บทคัดย่อ

ชีวมวลสามารถนำมาใช้ผลิตก๊าซชีวมวลเพื่อเป็นพลังงานทดแทนได้ ก๊าซชีวมวลมีการใช้เป็น เชื้อเพลิงในเครื่องยนต์เป็นเวลานานแล้ว แต่การวิจัยเกี่ยวกับคุณลักษณะการเผาไหม้และสมรรถนะ ของเครื่องยนต์ซึ่งเป็นประโยชน์ต่อการพัฒนาเครื่องยนต์ยังมีอยู่น้อยมาก งานวิจัยนี้จึงมีวัตถุประสงค์ เพื่อศึกษาการนำเอาชีวมวลมาใช้เป็นวัตถุดิบในการผลิตก๊าซชีวมวล รวมถึงทดสอบสมรรถนะ มลพิษ และคุณลักษณะการเผาไหม้ของเครื่องยนต์ดีเซลโดยใช้ก๊าซชีวมวลเป็นเชื้อเพลิงในรูปแบบเชื้อเพลิง ร่วมกับปาล์มไบโอดีเซลซึ่งมีค่าซีเทนสูง

ทดสอบกับเครื่องยนต์ดีเซลสูบเดียว แบบฉีดเชื้อเพลิงโดยตรง ก๊าซชีวมวลผลิตโดยใช้เตาผลิต ก๊าซชีวมวลแบบไหลลงขนาด 50 กิโลวัตต์ความร้อน ทดสอบที่ความเร็วรอบเครื่องยนต์คงที่ 1,500 รอบต่อนาที ที่ภาระความดันยังผลเฉลี่ยเบรก 0-715.8 kPa โดยปรับสัดส่วนก๊าซชีวมวลให้ทดแทน น้ำมันปาล์มไบโอดีเซลให้ได้สูงสุดที่ภาระต่างๆ ผลการศึกษาพบว่าก๊าซชีวมวลสามารถนามาใช้เป็น เชื้อเพลิงร่วมในเครื่องยนต์ดีเซลซึ่งสามารถทำงานได้อย่างมีเสถียรภาพ ที่อัตราส่วนการทดแทนร้อย ละ 67.57 ที่ความดันยังผลเฉลี่ยเบรก 500.38 kPa ส่วนคุณลักษณะการเผาไหม้ของเครื่องยนต์ที่ใช้ เชื้อเพลิงร่วมมีรูปแบบการปล่อยความร้อนและการเผาไหม้ ช่วง Premixed combustion และ Mixing control combustion ที่กว้างกว่าการใช้น้ำมันดีเซลอย่างเดียว รวมถึงค่าความดันสูงสุดใน กระบอกสูบมีค่าลดลง 10-18 บาร์ในช่วงภาระ 0-500 kPa ขณะที่ความล่าซ้าในการจุดระเบิดและ ระยะเวลาในการเผาไหม้เพิ่มขึ้น 2-5 องศาเพลาข้อเหวี่ยง เมื่อพิจารณาก๊าซไอเสียพบว่าปริมาณก๊าซ คาร์บอนมอนอกไซด์เพิ่มขึ้นที่ช่วงภาระเครื่องยนต์ต่ำและลดลงเมื่อภาระเครื่องยนต์เพิ่มขึ้นแต่ก็ยังมี ค่าสูงกว่าการใช้น้ำมันดีเซลอย่างเดียวทุกช่วงภาระ ในขณะที่ออกไซด์ของในโตรเจนลดลง 20-250 ส่วนในล้านส่วน

คำหลัก: ก๊าซชีวมวล, เครื่องยนต์เชื้อเพลิงร่วม, คุณลักษณะการเผาไหม้, สมรรถนะของ เครื่องยนต์

Abstract

The biomass, that can be used to produce producer gas as a renewable energy, which has long been used as a fuel in engines, however, very few researches about the combustion characteristics have been done. In this study, the combustion characteristic and performances of biomass gas—palm biodiesel high cetane dual fuel mode are investigated.

In dual fuel mode, the single cylinder, direct injection, diesel engine mounting with in-cylinder pressure transducer is used in the combustion characteristic study. Producer gas from cassava rhizome, is generate from 50kW_{th} double throat downdraft gasifier. The combustion and emission characteristics of dual fuel engine are investigated at constant speed 1500 rpm at various brake mean effective pressure (bmep) loads between 0-715.8 kPa and various diesel-gas input ratio for maximum diesel saving ratio of each load. It is shown the biomass can be used to produce producer gas used as dual fuel in diesel engine, which maximum diesel fuel saving about 67.57% bmep 500.38 kPa by engine can operate at a stable. The combustion characteristic of dual fuel mode have premixed combustion and mixing control combustion range wider than diesel mode, Cylinder peak pressure decreased by 10-18 bar various (bmep) 0–500 kPa while the ignition delay is increased 2–5 °CA, And the CO emission of duel fuel mode is higher than diesel mode, NOx is increased by 20-250 ppm depending on the bmep

Keywords: Producer gas, Dual fuel engine, Combustion characteristics, Engine performance