Abstract (บทคัดย่อ)

Project Code: MRG5680138

Project Title: การประดิษฐ์แอปทาเซนเซอร์ซึ่งใช้กราฟีนออกไซด์เป็นส่วนประกอบเพื่อ

การตรวจจับไอออนโปแตสเซียม

Investigator: นายสกุลสุข อู่นอรูโณทัย

ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address: Sakulsuk.U@chula.ac.th

Project Period: 5 ปี 9 เดือน

ในการประดิษฐ์เซนเซอร์ซึ่งใช้กราฟินออกไซด์ (GO) เป็นส่วนประกอบให้มี ประสิทธิภาพนั้น ผู้ประดิษฐ์ต้องเข้าใจธรรมชาติของอันตรกิริยาระหว่างกราฟินออกไซด์และ โมเลกุลอื่น ๆ ซึ่งส่งผลต่อการดับสัญญาณฟลูออเรสเซนซ์ รวมถึงปัจจัยที่มีผลต่ออันตรกิริยานั้น อุณหภูมิ และขนาดของแผ่นกราฟินออกไซด์ เป็นต้น ด้วยเหตุนี้ ผู้วิจัยเลือกใช้สี ชนิด ได้แก่เมทิลีน บลู (MB), โรดามีน บี (RhB) และซัลโฟโรดามีน บี (SRhB) เป็น ตัวแทนของสีย้อมที่มีประจุรวมเป็นบวก, บวก/กลาง และลบ ตามลำดับ และทำการทดลองวัด การดับสัญญาณฟลูออเรสเซนซ์โดยกราฟีนออกไซด์ที่ค่า pH ต่าง ๆ กันด้วยเทคนิค ฟลูออเรสเซนซ์สเปกโทรสโกปี ผลการทดลองแสดงให้เห็นว่าประสิทธิภาพในการดับสัญญาณ ฟลูออเรสเซนซ์โดย GO ที่มีต่อสีย้อมแต่ละตัวได้รับผลกระทบจาก pH แตกต่างกันซึ่งสามารถ อธิบายได้ด้วยอันตรกิริยาไฟฟ้าสถิต, การซ้อนกันชนิดไพ-ไพ และพันธะไฮโดรเจน ในขณะที่ อันตรกิริยาไฟฟ้าสถิตเป็นอันตรกิริยาที่สำคัญที่สุดสำหรับระบบ GO-MB และ GO-RhB การ ซ้อนกันชนิดไพ–ไพก็มีบทบาทสำคัญสำหรับระบบ GO–SRhB นอกจากนี้ การศึกษาผลของ อุณหภูมิที่มีต่อประสิทธิภาพการดับสัญญาณฟลูออเรสเซนซ์ทำให้ทราบว่ากลไกการดับ สัญญาณเป็นแบบสถิต และท้ายที่สุด เมื่อใช้ GO ที่มีขนาดเล็กลง พบว่าประสิทธิภาพการดับ ์ สัญญาณฟลูออเรสเซนซ์ลดลง สามารถอธิบายได้ว่าน่าจะเป็นเพราะจำนวนโดเมนแบบ sp² ที่ ลดลง

Keywords: กราฟีนออกไซด์; อันตรกิริยาระหว่างโมเลกุล; สีย้อม; โรดามีน; เมทิลีน บลู

Abstract

Project Code: MRG5680138

Project Title: Fabrication of Graphene Oxide-Based Aptasensors for Potassium

Ion Detection

Investigator: Mr. Sakulsuk Unarunotai

Department of Chemistry, Faculty of Science, Chulalongkorn

University

E-mail Address: Sakulsuk.U@chula.ac.th

Project Period: 5 Years 9 Months

In order to efficiently fabricate graphene oxide (GO)-based sensors, the nature of the intermolecular interactions between GO and dye molecules, affecting fluorescence quenching, and factors related to those interactions, including pH, temperature, and the size of GO sheets must be thoroughly understood. As a result, we selected three different dyes, namely methylene blue (MB), rhodamine B (RhB), and sulforhodamine B (SRhB) as representatives of cationic, cationic/zwitterionic, and anionic dyes, respectively. Fluorescence quenching experiments by GO were studied by fluorescence spectroscopy at various pH. The results demonstrated that the fluorescence quenching efficiency of GO to each dye is differently affected by the pH attributed to electrostatic interaction, π – π stacking and hydrogen bonding. While electrostatic interaction is the most important interaction for GO-MB and GO-RhB, the π - π stacking also plays an important role for GO-SRhB system. Furthermore, the temperature dependence of the quenching efficiency suggests a static quenching mechanism and finally the decrease of the quenching efficiency with the reducing GO size is probably due to a lower number of sp² domains in the GO sheets.

Keywords: Graphene oxide; intermolecular interaction; dye; rhodamine; methylene

blue