IV. CORE POLARIZATION ANALYSIS OF THE DATA

The adiabatic core polarization model of Mayer and Mayer provides an instructive starting

point for the analysis. In it, the energy by which a Ba 6snℓ Rydberg state lies below the

hydrogenic energy of −1/2n2 is given by [3]

Wpol,nℓ = −1

2
αd⟨r−4⟩nℓ −

1

2
αq⟨r−6⟩nℓ, (9)

where αd and αq are the dipole and quadrupole polarizabilities of the Ba+ ionic core, and

⟨r−4⟩nℓ and ⟨r−6⟩nℓ are the expectation values of the squares of the nℓ Rydberg electron’s

field and field gradient at the core. The model is termed adiabatic because it is based on

the assumption that the Rydberg electron is slowly moving compared to the electrons in the

core, providing an essentially static field.

For comparison to experimental data, it is convenient to use Edlen’s form of Eq (9) [4]:

Wpol,nℓ = −αdPnℓ − αqPnℓQnℓ, (10)

where

Pnℓ = R⟨r−4⟩nℓ, (11)
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Qnℓ =
⟨r−6⟩nℓ
⟨r−4⟩nℓ

, (12)

and R is the Rydberg constant for Ba; R = 109736.88 cm−1. Experimentally, we observe

the ∆ℓ energy intervals, ∆Wpol,nℓ′ℓ = Wpol,nℓ′ −Wpol,nℓ, between Ba 6snℓ and 6snℓ′ states of

the same n, and we can express the observed intervals in terms of Eq. (10) using

∆Wpol,nℓ′ℓ

∆Pnℓℓ′
= αd + αq

∆PQnℓℓ′

∆Pnℓℓ′
. (13)

Here ∆Pnℓℓ′ = Pnℓ − Pnℓ′ , and ∆PQnℓℓ′ = PnℓQnℓ − Pnℓ′Qnℓ′ . The ∆ℓ intervals are largely

determined by the dipole polarizability, and in Eq. (13) we have removed the variation due

to the dipole polarizability by dividing by ∆Pnℓℓ′ . Plotting the left hand side of Eq. (13) vs

∆PQnℓℓ′/∆Pnℓℓ′ yields a graph with intercept αd and slope αq. In Fig. 17, we have plotted

Eq. (13) for the Ba 6snℓ ℓ → ℓ+ 1 intervals of ℓ ≥ 5. The experimental intervals are taken

from Gallagher et al [21], Snow and Lundeen [22], and this work. The ℓ → ℓ + 1 intervals

of ℓ > 6, n=17 and 20, the high ℓ intervals, at ∆PQnℓℓ′/∆Pnℓℓ′ < 0.002 fall on a line, as

expected, but the ℓ = 6 → ℓ = 7, ni−nk, intervals at ∆PQnℓℓ′/∆Pnℓℓ′ ≈ 0.0025 lie distinctly

above the line, and the ℓ = 5 → ℓ = 6, nh − ni, intervals, at ∆PQnℓℓ′/∆Pnℓℓ′ ≈ 0.0053,

lie well below the line. The latter two sets of data are displaced from the line due to the

breakdown of the adiabatic assumption implicit in Eq. (9).

Almost immediately after the appearance of the paper by Mayer and Mayer van Vleck

and Whitelaw pointed out that Eq. (9) is valid only in the limiting case in which the excited

states of the ionic core are far above its ground state. Furthermore, the polarization shifts

are are not first order shifts, as implied by Eq. (9), but second order shifts. To understand

their approach, it is useful to think of the Ba atom as consisting of an inert, but polarizable

Ba++ core and two valence electrons. In this case the dipole and quadrupole polarization

shifts of the 6snℓ state are due to the dipole and quadrupole couplings of the 6snℓ state

to the doubly excited NLnℓ′ states. Here NL is the state of Ba+, and nℓ′ is the state of

the Rydberg electron. The energy shifts are readily calculated in second order perturbation

theory by summing the contributions of all the coupled NLnℓ′ states, including continua.

For example, the quadrupole polarization energy of the Ba 6s20i state comes from the

quadrupole couplings to doubly excited Ba Ndnℓ′ states with ℓ′ =4, 6, and 8, as shown

schematically in Fig. 18. Summing over all the coupled Ndnℓ′ states yields the quadrupole

polarization shift. As shown in Fig. 18 for the specific case of N = 6, ∆ is the energy range
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FIG. 17. The adiabatic plot of the measured ∆ℓ intervals using Eq. (13).

spanned by the nℓ′ states associated with an Nd ion state, and Ω is the energy difference

between the Ba+ 6s and Nd states. If ∆ ≪ Ω for all N , the sum reduces to αq⟨r−6⟩20i/2,

as in Eq. (9). Thus, a more precise statement of the adiabatic requirement is ∆ ≪ Ω for

all NL. For the Ba Ndnℓ′ states of N > 5 the adiabatic requirement is reasonably well

satisfied, but for N = 5 it is not.

The most important quadrupole couplings by far are those between the 6snℓ and 5dn′ℓ′

states. As an example we consider the 6s20i state, which is coupled to the 5dng, 5dni, and

5dnℓ states. These states are not energetically removed from the 6s20i state by the Ba+

6s−5d interval of∼ 5000 cm−1, as assumed in the adiabatic model, but by a range of energies

comparable to the ion interval. In this case ∆ ∼= Ω, and the adiabatic model fails, as shown

graphically in Fig. 17. Nonetheless, using hydrogenic wavefunctions it is straightforward to

calculate the energy shift due to the quadrupole coupling to the 5dnℓ′ states and compare it

to that expected from the adiabatic model, yielding the ratio, or correction factor, kq. Thus

we can write the quadrupole polarization shift of the 6s20i states due to the 5dnℓ′ states as

kqα
′
q⟨r−6⟩20i/2, where α′

q is the part of the quadrupole polarizability due to the Ba+ 5d state.

An analogous procedure can be carried out for the dipole polarization shift, leading to the

correction factor kd. An important point to keep in mind is that kd and kq correct for the
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FIG. 18. Energy level diagram showing the quadrupole coupling of the 6s20i state to Ndnℓ′ states

(ℓ′ = 4, 6 and 8). The Ba+ 6s ground state energy is set to zero. ∆ is the energy spread of the nℓ′

states, and Ω is the 6s−Nd ion energy spacing, shown here for N = 6. The adiabatic requirement,

∆ ≪ Ω, is clearly not satisfied for N = 5.

non adiabatic effects in the dipole and quadrupole polarization energy shifts, respectively.

They are not corrections to the polarizabilities. Thus, for example, the non adiabatic effect

in the dipole polarization energy affects both αd and αq.

With the realization that the polarization energy shifts are simply derived from second

order perturbation theory we can understand why the ni − nk and nh − ni intervals are

displaced as they are in Fig. 17. A 6sni state has a very strong quadrupole interaction with

the low lying 5d5g state which is only ∼ 1000 cm−1 above the 6sni state. For this reason,

the quadrupole polarization energy shift is greater than expected from the adiabatic model,

and the ni− nk points lie above the line in Fig 17. The nh− ni intervals lie below the line

in Fig. 17 because the 6snh states have a strong quadrupole interaction with the 5d4f state

which lies ∼ 1000 cm−1 below the 6s20h state. The quadrupole interaction shifts the 6s20h

state up in energy, changing the sign of the quadrupole polarization shift.

The high ℓ points in Fig. 17 at ∆PQnℓℓ′/∆Pnℓℓ′ < 0.001 fit a straight line fairly well, and

we can extract values for αd and αq from the intercept and slope of the line through these

points, which we term the apparent polarizabilities. The values we obtain are αapp
d =123.67(6)

a30 and αapp
q =1047(63) a50. These values are too small, due to neglect of the nonadiabatic

corrections, and for this reason we term the extracted values the apparent polarizabilities.
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To extract the correct values of αd and αq for Ba+ from the ∆ℓ intervals of the Ba 6snℓ

states, we must account for the nonadiabatic effects, which are prominent in Fig. 17. There

are several approaches, and we first describe our approach. We start by noting that the

contributions to the Ba+ 6s polarizabilities from Ba+ states above the 6p and 5d states are

essentially adiabatic, as are those from Ba++. We assume the nonadiabatic effects to arise

only from the 6p and 5d states of Ba+, as done by Snow and Lundeen [23]. Accordingly, we

write the analog to Eq. (9) as

Wpol,nℓ = −1

2
(α′

dkd + α′′
d)⟨r−4⟩nℓ −

1

2
(α′

qkq + α′′
q )⟨r−6⟩nℓ, (14)

where α′
d is the part of the dipole polarizability due to the 6p state of the Ba+ ion, α′

q is the

part of the quadrupole polarizability due to the 5d state of the Ba+ ion, α′′
d is the part of the

dipole polarizability due to the higher p states of the Ba+ ion and the dipole polarizability

of Ba++, and α′′
q is the part of the quadrupole polarizability due to the higher d states of the

Ba+ ion and the quadrupole polarizability of Ba++. The nonadiabatic effects are taken into

account by introducing the correction factors kd and kq [21, 23]. In principle, the kd and kq

factors completely eliminate the nonadiabatic effects. It is straightforward to calculate kd

and kq if we assume the outer electron to be hydrogenic. Our calculated values of kd are

given in Table XI, and to three significant digits there is no n dependence. The n dependent

kq values are presented in Table XII.

TABLE XI. kd calculated values

n ℓ = 5 ℓ = 6 ℓ = 7 ℓ = 8 ℓ = 9 ℓ = 10 ℓ = 11

15 0.955278 0.969324 0.979127

16 0.955326 0.969248 0.978992

17 0.955494 0.969194 0.978904 0.984568 0.987537 0.989361

18 0.955404 0.969168 0.978870

19 0.955470 0.969141 0.978841

20 0.955510 0.969136 0.978841 0.981743 0.984323 0.985240 0.987553

21 0.955543 0.969128 0.978847

22 0.955584 0.969126

23 0.955619
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If we define the quantities P ′
nℓ and Q′

nℓ as follows

P ′
nℓ = kdPnℓ, (15)

and

Q′
nℓ =

kq
kd

Qnℓ, (16)

the energy difference between the ℓ states of the same n can be written as

∆Wpol,nℓ′ℓ = α′
d∆P ′

nℓℓ′ + α′′
d∆Pnℓℓ′ + α′

q∆P ′Q′
nℓℓ′ + α′′

q∆PQnℓℓ′ (17)

where ∆Wpol,nℓ′ℓ, ∆Pnℓℓ′ , and ∆PQnℓℓ′ are as defined earlier, ∆P ′
nℓℓ′ = P ′

nℓ − P ′
nℓ′ and

∆P ′Q′
nℓℓ′ = P ′

nℓQ
′
nℓ − P ′

nℓ′Q
′
nℓ′ . If we group the α′′

d and α′′
q terms with the observed en-

ergy intervals and divide Eq. (17) by ∆P ′
ℓℓ′ , we obtain the following expression:

∆Wpol,nℓ′ℓ − α′′
d∆Pnℓℓ′ − α′′

q∆PQnℓℓ′

∆P ′
nℓℓ′

= α′
d + α′

q

∆P ′Q′
nℓℓ′

∆P ′
nℓℓ′

, (18)

which is the nonadiabatic analog of Eq. (13).

If we know α′′
d and α′′

q , we can extract α′
d and α′

q from their linear relationship with

the measured ∆ℓ intervals, using the center of gravity of each 6snℓ state. From Ref. [29],

α′′
d = 10.15(53) a30, and α′′

q = 814(11) a50. Fig. 19(a) shows the fit of the experimental data to

Eq. (18) using our calculated ∆Pn,ℓℓ′ , ∆PQn,ℓℓ′ , ∆P ′
n,ℓℓ′ and ∆P ′Q′

n,ℓℓ′ . In Fig. 11 and in all

similar plots, for the nh−ni and ni−nk intervals n increases from 15 to 21 as ∆P ′Q′/∆P ′

TABLE XII. kq calculated values

n ℓ = 5 ℓ = 6 ℓ = 7

15 -0.982 1.439 1.032

16 -0.889 1.473 1.039

17 -0.818 1.503 1.044

18 -0.761 1.531 1.050

19 -0.715 1.555 1.054

20 -0.678 1.577 1.058

21 -0.647 1.596 1.061

22 -0.620 1.614

23 -0.598
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increases. Unlike Fig. 17, the experimental data can be fit reasonably well by a straight

line, and from Fig. 19(a), we obtain α′
d = 114.47(7) a30 and α′

q = 1725(14) a50. While Fig.

19(a) is an enormous improvement over Fig. 17, the data clearly do not fit the model, as

shown by the residuals in Fig. 19(b).
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FIG. 19. (a) Graph of
∆Wpol,nℓ′ℓ−α′′

d∆Pnℓℓ′−α′′
q∆PQnℓℓ′

∆P ′
nℓℓ′

vs
∆P ′Q′

nℓℓ′
∆P ′

nℓℓ′
. The symbols �, •, and N are the

data points presenting the nh − ni, ni − nk and high ℓ intervals, respectively. For the nh − ni

and ni − nk intervals n increases monotonically from 15 to 21 as ∆P ′Q′/∆P ′ increases. The

high ℓ intervals are for n = 17 and 20. The linear fit yields the y-intercept and the slope which

are the values of α′
d and α′

q, respectively. From the graph, we obtain α′
d = 114.47(7) a30 and

α′
q = 1725(14) a50, and (b) the plot displays the residuals relative to the fit, which is the zero line.

Due to the obvious systematic variations of the residuals, shown in Fig. 19(b), the

uncertainties of the values of α′
d and α′

q are larger than the uncertainties from the fit. To

understand these uncertainties we have fit the data in other ways. The first is to remove

the lower ℓ intervals, which have larger nonadiabatic corrections, from the fit. In Fig. 20(a)

we show the fit obtained by removing the nh− ni intervals from Fig. 19(a). The resulting

values, α′
d = 114.66(12) a30 and α′

q = 1664(36) a50, are not very different from those extracted

from Fig. 19(a). The residuals are shown in Fig. 20(b). There are several points to note

about Fig. 20(b). First, we note that there is a discontinuity between n = 18 and n = 19

in the ni − nk points, which may be due to a perturbation of the energy levels, which we
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can not hope to fit. Second, we believe the n = 20 ℓ = 7 → ℓ = 8 and ℓ = 10 → ℓ = 11

points to be in error. We shall return to this point. Finally, if the two n = 20 points and the

discontinuity at n = 18 are ignored, the systematic variation of the residuals is essentially

gone. If we remove the ni − nk intervals from Fig. 20(a), leaving only the high ℓ intervals

from Snow and Lundeen, we obtain the plot of Fig. 21, which yields α′
d = 115.08(16) a30 and

α′
q = 1160(170) a50. With this restricted set of data the scatter is now clearly more important

than any systematic variation. Inspection of the ℓ = 7 → ℓ = 8 points of Fig. 13 shows why

we believe the n = 20 points to be suspect. The two ℓ = 7 → ℓ = 8 points by themselves

imply an impossible negative quadrupole polarizability, as do the ℓ = 10 → ℓ = 11 and

either of the ℓ = 9 → ℓ = 10 points.
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FIG. 20. (a) Plot obtained by removing the nh − ni intervals from the data in Fig. 19(a). For

the ni− nk intervals n increases monotonically from 15 to 21 as ∆P ′Q′/∆P ′ increases. The high

ℓ points are for n = 17 (•) and n = 20 (N). From the graph, we obtain α′
d = 114.66(12) a30 and

α′
q = 1664(36) a50. (b) The residuals of (a). There is far less systematic variation of the residuals

than in Fig. 19(b).

An alternative approach is to fit the ∆ℓ intervals for each n state separately, and in Fig.

22 we show the values of α′
d and α′

q extracted from the data shown in Fig. 19(a). Only for

n = 17 and 20 are there more than two ∆ℓ intervals, so only in those two cases can we show

uncertainties for the fits. We expect that if we had more points the uncertainties of the other

n states would be similar. If we disregard the obvious outliers at n = 18 and 21, there is no
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FIG. 21. Plot of high ℓ intervals from Fig. 19(a) for n = 17 (•) and n = 20 (N). From the graph,

we obtain α′
d = 115.08(16) a30 and α′

q = 1160(170) a50.

monotonic increase or decrease in the value of α′
d, and the average value, α′

d = 114.51(2) a30,

is similar to the value extracted from Fig. 19(a). The n = 18 intervals were measured in two

different experiments, so we do not think the n = 18 points are displaced from the others

due to an experimental problem, but for a physical reason. As already noted, the ni − nk

residuals of Fig. 20(b) exhibit a discontinuity at n = 18, which might be a sign of a series

perturbation. The n = 21 points in Fig. 22 probably reflect experimental error.

In contrast to the relatively constant values of α′
d shown in Fig. 22, the extracted values

of α′
q show a clear n dependence, and we suspect that its origin lies in our calculation of

kq, especially for ℓ = 5. There are several sources of error in calculations of kd and kq. We

have ignored the spin orbit splittings of the Ba+ 6p and 5d states, and we have assumed the

outer electron to be hydrogenic. The latter assumption leads to incorrect energies, and more

important, incorrect wavefunctions. For this problem, matrix elements of inverse powers of

r are required, which in turn requires wavefunctions accurate at small r. Unfortunately,

there is no simple method to generate non hydrogenic wavefunctions which are accurate at

small r.

Irrespective of the source of the variation in α′
q seen in Fig. 22, it is clear that we can not

extract a value of α′
q from these data, and the value of α′

d is also suspect. Accordingly, we

have fit the ni−nk and higher ℓ intervals of Fig. 20(a) for n = 17 and 20, the only n values
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FIG. 22. Graph showing the values of (a) α′
d and (b) α′

q extracted from ∆ℓ intervals for each n.

Disregarding the obvious outliers at n = 18 and 21, there is no monotonic increase or decrease in

the value of α′
d, and the average value is α′

d = 114.51(2) a30. A value of α′
q cannot be extracted

from (b). Only n = 17 and 20 have more than two data points (the nh − ni, ni − nk and high ℓ

intervals), and therefore only their uncertainties can be shown.

for which we have more than one ∆ℓ interval. For n = 17 we obtain α′
d = 114.62(5) a30 and

α′
q = 1640(23) a50, and for n = 20 α′

d = 114.73(27) a30 and α′
q = 1650(120) a50. The n = 17

data lie almost perfectly on a straight line, while the n = 20 data are more scattered. The

important point is that α′
q exhibits no n dependence. Thus we conclude that the fit of Fig.

20(a) provides the best values for α′
d and α′

d. The high ℓ data shown in Fig 21 exhibit no

systematic problem, but the high ℓ intervals are more susceptible to Stark shifts and are not

as sensitive to the quadrupole polarizability as are the lower ℓ intervals.

To account for possible systematic effects in the determination of α′
d and α′

q we increase

their uncertainties from the fit shown in Fig. 20(a) to encompass the residuals shown in Fig.

20(b) except the two n = 20 points mentioned previously. The results are α′
d = 114.66(25)

a30 and α′
q = 1664(50). Adding them to α′′

d and α′′
q to obtain the ionic Ba+ dipole and

quadrupole polarizabilities αd = 124.81(25) a30 and αq = 2478(50) a50, respectively.

It is useful to compare our values to those obtained from other measurements and theory.

In Table XIII we present the values obtained for αd, and in Table XIV, we present the

values for α′
q and αq. Our value for αd agrees with the theoretical value to within the
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TABLE XIII. The Ba+ 6s dipole polarizability (αd) obtained from this work and other theoretical

and experimental results.

αd (a30)

Core polarization

This work 124.81(25)

Expt. [21] 125.5(10)

Expt. [23] 124.30(16)

Expt. [11] 123.88(5)

K splitting

Expt. [8] 121.3(66)

Expt. [28] 123.88(5)

Theory [29] 124.15

theoretical uncertainty, but our value for αq is half the theoretical value. It is perhaps more

interesting to compare the experimental results. Two methods have been used to extract

the polarizabilities, polarization analysis of the ∆ℓ intervals and analysis of the K splittings.

Analysis of the K splittings yields the Ba+ 6s−6p and 6s−5d radial matrix elements, from

which α′
d and α′

q are easily computed. To the values of α′
d and α′

q given in ref. [8] we have

added the theoretical values α′′
d = 10.15 a30 and α′′

q = 814 a50 yielding the values of αd and

αq given in Tables XIII and XIV. While it is possible to make good measurements of the

K splittings, they arise completely from the nonadiabatic effects, and their analysis is much

more complicated than a polarization analysis of ∆ℓ intervals. For this reason, we choose to

compare our results to those of Snow and Lundeen, ref. [11].

Using essentially the same data as we have used here, Snow and Lundeen [11] arrived

at a value of αd distinctly smaller than ours and a value of αq almost twice ours. To

understand the origin of the differences it is useful to use four different methods to analyze

the data. Specifically, we consider ignoring the non adiabatic effects, using the adiabatic

expansion method, introducing kq and using the adiabatic expansion method to account for

nonadiabatic effect in the dipole polarization energy, and finally introducing both kq and kd.

For simplicity, we label these methods I, II, III, and IV, respectively. Method III is similar

to that used by Snow and Lundeen, and IV is similar to ours.
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TABLE XIV. The Ba+ 6s quadrupole polarizability (αq) and the contribution of the Ba+ 5d state

(α′
q) to it.

α′
q (a50) αq (a50)

Core polarization

This work 1664(50) 2478(50)

Expt. [21] 2050(100)

Expt. [11] 1524(8) 4420(250)

Expt. [23] 1828(88) 2462(361)

K splitting

Expt. [8] 1562(93) 2376(93)

Expt. [28] 3606(250) 4420(250)

Theory [29] 3368(34) 4182(34)

If we restrict our attention to only the high ℓ intervals, it is not unreasonable to think

that the data can be fit by ignoring the non adiabatic effects, method I, and using Eq.

(13). The straight line through the high ℓ points of Fig. 17 is precisely this fit. It yields

αd = αapp
d = 123.67 a30 and αq = αapp

q = 1047 a50.

In the adiabatic expansion method, method II, the polarization energy of Eq. (9) is

replaced by

Wpol,nℓ = −1

2
αd⟨r−4⟩nℓ −

1

2
(αq − 6β1)⟨r−6⟩nℓ...., (19)

where the ellipsis indicates terms containing expectation values of higher inverse powers of

r. The most important difference, from our present point of view, is the presence of 6β1 in

the ⟨r−6⟩ term, which is due to the non adiabatic effect in the dipole polarization energy.

It appears in the same way as the quadrupole polarizability, and for Ba β1 = 605(25) a50.

The higher inverse powers of r represent higher order terms due to the nonadiabatic effect

in the dipole polarization energy, the nonadiabatic effect in the quadrupole polarization

energy, and higher multipole terms. As Snow and Lundeen have shown, these terms can

be represented by higher order terms in ⟨r−6⟩/⟨r−4⟩, or equivalently, in ∆PQ/∆P , so that

the data points of Fig. 17 no longer need to be fit by a straight line. Application of the

adiabatic expansion method is based on the assumption that the expansion is convergent.

Inspection of Fig. 17 suggests that very high order terms in ∆PQ/∆P will be required to
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fit the data, indicating that the adiabatic expansion is almost certainly not convergent in

this case. However, it should be applicable if we again restrict our attention to the high

ℓ states. Fitting the high ℓ data of Fig. 17 to the first two terms of Eq. (19) leads to

αd = αapp
d = 123.67 a30 and αq = αapp

q + 6β1 = 4677 a50.

The deviation of the factors kd and kq from unity is an indication of the severity of the

nonadiabatic effects. Inspection of Tables XI and XII shows that 0.955 < kd < 0.990 while

kq ranges from -.0982 to 1.614, suggesting that the non adiabatic effect in the quadrupole

polarization energy is by far the worse problem. Accordingly, we treat the data using method

III, treating the non adiabatic effects in the quadrupole and dipole polarization energies by

kq and an adiabatic expansion, respectively. This approach is approximately that used by

Snow and Lundeen. It differs in that Snow and Lundeen, and we as well, separated the

polarizabilities into two parts, for example αq = α′
q + α′′

q . To display most clearly the effect

of introducing first kq and then kd we here assume that α′′
d and α′′

q both vanish, so that

α′
d = αd and α′

q = αq. Since α′
d = 0.92αd, this approximation is excellent for αd, and it

is not unreasonable for αq. In Fig. 23 using solid circles (•) we use method III to plot

the high ℓ and ni − nk intervals using the values of kq given in Table XII. Since we are

now introducing kq, and later shall introduce kd, as the horizontal and vertical axes we use

∆P ′Q′
nℓ′ℓ/∆P ′

nℓℓ and ∆Wpol,nℓ′ℓ/∆P ′
nℓℓ′ . From the definitions of P ′ and Q′ it is evident that

P and Q are simply the special cases of P ′ and Q′ for kd = kq = 1. The dominant effect of

the introduction of kq is to move points horizontally on the plot, which removes the glaring

problem due to the non adiabatic effects, the seemingly random distribution of points in

Fig. 17. Now in Fig. 23 the solid circles (•) all line along a straight line. In method

III the adiabatic expansion only needs to account for the nonadiabatic effect on the dipole

polarization. Accordingly, we fit the solid circles (•) to

∆Wpol,nℓ′ℓ

∆P ′
nℓℓ′

= αd + (αq − 6β1)
∆P ′Q′

nℓℓ′

∆P ′
nℓℓ′

. (20)

The intercept of the fit line is αd = 123.33(11) a30, and the slope sq = 1430(35) a50. The

quadrupole polarizability, αq = sq+6β1 = 5060 a50, is the slope of the broken line in Fig. 23.

To show the effect of using kd as well as kq, method IV, in Fig. 23 we also plot, as

solid squares (�), the high ℓ and ni− nk intervals. The introduction of kd has two effects,

both of which are evident in Fig. 23. First, it raises all the points by 1-3%, since kd < 1

and ∆P ′ < ∆P . The effect is to raise the value of αd; αd = 125.28(8) a30. Second, since
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TABLE XV. The Ba+ 6s dipole (αd) and quadrupole polarizabilities (αq) extracted from different

methods of data analysis.

Analysis method αd (a30) αq (a50)

Method I: ignore non adiabatic 123.67(6) 1047(63)

Method II: adiabatic expansion 123.67(6) 4680(160)

Method III: kq and adiabatic expansion 123.33(11) 5060(150)

Method IV: kd and kq 125.28(8) 2138(23)

Snow and Lundeen [11] 123.88(5) 4420(250)

This work 124.81(25) 2478(50)

kd falls further below one as ℓ is decreased, the slope of the line through the points is

increased. In this method the slope (of the line through the square points) is αq = 2138(23)

a50. The nonadiabatic effect in the dipole polarization energy on αq is the difference between

the slopes of the lines through the squares and circles in Fig. 23, 708 a50, much less than

6β1 = 3630 a50.

In Table XV we have collected the results from the four analyses and presented them

together with the values of Snow and Lundeen and ourselves. Methods I, II, and III yield

essentially the same value of αd, which implies that the adiabatic expansion method, or a

modification which does not introduce kd, has almost no effect on the value of αd extracted.

These values are also very close to the value obtained by Snow and Lundeen. The introduc-

tion of kd, in method IV, vertically displaces the points in Fig. 23 and increases the value of

αd extracted to very nearly match our value. The quadrupole polarizabilities extracted by

methods II and III are both much larger than those obtained by methods I and IV, due to

the inclusion of 6β1 in the extracted value. These values are close to the value obtained by

Snow and Lundeen. Method IV yields a value of αq similar to our value and much smaller

than methods II and III. From Table XV it is evident that the difference between the values

of both αd and αq extracted by Snow and Lundeen and ourselves is due almost entirely to

the treatment of the non adiabatic effect in the dipole polarization.
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FIG. 23. Comparison between the use of method III to treat the ni− nk and the high ℓ intervals

(•) and method IV to treat the intervals (�). Here we assume α′′
d and α′′

q both vanish. The

introduction of kq in method III removes the nonadiabatic effect in the quadrupole polarization

energy, and all the data points fall on a line, unlike the plot of Fig. 9. The intercept of the

fit line gives αd = 123.33(11) a30. Adding 6β1 from the nonadiabatic correction to the dipole

polarization energy to the slope of the fit line give the broken line, which has slope αq = 5060 a50.

The introduction of kd as well as kq in method IV both raises the points and increases the slope of

the fit line. the resulting intercept and slope are αd = 125.28(8) a30 and αq = 2138(24) a50.

A. Conclusion

We have demonstrated that ICE laser excitation to autoionizing states can be used to

detect microwave transitions between high angular momentum Rydberg states of alkaline-

earth atoms, even though the ICE transitions are badly overlapped. We have used this

technique to measure ∆ℓ intervals between Ba 6snℓ states of 15 ≤ n ≤ 18 and 5 ≤ ℓ ≤

7. Combining these measurements with other measurements of Ba ∆ℓ intervals, we have

extracted the Ba+ polarizabilities αd = 124.81(25) a30 and αq = 2478(50) a50. These values

disagree with recently reported experimental values due to the difference in the treatment

of the nonadiabatic effects. In principle, the model we have used exactly accounts for

the nonadiabatic effects by the introduction of the correction factors kd and kq, which are

calculated numerically. The calculations can be improved by better numerical techniques,

the inclusion of spin-orbit coupling, and the use of non hydrogenic wavefunctions where
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required. We hope this work will stimulate theoretical activity along these lines.
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Detection of barium 6sng → 6snh, 6sni, and 6snk microwave transitions using selective
excitation to autoionizing states
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We use selective laser excitation to an autoionizing state to observe the microwave transitions of Ba from the
6sng Rydberg states to the 6snh, 6sni, and 6snk states for 15 � n � 18. We extract the dipole and quadrupole
polarizabilities of Ba+ from the measured �� intervals of the Ba 6sn� states of � � 5 using a nonadiabatic core
polarization model. The values we determine for the dipole and quadrupole polarizabilities are αd = 124.81(25)a3

0

and αq = 2478(50)a5
0 , respectively.

DOI: 10.1103/PhysRevA.89.062503 PACS number(s): 32.10.Dk, 32.80.Zb, 32.80.Ee

I. INTRODUCTION

One of the largest frequency shifts in present-day atomic
clocks is the blackbody radiation shift [1–4]. Since 300 K
blackbody radiation is low in frequency, the blackbody shift
is predominantly determined by the static polarizability of the
atom or ion used in the clock. For many alkaline-earth-metal
ions used in atomic clocks, there are no measurements of
the ionic dipole and quadrupole polarizabilities to serve as
benchmarks for calculations of the blackbody shifts. It is
possible to extract these polarizabilities from the intervals
between high-� Rydberg states of the atom, states of high
enough � that the Rydberg electron does not penetrate the
ionic core [5–8]. We follow the usual convention that n and
� are the principal and orbital angular momentum quantum
numbers of the Rydberg electron. In these nonpenetrating
states, the energy shifts from the hydrogenic levels arise from
polarization of the core by the field from the Rydberg electron.
In Rydberg states of lower �, the electron comes closer to the
core at the inner turning point of its orbit, and the energy
shift is larger. Thus, measuring the �� intervals yields the
polarizabilities of the ionic core. An excellent recent summary
of core polarization analysis has been given by Lundeen [8].

Several methods have been employed to detect transitions
between the high-� states of alkaline-earth-metal atoms.
Selective field ionization has been used by Gentile et al. to
measure the 4sn� intervals in Ca [9]. Gallagher et al. and
Nunkaew et al. have used delayed field ionization to detect
the Ba 6sn� and Sr 5sn� intervals [10,11]. Snow and Lundeen
have used resonant excitation Stark ionization spectroscopy
(RESIS) to measure the Ba 6sn� and Mg 3sn� intervals
[12,13]. Field ionization is useful for states of n ∼ 20, and
RESIS can be used for states which can be populated by
driving transitions from n = 9 and 10 using a CO2 laser. Here
we point out that the optical excitation to an autoionizing
state by isolated core excitation (ICE) can be used to detect
�� intervals of alkaline-earth-metal atoms over a much wider
range of n [14]. The basis of this notion is that the rapid
increase in the ICE cross section with � allows the microwave
�� transitions between the bound states to be detected,
even when the ICE transitions for different � states occur at

*jn8h@virginia.edu

essentially the same wavelength. Here we report the use of this
technique to measure the Ba 6sng-6snh-6sni-6snk intervals
for 15 � n � 18. This technique should be applicable for all
Ba states of n � 30.

II. THE MICROWAVE �� TRANSITIONS
AND THEIR DETECTION USING ICE

The �� microwave transitions we observe are shown in
Fig. 1. The 6sng 1G4 state is populated by laser excitation,
and we drive the microwave transitions to the 6sn� states of
5 � � � 7. The higher-� states are not singlets and triplets.
Rather, the total angular momentum of the core �jc is coupled
to the orbital angular momentum �� of the Rydberg electron to
form �K . Explicitly,

�K = �jc + ��. (1)

We ignore the spin of the Rydberg electron. Since jc = 1/2,
K = � ± 1/2, and for each � state we observe two transitions,
as shown in Fig. 1. The splitting between the two K levels is
due to the indirect spin-orbit splitting [15,16].

Detection of the Ba 6sn� → 6sn�′ transitions (�′ > �) is
based on the difference in the optical cross sections of the
6sn�→ 6p1/2n� and 6sn�′ → 6p1/2n�′ ICE transitions. Pre-
viously, Cooke and Gallagher used the substantial difference
in the wavelengths of the Sr 5snd → 5pnd and 5snf → 5pnf

ICE transitions to detect the Sr 5s(n+ 2)d → 5snf microwave
transitions [17]. In ICE of the 6sn� state, the 6s electron
absorbs the photon while the n� electron is a spectator. The
6s → 6p1/2 transition of the inner electron is essentially the
Ba+ 6s → 6p1/2 transition, with an oscillator strength of 1/3.
The oscillator strength is spread over the spectral width of the
6p1/2n� state, which is determined by its autoionization rate.
In this case, the peak optical cross section is given by

σpeak = λ2A

8π�n�

, (2)

where A is the Einstein A coefficient for the Ba+ 6s → 6p1/2

transition, �n� is the autoionization rate of the 6p1/2n� state,
and λ is the wavelength of the transition, 493.5 nm in this case.
We have implicitly assumed that the autoionization rates of the
6p1/2n� states exceed their radiative decay rates, which is in
all cases simply the radiative decay rate of the Ba+ 6p1/2 state.
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FIG. 1. The Ba 6sn�, � � 4, states showing the microwave
transitions and the K splittings due to the indirect spin-orbit coupling
of the 6sn�, � � 5, Rydberg states.

For the 6p1/2n� states of interest this condition is easily met.
However, for n � 30 the autoionization rate of a 6p1/2n� state
of � = 7 is less than the radiative decay rate, and this method
of detection will no longer work [18].

The autoionization rates of the Ba 6p1/2n� states of � � 4
decrease by roughly a factor of 5 with each increase in �

of 1 [19]. Accordingly, the cross section for the 6sn� →
6p1/2n� ICE transition increases by a factor of 5 for each
increase in � of 1. Even if the center frequencies of the ICE
transitions are the same, approximately the ionic 6s → 6p1/2

frequency, it is possible to observe transitions between the
6sn� and 6sn�′ states, as shown in Fig. 2. Figure 2 is
drawn assuming the two ICE transitions occur at the ionic
frequency and that �′ = � + 1, so the ICE cross sections and
widths differ by a factor of 5. The linewidth of the laser
driving the ICE transition must be less than the width of
the 6p1/2n� state, and the power of the laser must also be
kept below saturation of the 6sn�′ → 6p1/2n�′ transition. If
the laser linewidth is less than the 6p1/2n�′ linewidth and the
6sn�′ → 6p1/2n�′ transition is not saturated, an atom in the
6sn�′ state is five times as likely as one in the 6sn� state to
undergo the ICE transition when the ICE laser is tuned to the
peak of the cross sections, at the ionic frequency. In short,
with the ICE laser tuned to the peak of the cross sections,
driving the 6sn�→ 6sn�′ microwave transition can result in a
fivefold increase in the autoionization signal at the 6sn�-6sn�′
microwave resonance. Alternatively, the ICE laser can be tuned
to the wing of the 6sn� → 6p1/2n� transition, in which case
the microwave 6sn� → 6sn�′ transition results in a decrease
in the autoionization signal.

FIG. 2. (a) The 6sn� → 6sn�′ microwave transition can be
detected using the difference in the two ICE cross sections. (b) The
ICE cross sections of the 6sn� → 6p1/2n� and 6sn�′ → 6p1/2n�′

transitions. With the ICE laser tuned to the peak of the cross sections,
driving the 6sn� → 6sn�′ microwave transition can result in a fivefold
increase in the autoionization signal at the 6sn�-6sn�′ microwave
resonance if �′ = � + 1.

FIG. 3. (Color online) The ICE cross sections for the 6s17g and
6s17h states. The wider ICE cross section is the 6s17g → 6p1/217g

transition. The narrower ICE cross section is the 6s17h → 6p1/217h

transition. The arrow shows the location of the 6s17i → 6p1/217i ICE
transition. The dashed line shows the location of the ionic 6s → 6p1/2

transition frequency.

In Ba, the 6sn� → 6p1/2n� transition frequencies depend
on both n and �. Figure 3 shows the � dependence of the
6s17� → 6p1/217�, � = 4 and 5, ICE cross sections. We
do not show the 6s17� → 6p1/217� ICE cross sections for
� > 5 since the peak cross sections are so much higher. We
do, however, show the location of the � = 6 ICE transition.
The higher-� ICE transitions lie closer to the ion 6s-6p1/2

transition at 20 261.56 cm−1. Since the 6s17g and 6s17h

ICE transitions are not superimposed, at the peak of the
6s17h ICE transition the ratio of the cross sections is not
5, but 10. While the increased selectivity is attractive, the
displacement of the ICE transitions with � does complicate
finding the ICE transitions for higher-� states. In this case
the most straightforward approach might be to set the ICE
laser to the high-frequency side of the 6s17g → 6p1/217g

transition and look for a decrease in the autoionization signal
to detect the 6s17g → 6s17� microwave transitions. However,
we have used a different approach. Since the frequencies of the
transitions from the Ba 6s18g state to the 6s18h, 6s18i, and
6s18k states are known [10], we set the microwave frequency
to the 6s18g → 6s18� resonance and scanned the ICE laser
to find the 6s18� → 6p1/218� ICE transition, which occurs at
the frequency ν�, given by

ν� = νion + δ�s
− δ�p

n3
, (3)

where νion is the Ba+ 6s-6p1/2 frequency, and δ�s
and δ�p

are the
quantum defects of the 6sn� and 6p1/2n� states, respectively.
When n is decreased by 1 the change in the ICE frequency,
�ν�, is given by

�ν� = 3
δ�s

− δ�p

n4
. (4)

For n = 18 and � = 5, �ν� = 2.5 GHz, which is small
compared to the 10 GHz width of the 6p1/218h state. In short,
knowing the � = 5, 6, and 7 ICE frequencies for n = 18 allows
us to predict them accurately enough to make the n = 17, 16,
and 15 measurements.
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FIG. 4. Laser excitation scheme of the experiment.

III. EXPERIMENTAL APPROACH

We prepare 6sng barium Rydberg states by exciting neutral
barium atoms in a beam with four laser pulses. The excitation
scheme from the ground state 6s2 to the 6sng state is shown in
Fig. 4. Photoions and electrons are produced, so the excitation
is performed in a small electric field, less than 100 V/cm, to
remove them.

As shown by the timing diagram of Fig. 5 after the four
laser pulses, we turn off the electric field and wait 200 ns for
any ringing from the electronics to dissipate. It is important that
there be no stray electric field on the Rydberg atoms during the
microwave pulse to avoid Stark shifts of our observed intervals.
To drive the 6sng → 6snh and 6sng → 6sni transitions, we
apply a single 1 μs pulse of microwaves; while for the 6sng →
6snk transitions, we use a continuous radio-frequency (rf) field
in addition to a 1 μs microwave pulse. When the microwave
pulse ends, we immediately apply a ∼493.5 nm frequency-
doubled, dye-amplified diode laser pulse, which excites the
6sn� atoms to the autoionizing 6p1/2n� states. The 6p1/2n�

atoms autoionize quickly, and we apply an electric field ramp
to drive the resulting ions to the microchannel plate detector.
The peak of the field ramp is high enough to ionize bound 6sn�

FIG. 5. (Color online) The timing sequence for the lasers, mi-
crowaves, and rf signals. (a) Small electric field to clear photoions.
(b) Four laser pulses to drive the 6s2 → 6sng transition. (c) 1 μs
microwave pulse. (d) ICE laser pulse (e) Electric field ramp.

atoms of n > 16, but the signal from bound-state atoms arrives
1 μs later than the signal from autoionizing atoms. The two
signals are temporally well resolved, and we set the gate of the
gated integrator on the autoionization signal. This excitation
and detection cycle is repeated every 50 ms, and our signals
are averaged over many laser shots.

IV. EXPERIMENTAL OBSERVATIONS

A. One-photon intervals

To obtain the single-photon intervals, we started from the
known 6s18g-6s18h transition. We used a high microwave
power at the 6s18g-6s18h resonance to equilibrate the
populations, and we swept the diode laser frequency to
find the frequency of the 6s18h → 6p1/218h ICE transition.
With the laser set to the ICE frequency we then attenuated
the microwave power and scanned the microwave frequency
to repeat the earlier measurements. To find the 6sng-6snh

transitions of n < 18, we changed the diode laser frequency
from its n = 18 value using Eq. (3) and scanned the microwave
frequency at high power to find a small resonance signal.
We then optimized the signal by adjusting the diode laser
frequency with the microwave frequency set to the 6sng-6snh

frequency. Once we found the optimal diode laser frequency,
we performed our microwave scans at reduced microwave
power.

Typical resonances, for n = 15, are shown in Fig. 6. There
are two resonances, corresponding to the two possible values
of K for the 6s15h state. The one-photon transition frequencies
for 6sng to 6snh, 15 � n � 18, are shown in Table I.

TABLE I. ng-nh observed frequencies and K splittings.

n K = 9/2 (MHz) K = 11/2 (MHz) K splitting (MHz)

18 40180.0(6) 41147.4(7) 967.4(9)
17 47367.4(6) 48547.2(6) 1179.8(8)
16 56489.4(6) 57959.0(5) 1469.6(8)
15 68185.8(5) 70063.6(5) 1877.8(7)
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FIG. 6. The single-photon 6s15g → 6s15h transitions. The two
peaks are separated by the K splitting.

B. Two-photon intervals

The procedure used for the two-photon transitions from
6sng to 6sni was similar to that used for the one-photon tran-
sitions. Using the known 6s18g-6s18i transition frequencies
we found the ICE wavelength for 6s18i, which could then be
adjusted for lower n using Eq. (3). The two-photon 6sng-6sni

transition occurs via a virtual intermediate state, and there is a
small but measurable ac Stark shift due to the microwave field.
To obtain the unshifted intervals, we took measurements at
multiple microwave powers and extrapolated our results to zero
microwave power. With the available microwave power the
maximum ac Stark shift was 1.65 MHz. The uncertainties are
those given by the statistical fits to the power extrapolations.
Typical two-photon resonances, for n = 15, are shown in
Fig. 7. The two-photon transition frequencies for 6sng to 6sni,
15 � n � 18 are shown in Table II.

C. Three-photon intervals

We located the 6snk → 6p1/2nk ICE transitions in es-
sentially the same manner used to find the 6snh → 6p1/2nh

FIG. 7. The two-photon transitions 6s15g → 6s15i. The two
resonances are separated by the K splitting of the 6s15i state.

TABLE II. ng-ni observed intervals and K splittings.

n K = 11/2 (MHz) K = 13/2 (MHz) K splitting (MHz)

18 51422.9(3) 51654.6(3) 231.7(4)
17 60667.8(6) 60926.7(8) 258.9(10)
16 72375.6(3) 72669.2(3) 293.6(4)
15 87359.8(4) 87691.3(3) 331.5(5)

and 6sni → 6p1/2ni ICE transitions. We do not have enough
microwave power to drive the three-photon 6sng-6snk tran-
sitions using a single microwave field. Instead, we use
two frequencies. One is close to the two-photon 6sng-6sni

microwave frequency, and the other is close to the 6sni-6snk

frequency, which, for clarity, we term a radio frequency (rf),
even though it can be as high as 8.3 GHz. In all cases, the
rf frequency was fixed and the microwave frequency swept.
We verified that if we changed the rf frequency the 6sng-6snk

intervals were given by twice the microwave frequency plus
the rf frequency, indicating that the resonance was due to two
microwave photons and one rf photon.

There are now two ac Stark shifts, due to the microwave
and rf fields. We performed microwave frequency sweeps at
different microwave powers and constant rf power, allowing
us to extrapolate the observed resonance frequencies to zero
microwave power for a given rf power. We repeated this
procedure for several different rf powers to extrapolate to
zero microwave and rf power. Our fit for the 6s17g → 6s17k,
K = 15/2, transition is shown in Fig. 8. As expected, the
rf power shift is more important since the rf field is nearly
resonant with a one-photon transition. In Table III we give the
measured intervals after extrapolation, as well as the approxi-
mate microwave and rf frequencies used. The uncertainties in
our reported intervals correspond to the uncertainties of the
power extrapolations.

V. CORE POLARIZATION ANALYSIS OF THE DATA

The adiabatic core polarization model of Mayer and Mayer
provides an instructive starting point for the analysis. In it,
the energy by which a Ba 6sn� Rydberg state lies below the
hydrogenic energy of −1/2n2 is given by [5]

Wpol,n� = − 1
2αd〈r−4〉n� − 1

2αq〈r−6〉n�, (5)

where αd and αq are the dipole and quadrupole polarizabilities
of the Ba+ ionic core, and 〈r−4〉n� and 〈r−6〉n� are the
expectation values of the squares of the n� Rydberg electron’s
field and field gradient at the core. The model is termed
adiabatic because it is based on the assumption that the
Rydberg electron is slowly moving compared to the electrons
in the core, providing an essentially static field.

For comparison to experimental data, it is convenient to use
Edlen’s form of Eq. (5) [7]:

Wpol,n� = −αdPn� − αqPn�Qn�, (6)

where

Pn� = R〈r−4〉n�, (7)

Qn� = 〈r−6〉n�

〈r−4〉n�

, (8)
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(a) (b)

FIG. 8. The extrapolation of the three-photon 6s17g → 6s17k, K = 15/2, transition to zero power. (a) Resonances were recorded for
multiple microwave powers at each rf power to determine the zero-microwave-power resonance frequency for each rf power. (b) These
zero-microwave-power frequencies were then extrapolated to find the zero-power interval, assuming a linear plus quadratic rf power shift, as
shown.

and R is the Rydberg constant for Ba; R = 109 736.88 cm−1.
Experimentally, we observe the �� energy intervals
�Wpol,n�′� = Wpol,n�′ − Wpol,n� between Ba 6sn� and 6sn�′
states of the same n, and we can express the observed intervals
in terms of Eq. (6) using

�Wpol,n�′�

�Pn��′
= αd + αq

�PQn��′

�Pn��′
. (9)

Here �Pn��′ =Pn� − Pn�′ , and �PQn��′ = Pn�Qn� − Pn�′Qn�′ .
The �� intervals are largely determined by the dipole
polarizability, and in Eq. (9) we have removed the variation
due to the dipole polarizability by dividing by �Pn��′ . Plotting
the left-hand side of Eq. (9) vs �PQn��′/�Pn��′ yields a
graph with intercept αd and slope αq . In Fig. 9, we have
plotted Eq. (9) for the Ba 6sn� � → � + 1 intervals of � � 5.
The experimental intervals are taken from Gallagher et al.
[10], Snow and Lundeen [12], and this work. The � → � + 1
intervals of � > 6, n = 17 and 20, the high-� intervals, at
�PQn��′/�Pn��′ < 0.002 fall on a line, as expected, but
the � = 6 → � = 7, ni-nk, intervals at �PQn��′/�Pn��′ ≈
0.0025 lie distinctly above the line, and the � = 5 → � = 6,
nh-ni, intervals, at �PQn��′/�Pn��′ ≈ 0.0053, lie well below
the line. The latter two sets of data are displaced from the line
due to the breakdown of the adiabatic assumption implicit in
Eq. (5).

Almost immediately after the appearance of the paper by
Mayer and Mayer, van Vleck and Whitelaw [6] pointed out
that Eq. (5) is valid only in the limiting case in which the
excited states of the ionic core are far above its ground state.
Furthermore, the polarization shifts are are not first-order
shifts, as implied by Eq. (5), but second-order shifts. To
understand their approach, it is useful to think of the Ba
atom as consisting of an inert, but polarizable, Ba++ core and
two valence electrons. In this case the dipole and quadrupole
polarization shifts of the 6sn� state are due to the dipole and
quadrupole couplings of the 6sn� state to the doubly excited
NLn�′ states. Here NL is the state of Ba+, and n�′ is the
state of the Rydberg electron. The energy shifts are readily
calculated in second-order perturbation theory by summing
the contributions of all the coupled NLn�′ states, including
continua. For example, the quadrupole polarization energy of
the Ba 6s20i state comes from the quadrupole couplings to
doubly excited Ba Ndn�′ states with �′ = 4, 6, and 8, as shown
schematically in Fig. 10. Summing over all the coupled Ndn�′
states yields the quadrupole polarization shift. As shown in
Fig. 10 for the specific case of N = 6, � is the energy range
spanned by the n�′ states associated with an Nd ion state,
and � is the energy difference between the Ba+ 6s and Nd

states. If � 	 � for all N , the sum reduces to αq〈r−6〉20i/2,
as in Eq. (5). Thus, a more precise statement of the adiabatic
requirement is � 	 � for all NL. For the Ba Ndn�′ states of

TABLE III. ng-nk frequencies and intervals.

Approximate rf Approximate microwave
n K frequency (MHz) frequency (MHz) Extrapolated interval (MHz)

18 13/2 4920 25750 56388.0(20)
15/2 4640 25895 56424.5(30)

17 13/2 5750 30390 66521.1(12)
15/2 5750 30400 66562.4(17)

16 13/2 7050 36125 79351.4(17)
15/2 7050 36150 79393.0(20)

15 13/2 8300 43720 95739.1(20)
15/2 8100 43875 95798.9(20)
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FIG. 9. The adiabatic plot of the measured �� intervals using
Eq. (9).

N > 5 the adiabatic requirement is reasonably well satisfied,
but for N = 5 it is not.

The most important quadrupole couplings by far are those
between the 6sn� and 5dn′�′ states. As an example we
consider the 6s20i state, which is coupled to the 5dng,
5dni, and 5dn� states. These states are not energetically
removed from the 6s20i state by the Ba+ 6s-5d interval of
∼5000 cm−1, as assumed in the adiabatic model, but by a
range of energies comparable to the ion interval. In this case
� ∼= �, and the adiabatic model fails, as shown graphically
in Fig. 9. Nonetheless, using hydrogenic wave functions it
is straightforward to calculate the energy shift due to the
quadrupole coupling to the 5dn�′ states and compare it to
that expected from the adiabatic model, yielding the ratio,
or correction factor, kq . Thus we can write the quadrupole
polarization shift of the 6s20i states due to the 5dn�′ states
as kqα

′
q〈r−6〉20i/2, where α′

q is the part of the quadrupole
polarizability due to the Ba+ 5d state. An analogous procedure
can be carried out for the dipole polarization shift, leading to
the correction factor kd . An important point to keep in mind is
that kd and kq correct for the nonadiabatic effects in the dipole
and quadrupole polarization energy shifts, respectively. They
are not corrections to the polarizabilities. Thus, for example,

FIG. 10. Energy level diagram showing the quadrupole coupling
of the 6s20i state to Ndn�′ states (�′ = 4, 6, and 8). The Ba+ 6s

ground-state energy is set to zero. � is the energy spread of the n�′

states, and � is the 6s-Nd ion energy spacing, shown here for N = 6.
The adiabatic requirement � 	 � is clearly not satisfied for N = 5.

the nonadiabatic effect in the dipole polarization energy affects
both αd and αq .

With the realization that the polarization energy shifts
are simply derived from second-order perturbation theory
we can understand why the ni-nk and nh-ni intervals are
displaced as they are in Fig. 9. A 6sni state has a very strong
quadrupole interaction with the low-lying 5d5g state which is
only ∼1000 cm−1 above the 6sni state. For this reason, the
quadrupole polarization energy shift is greater than expected
from the adiabatic model, and the ni-nk points lie above the
line in Fig. 9. The nh-ni intervals lie below the line in Fig. 9
because the 6snh states have a strong quadrupole interaction
with the 5d4f state which lies ∼1000 cm−1 below the 6s20h

state. The quadrupole interaction shifts the 6s20h state up in
energy, changing the sign of the quadrupole polarization shift.

The high-� points in Fig. 9 at �PQn��′/�Pn��′ < 0.001 fit
a straight line fairly well, and we can extract values for αd

and αq from the intercept and slope of the line through these
points, which we term the apparent polarizabilities. The values
we obtain are α

app
d = 123.67(6)a3

0 and α
app
q = 1047(63)a5

0 .
These values are too small, due to neglect of the nonadiabatic
corrections, and for this reason we term the extracted values
the apparent polarizabilities.

To extract the correct values of αd and αq for Ba+ from
the �� intervals of the Ba 6sn� states, we must account for
the nonadiabatic effects, which are prominent in Fig. 9. There
are several approaches, and we first describe our approach.
We start by noting that the contributions to the Ba+ 6s

polarizabilities from Ba+ states above the 6p and 5d states
are essentially adiabatic, as are those from Ba2+. We assume
the nonadiabatic effects to arise only from the 6p and 5d states
of Ba+, as done by Snow and Lundeen [13]. Accordingly, we
write the analog to Eq. (5) as

Wpol,n� = − 1
2 (α′

dkd + α′′
d )〈r−4〉n� − 1

2 (α′
qkq + α′′

q )〈r−6〉n�,

(10)

where α′
d is the part of the dipole polarizability due to the

6p state of the Ba+ ion, α′
q is the part of the quadrupole

polarizability due to the 5d state of the Ba+ ion, α′′
d is the

part of the dipole polarizability due to the higher-p states of
the Ba+ ion and the dipole polarizability of Ba2+, and α′′

q is
the part of the quadrupole polarizability due to the higher-d
states of the Ba+ ion and the quadrupole polarizability of Ba2+.
The nonadiabatic effects are taken into account by introducing
the correction factors kd and kq [10,13]. In principle, the kd

and kq factors completely eliminate the nonadiabatic effects.
It is straightforward to calculate kd and kq if we assume the
outer electron to be hydrogenic. Our calculated values of kd

are given in Table IV, and to three significant digits there is
no n dependence. The n-dependent kq values are presented in
Table V.

If we define the quantities P ′
n� and Q′

n� as follows:

P ′
n� = kdPn� (11)

and

Q′
n� = kq

kd

Qn�, (12)
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TABLE IV. kd calculated values.

n � = 5 � = 6 � = 7 � = 8 � = 9 � = 10 � = 11

15 0.955278 0.969324 0.979127
16 0.955326 0.969248 0.978992
17 0.955494 0.969194 0.978904 0.984568 0.987537 0.989361
18 0.955404 0.969168 0.978870
19 0.955470 0.969141 0.978841
20 0.955510 0.969136 0.978841 0.981743 0.984323 0.985240 0.987553
21 0.955543 0.969128 0.978847
22 0.955584 0.969126
23 0.955619

the energy difference between the � states of the same n can
be written as

�Wpol,n�′� = α′
d�P ′

n��′ + α′′
d�Pn��′

+α′
q�P ′Q′

n��′ + α′′
q�PQn��′ , (13)

where �Wpol,n�′�, �Pn��′ , and �PQn��′ are as defined earlier,
�P ′

n��′ = P ′
n� − P ′

n�′ and �P ′Q′
n��′ = P ′

n�Q
′
n� − P ′

n�′Q
′
n�′ . If

we group the α′′
d and α′′

q terms with the observed energy
intervals and divide Eq. (13) by �P ′

��′ , we obtain the following
expression:

�Wpol,n�′� − α′′
d�Pn��′ − α′′

q�PQn��′

�P ′
n��′

= α′
d + α′

q

�P ′Q′
n��′

�P ′
n��′

,

(14)

which is the nonadiabatic analog of Eq. (9).
If we know α′′

d and α′′
q , we can extract α′

d and α′
q from

their linear relationship with the measured �� intervals, using
the center of gravity of each 6sn� state. From Ref. [20], α′′

d =
10.15(53)a3

0 and α′′
q = 814(11)a5

0 . Figure 11(a) shows the fit of
the experimental data to Eq. (14) using our calculated �Pn,��′ ,
�PQn,��′ , �P ′

n,��′ , and �P ′Q′
n,��′ . In Fig. 11 and in all similar

plots, for the nh-ni and ni-nk intervals n increases from 15 to
21 as �P ′Q′/�P ′ increases. Unlike in Fig. 9, the experimental
data can be fitted reasonably well by a straight line, and from
Fig. 11(a), we obtain α′

d = 114.47(7)a3
0 and α′

q = 1725(14)a5
0 .

While Fig. 11(a) is an enormous improvement over Fig. 9, the
data clearly do not fit the model, as shown by the residuals in
Fig. 11(b).

Due to the obvious systematic variations of the residuals,
shown in Fig. 11(b), the uncertainties of the values of α′

d

TABLE V. kq calculated values.

n � = 5 � = 6 � = 7

15 −0.982 1.439 1.032
16 −0.889 1.473 1.039
17 −0.818 1.503 1.044
18 −0.761 1.531 1.050
19 −0.715 1.555 1.054
20 −0.678 1.577 1.058
21 −0.647 1.596 1.061
22 −0.620 1.614
23 −0.598

and α′
q are larger than the uncertainties from the fit. To

understand these uncertainties we have fitted the data in other
ways. The first is to remove the lower-� intervals, which have
larger nonadiabatic corrections, from the fit. In Fig. 12(a)
we show the fit obtained by removing the nh-ni intervals
from Fig. 11(a). The resulting values, α′

d = 114.66(12)a3
0 and

α′
q = 1664(36)a5

0 , are not very different from those extracted
from Fig. 11(a). The residuals are shown in Fig. 12(b). There
are several points to note about Fig. 12(b). First, we note
that there is a discontinuity between n = 18 and n = 19 in
the ni-nk points, which may be due to a perturbation of the
energy levels, which we cannot hope to fit. Second, we believe
the n = 20 � = 7 → � = 8 and � = 10 → � = 11 points to
be in error. We shall return to this point. Finally, if the two
n = 20 points and the discontinuity at n = 18 are ignored,
the systematic variation of the residuals is essentially gone.
If we remove the ni-nk intervals from Fig. 12(a), leaving
only the high-� intervals from Snow and Lundeen, we obtain
the plot of Fig. 13, which yields α′

d = 115.08(16)a3
0 and

α′
q = 1160(170)a5

0 . With this restricted set of data the scatter
is now clearly more important than any systematic variation.
Inspection of the � = 7 → � = 8 points of Fig. 13 shows
why we believe the n = 20 points to be suspect. The two
� = 7 → � = 8 points by themselves imply an impossible
negative quadrupole polarizability, as do the � = 10 → � = 11
and either of the � = 9 → � = 10 points.

An alternative approach is to fit the �� intervals for each
n state separately, and in Fig. 14 we show the values of α′

d

and α′
q extracted from the data shown in Fig. 11(a). Only for

n = 17 and 20 are there more than two �� intervals, so only
in those two cases can we show uncertainties for the fits. We
expect that if we had more points the uncertainties of the other
n states would be similar. If we disregard the obvious outliers
at n = 18 and 21, there is no monotonic increase or decrease
in the value of α′

d , and the average value, α′
d = 114.51(2)a3

0 ,
is similar to the value extracted from Fig. 11(a). The n = 18
intervals were measured in two different experiments, so we
do not think the n = 18 points are displaced from the others
due to an experimental problem, but for a physical reason.
As already noted, the ni-nk residuals of Fig. 12(b) exhibit
a discontinuity at n = 18, which might be a sign of a series
perturbation. The n = 21 points in Fig. 14 probably reflect
experimental error.

In contrast to the relatively constant values of α′
d shown in

Fig. 14, the extracted values of α′
q show a clear n dependence,

and we suspect that its origin lies in our calculation of kq ,
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(a) (b)

FIG. 11. (a) Graph of (�Wpol,n�′� − α′′
d�Pn��′ − α′′

q�PQn��′ )/�P ′
n��′ vs �P ′Q′

n��′/�P ′
n��′ . The symbols �, •, and � are the data points

presenting the nh-ni, ni-nk, and high-� intervals, respectively. For the nh-ni and ni-nk intervals n increases monotonically from 15 to 21 as
�P ′Q′/�P ′ increases. The high-� intervals are for n = 17 and 20. The linear fit yields the y intercept and the slope, which are the values of
α′

d and α′
q , respectively. From the graph, we obtain α′

d = 114.47(7)a3
0 and α′

q = 1725(14)a5
0 , and in (b) the plot displays the residuals relative

to the fit, which is the zero line.

especially for � = 5. There are several sources of error in
calculations of kd and kq . We have ignored the spin-orbit
splittings of the Ba+ 6p and 5d states, and we have assumed
the outer electron to be hydrogenic. The latter assumption
leads to incorrect energies, and, more important, incorrect
wave functions. For this problem, matrix elements of inverse
powers of r are required, which in turn requires wave functions
accurate at small r . Unfortunately, there is no simple method
to generate nonhydrogenic wave functions which are accurate
at small r .

Irrespective of the source of the variation in α′
q seen in

Fig. 14, it is clear that we cannot extract a value of α′
q from

these data, and the value of α′
d is also suspect. Accordingly,

we have fitted the ni-nk and higher-� intervals of Fig. 12(a)
for n = 17 and 20, the only n values for which we have more
than one �� interval. For n = 17 we obtain α′

d = 114.62(5)a3
0

and α′
q = 1640(23)a5

0 , and for n = 20 α′
d = 114.73(27)a3

0 and
α′

q = 1650(120)a5
0 . The n = 17 data lie almost perfectly on a

straight line, while the n = 20 data are more scattered. The
important point is that α′

q exhibits no n dependence. Thus we

conclude that the fit of Fig. 12(a) provides the best values for α′
d

and α′
q . The high-� data shown in Fig. 13 exhibit no systematic

problem, but the high-� intervals are more susceptible to Stark
shifts and are not as sensitive to the quadrupole polarizability
as are the lower-� intervals.

To account for possible systematic effects in the de-
termination of α′

d and α′
q we increase their uncertainties

from the fit shown in Fig. 12(a) to encompass the residuals
shown in Fig. 12(b) except the two n = 20 points men-
tioned previously. The results are α′

d = 114.66(25)a3
0 and

α′
q = 1664(50). Adding them to α′′

d and α′′
q we obtain the ionic

Ba+ dipole and quadrupole polarizabilities αd = 124.81(25)a3
0

and αq = 2478(50)a5
0 , respectively.

It is useful to compare our values to those obtained from
other measurements and theory. In Table VI we present the
values obtained for αd , and in Table VII, we present the values
for α′

q and αq . Our value for αd agrees with the theoretical
value to within the theoretical uncertainty, but our value for
αq is half the theoretical value. It is perhaps more interesting
to compare the experimental results. Two methods have been

(a) (b)

FIG. 12. (a) Plot obtained by removing the nh-ni intervals from the data in Fig. 11(a). For the ni-nk intervals n increases monotonically
from 15 to 21 as �P ′Q′/�P ′ increases. The high-� points are for n = 17 (•) and n = 20 (�). From the graph, we obtain α′

d = 114.66(12)a3
0

and α′
q = 1664(36)a5

0 . (b) The residuals of (a). There is far less systematic variation of the residuals than in Fig. 11(b).
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FIG. 13. Plot of high-� intervals from Fig. 11(a) for n = 17 (•)
and n = 20 (�). From the graph, we obtain α′

d = 115.08(16)a3
0 and

α′
q = 1160(170)a5

0 .

used to extract the polarizabilities, polarization analysis of
the �� intervals and analysis of the K splittings. Analysis
of the K splittings yields the Ba+ 6s-6p and 6s-5d radial
matrix elements, from which α′

d and α′
q are easily computed.

To the values of α′
d and α′

q given in Ref. [16] we have added
the theoretical values α′′

d = 10.15a3
0 and α′′

q = 814a5
0 yielding

the values of αd and αq given in Tables VI and VII. While it
is possible to make good measurements of the K splittings,
they arise completely from the nonadiabatic effects, and their
analysis is much more complicated than a polarization analysis
of �� intervals. For this reason, we choose to compare our
results to those of Snow and Lundeen, Ref. [21].

Using essentially the same data as we have used here, Snow
and Lundeen [21] arrived at a value of αd distinctly smaller
than ours and a value of αq almost twice ours. To understand
the origin of the differences it is useful to use four different
methods to analyze the data. Specifically, we consider ignoring
the nonadiabatic effects, using the adiabatic expansion method,
introducing kq and using the adiabatic expansion method to

u
n

it
s 

o
f

u
n

it
s 

o
f

FIG. 14. Graph showing the values of (a) α′
d and (b) α′

q extracted
from �� intervals for each n. Disregarding the obvious outliers at
n = 18 and 21, there is no monotonic increase or decrease in the
value of α′

d , and the average value is α′
d = 114.51(2)a3

0 . A value of
α′

q cannot be extracted from (b). Only n = 17 and 20 have more than
two data points (the nh-ni, ni-nk, and high-� intervals), and therefore
only their uncertainties can be shown.

TABLE VI. The Ba+ 6s dipole polarizability (αd ) obtained from
this work, and other theoretical and experimental results.

αd

(
units of a3

0

)

Core polarization
This work 124.81(25)
Expt. [10] 125.5(10)
Expt. [13] 124.30(16)
Expt. [21] 123.88(5)

K splitting
Expt. [16] 121.3(66)
Expt. [22] 123.88(5)
Theory [20] 124.15

account for nonadiabatic effects in the dipole polarization
energy, and finally introducing both kq and kd . For simplicity,
we label these methods I, II, III, and IV, respectively. Method
III is similar to that used by Snow and Lundeen, and IV is
similar to ours.

If we restrict our attention to only the high-� intervals, it is
not unreasonable to think that the data can be fitted by ignoring
the nonadiabatic effects, method I, and using Eq. (9). The
straight line through the high-� points of Fig. 9 is precisely this
fit. It yields αd = α

app
d = 123.67a3

0 and αq = α
app
q = 1047a5

0 .
In the adiabatic expansion method, method II, the polariza-

tion energy of Eq. (5) is replaced by

Wpol,n� = − 1
2αd〈r−4〉n� − 1

2 (αq − 6β1)〈r−6〉n� · · · , (15)

where the ellipsis indicates terms containing expectation
values of higher inverse powers of r . The most important
difference, from our present point of view, is the presence of
6β1 in the 〈r−6〉 term, which is due to the nonadiabatic effect
in the dipole polarization energy. It appears in the same way as
the quadrupole polarizability, and for Ba β1 = 605(25)a5

0 [21].
The higher inverse powers of r represent higher-order terms
due to the nonadiabatic effect in the dipole polarization energy,
the nonadiabatic effect in the quadrupole polarization energy,
and higher multipole terms. As Snow and Lundeen have
shown, these terms can be represented by higher-order terms
in 〈r−6〉/〈r−4〉, or equivalently, in �PQ/�P , so that the data
points of Fig. 9 no longer need to be fitted by a straight line.
Application of the adiabatic expansion method is based on
the assumption that the expansion is convergent. Inspection of
Fig. 9 suggests that very high-order terms in �PQ/�P will be

TABLE VII. The Ba+ 6s quadrupole polarizability (αq ) and the
contribution of the Ba+ 5d state (α′

q ) to it.

α′
q

(
units of a5

0

)
αq

(
units of a5

0

)

Core polarization
This work 1664(50) 2478(50)
Expt. [10] 2050(100)
Expt. [21] 1524(8) 4420(250)
Expt. [13] 1828(88) 2462(361)

K splitting
Expt. [16] 1562(93) 2376(93)
Expt. [22] 3606(250) 4420(250)
Theory [20] 3368(34) 4182(34)
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FIG. 15. Comparison between the use of method III to treat the
ni-nk and the high-� intervals (•) and method IV to treat the intervals
(�). Here we assume that α′′

d and α′′
q both vanish. The introduction of

kq in method III removes the nonadiabatic effect in the quadrupole
polarization energy, and all the data points fall on a line, unlike the plot
of Fig. 9. The intercept of the fit line gives αd = 123.33(11)a3

0 . Adding
6β1 from the nonadiabatic correction to the dipole polarization energy
to the slope of the fit line give the broken line, which has slope
αq = 5060a5

0 . The introduction of kd as well as kq in method IV both
raises the points and increases the slope of the fit line; the resulting
intercept and slope are αd = 125.28(8)a3

0 and αq = 2138(24)a5
0 .

required to fit the data, indicating that the adiabatic expansion
is almost certainly not convergent in this case. However, it
should be applicable if we again restrict our attention to the
high-� states. Fitting the high-� data of Fig. 9 to the first
two terms of Eq. (15) leads to αd = α

app
d = 123.67a3

0 and
αq = α

app
q + 6β1 = 4677a5

0 .
The deviation of the factors kd and kq from unity is

an indication of the severity of the nonadiabatic effects.
Inspection of Tables IV and V shows that 0.955 < kd < 0.990
while kq ranges from −0.0982 to 1.614, suggesting that the
nonadiabatic effect in the quadrupole polarization energy is by
far the worse problem. Accordingly, we treat the data using
method III, treating the nonadiabatic effects in the quadrupole
and dipole polarization energies by kq and an adiabatic
expansion, respectively. This approach is approximately that
used by Snow and Lundeen. It differs in that Snow and
Lundeen, and we as well, separated the polarizabilities into
two parts, for example, αq = α′

q + α′′
q . To display most clearly

the effect of introducing first kq and then kd we here assume
that α′′

d and α′′
q both vanish, so that α′

d = αd and α′
q = αq . Since

α′
d = 0.92αd , this approximation is excellent for αd , and it is

not unreasonable for αq . In Fig. 15 using solid circles (•) we
use method III to plot the high-� and ni-nk intervals using the
values of kq given in Table V. Since we are now introducing
kq , and later shall introduce kd , as the horizontal and vertical
axes, we use �P ′Q′

n�′�/�P ′
n�� and �Wpol,n�′�/�P ′

n��′ . From
the definitions of P ′ and Q′ it is evident that P and Q are simply
the special cases of P ′ and Q′ for kd = kq = 1. The dominant
effect of the introduction of kq is to move points horizontally
on the plot, which removes the glaring problem due to the
nonadiabatic effects, the seemingly random distribution of
points in Fig. 9. Now in Fig. 15 the solid circles (•) all lie
along a straight line. In method III the adiabatic expansion

TABLE VIII. The Ba+ 6s dipole (αd ) and quadrupole polarizabil-
ities (αq ) extracted from different methods of data analysis.

Analysis method αd

(
units of a3

0

)
αq

(
units of a5

0 )

Method I: ignore nonadiabatic 123.67(6) 1047(63)
Method II: adiabatic expansion 123.67(6) 4680(160)
Method III: kq and adiabatic 123.33(11) 5060(150)

expansion
Method IV: kd and kq 125.28(8) 2138(23)
Snow and Lundeen [21] 123.88(5) 4420(250)
This work 124.81(25) 2478(50)

needs to account only for the nonadiabatic effect on the dipole
polarization. Accordingly, we fit the solid circles (•) to

�Wpol,n�′�

�P ′
n��′

= αd + (αq − 6β1)
�P ′Q′

n��′

�P ′
n��′

. (16)

The intercept of the fit line is αd = 123.33(11)a3
0 , and the

slope sq = 1430(35)a5
0 . The quadrupole polarizability αq =

sq + 6β1 = 5060a5
0 is the slope of the broken line in Fig. 15.

To show the effect of using kd as well as kq , method IV, in
Fig. 15 we also plot, as solid squares (�), the high-� and ni-nk

intervals. The introduction of kd has two effects, both of which
are evident in Fig. 15. First, it raises all the points by 1%–3%,
since kd < 1 and �P ′ < �P . The effect is to raise the value
of αd ; αd = 125.28(8)a3

0 . Second, since kd falls further below
1 as � is decreased, the slope of the line through the points
is increased. In this method the slope (of the line through the
square points) is αq = 2138(23)a5

0 . The nonadiabatic effect in
the dipole polarization energy on αq is the difference between
the slopes of the lines through the squares and circles in Fig. 15,
708a5

0 , much less than 6β1 = 3630a5
0 .

In Table VIII we have collected the results from the four
analyses and presented them together with the values of
Snow and Lundeen and ourselves. Methods I, II, and III
yield essentially the same value of αd , which implies that the
adiabatic expansion method, or a modification which does not
introduce kd , has almost no effect on the value of αd extracted.
These values are also very close to the value obtained by
Snow and Lundeen. The introduction of kd , in method IV,
vertically displaces the points in Fig. 15 and increases the value
of αd extracted to very nearly match our value. The quadrupole
polarizabilities extracted by methods II and III are both much
larger than those obtained by methods I and IV, due to the
inclusion of 6β1 in the extracted value. These values are close
to the value obtained by Snow and Lundeen. Method IV yields
a value of αq similar to our value and much smaller than those
of methods II and III. From Table VIII it is evident that the
difference between the values of both αd and αq extracted by
Snow and Lundeen and ourselves is due almost entirely to the
treatment of the nonadiabatic effect in the dipole polarization.

VI. CONCLUSION

We have demonstrated that ICE laser excitation to au-
toionizing states can be used to detect microwave transitions
between high-angular-momentum Rydberg states of alkaline-
earth-metal atoms, even though the ICE transitions are badly
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overlapped. We have used this technique to measure �� in-
tervals between Ba 6sn� states of 15 � n � 18 and 5 � �� 7.
Combining these measurements with other measurements of
Ba �� intervals, we have extracted the Ba+ polarizabili-
ties αd = 124.81(25)a3

0 and αq = 2478(50)a5
0 . These values

disagree with recently reported experimental values due to
the difference in the treatment of the nonadiabatic effects.
In principle, the model we have used exactly accounts for
the nonadiabatic effects by the introduction of the correction
factors kd and kq , which are calculated numerically. The
calculations can be improved by better numerical techniques,
the inclusion of spin-orbit coupling, and the use of nonhydro-

genic wave functions where required. We hope this work will
stimulate theoretical activity along these lines.
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Microwave spectroscopy of the calcium 4sn f → 4s(n + 1)d, 4sng, 4snh, 4sni , and 4snk transitions
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We observe the microwave transitions of calcium from the 4snf states to the 4s(n + 1)d , 4sng, 4snh, 4sni,
and 4snk states for 18 � n � 23 using delayed field ionization as the state selective detection technique. The
observed intervals between the � � 5 states can be analyzed to extract the Ca+ ionic dipole (αd ) and quadrupole
(αq ) polarizabilities using two nonadiabatic core polarization models. Using these two models we determine the
ionic dipole and quadrupole polarizabilities to be 75.3a3

0 < αd < 76.9a3
0 and 206a5

0 < αq < 1590a5
0 , respectively.

DOI: 10.1103/PhysRevA.91.042503 PACS number(s): 32.30.−r, 32.10.Dk, 32.80.Rm

I. INTRODUCTION

In recent years, much effort has been invested in developing
a precise optical frequency standard, and a proposed candidate
is the quadrupole 4s1/2 − 3d5/2 transition of the Ca+ ion [1,2].
An additional attraction of Ca+ is that it can be cooled by
Doppler cooling to very low temperatures by using this tran-
sition in conjunction with the dipole allowed 3d5/2 − 3p3/2

transition [1]. The absolute frequency of the Ca+ 4s1/2 − 3d5/2

transition has been measured with an uncertainty of 1 Hz, a
fractional accuracy of one part in 1015, which is within a factor
of 3 of the fractional uncertainty of the present Cs clock [3].
While an optical transition provides a transition with a higher
quality factor, the transition also has a much larger blackbody
radiation (BBR) shift, and the BBR shift is one of the largest
shifts in an optical clock. In the Ca+ clock transition the BBR
shift is calculated to be 0.4 Hz at room temperature, T = 300 K
[1,2,4]. Since the BBR shift is unavoidable and scales as T 4

[5], it is essential to understand it well.
The BBR shift is proportional to the difference in the dipole

polarizabilities αd of the two ionic states of the clock transition.
While it is possible to calculate the polarizabilities, due to the
charge of the ion the polarizabilities are difficult to measure
directly, and other approaches must be used to check the
validity of the calculations. While measurements of oscillator
strengths and lifetimes are often used, an alternative approach
is one initially suggested by Mayer and Mayer, measuring
the energy intervals between higher � Rydberg states of the
neutral atom [6]. Here � is the orbital angular momentum
of the Rydberg electron. The field and gradient from the
Rydberg electron polarize the ionic core, depressing the energy
levels below the hydrogenic energy of −1/2n2, where n is the
principal quantum number of the Rydberg electron. We use
atomic units unless specified otherwise. Since an electron in a
lower � state comes closer to the ionic core, the polarization
shift increases with decreasing �. This approach is only valid if
the Rydberg electron does not penetrate the ionic core, which
is why it is limited to high � states. The inner turning point of a
Rydberg n� atom is given by r�

∼= �(� + 1)/2, and r� = 15a0

for � = 5. Since the Ca+ 4s1/2 wave function is similar in size
to the H 1s wave function, less than 0.02% of the ground-state
probability distribution is found at radial distances beyond

*jn8h@virginia.edu

r = 15a0, so it seems that Ca 4sn� states of � � 5 should be
nonpenetrating states. Here r is the distance of the Rydberg
electron from the ionic core.

Here we report measurements of the Ca 4snf − 4sng −
4snh − 4sni − 4snk intervals, made using a delayed field
ionization approach. Our data show that the adiabatic model
of Mayer and Mayer is inadequate, and we have fit our
measurements to two core polarization models which take
into account the nonadiabatic effects not considered in the
approach of Mayer and Mayer. These analyses yield values
for the dipole polarizability in reasonable agreement with
the calculated value. However, the two values we extract for
the quadrupole polarizability are much smaller and much
larger than the calculated value. We have also measured
the 4snf → 4s(n + 1)d intervals. These intervals, combined
with high-resolution optical spectroscopy could allow a better
determination of the Ca+ polarizabilities. In the sections which
follow we describe our approach, present our experimental
results, and analyze them using several variants of core
polarization analysis.

II. EXPERIMENTAL APPROACH

We excite neutral Ca atoms in a thermal beam from the
ground state to a Rydberg state using three laser beams. The
Ca beam intersects the laser beams at a 90◦ angle between
two parallel horizontal copper plates separated by 1.2-cm-long
ceramic standoffs. The laser beams are focused to 1 mm
diameters where they intersect the Ca beam. Ground-state
4s2 atoms are excited to the 4s4p, 4s4d, and 4snf states
by 422.791 nm, 732.816 nm, and ∼850 nm laser pulses,
respectively, as shown in Fig. 1. The last laser is tunable over
the range from 847 to 857 nm to excite the 4snf states of
18 � n � 23. A 1-μs-long microwave pulse starts 50 ns after
the last laser pulse to excite the 4snf state to the 4sng and
4snh states by the one-photon and two-photon transitions,
respectively. The 4snf → 4sni and 4snf → 4snk transitions
are the three-photon and four-photon transitions. To drive
the three-photon and four-photon excitations, in addition to
a 1 μs microwave pulse, we use a continuous wave (cw) radio
frequency (rf) field of frequency between 3.5 and 5 GHz. The
rf and microwave fields are generated by a Hewlett-Packard
(HP) 8257D analog signal generator and 83620A synthesized
sweep generator, respectively. The microwave sweep generator
produces a cw output from 10 MHz to 20 GHz, which is

1050-2947/2015/91(4)/042503(9) 042503-1 ©2015 American Physical Society
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FIG. 1. Laser excitation scheme of the experiment.

formed into pulses by a General Microwave DM862D switch.
The required microwave frequencies to drive the transitions
range from 23 to 75 GHz. Therefore, several frequency
multipliers, a Narda DBS 2640X220 active doubler, a Narda
DBS 4060X410 active quadrupler, and a Pacific Millimeter
V2W0 passive doubler, are used to multiply the synthesizer
frequency to the desired frequency. The power output of
the frequency multipliers ranges from 5 mW to 100 mW.
The microwaves propagate through WR28 waveguide and a
waveguide feedthrough to a WR28 horn inside the vacuum
chamber. The cw rf propagates through a coaxial cable and a
SMA feedthrough to the coaxial-to-waveguide adapter and is
launched by a WR187 horn inside the chamber.

To discriminate between the 4sn� states of � > 3 and the
4snf state, we take advantage of the � dependence of the
lifetimes of Ca Rydberg atoms. The higher angular momentum
Rydberg states live longer than the lower ones [7,8], and we use
the technique of delayed field ionization (DFI). The lifetime of
the 4s25f state has been measured to be ∼2.5(5) μs [8], and
using the n3 scaling law we find that the lifetimes of the 4snf

states of 18 � n � 23 fall in the range from 0.9 to 1.9 μs.
Therefore, if we wait long enough after the microwave pulse,
more than 5 μs, atoms in the 4snf states decay significantly
compared to atoms in the 4sn� states of � > 3. Typically,
we apply a negative high voltage pulse to the bottom plate
8 to 10 μs after the microwave pulse to field ionize the
surviving Rydberg atoms and drive the resulting electrons to
the microchannel plate (MCP) detector. The timing of the
experiment is shown in Fig. 2. Using this approach a large
increase in the number of detected atoms is observed when
the microwave field drives the transition from the 4snf state
at resonance. To detect transitions from the 4snf states to
the 4s(n + 1)d states we take advantage of the fact that the
lifetimes of the 4s(n + 1)d states are an order of magnitude
shorter than those of the 4snf states. A delay of only 2 μs

FIG. 2. Timing sequence of the experiment.

FIG. 3. One-photon 4s22f → 4s22g resonance. The linewidth
of the resonance is ∼1 MHz which is a transform limited linewidth
of a 1 μs microwave pulse.

is used, and a decrease in signal is observed at resonance.
Frequency shifts due to the stray electric field are minimized
by observing the microwave resonance with different bias
voltages on the plates and fitting the resonant frequencies to
a quadratic bias voltage dependence. We then set the bias
voltage to the minimum frequency shift. In this experiment,
the frequency shift due to the stray electric field is in all cases
less than 1 MHz. The experiment is repeated every 50 ms, and
the signals are averaged over many laser shots.

III. EXPERIMENTAL OBSERVATIONS

A. One-photon 4sn f → 4sng intervals

For the one-photon transition, 4snf → 4sng, the mi-
crowave power was attenuated until the power broadening
was eliminated. We observed one resonant peak for each
n. Since the optical excitation is to the 4snf 1F3 state we
assign the states we observe in the microwave transitions as
1G4 states. A typical resonance is shown in Fig. 3, and the
observed intervals are given in Table I. We did not attempt to
eliminate the Earth’s magnetic field. In the Earth’s magnetic
field one might expect linewidths of ∼2–3 MHz. However,
the typical linewidth of a 1F3 − 1G4 resonance is ∼1 MHz, the
transform limited linewidth of a 1 μs microwave pulse. The
narrow linewidths occur because the one-photon transitions are
between the two singlet states, which have the same Landé gj

factors. Hence all the �mj = 0 transitions occur at the same
frequency, resulting in the narrow lines [9].

TABLE I. nf − ng observed frequencies.

n Observed frequency (MHz)

18 72891.40(1)
19 62222.19(1)
20 53150.84(2)
21 46053.01(25)
22 40147.03(1)
23 35462.65(5)
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FIG. 4. Two-photon 4s18f → 4s18h resonances. The two reso-
nances are separated by the K splitting of the 4s18h state.

B. Two-photon 4sn f → 4snh intervals

For the two-photon transition, 4snf → 4snh, we observed
two resonant peaks for each n suggesting that the higher
� states, � � 5, are not singlets and triplets. The states are
described by coupling the total angular momentum of the core
�jc to the orbital angular momentum �� of the Rydberg electron
to form �K . Explicitly,

�K = �jc + ��. (1)

The splitting between the two K levels is due to the indirect
spin orbit splitting [10,11]. We ignore the spin of the Rydberg
electron. For the Ca 4sn� states, jc = 1/2; therefore, K = � ±
1/2. Hence, for each � state we observe two transitions from
the 4snf to the 4sn� states, corresponding to K = � + 1/2 and
K = � − 1/2. To correct for the small ac Stark shift due to the
microwave field, 1.8 MHz at the highest power we used, the
resonances were observed at different microwave powers, and
the resonance frequencies were extrapolated linearly to zero
microwave power to obtain unshifted 4snf − 4snh intervals.
Typical resonances for the two-photon transitions are shown
in Fig. 4, and the observed intervals are given in Table II. The
typical linewidth of the resonances is 2–3 MHz. The linewidth
is due to the Earth’s magnetic field since the 4snh states are
no longer singlets and triplets.

C. Three-photon 4sn f → 4sni intervals

For the three-photon transitions, a single microwave field
does not have enough power to drive the three-photon

TABLE II. nf − nh observed intervals and nh K splittings.

n K = 9/2 (MHz) K = 11/2 (MHz) K splitting (MHz)

18 95296.36(6) 95312.53(9) 16.17(11)
19 81300.49(6) 81314.41(3) 13.92(7)
20 69905.16(18) 69917.62(13) 12.46(22)
21 60536.07(10) 60546.51(9) 10.44(13)
22 52761.38(96) 52770.12(12) 8.74(97)
23 46261.65(18) 46269.19(5) 7.54(19)

FIG. 5. Three-photon 4s19f → 4s19i resonance at relative mi-
crowave power 0.63 and at relative rf power 1.0. The K splitting of
the 4s19i states cannot be resolved due to the Earth’s magnetic-field
broadening.

4snf → 4sni transitions. Therefore, the three-photon tran-
sitions were driven by using two microwave photons and one
rf photon. The rf frequency of 3.5–5 GHz frequency was
fixed near the 4snh − 4sni frequency, and the microwave
frequency was swept. We verified that the observed resonances
were indeed the 4snf → 4sni transitions by varying the
rf frequency within ±5 MHz and sweeping the microwave
frequency for each rf frequency. For each rf frequency,
the 4snf → 4sni interval, given by twice the microwave
frequency plus the rf frequency, was approximately constant,
with only a slight difference in frequency due to the ac Stark
shift. A typical three-photon resonance is shown in Fig. 5. In
Fig. 5, we do not see the K splitting, because the K splitting in
the 4sni states is not resolvable. Since most of the K splitting
is from the dipole term, we can estimate the K splitting in
the 4sni states using the adiabatic dipole term of Eqs. (37)
and (38a) and ignoring the quadrupole term of Eq. (38b) of
Ref. [10]. Explicitly,

Kn� = 2(2� + 1)�4p〈r−6〉n�〈4s|r|4p〉2

9(W4s − W4p)3
, (2)

where �4p is the fine-structure splitting of the Ca+ 4p state,
〈r−6〉n� is the expectation value of 1/r6 of the n� Rydberg state,
〈4s|r|4p〉 is the Ca+ radial matrix element, W4s is the energy
of the Ca+ 4s state, and W4p is the energy of the Ca+ 4p state.
Since we have measured the K splitting in the 4snh states, we
can use Eq. (2) to estimate the K splitting in the 4sni states.
The ratio between the K splitting in the 4sni and 4snh states
is the ratio 〈r−6〉ni/〈r−6〉nh = 0.2. Therefore, the K splitting
in the 4sni states varies from 4 to 2 MHz as n increases from
18 to 23, which is not resolvable in our experiment due to the
Earth’s magnetic field.

In the three-photon transitions there are both rf and
microwave power shifts. To eliminate the ac Stark shift from
both fields, we observed the resonances at different rf and
microwave powers. For a given microwave power, we observed
resonances at different rf powers. We extrapolated the observed
frequencies linearly to obtain the resonance frequency at zero
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FIG. 6. Extrapolation of the three-photon 4s19f → 4s19i transition to zero rf and microwave powers. (a) At relative microwave power
0.63, resonances were observed at different rf powers to obtain the resonance frequency at zero rf power. (b) Several zero rf power resonances
were obtained at different microwave powers and extrapolated to zero rf and microwave powers.

rf power for a given microwave power. We repeated the
same procedure for several microwave powers. The resonance
frequencies at zero rf power of several microwave powers
were extrapolated to obtain the resonance frequencies at zero
rf and microwave powers. A typical resonance is shown in
Fig. 6, typical power extrapolations are shown in Fig. 5, and
the unshifted intervals are given in Table III.

D. Four-photon 4sn f → 4snk intervals

The 4snf → 4snk four-photon transitions were excited
using two microwave photons and two rf photons. The
rf frequency was fixed near the 4snh → 4snk resonance,
while the microwave frequency was swept in the vicinity
of the 4snf → 4snh resonance. Similar to the three-photon
excitation, we verified that the observed resonances were the
4snf → 4snk transitions by varying the rf frequency within
±5 MHz and sweeping the microwave frequency for each rf
frequency. For each rf frequency, the 4snf → 4snk interval
was given by twice the microwave frequency plus twice the rf
frequency and was approximately constant. We eliminated the
ac Stark shifts using the process discussed for the three-photon
transitions. Typical signals for four-photon transitions are
shown in Fig. 7, and the unshifted intervals are given in
Table IV. Using Eq. (2), we estimate the K splitting in the
4snk states to be on the order of 1 MHz for 18 � n � 20,
which cannot be resolved in this experiment.

TABLE III. nf − ni observed intervals.

n Observed frequency (MHz)

18 102558.95(54)
19 87488.41(40)
20 75223.05(15)
21 65141.32(78)
22 56766.61(69)
23 49771.37(26)

E. One-photon 4sn f → 4s(n + 1)d intervals

We have observed the 4snf → 4s(n + 1)d transitions for
n = 19, 20, and 21. In this region the 4snd 1D2 Rydberg states
are perturbed by their interaction with the 3d2 1D2 state [12].
The perturbation results in shorter lifetimes and rapidly
changing quantum defects. For 19 � n � 21 the 4snd 1D2

states lie close enough in energy to the 4snf 1F3 states that
the 4snf → 4s(n + 1)d frequencies are within the microwave
frequency range that we can generate. A typical resonance is
shown in Fig. 8, and the observed intervals are presented in
Table V.

IV. DATA ANALYSIS

We analyze the measured �� intervals using several
variants of the core polarization model. First, we use the
core polarization model as originally introduced by Mayer
and Mayer [6]. In the high angular momentum 4sn� Rydberg
states of � > 4, the Rydberg n� electron is assumed to be in
a hydrogenic n� state which does not penetrate the Ca+ core.

FIG. 7. Four-photon 4s19f → 4s19k resonance at 0.178 relative
microwave power and 0.794 relative rf power. The K splitting of the
4s19k states is on the order of 1 MHz and cannot be resolved.
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TABLE IV. nf − nk observed intervals.

n Observed frequency (MHz)

18 105362.90(52)
19 89879.91(7)
20 77278.61(15)

Furthermore, the Rydberg electron is assumed to move slowly
compared to the electrons in the ionic core. Thus we term this
model the adiabatic core polarization model. The presence of
the Rydberg electron leads to a quasistatic electric field and
gradient at the Ca+ core, and, due to the dipole and quadrupole
polarizabilities of the core, the energy levels of the Ca 4sn�

states are depressed below the hydrogenic energy, −1/2n2.
The polarization energy shift is given by [6]

Wpol,n� = − 1
2αd〈r−4〉n� − 1

2αq〈r−6〉n�, (3)

where αd and αq are the dipole and quadrupole polarizabilities
of the Ca+ 4s core, and 〈r−4〉n� and 〈r−6〉n� are the expectation
values of the squares of the n� Rydberg electron’s field
and field gradient at the core. Since the Rydberg electron is
assumed to be in a hydrogenic state, analytic expressions exist
for these expectation values. We can write Eq. (3) in Edlen’s
experimentally convenient form as [13]

Wpol,n� =−αdPn� − αqPQn�, (4)

where

Pn� = RCa〈r−4〉n� (5)

and

Qn� = 〈r−6〉n�

〈r−4〉n�

. (6)

Here RCa is the Rydberg constant for Ca, RCa =
109 735.81 cm−1. Since we measure the intervals between the
4sn� and 4sn(� + 1), � > 3, states of the same n, we express
the difference between the core polarization energies of 4sn�

and 4sn(� + 1) states of the same n as follows:

�Wpol,n�′�

�Pn��′
= αd + αq

�PQn��′

�Pn��′
, (7)

FIG. 8. One-photon 4s19f → 4s20d resonance.

TABLE V. nf − (n + 1)d observed intervals.

n Observed frequency (MHz)

19 84377.04(4)
20 49143.13(12)
21 24542.36(4)

where �Wpol,n�′� = Wpol,n�′ − Wpol,n�, �Pn��′ = Pn� − Pn�′ ,
and �PQn��′ = Pn�Qn� − Pn�′Qn�′ . �Pn��′ and �PQn��′ are
easily calculated, and �Wpol,n�′� is the measured 4sn� − 4sn�′

interval. Figure 9 shows the graph of
�Wpol,n�′�

�Pn��′
versus �PQn��′

�Pn��′
using the measured nh − ni (�) and ni − nk (�) intervals.
For the 4snh states in which the K = 9/2 and 11/2 states
are resolved, we use the centers of gravity in our calculation.
As suggested by Eq. (7), by plotting

�Wpol,n�′�
�Pn��′

versus �PQn��′
�Pn��′

,
the values of dipole and quadrupole polarizabilities can be
extracted from the y intercept and slope of a line through the
data points, as shown in Fig. 9. The resulting Ca+ 4s dipole
and quadrupole polarizabilities are αd = 75.32(4)a3

0 and
αq = −257(8)a5

0 , respectively. In this, its simplest form, the
adiabatic core polarization model yields a negative quadrupole
polarizability, which is impossible.

van Vleck and Whitelaw pointed out that the polarization
energy shift of Eq. (3) is a limiting case of a second-order shift
due to the higher multipole terms in the Coulomb interaction
between the Rydberg n� electron and the ion core [14].
For example, the dipole polarization energy of a Ca 4sn�

state comes from the dipole coupling to Npn′(� ± 1) and
Npε(� ± 1) bound and continuum states, as shown in Fig. 10.
By considering only the two valence electrons we are implicitly
ignoring inner-shell excited states of Ca, which amounts to
ignoring the contribution of the Ca++ polarizability to the Ca+

polarizability. The shift due to the higher lying Npn′(� ± 1)
and Npε(� ± 1) states is readily calculated in second-order
perturbation theory by summing over N and n′, and integrating

FIG. 9. Adiabatic plot of the measured nh − ni (�) and ni − nk

(�) intervals using Eq. (7). There are three data points for the ni − nk

(�) intervals, 18 � n � 20, and six data points for the nh − ni (�)
intervals, 18 � n � 23. A fit to the straight line yields the y intercept
and slope, which are αd and αq , respectively. The resulting fit values
are αd = 75.32(4)a3

0 and αq = −257(8)a5
0 .
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FIG. 10. Energy levels of the Rydberg states converging to the
Ca+ 4s and Np states and the continua associated with the latter. A
4sn� Rydberg state is dipole coupled to Npn′(� ± 1) states which
span an energy range �. If � 	 W4s−Np the adiabatic approximation
is valid.

over ε. The sum over n′ and the integral over ε span an energy
range �, as shown by Fig. 10. If

� 	 W4s−Np, (8)

for all N , the result of Mayer and Mayer is recovered. For
example, the dipole polarization energy shift is given by the
dipole term of Eq. (3). Equation (8) is a more precise statement
of the adiabatic condition. For alkali-metal atoms, in which the
excited states of the ion are all at high energies, the requirement
of Eq. (8) is easily met, and the adiabatic approximation works
well. For alkaline-earth atoms this requirement is not met, and
the adiabatic approximation fails, as is evident in Fig. 9.

To correct for the nonadiabatic effects and extract the core
polarizabilities from the �� intervals there are two approaches
we can take. One is the adiabatic expansion method, which
can be viewed as an expansion in powers of �/W4s−Np. The
attraction of this approach is that we are only calculating the
corrections to the analytic shifts obtained using hydrogenic
expectation values. The potential problem is convergence of
the expansion. The alternative approach is the direct numerical
calculation of the hydrogenic matrix elements for the dipole
and quadrupole interactions, as exemplified in Fig. 10. This
approach is in principle exact, but since the entire energy shift
is calculated numerically, small errors are important.

In the adiabatic expansion approach the higher-order terms
in the expansion appear as expectation values of higher inverse
powers of r . If the expansion is to converge, these terms should
become smaller with increasing order. While this condition is
met for the high � states, it is not for the 4snh states. In
the nonadiabatic correction to the dipole polarization energy
the 〈r−8〉n� term is larger than the 〈r−6〉n� term. In short, the
expansion is nonconvergent, and we cannot use this method
to analyze our data. However, using the leading correction
term for the dipole polarization energy provides a bound for
the polarizabilities. The leading term in the correction to the
dipole polarization energy has a 〈r−6〉n� dependence and is thus
indistinguishable from the quadrupole polarization energy.
With the inclusion of this term, Eq. (7) becomes

�Wpol,n��′

�Pn��′
= αd + (αq − 6β1)

�PQn��′

�Pn��′
, (9)

where β1
∼= 0.95αd/(2W4p−4s) [15]. The numerical factor of

0.95 comes from the fact that 5% of αd comes from higher-

TABLE VI. kd calculated values.

n � = 5 � = 6 � = 7

18 0.956528 0.972293 0.982680
19 0.956518 0.972178 0.982543
20 0.956500 0.972111 0.982437
21 0.956437 0.972033
22 0.956453 0.971906
23 0.956423 0.971892

lying np states of Ca+ and Ca++ [16]. We calculate 6β1 to
be 1850(40)a5

0 . Including the leading term in the adiabatic
expansion simply raises the value of αq by 6β1, yielding αq =
1590(40)a5

0 . The value of αd is unchanged. Since the 6β1

correction term in Eq. (9) overcorrects for the nonadiabatic
effect, these values are lower and upper bounds to αd and αq ,
respectively.

The alternative approach is the direct calculation of the
multipole interactions, as shown in Fig. 10 for the dipole
interaction. As an approximation we assume that all the dipole
and quadrupole polarization energies of the Ca 4sn� states
come from the couplings to the Ca 4pn′�′ and 3dn′�′ states.
For both the dipole and quadrupole shifts, we find the ratio of
the explicitly calculated shift to that predicted by the adiabatic
model. These ratios, the nonadiabatic factors kd and kq , are
then used to correct the adiabatic model. Explicitly, we rewrite
Eq. (3) as

Wpol,n� = − 1
2kdαd〈r−4〉n� − 1

2kqαq〈r−6〉n�. (10)

The nonadiabatic factors kd and kq are defined in Eqs. (17.25)
and (17.26) of Ref. [17]. Both are calculated numerically using
a Numerov algorithm to calculate hydrogenic wave functions.
The calculated values of kd and kq are given in Tables VI
and VII, respectively. There are sum rules for the sums of
the squares of the matrix elements [14], and using them we
estimate the percentage uncertainties in kd and kq to be 0.3%
for both values. As shown in Table VI, to three significant
digits, there is no n dependence in kd . As shown in Table VII,
to four significant digits, there is n dependence in kq for � = 5
and � = 6 but not for � = 7. We can express Eq. (10) in Edlen’s
form as follows:

Wpol,n� = −αdP
′
n� − αqP

′Q′
n�, (11)

where

P ′
n� = kdP (12)

TABLE VII. kq calculated values.

n � = 5 � = 6 � = 7

18 0.9780 0.9273 0.9376
19 0.9797 0.9277 0.9376
20 0.9812 0.9284 0.9376
21 0.9824 0.9284
22 0.9835 0.9287
23 0.9845 0.9292
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FIG. 11. Nonadiabatic plot of the measured nh − ni (�) and ni −
nk (�) intervals using Eq. (14). There are three data points for the
ni − nk (�) intervals, 18 � n � 20, and six data points for the nh −
ni (�) intervals, 18 � n � 23. A linear fit (solid line) gives values for
the y intercept and slope of 76.99(7)a3

0 and 228(12)a5
0 , respectively.

When we take into account the overcorrection of kd , we obtain the
data points (•) and the lower fit line (broken line), which leads to our
final values of αd = 76.91(5)a3

0 and αq = 206(9)a5
0 .

and

Q′
n� = kq

kd

Qn�. (13)

Hence the difference between the core polarization energy of
4sn� and 4sn�′ of the same n is

�Wpol,n�′�

�P ′
n��′

= αd + αq

�P ′Q′
n��′

�P ′
n��′

, (14)

where �Wpol,n�′� is defined in Eq. (7), �P ′
n��′ = P ′

n� − P ′
n�′ ,

and �P ′Q′
n��′ = P ′

n�Q
′
n� − P ′

n�′Q
′
n�′ .

We plot
�Wpol,n�′�

�P ′
n��′

versus
�P ′Q′

n��′
�P ′

n��′
in Fig. 11 using the nh −

ni (�) and ni − nk (�) measured intervals. From Fig. 11,
the intercept and slope of the graph yield fit values of αd =
76.99(7)a3

0 and αq = 228(12)a5
0 , respectively, shown by the

solid line.
At this point it is useful to compare Figs. 9 and 11, in

particular the points on the solid line in Fig. 11. There is almost
no difference in the horizontal positions of the data points but
a large difference in their vertical positions, leading to very
different values for αq . The difference in the vertical positions
comes from substituting �P ′ for �P , i.e., introducing kd ,
the nonadiabatic correction to the dipole polarization energy.
The small difference in the horizontal positions of the points
in the two graphs indicates that the introduction of kq ,
the nonadiabatic correction for the quadrupole polarization
energy, has a negligible effect for these �� intervals. The
uncertainties in the fit in Fig. 11 do not reflect the uncertainty
in the calculation of kd . When it is taken into account the values
we obtain are αd = 77.0(3)a3

0 and αq = 228(12)a5
0 .

We now return to our assumption that the polarization shifts
are due entirely to the couplings to the 4pn′�′ and 3dn′�′
states. This assumption is equivalent to assuming the Ca+

polarizabilities arise entirely from the Ca+ 4p and 3d states.
The calculations of Safronova and Safronova indicate that 95%
of αd is due to the 4p state, and 58% of αq is due to the 3d

TABLE VIII. Ca+ 4s dipole polarizability (αd ) obtained from this
work and other theoretical and experimental results.

αd (a3
0 )

This workae 75.32(4)
This workdc 76.9(3)
Expt. [8] 87(2)
Expt. [18] 75.3(4)
Expt. [19] 70.89(15)
Theory [16] 76.1(5)
Theory [21] 73.0(1.5)
Theory [20] 75.49

state [16]. Thus in kd and kq we have overcorrected. Inspecting
Figs. 9 and 11 we can see that the overcorrection due to kq is
insignificant, but that due to kd is important. Accordingly, we
have reduced the correction due to kd by 5%, resulting in the
broken line in Fig. 11. This modification leads to the values
αd = 76.91(5)a3

0 and αq = 206(9)a5
0 . When the uncertainty in

the calculation of kd is taken into account the values we obtain
are αd = 76.9(3)a3

0 and αq = 206(9)a5
0 . As we shall discuss

shortly, we believe these values to be upper and lower bounds
to αd and αq .

V. DISCUSSION

Tables VIII and IX show values of αd and αq from this work
and other experimental and theoretical work. The uncertainties
for our values represent the uncertainties from the fits of the
data to the two models. The values labeled ae are from the
adiabatic expansion method, Eq. (9), and the values labeled
dc are from the direct calculation method, Eq. (14). There are
three experimental results for αd to which we can compare
ours. The value of Ref. [8] is based on the measurement of
the 4snf → 4sng intervals. The analysis of these data relied
heavily on a more complex theoretical model, which was
probably inadequate to represent the 4sng states. The value of
αd given in Ref. [18] was obtained by assuming that the 4snh

quantum defects arise solely from the dipole polarizability
and applying the adiabatic core polarization model. Since the
quadrupole polarizability is small and the nonadiabatic effect
on the dipole polarization cancels its effect to some extent, this
approach yields a value for αd close to the value we obtained
from Fig. 9. In Ref. [19] lifetime measurements of the Ca+ 4pj

states were used to obtain the oscillator strengths of the
4s − 4pj transitions, taking into account the small branching
ratios for decay to the 3dj states. The oscillator strengths of
the 4s − 4pj transitions were then used to calculate the value

TABLE IX. Ca+ 4s quadrupole polarizability (αq ) obtained from
this work and other theoretical results.

αq (a5
0 )

This workae 1590(40)
This workdc 206(9)
Theory [16] 871(4)
Theory [20] 875.1
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of αd . The resulting value of αd is too small due to the neglect
of higher-lying Ca+ Np states and the dipole polarizability of
Ca++, but when this omission is taken into account it is
consistent with our value for αd . The theoretical values for αd

from Refs. [16] and [20] fall within our experimental bounds
given in Eq. (15), while the theoretical value of Ref. [21] is
clearly outside the bounds.

As shown in Table IX, our value for αq obtained by the
adiabatic expansion method is twice the theoretical value,
and the value obtained by the direct calculation method is
a factor of 4 smaller than the theoretical value. Since a large
fraction, two-thirds, of the quadrupole polarizability is due
to the Ca+ 3d states, an alternative check of the calculated
quadrupole polarizability is the lifetime of the Ca+ 3d state,
which decays by quadrupole radiation. The measured lifetime
is in good agreement with the calculated lifetime, supporting
the validity of the calculation of αq . It is worth noting that
if the value of kd for the 4snh states is reduced to 98.35%
of the current kd value we would obtain αd = 75.3(1)a3

0
and αq = 878(15)a5

0 , in excellent agreement with the recent
theoretical values. In view of the sensitivity of the direct
calculation approach to the numerical calculations of kd and the
large discrepancy between our value of αq and the theoretical
values, we view the direct calculation values of Tables VIII
and IX as upper and lower bounds for αd and αq , respectively.
As a consequence, we report bounds for αd and αq . Explicitly,

75.3a3
0 < αd < 76.9a3

0 (15)

and

206a5
0 < αq < 1590a5

0 . (16)

Our ability to specify αd and αq is limited by our confidence
in the core polarization models. Two experimental avenues can
be explored to minimize this problem. The first is measuring
higher � intervals in which the nonadiabatic corrections are
not as large, as done by Lundeen et al. for other atoms [22].
The second is high-resolution laser spectroscopy of the Ca
4snd 1D2 states. Absolute measurements of their energies,
good to 10 MHz, would locate the 4snd levels relative
to the hydrogenic n� levels. The microwave measurements
reported here could then be used to locate the Ca 4sn� levels
relative to the H n� levels, and the present data could then

be analyzed in terms of the displacements of the energies
from the hydrogenic levels, instead of the differences in the
displacements. The 4snh states could be dropped from the
analysis, substantially reducing the uncertainty due to the non-
adiabatic corrections.

Making measurements involving higher � states should
minimize the nonadiabatic effects, allowing a better deter-
mination of the polarizabilities. However, it is not obvious
that the discrepancy between the theoretical and experimental
values will disappear. Intervals between the high � Ba 6sn�

levels have been measured, but the value of αq extracted by
the direct calculation method is a factor of 2 smaller than the
theoretical value, a similar discrepancy to that reported here
for Ca [23]. Determining the source of these discrepancies is
a worthy theoretical challenge.

VI. CONCLUSION

We have measured �� intervals of Ca 4snf → 4sn�,
18 � n � 23, and 4 � � � 7 using a microwave and rf
resonance approach. We have used these measurements to
place bounds on the Ca+ dipole and quadrupole polariz-
abilities. The Ca+ 4s dipole and quadrupole polarizabilities
are 75.3a3

0 < αd < 76.9a3
0 and 206a5

0 < αq < 1590a5
0 . The

Ca+ 4s dipole polarizability agrees well with recent theoretical
values. However, we are not able to place tight bounds on the
Ca+ 4s quadrupole polarizability due to uncertainties in the
core polarization analyses. We hope this work will motivate
theoretical work to reexamine the problem of core polarization
analysis and, more generally, the source of the discrepancy
between the experimental and theoretical values of αq .
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