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We introduce the triple hierarchical problem over the solution set of the variational inequality problem and the fixed point set of a
nonexpansive mapping. The strong convergence of the algorithm is proved under some mild conditions. Our results extend those

of Yao et al,, Iliduka, Ceng et al., and other authors.

1. Introduction

Let C be a closed convex subset of a real Hilbert space H
with inner product (-,-) and norm || - . We denote weak
convergence and strong convergence by notations — and —,
respectively. Let A be a nonlinear mapping. The Hartman-
Stampacchia variational inequality [1] is to find x € C such
that (Ax, y — x) > 0,Vy € C. The set of solutions is denoted
by VI(C, A). f: C — Cis said to be a p-contraction if there
exists a constant p € [0, 1) such that || f(x) = f(»)I < pllx -
yl,Vx, y € C. Amapping A : H — H is said to be monotone
if (Ax — Ay,x - y) 20,Vx,y € H . AmappingA: H - H
is said to be a- strongly monotone if there exists a positive real
number « such that (Ax— Ay, x—y) > allx - yIIZ,Vx, yeH.
A mapping A : H — H is said to be -inverse-strongly
monotone if there exists a positive real number 8 such that
(Ax — Ay,x — y) = BllAx — Ay|*,Vx, y € H. A mapping
A : H — H is said to be L-Lipschitz continuous if there
exists a positive real number L such that [|Ax — Ay| < L||x -
yl,Vx, y € H. A linear bounded operator A is said to be
strongly positive on H if there exists a constant y > 0 with the
property (Ax, x) > yl|x|*, Vx € H. A mapping T : C — Cis
said to be nonexpansive if |[Tx — Tyl < |lx — yl,Vx, y € C.

A point x € C is a fixed point of T provided Tx = x.
Denote by F(T') the set of fixed points of T; that is, F(T) =

{x € C: Tx = x}. If C is bounded closed convex and T is a
nonexpansive mapping of C into itself, then F(T") is nonempty
(see [2]).

We discuss the following variational inequality problem
over the fixed point set of a nonexpansive mapping (see
[3-16]), which is said to be the hierarchical problem. Let
a monotone, continuous mapping A : H — H and a
nonexpansive mapping T : H — H.Find x € VI(F(T), A) =
{x € F(T) : (Ax,y — x) > 0,Vy € F(T)}, where F(T) # 0.
This solution set is denoted by E.

We introduce the following variational inequality prob-
lem over the solution set of variational inequality problem
and the fixed point set of a nonexpansive mapping (see [17,
18]), which is said to be the triple hierarchical problem. Let
an inverse-strongly monotone A : H — H, a strongly
monotone and Lipschitz continuous B : H — H, and a
nonexpansive mapping ' : H — H. Find x € VI(E,B) =
{x e E:(Bx,y —x) 20,Vy € E}, where E := VI(F(T), A) #
0.

In 2009, Yao et al. [19] considered the following two-step
iterative algorithm with the initial guess x, € C which is
chosen arbitrarily:

Xps1 = (xnf (xn) + (1 - “n) Tyn’

1
yn:ﬁnsxn+(l_ﬁn)xny Vn =0, ()
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where «,,, 8, € (0, 1) satisfies certain assumptions. Let S, T
be two nonexpansive mappings and let f : C — C be
a contraction mapping. Then, they proved that the above
iterative sequence {x,} converges strongly to fixed point.

Next, Iiduka [17] introduced a monotone variational
inequality with variational inequality constraint over the
fixed point set of a nonexpansive mapping; the sequence {x,,}
defined by the iterative method below, with the initial guess
x, € H, is chosen arbitrarily:

In = T('xn - AnAlxn) >
(2)

Xpp1 = Yo — O, AL Y, Y20,

where &, € (0,1] and A,, € (0, 2] satisty certain conditions,
A, : H — H is an inverse-strongly monotone, A,
H — H is a strongly monotone and Lipschitz continuous,
and T : H — H is a nonexpansive mapping; then the
strongly convergence analysis of the sequence generated by
(2) is proved under some appropriate conditions.

In 2011, Yao et al. [20] studied the hierarchical problem
over the fixed point set. Let the sequences {x,,} be generated
by these two following algorithms:

implicit algorithm x, = TP-[I — t(A — yf)]x,, Vt €
(0,1)

explicitalgorithm x,,,, = 8,x,,+(1-,)TPc[I-eo, (A-
yf)lx,, Vn = 0.

They illustrated that these two algorithms converge strongly
to the unique solution of the variational inequality which is
to find x* € F(T) such that

(A-yf)x",x-x") >0,

where A : C — H is a strongly positive linear bounded
operator, f : C — H is a p-contraction,and T : C — C
is a nonexpansive mapping satisfying some conditions.

Very recently, Ceng et al. [21] studied the following new
algorithms. For x, € C is chosen arbitrarily, they defined a
sequence {x,} by

Vx € F(T), (3)

Xn+1

= PC [Any (“nf (xn) + (1 - an) an) + (I - /\n.uF) T‘xn] >

Vn=>0,
(4)

where the mappings S, T are nonexpansive mappings with
F(T) # 0. Let F C — H be a Lipschitzian and
strongly monotone operator and let f : C — H be a
contraction mapping satisfying some appropriate conditions.
They proved that the proposed algorithms strongly converge
to the minimum norm fixed point of T'.

In this paper, we consider a new iterative algorithm for
solving the triple hierarchical problem over the solution set
of the variational inequality problem and the fixed point set
of a nonexpansive mapping which contain algorithms (1) and
(4) as follows:

Yn = PC [ﬁnsxn + (1 - ﬁn) xn] >
Xny1 = y/\n(/) (xn) + (I - An!’iF) Tyn’

(5)
Vn >0,
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where the mappings S, T are nonexpansive mappings with
F(T) # 0. Let F : C — H be a Lipschitzian and strongly
monotone operator, and let ¢ : H — H be a contraction
mapping satisfying some mild conditions. Find a point x* €
F(T) such that

(I-8)x",x-—x"y>0, VxeF(T). (6)

This solution set of (6) is denoted by Q := VI(F(T),S).
The strong convergence for the proposed algorithms to the
solution is solved under some appropriate assumptions. Our
results improve the results of Ceng et al. [21], Iiduka [17], Yao
et al. [19], Yao et al. [20], and some authors.

2. Preliminaries

Let C be a nonempty closed convex subset of H. There holds
the following inequality in an inner product space ||x + y|* <
||x||2 +2(y,x + y),VYx,y € H. For every point x € H, there
exists a unique nearest point in C, denoted by P.x, such that

- Pexl < |x-y]. vyec. @

P is called the metric projection of H onto C. It is well known
that Py, is a nonexpansive mapping of H onto C and satisfies

(x = y, Pox = Pey) 2 |Pox - Poy[, (®)

for every x, y € H. Moreover, Pox is characterized by the
following properties: Pox € C and

(x = Pox,y — Pox) <0, 9)

Ix = y|* = | = Pox|]” + |y - Pex], (10)

forall x € H,y € C. Let B be a monotone mapping of C
into H. In the context of the variational inequality problem
the characterization of projection (9) implies the following:

ueVI(C,B)y &= u=P-(u—-ABu), A>0. (1)

Itis also known that H satisfies the Opial’s condition [22]; that
is, for any sequence {x,} ¢ H with x, — x, the inequality
liminf, | llx, — x| < liminf, | llx, — vl holds for every
y € Hwith x # y.

Lemma 1 (see [23]). Let C be a closed convex subset of a real
Hilbert space H and let T : C — C be a nonexpansive
mapping. Then I — T is demiclosed at zero; that is, x, —
x and x,, — Tx,, — 0imply x = Tx.

Lemma 2 (see [24]). Let {x,} and {y,} be bounded sequences
in a Banach space X and let {3} be a sequence in [0, 1] with
0 < liminf, _, B, < limsup,_, B, < 1. Suppose x,,.; =
(1-B,)y,+P,.x, for all integersn > 0 and lim sup,, _, .. (1,41 —
Yl = %, — x,1) < 0. Then, lim,, _, |y, — x,|l = 0.
Lemma 3 (see [10]). Let B: H — H be [3-strongly monotone
and L-Lipschitz continuous and let u € (0,2/L*). For A €
[0,1], define Ty : H — H by T)(x) := x — AuB(x) for all
x € H.Then, forallx, y € H, |T)(x)-T,(»)| < (1-A7)[x—yl

hold, where T := 1 — \|1 — u(2f — uL?) € (0, 1].
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Lemma 4 (see [25]). Assume that {a,} is a sequence of
nonnegative real numbers such that

[ < (1 - yn) a, + 871’ Vn =0, (12

where {y,} ¢ (0,1) and {8,} is a sequence in R such that

@) 2221 VYn = 005

(i) limsup,, _, o (8,/y,) < 0or Y02 18,] < co.

Then lim a, =0.

n—-00"n

3. Strong Convergence Theorem

In this section, we introduce an iterative algorithm of triple
hierarchical for solving monotone variational inequality
problems for x-Lipschitzian and #-strongly monotone oper-
ators over the solution set of variational inequality problems
and the fixed point set of a nonexpansive mapping.

Theorem 5. Let C be a nonempty closed and convex subset
of a real Hilbert space H. Let F : C — C be k-Lipschitzian
and n-strongly monotone operators with constant k and n > 0,
respectively, and let ¢ : C — C be a p-contraction with
coefficient p € [0,1). Let T : C — C be a nonexpansive
mapping with F(T) # 0, and letS : H — H be a nonexpansive
mapping. Let 0 < u < 2n/x* and 0 < y < T, where

\J1 = u(@2n — px?). Suppose that {x,} is a sequence

generated by the following algorithm where x, € C is chosen
arbitrarily:

T=1-

Yn = PC [ﬁnsxn + (1 - ﬁn) xn] >
Xp+1 = yAn(/) (xn) + (I - /\muF) Tyrv

(13)
Vn >0,

where {B,},{A,.}, € (0, 1) satisfy the following conditions:

(C1): B, < kA

(C2): lim A A

noootn = 0, lim
[e.9] A _ .
Zn:O n = 09

n An—l)/An) =0,

n—»oo((

(C3): lim,, _, o (B, = B1)/By) = O.

Then {x,} converges strongly to x* € Q, which is the unique
solution of another variational inequality:

((MF—yp)x",x —x") >0, VxeQ, (14)

where Q) := VI(F(T),S) + 0.

Proof. We will divide the proof into four steps.

Step 1. We will show that {x,} is bounded. Indeed, for any
x* € F(T), we have

Iy~

= [P RS+ (1- B) %] - Pox'|

< [B,Sx,+ (1~ B)x, - x°]

=B, (55, - S7) + (1= B,) (- x°) 4 B, (857 - x°)]
< Bulls, — "+ (1 B) e =] + B, o™ — ']

< -]+ Bulsx” - 7.

(15)
From (13), we deduce that
[EE|
= [lyAud (x,) + (I = A, uF) Ty, — x|
= [yA, (@ (x,) =@ (7)) + (I = A,uF) (T, - x7)
+A, (v (x7) - uFx") |
(16)

< VAl (x) =& (7)) + (T = A,0F) | Ty, = x7]|
+ A v (x7) — pEx"|

< P [, = %7 + (1= A7) [y = X7
+ A [lye (x") - uEx"|.

Substituting (15) into (16), we obtain

s = %7
< yPA, %, = 7|
+ (1= A0) {l = 7| + By 5™ = x|}
+ Ay (x°) = uEx"|
< ypA, o, = x| + (1= A7) [lx, = x|
+ B llSx” = x| + A Iy (x7) — uFx”|
<[1=2, (T =yp)l o, = 7| + kA, 2" =27 (17)
+ Ay v (x7) = uEx"|
<[t=2, (z=yp)] %, — 7|
+ A (R [Sx7 = x| + Iy (x7) - uFx"]))

1
TP

< max{“xn—x*” +

x(kllsx” =%+ g (") - |



By induction, it follows that

e =71

Smax{”xo—x ||+ o
(18)

< (k[[Sx" = x| + [y (x7) - uEx"[) } ,
n>0.

Therefore, {x,} is bounded and so are {y,}, {Ty,}, {Sx,},
{p(x,)}, and {FT (y,,)}.

Step 2. We will show that lim, _, llx,, — Tx,| = 0. Setting
v, = B,Sx, + (1 - B,)x,, we obtain

1V, = v
= [1B.Sx, + (1= Bo) %, = Bue1S%01 = (1= By X
= || By (Sx = Sx,1) + (By = Baer) SXn
+ (1= Ba) (e = %01) + (But = Ba) % |
< B ln = et + 1B = Baca | (1560t + [0
(1= o) [ = x|

< e = s+ 1Bs = B (USca |+ s )
(19)

which implies that

19 = Y-l = 1Pecvs = Pevii|
6 an - anlll

< ”xn - xn—l" + |ﬁn - ﬁn—ll (stn—lll + "xn—lll) .
(20

It follows from (13) that

It = .l
= || YAug (x) + (I = AuF) Ty = YA, 16 (%1
(I =M, uF) Ty, "
= 72 (¢ () = b (xumt)) + (A = At 19 (%01)
+ (I = AuptF) Ty, = (I = Ay y iF) Ty |
< YA [ = x|+ A = A | v (16 G
+ (T = AuF) Ty, = (I = AuuiF) Ty,
+ (I = AutF) Ty = (I = Ay tF) Ty |
< YpA % = X |+ A = At [l ()|
+ (U= 40) |9 = s + (A = At | [T,
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< VP %0 = x|+ [ = A

x (v ¢ (ep- ) + 1 |[F Ty, )

+ (1= 2,7) {1 = Xt | + B = B

X (1S [ + -1 D}

<[1=2, (z=yp)] % = |

A= A (2 G| + | F Ty )

+ 1By = Bua | (IS + 2001
= [1= A, (v = yp)] % = %cal

An_Anf n "~ Pn-
(Rl [t

n n

< [1 _An (T_ YP)] "xn - xn—l“

|/\n - An—1| k |ﬁn - /3n—1|
+< Lo TR

o
(1)

where M, is a constant such that

sup (18 )+ BT (5 + D} < M.

Hence, conditions (C2) and (C3) allow us to apply Lemma 4;
then we get

nll)ngo "xn+1 - xn" =0. (23)
By (21), we get
||xn+1 B xn”
An
||xn B xrﬁl”
< (1=, (r - yp)] Po el
+ |An B An—ll;— |ﬁn - ﬁn—llj\/I1
”xn B xn—lu
=[1-A,(r - yp)] T
n—-1
+ [1 -2 (T _ YP)] ||x7l — xn—lu _ ”xn B xn—l" (24)
! Ai’l /\n—l
+ |An B /\nfll):' |ﬁn B ﬁn—l'Ml
||xn B xn—l”
< (12, (r - yp)] Pl
n-1
1 1 1
+ An "xn - xn—l" /\_n ‘A_n - /ln,l

|)Ln - /‘n—1| + |[;n - ﬁn—ll ]

+ M\, e
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Using the conditions (C2) and (C3), we can apply Lemma 4
to conclude that

”xn+1 B xn" —

n

lim
n—oo

0. (25)

By (13), we compute
%1 = Tyl = Y200 (%) + (I = A, uF) Ty, = Ty,
= [yAu® (x,) + Ty = ApFTy, = Ty,|  (26)
< A llye (%) = uFTy, |-

From the condition (C2), we note thatlim,, _, . l|lx,,; =TIl =
0. At the same time, from (13), we also have

"yn - xn" = nPC [ﬁnsxn + (1 - ﬁn) xn] - Pan”
< [1BuSx, + (1= Ba) % = x| 27)

< B, [|Sx, = x| -

By the conditions (C1) and (C2), we note that lim
x,| = 0. Consider

n—>oo||yn -

“)’n - Tyn" = “yn - xn“ + “xn - xn+1||

(28)
+ %01 = Ty — 0.
From (23), (26), and (27), we obtain
nli_,néo “yn - Tyn" =0. (29)
We set v, = 3,Sx, + (1 — f3,)x,,; then we get
Iy = vall = [Py = vl
(30)

< an—vn” — 0, asn-— oo.

From (13), we have
”Tyn - Txn” = "TPC [ﬁnsxn + (1 - ﬁn) xn] - TPan“
< [|BuSx, + (1= Bo) X, = x| (31)

< B, ||an - xn“ .

By the conditions (Cl) and (C2) again, we note that
lim,, _, ,IITy, — Tx,|l = 0. Consider

”xn - Txn" < “xn - yn“ + ”yn - Tyn" + "Tyn - Txn" _)( 0.
3

From (29), lim
0, we obtain

X, = ¥,ll = 0,and lim,, | | Ty, -Tx,|l =

n—»oo"

Jim %, = Tx,|| = o. (33)

Step 3. We will show that limsup,, _, . (uFx" — y(x*), x,, —
x™) < 0. Rewrite (13) as

Xn+1 = YAn(/) ('xn) + (I - ”AWF) Tyn

—Vnt :anxn + (1 - ﬁn) Xn-

(34)

We observe that

Xn = Xn+1

= X, — YA, (x,)
= (I = pA,F) Ty, + vy = BuSx, = X, + X,

= A, (uF - y$) x,,
= ApttFx, = (I = pA,F) Ty, + (I - pA,F) y,
= (I = pA,F) y, + v, + B, (1= 9) x,

= Ay (WF = y$) x, + At (Fy, = Fx,,) + (¥, = T¥,)
— UAGE (3 = Ty) + (v = y) + B (I = ) x,,

= Ay (UF = y$) x,, + Ayt (Fy,, = Fx,) + (3, = Tv,,)
= AGE (3 = Ty) + A (0 = Ty)
= A (U= Tyu) + (V= ) + B 1 = 8) x,,

= Ay (UF = y$) x,, + A p (Ey, - Fx,)
+ Ay (I = pF) (9, = Ty) + (1= A,) (9 = T,)
+ (V= ) + B, (I = 8) x,,

(35)

Set

z,= 2" >0, (36)

We note from (35) that

z, = (uF = y¢) x, + u(Fy, - Fx,) + (I = uF) (y, - Ty,)
1-1,

)

(yn - Tyn)

+/\Ln(vn—yn)+§—:(1—8)xn.

n

(37)
This yields that, for each x™ € F(T),

(2, %, — ")
= <([’1F_ y(p) X Xy _x*> +“<(Fyn _Fxn)’xn _X*>
+{(I = pF) y, = (I = pF) Ty, x,, = x7)

1-1,

)

<yn - Tyn’ Xy — X*)

n

+ Ai(vn—yn,xn—x*) + f—:((I—S)xn,xn—x*)

n



= ((uF —yp) x",x, - x7)
+ ((uF - y¢) x,, — (uF = yp) x", x,, — x")
+Au<(Fyn _Fxn)’xn _x*>
+{(I = pF) y, = (I = uF) Ty, x, - x")

1-

)

An * 1 %
<yn_Tyn’xn_x >+A_<Vn_yn’xn_x >

+ %((I -8)x,,x,—x").
(38)
In view of (38), ((uF — yP)x,, — (UF — pP)x*,x,, — x*) is

nonnegative due to the monotonicity of uF — p¢. From (38),
we derive that

<Zn’xn_X*> 2 <(HF_Y¢)x*’xn_x*>
+[4<(Fyn_Fxn)’xn_x*)
+{(I = uF) y = (I = uF) Ty, %, — x7)

L1,

<yn _Tyn’xn _x*>

n

1 *
+A_n<vn_yn>xn_x )
B

3 ((I=98)x,,x,—x").

n

(39)

Since (29) implies [|[(I-uF) y,—(I-uF)Ty,| — 0,asn — oo,
from (25), then we get z, — 0. Using (C1) and (30), ||y, —
x,l — 0,asn — oo and {x,} is bounded. We obtain from
(39) that

limsup((uF - y$) x", x, —x") <0, Vx" € F(T). (40)

Since the sequence {x,} is bounded, we can take a subse-
quence {xnj} of {x,} such that

lim sup ((uF - y¢p) x*, x,, — x*)
n—00
) ) (41)
= lim sup((uF - y¢) x", x, —x7)

j— oo

and x,, — X.From (33), by the demiclosed principle of the
nonexpansive mapping, it follows that X € F(T'). Then

lim sup{(uF - y¢) x", Xy, = x")
j—oo

(42)
= ((uF —yp)x",x—x") < 0.
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Step 4. Finally, we will prove x,,,;, — x*. From (13), we note

that

n+1

Iy = %7 1" = IPclBuSx, + (1 = B)x,] = Pox”[
< 1BSx, + (1= Bx,] - x|
< 1B, (Sx, = $x°) + (1= B,) (, - x7)
B, (5x" = x|

< "ﬁn (an_sx*) +(1 _Bn) (xn_x*)nz (43)

+2B,(8x" —x", y, — x")
< ﬁn”xn - ‘x*"2 + (1 - ﬂn) "xn - ‘x*"2
+2B,(Sx" - x",y,—x")

< e = I+ 2B, f15x" = %"l = <"1
Using (43), we compute

s = %"
= YA p(xn) + (I = L uF)Ty, - x|
= |yAa (¢ (x,) = ¢ (x7))
+ (I = A pF) Ty, = (I = A, uF) x"
F(I=ApF) %" = X"+ yh,0 ()|
= [vAa (¢ (x,) = ¢ (x7)) + (I = A,pF) (Ty, = x7)
A, (y9 (x7) — uFx")|*
< IPA($(x,) — $(xT)) + (I = A uB)(Ty, - x|
+ 24, (y$ (x7) = pFx", x,1 — X7)
< Y905, 96 + (1= A7 Ty, - 5
20, (y (") = WFx", Xy = x°)
+2(yA, (¢ (x,) = ¢ (x7)), (I - wA,F) (Ty, - x7))
PPN =%+ (1= 20,7+ 077 [ - 27
+ 24, (y (x7) = uFx", x,0 = x7)
+2pA,(¢ (x,) = ¢ (x7), (I = pA, F) Ty, — (I - pd,,F) x7)
= VPN =[P+ (120,74 077 [ - 27
+ 24, (y$ (x7) = pFx", x,p1 = X7)
+ 2P, (¢ (%) = @ (x7), (Ty, = x7) = A, F (Ty, = x7))
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= VPN fx, I + (1= 20,7+ 2077 [, - |
+2X, (¢ (x7) — uFx", x,0 = X7)
+2yA, (b (x,) = ¢ (x7), Ty, — x7)
= 2pA, (¢ (x,) = ¢ (x7), A, F (Ty, - x7))

2y (1 -2A, T+ /\irz)

<y P’ A%, -
x {lxs = x"I" + 2B, Isx* = x| |y, = %"}
+ 24, (v (x7) = uFx", = x7)
+2ppA, [x, = x| Ty, - x7
= 2yppd, [x, = <" | |F (Ty, - 7))

[1 - An (ZT - AnT2 - Anyzpz)] "xn -x" "2

IN

+ 26,4, 81" = x| [y, = 27|
20,0 () — BEX g — X7)
+29pA [x, = x| Ty, - x7
= 2yppd;, x, = <" |E (Ty, - x")]-
(44)

Since {x,}, {T'y,}, and {FTy,} are all bounded, we can choose
a constant M, > 0 such that

1
su
,,25 2t - A, - A2 p? (45)

x L2yppx, = x" | IF (Ty, = x7)|} < M.
It follows that
[%ne1 = x7|° < [1 -1, (21 -\, - /\nyzpz)] %, — x|
+1, (21 -1,7 = 1,9%p%) 5,
(46)

where

P 2¢,
"2t - A1 - Ay2p

3 8% ==l = %7

2
T A2 = Ay

77 (VO (xT) —HF 2 = 27)

2 . .
* - A T2 — A yzpz)’P"xn_x Ty, = x|
n n

— A, M,
(47)

Now, applying Lemma 4 and (35), we conclude that x,, —
x". This completes the proof. O

Corollary 6. Let C be a nonempty closed and convex subset
of a real Hilbert space H. Let F : C — C be k-Lipschitzian

and n-strongly monotone operators with constant k and n > 0,
respectively. Let T : C — C be a nonexpansive mapping with
F(T) # 0,andletS : H — H be a nonexpansive mapping. Let
0<u<2n/x*and0 <y < 1, wheret = 1-1/1 — u(2n — px?2).
Suppose {x,,} is a sequence generated by the following algorithm

X, € C arbitrarily:
Xny1 = (I - An!"F) TPC [ﬁnsxn + (1 - Bn) xn] , Vn 2(0’ )
48

where {f,},{A,,} € (0, 1) satisfy the following conditions (C1)-
(C3). Then {x,} converges strongly to x* € Q, which is the
unique solution of variational inequality:

(I-uF)x",x-x") >0, VxeQ, (49)

where Q := VI(F(T),S) + 0.

Proof. Putting ¢ = 0 in Theorem 5, we can obtain the desired
conclusion immediately. O

Corollary 7. Let C be a nonempty closed and convex subset of
areal Hilbert space H. Let ¢ : H — H be a p-contraction with
coefficient p € [0,1), and let T : C — C be a nonexpansive
mapping with F(T) # @ and S : H — H a nonexpansive
mapping. Suppose {x,,} is a sequence generated by the following
algorithm, x, € C, arbitrarily:

Yn = PC [ﬁnsxn + (1 - ﬁn) xn] >
Xpt1 = /\n¢ (xn) + (1 - An) Tyn’

where {f,},{A,,} € (0, 1) satisfy the following conditions (C1)-
(C3). Then {x,} converges strongly to x* € Q, which is the
unique solution of variational inequality:

(50)
Vn >0,

(I-¢)x",x-x") =20, VxeQ, (51)

where Q := VI(F(T),S) + 0.

Proof. Puttingy = 1, y = 2, and F = I/2 in Theorem 5, we
can obtain the desired conclusion immediately. O

Corollary 8. Let C be a nonempty closed and convex subset
of a real Hilbert space H. Let T : C — C be a nonexpansive
mapping with F(T) # 0 and letS : H — H be a nonexpansive
mapping. Suppose {x,,} is a sequence generated by the following
algorithm, x, € C, arbitrarily:

Xnt1 = (1 - An) TPC [ﬂnsxn + (1 - ﬁn) xn] >

where {8,},{A,.} € (0, 1) satisfy the following conditions (C1)-
(C3). Then {x,} converges strongly to x* € F(T), which is the
unique solution of variational inequality:

Vn >0, (52)

(I-8)x",x—x"y>0, VxeF(T). (53)

Proof. Putting ¢ = 0in Corollary 7, we can obtain the desired
conclusion immediately. O



Corollary 9. Let C be a nonempty closed and convex subset of
areal Hilbert space H. Let ¢ : H — H be a p-contraction with
coefficient p € [0,1), and let T : C — C be a nonexpansive
mapping with F(T) # @ and S : C — C a nonexpansive
mapping. Suppose {x,,} is a sequence generated by the following
algorithm, x, € C, arbitrarily:

Xn+1 = /\nxn + (1 - An) T [ﬁnsxn + (1 - ﬂn) xn] >

Vn >0,

(54)

where {f,},{A,.} € (0, 1) satisfy the following conditions (C1)-
(C3). Then {x,} converges strongly to x* € F(T), which is the
unique solution of variational inequality:
(I-8)x",x—x"y>0, VxeF(T). (55)
Proof. Putting P, = I in Corollary 7, we can obtain the
desired conclusion immediately. O
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We introduce a new iterative algorithm for approximating a common element of the set of solutions for mixed equilibrium problems,
the set of solutions of a system of quasi-variational inclusion, and the set of fixed points of an infinite family of nonexpansive
mappings in a real Hilbert space. Strong convergence of the proposed iterative algorithm is obtained. Our results generalize, extend,
and improve the results of Peng and Yao, 2009, Qin et al. 2010 and many authors.

1. Introduction

Throughout this paper, we assume that H is a real Hilbert
space with inner product and norm denoted by (:,-) and || - ||,
respectively. Let C be a nonempty closed convex subset of H.
A mapping T : C — C s called nonexpansive if |Tx — Ty|| <
lx — yl, Vx, y € C. They use F(T) to denote the set of fixed
points of T; that is, F(T) = {x € C : Tx = x}. It is assumed
throughout the paper that T' is a nonexpansive mapping such
that F(T) # 0. Recall that a self-mapping f : C — C s
a contraction on C if there exists a constant & € [0, 1), and
x, ¥ € Csuch that | f(x) = f(»)] < allx - y.

Letg : C — RU{+00} be a proper extended real-valued
function and let F be a bifunction of C x C into R, where R
is the set of real numbers. Ceng and Yao [1] considered the
following mixed equilibrium problem for finding x € C such
that

F(x,y)+9(y)2e(x), VyeC. )

The set of solutions of (1) is denoted by MEP(F, ¢). We see
that x is a solution of problem (1) which implies that x €
dome = {x € C | ¢(x) < +oo}. If ¢ = 0, then the mixed
equilibrium problem (1) becomes the following equilibrium
problem for finding x € C such that

F(x,y)>0, VyeC. (2)

The set of solutions of (2) is denoted by EP(F). The mixed
equilibrium problems include fixed point problems, vari-
ational inequality problems, optimization problems, Nash
equilibrium problems, and the equilibrium problem as spe-
cial cases. Numerous problems in physics, optimization, and
economics reduce to find a solution of (2). Some methods
have been proposed to solve the equilibrium problem (see [2-
14]).

Let B: C — H be a mapping. The variational inequality
problem, denoted by VI(C, B), is for finding x € C such that

(Bx,y —x) 20, (3)
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for all y e C. The variational inequality problem has been
extensively studied in the literature. See, for example, [15, 16]
and the references therein. A mapping B of C into H is called
monotone if

(Bx - By,x —y) 20, (4)

for all x,y € C. B is called p-inverse-strongly monotone if
there exists a positive real number 3 > 0 such that for all
x,y€C

(Bx - By,x - y) > B|Bx - By|. ()

We consider a system of quasi-variational inclusion for finding
(x*, y") € H x H such that

0ex"—y +p (Biy" +Mx"),
(6)
€y —x"+p(Byx” + Myy"),

where B; : H — Hand M, : H — 2" are nonlinear
mappings for each i = 1,2. The set of solutions of problem
(6) is denoted by SQVI(B,, M,, B,, M,). As special cases of
problem (6), we have the following.

(1) If B, = B, = Band M, = M, = M, then problem (6)
is reduced to (7) for finding (x*, y*) € H x H such
that

Oex"—y" +p (By + Mx"),
7)
0ey" —x"+p,(Bx" + My").

(2) Further, if x* = y*, then problem (7) is reduced to (8)
for finding x* € H such that

0 € Bx" + Mx", (8)

where 0 is the zero vector in H. The set of solutions
of problem (8) is denoted by I(B, M). A set-valued
mapping M : H — 2" is called monotone if for
all x,y € H,f € M(x)and g € M(y) imply
(x —y,f —g) = 0. A monotone mapping M is
maximal if its graph G(M) = {(f,x) e HxH : f €
M(x)} of M is not properly contained in the graph
of any other monotone mapping. It is known that a
monotone mapping M is maximal if and only if for
(x, f) e HxH,(x—y, f—g) = 0forall (y, g) € G(M)
imply f € M(x). Let B be a monotone mapping of C
into H and let Ny be the normal coneto C at’y € C;
thatis, Noy = {w € H: (u—y,w) <0,Vu € C},and
define

My = {By+NCy, ZGC, )

0, y¢C.

Then, M is the maximal monotone and 0 € My if and
only if y € VI(C, B); see [17].
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Let M : H — 2" be a set-valued maximal monotone
mapping; then, the single-valued mapping J,;, : H — H
defined by

Jaax® = I +AM)'x*, x" eH (10)

is called the resolvent operator associated with M, where A
is any positive number and I is the identity mapping. The
following characterizes the resolvent operator.

(RI) The resolvent operator J;, is single-valued and
nonexpansive for all A > 0; that is,

Vx,y € H, VA > 0.
1)

Vaia () = Jaia D) < 1 = 71,

(R2) The resolvent operator Jy,, is Il-inverse-strongly
monotone; see [18]; that is,

ata 69 = Taga DI
(12)
<(x =y Jup (0 = Tara (), Vx,y € H.
(R3) The solution of problem (8) is a fixed point of the
operator J; 3 (I — AB) for all A > 0; see also [19]; that
is,

I(B,M)=F (Jy2 (I-AB)), V¥A>0. (13)
(R4) If 0 < A < 23, then the mapping ], ,(I -AB) : H —
H is nonexpansive.

(R5) I(B, M) is closed and convex.

Let A be a strongly positive linear bounded operator on
H; that is, there exists a constant y > 0 with property

(Ax,x) = ¥|lx|>, Vx e H. (14)

A typical problem is to minimize a quadratic function over
the set of the fixed points of a nonexpansive mapping on a
real Hilbert space H:

1
xg%)i (Ax,x) —h(x), (15)
where A is a strongly positive linear bounded operator and h
is a potential function for yf (i.e., H(x) = yf (x) for x € H).

In 2007, Plubtieng and Punpaeng [20] proposed the
following iterative algorithm:

F(ul,y)+—<y—u,un—x>>0, V)/EIL
(%

Xp+1 = 6an (xn) + (I - enA) Tun'

They proved that if the sequences {€,,} and {r,} of parameters
satisfy appropriate conditions, then the sequences {x,} and
{u,} both converge to the unique solution z of the variational
inequality

((A-yf)z,x-2z) =0, VxeF(T)NEP(F), (17)
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which is the optimality condition for the minimization
problem

1
ety A0 7RO 1)
where h is a potential function for yf (i.e., h'(x) = yf(x) for
x € H).

In 2009, Peng and Yao [21] introduced an iterative
algorithm based on extragradient method which solves the
problem for finding a common element of the set of solutions
of a mixed equilibrium problem, the set of fixed points of a
family of finitely nonexpansive mappings, and the set of the
variational inequality for a monotone, Lipschitz continuous
mapping in a real Hilbert space. The sequences generated by
v e Care

x; =x€C,

1
F(u,y)+o(y)—o(u,) + - (y = thyp 4, = x,,) 2 0,

n

Vy € C,

Yn = PC (un - ynBun) >

Xpp1 = &V + ﬁn'xn + (1 -0~ /3n) WnPC (un - AnByn) >
(19)

foralln > 1, where W, is W-mapping. They proved the strong
convergence theorems under some mild conditions.

In 2010, Qin et al. [22] introduced an iterative method for
finding solutions of a generalized equilibrium problem, the
set of fixed points of a family of nonexpansive mappings, and
the common variational inclusions. The sequences generated
by x; € Cand {x,} are a sequence generated by

F(un’y)+ <A3xn’y_un> +l <y_un’un_xn> >0,
T

n

Vy € C,
Zy = PC (un - AnAZMn) >
In = PC (zn - ﬂnAlzn) >
Xny1 = (xnf (xn) + ﬂnxn + Yanyn’ Vn > 1’
(20)

where f is a contraction and A; is inverse-strongly monotone
mappings for i = 1,2,3 and W, is called a W-mapping gen-
erated by S,,S, ,...,S; and y,,, -1, ., y;. They proved the
strong convergence theorems under some mild conditions.
Liou [23] introduced an algorithm for finding a common
element of the set of solutions of a mixed equilibrium
problem and the set of variational inclusion in a real Hilbert
space. The sequences generated by x,, € C are

F(uyy) +9(y) =9 (u,)
+ % <y —Up Uy — (xn - ern» >0, VJ’ € C> (21)

Xyl = PC [(1 - ‘XnA) ]M,A (un - )‘Bun)] >

for all » > 1, where A is a strongly positive bounded
linear operator and B, Q are inverse-strongly monotone. They
proved the strong convergence theorems under some suitable
conditions.

Next, Petrot et al. [24] introduced the new following
iterative process for finding the set of solutions of quasi-
variational inclusion problem and the set of fixed point of a
nonexpansive mapping. The sequence is generated by

X, € H, chosen arbitrary,
Xne1 = (an (xn) + ﬁnxn + VnSZn’
(22)
2y = IM,/\ (yn - /\Ayn) >

In = ]M,p (xn - prn) >

for all n € N U {0}, where {«,}, {,}, {y,} are three sequences
in [0,1] and A € (0,2«]. They proved that {x,} generated by
(22) converges strongly to z, which is the unique solution in
F(S)NI(A, M).

In 2011, Jitpeera and Kumam [25] introduced a shrinking
projection method for finding the common element of the
common fixed points of nonexpansive semigroups, the set of
common fixed point for an infinite family, the set of solutions
of a system of mixed equilibrium problems, and the set of
solution of the variational inclusion problem. Let {x,}, {y,},
{v,},{z,}, and {u,} be sequences generated by x, € C,C, = C,
x; = P %o, u, € C,and

Xy =x € C chosen arbitrary,

F, F, F,
= KIv ghv-r b
Uy TNn~ TN-1n TN-2n

.o Fz Fl
K"z,n K”l,n Xn>
Yu = ]Mz,(‘in (un - 8nBun) >

Vo = ]Ml,/\n (yn - /‘nAyn) >

1 ("
z,=av,+(1-ap) - L S(s) W,v,ds,
n

C,. = {z €C,: |z, —z||2 < %, —z||2 -—a,(l1-a,)

1 (" ?
X V”_t_,[ S(s)W,v,ds },

n J0

Xy = P %9 neEN,

(23)

where Krik :C — C,k=1,2,...,N. We proved the strong
convergence theorem under certain appropriate conditions.
In this paper, motivated by the above results, we introduce
a new iterative method for finding a common element of
the set of solutions for mixed equilibrium problems, the set
of solutions of a system of quasi-variational inclusions, and
the set of fixed points of an infinite family of nonexpansive
mappings in a real Hilbert space. Then, we prove strong
convergence theorems which are connected with [5, 26-29].
Our results extend and improve the corresponding results of



Jitpeera and Kumam [25], Liou [23], Plubtieng and Punpaeng
[20], Petrot et al. [24], Peng and Yao [21], Qin et al. [22], and
some authors.

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and
norm | - || and let C be a nonempty closed convex subset of
H. Then,

e =317 = Il = 51 =2 = 33,
A+ (1= A) > = Al + (L= A) ly* A (1= )

x|x -y, VxyeH, Ae[o1].
(24)

For every point x € H, there exists a unique nearest point in

C, denoted by P.x, such that
|- Pox| < x -y, VyeC. (25)

P is called the metric projection of H onto C. It is well known
that Py, is a nonexpansive mapping of H onto C and satisfies

(x =y, Pox = Pey) = |Pox - Poy|’, Vx,y € H. (26)

Moreover, Pox is characterized by the following properties:
Pox € Cand

(x = Pox,y — Pox) <0, (27)

e~y 2 = Pex| + Iy~ Pex|’, vxeH, yeC.
(28)

Let B be a monotone mapping of C into H. In the context

of the variational inequality problem, the characterization of

projection (27) implies the following:
ueVI(C,B) & u=P;(u—-ABu), A>0. (29)

It is also known that H satisfies the Opial condition [30]; that
is, for any sequence {x,} ¢ H with x,, — x, the inequality

liminf |lx, - x| <liminf |x, - y] (30)

holds for every y € H with x # y.

For the infinite family of nonexpansive mappings of
T, T,, ..., and sequence {A;}7°, in [0, 1), see [31]; we define
the mapping W, of C into itself as follows:

U, =1,
Uy = MTU,o + (1-1,) U0

Uy = L, ToU,, + (1-1,) U1
(31)

Upn-1 = Anci TnaUgns + (1-2An-1) Uy n-2>

W, =U,n = ANTNUpn-t + (1-2y) U N-1-
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Lemma 1 (Shimoji and Takahashi [32]). Let C be a nonempty
closed convex subset of a real Hilbert space H. Let T = {Ti}f\_jl
be a family of infinitely nonexpanxive mappings with F(J) =
(o, F(T;) # 0 and let {A;} be a real sequence such that 0 <
A; <b < 1foreveryi=> 1. Then

(1) W,, is nonexpansive and F(W,)) = (i, F(T}) for each
n>1;

(2) for each x € C and for each positive integer k, the limit
lim,, , U, xx exists;

(3) the mapping W : C — C defined by Wx =
lim, , W,x = lim, U, x is a nonexpansive
mapping satisfying F(W) = F(9) and it is called the
W-mapping generated by T, T,, ..., and A, A, .. ;

4)if K is any bounded subset of C, then
lim,, _, sup,xIWx - W, x| = 0.

For solving the mixed equilibrium problem, let us give the
following assumptions for a bifunction F : Cx C — R and
a proper extended real-valued function ¢ : C — R U {+oco}
satisfies the following conditions:

(Al) F(x,x) =0 forall x € C;
(A2) F is monotone; that is, F(x, y) + F(y,x) < 0 for all

x,y €GC;

(A3) for each x,y,z € C, lim,_, F(tz + (1 — t)x,y) <
F(x, y);

(A4) for each x € C, y — F(x,y) is convex and lower
semicontinuous;

(AS5) for each y € C, x — F(x,y) is weakly upper
semicontinuous;

(BI) foreach x € Handr > 0, there exist abounded subset
D, cCand y, € Csuch thatforanyz € C\ D,,

Flay) o)+ (nmzz-x) <p@; (2

(B2) Cis a bounded set.

We need the following lemmas for proving our main
results.

Lemma 2 (Peng and Yao [21]). Let C be a nonempty closed
convex subset of H. Let F : C x C — R be a bifunction that
satisfies (A1)-(A5) and let ¢ : C — R U {+oo} be a proper
lower semicontinuous and convex function. Assume that either
(BI) or (B2) holds. For r > 0 and x € H, define a mapping
T,:H — C as follows:

T, = {zcC:F(2))+9 ()
(33)
1
+-(y-z,z-x) Z(p(z),VyeC},
r
for all x € H. Then, the following hold:

(1) for each x € H, T,(x) # 0;
(2) T, is single-valued;
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(3) T, is firmly nonexpansive; that is, for any x,y € H,
”Trx - Try”2 < <Tr‘x - Try’x - y>’

(4) F(T,) = MEP(F, 9);

(5) MEP(F, @) is closed and convex.

Lemma 3 (Xu [33]). Assume {a,} is a sequence of nonnegative
real numbers such that

a,, <(1-w,)a,+96, n=0, (34)
where {o,} is a sequence in (0, 1) and {5,,} is a sequence in R
such that

(1) Zgil &, = 00,

(2) limsup,,_, .,(8,/e,) <0 or Y2, |8, < co.

Then, lim,,_, . a, = 0.

Lemma 4 (Suzuki [34]). Let {x,} and {y,} be bounded
sequences in a Banach space X and let {f3,} be a sequence
in [0,1] with 0 < liminf, , B, < limsup,_ B, < L
Suppose x,,, = (1 — By, + B.x, for all integers n > 0
and limsup, _, Uy,s1 = Yull = %00 — x,1) < 0. Then,
lim, _, oy, — x,l =0.

Lemma 5 (Marino and Xu [35]). Assume A is a strongly
positive linear bounded operator on a Hilbert space H with

coefficient y > 0 and 0 < p < ||Al|”". Then, |I - pA] < 1 - py.
Lemma 6. For given x*, y* € Cx C,(x", y*) is a solution of

problem (6) if and only if x* is a fixed point of the mapping
G : C — Cdefined by

G(x) = Tmn []Mz,y (x = pE,x) — AE T, (x - P‘sz)] >

Vx € C,
(35)

where y* = Jy (x — pE,x), A, p are positive constants, and
E,,E, : C — H are two mappings.

Proof.
0ex"—y" +A(E;y" + Mx"),
(36)
ey —x" +u(Eyx" +Myy")
=
x" = Iy (0" - AE ),
* * * (37)
Y =Imu (x* — puE,x")
o
G(x") = Taga [Tagye (5" = pEpx")
(38)

“AE Jpp, (67 = ‘usz*)] =x".

This completes the proof. O

Now, we prove the following lemmas which will be
applied in the main theorem.

Lemma 7. Let G : C — C be defined as in Lemma 6. If
E\,E, : C — H is ny,n,-inverse-strongly monotone and A €
(0,2n,), and u € (0, 2n,), respectively, then G is nonexpansive.

Proof. For any x,y € Cand A € (0,21,), p € (0,21,), we
have

|G x) -G ()|’
= [ag 0 [Jatye (= tE>x) = AE Iy, (x = uE,x) ]
Taion Uno 0 = E29) = AEsTag e (v — uEsy)|||
< | Ungy e (= HEy %) = AE, Joy,, (x = pEyx) ]
Ut (7 = 4Esy) = AE T, (v uE) ||
- ” []Mz,ﬂ (x = HEyx) = Tagy (v = #Ez)’)]
A[Edagyp (x = HEX) = EyTag, o (v~ uE2)] |
= g (5 = BE2x) = Tagy o (3~ wE)|
-21 <]M2,,4 (x — uEyx) - Tt (y — uEyy),
EyJoy, . (% = uE,x) = Ey Ty, (v = HE,Y))
# N EyTa, e (% — HE,X) = By Ty (v — uEsy)||
<ty (5 = Esx) = Tag, (v = pE)||
20| By g, (% = Esx) = EyJag, o (v = wEoy)||
N Tag, 0 (% — EsX) = By, (v~ pEay)||
= gy (5 = Esx) = Tag (v = pEp)||
+ A= 20 [Euag g (5 = HE2X) = EuJagy s (v — HEo)|
<ty (5 = Esx) = Tag, (v = pE)||
< (x - uEyx) = (y - pEsy)|°
= |(x = ) - (Epx - Eyp)|”
= llx = I - 26 (x = 3, Eyx = Eyy) + | Epx - By |
< |x = yI* - 2muil Box = Exy| + | By = By’
== oI + (= 205) [ By - Eny|
< Jx -yl

This shows that G is nonexpansive on C. O



3. Main Results

In this section, we show a strong convergence theorem for
finding a common element of the set of solutions for mixed
equilibrium problems, the set of solutions of a system of
quasi-variational inclusion, and the set of fixed points of a
infinite family of nonexpansive mappings in a real Hilbert
space.

Theorem 8. Let C be a nonempty closed convex subset of a
real Hilbert Space H. Let F be a bifunction of C x C into real
numbers R satisfying (Al)-(A5) and let ¢ : C — R U {+o0}
be a proper lower semicontinuos and convex function. Let T; :
C — C be nonexpansive mappings for all i = 1,2,3,..., such
that ® := N, F(T;)NSQVI(B,, M,, B,, M,) N MEP(F, ¢) # 0.
Let f be a contraction of C into itself with coefficient & €
(0,1) and let Q,E,, E, be 8,1, n,-inverse-strongly monotone
mapping of C into H. Let A be a strongly positive bounded
linear self-adjoint on H with coefficienty > 0 and0 < y < y/«,
let M;\,M, : H — 2" be a maximal monotone mapping.
Assume that either B, or B, holds and let W, be the W -mapping
defined by (31). Let {x,}, {y,}, {z,}, and {u,} be sequences
generated by x, € C, u,, € C, and

F(uy ) + 9 (y) -9 (u,)
+ 1 (y —u,u, - (x,-rQx,)) >0, VyeC,
r

Zy = IMZ,M (un - .uEZMn) > (40)
Yn = ]MI,A (Zn - /‘Elzn) >

Xpe1 = (xnyf (xn) + ﬂnxn + ((1 - ﬂn) I- ‘an) Wnyn’
Vn >0,

where {o,} and {f,} < (0,1), A € (0,2%,), u € (0,2n,), and
r € (0, 20) satisfy the following conditions:

o, =0,

n—-o0"'n

(C1) ¥ «, = co and lim

n=0 "'n

(C2) 0 < liminf, _, B, <limsup, _, B, <1,
(C3) lim,, , ,|A,; = A, 1l =0,Vi=1,2,...,N.

n,i

Then, {x,} converges strongly to x* € ©, where x* = Pg(yf +
I-A)(x"),Pg is the metric projection of H onto © and (x*, y*),
where y* = ]Mz,ﬂ(x* — uE,x") is solution to the problem (6).

Proof. Let x™ € ©; thatis T,(x" - rQx") = ]Ml»AUMz,ﬂ(x* -
UByx")=AB, Jyp, (X" —uB,yx")] = T;(x") = x*,i > 1. Putting
¥" = Jm,u(x" — pE,x"), one can see that x™ = Jy; 2 (y" -
AB;y").

We divide our proofs into the following steps:

(1) sequences {x,}, {y,}, {z,}, and {u, } are bounded;

(2) limn—>oo||xn+1 - xn” = 0;

(3) lim,,_, ,[IQx,—Qx"|| = 0,1im,,_, ||E;z,- E;x"[| =0

and lim,, _, || E,u,, — E,x"|| = 0;
(4) lim,, _, , llx,, — Wx, |l = 0;
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(5) limsup,, _, ., (yf(x*) - Ax",x, —x") <0, where x* =
Po(yf + I - A)x™;

(6) lim —x*|| = 0.

n—»oo"xn

Step 1. From conditions (Cl1) and (C2), we may assume that
a, < (1- ﬂn)IIAH_l. By the same argument as that in [9], we
can deduce that (1 - f8,)I — «, A is positive and [|(1 — 5,)I —
a,Al < 1-B,-«a,y. Forallx, y € Candr € (0, 26). since Qis
a 0-inverse-strongly monotone and B, B, are 7}, #},-inverse-
strongly monotone, we have

|0 -rQx-U-rQy|’
=[x y) -r(Qx- Q)|
= e = yI” = 2r (x - 7, Qx - Q) + | Qx - Qy|
< x=yI° - 2r8jQx - QI + lQx -’
=lx =y +rr-20)fx -
< Jx -yl
It follows that [|(I - rQ)x—(I-rQ)y| < |lx - yl; hence I-rQ
is nonexpansive.

In the same way, we conclude that (I — AE;)x — (I -

AEDyI < llx = ylland |(I = pEy)x = (I = uEy)yll < llx = yl;
hence I - AE,, I — uE, are nonexpansive. Let y, = Jy; 1(2, -
AE,z,),n > 0. It follows that

Iy =7 = "]Ml,/\ (2, — AEz,) - Yo (v - AEl)’*)“
< (2, = AEiz,) = (y" = AE;y"))|

<z = 7|

"Zn - )’* “ = "]Mz,y (un - ‘“Ezun) - ]MZ,,M (x* - /’tEZx*)”

< "(un - AMEZun) - (x* - #EZx*)"

< u, - x| "
42

By Lemma 2, we haveu,, = T,(x,,—rQx,,) foralln > 0,Vx, y €
C. Then, for r € (0,26), we obtain

”un -x" ”2 = "Tr (xn - ern) - Tr (x* - er*)Hz

< |(x, -rQx,) - (x* - er*)"2

(43)
< | - 7|7 + 7 (r = 28) || Qx, — Qx|
< e, = x|
Hence, we have
1y =21 < flp = %7 - (44)
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From (40) and (44), we deduce that

-x" " = ||ocn (Vf (xn) - Ax*) + ﬁn (xn - x*)
+ ((1 - :871) I- anA) (Wnyn

||xn+1

<oy "))f (xn) - Ax ” + ﬁn ||xn - x*"
+ (1 - ﬁn - an?) ”yn - X*”
S "yf (xn) - AX*” + Bn ”xn - x*"

(1= B - a7 e, - x|

<oy lf (o) = £ () + g f (') - 4
+(1-a,7) -

< oy, — x|+, f (x
+(1-a) |, -]

= (1 (Fy) |~ ']

)“)’f x") - Ax"|
§7 wx)
||Vf ) - Ax"||

I ¥ - ya) }

It follows by mathematical induction that

) - A

+ o, (¥ -y

< max {”xn -

(45)

I lyf (x7) - Ax ||}
(¥- W) " (46)

n>0.

[ %1 = x"| < max <l||x0 - x|

Hence, {x,} is bounded and also {u,}, {z,}, {y,.}, (W, v.},
{AW,y,}, and {fx,} are all bounded.

Step 2. We show that lim,, _, . Ilx,,; — x,[l = 0.

Putting ¢, = (x,,,1 — Bux,)/(1 = B,) = (e, yf(x,) + (1 -
ﬁn)I - “nA)Wnyn)/(l - ﬁn)’ we gEt Xny1 = (1 - ﬁn)tn + ﬁnxn’
n > 1. We note that

_t = “n+1yf (xn+1) + ((1 B ﬂn+l) I- “n+1A) Wn+1yn+1
! 1- ﬁn+1

an (X )+ ((1 _Bn)l & A) n)n
1-8,

Tt Yf( n+1)_

1 - :8n+1

+W+1yn+1 nyn

n+1

()

Xy
l_ﬁn

(Xn+1 n+1yn+1 + AWnyn
ﬁn+1 1- ﬁ

n

1 _7;1 (Yf( n+1) - AWn+1yn+1)
n+1

7
e (AW, 3, = 7f (%))
1 _ ﬁn nyn Yf 'xﬂ
+W+1yn+1 n+1yn +Wn+1yn _Wnyn'
(47)
It follows that
"tn+1 - tn“ - |lxn+1 - xn"
< "/;1 (Ivf Cene)l + | AW, 90 [)
n+1
- Al I (5D
" +1yn+1 n+1yn”
(48)
" nt1Vn ~ Wnyn“ - “xn+1 - xn"
< —E (Ivf Cene)l + 1AW Y [)
n+l
*7 _" (AW, z] + lvf ()l
+ ||yn+1 yn" + " nt1Vn — nyn“
- "xn+1 - xn“ .
By the definition of W,
" n+1Vn — nyn“
"/\n+1 NINUnsiN-1Yn + +(1 /\n+1,N) n
_An,NTNUn,N—lyn - (1 - An,N) yn”
< |/\n+l,N - An,Nl "yn”
+ ||/\n+1,NTNUn+1,N—1)’n - /\n,NTNUn,N—lyn"
(49)
< |/\n+1N - Aan "yn”

"/\nﬂN(TN n+1,N-1Vn ~ TNUn,N—l)’n)“
+ |/\n+1,N - /\n,Nl "TNUn,N—lyn"
<2M IAH+1 N — /\n,Nl

+/\nJrlN" +1N1yn Un,Nflyn"’

where M is an approximate constant such that M >

max{sup,,., {lly,l1}, sup,- {1 T,,U, oy yull} | m = 1,2,...,N}.
Since0 < A, < lforalln>landi=1,2,...,N,wecompute

” n+1,N— lyn Un,N—lyn”
= ||/\n+1,N-1TN—1Un+1,N—2)’n +(1- An+1,N—1) Yn

—/\n,N—lTN—1Un,N—2)’n - (1 - /\n,N—l) J’n"



8
< Aprnes = Al 17l
+ eana TnaUnsin-2Yn = Ay TncaUnn 2 il
< Mernet = A [l
+ P iint (TvaUniin-29n = TnaaUnn-22) |
+ A ena = At [T U2l
< 2M it = Anet| + [ Unin-29n = Unnea il -
(50)
It follows that

” n+1,N-1Vn — Un,N—l)’n”
< 2M Ay net = Aunet |+ 2M Ay Ny = A

+|l n+1,N-3Vn = Un,N—Syn”

< 2MZ |/\n+11 Ant| + " n+1, lyn n,lyn"
N-1 (51)
=2M z |/\n+1,i - An,il
i=2
+ "/\rﬁ-l,llen + (1= Xs11)
lyn (1 n,l)yn“
N-1
<2M Y Ay = A -
i=1
Substituting (51) into (49),
l|Wn+1yn - Wnyn”
N-1
<2M |An+1,N - An,N| + 2An+1,NM Z |)‘n+1,i - An,i' (52)
i=1

N
<S2MY [y, - A

i=1

n,i| .

We note that
||yn+1 - yn"
= ||]M1,/\ (Zn+1 - AElan) - ]MI,A (Zn - /\Elzn)"
= "(Zn+1 - /\Elzm—l) - (Zn - AEIZn)"
< ||Zn+1 - Zn"
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= ”]Mz,,u. (um—l - #E2un+1) - ]Mz,/,t (”n - #Ezun)"

< ”(un+1 - #Ezunﬂ) - (un - tuEZun)"

< ”un+1 - un”
= ”Tr (xn+1 - ern+l) - Tr (xn - ern)”

< ”('xn+1 - ern+1) - (xn - ern)“

< ”xn+1 - xn" :

(53)
Applying (52) and (53) in (48), we get
"tn+1 - tn” - “xnﬂ - xn”
”[‘;1 ”)/f (xn+1)|| + "A +1yn+1“
n+1
w ot (AWl s G)l) + e = &Y
N
+ ZMZ I/\n+1,i - An,il - ||xn+1 - xn” :
i-1
By conditions (C1)-(C3), imply that
lim Solip (||tn+1 - tn” - ”'xn+l - xn") <0. (55)
Hence, by Lemma 4, we obtain
lim ||t — x| = 0. (56)
It follows that
My = x| = lim (1= B,) [t - x, = 0. (57)
We obtain that
nlLI%o "xn+1 xn" =0. (58)
Step 3. We can rewrite (40) as x,,,; = «,(yf(x,) — AW, y,) +

B.(x, —W,y,) + W, y,. We observe that
"xn - Wnyn" < ||xn - xn+l“ + ”'xn+l - Wnyn”

< ||xn - 'xn+1” +a, ")/f (xn) - AWnyn“ (59)
+ :8n “xn - Wnyn" >

it follows that

"xn - Wnyn"
1
< 1- ﬁ “xn n+1|| + "Vf (x Awnyn" :
(60)
By conditions (Cl), (C2), and (58), imply that
nlglgo ”xn - Wnyn" =0. (61)
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From (42) and (43), we get

Iy =1
= "]Ml,/\ (Zn - AElzn) -
< |(z, = AE1z,) - (x" = AE,x")|

< |zn - x* ||2 +A(A-2n) |E 2, - E\x” ||2

< "]Mz,p. (un - MEZMVI) - ]MZ,[,{ (x,k -

+A(A=2n) |E.z, - E.x"|
< (= pEyu,) = (x" = uEpx”)|?
+A(A=2n) |E,z, - E.x"|
< Nty = %" + s (= 2) | By, = Epx” |
+A(A-21) |E:z, - Eix"|

<|x,-x" ||2 +7r(r-26) |Qx, - Qx" ||2

+ p(u=2m,) By, - Epx”" |
+A(A-21) |E.z, - E.x"|.
By (40), we obtain
s = |
= Jlew, (vf (%) = AX") + B, (%, = W,p)
+ (I = 0, A) W,y = x|

< (1 = et ) (Woyy = x7) + B, (20 = W)
+2a, (yf (x,) = AX", x,0 — ")

< (T = 0, A) (3, = %) + By (3 = Wzl
+ 200, [[pf (x,) = Ax"| [y = 57

= (1-a,9) Iy Wl
+2 (1=, ) By [y = x| 1% = Wz

Koy — X7

+ 200, [[yf (x

9
Substituting (62) into (63), imply that
i = "I < e = 77+ 7 (r = 28) @, - Qx|
+ (= 2m) |Eyu, - Epx"|
+A(A=21) |E1z, - E;x"|
+ Bl - W’
+2(1=a,7) Bullyn = x| s = Woya
+ 20, [|[pf (x,) = Ax7|| 0 = %7
(64)
Thus,
(62)  r(28-r)Qx, - Qx"|" +u (21, — p) |Eyuy — B[
+ A (27, - ) ||E1z, - Eyx* |
< Jxw = 2 = s = 7| W’
+2(1 = a,7) By [y = x| 10 = W
+ 20, [|vf (x,) = Ax"|| | xp00 = %7 (65)
< (I = %"+ Pes = %7 1) en = xal
+ Bllxn - Warl’
+2(1 =) Byl = x| s = Woyil
+ 200, [|vf (x,) = Ax7|| | xp00 = 7]
By conditions (C1), (C2), (58), and (61), we deduce immedi-
ately that
Jim Qx, - Qx°] = Jim [[Ey2, - Eyx'|
(66)
= lim |E,u, - E,x"| = 0.

Step 4. We show that lim,, _, [Ix,,
firmly nonexpansive, we have

- Wx,|l = 0. Since T, is

Ju, - x|
=|T, (x, - rQx,) - T, (x* - er*)H2

< {(x, - rQx,) - (x" —rQx"),u, — x)

(63)

*

n— X

}

~ (x" = rQx") = (u, - <)}

= l {”(xn - ern) - (X* - er*) ?

{n -rQx,)

NI'—'

= Sl ="+ =<

——

1
2
_”('xn - un) - T’(Q.X'n - Qx*)uz}
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1 « *
= > {l ="+ ="
- (”xn - un”2 + r2”an - QX*Hz

-2r{(x, —u,,Qx, — Qx"})}

1
LRt I T e A
Qe = Qx|+ 2r g, — | Qs - Q”[}
(67)
which implies that
R Ty S P

+ 20, - ] Qx, - Q.
Since Jjy » is l-inverse-strongly monotone, we have
Iy ="

= ||]M1,)l (zn
< <(Zn - /\Elzn) -

2

- AEz,) - VoS (x* = AE;x")
(x" = AEyx7), y, = x7)
1

= Ll AEz) ~ (2B + Iy, - ')

1
-3
1 #|2 %12
ey P oIl

_“(zn - yn) - A(El

- AE,z,) - (x* —/\Elx*)—(yn—x*)nz}

z, - Elx*)”z}

= Al + I

NI'—‘

- (“Zn - yn"2 + A2|lElzn - EI-X*H2

-2A <Zn - walzn - Elx*>)}
1
< lew =21+ Iy =1 = llaw =5l
~22|E\z, - Ex*||* + 2A ||z, - 3| |Erz - Elx*“} ,
(69)
which implies that
*|2 * 12 2
X Sz x| 12— Y
=T < o= - e 5l o
+ 24z = yul [Erz = Eax7])
In the same way with (70), we can get
%12 *12 2
z,—x | < |u, = x"||" = |4, — 2,
o= 5T < =" = - 2] o

+ 24 |lu, = 2| | Exts, = Epx7]).

Abstract and Applied Analysis

Substituting (71) into (70), imply that

P Y A I A

+ 21“ "un - Zn" "EZun - sz*"
Nz = yall” + 2A |2 = 2l |Er 20 - Eix7])
(72)
Again, substituting (68) into (72), we get
Iy, - x|
< {lben =217 = lew = all” + 27 6, = 11, @, — Qx|
= 2l + 200 11, = 2| | Bt = Box" [ = 12, = 3l
+ 24 ||z, = yul [Es2, — Eyx7|-
(73)
Substituting (73) into (63), imply that
s = x|
= (1 - “n7)2 {"xn - x*"Z - "Xn - un"2
27 |lx, = ) lQx, = Q™| = s, = 2
+ 26, = 2| | B, = Exx"|| = 2 = 2
+2A |z, = |l |E12, - Elx*"}
+ ﬂﬁ"xn - Wnyn”z
+2 (1 - (Xn?) ﬁn “yn - X* “ “xn - Wnyn"
+ Z“n "Yf (xn) - Ax” ” ”xnﬂ -x" " .
(74)
Then, we derive
(1= 9)” (60 = thall” + 14 = 2ol + 2 = al")
< oy = 27 = s = 717 + 27 5, = ] @, - Qx|
+ 24 [uy, = 2, | 1, — Exx” |
+2A “zn - yn” ”Elzn - Elx*" + ﬁi”xn - Wnynnz

+2 (1 - ‘xn?) ﬁn “yn - X*" "xn - Wnyn"

+ 2(xn ”Vf (xn) - Ax*“ “xn+l - X*”
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< (hw = 27+ s = 27 01 = )
+2r [, = ][ @, - Q7|
+ 24 [, = 2| [ Eaa - B2
+ 22 20 =yl |Evz = Evx” || + Brln = Wl
+2(1 = 09) B [ = " [ = Wyl

20, [y () = 45" 01 = %]

(75)
By conditions (C1), (C2), (58), (61), and (66), we obtain
,,h_,r%o “xn - ”n“ = ,,h_,r%o “un - Zn" = nlil%o ”Zn - yn" =0.
(76)
Observe that
"Wnyn - yn” = "Wnyn - xn" + "xn - un"
(77)
+ "”n - Zn” + ”Zn - yn" :
By (61) and (76), we have
Jim [W,,y, = 3] = 0. (78)
Note that
"Wyn - yn" < “Wyn - Wnyn" + "Wnyn - yn“ . (79)
From Lemma 1, we get
lim "Wyn - Wnyn“ =0. (80)

n—00

By (78) and (80), we have lim
that lim,, _, ,[[Wx,, — x,,|l = 0.

Step 5. We show that limsup, _, . {(yf — A)z,x, — z) < 0,
where z = Pg(yf+1—A)z. Itis easy to see that Pg (yf +(I-A))
is a contraction of H into itself. Indeed, since 0 < y < y/a, we
have

Wy, — y,ll = 0. It follows

n— 00

P (vf + (1= A))x = Po (yf + (- A) y|
<|(vf + - A)x - (yf +T-A) Y]
<yIf = FO+1T-Allx -y (81)
<vyalx-yl+ (1 -7)[x-y|
= (1-7+ya) |x-y].

Since H is complete, there exists a unique fixed point z € H
such that z = Py (yf + I — A)(z). Since {x,,} is bounded, there
exists a subsequence {xni} of {x,}, such that

lim <(A -vf)z,z - xni> =limsup ((A-yf)z,z - x,) .
(82)

Also, since {xni} is bounded, there exists a subsequence {x,, }

of {x, } which converges weakly to w € C. Without loss of

1

generality, we can assume that x, — w. From |[Wx,, —x, | —
0, we obtain Wx,, — w. Then, by the demiclosed principle of
nonexpansive mappings, we obtain w € N2, F(T)).

Next, we show that w € MEP(F, ¢). Since u,, = T,(x,, —
rQx,,), we obtain

F(u,y) +o(y) -9 (u,)
] (83)
+;<y—un,un—(xn—ern)>20, Vy e C.

From (A2), we also have

00 =0 (1) + (3 = st = (5, - 1Qx,)) = F (1),

VyeC,
(84)
and hence,
S"(;V) - ¢(un_) + <y —u,, Uy, — (x”i - Tani) >
l ' r
(85)

2F(y,unl_), vy eC.

Fortwith0 <t <land y € H,let y, = ty + (1 — t)w. From
(85) we have

(=1 Q) 2 (3~ 14, Q) — 0 (1) + 9 (uy,)

< u”i B ('x”i B T‘ani) >
“ N\ Ve T Uy 1"

+ F(yt’u”i)

= <yt - un,-’Qyt - Qun,->
+ <yt - u”i’Qu"i - Qx"i>

—o () +o(u,)

;
(86)

Since ||u,, —x, | — 0, we have |[Qu, —Qx, || — 0. Further,
from an inverse-strongly monotonicity of Q, we have (y, —
u,,Qy, — Qu,) > 0. So, from (A4), (A5), and the weakly
lower semicontinuity of ¢, (U, —x,)/r —> 0andu, — w
weakly, we have

e~ w, Q) 2-9(y) +ew) +F(y,w). (87
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From (Al), (A4), and (87), we also have Step 6. We show that {x,,} converges strongly to z; we compute

that
0=F(ypy)+o)—9)

<tF(ypy)+ (1=t F (y,w) +te(y)

"xn+1 - Z”2

= "“n}/f (xn) + ﬁnxn + ((1 - /sn) I- ‘an) Wnyn - Z"2

+(1-t) W) -9(y)
=t(F(ypy)+o () - ()

+(1=1) (F(ypw) + ¢ ) — 9 (1))
St(FEQpy)+e(n)—e () + Q-1 (3 -w,Qyy)

=t(F(ypy)+e(y)—e(n) + 1 -)t(y-w,Qy),
(88)

and hence,
0<F(ypy)+o(n)-e(n)+ 1 -0 (y-wQy). (89)
Lettingt — 0, we have, for each y € C,
F(wy)+e(y)-9w)+(y-w,Qw) 20.  (90)

This implies that w € MEP(F, ).
Lastly, we show that w € SQVI(B,, M;, B,, M,). Since
lu, -z, — Oand|z, -y, = 0asn — oo, we get

ln =l < ety = 2l + 120 = 32l (1)

we conclude that ||, — y,| — 0asn — oco. Moreover, by
the nonexpansivity of G in Lemma 6, we have

lyw =G ()l
= 7ag 0 [Jntye (0 = #Es,) = AE Ty, (14, = pEou,)]
-Gy |
=[G (u,) -G ()l

= ”un_yn“' ( )
92

Thus, lim,, _, .y, — G(»,)Il = 0. According to Lemma 7, we
obtain that w € SQVI(B,, M, B,, M,). Hence, w € ®. Since
z = Po(I — A+ yf)(2z), we have

limsup {(yf - A) z,x, — z) = limsup ((yf - A) z, x,, — z)

1— 00

=((f -A)zw-2)

<0.
(93)

= |, (vf (x,) = Az) + B, (x, — 2)

<

<

<

<

(1= B) I =0, A) Wy, - 2
ollvf (x,) - Az|”
1B, (3w = 2) + (1= B) T = @, 4) (W, = 2|
+ 2By (x, —2) + (1= B) I - &, A)
X (Woy, = 2)» 0, (vf (x,) — Az))
ollvf (x,) - Az|”
H{Bullxu =2l + (1= By -« 9) 3 - 2
+ 200, B, (x, — 2, ¥f (x,) — Az)
+ 20, (1= B, = 0,7) (W — 291 (x,) — Az)
alvf (x,) - Az’
+ Bz, =2l + (1= By = ) %, - 2}’
+ 200, B, (x, = 2, ¥f (%) = vf (2))
+ 20, B, (x, — 2, ¥f (2) — Az)
+ 20, (1= B, — o, 7) (Woy, — 229f () = vf (2))
+ 20, (1= B, — 0,7) (W0, — 2. 7f (2) — Az)
arllyf (x,) = Azl + (1= )%, - 2
+ 200, B,y |x, = 2| | f (%) - £ @)
+ 20, B, (x, = 2, yf (2) - Az)
+2a, (1= B, = a,y)y Wy — 2| | f (x,) - f (2]
+ 20, (1= B, = 0,7) (W, — 2, 7f (2) - Az)
anllvf (x,) = Az + (1= 7)1, — 2|
+ 20,8, ya]x, - [
+2a,B, (x, - 2)f (2) - Az)
+ 20, (1= B, - o) yelx, — 2|
+ 20, (1= B, = 0,7) (W3, = 2,7f (2) - Az)

arllyf (x,) — Az
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+ (1= 20,7 + 0y + 20, y00 — 2002 pyex)
x|lx, = 2[* + 20,8, (%, - 2 vf (2) - Az)
+ 20, (1= B, = 0,7) (W3, — 2, yf (2) — Az)
<{1-a, (27 - a,7" - 2pa + 20, 7ya )} |x, - 2|
+ g llvf (x,) - Az’
+ 200, B, (x, — 2,7 (2) — Az)

+ Z‘xn (1 - ﬁn - ‘xn?) <W Yn—2 Yf (Z) - AZ>

< {1 -, (2)7 - ocn?2 - 2ya + 2¢xn7yo¢)} ||xn - z||2

+®,0,,
(94)
where 0, = «a,llyf(x,) - Az||2 +2B,(x, — z,yf(z) - Az) +

21 - B, — a, Y)W,y — 2, Yf(z) — Az). It is easy to see that
limsup,,_, . 0, < 0. Applying Lemma 3 to (94), we conclude
that x,, — z. This completes the proof. O

Next, the following example shows that all conditions of
Theorem 8 are satisfied.

Example 9. For instance, let o, = 1/2(n + 1), let 3, =
(2n + 2)/2(2n), let A,, = n/(n + 1). Then, we will show that
the sequences {«,} satisty condition (Cl). Indeed, we take
«, = 1/2(n + 1); then, we have

0o,

(n + 1)
(95)

. . 1
lim o, = lim ——— =
n—o00 n—002 (n+ 1)

We will show that the sequences {f3,} satisty condition
(C2). Indeed, we set 8, = (2n + 2)/2(2n) = (1/2) + (1/2n).
It is easy to see that 0 < liminf, _, 3, < limsup,_, B, < L.

Next, we will show the condition (C3) is satisfied. We take
A, = n/(n+ 1); then we compute

no n—-1
n-1)+1

nn)—n-1)(n+1)
(n+1)n

o, = A = Jim |2

lim
n—00

(96)
-t +1
n+1)n

lim
n—00

lim .
n—oo|n(n+1)

Then, we have lim,,_, |A,,; — A,l =
satisfies condition (C3).

0. The sequence {7, }
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Using Theorem 8, we obtain the following corollaries.

Corollary 10. Let C be a nonempty closed convex subset of a
real Hilbert Space H. Let F be a bifunction of C x C into real
numbers R satisfying (Al)-(A5) and let ¢ : C — R U {+o0}
be a proper lower semicontinuos and convex function. Let T; :
C — C be nonexpansive mappings for all i = 1,2,3,..., such
that © := N F(T;) N SQVI(B,, M,, B, M,) N MEP(F, ¢) #
0. Let f be a contraction of C into itself with coefficient & €
(0,1) and let Q, E,, E, be 8,1y, n,-inverse-strongly monotone
mapping of C into H. Let M;, M, : H — 2" be a maximal
monotone mapping. Assume that either B, or B, holds and let
W,, be the W-mapping defined by (31). Let {x,,}, {y,}, {z,,}, and
{u,} be sequences generated by x, € C, u,, € C, and

F(upy)+o(y) -9 (u,)

+ 1 (y —u,u, —(x,-rQx,)) 20, VyeC,
r
= Iy (u, — uE,u,),
Yn = ]Ml,/\ (Zn - )‘Elzn) >
Xn+1 = nf (X ) + /3an + (1 - ﬁn - an) Wnyn’ Vn >0,
(97)

where {e,)} and {8,} < (0,1), A € (0,21,), u € (0,21n,), and
r € (0, 26) satisfy the following conditions:

(Cl) Y2, &, = 0o and lim a, =0,

n—-o0"'n

(C2) 0 < liminf, _, B, <limsup,_, B, <1

(C3) lim,, _, o JA,; = Ayl =0,Vi=1,2,...,N.

Then, {x,} converges strongly to x* € @, where x* = Po(f +
I)(x"), Py is the metric projection of H onto © and (x*, y™),
where y* = Jy ,(x" — pE,x") is solution to the problem (6).

Proof. Takingy = 1and A = I in Theorem 8, we can conclude
the desired conclusion easily. O

Corollary 11. Let C be a nonempty closed convex subset of a
real Hilbert Space H. Let F be a bifunction of C x C into real
numbers R satisfying (Al)-(A5) and let ¢ : C — R U {+co}
be a proper lower semicontinuos and convex function. Let T; :
C — Cbeanonexpansive mappings foralli = 1,2,3,..., such
that © := N, F(T,)nSQVI(B,, M,, B,, M,) N MEP(F, ¢) # 0.
Let f be a contraction of C into itself with coefficient o € (0, 1)
and let E, E, be n,,n,-inverse-strongly monotone mapping
of C into H. Let A be strongly positive bounded linear self-
adjoint on H with coefficienty > 0and 0 < y < y/a, let
M, M, : H — 2" be a maximal monotone mapping. Assume
that either B, or B, holds and let W, be the W -mapping defined
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by (31). Let {x,}, {y,}, {z,}, and {u,} be sequences generated by
xy € C,u, € C, and

1
F(un’y) +§0()/) _go(un) + ; <y_un’un_xn> 20,
Vy eC,
Zy = ]MZ,IA (un - AMEZun) > (98)
In = ]Ml,)t (Zn - /\Elzn)’

Xn+1 = ‘xnyf (xn) + /jnxn + ((1 - ﬁn) I- (an) Wnyn’
Vn >0,

where {a,} and {B,} < (0,1), A € (0,2%,), u € (0,2n,), and
r € (0, 00) satisfy the following conditions:

(C1) Y72 e, = 00 and lim,, _, o, = 0,
(C2) 0 < liminf, _, fB, <limsup,_, B, <1,
(C3) lim,, _, ,[A,; = Ayl =0, Vi=1,2,...,N.

n—>oo|

Then, {x,} converges strongly to x* € ©, where x* = Po(yf +
I-A)(x"), P is the metric projection of H onto @ and (x*, y*),
where y* = ]Mz’ﬂ(x* — uE,x") is solution to the problem (6).

Proof. Taking Q = 0 in Theorem 8, we can conclude the
desired conclusion easily. O

Corollary 12. Let C be a nonempty closed convex subset of a
real Hilbert Space H. Let F be a bifunction of C x C into real
numbers R satisfying (Al)-(A5) and let ¢ : C — R U {+oo}
be a proper lower semicontinuos and convex function such that
©® := SQVI(B,,M,,B,,M,) N MEP(F,¢) + 0. Let f bea
contraction of C into itself with coefficient « € (0, 1) and let
Q, E,, E, be &, n,, n,-inverse-strongly monotone mapping of C
into H. Let A be a strongly positive bounded linear self-adjoint
on H with coefficienty > 0 and 0 < y < y/a, let M|, M, :
H — 2" be a maximal monotone mapping. Assume that
either B, or B, holds, let {x,}, {y,}, {z,,}, and {u,,} be sequences
generated by x, € C, u,, € C, and

F(usy)+ 9 (y) =9 (u,)
o1 (y —upu, —(x,-rQx,)) >0, VyeC,
r

Zy = ]Mz,p. (un - #EZun) >
Yn = ]Ml,/\ (Zn - AElzn) >

Xn+1 = (anf (xn) + ﬁnxn + ((1 - ﬁn) I- (XnA) Vo> Vn >0,

(99)

where {a,)} and {8,} < (0,1), A € (0,21,), u € (0,21,), and
r € (0, 26) satisfy the following conditions:
(C1) ¥« = co and lim

n=0 "'n & :0’

n—-00"'n

(C2) 0 < liminf,_, B, <limsup,_, B3, < L
(C3) hmn—»oo|/\ _)Ln—l,il =0,Vi=1,2,...,N.

n,i
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Then, {x,} converges strongly to x* € ©, where x* = Pg(yf +
I-A)(x"), P is the metric projection of H onto @ and (x*, y*),
where y* = ]Mz,ﬂ(x* — pE,x") is solution to the problem (7),
which is the unique solution of the variational inequality

((pf -4)x"x-x") 20,

Proof. Taking W,, = I in Theorem 8, we can conclude the
desired conclusion easily. O

Vx € O, (100)

Corollary 13. Let C be a nonempty closed convex subset of
a real Hilbert Space H. Let F be a bifunction of C x C into
real numbers R satisfying (A1)-(A5). Let T; : C — C be
nonexpansive mappings for all i = 1,2,3,..., such that ® :=
N2 F(T;) N SQVI(B,, M}, B,,M,) N EP(F) # 0. Let f be
a contraction of C into itself with coefficient « € (0,1) and
let Q,E,, E, be &, n,, n,-inverse-strongly monotone mapping of
C into H. Let A be a strongly positive bounded linear self-
adjoint on H with coefficienty > 0and 0 < y < y/a, let
M, M, : H — 2" be a maximal monotone mapping. Assume
that either B, or B, holds and let W, be the W -mapping defined
by (31). Let {x,}, {y,}, {z,,}, and {u,;} be sequences generated by
xy € Cou, €C, and

1
F(un’y) + ; <y —Up Uy, — (xn - ern)> =0,

Vy € C,
2, = Iy (u, — uE,u,), (101)
Y =T (z, - AE,z,),
Xper = @ Vf (3,) + Boy + (1= Bo) T = 2, AY W, 3,
Vn >0,

where {a,} and {B,} € (0,1), A € (0,21), u € (0,21,), and
r € (0, 26) satisfy the following conditions:
(CH Y2y &, = 00 and lim,,_, a, =0,
(C2) 0 < liminf
(C3) lim,, _, A

<limsup,_, B, <L

n—oorn —

Ayl =0, Vi=1,2,...,N.

n,i

Then, {x,} converges strongly to x* € ©, where x* = Pg(yf +
I-A)(x"), P is the metric projection of H onto @ and (x*, y*),
where y* = Jy ,(x" — uE,x") is solution to the problem (6).

Proof. Taking ¢ = 0 in Theorem 8, we can conclude the
desired conclusion easily. O

Corollary 14. Let C be a nonempty closed convex subset of
a real Hilbert Space H. Let F be a bifunction of C x C
into real numbers R satisfying (Al1)-(A5) such that ® :=
SQVI(B,, M,, B,, M,) N EP(F) # 0. Let f be a contraction
of C into itself with coefficient o« € (0,1) and let Q, E,, E, be
8, 1y, y-inverse-strongly monotone mapping of C into H. Let
A be a strongly positive bounded linear self-adjoint on H with
coefficienty > 0 and 0 < y < y/a, let M;,M, : H — 2"
be a maximal monotone mapping. Assume that either B, or B,
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holds, let {x,}, {y,}, {z,}, and {u,} be sequences generated by
xy € C,u, € C, and

I (un’ y) <y Uy Uy, ('lcn L an)> 2 D’
r
vy € C,

zZ, = ]Mz:# (un - ["EZMn) > (102)

Yn = ]Ml,/\ (Zn - )LElzn) >

Xn+1 = (anf (xn) + ﬁnxn + ((1 - ﬁn) I- “nA) Y
Vn >0,

where {a,} and {f,} < (0,1), A € (0,2%,), u € (0,2n,), and
r € (0, 26) satisfy the following conditions:

(C1) ¥ «, = co and lim

n=0 "'n & =0’

n—-o00"'n

(C2) 0 < liminf, , B, <limsup,_, B, <1
(C3) lim,, , ,|A,,; = A, 1l =0,Vi=1,2,...,N.
Then, {x,} converges strongly to x* € @, where x* = Pg(yf +

I-A)(x"), Py is the metric projection of H onto © and (x*, y*),
where y* = ]Mz,ﬂ(x* — pE,x") is solution to the problem (6).

Proof. Taking ¢ = 0 and W, = I in Theorem 8, we can
conclude the desired conclusion easily. O

Corollary 15. Let C be a nonempty closed convex subset of
a real Hilbert Space H. Let F be a bifunction of C x C
into real numbers R satisfying (A1)-(A5) such that ® :=
SQVI(B,, M, B,, M,) N EP(F) # 0. Let f be a contraction
of C into itself with coefficient « € (0,1) and let Q,E,, E, be
0, 1y Ny-inverse-strongly monotone mapping of C into H. Let
M, M, : H — 2" be a maximal monotone mapping. Let
{x,} Ay} {z,), and {u,} be sequences generated by x, € C,
u, € C, and

F(un’y) + l <y_un’un - (xn _ern» >0,
r
Yy €C,

2y = ]Mz,y (un - MEZun) > (103)

Yn = ]Ml,/l (zn - AElzn) >

Xny1 = ‘an (xn) + ﬁnxn + (1 - :Bn - “n) Yo
Vn >0,
where {o,} and {f,} < (0,1), A € (0,2%,), p € (0,2n,), and
r € (0, 20) satisfy the following conditions:
(CY Y2y &, = 00 and lim,, _, &, = 0,
(C2) 0 < liminf, _, fB, <limsup,_, B, <1,
(C3) lim,,_, oo i = April =0, Vi = 1,2,...,N.

71— 00 |
Then, {x,} converges strongly to x* € @, where x* = Po(f +
I)(x"), Pg is the metric projection of H onto ® and (x*, y*),
where y* = Jyp ,(x" — pE,x") is solution to the problem (6).
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Proof. Takingy =1, A=1,¢ =0,and W, = I in Theorem 8,
we can conclude the desired conclusion easily. O

Corollary 16. Let C be a nonempty closed convex subset of
a real Hilbert Space H. Let F be a bifunction of C x C
into real numbers R satisfying (Al)-(A5) such that ® :=
SQVI(B,, M;, B,, M,) N EP(F) # 0. Let f be a contraction
of C into itself with coefficient o« € (0,1) and let Q, E be 0, 1-
inverse-strongly monotone mapping of C into H. Let M, M, :
H — 2" be a maximal monotone mapping. Let {x,}, {y,},
{z,}, and {u,} be sequences generated by x,, € C, u,, € C, and

I (un’ y) <y Uy Uy ('lcn L an)) 2 :’
r
V)/ € C,

2 = Ity (thy — uEw,) (104)

Yn = ]Ml,/\ (Zn - AEZn) >
Xn+1 = anf (xn) + /';nxn + (1 - ﬁn - ‘Xn) V>
Vn > 0,

where {«,} and {B,} < (0,1), A € (0,2%), u € (0,2n), and
r € (0, 26) satisfy the following conditions:

(C1) Y2, &, = 0o and lim
(C2) 0 < liminf,_, B, <limsup,_, B, <1
(C3) lim Ayl =0,¥i=1,2,...,N.

n—oo%n = 0,

n%ool/\n,i

Then, {x,} converges strongly to x* € @, where x* = Po(f +
I)(x™), Py is the metric projection of H onto @ and (x*, y*),
where y* = ]MZ,”(x* — pEx"™) is solution to the problem (6).

Proof. Taking E, = E, = E in Corollary 15, we can conclude
the desired conclusion easily. O
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