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Abstract
Semiclassical black holes emit radiation called the Hawking radiation. Such radiation, as

seen by an asymptotic observer far outside the black hole, differs from the original radiation



near the horizon of the black hole by a redshift factor and the so-called ‘greybody factor’. In this
project, we concentrate on the greybody factor. Various bounds for the greybody factors of non-
rotating black holes are obtained, with major focus on the charged Reissner - Nordstrom and
the Schwarzschild - Tangherlini black holes. These bounds can be derived using a 2X2
transfer matrix formalism. It has been found that the charges of black holes act as efficient
barriers. Furthermore, adding extra dimensions to spacetime can shield the Hawking radiation.
Finally, the cosmological constant has also been found to increase the emission rate of the

Hawking radiation.

Keywords : greybody factors, Hawking radiation, rigorous bound, Reissner —

(ﬁ'mé'n) Nordstrom black hole, Schwarzschild — Tangherlini black hole
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1) To calculate the greybody factors for the four-dimensional Reissner-Nordstrom black
holes, the Schwarzschild - Tangherlini black holes, the charged dilatonic black holes in (2 + 1)
dimensions, and the charged dilatonic black holes in (3 + 1) dimensions.
2) To investigate what factors have an effect on the greybody factors.
3) To compare the 2X 2 transfer matrix method with the WKB approximation and the
matching techniques.
4) To apply the approach to other black holes.
ADANBRINNIDY
1) Derivation of the Schrodinger -like equation and the extraction of potential from the
equation, for each type of black hole.
A static and spherically symmetric black hole in d dimensions can be described by
ds’ =—A(r)dt’ +Ldr2 +rdQY 1)
B(r)
where de_z is the metric on (d — 2)-sphere and is given by
dQ)’  =d6’ +sin” 0d6 +sin” O sin” d0; +...+sin" G --sin"@_d0 . (2
We are interested in a massless uncharged scalar field emitted from this black hole. The
equation of motion of this scalar field on the black hole background is

1 6ﬂ(\/—_gg"v8v(1)):o. 3)
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By separating variables

/a)r (2 d)/2
Dt,r, Q) = W, (Y, (L), (4)
we obtain the Schrodinger -like equation governing the modes, which is given by
aW,(r
VO Tt —v,in]w,n =0, (5)
dr’

where r- is the standard “tortoise coordinate” given by
dr, 1
— = (6)
dar A(r)B(r)

and V(r) is the potential produced by the black hole

Ul +d—3)A(r) (d—2)\JA(r)B(r) d [ (= 4)/2\/7]

2 (d—2)/2
2r

Vo(r)= (7)

r
Its shape depends on the type of black hole. Black holes can be classified into four different

types. The first is the uncharged, non-rotating black hole called the Schwarzschild black hole,
which is the simplest type of black hole. The second is the Reissner-Nordstrom black hole,
which is a charged, non-rotating black hole. The third is the Kerr black hole, which is an
uncharged, rotating black hole. The last type of black hole is the Kerr-Newman black hole,
which is a charged, rotating black hole. Here is a summary of the different types of black holes

[15].

Black Holes
| |

‘ Non-rotating Black Holes Rotating Black Holes
Uncharged Charged ‘ Uncharged Charged

Schwarzsclhnld ‘ Ressner=MNordstrom KEen ‘ Eerr=MNewman

If a Schwarzschild black hole is surrounded by matter, it becomes a dirty black hole. In higher

dimensions, the generalization of the Schwarzschild black holes to d dimensions is referred to

3



as Schwarzschild-Tangherlini black holes. Similarly, the generalization of the Kerr-Newman
black holes to (4 + n) dimensions is called as the Myers-Perry black holes. Moreover, there are
black holes which are considered as the solutions to the low-energy string theory. Each of
these black holes is associated with a dilaton field called the charged dilatonic black hole. In

this project, we will study them in both (2 + 1) and (3 + 1) dimensions.

2) Calculation of the bounds on the greybody factors of the black holes using the 2X2
transfer matrix techniques.

A greybody factor is a transmission probability of Hawking radiation to penetrate a
potential barrier produced by a black hole. It is an important quantity which helps us understand
the quantum nature of a black hole. Properties of greybody factors depend on the type of black
hole. In this project, greybody factors are calculated using rigorous bounds developed by the
2 X 2 transfer matrices. We start by rewriting the second order differential equation

d'y(r)
dr*2

+ [co2 — V(r)]lﬂ(r) =0

as two first order differential equations in the 2 X 2 transfer matrix form

d l// 0 ko l//
dar | 71k, —K*(r) 1k, O || 7T /K,

where
dk(r.)

K (ry=®* —V(r) and T =
ar,

Using the inequality for real numbers
Xy >21xy1,
we can obtain the rigorous bounds on the greybody factors [16]
2
o \/(h')2 +(a)2 —V—hz)

T > sech’ j o |, (8)
—© 2h

where V is a potential barrier produced by a black hole, @ is a frequency of Hawking radiation,
and h is any positive function which will be chosen to optimize the bounds. Calculating the
greybody factor using this technique is relatively more precise than other methods such as the
matching techniques. Moreover, the rigorous bounds are powerful in providing the qualitative

understanding of black holes.



3) Analytical determination of what variables the results depend on.

From the above formula, we can see that the rigorous bounds on the greybody factors
mainly depend on V, a potential barrier produced by a black hole. To analyze the results, we
will set the values of some parameters such as GM and @ so that the bounds are functions of
just one variable. They can, therefore, be plotted using a program such as MAPLE for the
analytical computation of the results. In general, the rigorous bounds on the greybody factors
depend on the black hole mass, the black hole charge, and the black hole angular momentum
as well as the wave frequency and the spacetime dimension. This means that black hole
characteristics themselves determine what values of the rigorous bounds on the greybody

factors should be.

4) Comparison of results from the 2X 2 transfer matrices with results obtained from the
WKB approximation and the matching techniques.

Using the WKB approximation, the approximate greybody factor is given by [1]

T { 2| r ( )d:|
< exp| —Im| p(x)dx |,
h a
p(x) =~/2m[E —V(X)] .

The matching techniques are a composition of the approximation methods for finding the

where

solutions to the Schrodinger -like equation. First, we find the solutions near the black hole,
which are called near solutions, by approximating the relevant parameters in order to make the
Schrodinger -like equation simple enough for us to solve it. Second, we find the solutions at the
point of infinity by approximating the relevant parameters to obtain the far solutions. Last, we
relate the near solutions to the far solutions using the appropriate boundary conditions.
Consequently, the approximate greybody factors can be obtained. We will compare the results
of the greybody factors acquired using the 2X 2 transfer matrices with results from the WKB

approximation and the matching techniques.

5) The application of the 2 X 2 transfer matrix techniques with other black holes.

We will apply the bounds on the greybody factors from the 22X 2 transfer matrix to
various types of black holes such as the four-dimensional Reissner-Nordstrom black holes (the
charged, non-rotating black holes), the Schwarzschild - Tangherlini black holes (the non-rotating
black holes in d dimensions), the charged dilatonic black holes (the black holes associated with

the dilaton fields) in (2 + 1) and (3 + 1) dimensions, the dirty black holes, and the Myers-Perry



black holes (the charged rotating black holes in (4 + n) dimensions). The Myers-Perry black
holes are important in that they are the simplest of the higher-dimensional rotating black holes.
In addition, there is a new phenomenon, called superradiance, occurring in the Myers-Perry
black holes, which can never arise in non-rotating black holes. Superradiance is a phenomenon

by which the reflected wave is larger in its amplitude than the incident wave [14].

Han1Inaaald

In this section, we will show you how we can obtain the bounds on the greybody factors
for various types of black holes by the methodology mentioned above. We will analyze the
factors which affect the bounds on the greybody factors and compare those bounds with the
approximate greybody factors obtained from the WKB approximation and the matching

techniques. Application with various types of black holes are as follows;

1. Reissner-Nordstrom black holes
The Reissner-Nordstrom metric is given by [1]
ds’ =—Adt” + Aar* +r’aQ)’,
where dQQ° = d@* + sin® 9d¢2 and

2GM G(Q2 + Pz)
A=1— + - :
r r
Here M is the black hole mass, Q is the total electric charge, and P is the total magnetic

charge. In this case, from equation (1) we find that

A(r) and d = 4.

>
=
-
N—

I
o
—~
=
N—
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From equation (5), the Schrodinger -like equation is given by

2

a¥v 2 _ _
e +[a) V(r):ll// 0.

From equation (6), the tortoise coordinate is given by

1
dr, =—dr.

From equation (7), the potential produced by the Reissner-Nordstrom black hole is given by
((L+1)A  A0A

2
r r

v(r)

where £ is the angular momentum.

From equation (8), the bounds on the greybody factors are given by



A 1 [ 0(0+1)  eM+2A
T 2 sech + -
20 | GM+ A 3(GM + A)
where

A =G"M’ —G(Q2 +P2).
The bounds on the greybody factors versus A are plotted for different angular momenta as

shown in Figure 1.
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Figure 1. Dependence of the bounds on the greybody factors on A.

Based on the value of A, a decrease in A corresponds to an increase in the magnitude of the
charge. The graph shows that when the magnitude of the charge increases, the bounds on the
greybody factors decrease. That is, the charge is an effective barrier in resisting the tunneling
of uncharged scalar particles [2-7]. Moreover, the bound is smaller in higher angular momenta.
If the energy from the potential barrier is higher than the particle’s energy, we can use

the WKB approximation to calculate the greybody factor

Tue = EXP —%{ZGCO(M —Qj—(M —a))\/62 (M—®) —G(02 +P2)

2

+/\/1\/c;2/\/12 —G(Q2 +P2)}i|.

The asymptotic greybody factor for large @, obtained from the matching techniques, is given
by [8-10]




where

2
[ 2. 2 2
8ITM 27Z'|:GM— GM —GQ :|
f= and 3 =— :
2 2 4 2 4 2 2 2
1+Q /2GM™ +5Q /16G M NG M —GQ

The bound on the greybody factor compared with the asymptotic greybody factor for large @ is

shown on the graph in Figure 2.
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Figure 2. Comparison of the bound on the greybody factor and the asymptotic greybody factor.

The graph shows that the result from the 2 X 2 transfer matrix is close to the asymptotic result

for large Ws. Moreover, the bound on the greybody factor provides a true lower bound.

2. Schwarzschild - Tangherlini black holes in d dimensions

The Schwarzschild-Tangherlini metric in d dimensions is given by [1]

2
dr
ds* =—f(ryat” +—+r"dQ_,
f(r)
where
r d—3
f(ry=1— (—"j .
r
Here, the Schwarzschild radius ry in d dimensions is given by
167TGM o'
r,=———_—— and Qd_2= :
(d—2)Q, ['((@d—1/2)

where M is the black hole mass. In this case, from equation (1) we find that

A(r)=B(r)=1(r).



From equation (5), the Schrodinger -like equation is given by

2

'y
drf

+[a)2 —V(r)]l/l =0.

From equation (6), the tortoise coordinate is given by

1
dr, =——adr.
f(r)

From equation (7), the potential produced by the Schwarzschild-Tangherlini metric in d
dimensions is given by

f
+0(l+d—3 g
r

(d=2)(d—4)f(r) (d—2)f(r)0,f(r)
V(r)= +

2

4 r 2 r
From equation (8), the bounds on the greybody factors are given by

(d—2)(d—3)+4l(L+d—3)

T > sech’
8Wr

0

The bounds on the greybody factors versus M are plotted for different spacetime dimensions as

shown in Figure 3.
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Figure 3. Dependence of the bound on the greybody factor on the black hole mass in various

spacetime dimensions.

The graph shows that when the black hole mass increases, the bounds on the greybody factors
also increase. However, for the same mass, the bound on the greybody factor is less in higher

dimensions [11].



3. Charged dilatonic black holes in (2 + 1) dimensions

The charged dilatonic black holes in (2 + 1) dimensions is given by [1]

ds® = —f(r)dt” +idr2 +r*d6?,
f(r)
where
f(ry=—2Mr +8Ar> +8Q°.
Here, M is the black hole mass, Q is the total electric charge, and A is the cosmological

constant. In this case, from equation (1) we find that

f(r)
A(r)y=1f(r),B(r)= — and d = 3.
4r
From equation (5), the Schrodinger -like equation is given by

2

dy
dr,2

+[co2 —V(r)]w =0.

From equation (6), the tortoise coordinate is given by

2r
dr, =——ar.
f(r)
From equation (7), the potential produced by the charged dilatonic black holes in (2 + 1)
dimensions is given by
2 4
5M 1 1 6Q
V(r)=—@m A+6mA) +14A°r +| —+2m’'M |-—(4MQ" +8m’Q")—+
8 r r r

3

From equation (8), the bounds on the greybody factors are given by

—368 Am(4m + 3) + 644MA — 2576Q° A +115M° +368m°M

60\ M> —64Q° A
5AM? —64Q° A sM+16m” | MH+M* —64Q°A

— + In

8 160 M—M —64Q°A

23Q°(3Q° —2M —4m”)

T > sech’

15\

The bound on the greybody factor versus Q is plotted as shown in Figure 4.
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Figure 4. Dependence

0.7+

0.6

0z 04

of the bound on the greybody factor on the charge of the dilatonic black

holes in (2 + 1) dimensions.

The graph shows that when the charge increases, the bound on the greybody factor decreases.

This result is similar to

as an effective barrier i

the Reissner-Nordstrom black hole's result; that is, the charge behaves

n resisting the tunneling of uncharged scalar particles.

The bound on the greybody factor versus the cosmological constant is plotted as shown

in Figure 5.
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Figure 5. Dependence
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of the bound on the greybody factor on the cosmological constant for the

charged dilatonic black holes in (2 + 1) dimensions.
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The graph shows that when the value of the cosmological constant increases, the bound on the
greybody factor also increases. That is, the cosmological constant renders the gravitational
potential produced by the black hole transparent.

The approximate greybody factor obtained from the matching techniques is given by

[12]

o 7w |0 —sm'A wor, +r) 7 |@° —8m’A

cosh| ——— 72_1 coshf ——  — 72_1
aN 2 aA 4N, —r) 2 aA

T~1— = = = ,

Tw 1w |0 —8sm’A war, +r) 7w @ —8m°A

cosh 7+7 72_1 cosh 74‘7 72_1
aA 2 s\ 4N, —r) 2 aA

where

MEM —64Q°A
r, = .
- s\

The bound on the greybody factor compared with the approximate greybody factor is shown on

the graph in Figure 6.

4-1-++*-"““"++

0.85 ] TR
0.9 Lt
0.85 .
0.8 .
0.75 4
0.7

0654 7

GO0 200 1000 1200 1400 1600 1800 2000
omaga

_— Tapproximate
P T o2

Figure 6. Comparison of the bound on the greybody factor and the approximate greybody

factor.

The graph shows that when the energy of an emitted particle increases, the greybody factor
also increases. It can be seen that the result derived from the 2X 2 transfer matrices is
relatively more accurate when compared with the approximate result. Note that the methods of
2 X 2 transfer matrices used to obtain the lower bound are comparatively less complex than

the methods used to obtain the approximate result.
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4. Charged dilatonic black holes in (3 + 1) dimensions

The charged dilatonic black holes in (3 + 1) dimensions is given by [1]

1
ds® =—f(r)ydt’ + —adr’ +R*(r)dQ*,
f(r)

r 2 2 r_
f(r)y=1——"and R'(r)=r (1——).
r r

For the black hole mass M and the total electric charge Q, r. and r. are given by

where

2

Q
r. =2M and r_ =—.
M

In this case, from equation (1) we find that
A(r)=B(r)=f(r) and d = 4.

The equation of motion for the radial part is given by

1 d|: , du(r):|+ 0] _£(£+1) .

R*(r) dr £(r) R*(r)

(r)=0.

From equation (6), the tortoise coordinate is given by

1
dr., =——dr.
f(r)

From equation (7), the potential produced by the charged dilatonic black holes in (3 + 1)
dimensions is given by
C(L+1)(r)
RN
From equation (8), the bounds on the greybody factors are given by

4(2M2 )£(€+1)/\/1/coc32 (2M2 _ Q2 )€(Z+1)/\4/a)cz2

[(ZMZ )€(£+1)M/a)02 N (2M2 e )z(e+1)M,sz T

The bound on the greybody factor versus Q is plotted as shown in Figure 7.

V(r)=

T2>
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Figure 7. Dependence of the bound on the greybody factor on the charge of the dilatonic black

holes in (3 + 1) dimensions.

The graph shows that when the charge increases, the bound on the greybody factor decreases.
This result is similar to the Reissner-Nordstrom and the (2 + 1) dimensional charged dilatonic
black holes’ results; that is, the charge behaves as an effective barrier in resisting the tunneling
of uncharged scalar particles. The rigorous bounds presented here only work for certain

potentials. Such potentials have to satisfy V(£00) —> Vi

5. Dirty black holes

A general static spherically symmetric spacetime for a dirty black hole is given by [13]
2
—odir 2m(r) dr
= (__j LS
r 1—=2m(r)/r

where ¢(r) is related to the distribution of matter and m(r) is the total mass within the radius r

from center of a black hole. In this case, from equation (1) we find that

_ _W[ Zm(r)} _2m(n)
Alr)=e 1—— |, B(r)=1— and d = 4.

r r

From equation (5), the Schrodinger -like equation is given by

2

zy +[a)2 —V(r)]w =0.
ar,

From equation (6), the tortoise coordinate is given by

—1
ar, , 2m(r)
el =e¢( )|:1_ :l
ar r

d

14



From equation (7), the potential produced by the Reissner-Nordstrom black hole is given by

_ZW{ 2m(r):| (0 +1)  2(1—S*)m(r)
V(r)=e 1—

— = 4(1=8)(P~p,) |,

r r r

where L is the matter density, p, is the radial pressure, and S is the spin of a particle which
runs from integers 0 to 2.

From equation (8), the bounds on the greybody factors are given by

1 1—8*
0l +1)+ :
2a)rH 2

T > sech’

where r, = 2m(r,,). The bound on the greybody factor depends on the frequency wave @, the
angular momentum £, the spin S, and the horizon radius r, which is related to the contribution

of matter.

6. Myers-Perry black holes in (4 + n) dimensions

A Myers-Perry black hole in (4 + n) dimensions is given by [14]
2 2 Z 2 2 2 2 2 2 ll’l 2 2
ds’ = —dt +Xdr +2d0° +(r" +a")sin Ba +n_—1z(dt —asin’ Bd@)
r

+r? cos” Hin
where
A=r+3a" —%,2=r2 +a’cos’ G,
r

and in is the line-element on the unit n-sphere S”". We choose coordinates so that

n—1
in = d912 + sin’ 91d(922 + sin’ 91 sin” 92d932 +...+ (H sin2(9,. )dé’n2 .

i=1

The black hole mass Mgy and the angular momentum J are defined as follows

(n+3)/2

(n+2)27T 2a
M, = M and J=
167TGL [(n+3)/ 2] n+2

In this case, the Schrodinger -like equation is given by

M

BH *

d’ R,ﬁm

+[a) m@)’ Vi (1 ]R =0,
dr”

where

The tortoise coordinate is given by

15



2 2
r +a

dr, =————dr.
A(r)
The potential produced by the Myers-Perry black holes in (4 + n) dimensions is given by
A(r) iG+n—1a’ nn—2Awr) nA'(r)
Vin= 2 2)\? ﬂdf[m + 2 + 2 +
(r +a ) r ar 2r

3r*A(r) +nAun
(r2 +£112)2 r +a2

From equatlon (8), the bounds on the greybody factors are given by

1
sech’ —In1—m/m)+ L for m<o0
2r,
1
sech’ ——In1—m/m)+ Lt for 0S<m<m,
2r,(1—m/m,)
T >4 ,
1 low
sech’ ——In mim, —1)+ Ly T, for m <m<2m.
2r,a(m/ m, —1)
1
sech’ —In(m I'm, —1)+ Ly F Jhlgh for m=2m,
2 2r.@

where r,, is the horizon radius, m, = Ct)(a2 + r: ) /a, and
n(2n — 3) a’
=—+j(j+n—1)+ﬁ
8 4(r, ta)

2n+1 r, a
+ —j(j+n—1)+/1ﬂm(aa)) —arctan—

jfm

2 a r,
2 2 2
n(r, +a) n+2 n+4 a
+ 2 2F1 1’ ) ’__2
8r, 2 2 r,

The case where m < m, is called the non-superradiance mode and the case where m = m, is
called the superradiance mode. Superradiance is a phenomenon by which the reflected wave is
larger in its amplitude than the incident wave. This phenomenon can arise for rotating black
holes only, such as the Myers-Perry black hole.

The bound on the greybody factor versus the wave frequency for a spin zero angular

momentum mode is plotted for five (n = 1) and six (n = 2) dimensions as shown in Figure 8.

16
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Figure 8. Dependence of the bound on the greybody factor on the wave frequency in five (n =

1) and six (n = 2) dimensions

The graph shows that when the wave frequency increases, the bounds on the greybody factors
increase to their maximum and then decrease. Moreover, the bound on the greybody factor is
lower in higher dimensions.

The bound on the greybody factor versus the angular momentum of the Myers-Perry

black hole is plotted as shown in Figure 9.
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Bounds on greybody factors
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Figure 9. Dependence of the bound on the greybody factor on the angular momentum.
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The graph shows that the bound on the greybody factor decreases as the angular momentum

of the black hole increases.
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In this project, we obtain valuable knowledge from developing mathematical techniques
to calculate the rigorous bounds on the greybody factors. These bounds are derived for the
four-dimensional Reissner - Nordstrom black holes, the higher dimensional Schwarzschild -
Tangherlini black holes, the charged dilatonic black holes in (2 + 1) dimensions, the charged

dilatonic black holes in (3 + 1) dimensions, the dirty black holes, and the Myers-Perry black
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holes. We gain understanding of the key factors that affect the greybody factors. These key
factors are summarized as follows;

For the Reissner-Nordstrom black holes, when the magnitude of the charges increases,
the bound on the greybody factor decreases. That is, the charges are an effective barrier in
resisting the tunneling of uncharged scalar particles.

For the d-dimensional Schwarzschild - Tangherlini black holes, the bound on the
greybody factor is lesser in higher dimensions.

For the charged dilatonic black holes in (2 + 1) dimensions, when the charges increase,
the bound on the greybody factor decreases. This result is similar to the Reissner-Nordstrom
black hole's result; that is, the charges behave as an effective barrier in resisting the tunneling
of uncharged scalar particles. Moreover, when the value of the cosmological constant
increases, the bound on the greybody factor increases as well. That is, the cosmological
constant renders the gravitational potential produced by the black hole transparent.

For charged dilatonic black holes in (3 + 1) dimensions, when the charges increase, the
bound on the greybody factor decreases. This result is also similar to the Reissner-Nordstrom
black hole's and the (2 + 1) dimensional charged dilatonic black hole's result. That is, the
charges behave as an effective barrier in resisting the tunneling of the uncharged scalar
particles.

For dirty black holes, the bound on the greybody factor depends on the frequency wave,
the angular momentum, the spin, and the horizon radius which is related to the contribution of
matter. Choosing the appropriate functions ¢(r) and m(r) can generate considerably more
specific results.

For the Myers-Perry black holes in (4 + n) dimensions, we have established certain
rigorous bounds on the greybody factors (mode dependent transmission probabilities). There
are possibilities for the emergence of superradiance. Superradiance is a phenomenon by which
the reflected wave is larger in its amplitude than the incident wave. The condition under which
superradiance occurs entails the wave frequency being lesser than the rotation rate of a given
black hole. We have also obtained (mutatis mutandis) certain rigorous bounds on the emission
rates for the superradiant modes. In the absence of exact results, (the relevant differential
equations seem highly resistant to explicit analytic solution), quantitative bounds along these

lines seem to be the best attainable solutions.
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We can choose another form of the function h(r) to obtain better bounds. The
generalization of a particle with other spins such as a fermion is also interesting. Moreover, we

can apply the methods used in this project to other black holes or even other systems.
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In Euclidean space there is a trivial upper bound on the maximum length of a
compound “walk” built up of variable-length jumps, and a considerably less trivial
lower bound on its minimum length. The existence of this non-trivial lower bound
is intimately connected to the triangle inequalities, and the more general “polygon
inequalities.” Moving beyond Euclidean space, when a modified version of these
bounds is applied in “rapidity space” they provide upper and lower bounds on the
relativistic composition of velocities. Similarly, when applied to “transfer matrices”
these bounds place constraints either (in a scattering context) on transmission and
reflection coefficients or (in a parametric excitation context) on particle production.
Physically these are very different contexts, but mathematically there are intimate
relations between these superficially very distinct systems. © 2013 AlP Publishing
LLC. [http://dx.doi.org/10.1063/1.4820146]

I. BACKGROUND

One is often confronted with physical or mathematical situations where some complicated
process can be built up by compounding (that is, chaining together) a number of simpler but not
necessarily equal individual steps. Examples (by no means an exhaustive list) include compounding a
series of variable-length jumps in physical space, the relativistic composition of multiple velocities,
and the composition of transfer matrices for scattering from multiple distinct (non-overlapping)
barriers.

An interesting and pragmatically useful question is whether information concerning the indi-
vidual steps can be used to place useful bounds on the overall compound process. Herein, we present
examples of several such phenomena. From a purely technical perspective, this discussion is largely
based on the analysis of compound scattering processes presented in Ref. 1, but the applications will
be completely different:

1. There is a simplification of the upper and lower bounds of that article to variable-length
compound jumps in ordinary Euclidean physical space.

2. There is a modification of the upper and lower bounds of that article to the special relativistic
composition of velocities.

Mathematically, the intimate relationship between the Euclidean translations, special relativistic
boosts, and quantum scattering is due to the fact that both the Lorentz group and group of transfer
matrices are Lie groups, with closely related though not identical Lie algebras. Specifically, the
Lorentz group can be represented by SO(3, 1), which is locally isomorphic to SL(2, C), whereas the
set of transfer matrices form a representation of SU(1, 1), which is locally isomorphic to SL(2, R).
See, for example, the recent review article? and references therein. (For other relevant background
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material see, for instance, Refs. 3-8 on composition of velocities in special relativity and Refs. 9-18
on quantum scattering.)

It is the structural similarity between the Lie algebras of SL(2, C) and SL(2, R), and the
relation between velocities and rapidities, versus the relation between transmission probabilities
and Bogoliubov coefficients, that underlies the close mathematical similarities between Euclidean
translations, relativistic composition of velocities, and the compounding of transfer matrices. For
instance, an arbitrary boost can always, up to a three-dimensional rotation R, be written as

0100

B=Rexp|é& R, 1)

0 00O
0 00O
0 00O
with the speed being related to the rapidity by v = tanh&. In counterpoint, an arbitrary transfer
matrix can always be written in the form?

T_|o B7|_|cosh® € sinhe e’ 2
| B o | " |sinh®@e? coshee |
It is then easy to see that
a@—v)/2 0 0 1 g @+1)/2 0
= [ 0 e_i@_d’)/z] s (® [1 0]) [ 0 e—i(a>+t//)/z] : ©)

with the reflection probability being given by +/R = |r| = tanh ©. (See, for instance, Ref. 1) Fur-
thermore, the appropriate subspaces of the Lie algebras of both of these Lie groups can be mapped
homeomorphically (and even monotonically) to the Euclidean translations, which ultimately under-
lies the close connection to compound jumps in ordinary Euclidean space. Indeed, working with
the Euclidean space formulation in some sense “trivializes” the bounds and makes clear the close
connection between the lower bound and the triangle inequalities (or more generally the polygon
inequalities).

II. VARIABLE LENGTH RANDOM WALKS IN PHYSICAL SPACE

Suppose we have a compound “walk” in physical where the individual step sizes (“jumps”) are
fixed but variable, ¢4, €5, £3, ..., £n, but the directions n; are arbitrary. What if anything can we say
about upper and lower bounds on the net displacement

n
X12..n = Z n ¢;?. (4)
i=i
Consider the two step case
X12 =Ny €y + Ny Lo, ®)
then it is elementary that
[€1 — L2] < [Xp2| < €1+ £a. (6)

Furthermore, it is also clear that for n steps

n
IX12..n] < M12..n = Zﬁi- (7
i—1

But can one place a lower bound on |X12..n|? Yes, by a straightforward modification (and simplifi-
cation) of the analysis of Ref. 1, for a three-step walk we assert (and shall soon prove)

[X123] = max{€s — €, — €3, £p — €3 —L€1, €3 — L1 — €5, O} (8)
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More generally, for an n-step walk we assert (and shall soon prove)

[X12..n] = Max { ¢ — ZEJ', 0%, (9)
j#
or equivalently
n
X12..n| > max { 2¢; — ZEJ, o}. (10)
j=1
We can also write this as
[X12..n] = My2..n = Max {2¢; — Mqp..n, 0}. (11)

(So, as is reasonably common notation, we use M to denote the maximum, and m to denote the
minimum.)

lll. TRIANGLE AND POLYGON INEQUALITIES

To first see why these lower bounds have any hope of working, it is useful to consider the triangle
inequalities.

A. 3 steps

A key observation is this: The 3-step lower bound is non-trivial if and only if the three step-
lengths, ¢4, £2, and ¢3, violate the triangle inequalities. To see this, recall that for a three-step
compound walk in physical space we asserted

[X123] = max {€y — £ — €3, €p — €3 — £y, €3 — €1 — {5, 0}. (12)

Why this odd combination? This is related to the triangle inequalities in a quite elementary manner.
If ¢4, 2, and £3 are the lengths of the sides of a physical triangle in Euclidean space, then they must
satisfy the triangle inequalities: The length of any one side of the triangle must be less than or equal
to the sum of the lengths of the other two sides. That is,

£y < £y + L £y < 3+ 4] £3 < b + Lo (13)
This implies
01— — U3 <0; ly— 43— 101 <0; l3— 1t — €, <0. (14)
Therefore, in this situation
max{€y — £y — €3, €y — €3 — €1, 83 — £1 — £2,0} = 0. (15)

That is, if the quantities ¢;, £,, and ¢3 are the lengths of the sides of a physical triangle in Euclidean
space, then there is no constraint on |X;23| apart from the trivial one: |x123| > 0. Therefore, the lower
bound on |x123| is non-trivial if and only if ¢1, ¢,, and £3 cannot be interpreted as the lengths of the
sides of a physical triangle in Euclidean space. Furthermore, if the triangle inequalities are violated,
then the non-trivial lower bound specifies the extent to which the 3 edges of the “would-be triangle”
fail to close.

B. nsteps

Generalizing the above observation: For n steps the lower bound is non-trivial if and only if the
polygon inequalities are violated. To see this, observe that for an n-step random walk the lengths
¢; can be interpreted as the physical lengths of an n-sided polygon if and only if all n polygon



092105-4 P. Boonserm and M. Visser J. Math. Phys. 54, 092105 (2013)

inequalities are satisfied
Vi L) e (16)
j#
These polygon inequalities are the natural generalization of the triangle inequalities. They can be built

up iteratively by subdividing any polygon into triangles, and then applying the triangle inequalities
step-by-step. That is,

Vi - ¢ <0 (17)
j#i
But then
max{ ¢ — > £;,04 =0. (18)
j#i

So if the lengths ¢; can be interpreted as the physical lengths of an n-sided polygon, then there is no
constraint on |Xi...n| apart from the trivial one: |X1,..n| > 0. Therefore, the lower bound on |X1...n|
is non-trivial if and only if the ¢; cannot be interpreted as the lengths of the sides of a physical
n-sided polygon in Euclidean space. Furthermore, if the polygon inequalities are violated, then the
non-trivial lower bound specifies the extent to which the n edges of the “would-be polygon” fail to
close.

These observations, though mathematically rather straightforward, and possibly even trivial,
make it much clearer why the lower bounds take the form they do, why there is any realistic hope
of obtaining any non-trivial lower bound, and also why there is no realistic hope of a lower bound
more stringent than the one we have enunciated.

IV. PROOF OF THE LOWER BOUND
Start by defining the sums (j € {1, 2,3, ..., n}),

j
Mizs.j = Y 4. (19)
i=1

Then it is elementary that
X123...j] < Migs...j (20)
forallje{1,2,3,...,n}.

A. lterative version of the lower bound
Now take
m; =44, (21)
and, forj € {1,2,3,...,n — 1}, iteratively define the quantities mys... + 1y by
Mi23...(j+1) = (€j+1 — M123..j) H(£j11 — My23..j)
+(Miz...j — £j+1) H(Mos..j — €j41), (22)
where H(-) is the Heaviside step function. We can equivalently re-write this iterative definition as

My23...(j+1) = Max {Ej+l — M123...j , Mi23..j — £j+la 0} . (23)

Theorem: By iterating the 2-step bounds, one has

vn: M123..n < [X12..n] < M123..0. (24)
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Proof by Induction: When we iterate the definitions for Myas..; and myos.., then the first two times
we obtain

My = £g; my = {1, (25)

M1z = €1 + £2; my = €1 — L], (26)

Thus the claimed theorem is certainly true for n = 2. Now apply mathematical induction: Assume
that at each stage the interval [myo3..j, M123..] characterizes the highest possible and lowest possible
values of [X12...; |. Applying the 2-step bound to the pair [X1»...; | and ¢; 4 1 leads trivially to [X1o...(j+1)]
being bounded from above by

Mi2s..(j+1) = Mizz..j + €41, (27)
and less trivially to being bounded from below by
M123...(j+1) = MaxX {€j+1 — Ma23..j, Mazs...j — €41, 0} . (28)
This completes the inductive step. That is,
IX12...(j+1)| € [M123...(j+1)» M123..(j+1)], (29)

as claimed.
However, these bounds are currently defined in a relatively messy iterative manner. Can this be
usefully simplified? Can we make the bounds explicit?

B. Symmetry properties for the lower bound
When we iterate the definitions of Myo3..; and myys..j, a third time we see
Moz = €1 + €2 + €3; Mioz = max{€z — (€1 + €2), [€1 — £2| — €3, 0}. (30)
We can further simplify this by rewriting my,3 as
Myp3 = max{€y — €y — €3, €y — €3 — L1, €3 — €1 — £y, 0}, (31)

Note that this form of my,3 is manifestly symmetric under arbitrary permutations of the labels 123.
One suspects that there is a good reason for this. In fact there is.

Theorem: The quantity mys..;(¢;) is a totally symmetric function of the j parameters ¢;, where
ie{l1,23 j}

Proof: By inspection the result is true for my, my,, and my,3. But this argument now generalizes.
In fact, the easiest way of completing the argument is to provide an explicit formula, which we shall
doin Sec. IV C.

C. Non-iterative formula for the lower bound
Theorem:
n
YN Mipg.n = ie{TS‘ffn}{% — Mig3.n, 0} = max 6 - klek:#i 0,0} . (32)
Proof by Induction: We have already seen that the iterative definition of my.3..; can be written as
M123...(j+1) = Max{€j41 — Mags...j, Miza...; — £j41, 0}, (33)
which we can also rewrite as

Ma23...(j+1) = Max{2¢j 11 — M123...j+1), M123..j — £j11, 0}. (34)
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Now apply induction. The assertion of the theorem is certainly true for n = 1 and n = 2, and has
even been explicitly verified for n = 3. Now assume it holds up to some j, then

My23...(j+1) = Max{2€j 1 — M12s...(j+1), Mi23...j — £j11, 0}

= MmaX {2£j+1 — M123..A(j+1), ie{rln2ax j}{2£i — M123...j ,0} — €j+1, 0}

= max {2€j+1 — Ma23..(j+1) ie{flnglxn{% — Mua3..(j+1), 0}, 0}

= max 20; — M123..(j+1, 0}. 35
ety 26— Mizee+0. O) (35)

This proves the inductive step. Consequently,

vn: Mi23..n = Max {23, — M123...n, 0}, (36)
iefl,2,..n}

as claimed.
To simplify the formalism even further, let us now define

Epeak = ie{rlr??,)f.n}gi . (37)

(We shall use the subscript “peak” for the maximum of the individual ¢;’s; the words “max” and
“min” will be reserved for bounds on the n-fold composition of the ¢;.) Then we can simply write

vn: M123..n = max{2£peak — Mus..n, 0} (38)

This is perhaps the simplest way of presenting the lower bound.

V. RELATIVISTIC COMPOSITION OF VELOCITIES

Let us now apply the Euclidean space result derived above to a more subtle situation; the
relativistic composition of velocities. (For general background see Refs. 3-8.)

A. Collinear velocities

When it comes to the relativistic composition of velocities the key thing is to note that for a pair
of collinear (parallel or anti-parallel) velocities we have

vy = (39)
which implies
% < |vi2| < % (40)
If we work with the (non-negative) rapidities ¢; defined by
[vi| = tanh &, (41)
then
tanh [¢1 — &2| < |viz| < tanh($1 + &2). (42)
That is
tanh [$1 — &o| < tanh(¢12) < tanh(¢1 + £2), (43)
which implies

(61— &2l <812 <61+ & (44)
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It is this version that is closest in spirit to the Euclidean result, and this version that is more likely
to lead to a suitable constraint on the composition of n relative velocities. We could also write the
2-velocity constraint as

tanh | tanh ™ vy | — tanh ™ |vy|

< |v12| < tanh <tanh‘1 |vy| + tanh™! |v2|>. (45)

B. Non-collinear velocities
If the velocities are not collinear, there is a more complicated rule for combining velocities
V12 = U1 @ Uy (46)

Fortunately, we will not need to be explicit about the details. (For more details see, for instance,
almost any medium-level technical book on special relativity,®* or for example, Refs. 5-8.) If we
further define a rapidity vector

¢ = {tanh~* o)} 9, (47)
there will be an analogous vectorial composition rule in rapidity space
te=0H0 (48)

Fortunately, we do not need the full power of the non-collinear composition rule, we only need to
know the simple result obtained by looking at the extreme case of collinear (parallel/anti-parallel)
motion

161l — 12l | < 6 B2l < (6] + 12l (49)
That is,
|1l = 1821 | < 1l < 161l + 12l (50)
So even for non-collinear motion, we still have

(61— 82l < 812 <81+ 8o (51)

We can now immediately apply the bound we have already derived for compound walks in physical
Euclidean space.

C. Bounds on the composition of velocities
1. Upper bounds

For n velocities the upper bound is straightforward, we just iterate the two-step result to obtain

n
2. < Y40 (52)
i=1

whence
n
[v12..n| < tanh [Z ;i} . (53)
i=1
We can also write this as

n
[v12..n| < tanh [Z tanh™ |v; |} ) (54)

i=1
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Here are some explicit special cases obtained by straightforward manipulation of hyperbolic trig
identities. Relativistically combining three velocities, one has

lva] + vz + [vs| 4 [va|[v2|[vs]

[v23] < . (55)
1+ |villvz2] + |v2l|vs| + [vs][v1]
Similarly, relativistically combining four velocities, one has
lv1] + [va| + [va] + |val + |vi]|vallvs| + [vallvsllval + |vsl|val|va] 4 [vallvi]v2]
[v1234] < 56)

1+ |vrllva| + |vallva] + [va||val + |vallve] + [vil|va| 4 |v2llval + [va]|v2]|vslval”
If one additionally knows that all velocities are collinear, then instead of bounds one has the related
equalities

V1 + V2 4 V3 4 V10203

V123 = 57
27 + v1vy + VU3 + V3V ©7)

and

V1 + U2 + v3 + vg + v1V2V3 4+ VV3V4 + V3V4V1 + V4V1V2
1 4+ v1V9 4+ Vov3 4 V3V4 + V4V1 + V1U3 + VoUs + V1U2U3Vs '
(There does not seem to be any more pleasant reformulation of these results, and in the completely
general n-velocity case the general the “tanh” formula above seems to be the best one can do.)

Vo34 = (58)

2. Lower bounds

Obtaining an explicit lower bound is again a lot trickier than the upper bound. When relativis-
tically combining three velocities then, (because of the monotonicity of the tanh function), one has

[vizz| > tanh |:max{§1 —l =03, {2—03—101, {3—01— 0, 0}} . (59)

When relativistically combining n velocities the best one can do is this

[v12..n| > tanh [ max { ¢ — Zg,—, o} |. (60)
j#i
We can also write this as
n
|v12..n| > tanh | max { 2 — Z ¢, 0¢ . (61)
j=1
Now defining
n
Miz..n=tanh | Y gj | (62)
j=1
and
Upeak = miax{|vi [}, (63)
and setting
My..n = tanh [max {2tanh™ vpea — tanh™ Myz.., 0}] , (64)
we can also write this as
Mi2..n < [V12..n] < M12.n. (65)

So there certainly are quite non-trivial constraints, one can place on the relativistic combination of
velocities, but they are a little less obvious than one might at first suspect.
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VI. SCATTERING

Compound scattering processes were extensively discussed in Ref. 1. (For additional back-
ground see Refs. 2, 12-18; for various explicit bounds on transmission and reflection probabilities
for scattering processes see Refs. 19-27; for a survey of exact results see Ref. 28.) Rather than
unnecessarily repeating the results of Ref. 1, we shall herein content ourselves with a few explicit
comments regarding 2-barrier, 3-barrier, and 4-barrier systems. The key point is that for the trans-
fer matrix as represented in Egs. (2) and (3) the reflection probability is +/R = tanh(®), and that
composing transfer matrices corresponds to composing Euclidean jumps of length |®], see Ref. 1.

Specifically, for two non-overlapping barriers the transmission and reflection probabilities are
bounded by

L <Ti< TiT, i (66)
{1+/\/1—T1«/1—T2} {l—\/l—T]_\/l—Tz}
and
{_ﬁl— E}ZSFM{_J@ ﬁ} -
1-JVRVR 1+ VRiVR

For three non-overlapping barriers, the results of Ref. 1, combined with a little work using hyperbolic
trigonometric identities, lead to

T, T,T.
Tioz > =27 3 (68)
1+V/I-T)I-T)+ /01 -T)1 - T) +/1-T)I - T)}
and
Ris < {«/R1R2R3+\/Rl+/\/ R, + /R3}2 (69)
"1+ VRR+VRR+VRIR |
For four non-overlapping barriers, a completely analogous calculation straightforwardly yields
TiTLT3T.
Ti234 > SRLALIL 3 (70)
{145 VE-TE-T) + VI- T - I - B - T}
and
2
Ropas < Vv Ri 4+ +/ReR3 Ry + (cyclic permutations) (71)
1234 = .
1 + Zi<] v/ R| R] + vV R]_R2R3R4
That is, explicitly,
Ri2ss < (72)

VR4 VR4 VR + VR + VRRR + VRRR + VRRR + VRRR |
1+, VRR + VRIRRsRy '

Upper bounds on T, and lower bounds on R, are less algebraically tractable, (at least in explicit
closed form), and we refer the reader to Ref. 1 for more details.

VIl. PARAMETRIC EXCITATIONS

By working in the temporal rather than spatial domain, particle scattering processes can be
re-phrased in terms of particle production via parametric excitation. (See Ref. 1 for details). In this
context, the net particle production due to two non-overlapping excitation events is bounded by

{\/Nl(NZ +1) — /No(Ny + 1)}2 <Np < [\/NI(NZ + 1)+ /No(Ng + 1)]2~ (73)
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For three non-overlapping excitation events, one obtains

Nizs = {V/NeT+ N+ Na) + VN (L + Na) (T + )

2
+V/Ns T+ N+ No) + v/NiNaNs | (74)
For four non-overlapping excitation events a straightforward (but rather tedious) calculation yields

Nio3s < {\/N1(1 + N2)(L + N3)(1 + Ng) 4 v/NyN2N3(1 + Ny)

2
+ (cyclic permutations)} . (75)

Further “explicit” algebraic formulae would be rather unwieldy, and for all practical purposes one
is better off using the somewhat less “explicit” formulae in presented terms of hyperbolic functions
in Ref. 1. Similarly lower bounds on N are less algebraically tractable, (at least in explicit closed
form), and we again refer the reader to Ref. 1 for more details.

VIIl. DISCUSSION

That particle scattering in the spatial domain is mathematically intimately related to particle
production in the temporal domain is a very standard result, ultimately going back to the relationship
between scattering and transmission amplitudes and the Bogoliubov coefficients. (See, for instance,
Refs. 1,2,13, and 28 for more details on this specific point.) The intimate mathematical relationship
between particle scattering and relativistic composition of velocities is less well-known, but is
quite standard. The SO(3, 1) Lorentz group is locally isomorphic to SL(2, C), while the group of
transfer matrices SU(1, 1) is locally isomorphic to SL(2, R). Ultimately, it is the fact that their Lie
algebras are both isomorphic to Euclidean space that ties the three problems (physical Euclidean
space, relativistic composition of velocities, and composition of scattering processes) together. The
overall result of the current article is to rigorously establish several clearly motivated and robust
mathematical bounds on these three closely inter-related physical problems.
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1 Introduction

The spacetime geometry of a black hole, in the region that interpolates between the horizon
and spatial infinity, (the domain of outer communication), generically acts as a potential
barrier that partially reflects both ingoing and outgoing excitations. (See for instance [1-4].)
In the case of outgoing excitations (Hawking quanta) the resulting transmission probabili-
ties are called “greybody factors”. Calculation of these greybody factors, when practical, is
based on analyzing the excitations in terms of a Regge-Wheeler equation, (or closely related
variant thereof, such as the Zerilli or Teukolsky equations), which in the non-super-radiant
case reduces the problem to a one-dimensional barrier-penetration problem.

Even then, finding exact solutions is mostly impractical, and one typically resorts
either to making semi-analytic or numerical estimates, or to deriving rigorous analytic
bounds. Indeed, rigorous bounds have already been established for the greybody factors
of the Schwarzschild [5] and Riessner-Nordstrom [6, 7] black holes, and more generally for
arbitrary static spherically symmetric asymptotically flat black holes [8]. Some preliminary
work on the Kerr-Newman spacetime is presented in reference [9]. Some of the new issues



raised in dealing with rotating black holes are purely technical — the specific form of the
metric is much more complicated. But there are new conceptual issues to deal with as well
— the presence of super-radiant modes now adding extra conceptual overhead.

The technique we are using to derive rigorous bounds on the greybody factors is a tech-
nique of general applicability to bounding transmission probabilities for one-dimensional
barrier penetration problems. First developed in reference [10], this quite general technique
has subsequently been extended in several different ways [11-14], before then being specifi-
cally applied to the analysis of black-hole greybody factors in references [5-9]. In the current
article we shall analyze bounds on the greybody factors for scalar field excitations on the
Kerr-Newman geometry in some detail, first for the zero-angular-momentum m = 0 mode,
secondly for generic non-super-radiant modes, and finally for the super-radiant modes.

2 Radial Teukolsky equation for scalar fields

The radial Teukolsky equation for scalar field excitations on the Kerr-Newman space-
time is discussed in references [15],' [16],2 and [17]. The radial Teukolsky equation is
considerably more complicated than the Regge-Wheeler equation for scalar field excitations
on non-rotating spacetimes [15].> Particularly useful recent references are [18-20], though
a wealth of other relevant material is also available [21-24]. The scalar field excitations
are described by the curved-spacetime Klein-Gordon equation, which is in this context the
spin-zero case of the Teukolsky master equation; the radial Teukolsky equation for scalar
fields then corresponds to the radial part of this Klein-Gordon equation. (Nomenclature is
not entirely consistent in this field, but this seems to be the consensus.)

Begin by writing the Kerr-Newman geometry in the form [25, 26]

A in? 6 by
ds? = -5 (dt — asin®0 dg)” + = [adt — (r? + a?) d¢]” + X dr? + ¥ d6?,  (2.1)
where
A=r>—2Mr+a*+Q*=(r—ry)(r—r_); Y =72+ a%cos? 6. (2.2)

Here M is the mass of the black hole, J = Ma is its angular momentum, and @ is its
charge. The quantities r+ denote the locations of the inner and outer horizons. Setting
Q — 0 gives the Kerr spacetime [27-29].* Now consider a massless electrically neutral
minimally coupled scalar field. (Adding mass and electric charge to the scalar field is not
intrinsically difficult [18], but is somewhat tedious, so we shall not do so for now.)

'See especially page 128.

2See especially pages 114-115.

3See especially pages 89-90. There they make it clear, just after (4.2.7), that while the phrase “Regge-
Wheeler equation” originally applied only to (axial) gravitational perturbations of the Schwarzschild geom-
etry, it is now customary to apply that phrase also to the perturbations of a scalar field. More generally
this terminology is now commonly applied to all manner of perturbations on generic spherically symmetric
spacetimes where separation of variables leads to similar-looking equations.

“Reference [29] is published as a chapter in reference [28].



2.1 Spheroidal harmonics

It is a standard result, see Carter [30], that one can then use separation of variables to
consider field modes of the form

It is now a standard but quite tedious computation to verify that the “spheroidal har-

monics” Sp,, (0) e™? generalize the usual “spherical harmonics” Yy, (6, ¢), and satisfy the
differential equation:

2
{sii@c?@ [sin Hd] — a%w?sin?60 — .777/2 7 + 2maw + )\gm(aw)} Sem(0) = 0. (2.4)

S11

(See for instance [31] pp 26-27.) Note this differential equation is independent of M and @),
though it does indirectly depend on the angular momentum via the dimensionless combi-
nation aw = (J/M)w. Here the separation constant A, (aw) generalizes the usual quantity
£(£ + 1) occurring for spherical harmonics, and in fact in the slow-rotation limit we have

Aem(aw) = L0+ 1) = 2maw + {Hp11.m — Hum} (aw)? + O[(aw)?], (2.5)
with 262 — m?)
Hep = ﬁ (2.6)

Some useful background references are [32-35]. Note that since the differential operator
is negative definite we automatically have the constraint that A\, (aw) + 2maw > 0. (To
establish this, simply multiply the differential equation by sin?# Sy,,(6), and integrate by
parts.) In fact, re-writing the differential equation as

1 d . d . m \2
{sin@d& [sm 9(1«9] — (aw sin @ — sin9> + )\gm(aw)} Sem(0) =0, (2.7)

we can also see that Ay, (aw) > 0, an observation that will prove to be useful in the calcu-
lation below. Furthermore, the differential equation for the Sy, (0) can be explicitly solved
in terms of the confluent Heun functions. Unfortunately, this observation is less useful than
one might hope, simply because despite valiant efforts not enough is yet known about the
mathematical properties of Heun functions [36-39].

2.2 Effective potential

With these preliminaries out of the way, it is now straightforward to write down the Teukol-
sky equation for the radial modes [18]

{ L Ugm(r)} Rem(r) = 0. (2.8)

dr?
Here we use the “tortoise coordinate” defined by

2, 2 2, 2
dry, = e dr = rta dr. (2.9)
A =) =)




Explicit]
e a? + 1?2 a? + 12
——F In(r—ry) — —— In(r —r_). (2.10)

T —T— T —Tr—

Ty =T+

Thus 7, runs from +oco at spatial infinity to —oo at the outer horizon, located at r = r.
This region, the “domain of outer communication”, is the only part of the spacetime
geometry relevant for current purposes. The “effective potential” Uy, (r) is:

A rA) 3r2A ma \>
Uem(r) = 71 a2 <>\£m(aw) + 1"(2 +)a2 N a2)2> - <w - M) . (2.11)

For calculational purpose it is now useful to define quantities

a a

w = and more specifically, Ay = ——.
1% Y. + a2 + 7"_2’_

—_— m, (2.12)

Here w(r) is (perhaps somewhat vaguely) related to frame dragging, while €2 is the angular
velocity of the event horizon. We can now write

Upn (1) = Vo (r) — (w — mw)? (2.13)

with

(rgfag)g {Aem (aw) + Waqu(r)} - (2.14)

Here we have separated out the quantity

Vim(r) =

(rA) 3r2A
Waqa(r) = r2ta® (124 a2)? (2.15)

which depends only on the spacetime geometry, not on the multipole (¢/m) under con-
sideration. This definition of Vi, (r) is now as close as possible to our earlier usage in
references [5-8], and to the general (non-relativistic quantum mechanical) analyses of ref-
erences [10-14]. If one switches off rotation, a — 0, then this radial Teukolsky equation
reduces to the Regge-Wheeler equation [157 —17].

2.3 Positivity properties

We have already seen that the separation constant Ay, (aw) is positive. More subtly the
quantity Wirqy(r) is also positive. (This result depends implicitly on the Einstein equa-
tions and the resulting special properties of the Kerr-Newman spacetime.)

To check the positivity of Wi (r), we write

A=(r—ry)(r—ro); ry +r_ =2M; ror. =a® + Q% (2.16)
In particular note that
a? Q2

0< <r_<rg, and 0< —<r_<ry. (2.17)

Furthermore
a<M; Q<M. (2.18)



Now consider

(rA) = [r(r—ry)(r—r2)]
=(r—ry)r—r_)+r(r—ry)+r(r—r-)
=3r% —2r(ry +r_) Fryr_. (2.19)

Then

Whrgu(r) o« (rAY (r? 4+ a®) — 3r’A

(3r2 —2r(ry +r_) +ror )t +a®) = 33 (r — ) (r— o)

[0]r* + [=2(r +7-) +3(ry +7)]r® + [3a® + rir_ — 3ryr_|r?
+[=2a2(ry + r)]r + [a®ryr_]r°

= (ry +r_)r? 4+ [3a* = 2ryor_]r? — 2d%(ry + 7 )r +aPror_

=r2(rry +rr_ —2rpr_) +a?r(2r —ry —r_) +ad*A
> 0. (2.20)

Here in the penultimate line all three terms are manifestly positive outside the outer horizon
(for r > ry).

Furthermore lim,_,oo Wasgs = 0 and Wargs(r4) = ro(re —r_)/(r% +a?). Thence we
see that Vp,,, — 0 both at the outer horizon r; and at spatial infinity.

2.4 Super-radiance

It is the trailing term in the effective potential, the (w — mw)2 term, that is responsible
for the qualitatively new phenomenon of super-radiance, which never occurs in ordinary
non-relativistic quantum mechanics. The reason for this is that the Schrodinger equation
is first-order in time derivatives, so the effective potential for Schrodinger-like barrier-
penetration problems is generically of the form

Ulr)=V(r) —w. (2.21)

In contrast, for problems based on the Klein-Gordon equation (second-order in time deriva-
tives) the qualitative structure of the effective potential is

Ur)=V(r) — (w—mw)? (2.22)

We shall soon see that it is when the quantity w — mw changes sign that the possibility
of super-radiance arises. (See for instance the general discussion by Richartz et al [40].)
In the current set-up super-radiance is related to the rotation of the black hole, but if the
scalar field additionally carries electric charge there is another contribution to w coming
from the electrostatic potential, and so a separate route to super-radiance [18, 40].

While the Dirac equation, being first-order in both space and time, might seem to side-
step this phenomenon, it is a standard result that iterating the Dirac differential operator
twice produces a Klein-Gordon-like differential equation. In terms of the Dirac matrices
we have:

lDQ = 2(v - iqA)Q + qFab [’Ya?PYb]' (223)



So, once one factors out the spinorial components, and concentrates attention on the
second-order differential equation for the amplitude of the Dirac field, even the Klein
paradox for charged relativistic fermions can be put into this framework. It is the trailing
(w —mwm)? term, and more specifically the change in sign of w — mw, that is the harbinger
of super-radiance. Indeed, assuming w is monotonic (which it certainly is in the situations
we shall be interested in) let us define the quantity m, = w/Q. Then:

e the modes m < m, are not super-radiant;

e the modes m > m, are super-radiant.

We shall soon see much more detail regarding the super-radiance phenomenon in the sub-
sequent discussion.

3 Non-super-radiant modes (m < m,)

It is convenient to split the discussion of the non-super-radiant modes into three sub-cases:

e m = 0, zero-angular-momentum modes;
e m < 0, negative-angular-momentum modes;
e m € (0,m,), low-lying positive-angular-momentum modes.

3.1 Zero-angular-momentum modes (m = 0)

This sub-case is both particularly simple, and is in many ways a guiding template for all
the other cases. Some preliminary work on these zero-angular-momentum modes in the
Kerr-Newman spacetime is presented in reference [9]. We note that from reference [10] pp.
427-428 we have the very generic bound:

Tym > sech? {/+OO VIR + e (r) + h(r)*]? d’r*} ; Vh(r) > 0. (3.1)

o 2h(r)

Note that we need h(r) > 0 everywhere in order for this bound to hold. Suppose we set
m = 0, then

A
_ 2
Urm=0(r) = —w” + 2+ ) Aem=0 + W (r)] - (3.2)
Now choose h(r) = w > 0, and change the integration variable from dr, to dr, so that
Ty > sech? 1/+°° L Do+ Wigs (]| d (3.3)
e > — [ A= r Ty .
4, 0 2% . (’r‘2 n CL2) 4, 0 MQJ

(This corresponds to the Case I bound of reference [10].) As long as Ay, and Wargs(7)
are always positive (and we have already checked that above) we can dispense with the
absolute value symbols and write

1 [t 1
Ty o > sech? / e [Nesm=0 + W, d}. 3.4
0,m=0 = Sec {2w . (T2+a2)[ t;m=0 + Waiqu(r)] dr (3.4)

This now decouples the problem to considering two integrals, each of which can be explicitly
evaluated in closed form.



First integral: we note that

T Nm=o0 arctan(a/r4)
2 dr = Mo (aw) ——— 2 (3.5)
/T+ (r2 +a?) a

This quantity is independent of M and Q.

Second integral: when it comes to evaluating the integral involving Wysq s it is best to
define the dimensionless quantity

+oo Wrgs +oo 1 (rA) 3r2A
Kugy = 7"+/ ——odr = r+/ < - ) dr.  (3.6)
v (12 +a?) v (P24 a?) \r24+a? (12 +a?)?

To evaluate this the best trick is to integrate by parts:

+o00 72
Kugs = r+/ <—(rA)[(r2 +a?)7Y - (74234_32)3) dr. (3.7)

(Note that the boundary terms vanish.) This then equals:

Koy =14 /+OO (W) dr =1y /joo (ﬁi?)?)) dr. (3.8)

T+

So finally

ry (12 +a?)(3a® + ryr_) arctan(a/ry) + a(a®[ry — 2r_] —rir_)
KMQJ = ? a3(r3_ +a2) .

(3.9)

This dimensionless quantity is independent of the parameters characterizing the scalar
mode (¢, m,w), and depends only on the parameters characterizing the spacetime geometry
(a,r4,r_), which in turn implicitly depend only on (M, @, J).

Consistency check: if you look carefully this quantity Kjrgs does have a finite limit
as a — 0, as it should do to be consistent with the physics of the Reissner-Nordstrém
spacetime. (The limit is a little tricky.) We can recast Kq. as

3arctan(a/r4) N r2r_ ([r% + a* arctan(a/r}) — ary) 1ry(Ba+ry —2r.)

K ==
MQT =8 ar, 8 a?(r? + a?) 8 r2 + a? '
(3.10)
with limit
. 3 n 1re . lry —2ro _ 1 9ry +2r_ 43y —6r_ _ 3ry - (3.11)
8 12 T4+ 8 T4+ 24 T4+ 6T+

Final result: collecting terms, we can write the bound on the transmission probability
as

I
Ty m—o > sech? H’”O] : (3.12)

T+Ww

with
arctan(a/ry)

Ko, 3.13
alrs + Knqu (3.13)

IZ,m:O - )\E,mzﬂ (aw)



This cleanly separates out the mode dependence (¢m) from the purely geometrical piece
Kyrgy. Note Iy ;,—¢ is now a dimensionless number that depends only dimensionless ratios
such as a/r; and r_/r4, and implicitly (via A\gmym—o) on £ and aw. In view of the known
slow rotation expansion for Ay ,,—o(aw) we know that

arctan(a/ry)

Ig7m:0(w — O) = E(E + 1) G/T+

+KMQJ. (3.14)

So at low frequencies the transmission bound is dominated by the 1/w pole in the argument
of the hyperbolic secant function. If we wish to be very explicit we can write

3\ arctan(a/r
IE,m:O = <)\47m:0(aw) + 8) CL/E’/—F) (315)
+
ror_ ro([r? + a®larctan(a/ry) —ary)  1ry(3a+7ry —2r_)
+ 3 (2 2 ] 2 2 :
8 a3(ry + a?) 8 ¥ +a

There are certainly other ways of re-writing this quantity, but this version is sufficient for
exhibiting key aspects of the physics.

3.2 Non-zero-angular-momentum modes (m # 0)

What if anything can we do once m # 07 Recall the basic result

Ty > sech? {/+OO \/[h’(r)]2 + Wen(r) + h(r)" dr*} : Vh(r) > 0. (3.16)

2h(r)

—0o0

Now by the triangle inequality we certainly have

1 +o0 h/ 1 +o00 ’UZ (T‘) 4 h(?”)2|
> 2= — - m : . :
Ty > sech {2 /_Oo - dr, + 5 /_oo Sh(r) dr*} : Vh(r) > 0. (3.17)

We are now free to pick h(r) so that it is monotone, h'(r) > 0 or h'(r) < 0. Then subject
to this condition

Tym > sech? {; ’m [h’z(_ozz)] ‘ + % /:O |U€m(;i(t)h(r)2| dr*}; Yh(r) > 0. (3.18)

Apply this general result to our specific situation
Uen(r) = Vi (0 =m0, (3.19)

by choosing
h(r) = w — mw. (3.20)

(This construction is now as close as one can get to the Case I bound of reference [10].)
Note this choice for h(r) is, since @ = a/(a* +r?), always monotonic as a function of . In
contrast, (remember that w > 0 and a > 0), we see that this h(r) is positive throughout the
domain of outer communication if and only if w > mf);, which is completely equivalent
tom < w/Qy, or m < m,. This is easily recognized as the quite standard condition that
the mode does not suffer from super-radiant instability. Let us now see where we can go
with this.



3.2.1 Negative-angular-momentum modes (m < 0)

First note that in this situation, for the specific function h(r) chosen above, we have

h(o0) w 1
= = 1. 3.21
h(—o0) w—my 1-—mQy/w < (3:21)
Then h(oo)
1 00 1
— 1 = —In(1 —mQ . .22
5 1 k]| = et = mo (322)
Also in this case we have w — mQy > h(r) > w, so
0 Upm (r) + h(r)?| T Ve T Vem
dr, = dr, — dr,. 3.23
B e e X B (3.23)
Then N
1 Vem
To.m<o > sech? {2 In(1 — mQy/w) —I—/ % d’r*} . (3.24)

But that last integral is almost identical to that we performed for m = 0, the only change
being the replacement Ay ,,—o — Az m<o. Therefore

1 Iy
To.m<o > sech? {2 In(1 —mQy /w) + 27::1(’)} ; (3.25)

where in comparison we previously had

Ly =
Ty o > sech? {“”—“} . (3.26)
2ryw
Explicitly
arctan(a/ry)
Iy = Ao (aw) ———= + Kyqy, (3.27)
a/ry
and
1 Atm (aw) ar0t2?£a/r+) + Knqr
Tymeo > sech? { ~1In(1 —mQ, /w) + + (3.28)
k 2 2ry w

Note that for m < 0 we have —m < ¢, so we could also write the weaker (but perhaps
slightly simpler) bound

1 Iy <o
T, > sech?{ = In(1 + ¢Q —m=2t. 2
1m<0 > Sec {2 n(l 4404 /w) + e w } (3.29)

3.2.2 Low-lying positive-angular-momentum modes (m € (0,m.))
For this situation we first note that

h(co) w 1

= = 1. .
h(—o0)  w—my 1-—mQy/w ~ (3:30)




Then we see
1

2

In { h(o) } ‘ = —%111(1 — MmO Jw). (3.31)

Also, in this case w — m$y < h(r) < w, so

/ Ut (r) + 0] / Vemsol o / _Vem>0 g (339

oo 2h(r) oo 2h(r) oo 2(w—mOy)
Then oy |
1 1 o l,m
Tym>0 > sech’ {—2 In(1 —mQy /w) + 5 /_OO ﬁ dT*} . (3.33)

But that remaining integral is qualitatively the same as that which we performed for the
m = 0 and m < 0 cases, therefore

1 I >0
T, > sech? ¢ —=In(1 — mQ — 3.34
£,m>0 = SeC { 5 n(l —mQy/w) + 2 (w—mQy) [ (3.34)
where in comparison
Iy
Ty o > sech? {“”—“} . (3.35)
2ry w
Explicitly
arctan(a/r
Iy, = Ao (aw) arctan(a/r) + Knmo, (3.36)
a/ry
and
arctan(a/ry)
Afm(aw) (L/’I”+ — + KMQJ

1
To.m>0 > sech? 5 In(1 —mQy /w) + (3.37)

214 (w — mfdy)

Note that for m > 0 we have m < ¢, so we could also write the weaker (but perhaps slightly
simpler) bound

1 Iom
Ty mso > sech? { —=In(1 — (9 — 5. .
Lm>0 = sec { 2 n( +/w) + 27,_+ ((JJ _ €Q+) } (3 38)

3.3 Summary (non-super-radiant modes)

Define (@)r)
arctan(a/r
I = Apm(aw) ————— + Ky, (3.39)
a/ry
where
® ot (r2 +a®)(3a® + ryr_)arctan(a/ry) + a(a®[ry — 2r_] —rir_) (3.40)
MQJ =g a3(rl + a?) ’ ’
Then for the non-super-radiant modes
Ty m<o > sech? 1ln(l —mSQy Jw) + Lomso (3.41)
=T 2 2ry w )’

,10,



and

1 I,
2 ,m>0
Tg,mE(O,m*) Z sech {—2 111(1 - mQ+/w) + 27“+((4}-7’)’LQ+)} . (342)
These bounds can also be written as
1 I
Tym<o > sech? {2 In(1 —m/my) + m} , (3.43)
and ) /
T, > sech?{ — = In(1 — 4m>0 . 3.44
o) 2 seck {3 In(1 = mjm) + 50 (3.44)

These are the best general bounds we have been able to establish for the non-super-radiant
modes.

4 Super-radiant modes (m > m,)

For the super-radiant modes we must be more careful. Inspection of the original derivation
in reference [10] shows that fundamentally the analysis works by placing bounds on the
Bogoliubov coefficients:

la] < coshjl{ﬁ dr; 18] < sinh%z? dr, (4.1)

where

+oo / r 212
- fﬁdr—/ G 2%”)( NERE G vy 0. (42)

In the non-super-radiant case these constraints on the Bogoliubov coefficients quickly and
directly lead to a bound on the transmission coefficient 7' = |a|~2. In counterpoint, in the
super-radiant case the Bogoliubov coefficients also have an additional physical interpreta-
tion: the near-horizon quantum vacuum state now contains a nontrivial density of quanta
when viewed from the region near spatial infinity [40]. The number of quanta per unit
length in each mode is n = k |3|?, corresponding to an emission rate

I=w|B (4.3)

Explicitly, the emission rate in each specific mode is bounded by

Ly (w) < wsinh? O, (4.4)
where
©= /+OO G ZZim)( r) & h(r)’] dry; Vh(r) > 0. (4.5)

The net result is that one is still interested in the same integral, but now under different
conditions, and with an additional physical interpretation. To be more explicit about this,
note that

400 IO + Vemr) — (@ — mw(r))? + h(r)7P
9= / 2h(r)

dry;  Yh(r) > 0. (4.6)

— 11 —



The art comes now in choosing a specific h(r) to in some sense optimize the bound, (either
by making it a particularly tight bound, or by making it a particularly simple bound), sub-
ject now to the condition that w—mwo(r) is assumed to change sign at some finite value of r,
and subject to the condition that one wants the integral to be finite, (implying in particular
that the integrand should vanish both on the outer horizon and at spatial infinity).

Now the triangle inequality implies (Vh(r) > 0) that

L [0 |0 (r)] T Vi (r) — (w — mwo(r))* + h(r)?|

< = dr, dr,.
o<y e vt (1) '

Additionally we know that Vp,, — 0 at both the outer horizon and spatial infinity, so to

keep the integral finite we need both h(cc)? = w? and h(r;)? = (w — mQ. )% Based on
this observation, it is now a good strategy to again use the triangle inequality to split the

(4.7)

integral as follows

1 [T |0 (r)] T Vi (1) T |h(r)? = (w — mw(r))?|
0 < 2/_00 h(r) dT*+/_OO ;h(r) dT‘*+/_oo 2h(r) dre. (4.8)

Now split the super-radiant modes into two sub-cases depending on the relative sizes of w?
and (w — m$,)?. But note that in the super-radiant regime w? = (w — m,)? when m =
2w/ = 2m,. This suggests splitting the super-radiant regime into two distinct sub-cases:

o m € [my,2m,).

e m € [2my,00).
4.1 Low-lying super-radiant modes (m € [m., 2m.))
In this region we have w? > (w —m)? and so we could take:

ma

h(r) = max {w e

,mQ+ — (.U} . (49)
This quantity is positive and monotone decreasing as we move from spatial infinity to the
horizon, and becomes a flat horizontal line near the horizon. Note that by construction
h(r) > mQy — w everywhere. First, from the definition of h(r), in this situation we have

+00|h’(7')‘ — M A(M® = In W (/. —
/Oo h(T) dry, = “ h( )’m_ =1 <mQ+ _w> =—1 ( / « 1)‘ (4‘10)
Second
9 Vi (r) S 77 (% R A
/_oo 2h(r) dr, < /_OO 2(my —w)  2(mQy —w)  2w(m/m, — 1) (4.11)

where the I, integral is the same quantity we have considered several times before. Finally,
the remaining integral to be performed is

ow _ [T h(r)? — (w—mw(r))?
Jow — /_ N o) dr,, (4.12)

— 12 —



with the integrand being both independent of ¢, and carefully chosen to be zero over much
of the relevant range. Indeed, unwrapping all of the definitions, we are interested in

o 2 2 .2 2
low _ (w—=m4)* — (w—mw(r))® r*+a
Jlow — /T+ e o) - dr, (4.13)

The upper limit of integration rq is defined by

m[Qy +a/(a® +rd)] = 2w, (4.14)
that is, by
2(m — my)
e = (r3 +a?). (4.15)
Explicitly
2(m — my
rg = \/T‘Qi’ —+ 2<7’n*—7’n/) (T‘Qi’ —+ a2). (416)

Note 79 > r4 for m € [my,2m,). Then

ow _ om0 _ _ r’+a?
I = 2w =) /’r+ (Qy — @) (2w — mw(r) — mQy) A dr. (4.17)

But over the relevant domain 0 < (2w — mw(r) — mQy < 2(w — mf,), therefore

70 2 2
Jlow §m/ Q) —w) © Za dr. (4.18)
T4

The remaining integral is now simple and manifestly finite.

o r2 4+ a2 ma Top— 1y
Jhow < Q. — dr = dr. 4.19
m_m/”(+ w) A r T-2|—+a2/r r ( )

(In fact we could have evaluated J% exactly, but given the other approximations being
made in deriving the bounds, there is no real point in doing so.) Assembling the pieces we

have:
T, > sech? 1 In(m/ms — 1) + Temefm. 2m.) + Jlow (4.20)
tmelmy,2my) = 2 ¥ 2r w (m/my — 1) moy '
Furthermore:
r < w sinh? ! In(m/m, —1) + Lemefms 2ms) + Jlow (4.21)
£me[my,2my) = 2 * 2r w (m/my — 1) oy )

4.2 Highly super-radiant modes (m > 2m.,)

In this region we have (w — m$;)? > w? and so we could take:

h(r) = max{(a;j% —w,w}. (4.22)

,13,



This is now both positive and monotone decreasing as we move from the horizon to spatial
infinity, and becomes a flat horizontal line near spatial infinity. Note h(r) > w everywhere.
First, from the definition of A(r), in this situation we have

OO (1) - my —w
/_Oo hr) dre = [Inh(r)[;? =In (w> = In(m/m, — 1). (4.23)
Second
oo Wm(r) Foo Wm(T) IZm
< _ ‘
/OO 2h(r) drv < /OO 2w 2w (4.24)

where the I, integral is the same quantity we have considered before. Finally, the remain-
ing integral is

+ 2 2
Jhigh _ / F ()"~ (w = mw(r)) dr., (4.25)
oo 2h(r)
with the integrand being zero over much of the relevant range. Indeed we are now interested
in
0o 2 2 .2, 2
- —(w— +a
Thish _ / w o lwomon) Ty, 4.26
m ro 2w A r ( )

The lower limit of integration rq is now defined by ma/(a? + r¢) = 2w, that is, by

m
= — —1. 4.27
ro=a 2wa ( )
Note that since m > 2m, we have
. a2 + 12
ro > a LI R 2+—1:r+, (4.28)
wa a

so we are safely outside (or possibly just on) the outer horizon. If m > 2m, then rg > 7
and the integrand is manifestly finite over the entire range of interest, while falling of
asymptotically as 1/72, so the integral J;lnigh is finite. If m = 2m, so rg = r4, then both the
numerator and denominator of the integrand to zero at the outer horizon, though the ratio is
finite. So the integrand again remains finite over the entire range of interest, while falling of
asymptotically as 1/r2, so the integral Jigh i again finite. (In fact we can evaluate JI°% ex-
actly, but the result is algebraically messy, and given the other approximations being made

in deriving the bounds, there is no real point in doing so.) Assembling the pieces we have:

1 1 .
Ty m>2m, > sech? {2 In(m/m, — 1) + % + Jf};gh} . (4.29)
Furthermore:
. Lom>2m, high
It m>2m, < w sinh 5 In(m/m, — 1) + rw + J8 0 (4.30)

— 14 —



4.3 Summary (super-radiant modes)

Pulling the results for the low-lying and highly super-radiant modes together we see that
for the transmission probabilities we have:

1 Iy
2 7me[m*72m*) 1
Ty mem, 2m.) = sech {—2 In(m/m, — 1) + 3w (m s — 1) + Jngw} ) (4.31)
1 I .
Ty msom, > sech?{ = In(m/my — 1) 4 —2022me | phigh { (4.32)
e 2 2riw
Furthermore for the super-radiant emission rates we have:
1—\ < w Sinh2 _1 ln(m/m _ 1) + IZ,mE[m*Qm*) + JlOW (4 33)
tmefme.,2m.) = 2 * 2r w (m/m, — 1) mof '
1 I .
Tymsom, <w sinh?{ ~In(m/m, — 1) + Shmz2me | Jhigh 4 (4.34)
e 2 2rqiw

5 Discussion

The net result of this article is to establish certain rigorous bounds on the greybody factors
(mode dependent transmission probabilities) for scalar fields on Kerr-Newman black holes.
As a side effect, we have also obtained certain rigorous bounds on the emission rates for the
super-radiant modes. An interesting feature of these bounds is the ubiquity of the basic
quantity Iy ,, which itself is simply linear in the spheroidal harmonic eigenvalue A, (aw).
(Recall that Agy,(aw) — €(€+ 1) as rotation is switched off, @ — 0.) This seems to indicate
that it is the use of separable spheroidal coordinates that is in many ways more crucial
than the specific form of the metric components.

We do not claim that these bounds are in any sense optimal. (Except, perhaps, in the
restricted sense that these seem to be the easiest bounds to establish.) It is quite possible
that making different choices at various stages of the analysis could lead to tighter bounds,
but there are no really obvious routes to guaranteeing tighter bounds. Possible routes to
explore might include the “Case II” bounds of reference [10], the Miller-Good version of
the bounds presented in reference [11], or the general considerations of [12-14]. In a rather
different direction, since transmission probabilities are intimately related to quasi-normal
modes, it may prove useful to adapt the formalism and techniques of [41-44].

More prosaically, there would be in principle no obstruction to adding mass and charge
to the scalar field, (see for instance the Teukolsky /Regge-Wheeler analysis in reference [18]),
but the results are likely to be algebraically messy. Other possibilities to explore might
include the behaviour of spin-1/2, spin-1, and spin-2 fields, or the consideration of other
interesting spacetime geometries.
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Semiclassical black holes emit radiation called Hawking radiation. Such radiation, as seen
by an asymptotic observer far outside the black hole, differs from the original radiation
near the horizon of the black hole by a redshift factor and the so-called “greybody
factor.” In this paper, we concentrate on the greybody factor; various bounds for the
greybody factors of non-rotaging black holes are obtained, concentrating primarily on
charged Reissner—Nordstrom (RN) and RN—de Sitter black holes. These bounds can be
derived using a 2 X 2 transfer matrix formalism. It is found that the charges of black
holes act as efficient barriers. Furthermore, adding extra dimensions to spacetime can
shield Hawking radiation. Finally, it is also found that the cosmological constant can
increase the emission rate of Hawking radiation.

Keywords: Hawking radiation; greybody factor; bounding; Reissner-Nordstrom black
holes; charged dilatonic black holes.

PACS Number(s): 04.50.Gh, 04.60.—m, 04.70.Dy, 04.20—q, 02.40.—k

1. Introduction

Classically, a black hole is associated with the concept that anything which enters
the gravitational field of a black hole cannot escape. In 1974, Stephen Hawking,

*Corresponding author.
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however, showed that semi-classically a black hole could indeed emit quantum radi-
ation, an effect which became known as Hawking radiation.! This effect was derived
by studying quantum field theory in a black hole background. In the context of
quantum field theory, creation and annihilation of particles are possible. If pair
production occurs near a black hole horizon, one can picture Hawking radiation as
one of the particles from pair production falling in, with the other moving away
from the black hole. An observer outside the black hole would see this particle as
Hawking radiation. But according to general relativity, a black hole curves space-
time around it. This nontrivial spacetime behaves as gravitational potential under
which particles move. Some of them are reflected back into the black hole and oth-
ers are transmitted out of the black hole. Therefore, Hawking radiation seen by an
observer far outside the black hole differs from radiation which has not yet been
scattered by the gravitational potential. This difference can be measured by the
so-called “greybody factor.”

There has been a number of studies devoted to calculating these greybody fac-
tors. Some used the WKB approximation to calculate the greybody factors of the
four-dimensional Schwarzschild and Reissner—Nordstrom (RN) black holes.? * Some
solved the wave equation in a black hole background by various approximations.®~”
However, there is a rather different analytic technique to derive rigorous bounds on
the greybody factors.2 19 By using this method, bounds on the greybody factors
of the four-dimensional Schwarzschild black holes was obtained in Ref. 11. In this
paper, we extend the analysis and derive rigorous bounds for the greybody fac-
tors of the four-dimensional RN black holes, the higher-dimensional Schwarzschild—-
Tangherlini black holes, the charged dilatonic black holes in (2+ 1) dimensions, and
the charged dilatonic black holes in (3 + 1) dimensions.

2. The RN Black Holes

The RN metric is given by
ds? = —Adt* + A~ dr? 4+ r2dQ?, (1)

where dQ? = d6? + sin? §d¢? and

2GM N G(Q* + P2)'

A=1- 2
T r2 2)
The Schrodinger-like equation governing the modes is given by
d*y 2
P -V =0, (3)

where r, is the standard “tortoise coordinate”
1
dr, = Zdr (4)
and
I+ 1)A . A0, A

r2 r

Vi(r)
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Fig. 1. The RN potential with @ =1 and M = 2 in different angular momenta.

We can see the structure of the RN potential with Q = 1 and M = 2 from
Fig. 1.
Using the analysis of Refs. 8-10, lower bounds on the transmission probabilities

T > sech? (/ ﬁdr*), (6)

N e
2h ’
for some positive function h. We set h = w, then

1 o0
T > sech? <%/ Vdm)

el [L{ (l+1) , GMt24 H )

are given by

where

19:

2w |GM + A ' 3(GM + A)2

where
A? = G*M? - G(Q* + P?). (9)

If the black holes have no electric charges or magnetic charges, it is found that

A = GM and the above bound is reduced to
200+ 1)+ 1

8GMw } ’
which is exactly the bound for the Schwarzschild black holes emitting spinless par-
ticles.'! From Fig. 2, the graph is plotted by setting GM = 2 and w = 2. The point
A = 2 corresponds to the uncharged RN black hole (which is the Schwarzschild
black hole). The point A < 2 describes the effects of charges on the bound of the
greybody factor. Based on the value of A, the decrease in A corresponds to the

T > sech® [ (10)

1350058-3
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Fig. 2. Dependence of the bound of the greybody factor on the RN black hole charges in different
angular momenta.

increase in the magnitude of the charges. The graph shows that when the magni-
tude of the charges increase, the bound of the greybody factor decreases. That is,
the charges are good barriers to resist tunneling of uncharged scalar particles.'?-17
Moreover, the transmission coefficients is smaller in higher angular momenta.

By using the WKB approximation, the approximate transmission coefficient is

given by*
9 b
T ~ T\WwkB = €xp —ﬁlm/ p(z)dz |, (11)
where
p(&) = \/Zm[E — V(@)]. (12)
We find that

2

TwkB = exp [—? {2Gw (M - g) — (M — w)/G2(M — w)? — G(Q2 + P?)

+MA/GEME — G(Q? + P2)} } . (13)

Derivation of this equation is given in Appendix A. Another WKB formula devel-
oped by Konoplya and Zhidenko can be found in Ref. 18. The bound of the grey-
body factor of the RN black hole from the 2 x 2 transfer matrix compared with
one obtained from the WKB approximation is shown in Fig. 3. Now turning to an
asymptotic analysis inspired by studies of quasi-normal modes, the approximate
transmission coefficient for large w is given by!? 2!

ePv — 1

efw + 2 4 3e= 1w’

(14)

T~ Tasymptotic -
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Fig. 3. Comparison of the greybody factor bound of the RN black hole from the 2 x 2 transfer
matrix and the WKB approximation.

where
8t M
B = 5 R
1+ @ + 50
2GM?  16G2M*4 (15)
P, 27r [GM — \/G2M? — GQ2
I p—

N(earereon

The greybody factors obtained from the 2 x 2 transfer matrix formalism (Eq. (8))
are compared with the asymptotic result (Eq. (14)) on the graph shown in Fig. 4.

T T T T T T T T O T TR T T T S S S S S S S SO S S S SO Sy
0.98 1
0.96
T
0.94
0.924
0.9
2 4 6 8 10
omega
_— T 2x2
L T asymptotic

Fig. 4. Comparison of the greybody factor bound of the RN black hole from the 2 x 2 transfer
matrix and the asymptotic result.
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The graph shows that the result from the 2 x 2 transfer matrix is close to the
asymptotic result at large w. Moreover, the 2 x 2 transfer matrix gives a true lower
bound.

3. The Schwarzschild—-Tangherlini Black Holes

The Schwarzschild-Tangherlini metric in d dimensions is given by’

, d—3 r a-37~1
oo (3) oo [ (3) oo

T
where the Schwarzschild radius 7y in d dimensions is given by
16mGM
(d—2)Q-2"

dt® +

(17)

o =

with
27r(d_1)/2

d—1Y\"
r(2—-
(%)
The black holes in d > 4 dimensions with Gauss-Bonnet (GB) correction term can
be found in Ref. 22. The Schrodinger-like equation is given by

Qs = (18)

[jjg +w? - V(r)] =220 = 0, (19)
where
o (20)
and
vy = E=D=D 20 @D 000 gy IO
with
fr)y=1- (%)di?’. (22)

From Fig. 5, the Schwarzschild-Tangherlini potential is plotted with [ = 1 and
GM =1 in various dimensions.
The lower bound on the transmission probability for h = w is

1 oo
T > sech? <%/ Vdr*)

— sech? {i[“{u—%d—@ f)  ([@d=2)8:f() l<‘+d—3>}dr}

72 2 r 72

el [(d—?)(d—3)+4l(l+d—3)}

8&)’[‘0
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Fig. 5. The higher-dimensional potential with { =1 and GM =1 in various dimensions.

If d = 4, this bound is reduced to

(24)

8GMw

which is, again, exactly the bound for the four-dimensional Schwarzschild black
holes emitting spinless particles. Figure 6 shows the plot between the transmission
coefficients and the black hole mass in various dimensions. The graph is plotted
by setting [ = 1 and w = 2. The line d = 4 corresponds to the four-dimensional
Schwarzschild black hole. The graph shows that when the black hole mass increases,
the bound of the greybody factor also increases. However, for the same mass, the
bound of the greybody factor is less in higher dimensions.??

joNoNoNoX
mwiunn
ro~NO

Fig. 6. Dependence of the greybody factor bound on the black hole mass in various dimensions.
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4. The Charged Dilatonic Black Holes in (2 4+ 1) Dimensions

The charged dilatonic metric in (2 4+ 1) dimensions is given by®

4r?
ds? = —f(r)dt* + ——dr? + r2db?, 25
£ + s (25)
where
f(r) = —2Mr + 8Ar? +8Q*. (26)

For M > 8Q+/A, this spacetime describes a black hole with two event horizons

M+ /M? —64Q2A

N 2
= gA (27)
The Schrodinger-like equation is given by
=) ut) =0 (25)
dr? =Y
where
d’l" = —27" d’l" (29)
t ()
and
2
V(r) = —(8m2A + 6mA) + 14A%r + (% n 2sz> 1
r
1 6Q4
—(AMQ* +8m*Q%) 5 + 5. (30)

We are only interested in r between r_ and ry. The (2 + 1) charged dilatonic
potential is plotted with m =1, A = 0.1, @ = 1 and M = 10 as shown in Fig. 7.
The coordinate 7, can explicitly be written as

1

:m[m_lnh—m_\—r_ln|r—7‘_|}, (31)

T

when r — r4, r, — —oo and when r — r_, r, — oo0. The lower bound on the
transmission probability for h = w is

T > sech? [%/ Vdr*}
w — 00

1 [ 5M?
= sech? [2— / {—(8m2A + 6mA) + 14A%r + (
T+

S

+ 2m2M)
w

9 oo 1 6Q%) 2r
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Fig. 7. The (2 + 1) charged dilatonic potential with m =1, A=0.1, @ =1 and M = 10.

2 [—368Am(4m +3) + 644MA — 2576Q2A + 115M2 + 368m2 M

60wy/M?2 — 64Q2A

5y/M? —64Q°A  5M + 16m?, (M +/M? — 64Q°A
— n
8w 16w M — \/M? — 64Q2A

23Q%(3Q? — 2M — 4m?
15wA
The approximate transmission coefficient is given by®
2 2 2 2
Tw o [w®—8m A mw(ry +r—) 7w [w®—8m A
cosh 1 38 = 3 172 1] cosh | N =) 2 172 !
T~1-—
2 2 2 2
Tw | w [w®—8m A mw(re +r—) 7w Jw®—8m A
cosh | 78 T3 172 1] cosh | e =) T2 172 !

Figure 8 shows the greybody factors of the charged dilatonic black holes in (2 4 1)
dimensions obtained from the 2x2 transfer matrices (Eq. (32)) and from® (Eq. (33)).
The graph is plotted by setting m = 1, M = 10, @ = 1 and A = 0.1. The graph
shows that when the energies of the emitted particles increase, the greybody factors
also increase. It can be seen that the result derived from the 2 x 2 transfer matrices
is quite accurate when compared with the approximate result. Note that the 2 x 2
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Fig. 8. Dependence of the greybody factor bound on the energies of the particles emitted from
the uncharged dilatonic black holes in (2 4+ 1) dimensions.

transfer matrices used to obtain the lower bound (32) are relatively less complex
than the methods used to obtain the approximate result in Eq. (33).

Figure 9 shows the effect of the charges on the bound of the greybody factor.
The graph is plotted by setting m = 1, M = 10, w = 1000 and A = 0.1. The graph
shows that when the charges increase, the bound of the greybody factor decreases.

14

0.9

0.8+

0.7+

0.6

02 0.4 06 08 1 12 14 16 18 2
Q

Fig. 9. Dependence of the greybody factor bound on the charges for the charged dilatonic black
holes in (2 + 1) dimensions.
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Fig. 10. Dependence of the greybody factor bound on the cosmological constant for the charged
dilatonic black holes in (2 + 1) dimensions.

This result is similar to the RN black hole’s result; that is, the charges behave as
good barriers to resist tunneling of uncharged scalar particles.

Figure 10 shows the effect of the cosmological constant on the bound of the
greybody factor. The graph is plotted by setting m =1, M = 10, w = 1000 and
Q@ = 1. The graph shows that when the value of the cosmological constant increases,
the transmission coefficient also increases. That is, the cosmological constant makes
the gravitational potential produced by the black hole transparent.

5. The Charged Dilatonic Black Holes in (3 4+ 1) Dimensions

The charged dilatonic metric in (3 + 1) dimensions is given by®

ds* = —f(r)dt* + %dﬁ + R?(r)dQ?, (34)
where
f)=1-2 and R2(r) =% (1- =), (35)
with
ri=2M and r_ = QMQ (36)

The equation of motion for the radial part is given by

s oS24

R2(r) dr
1350058-11
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Fig. 11. The (3 + 1) charged dilatonic potential with { =1, @ =1 and M = 10.

Let

1
dr, = mdr, (38)

then

d?u(r) n (r—ry)2r —r_) du(r) w2 W+ 1)f(r)

dr? r2(r—r_) dry YT TR (r) (r)=0 (39)
The potential is given by
vin = it (10)

The (3 + 1) charged dilatonic potential is plotted with I =1, @ =1 and M = 10
as shown in Fig. 11. The lower bound on the transmission probability for h = w is

T > sech? {% /oo Mdr*] = eel? [L /j‘) -+

oo R2(r) 2w R2(r)

4(2M2)l(l+1)M/uQ2 (2M2 _ Q2)l(l+l)M/uQ2
[(2M2)WUHDM/wQ? 4 (202 — Q2)WI+1)M/wQ?)2"

Figure 12 shows the effect of the charges on the bound of the greybody factor. The
graph is plotted by setting M = 10, w = 2 and [ = 1. The graph shows that when
the charges increase, the bound of the greybody factor decreases. This result is also
similar to the RN black hole’s and the (2 + 1) dimensional charged dilatonic black
hole’s result. That is, the charges behave as good barriers to resist the tunneling of
the uncharged scalar particles.
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Fig. 12. Dependence of the greybody factor bound on the charges for the charged dilatonic black
holes in (3 + 1) dimensions.

6. Conclusion

The rigorous bounds presented in this paper only work for some potentials. Such
potentials have to satisfy V(£00) — Vi. In this paper, the bounds have been
applied to various types of black holes.

For the four-dimensional RN black holes, the charges act as a good barrier. This
can also occur for the charged dilatonic black holes, both in (2 + 1) and (3 + 1)
dimensions. For the Schwarzschild-Tangherlini black holes, a number of dimensions
can shield Hawking radiation.
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Appendix A. Greybody Factor from the WKB Approximation;

Derivation of Eq. (13)

By using the WKB method, the approximate transmission coefficient is given by*

2 b
T ~ Twkp = exp [—ﬁlm/ p(x)dx] ,

p(z) = /2m[E — V(z)].

In particular, we want to compute
Tout
/ prdr.
T.

in

where

The radial momentum can be written as an integral

/ prdr—/ / dp!.dr.

From the Hamilton equation
dH
dp,

:’];"

the above integral becomes

Tout Tout M—-w dH
/ prdr = / / —dr
Tin Tin M

We change the variable H to w’

Tout Tout
/ prdr = / / —dr
Ti Ti

in in

We have to know 7. Starting from the RN metric in Eq. (1)
ds® = —Adtfy + A7 Hdr? +r2dQ?,
we shift the RN time tgx by a function of r to avoid the singularities
trny =t + f(r),
dtgn = dt + f'(r)dr
dtky = dt* +2f'(r)dtdr + [f'(r)]?dr?.

Therefore,

s2 = —Adt? — 2Af'(r)dtdr — A[f'(r)])?dr® + A Ydr? + r2d02.

We choose f(r) such that the coefficient of dr? is equal to one
2 2
Af(r) = jE\/zc:M _G(Q ;LP )
T r
=+v1-A.
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Putting it in Eq. (A.8), the new metric can be written as
ds® = —Adt? + 2v/1 — Adtdr + dr® + r2dQ>. (A.10)
The radial null geodesics can be found by
0=ds* = —Adt® + 2v/1 — Adtdr + dr?, (A.11)

leading to

(A.12)

. [1-VITE,
r_{—l—m—A.

Therefore, integral (A.6) becomes

Tout Tout w
r
i Tin o "=

in

dw'dr, (A.13)

where

r=/2G(M — ' )r — G(Q2 + P2). (A.14)
Thus, de = —(Gr/x)dw’ and we obtain

Tout Tout  py/2G(M—w)r—G(Q2+P2) .
/ prdr —/ / —dxdr

in in 2GMr— G(Q2+P2) r—T GT

= mi [2Gw (M - g) (M — ) JGE(M —w)? —G(Q? 1 P?)

L MGME - G(Q? + P2)] . (A.15)
Therefore, from Eq. (A.1)
T ~ Twks

= exp[—% {2Gw (M - g) — (M —w)\/G2(M — w)?2 — G(Q? + P?)

+ M\/G2M?2 — G(Q? + P?)H : (A.16)
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The theoretical foundations of the phenomenon known as superradiance still continue to attract
considerable attention. Despite many valiant attempts at pedagogically clear presentations, the effect
nevertheless still continues to generate some significant confusion. Part of the confusion arises from the fact
that superradiance in a quantum field theory context is not the same as superradiance (superfluorescence) in
some condensed matter contexts; part of the confusion arises from traditional but sometimes awkward
normalization conventions, and part is due to sometimes unnecessary confusion between fluxes and
probabilities. We shall argue that the key point underlying the effect is flux conservation (and, in the
presence of dissipation, a controlled amount of flux nonconservation), and that attempting to phrase things
in terms of reflection and transmission probabilities only works in the absence of superradiance. To help
clarify the situation we present a simple exactly solvable toy model exhibiting both superradiance and

damping.

DOI: 10.1103/PhysRevD.90.064013

I. INTRODUCTION

The phenomenon of quantum field theory (QFT)-
induced superradiance has a long and quite tortuous history.
Key high points are the articles by Zeldovich [1] and
Manogue [2], and the more recent work by Richartz et al.
[3,4]. There are close connections with the so-called “Klein
paradox” for relativistic fermions [2,5-7], and also some
significant differences. Specific applications to black hole
physics include the issues explored in Refs. [3,4,8—17]. In
our own research, when dealing with black hole greybody
factors, we have had to deal with superradiance for Kerr,
Kerr-Newman, and Myers-Perry black holes, see [18,19]
and a related conference article [20].

Despite all efforts, the superradiance effect nevertheless
still continues to generate significant confusion. Part of the
confusion is purely linguistic—arising from the fact that
superradiance in a traditional QFT context is not the same
as superradiance (superfluorescence; Dicke superradiance)
in traditional condensed matter contexts [21]. Part of the
confusion arises from the use of utterly traditional and
standard but sometimes awkward normalization conven-
tions [2,22]. Part of the confusion is due to sometimes

fpetarpa.boonserm @gmail.com
' tritos.ngampitipan @ gmail.com
matt.visser @msor.vuw.ac.nz

1550-7998,/2014/90(6)/064013(9)
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PACS numbers: 04.70.Dy, 04.40.-b, 47.35.Rs, 98.80.Qc

neglecting the necessary distinction between fluxes and
probabilities.

Extending and modifying the analysis of Richartz et al.
[3], we shall argue that the key point underlying the effect is
flux conservation (and, in the presence of dissipation, a
controlled amount of flux nonconservation). We shall see
that attempting to phrase things in terms of reflection and
transmission probabilities only works in the absence of
superradiance.

To illustrate and clarify the situation we shall present a
particularly simple and exactly solvable toy model, one
which explicitly exhibits both superradiance and damping.
While our own interest in these issues was strongly
influenced by research into black hole physics, it should
be emphasized that the underlying issues and related
phenomena are much more general.

II. SUPERRADIANCE: BACKGROUND

One key observation is to note that superradiance
never occurs when one is dealing with the Schrédinger
equation, and at a minimum requires something like the
Klein-Gordon equation [18,19]. For instance, in any
axially symmetric stationary background, once one applies
separation of variables w(x, ) = w(r,0)e" e ™ to0 a
neutral scalar field [23,24], the Klein-Gordon equation
becomes

© 2014 American Physical Society
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Mgy (r.0) = [V(r.0) = (0 = mw(r.0)*ly(r.0). (1)

It is the trailing term in the effective potential, the
(w — mw)? term, that is responsible for the qualitatively
new phenomenon of superradiance, which never occurs in
ordinary nonrelativistic quantum mechanics.

The reason for this is that the Schrodinger equation is
first order in time derivatives, so the effective potential for
Schrodinger-like barrier-penetration problems is generi-
cally of the simple form

Ur)=V(r) — o. (2)

In contrast, for problems based on the Klein-Gordon
equation (second order in time derivatives) the qualitative
structure of the effective potential is

U(r) = V(r) — (0 — mw)?*. (3)

Similar phenomena occur for charged particles where
one has a (w — g®)? contribution to the effective potential.
We shall soon see that it is when the quantity @ — mw (or
more generally, the quantity @ — mw — q®) changes sign
that the possibility of superradiance arises. (See for instance
the general discussion by Richartz et al. [3,4].) For our
purposes in Refs. [18,19] superradiance is related to the
rotation of the black hole [25,26], but if the scalar field
additionally carries electric charge there is a separate route
to superradiance [2,27-29].

While the Dirac equation, being first order in both space
and time, might seem to completely sidestep this phe-
nomenon, it is a standard result that iterating the Dirac
differential operator twice produces a Klein-Gordon-like
differential equation. In terms of the Dirac matrices we
have

P* =2(V —igA)? + qF [y, v"]. (4)

So, once one factors out the spinorial components, and
concentrates attention on the second-order differential
equation for the amplitude of the Dirac field, even the
Klein paradox for charged relativistic fermions can be put
into a closely related (though distinct) framework [2]. It is
the trailing (@ — mw — q®)? term in the effective potential,
and more specifically the change in sign of ® — mw@ — ¢®,
that is now the harbinger of the so-called “Klein paradox.”
(Which, of course, is not really a paradox [2,5-7].)

I1I. SUPERRADIANCE: FLUXES

We shall argue that in the long run it is best to phrase
things in terms of relative fluxes rather than probabilities.
For a unit incoming flux, consider the equation

F reflected +F transmitted — I-F dissipated * (5 )

PHYSICAL REVIEW D 90, 064013 (2014)

As long as there is some flux conservation law, as for the
Klein-Gordon equation, we can always say this, with these
signs. [Dissipation can be dealt with by giving the potential
V(r,0) an imaginary contribution, see the discussion
below.] In some cases this general result simplifies, and
we can reduce this statement about fluxes to a statement
about probabilities.

For example:

(1) If there is no dissipation (F gigipaea = 0), and if the
transmitted flux is non-negative (Fiunsmitted = 0)s
then we can simply set R <= Fifeceq and
T < Fiansmieds and reinterpret these (relative)
fluxes as probabilities with

R+T=1. (6)

(2) If there is some dissipation (F gigsipaea > 0), and if the
transmitted flux is non-negative (Fansmited = 0)s
then we can set R <— Fifeced @A T < Franemitted
and Pp < Figipaed> and then reinterpret these
(relative) fluxes as probabilities with P, now being
the probability of decay:

R+T+Pp=1. (7)

(3) In contrast, if Finemied < 0, then we cannot phrase
things in terms of probabilities that add up to 1. We
have to work in terms of fluxes. In particular in this
superradiant regime we have

Ftransmitted = _|t|2 < 0. (8)

Note the sign. It is the possibility of negative transmitted
flux that lies at the heart of superradiance; in this situation:

F reflected — 1 -F transmitted F dissipated
=1+ |F trzmsmitledl - F dissipated * (9)

The reflected flux can then easily become over unity.

IV. SUPERRADIANCE: TOY MODEL

To see how this all works in detail, it is best to choose a
highly idealized but exactly solvable model. Working in
1 4 1 dimensions, consider the partial differential equation

[—(0; — iw(x))? + 0% = V(x)]w(t,x) = 0. (10)
For simplicity we are working with a massless particle (e.g.
photon), as this cuts to the heart of the matter. Adding
particle rest masses is not particularly difficult (see e.g.
Manogue [2]), but adds technical complications that are not
central to the issues we wish to discuss.

Taking w(t,x) = e”®'y(x) this is now equivalent to
considering the ordinary differential equation (ODE)

064013-2
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Ry (x) = [V(x) = (0 = @(x))|w(x).  (11)

Setting w(x) > 0 then yields a “Schrodinger-like”
equation, with no possibility of superradiance, whereas
w(x) # 0 is essential for superradiance.

Let us now brutally simplify the problem (in the interests
of making it analytically solvable), by setting V(x) — 0
and taking

w(x) = Qsign(x). (12)

This toy model is a tractable stand-in for generic situations
where w(x) satisfies boundary conditions w(+o00) = £Q.
We also take units where ¢ — 1. Then we are interested in

Oxw(x) = (o — Qsign(x))y (x). (13)

We shall soon see that for |w| > |Q| we obtain ordinary
scattering, with no superradiance; whereas for |o| < |Q| we
obtain superradiance, plus spontaneous emission.

Now for x # 0 this ODE has solutions of the form

w(t,x) = ei(@-kex); K = (o F Q> (14)

But which root should we take? As is standard, let us
consider the group velocity

I N

(15)

v

So for the mode with positive group velocity we must have
sign(ky) = sign(w F Q), whence

ky =sign(o F Q)|lo F Q| = F Q;
(16)

This is valid for all w, positive or negative. Furthermore

ki k_ = w* - Q2 sign(k, k_) = sign(w? — Q?).

(17)
Note in contrast that for the phase velocity
" 1)
= . 18
Ul’ o F Q ( )
This easily flips sign in some regions, in fact:
sign(vyy) = sign(w)sign(ew F Q). (19)

Now consider something incoming from the left, and for
the time being don’t worry about the normalization.
Matching across the origin we have

eik_x + re—ik_x < teilgx. (20)

PHYSICAL REVIEW D 90, 064013 (2014)

From continuity of the wave function and its derivative we
have

1+r=t k_(1=r) =kt (21)
Therefore
k_(1=r)=k (1+7r), (22)
implying
ky —k_ (0—-Q)—(w+Q) Q
- _ _— =+—. (23
Ttk @-9 it Te P

This is valid for all @, and normalization independent (since
the reflected mode automatically has the same normaliza-
tion as the incoming mode). The reflected flux (more
precisely, the ratio of reflected to incident flux) is thus

QZ
Freﬂected = |r|2 = E (24)

However, if we want to fully understand transmitted flux,
we need to normalize properly.

Now consider something incoming from the left, and
normalize relativistically:

eik_x

Vol

The \/i is standard for the relativistic Klein-Gordon
equation, to make the flux simple. One must remember
to include both w*(—id, )y and its hermitian conjugate
when calculating the flux. (For odd historical reasons, for
the nonrelativistic Schrodinger equation people do not put
the v/2 in the normalization of the modes, they instead put
an explicit § in the definition of the current.) With this
normalization we now have (note that this new amplitude
“t” will be different from the previous one)

(25)

eik_x
+r <t .
V2 V2T V2K

From continuity of wave function and derivative we have

e—ik_x eik+x

(26)

1+r t k_ ky
= ; (1-r)= t. (27)
V2 2k 2k V2Iks]
So we still have
k_(1=r) =k, (1+7), (28)
implying
ki —k_ (0—Q)—(w+ Q)
E— = — = +— 29
ky +k_ (0—-Q)+ (0 + Q) (29)
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Consequently, as before,

92
Freﬂected = |I"|2 = E (30)

But now, for the transmission amplitude we have

i) BB ) e

— If |w| > |Q] (the usual situation), then we see
0—Qw+Q Vao? -Q* Q?
t= = = sign(w)y/ 1 = —,
0+Q o @ @

and so

2

Q
|t|2 =1 _; > 0; Freiected + |t|2 =1 (33)

So in the usual situation we can meaningfully write
Ftransmitted = |t|2 > 0. (34)

— However, if |o| < |Q| (the superradiant case), then

B _(a)—Q) o+ Q
L= (a)—l-Q)( ® )
QZ_wZ
= sign(w) %—1, (35)

and so in this situation

QZ

|t|2 =2~ L; Frefiected — |t|2 =1 (36)
()

Note the sign flip in the flux conservation law. In the
superradiant situation we must write

Ftransmitted = _|l‘|2 <0. (37)
To get a deeper understanding of where the minus sign

came from, note that the flux for a “properly normalized”
state is

(flux) = (\;ﬁ) ) [—i@x <\/eﬁ>] + (conjugate).

(38)

PHYSICAL REVIEW D 90, 064013 (2014)
But then

k
(flux) = |k—i = sign(k.) = sign(w F Q). (39)
+
So the flux may not be in the direction one naively expects.
We can summarize the situation by saying that in both cases

. Q?
Ftransmitted = Slgn(k+k—)|t|2 =1- ; : (40)
This formula is now equally valid for both normal and
superradiant regimes, and for particles incoming from
either the left or the right, and easily leads one to verify
that in this situation (that is, with no dissipation)

Frefected + Fransmitted = 1- (41)
We could also write this more explicitly as
|| + sign(k k_)|t]* = 1. (42)

This is manifestly not conservation of probability; but is the
perhaps more interesting statement that we have conserva-
tion of flux. In particular, we see that superradiance can be
adequately understood using first quantization.

Warning: Because of the way some authors (specifically
Manogue [2], and Richartz et al. [3,4], and even textbook
presentations such as Messiah [22]) choose to normalize
the transmission amplitude, their key result is instead

k.
2=l = 1. (43)
+

This is not physically different, but is perhaps a little less
transparent.

V. SPONTANEOUS EMISSION

To understand spontaneous emission we need to bring in
some foundational ideas from second quantization. The key
point in second quantization is to understand the vacuum
state; choosing a vacuum state amounts to (what is called)
choosing the division between “positive and negative
frequencies,” an issue which is now just a little more subtle
than one might at first expect. Recall that k. = @ F €, and
that the unit flux modes are singular at k.. = 0 (that is at
@ = Q in the right-hand half line, and at ® = —Q in the
left-hand half line).

This observation now leads us, on the two half lines, to
identify “particle modes” as

exp(—ifwt—[o F Qx)

N A
exp(—ilwt + [0 F Qlx) o>=+Q; (flux)=-1, (45)

V2] T Q| '
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and to identify “vacuum modes” as

exp(—ifwt—[o F Qx)

V2o T Q| '

exp(—ilwt+ o F QJx)

V2|0 T Q| '

Once these modes have been identified, the rest of the
analysis is relatively prosaic.

— For w > |Q| we are dealing with particle modes on
both sides of the barrier; the usual scattering rules apply,
regardless of the direction the particle is initially moving in.

— For @ < —|Q| we are dealing with vacuum modes on
both sides of the barrier; this situation is not physically
relevant for our current purposes, regardless of which
direction the particle is initially moving in.

— For w € (—|Q], +|Q|), then on one side of the barrier
you are dealing with particle modes and on the other side
with vacuum modes, this is the tricky situation. Suppose for
definiteness Q > 0 is positive, and w € (—Q, +Q), then in
the left-hand half-space we are dealing with particle modes,
and in the right-hand half-space we are dealing with
vacuum modes.

For particles incident from the left we have already done
the calculation and found superradiance. In the right-hand
half space we have a right-moving vacuum mode carrying a
leftward flux. But what happens if a left-moving vacuum
mode comes from the right and hits the barrier? It may
partially reflect to a right-moving vacuum mode, but
partially transmit to form a left-moving particle mode in
the left-hand half-space. This is spontaneous emission. Let
us do the relevant calculation. We now have

<+Q; (flux)=—1, (46)

w<+tQ;

(flux) =+1. (47)

texp(—i[a)t + k_x])

V2K

exp(—ilwt + k, x])

V]

exp(—ilwt — k,.x]) '
V 2k,

Continuity of wave function and derivatives now implies

+r

(48)

t 1+r tk (1 =r)k,

VAR VAR Rk

Note several strategic sign flips compared to the previous
calculation. We now have

(49)

(IL+r)k_ = (1 =r)ky, (50)

so that

PHYSICAL REVIEW D 90, 064013 (2014)

Similarly
|/ @ Rt w/o-Q
— —(1=-=) =/———— 52
! k.| ® Q-w\ o (52)
QZ _ 0)2 Q2
=T T Sl
p, sign(w) o (53)

Since the amplitude ¢ is associated with a left-moving
particle in the left half line, the flux in the left-hand half
line is

(flux) = —[¢2 = -(g—j - 1) <0. (54)

The flux is leftward. Particles are being emitted by the
barrier and escaping to the left. (Vacuum modes from the
right are escaping from the barrier and moving to the left,
the region in which they become particle modes.)
Unfortunately this flux is dimensionless, it is a relative
flux—the ratio of the flux of left-moving particle modes on
the left half line to the flux of left-moving vacuum modes
on the right half line.

To convert this to an absolute flux we note that the “unit
flux” condition corresponds to

2
EN

= 55
dtdw (55)

That is, one particle per unit time per unit frequency. Then
the absolute spontaneous emission rate of left-moving
particles is

EN <92

w ()

Note spontaneous emission occurs only within the super-
radiant regime.

VI. CONSISTENCY CHECK

Note that for the specific toy model we have considered,
the amplitudes ¢ and r are infinite at ® = 0. An observation
along these lines is hidden in Manogue’s article [2], buried
in appendix 1, near the top of page 278.

Ultimately this infinity is a kinematic singularity due to
the fact that k, (w = 0) = —k_(w = 0). More generally we
could consider a “shifted” effective potential by taking

w@(x) = Q + Asign(x). (57)

Then whenever one encounters £ it would be replaced by
Q, =Q+ A. It is easy to see that one now has

k=0 F Q= (0—0Q)+A, (58)
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and that now k, k_ = (w—Q)>— A% Redoing the
remainder of the relevant calculations one now finds

A2 A?
L — =1 -—. 59
L e R [P
Note one still has
|r|2 + sign(lqk_)|t|2 = 1. (60)

The kinematic infinity has now moved, from o =0 to
® = Q, but the basic form of the flux conservation law is
unaltered. The stability of the flux conservation law under
the introduction of and shifts in Q is encouraging.

Indeed, the basic form of the flux conservation law
cannot depend on the particular toy model, which was
adopted only for simplicity of presentation. As long as
well-defined asymptotic states exist in the infinite left and
infinite right (so w(+o0) must be well defined and finite),
then the form of the relevant second-order ODE guarantees
the existence of a transfer matrix [30,31], and also permits
(with a suitable change in normalization) a Wronskian
analysis along the lines of Richartz et al. [3].

VII. ADDING DISSIPATION

We had earlier alluded to the fact that dissipation can be
modeled by adding an imaginary contribution to the
potential. Let us now see how this works in practice. Set
V(x) — i['5(x) so that we are now interested in the ODE

O (x) = [iF8(x) — (0 — Qsign(x))’Jy(x).  (61)
For an imaginary delta-function potential the scattering
calculation is an easy modification of the quite standard
calculation for a real delta-function potential. The key point
is that while the wave function is still continuous at the
origin, there will now be a discontinuity in the derivative at
the origin:

A. Dissipation in Schrodinger-like situations
If we (temporarily) set Q — 0, thereby (temporarily)
banishing even the possibility of superradiance, we will be
in a Schrodinger-like situation with damping. Then match-
ing wave functions at the origin

exp(—+ikx) + rexp(—ikx) <> texp(+ikx), (63)

leads to
1+r=t¢

k(1—r)—ki] =Tr.  (64)

or equivalently (since now k. = k = w under the current
hypotheses),

PHYSICAL REVIEW D 90, 064013 (2014)

l+r=t (1 —r)—wif] =Tt. (65)
Thence 2w(1 —t) =T't and we have
®
t=—7. 66
w+%F (66)

Note that @ is intrinsically positive, and under normal
conditions I" > 0. The transmission probability is

w?

T=|t}=—-=5¢€][0,1]. 67
P = e 0 (67)
For the reflection amplitude we now obtain
1
T
r=t-1=-—2—. (68)
Then for the reflection probability we have
ir
R=|r?=—"——=¢€[0,1]. 69
But now 7+ R # 1 and in fact
ol’
T+R=1-—7—. 70
(w+1i0)? (70)
So the decay probability is identified as
ol’
P,=———¢€l0,1]. 71
D (w _’_%F)z [ ] ( )

This can be viewed as the probability of absorption by the
barrier. Note that

(72)

Dissipation can actually be negative (antidissipation) when-
ever I' < O (this occurs in nonstandard situations where the
imaginary part of the potential is negative). This observa-
tion is compatible with the results of the Wronskian-based
analysis of Richartz et al. [3].

B. Dissipation and superradiance

Now let us turn Q back on, taking Q # 0, and see how
dissipation interacts with superradiance, and the mere
possibility of having superradiance. From what we have
previously seen, it is now important to focus on fluxes, not
probabilities. In first-quantized formalism with the unit
flux normalization we wish to match the wave functions
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eik_x e—ik_x eik+x

+r <t .
V2K VR 2Tk

From continuity of the wave function, and discontinuity of
the derivative, we have

(73)

I+r t
Vo NG o
and
ki—(l_r)_ ke t= L . (75)
NeTa| N TR
So we now have
k_(1=r)—k, (14+r)=0T(1+7r), (76)
implying
:_k+—k_+F:_(a)—Q)—(w+Q)+F' (77)
ki +k_+T (0-Q)+(0+Q)+T
Consequently,
1 112
e NNE L e

But now for the transmission amplitude we have
ikl @iy flo-Ql(o+9
k| w+ir)  \lo+Q\w+1I')’
(79)
— If |@| > |Q| (the nonsuperradiant situation), then

. [o-Q[w+Q] Vo' -Q? (80)
NVo+Qlo+iT] o+l

2_92
IwilzZO. (81)
(@+3T)

and so

o

In this nonsuperradiant case we can meaningfully write

w* — Q?
Ftransmitted = |t|2 = m 2 0. (82)
2

But now, due to dissipation, Fnemitted + Freflected 7= 1, and
we in fact have

PHYSICAL REVIEW D 90, 064013 (2014)

F dissipated — 1-F transmitted — F reflected

B o’ -Q> (Q- %l“)2
(@+3T)7  (0+3T)
Q r
- Llw)Q (83)
— In contrast, in the superradiant case, |o| < |Q|, a few
key signs flip. We now have
-Q Q Q- o’
t= —(w )<w+1 )z lw, (84)
(0 +Q)\w+ 3T o +50
and so in this situation
QZ 2
= ——2_>0. (85)
In this superradiant situation we must write
Fiansmitted = _|t|2 <0. (86)

— In either situation, be it superradiant or normal, we
have

w* — Q? .
Ftransmitted = m = Slgn(k+k—>|t|2' (87)
2

The transmitted flux can be either positive or negative.
Furthermore, in either situation, be it superradiant or
normal, we now see

(Q+ o)l
Fassioated = ~oo " (88)
issipate (w T %F)Z
Note that
I'F ;
Fdissipated = ——tmnsmiteed . (89)

w—Q

So again dissipation can actually be negative (antidissipa-
tion), if I' < 0. (That is, if the imaginary part of the
potential is negative.) This is again compatible with the
Wronskian-based analysis of Richartz et al. [3].

Finally we have

F transmitted +F reflected +F dissipated — 1. (90)

This formula is now equally valid for both normal and
superradiant regimes, and for particles incoming from
either the left or the right. This is manifestly not con-
servation of probability; but is the perhaps more interesting
statement that we have conservation of flux. In particular,
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we see that superradiance can be adequately understood
using first quantization.

C. Dissipation and spontaneous emission

Spontaneous emission must again be analyzed using
some of the foundational ideas from second quantization.
Fortunately most of the calculation can be easily carried
over (with minor modifications) from the dissipation-free
case. Then absolute spontaneous emission rate of particles
per unit time per unit frequency is

d2N Q2 — @ 5
= ; < Q2 91
dtdo (0 + %F)z vr= (91)

Note spontaneous emission occurs only within the
superradiant regime.

VIII. DISCUSSION

So in all relevant situations (without dissipation), with
the normalizations of this article we have

Freflected + Firansmitted = 1, (92)
which we can also cast as

|72 + sign(k k_)|t)> = 1. (93)
This is a very clean and convincing result, which clearly

summarizes many of the most important situations. In the
presence of dissipation we must instead write

F reflected 1 F transmitted — I-F dissipated * (94)
For our particular toy model
Fp(x) = [IT8(x) — (@ — Qsign(x) Py (x),  (95)

we were able to explicitly evaluate

PHYSICAL REVIEW D 90, 064013 (2014)

(Q — %F)z 0)2 _ .Q.2
Freftectea = VPRV Fyansmitied = RSV
(96)
and
(Q+w)
F issipated = 7 - (97)
1351pate (a) + %F)z

If the last two quantities are non-negative (the first is
automatically so), then these fluxes can be reinterpreted
in terms of probabilities: R, T, and Pp, for reflection,
transmission, and decay, respectively. That is

R+T+Pp=1. (98)

However, if either of the last two quantities is negative
(either due to superradiance or antidamping), then the
formulation in terms of fluxes is more fundamental, and
discussion of probabilities should be completely avoided.
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So-called “dirty” black holes are those surrounded by nonzero stress energy, rather than vacuum. The

presence of the nonzero stress energy modifies key features of the black hole, such as the surface gravity,

Regge-Wheeler equation, linear stability, and greybody factors in a rather nontrivial way. Working within
the inverse-Cowling approximation, (effectively the test-field limit), we shall present general forms for the
Regge-Wheeler equation for linearized spin 0, spin 1, and axial spin 2 perturbations on an arbitrary static
spherically symmetric background spacetime. Using very general features of the background spacetime,

(in particular the classical energy conditions for the stress energy surrounding the black hole), we extract

several interesting and robust bounds on the behavior of such systems, including rigorous bounds on the

greybody factors for dirty black holes.

DOI: 10.1103/PhysRevD.88.041502

I. INTRODUCTION

The “cleanest” black holes to work with are undoubt-
edly the Schwarzschild and Reissner-Nordstrom black
holes. However, real physical black holes are typically
surrounded by matter or fields of various types, and so
are embedded in an environment of nonzero stress energy.
A good model for such systems is a generic static spheri-
cally symmetric spacetime with a Killing horizon. These
are the so-called “dirty”” black holes [1-3]. Without any
loss of generality, the metric can then be put in the form

2m(r) dr?
ds? = — —2¢<’>[1 - ]dz2 + + r2dQ>
g ¢ r 1 —2m(r)/r "

ey

The Einstein equations imply

47r(p + p)r

I — 4 2; | — r . 2
n TPer ¢ 1 —2m(r)/r @)

We shall assume the existence of a black hole horizon such
that 2m(ry) = ry. Furthermore, for simplicity we assume
asymptotic flatness, so that m(o0) is finite, and we can
choose ¢(o0) = 0. [Asymptotically de Sitter spacetimes
have an additional cosmological horizon 2m(ry) = re,
where we can choose ¢(rq) = 0; asymptotically anti-
de Sitter spacetimes exhibit extra technical complications.]

*petarpa.boonserm @ gmail.com
tritos.ngampitipan @ gmail.com
“matt.visser @msor.vuw.ac.nz

1550-7998/2013 /88(4)/041502(5)
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For an asymptotically flat dirty black hole the surface
gravity can easily be extracted from a straightforward
calculation [1]:

e*ﬂs("ﬁ)
K=

[1 = 2m'(rg)]. 3)

'y

We shall now seek to say as much as we can about these
dirty black holes, without making any particular commit-
ment as to the specific equation of state or other but the
most general features of the surrounding matter.

II. CLASSICAL ENERGY CONDITIONS

While the classical energy conditions are now known to
not be fundamental physics [4], (they are typically violated
by semiclassical quantum effects [5—11]), they are never-
theless a good first approximation when dealing with bulk
matter and/or classical field configurations. In particular
for the weak and null energy conditions we have

WEC = p = 0= m(ry) = m(r) < m(0);  (4)

NEC=p+p,=0=d(ry) = d(r)=0. (5

Note the weak energy condition (WEC) implies the null
energy condition (NEC), so the WEC implies that k =
1/(2ry), independent of the specific nature of the matter
surrounding the black hole [1]. It is this sort of model-
independent result that we shall now extend first to the
Regge-Wheeler equation, and subsequently to explicit
bounds on the greybody factors.

© 2013 American Physical Society
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III. REGGE-WHEELER EQUATION

Define a generalized fortoise coordinate r, by

% = e+¢(r)[1 — 2m_(r)i|_1‘ (6)

dr r
Then the spacetime metric can be written as

~ 2m(r)

ds? = efz‘ﬁ(’)l:l —]{—dt2 +dr2} + r2dQ2% ()
r

where r is now implicitly viewed as a function of r,.

A. Spin zero

For a minimally coupled spin zero massless scalar
field it is now a simple exercise to show that linearized
perturbations are governed by a simple variant of the
Regge-Wheeler equation

d2
[dﬂ tots V(r*)]lﬁ =0, ®)
where now
+ 2
V)= e%m[l B 2m_(r)]m721) 147 o)
r r r drs

If one is considering a scalar field coupled to gravity with no
other matter present then this result is known to be correct
with the provision that ¢(r) and m(r) be set to values
consistent with a background solution of the coupled
gravity-scalar equations, which in view of the “no hair”
theorems implies the background is Schwarzschild. When
other nontrivial matter is present the result quoted above
holds only within a variant of the inverse-Cowling approxi-
mation (wherein fluctuations of the matter fields and space-
time geometry are assumed negligible compared to
fluctuations in the scalar field of interest; see Samuelsson
and Andersson [12] for relevant discussion). This can alter-
natively be rephrased as saying that we are considering
linearized scalar perturbations in the test-field limit.

Application of the Einstein equations (to the background
geometry) now yields

L = e[| 2Dy )] 10)

r r
whence
V(r,) = e_2¢(r)|:1 _ zmT(r)]
CE€+1) 2m(r)
. [ o n:sr —4m(p — p,)]. (11)

This is clearly consistent with, and a significant general-
ization of, the standard Schwarzschild result.
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B. Spin one

For the spin one Maxwell field a straightforward
calculation yields

(12)

V(r) = e’z‘f’(’)[] - Zm_(r)]f((fijl) .

r

The correctness of this result may easily be verified
a posteriori by noting that, due to the conformal invariance
of the Maxwell equations in 3 + 1 dimensions, the physics
can depend only on the ratio e 2?(1 —2m/r)/r.
Comparison with the known Schwarzschild result then
fixes the proportionality constant.

If one is considering a Maxwell field coupled to gravity
with no other matter present then this result is known to be
correct with the provision that ¢(r) and m(r) be set to
values consistent with a background solution of the
coupled Einstein-Maxwell equations, which in view of
the no hair theorems implies the background is Reissner-
Nordstrom. When other nontrivial matter is present the
result quoted above holds only within a variant of the
inverse-Cowling approximation (wherein fluctuations of
the matter fields and spacetime geometry are assumed
negligible compared to fluctuations in the Maxwell field).
This can be rephrased as saying that we are considering
linearized Maxwell perturbations in the test-field limit.

C. Spin two axial

For the case of spin two axial perturbations the calcu-
lation is somewhat tedious. For perfect fluid stars (rather
than black holes) there is general agreement that [13—15]

V(r,) = 6_2"5(’)[1 - 2m_(r)i|

r

R 2 I

r

Here p is the isotropic pressure; p = p, = p, for perfect
fluids. For the specific case of boson stars, (with their
intrinsically anisotropic stresses), there is a very similar
result involving the radial pressure p, [16]:

B 2m(r)]
v [€(€ -ZI— 1) _r6m(r)

r r3

V(r,) = e*2¢><r>[1

tamp—p) | aa

Furthermore, for generic stars supported by anisotropic
stress, and subject to the inverse-Cowling approximation,
(wherein fluctuations of the matter fields are assumed
negligible compared to fluctuations in the spacetime
geometry), Samuelsson and Andersson have argued that
the above potential (14) retains its validity [12].

Note that applying the Einstein equations to the back-
ground geometry we can rewrite (14) as

041502-2
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V(r)= e_2¢(r)[1 Jm(r)]["“’ +1) _4m(r)] 1

r 2 3 rdr?

r r
5)

Formally there is no obstruction to now applying this
result to other situations such as wormholes or dirty
black holes. (The traversable wormhole calculations of
S.-W. Kim [17-19] likewise implicitly apply a version of
the inverse-Cowling approximation, and provide another
consistency check on the above.)

D. Spins zero, one, and two

Now collecting all these results, we can for S € {0, 1, 2}
write the Regge-Wheeler potential in a unified form as

B 2m(r)][€(€;i— 1) S(S— 1)2m(r)]

r r r

V(r.,) = 672¢(r)|:1

1— S d?r

+ .
r dr?

(16)

Equivalently:

V(r,) = e—wm[l _ 2m(r)][€(€ +1)

r I’2

_ $2m(r
N (15722’"() — (1 — S)dm(p — Pr)]- an

We now have a very general version of the Regge-Wheeler
potential simultaneously applicable (within the inverse-
Cowling approximation) to minimally coupled massless
scalars, Maxwell fields, and axial perturbations of the
spacetime geometry—for arbitrary static spherically sym-
metric spacetimes—and so in particular applicable to
(static spherically symmetric) dirty black holes.

IV. STABILITY CONSIDERATIONS

It is well known that spacetime is linearly stable
against oscillations of this type (working within the
inverse-Cowling approximation) if and only if the Regge-
Wheeler equation has no ‘“negative energy’” bound states,
(which would correspond to pure imaginary eigenfrequen-
cies). A sufficient condition for stability is V(r,) = 0.
(Thus stability is automatic for S = 1, and will need a little
further thought for S = 0 and S = 2.) Furthermore, in view
of Simon’s theorem on the existence of bound states [20],
a necessary condition for stability is [T V(r,)dr. = 0.
This same integral also appears in a rather different
context—it controls one of the very general and simple
lower bounds one can place on the greybody factors [21].
For this reason we will merge the stability discussion with
that below.

V. TRANSMISSION BOUNDS

For one-dimensional potential scattering there are a
number of very general and robust bounds that can be
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placed on the transmission and reflection probabilities
[22]. Further developments in generic contexts can be
found in [23-26]. For specific applications to black hole
greybody factors see [21], and further developments in
[27,28]. Among the various bounds one can develop, two
particularly simple ones stand out. Firstly [21,22],

T(w) = sechz{% fj: V(r*)dr*}. (18)

Secondly, for any (possibly even rather crude) upper bound
on the Regge-Wheeler potential of the form

Vr., V(r) <V, < w? (19)
we have [21]

% Vi

T =]l-—=1-
(w) (2‘02_‘/*)2

pe (20)
The second bound is the more constraining at ultrahigh
frequencies, while the first bound continues to hold for
arbitrarily low frequencies.

We make no particular claim that these bounds are in
any sense optimal, but they are certainly robust, and make
absolutely minimal assumptions regarding the form of the
Regge-Wheeler potential (and so implicitly make abso-
lutely minimal assumptions regarding the nature of the
stress-energy tensor surrounding the black hole).

A. Exponential bound

Consider the integral [*% V(r,)dr.. This can be
bounded in the following manner: Observe

V(r.dr, = e‘¢(’)[€(€ '2" 1) S — 1)2m(r)]dr

r r3

L1=9 E[efw)(l - 2m_r(r)>]dr, @1

r dr

which, (temporarily suppressing the argument r), equals

r 7'3 r

+(1 - S)%[%e“/’(l —2Tm)]dr. (22)

Then, in view of assumed boundary conditions at rz and at
spatial infinity, the total derivative term drops out of the
integral so we have (still an exact result)

e¢[€(€ er D _Ss—-12m (1 . S) (1 _ sz)]dr

0 o~ ¢ 2

f e—2[€(€ +1D)+1-5)—(5S— 1)2—m]dr. (23)
m T r

We shall now bound this integral from above and below.
On the one hand, merely from the definition of horizon,

we must have 2m(r)/r < 1 for r > ry. Therefore

041502-3
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+o00 ooe_d)(r)
j V(r)dr, > [ e CERIEXIER) TAey!

But the relevant multipole indices ¢ satisfy € = S, so

+oo 00 €_¢(r)
j V(r,)dr, > 25/ 5s—dr = 0. (25)
—o00 rg T
Thus the necessary condition for linearized stability is
always satisfied. (Under the stated conditions, without
additional assumptions, we cannot guarantee linearized
instability no matter how weird our matter content is.)

On the other hand, the WEC implies p = 0, so 2m(r) =
2m(ry) = ry, and we see that the integral is bounded
above by

0 o~ (1)
]e - [€(€+1)+(1—S)—(S—1)2r—H]dr. (26)
r r

'

But the NEC implies ¢(r) =0 and so e ¢") = 1.
Checking that, (because € = §), the integrand remains
positive we see the integral is bounded above by

frm%[m FD+HA-8) - (- I)ZFTH]dr' er

But this integral can now be performed explicitly, so

® — 2
—o00 Iy 2
(28)
That is
® _ @
—o00 'y
Hence

T(0) = sechz{ﬁpw tyy 4 _232]}. (30)

We thus have a largely model-independent bound on the
greybody factor, valid for all frequencies, with minimal
assumptions regarding the material external to the black
hole. We need to know the black hole radius ry, to know
that the exterior matter satisfies the WEC, and know the
multipole of interest and spin of the field, but that’s all.

B. Polynomial bound

For the polynomial bound one needs to place an upper
bound on the Regge-Wheeler potential itself, not just its
integral. For § =1 it is elementary that V(r,) = 0 and
(applying the NEC and WEC) that V(r.) = €(€ + 1)/r3,.
For § =0 and S = 2 the calculation is less elementary.
If we assume the DEC then

DEC=0=p—p, =2p, 31)

and consequently (10) implies
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2
l g = e—2¢(r)|:1 — 2m_(r):|2_m = ! (32)

r dr? r Py

More subtly

. L) () AreY
;

r dr? r r

If we now make the additional assumption that one has
(m(r)/r)’ =0, (which is not unreasonable but certainly
nontrivial), then

1 d%r 1
=_ =

= . 34
r dr? r%, (34
Then for S =0
E€+1)+1
Osvugsi—ﬁg——, (35)
T
while for § = 2
CE€+1)—2
OSV@JSJ;—g——. (36)
'

Collecting these three results for S € {0, 1, 2}, we have

e+ +ia-902+s
CrDey=9ers o,
H

0=V(r,) =

So under these conditions we are guaranteed linearized
stability within the inverse-Cowling approximation, and
we have the explicit bound

e+ 1) +5(1 =92+ )P

44
}’H(L)

T(w) =1

(38)

Again we have a very general and robust bound based on
minimal input assumptions.

VI. DISCUSSION

As always with generic results there is a trade-off between
generality and specificity. In this article we have attempted
to be as general as possible, using only relatively weak
constraints on the spacetime geometry to still extract very
general and useful information regarding linear stability and
the greybody factors. Of course, any explicit choice for the
functions ¢(r) and m(r) will, at least in principle, allow one
to extract much more specific results. Additionally it is
conceivable that the general techniques of [21-28] could be
further extended to obtain more stringent bounds.

Furthermore, the results of this article can be viewed as
placing bounds on the behavior of the Regge-Wheeler
operator (which would generically be part of any perturba-
tion scheme that seeks to go beyond the inverse-Cowling
approximation). A specific choice of matter model would
in certain situations allow one to move beyond the inverse-
Cowling approximation, but at the cost of massive
complications due to possible couplings between various
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perturbative sectors, and with consequent massive loss of
generality. Finally, an extension to spin two polar pertur-
bations described by a generalized Zerilli-type equation is
in principle certainly possible (see for instance [19]), but is
mathematically somewhat messier.
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The Myers—Perry black holes are higher-dimensional generalizations of the usual
(3+ 1)-dimensional rotating Kerr black hole. They are of considerable interest in
Kaluza—KIlein models, specifically within the context of brane-world versions thereof.
In the present article, we shall consider the greybody factors associated with scalar
field excitations of the Myers—Perry spacetimes, and develop some rigorous bounds
on these greybody factors. These bounds are of relevance for characterizing both the
higher-dimensional Hawking radiation, and the super-radiance, that is expected for
these spacetimes. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901127]

I. INTRODUCTION

Greybody factors modulate the absorption cross-sections of classical black holes, and alter
the closely related Hawking emission'? probabilities of semi-classical black holes.®® Physically,
the incoming or outgoing wave back-scatters off the gravitational field surrounding the black hole,
leading to a non-trivial transmission coefficient. In the case of Hawking radiation, this modifies the
naive Planckian spectrum by multiplying it with a frequency-dependent greybody factor. Explicitly
evaluating these greybody factors is typically an impossible task, even for the simple case of the
Schwarzschild black hole.” In view of this difficulty, techniques for placing analytic bounds on the
greybody factors have now become of some interest.”'* (Alternatively, one might seek to extract
qualitative or numerical information.'?-14)

The bounds developed in Refs. 7-11 apply to various black holes (Schwarzschild, Reissner—
Nordstrom, Kerr, Kerr—Newman, etc.), and are all based on a very general technique for bounding
one-dimensional barrier penetration probabilities; a technique that was first developed in Ref. 15,
with later formal developments to be found in Refs. 16-19, and additional related discussion in
Refs. 20-23. In the current article, we shall apply the same sort of formalism to the Myers—Perry
rotating black holes in (3 + 14 n) dimensions.?#?> The Myers—Perry black holes are particularly
important in that they are the simplest of the higher-dimensional rotating black holes, being of
particular interest in both Kaluza—KIein scenarios and in brane-world scenarios.

We first describe the Myers-Perry spacetime,?*2° setting up the relevant Teukolsky equation for
scalar field excitations.?® An important part of the technical analysis is the fact that we can place
positivity constraints on both the separation constant and on the effective potential; without such
positivity constraints progress would be severely limited. We then analyze both the greybody factors
and (when relevant) super-radiant emission as a function of the angular momentum quantum number
m. While zero angular momentum (m = 0) serves as a good template for the other cases, there are
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some significant differences to take into account. After completing the analysis and summarizing
the general case, we specialize to (3+1) dimensions to verify compatibility with the usual Kerr black
hole, and also consider the specific (3+1+1) five-dimensional case which is perhaps most relevant
to brane-world models. We conclude with a brief discussion of the significance of our results.

Il. TEUKOLSKY EQUATION FOR SCALAR FIELDS

In setting up the formalism, it is best to first focus on the geometry of the specific spacetimes
under consideration, and then analyse the technical steps involved in separation of variables, leading
up to the development of the Teukolsky equation for scalar field excitations. With this in hand, one
can then proceed to examination of the effective potential. For some general background on black
hole perturbation theory, see Refs. 27-34.

A. Myers—Perry spacetime

The Myers—Perry geometry (with only one of the angular momentum parameters being non-
zero) is described by the metric®*2°

) .
ds? = —dt? + Xolr2 + £ do% + (r? 4 a?)sin®6 dg?

" .
+rn712(dt — asin®6 dp)? 4 r2cos®  d2. 1)
Here,
A=r2+az_r#_1’ Y =r2 4+ a?cos?6, 2

and dQ2 is the line-element on the unit n-sphere S'. We choose coordinates so that
-1
dQZ% = do? + sin® 6, d6Z + sin® 6y sin® 6, doZ + - - - + (Hin:l sin® 9i) dog, 3)

whence recursively
d2(61, ..., 6n) = o7 +sin® 6, Q22 (62, ..., 6n). (4)

(Several other coordinate conventions on the n-sphere are also relatively common.) This Myers—
Perry spacetime has 4 + ndimensions, 4 of them “usual” and n “extra.” This is sometimes phrased
as 3 + 1 + ndimensions (meaning 3 of space, 1 of time, and n “extra” Kaluza—KIlein dimensions).
The black hole mass Mgy, and angular momentum J, are defined as follows:

_ (n+2)Anpo 2a

Mgn = J= MgH. 5
BH 1626 M ny2 eH (%)

Here, G denotes the gravitational constant in the (4 + n)-dimensional space-time, and the quantity
An 42 =270+ 32T [(n + 3)/2] is the area of a (n + 2)-dimensional unit sphere. The location of
the black hole horizon ry is the solution of A(ry) = 0, such that u = rﬂfl(rﬁ + a?) is satisfied.

e In the specific case of n = 0, this spacetime reduces to the standard Kerr black hole, with the
usual inner and outer horizons.

o In the specific case of n = 1, we have u = r2 + a2, so then ry = /u — a2, and the horizon
existsonlywhena < /j; in fact, the horizon shrinks to zero area in the extreme limita —  /iz.
So the case n = 1 is somewhat different from n > 1.

e On the other hand, in the case of n > 2, for u > 0 a unique positive solution for ry always
exists for all a. Indeed, ry € (0, p¥ + Y]
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B. Separation of variables

In this article, we will focus on scalar field emission from the Myers—Perry black hole. The
relevant excitations can be described by the Klein-Gordon equation

3, (V99" 8,8) = 0. (6)

Here, the metric determinant factorizes nicely into 4-dimensional and n-dimensional pieces. Specif-
ically, with conventions as in Eq. (3), we have

V=g = (Z sind) x (r"cos"4) (Hsm“ '9) (7

with the trailing factor arising from the unit n-sphere.

Similar to the Kerr—Newman black hole in four dimensions, the Myers—Perry solution enjoys
a hidden symmetry due to the existence of a Killing—Yano tensor.® In view of this, we can use the
separation of variables ansatz%% 37

(D(ta r7 91 (ps 917 LI ) Qn) = e_iwt ei My ﬁjém(r) &m(e) an(e]n LICIO ) en) (8)

Here, the Yin(f1, ..., 0n) are the quite standard hyper-spherical harmonics defined on the unit
n-sphere, which satisfy the differential equation3®

AspY,-n(Ol,...,On)+j(j +n—1)Y,-n=O. (9)

The important observation is that for the n-sphere the Laplacian eigenvalues are —j(j + n — 1).
In 4 dimensions (n — 0), these hyperspherical harmonics reduce to trivial constants (and j — 0). In
5 dimensions (n — 1), they are simply sines and cosines. If one wishes an explicit rendition of the
Laplacian on the n-sphere then, with coordinates as in Eq. (3), we have

n

1 9, Y .
St o ([Tsre) =20 |4 iGen-nva—o  ao
— 17— sin-i 6 1 [Tt sinz 6

We mention in passing that when you choose coordinates to write the n-sphere metric recursively,

asin Eqg. (4), then the Laplacian can also be expressed recursively

1 d X 1
AgX=—"—— —(sin" g — Ag1X. 11
o sinn-19; 96, ( ! 891> tsinZe, sinZ 6, s (11)

In contrast to the hyper-spherical harmonics defined on the hyper-sphere S, the spheroidal
harmonics Sym(0) €™ are defined on the two angular variables associated with the “usual” 4-
dimensional part of the spacetime. They are the appropriate generalization of the standard spherical
harmonics Y,m(6, ¢). The spheroidal harmonics satisfy the differential equation®?

1 d o d : mN2  j(j+n-=-1) _
{— [sm@cos 9@}_(wa5|n9_sin9) - + Xjem{ Sm(@) = 0.

sin@ cos" @ do cos2 6
(12)

Note that going to 4 dimensions corresponds to setting n — 0 and setting j — 0, in which case
this differential equation reduces to that for the Kerr (or Kerr—Newman) geometry as given in
Ref. 11. These spheroidal harmonics are very closely related both to the Heun functions,**? and to
the hyper-spherical harmonics.3:43

The separation constant Aj.m in this spheroidal differential equation is positive. To see this let
us define a new variable by du = sin 6 cos "6 do, then

d dud . d
0= @ﬁ_smecos eﬁ. (13)

1 d dse)]  d .. n 2 dS(0)
Snocos 8 o [smecos 6 }_ 0 [(smecos 0) i } (14)

Therefore,
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Then the angular equation (12) for the spheroidal harmonics becomes

d [(sin@cos” 9)2 %} = [(wasine - sir:e)z + jatn=1 _ )\.jgm:| S©). (15)

du cos2 6

Multiplying the above equation by ) and integrating both sides over u yields

/ 5(9)% [(sin 6 cos" 9)2 %] du

= / [(wasine — sir:e)z + jG+n-1 _ )»jZm:| S4(9) du. (16)

cos2 6

Integrate the left hand side by parts, using periodicity to discard boundary terms, and then rearrange
to obtain

Ajem/SZ(B) du = f [(wasin@— sir:9>2+ 1 +n—1)] S*(6) du

cos2 0

+/ [(sin@ cos" 0)2 (%)Z] du. (7)

Now the right hand side of this equation is manifestly positive, as is the factor /< du on the left
hand side. Therefore, the separation constant ;. is guaranteed to be positive.

C. Effective potential

We now construct the effective potential, starting from the radial part of the variable-separated
Klein-Gordon equation.'>* We have

1d d r’+a’)o—mal> j(j +n-1)a? ~
(Sa[rag |+l _JOL0208 o Rt =0 a9

Let us now define a new radial mode function
r—z Rjem(r)
ViZya?

Itis now a quite standard calculation to show that the radial Teukolsky equation (the Regge—Wheeler-
like equation governing the radial modes), is given by Refs. 12-14

Rjem(r) = (19)

d2
{ag—uwﬂm}&mw)=a (20)
where r,, is the standard “tortoise coordinate”
2 2
aro =% 4. (21)
A(r)

Note that the tortoise coordinates can be expressed as

re2 2
= /rH rAJ(rr‘;" dr ~ AgIn(r — ryy) + Ba(r), 22)
where the exact expressions for the coefficients A, and functions B,(r) depend on the number of
extra dimensions n. However, we can quite generally observe that asr — ry we have r, — — oo,
and asr — oo we have r, — oo. So the region r > ry outside the black hole, (the domain of outer
communication), maps into the entire real line — oo <r, < + oo in terms of the tortoise coordinate.
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The Teukolsky potential (sometimes called the Regge—Wheeler—Teukolsky potential), is now
seen to be

A(r) j(j+n—="1a?> n(h—-2Ar) nA'(r)
Ujem(r) = (I’z—l——az)z |:)»jem + r2 + ar2 +
32A(r)  [rA@)] ma \2
_(r2+a2)2+r2+a2i|_<w_r2~|—a2) : (23)

Note that for j = n = 0 this reduces to the Teukolsky potential for the ordinary Kerr black hole in 4
dimensional space-time. (See Ref. 11.) For purposes of calculation, we now define quantities

a
o ()= 2 (24)
and more specifically
a
Qy=——. 25
T Ay (25)

Here, @ (r) is related to frame dragging, while € is the “angular velocity” of the event horizon.*!
We can now re-express the Teukolsky potential as

Ujem(r) = Vjem(r) — (@ — me)?, (26)
with
A(r) j(j +n—1)a?
Vim(r) = m |:)»j£m + — 7
n(n —2)A(r) nA’'(r) 3r2A(r) [rA()Y
4r2 o (2trad?  rya ] (27)

D. Positivity properties

To show positivity of Vjm(r), we start by noting that A(r) > 0 outside the horizon (that is for r
> ry). This is standard for n = 0, and trivial for n= 1. For n > 1, we generically re-express A(r) as

Ar)y=r?+a?—rt "y
=r’4a —(r/ry) " (rf + &%)
(g +a) (1—(n/r)"Y). (28)

Since r > ry, we can see that A(r) > 0 for n > 1. Using this result, we make the following
observations. First, for n > 1 we have

[rA()]  3r2A(r)
r2+a2  (r2+a)?

v

o [rA(N)](r? +a2) — 3r2A(r)

— 222 +a%) + rrﬁl [+ 1)r? + (n — 2)a?]

= a’A(r) + rnL*l [(n+Dr? + (n—1)a?]
> 0. (29)
Note that the equivalent result for n = 0 was already derived in Ref. 11 for the Kerr—Newman
spacetime. Second, for n > 0, we also have
n(n — 2)A(r) n nA’(r)

a2 o & n{(n —2)A(r) + 2r A'(r)}

=n{(n+2)r? + (n — 2)a® + nur"}. (30)
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Now for n > 2 this quantity is certainly positive. For n = 0, this quantity is identically zero. For
n = 1, this quantity reduces to 3r2 — a? + u = 3r? —rZ > 0 (provided the horizon exists). In all
situations, the relevant quantity is non-negative. Thus, by now combining these results with the fact
that Ajem > 0, and the fact that both n > 0 and j > 0, we can conclude that Vj.m(r) is always positive
for all values of j, £, m,and r.

E. Super-radiance
Now note that the effective potential is
Ujem(r) = Viem(r) = (@ — ma)?; Vim(r) = 0. (31)

However, the quantity @ — meo can under suitable circumstances change sign. This is the harbinger
of super-radiance. Some rather general analyses can be found in Refs. 44 and 45, while a specific
analysis closely related to the current situation can be found in Ref. 11. The key point is that super-
radiance is a phenomenon in which the reflected wave is larger in its amplitude than the incident
wave. From mathematical point of view, super-radiance is a phenomenon in which |r| > 1, where r
is the reflection coefficient. Super-radiance will occur once w — mw changes sign in the domain of
outer communication which, given the asymptotic behaviour of zr, occurs whenever 0 < w < mQy,
that is, m > m, = »/Qy. Once super-radiance occurs, the bound on the greybody factor becomes a
bound on the spontaneous emission amplitude. A detailed discussion of this particular issue can be
found in Ref. 11.

Ill. ANALYTIC BOUND FOR SCALAR TRANSMISSION

From Ref. 15 (see also Refs. 16-19 for further developments and applications), we have the
extremely general result that

Tjem > sech? (foo 9 dr*> , (32)
where
JINEIP + [Ujn(r) + R
D = 2h(T) , (33)

for any positive function h(r,). Equivalently,

S VIVEIP £ [Vien(r) — @ - mor) + 1))
- 2h(r.) |

We shall now use the positivity properties of Ajem and Vjem, together with the super-radiant/non-
super-radiant distinction, to systematically analyse this bound in various cases. In particular

(34)

e The modes m < m, = w/Qy are not super-radiant.
e The modes m > m, = w/Qy are super-radiant.

In situations where super-radiance occurs, in addition to the greybody factor Tj.m, there is a
closely related spontaneous emission rate which satisfies the bound**

Tjem < wsinh? </ o3 dr*> ) (35)

[e.¢]

IV. NON-SUPER-RADIANT MODES (m < m,,)

It is convenient to split the discussion of non-super-radiant modes into three sub-cases:
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e m=0zero-angular-momentum modes: This is the most fundamental case, and most straightfor-
ward case to analyze. This case provides a useful template for the more complicated situations.

e M= 0 nonzero-angular-momentum modes: These are most conveniently further split into two
sub-cases

— m < 0 negative-angular-momentum modes.
— me (0, m,) low-lying positive-angular-momentum modes.

A. Zero angular momentum modes (m = 0)

We choose h(r,) = w > 0and m= 0, then

A i(j +n—1)a —2)A
Ujgymzo(r) = (|’2—|——(ra)2)2 |:)ng'm=0 + J(J :]2 )a n(n 4r2) (r)
nA'(r)  3r2A@r)  [rA@)
+ TR 2122y r2+a2i|—a)2. (36)
Then
T > sech? < / \2 dr*)
— sech? < / V(r )| i )
j(j +n—="1a?> n(n—2)A(r)
:sechz[ /n r2+a2{ je.m=0 + > + ar?
3r2A(r) nA'(r)  [rA@))
S (2+a?? f2+az} dr]. 7

Forn> 1 and r > ry, in view of the positivity properties of the separation constant and effective
potential, we can replace [|--|dr — | ---dr|. Therefore,

1 [ 1 i(j+n="D0a%> n(n—2)A(r)
T > sech? | — - M hime
> S w/r r2+a2{ je,m=0 + 2 + a2

h

3r2A(r nA/(r rA(r
B CENNGIN ING AN )
(r2+a?)? 2r r24a?
We would like to integrate this equation term by term. Start by considering the first term
© Ajeme Xjeme r>  Ajeme a
f 162 gr = 2D arctan —| = ““™ arctan —. (39)
y re4a a f a g¥

For the last two integrals, we can show that they can be simplified as follows:
* 1 3r2A(r)  [ran)] ® r2A(r)
— dr = dr. 40
/rH r24a? [ (r?2 4 a?)? * r2+a2] / (r2+a2)3 (40)
This can be explicitly integrated (for instance, by using Mathematica) and we arrive at

/"O r2A(r) g =" n(n —2)(r3 +a?) F (1 n+2 n+4 a2>
e ((2+a2)3" " 8ry 8(n +2)rd, R

272 7 rg
a’ 1 a
-— a rctan — (41)
drp(rd + a2) ry
Here, 2F1(z1, 2, 73, Z4) is the hypergeometric function. Let us now consider the j-dependent integral

o (i LA —— .
/ jG+n-na°  jG+n-1) j(+n-1 42)

= arctan -
r2(r2 + a?) My a ry
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We can also integrate the n-dependent terms as

/‘°° 1 [n(n—Z)A(r)+nA’(r)]dr_ n(rg + a?) k. (1 n+2 n+4 a2>

- 2 5 5
r2 4 a? 4r2 2r 4(n+2)r3 2 2 ra
nin-2 n a
+ ( ) + —arctan —. (43)
Ary a My

Finally, combining the results from Egs. (39), (41)—(43), we obtain

1
Tjr.m=o > sech? ‘ 5o , (44)

Ijz,m:O
H

where we define

n(2n — 3) a?

lip o = (ien—1)+ >
je,m=0 8 + i@ +n )+4(rﬁ|+a2)

+( — (] +n—1)+kjg,mo> " arctan —
2 a My
n(r3 + a2 n+2 n+4 a2

N ) zFl(l, —).

8r 2 2 7 1}

(45)

For a consistency check, consider the limit a — 0 (with bothn=0and j = 0),

lim [; = lim o + L + Aj i arctan a
a0 j=0,6,m=0 = a0 4(ra T az) 2 j=0,¢,m=0 a r

1
=3 + Aj—0,¢,m=0- (46)

This is the same result as for the Kerr black hole (the Kerr—Newman black hole for Q = 0), as is to
be expected.

B. Non-zero angular momentum mode (m # 0)

From the basic inequality, we have

oo J[V(r,)]2 T () + R2(r )T
lemzsechzf ‘/[ ()1 + [Ujem(rs) + h2(r,)]

for all h(r,) > 0. By now using the triangle inequality

la] + |b] > Va2 + b?, (48)

we have

Tjim > sech? [

. 2 * |ﬁ/(r*)| o |Ujlm(r*) + ﬁz(l’*)|
> sech [[@o ) dr*Jr[(><3 2R dr, | . (49)

[w @ + [Ggemr) + R0
o 2h(r,) '

Provided that f'(r..) is monotone, we have

() 3In & for (r,) > 0;
/ )l = (50)
—o0 2h(r,)

~1In FT{!;‘}) for b'(r,) < 0.
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Let us now rewrite the potential as
Ujem = Vjem — (@ —ma(r))*. (51)

This form of potential is exactly the same as for the 4-dimensional Kerr—Newman black hole, and
thus we simply choose

h(r,) = h(r) = @ — mw (r). (52)

Note that this choice for h(r) is always monotonic as a function of r. However, we can see that h(r) is
positive if and only if w > mQy. This condition is satisfied for m < w/Q2y, (that is, m < m,), where
the mode does not suffer from super-radiant instability.

1. Negative-angular-momentum modes (m < 0)

Note that in this case, for h(r) defined in Eq. (52),

A() h(ee) o 1
A(—oo) h(rm)  o-—men  1-mQu/o

1. (53)

Then
1 h(c0) ]‘ 1
—In| = =—-In(1 —mQ . 54
5 I g ]| = 3 - man e 4
Note also that in this case we have  — mQy > h(r) > w, so
® |Ujem + h2(r)] /OO [Vjeml /oo Viem
— = dr, = dr, ——dr,. 55
[ w= e < [ 2 %)
Then
T 51 * Vi m<o
je.m<o > sech” { = In(1 — mQy /w) + ————dr, ¢, (56)
2 feo 2w
»[1
> sech? { Z In(1 — m/m,) + ljem<of - (57)
2 2wy ’

It is easy to see that this result is very similar to the result we have for m = 0, with the replacement
Aje,m=0 = Aje, m< 0. We can write down ljm, explicitly as

n2n-3) ., . a2
ljom = ————2 N1+ —
jem g ti0+ )+4(fﬁ| )
2n+1 L. r a
+< =@ +n—1)+)»jgm(aw)>—Harctan—
2 a Mn
+n(rﬁ|+a2) e (1 n+2 n+4 a2 8)
8["3 2rF kl 2 ’ 2 ’ r|2_| .

2. Low-lying positive-angular-momentum modes (m € (0, m,))
Recall that for m, > m > 0, h(r) is positive and monotonic as a function of r, for this situation
we first consider
h(cc)  h(o0) w 1
=~ = = = >
h(—OO) h(rH) w — My 1—mQH/a)

1. (59)

Then, we have

1 h(oc) 7| 1
5 ‘In [ﬁ(—oo)” = =5 In(1 — mQy /o). (60)
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Note also that in this case we have  — mQy < h(r) < o, so
©|U; h2(r ©\Viems *° Viems
/ | JZm+ ( )|dr* :/ | je,m Oldr* </ j¢,m>0 dr*. (61)
o 2h(r) —  2h(r) —o0 2(w — MQy)
Then, we arrive at the result

o]

1 V'£m>0
Tieme0 > sech? ! —= In(1 — m —1em=2 g 4 62
o = sect? |2 In — mezafo) + [~ g | 2

> sech? {—% In(1 —m/m,) + (63)

——— iy m=0¢ .,
2ol —m/my) 1™ 0}
where lj;, m o is defined by Eq. (58).

V. SUPER-RADIANT MODES (m = m,,)

It is a good strategy to split the super-radiant modes into two sub-classes depending on the
relative sizes of w? and (0 — mQy)?. Note that w? = (0 — MRK)? when m= 2w/Qy = 2m,. This
suggests that it might be useful to split the super-radiant modes as follows:

e me[m, 2m,).
e Me [2m,, 00).

A. Low-lying super-radiant modes (m € [m,, 2m,))
In this region, we have w? > (w — mQy)? and we choose
h(r) = max{w — mw (r), My — w}. (64)

We can see that h(r) > 0 and monotone decreasing as we move from spatial infinity to the horizon,
and become a flat horizontal line near the horizon. Note that h(r) > mQy — w everywhere. By using
h(r) as defined in Eq. (64), we have

(D] S oo _ @ _
/m T 0 = O = (=5 ) =~ ngmy/m. 1), (65)
It is now straightforward to show that
*© VjZm *© Vjem , Ijzm Ijlm
dr, —dr, = = , 66
/_oo 2h(r) " = /_OO 2mem — o) T 2mam — oy Zem/m, — DOy 0O

where lj,m is defined in Eq. (58). The last integral we need to perform is
Jlow _ /“ h(r)? — (@ — mw (r))?
" o0 2h(r)

Note that with our choice of h(r), the integrand in above integral is zero over much of the relevant
range. To be more precise, we are interested only in

dr.,. (67)

(0 —mQyu)? — (0 — Mo (r))?r? + a?

Jpow — dr. 68
m r 2(MQy — w) A (68)

The upper limit of integration rq is defined by the condition
mM[Qn + @ (ry)] = 2w, (69)

or we can write down rq explicitly as

2(m—m,
ro = \/ra + ﬁ(rﬁ + a?). (70)
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Notice that the upper limit ro > ry for me [m,, 2m,). Then

24 a2
JW Qn — Qu —2 dr. 71
B = g | @ = m O )+ ma - 20) S )
However, for the relevant domain of integration we have
0<(mw(r)+mQy — 2w) < 2(MQy — w). (72)

Then we can conclude that

I'o r
ger<m [ (@n - w()
H

24 a? fo = —rp)( +r
+ dr=mQH/ 1) 4 (73
o M2 +a2) —rH(rg 4+ ad)

This integral is finite, and one can evaluate it exactly for each value of n. (The integrand is in fact
finite asr — ry by the I’H6pital rule.) By now combining all these results, we have

1 I j¢,me[m,,2m,) |
Ti > sech? { == In(m/m, — 1) 4 ——JoA=em) 4 glowd i
je,me[m,,2m,) = { 2 (m/ )+ 2rpo(m/m, — 1) T om 7

B. Highly super-radiant modes (m > 2m,)
In this region, we have (o — mQy)? > w?, so we can choose
h(r) = max{mw (r) — w, v} . (75)

It is not difficult to see that h(r) is both positive and monotone decreasing as we move from the
horizon to spatial infinity. Note also that h(r) > w for the relevant domain. By using Eqg. (75), we

have
[_Z 'T]((rr))' dr, = [Inh(r)|E = In (%) = In(m/m, — 1). (76)

We also obtain

lem o0 lem IjEm
dr, ——dr, = , 77
/ 2h(r) </,OO 20 = 2oy 7"
where lj,m is defined in Eq. (58) as for the previous cases. Finally, we are left with the integral
hiah _ /oo h(r)? — (@ — mar (r))?
" o 2h(r)

Again the integrand is zero over much of the domain of integration. That is, we are only interested
in

ar.. (78)

00 2 2,2 4 A2
Jhion _ f o —(o—ma) rr+a (79)
]

2w A
Here, the lower bound of integration, ro, is now defined by
mw (o) = 2w, (80)
implying
fp=a | 1, (81)

Recall that m > 2m, in this region, we have

m, rZ + a2
rh>a/——1=a,/-" —1=ry. 82
0> ‘/wa 2 H (82)
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The integral JHia s finite. (In fact, the integrand is finite as r — rg, and falls of as 1/r? as r — o0.)

After assembling all results we have, we finally obtain

1 | i > . H
Tie.mo2m, > sech? {§ In(m/m, — 1) + % + Jfr‘]‘gh} ) (83)

VI. SUMMARY OF THE GENERAL CASE

Collecting the results for the low-lying and highly super-radiant modes, together with the
non-super-radiant modes, we have the following bounds for the transmission probabilities:

sechz{%ln(l—m/m*)Jrﬁljem} form < 0;
sechz{ﬁljgm} form = 0;
Tjem > { sech? {—%In(l—m/m*)+mljgm} for0 < m < my; (84)

sech? {—% In(m/m, — 1) + mljem + .Jr'ﬁ‘”} form, <m < 2m,;

sech? {% In(m/m,. — 1) + 5=l jem + Jr'ﬂigh} for m > 2m,.

Here, m, is the “critical” azimuthal angular momentum defined by m, = /2y, while the quantity
ljem is defined in Eq. (58).

VIl. FOUR-DIMENSIONAL CASE n=0

When n = 0 the Myers—Perry spacetime reduces to the usual Kerr spacetime. Furthermore,
the separation constant and effective potential reduce to those discussed in Ref. 11. Ultimately, the
bounds on the greybody factors reduce (as they should) to those of Ref. 11.

VIIl. FIVE-DIMENSIONAL CASEn=1

Let us now take a look at a special case with only one extra dimension n = 1. These are
the (3+1+1)-dimensional [five-dimensional] Myers—Perry black holes. In this case, we have the
simplification

A—r2+a®—p. (85)

A brief computation, starting from Eq. (58), now yields

_ 3 1 . aQy 3 . 3 My a
In=l— (—— -2 4j2— Z P 4 — arctan [ — | . 86
jem <8aQH g ! 4 ) + (2 J 8aQy thim ) 'y (86)

Interestingly, J/% has a very simple bound in five-dimensional space-time. For n = 1, we have

low
‘]m

m
<mQy(ro —ru) = w—(o —rn). (87)
n=1 m,

Let us now consider J9"; this also takes a simpler form in five-dimensional space-time
: “mal 20—mw(r
L =/ ma [‘”—w()} dr. (88)
=7 )y 20 L0 =) +1h)
For the relevant domain of integration, 2w > ma (r), then we can conclude that

. o0 1 ma r r
Jhian| gma/ s g =Ty, o (89)
n=1 o (T —=rr)r +ry) v fro—TIn

0
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Collecting results, we finally deduce a quite explicit bound for scalar emission from five-dimensional
simply rotating Myers—Perry black holes. The bound is given by

sechz{%ln(l—m/m*)—kﬁlf‘;#] form < 0;

sech? {ﬁl;‘;}} form =0;
=1 = .
T > 1 sech? {—% In(L — m/m,) + —Zer(ll_m/m*)lj“en}} for0 <m < m,;

sechz{—%ln(m/mk Ijr‘f,#jtwmﬂ*(ro—m)} form, <m < 2m,;

1
-+ 2rpo(m/m,—1)

2]1 1 n=1 ma ro+ru
sech {Eln(m/m*—1)+2erlj[m+aln /m} form > 2m,.

(90)

Here, I} is as given in Eq. (86).

IX. DISCUSSION

In this article, we have established certain rigorous bounds on the greybody factors (mode
dependent transmission probabilities) for the Myers—Perry black holes. We have also obtained
(mutatis mutandis) certain rigorous bounds on the emission rates for the super-radiant modes. In the
absence of exact results (the relevant differential equations seem highly resistant to explicit analytic
solution), quantitative bounds along these lines seem to be the best one can do.
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A dilaton is a theoretical particle, which results from the Plank mass raised to a dynamical field. In
this paper, the rigorous bounds on the transmission probabilities for charged black holes, coupled
to a dilaton field in various dimensions, are calculated. The results show that in the absence of the
cosmological constant, the black holes in (2 + 1) dimensions have only one event horizon. Moreover,
the charges of the black holes can increase the transmission probabilities. However, for the black
holes in (3 + 1) dimensions, the charges of the black holes can filter Hawking radiation.

KEYWORDS: dilaton, transmission probability, (2 + 1) dimensions, (3 + 1) dimensions

1. Introduction

According to Stephen Hawking, black holes can emit radiation, which became known as Hawking
radiation [1]. This phenomenon was predicted by the quantum field theory in curved spacetime. The
gravitational potential surrounding the black hole can modify Hawking radiation. Therefore, Hawking
radiation is not considered as blackbody radiation because some of the radiation is reflected back into
the black hole and the rest is transmitted to the spatial infinity. The transmission probability is of
interest because it is a characteristic property of black hole, which depends only on mass, angular
momentum, and charge of the black hole. In this paper, the rigorous bounds on the transmission
probabilities for the charged dilatonic black holes in (2 + 1) and (3 + 1) dimensions are derived.

2. The Charged Dilatonic Black Holes in (2 + 1) Dimensions
The charged dilatonic metric in (2 + 1) dimensions is given by [2, 3]
2 ) | 4r : 2 272
ds® = —f(r)dt” + ——dr” + r°do-, (D)
f(r)

where
f(r) = —2Mr + 8Ar* + 8Q™. )

For M > 8Q VA, this spacetime describes a black hole with two event horizons

M+ M2 = 64Q°A

+ = 3
& 8A )
We are only interested in A = 0. In this case, the black hole has only one event horizon located at
40
=—. 4
=M X
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The Schrodinger-like equation is given by

d2
R v<r)] u(r) =0, )
r*
where )
;
dr* = %d}’ (6)
and 5 4
V(r) = (5% + 2m2M)l —(4MQ* + 8sz2)l2 + %. (7
r I r

The (2 + 1) charged dilatonic potential is plotted with m = 1 and M = 2 for Q = 1,2 as shown in
Fig. 1. It can be seen that the potential for Q = 2 is higher than that of Q = 1. The coordinate r. can

explicitly be written as

r :—;—21n|r—rh|—ﬁ )

When r — ry, r. — oo and when r — oo, r, — —oo. The general and robust bounds on the trans-
mission probability can be found in [4]. They are applied to generic systems [5—7] and black hole
greybody factors [3, 8]. The lower bounds on the transmission probabilities are given by [4,8—-10]

T > sech® ( f ﬁdr*), 9)

where
\/(h')z + (W2 -V —h2)
¥ = , 10
T (10)
for some positive function s. We set h = w, then
o[ 1 ~
T > sech”|— Vdr,
20w J_o
[ 1 (™ ((SM? 1 1 60*) 2r
_ 2| M- 2200 L 2 22y L 0|
= sech 7). {( o+ m M)r (4MQ* + 8m*Q )r2+ = }f(r)dr]
[(5M + 16m? Fmax — Tn|  3M
= h? In |5 - : 11
sec ( 16w ) n Fmin 16w (D
| ‘/V¥ ) """'——;:,f;;:‘,‘

20 40 60 80 100

Fig. 1. The (2 + 1) charged dilatonic potential withm = 1 and M = 2 for Q = 1, 2.
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where 7y, — rp, — 0 and rmax >> 1. The dependence of the transmission probability on the energy
of an emitted particle is plotted withm = 1, M = 2 and Q = 1,2 as shown in Fig. 2. The dependence
of the transmission probability on the charges of the black hole is plotted with m = 1, M = 2 and
w = 30. as shown in Fig. 3. Both the graphs show that the transmission probability increases with Q.

3. The Charged Dilatonic Black Holes in (3 + 1) Dimensions

The charged dilatonic metric in (3 + 1) dimensions is given by [3,11]

ds* = —f(r)dr* + ]%dﬂ + R*(r)dQ?,

where
Iy

fH=1-" and R = r2(1 _ r;),
r r

with
2

ry =2M and r_ = g
M

r_+ /AR + 1%

By the coordinate transformation

08 /

0.6 /.
04 /

0.2

0.2 0.4 0.6 0.8 1
Q

(12)

(13)

(14)

(15)

Fig. 3. The transmission probability versus the charges of the black hole with m = 1, M = 2 and w = 30.
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the metric (12) can be rewritten as

1
ds®> = —F(R)d* + —————dR* + R?dQ?, (16)
F(R)H2(R)
where 5
FR) =1- — 1 (17)
r_+ \J4R + 12
and )
4R
HR) = ——. 18
®) = (18)
Introducing the tortoise coordinate
dR
TN (19)
F(R)H(R)
the equation of motion is given by
FU U
— - —+V({R®) =0, 20
a2 o (R) (20)
where
HRR) d (I+1)
VR) = FRR)| —=—(F(R)H(R 21
® <>[RdR(<><>>+ = @

The (3 + 1) charged dilatonic potential is plotted with / = 0, r. = 4, and r_ = 0.5 as shown in Fig.
4. If r— = 0, we obtain R = r, and the (3 + 1) charged dilatonic potential V(R) is reduced to the
Schwarzschild potential [12]

Iy

Vien() = (1= =)

r

Tt (22)

(+1 r+]

The comparison between the (3 + 1) charged dilatonic potential and the Schwarzschild potential is
shown in Fig. 5. The lower bound on the transmission probability for / = 0 is

T > sech® [i f V(R)dR*}
2w J_

[ee)

0.006
00054 |
0004 |

0.003 ~

4 5 6 7 8 9 10
R

Fig. 4. The (3 + 1) charged dilatonic potential with / =0, r, =4, and r_ = 0.5.
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2| L f ” 14
sech [ 2 ) o= RdR (F(R)H(R))dR

r-—ry Tt

2wr?

In

sech? [

+ ! ] (23)

re —r_| 2wr_

for r_ # 0. If r_ = 0, the transmission probability for / = 0 becomes

1
T > sech?
2 SE€C (4

wry

) ; (24)

which is the transmission probability for the Schwarzschild black hole [12]. The transmission prob-
ability is plotted with ry = 4 and r— = 2,0.5,0 as shown in Fig. 6. The graph shows that the trans-
mission probability decreases as r_ increases. This indicates that the charges behave as good barriers
to resist the tunneling of the uncharged scalar particles. This is in agreement with [3] as it should be
because in this paper, we have just rewritten the metric in terms of the new variable R instead of r.

4. Conclusion

In this paper, we have calculated the rigorous bounds on the transmission probabilities for the
charged dilatonic black holes in (2 + 1) and (3 + 1) dimensions. For the charged dilatonic black holes
in (2 + 1) dimensions, we are only interested in the absence of the cosmological constant. The results

00071 e,
0.006 S

- Ny

00054 [ / ’

0.004 . / M

0.003

/

00027 /

0.001 “/

_ V Schwarzschild
V3+L

Fig. 5. The comparison between the (3 + 1) charged dilatonic potential and the Schwarzschild potential with
[=0,r, =4,and r_ = 0.5.

0.999] P
//
0998

T 09979 ¢ /
09961 /

0995/

omega

rminus = 2

Fig. 6. The transmission probability versus the energy of an emitted particle with r, = 4 and r_ = 2,0.5, 0.
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show that the black hole has only one event horizon instead of two event horizons as in the case of
the presence of the cosmological constant. The results also show that the transmission probability
increases with the charge of the black holes. This result contrasts with the case of the presence of the
cosmological constant.

For the charged dilatonic black holes in (3 + 1) dimensions, we have transformed the coordinates
to rewrite the metric in terms of the new variables. The results show that the charges act as a good
barrier.
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Abstract. Black hole greybody factors carry some quantum black hole information. Studying greybody factors may lead
to understanding the quantum nature of black holes. However, solving for exact greybody factors in many black hole
systems is impossible. One way to deal with this problem is to place some rigorous analytic bounds on the greybody
factors. In this paper, we calculate rigorous bounds on the greybody factors for spin zero hawking radiation for non-zero-
angular momentum mode from the Kerr-Newman black holes.

Keywords: greybody factors, Kerr-Newman black holes, rigorous bounds.
PACS: 04.70.Dy, 04.62.+v, 04.70.Bw

INTRODUCTION

Classically, a black hole can absorb everything entering it even light. However, this picture was changed when
we took into account quantum effects. In 1974, Stephen Hawking discovered that a black hole could indeed emit
radiation. This radiation became known as “Hawking radiation” [1]. Some black hole information is contained in the
greybody factor. Therefore, understanding the greybody factors may lead to understanding the universe. However,
in most systems, solving the equation for the greybody factors is very complicated. Instead of finding exact
solutions, we place some rigorous analytic bound on the greybody factors. In this paper, we calculate rigorous
bounds on the greybody factors for spin zero hawking radiation for non-zero-angular momentum mode from the
Kerr-Newman black holes.

KERR-NEWMAN BLACK HOLE

The Kerr-Newman metric is given by [2, 3]

-2
ds? EOE-}dthsinzrdz ;. T Chadto(r. abyde %drz. cdz?, (1)

where
C=r’02Mr. a. Q*=(r0r )ro0g); c¢=r’. a’sin’r. )

Here a is the angular momentum per unit mass of the black holes, M is the black hole mass, Q is the black hole

electric charge, r, is the inner event horizon, and r is the outer event horizon. The horizon radii are given by

rZEMZ«/MZOaonZ. 3)

In this work, we are interested in scalar excitation to the Kerr-Newman black holes. The equation of motion takes
the form

{d—zz ou,, (f)}R,m (r)=0 @
dr;

where the tortoise coordinate r, is defined by
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2

=l ® g T2 g (5)
r (ror)rog)
and the effective potential U, (r) is given by
2
U,,”(f)fﬁt 4, (a6 + (zrzz o(r23.rar) } ﬁgo " } ©)
Here
0, (ak) = (L +1)-2mab+(H,,,, 2 H, Nab)’, (7

where (' is the angular momentum quantum number, m is the azimuthal quantum number, ¢ is the energy of an

emitted particle, and H,  is given by [4]
2000 —nt)
H,, == 8
fm 4{2_] ( )
We can write
U, ()=Y, ()24 omy [, ©)
where
a
V= a’.r’ (10)
and
r L (rr)/ T |
V, (F)=————1, (ak 0 . 11
*) (r2+a)L (@&)+ ~+a’ (rz.aQ)zf (b

RIGOROUS BOUNDS ON GREYBODY FACTORS

Because of impossibility of finding exact solutions, we calculate the rigorous bounds on the greybody factors
instead. These bounds can be found in [5]. They are applied to generic systems in [6-8] and to black hole greybody
factors [9, 10]. These bounds are given by [11, 12]

2
T ocsech -|-J:MJI;,, (12)
where
h(r U h
A MIVOF - U, ()~ hry P 13
2h(r)
Using the triangle inequality, we obtain
T 2 sech? Tl N | J|ur,,z(f> h(r)* | 4 1 14)
2 h(0-r-)| 2h(r) J
Here, h(r) is any positive function. In this work, we choose h(r) =< 0 my . Therefore,
T o sech? Tt |in %) Jhdn]. (15)
2 h(0s)| »2¢

We are interested in the non-zero-angular-momentum modes (m = 0 ). We shall divide the non-zero-angular-
momentum modes into two cases: negative-angular-momentum modes m ? 0 and low-lying positive-angular-
momentum modes mZ(0,§/Z ).

Negative-Angular-Momentum Modes

In this case, we obtain
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and

arctan(a/r )
ar’r

ar ¢ ][J
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T, <o sech’ T %ln(l Q)+
L

a
7 =———
a’.r
K ot (r*. a’)@3a’. rry)arctan(a/r ). a@[r 02r,]0r’r)
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FIGURE 1. The bounds on the greybody factors as a function of ¢ with a=2,Q=2,/=2,m=01 and M =3.
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FIGURE 2. The bounds on the greybody factors as a function of a with ¢ =1,Q=2,/=2,m=01 and M =3.
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FIGURE 3. The bounds on the greybody factors as a function of Q with ¢ =zl,a=2,/=2,m=01 and M =3.

Fig. 1 shows the rigorous bound on the greybody factors as a function of frequency. We can see that the bound
increases with increasing frequency until it reaches the maximum and after that it decreases with increasing
frequency. Fig. 2 shows the rigorous bound on the greybody factors as a function of angular momentum. The graph
indicates that the bound decreases when the angular momentum increases. Fig. 3 shows the rigorous bound on the
greybody factors as a function of electric charge. The graph states that the bound decreases with increasing the
electric charge.

Low-Lying Positive-Angular-Momentum Modes

In this case, we obtain

arctan(a/r ) ]

f 1 0@ I Ky

T, o sech®? 0=In(10 (Q, / o) a’ { (19)

T 2 2r(omz ) {
J

fom>0 =
\

06 -
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Transmission Probability

0z

0.1

o5 3 i 5 5 7 3 ]
Freguency

FIGURE 4. The bounds on the greybody factors as a function of ¢ with a=0.2,Q=0.21,/=2,m=1 and M =0.3.
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FIGURE 5. The bounds on the greybody factors as a function of a with £ =1,Q0=0.21,{=2,m=1 and M =0.3.
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FIGURE 6. The bounds on the greybody factors as a function of Q with { =1,a=0.2,{=2,m=1 and M =0.3.

Fig. 4 shows the rigorous bound on the greybody factors as a function of frequency. Unlike the negative-angular-
momentum modes, we can see that the bound increases with increasing frequency. Fig. 5 shows the rigorous bound
on the greybody factors as a function of angular momentum. The graph indicates that the bound decreases when the
angular momentum increases. Fig. 6 shows the rigorous bound on the greybody factors as a function of electric
charge. The graph states that the bound decreases with increasing the electric charge.

CONCLUSIONS

In this paper, we have obtained the rigorous bounds on the greybody factors for spin zero Hawking radiation
from the Kerr-Newman black holes. The results show that the bounds increase with increasing frequency but with
decreasing angular momentum and electric charge.

ACKNOWLEDGMENTS

This research has been supported by a grant for the professional development of new academic staff from the
Ratchadapisek Somphot Fund at Chulalongkorn University, by Thailand Toray Science Foundation (TTSF), by the
Thailand Research Fund (TRF), the Office of the Higher Education Commission (OHEC), Chulalongkorn
University, and by the Research Strategic plan program (A1B1), Faculty of Science, Chulalongkorn University
(MRG5680171). PB was additionally supported by a scholarship from the Royal Government of Thailand. TN was
also additionally supported by a scholarship from the Development and Promotion of Science and Technology talent
project (DPST). TN gives special thanks to Dr. Auttakit Chatrabuti for his invaluable advice. MV was additionally
supported by the Marsden Fund, and by a James Cook fellowship, both administered by the Royal Society of New
Zealand.

050066-5



REFERENCES

S. Hawking, Commun. Math. Phys. 43, 199-220 (1975).

E. T. Newman and A. L. Janis, J. Math. Phys. 6, 915-917 (1965).

E. T. Newman, R. Couch, K. Chinnapared, A. Exton, A. Prakash, and R. Torrence, J. Math. Phys. 6, 918-919 (1965).
M. Sasaki and H. Tagoshi, Living Rev. Relativity 6, (2003) [arXiv: gr-qc/0306120].

M. Visser, Phys. Rev. A 59, 427-438 (1999), [arXiv: quant-ph/9901030].

P. Boonserm and M. Visser, J. Phys. A 42, 045301 (2009) [arXiv: 0808.2516 [math-ph]].

P. Boonserm and M. Visser, Ann. Phys.325, 1328-1339 (2010, [arXiv: 0901.0944 [math-ph]].

P. Boonserm and M. Visser, J. Math. Phys. 51, 022105 (2010), [arXiv: 0910.2600 [math-ph]].

T. Ngampitipan and P. Boonserm, Int. J. Mod. Phys. D 22, 1350058 (2013), [arXiv: 1211.4070 [math-ph]].

10. T. Ngampitipan and P. Boonserm,. Phys.: Conf. Ser. 435, 012027 (2013) [arXiv: 1301.7527 [math-ph]].

11. P. Boonserm and M. Visser, Ann. Phys. 323, 2779-2798 (2008) [arXiv: 0801.0610 [quant-ph]].

12. P. Boonserm, “Rigorous bounds on transmission, reflection, and Bogoliubov coefficients”, Ph.D. Thesis, Victoria University
of Wellington, Wellington, New Zealand, 2009 [arXiv: 0907.0045 [math-ph]].

VRN h W=

050066-6


http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1063/1.1704350
http://dx.doi.org/10.1063/1.1704351
http://dx.doi.org/10.12942/lrr-2003-6
http://dx.doi.org/10.1103/PhysRevA.59.427
http://dx.doi.org/10.1088/1751-8113/42/4/045301
http://arxiv.org/abs/arXiv:0907.0045
http://dx.doi.org/10.1016/j.aop.2010.02.005
http://dx.doi.org/10.1063/1.3282847
http://dx.doi.org/10.1142/S0218271813500582
http://arxiv.org/abs/arXiv:1301.7527
http://dx.doi.org/10.1016/j.aop.2008.02.002

International Journal of Engineering and Technology, Vol. 8, No. 4, April 2016

Rigorous Bounds on Greybody Factors: Scalar Emission
of Negative Angular Momentum Modes from Myers-Perry
Black Holes

Tritos Ngampitipan, Petarpa Boonserm, Auttakit Chatrabhuti, and Matt Visser

Abstract—When taking into account the quantum effects, a
black hole can emit the so-called Hawking radiation. This
Hawking radiation propagates in a curved spacetime due to the
presence of a black hole. In this paper, the Myers-Perry black
hole is considered, which is an uncharged, rotating black hole
occurring in higher dimensions. Scalar Hawking radiation
emitted from the Myers-Perry black hole is studied. The
rigorous bounds on the greybody factors for massless scalar
field of negative-angular-momentum modes are also derived.

Index Terms—Greybody factor, radiation,
myers-perry black hole, rigorous bound.

hawking

I. INTRODUCTION

The existence of black holes has been predicted by
Einstein's general theory of relativity. The first solutions of
the Einstein's field equation were discovered by Karl
Schwarzschild. His solutions predicted the presence of
Schwarzschild black holes, which are the uncharged,
non-rotating black holes. The second type of black hole was
obtained by solving the Einstein's field equation in
conjunction with Maxwell's equation. This was done by Hans
Reissner and Gunnar Nordstrom . Their solutions represented
the Reissner- Nordstrom black holes, which are the charged,
non-rotating black holes. The third set of solutions of the
Einstein's field equation was discovered by Roy Kerr [1]. His
solutions described the Kerr black holes, which are the
uncharged, rotating black holes. The Kerr solutions were
generalized to higher dimensions by Myers and Perry [2], [3].
Their results led to the prediction of Myers-Perry black holes,
which are the uncharged, rotating black holes in higher
dimensions.

When studying the quantum effects of black holes,
Stephen Hawking showed that black holes can emit thermal
radiation which became known as Hawking radiation [4].
The curvature of spacetime due to the presence of a black
hole acts as the gravitational potential barrier. The scattering
of Hawking radiation from this potential can be viewed as
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one-dimensional scattering problem in quantum mechanics.
The term ‘greybody factor’ can be defined as the
transmission probability.

In this paper, the rigorous bounds on the greybody factors
for massless scalar field of negative-angular-momentum
modes emitted from a Myers-Perry black hole will be
derived.

II. MYERS-PERRY SPACETIME

The Myers-Perry spacetime can be described by the metric
(2], [3], [5]

ds* =—dt* + %dr2 +2d@* +(r* +a*)sin® 0d g’

+ ﬁz (dt —asin® 8dp)* +r* cos®> 0dQY: . (1)

rl‘l
where

A:r2+a2—% and X =r”+a’cos* 0. ®)
r

Here in is the metric on the unit n-sphere S” which is

given by
doy? = (H:llsinza,. )dej : 3)

The solutions of A(r)=0 provide the location of the

black hole event horizons. In this paper, we focus on
massless scalar field emitted from the Myers-Perry black hole.
The equation of motion of this scalar field can be described
by the Klein-Gordon equation

0.(V-99"8,2)=0. @)
where
H=(Esin0)x(r" cos” 9)x[ﬁsin"’0ij. (5)
i=1

This Klein-Gordon equation governs how the scalar field
@ propagates in the Myers-Perry background. We use the
separation of variables in this form
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(t,r,0,0,0,,...,0.)

—iot+ime
=e R](m

(1)S,,(0)Y,(6,....8,),  (©

where S [m(ﬁ)ei’""’ are the spheroidal harmonics and

an(el,,,,,&n) are the hyper-spherical harmonics. The

mjz

wasing ———
sinéd

spheroidal harmonics satisfy

1 i siné’cos"@i -
do

sin@cos" @ db

j+n-1)
_W_F;tﬂm Sin(0)=0 Q)
while the hyper-spherical harmonics satisfy
A, Y,.(6,,...0,)+j(j+n-1)Y,(6,,....6,)=0, (8

where A, is the Laplacian. Then, the radial Teukolsky

equation is obtained [6]-[8]

dZ
|:F ](m(r):|R](m(r)=0a (9)
where the tortoise coordinate r, is defined by
r’ +a*
dr. = dr. (10)
A(r)

The relationship between the tortoise coordinate and the
ordinary coordinate is plotted as shown in Fig. 1.

& ]

S 4

o ]

g 3

2 ]

a 3

s 11

-

& 20 40 60 80 100
-1 _ ordinary coordinate r
2

Fig. 1. Tortoise coordinate as a function of ordinary coordinate.

Here the Teukolsky potential U, (r) is given by [5]

U~ A(r) 2 { - JG+ n- a®  nln- zzA(r)
(r2 +a° ) r 4r
LA 3riAr) [rA(r)] }_ (o—ma), (D)
2r  (r'+ az) r’ +a’
where

312

a

(12)

o = .
r’+a*

This Teukolsky potential can be expressed in another form
as

Ui =V, (1) = (0 —ma@)*, (13)
where
ﬂm( )—L){iﬂm Jr]'(j+n2—1)a2 +n(n—22A(,«)
( i +az) r 4r
+nA'(r)_ 3,2r2A(2r)2 +[r2A(r)2]} (14
2r  (r'+a’) ri+a

The potential Viim (r) is plotted as shown in Fig. 2 for five

and six dimensions which correspond to n =1 and n = 2,
respectively.

0.8
.T".‘ 0.6 7
£
= 0.4 7]
02 7
0 20 25 30
=2
=1

Fig. 2. The potential V(1) forn=1andn=2.

III. RIGOROUS BOUNDS ON GREYBODY FACTORS

We can model the scattering of the massless scalar field
from the Teukolsky potential as one-dimensional scattering
problem in quantum mechanics. The term ‘greybody factor’
in black hole systems can be defined as the ‘transmission
probability’. In general situations, finding exact greybody
factors is difficult due to complicated potentials. Therefore,
in this paper, some rigorous bounds will be placed on
greybody factors. These bounds were first developed in [9].
Their further developments can be found in [10]-[13] and
their applications can be found in [14]-[19]. For the radial
Teukolsky equatlon in (9), the rigorous bounds on the

greybody factors are given by
|0 () + (1
————dr,

f — dn+f me . [»(15)
= 2h(r.) - 2h(r.)

‘U

2
T, =sech

for any positive functions h(r.). In this paper, we choose

h(r.)=h(r)=w—ma(r), (16)
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where m < 0. In this case, we obtain
fl'[n) _ 2marA(r)

3
(r2 +a2)

Then, we obtain the first integral

>0- amn

j'hfr*)'dr* 1y, fice Ne) L dommy. (18)
= 2h(r.) 2 h(—oo) 2
where
m*zﬁaQ == Za 29 (19)
Q, a’+r,

and ry is the event horizon radius Since w-—m€), >

h(r)> @, we have an inequality

U, +h(r “
[ j Vin| dr.. (20)
% 2h(r) h(r)
Using (14), we can write
T‘/f(m<0 *:iw A(r) i +j(j+n_1)a2
c 2w 20, (r2 +d* )2 ym<o r’
N n(n —ZzA(r) N nA (r)
4r 2r
_ 3riA(n) [rA(r)] 21
(r’ + az) r’+a’
Using (10), we can change the variable r, tor
0 V 0 o _ 2
_[ jtm<0 _ij A(r) N Ayt j(j +n2 1)a
Y 2w 20° (r " 2) ! r
N n(n —22A(r) N nA (r)
4r 2r
2 ! 2 2
B 32‘ A(:)2 N [rZA(r)z] r'+a dr. (22)
(r'+a’) r°+a A1)
The above equation can be simplified to
% 1% 1 j(j+n-1)d’
jlm<0 dr* —_ /1 +
L 2w 20; r* +a* { Jim<0 r
N n(n —ZzA(r) N nA (r)
4r 2r
_3rAM [rA(r)] } 23)
2 252
(r*+a*y r*+ad
Therefore,
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1 1
Tj(,m<0 ZseChz |:Eln(1_m/m*)+ﬁlﬂ,m<0:| ’ (24)
H
where
n(2n-3) . . a
L, ,=———+j(j+n-1)+—5——
jlm<0 8 ](] ) 4(}"2 +a2)
2
+( nt1 —jG+n-1+ ][m(aa))jriarctani
a ry
2 2 2 4 2
+—"(r’;ta)zﬂ[1,—”+ ks ,—“—2]- 25)
Ty 2 2 r;

Here the hypergeometric function ,F(a, b, ¢, z) is defined
by

Fabe,r)=3 PRt

n=0

(26)

The bounds on the greybody factors are plotted as shown
in Fig. 3.
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Fig. 3. The bounds on the greybody factors forn=1and n=2.

In the limit a0 and n= j=0, the quantity |

Jjlm<0

reduces to

I @7

=0,(,m<0

1
j=0,6,m<0 — E + ﬂ’j

which is the result for the Schwarzschild black hole [1

4].

IV. CONCLUSION

In this paper, the rigorous bounds on the greybody factors
for massless scalar field of negative-angular-momentum
modes emitted from the Myers-Perry black hole have been
established. To obtain these bounds, the appropriate function
h(rs) has been chosen. The number of dimensions of
spacetime, the angular momentum of the black holes, and the
mass of the black hole have been determined to have effects
on these bounds. Note that for n = 0, these bounds reduce to
bounds for Kerr black holes. For outlook, we can choose
other forms of h(rx) in order to derive better bounds.
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Conservation of Flux in Superradiance Phenomenon

Petarpa Boonserm, Tritos Ngampitipan, and Matt Visser

Abstract—For a usual occurrence of wave scattering, the
amplitude of the reflected wave is less than that of the incident
wave because the incident wave loses energy to the reflective
obstacle. However, for the so-called superradiance phenomenon,
the amplitude of the reflected wave is more than that of the
incident wave since the incident wave extracts energy from the
reflective obstacle. In this paper, a simple toy model of
superradiance is presented. The results show that for the case of
superradiance, we derive a conservation of flux instead of the
conservation of probability.

Index Terms—Conservation,
superradiance.

flux, probability,

I. INTRODUCTION

The phenomena of scattering can be described by the
interaction of wave with a reflective physical obstacle. In a
general situation, the incident wave loses some of its energy
to the obstacle, resulting in the amplitude of the reflected
wave being less than that of the incident wave. However, in
some systems, the incident wave gains energy from the
obstacle instead of losing energy. Therefore, the amplitude of
the reflected wave becomes greater than that of the incident
wave. This unusual phenomenon is called superradiance.
Matters of superradiance in literature can be found in
[13-[20].

Despite a long scientific history, superradiance still
generates some degree of confusion. Part of the confusion
comes from a lack of understanding of the differences
between fluxes and probabilities. In this paper, a simple toy
model of superradiance is presented to clarify the concept.

II. SUPERRADIANCE

In non-relativistic quantum mechanics, superradiance does
not take place [21]. To see this, consider the Schrodinger

equation

ihatl//(X,t)=—2h—2821//(x,t)+V(X)l//(X,t)~ )]
m

X

Assuming the solution
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v(x,t)=e""""y(x), ()
The Schrodinger equation becomes

2

2oty () =V -0l (). @)
m

On the other hand, in the relativistic regime we have the
Klein-Gordon equation

| (@, —im(x))* +% ~V(x) |w(t,x)=0. (4)
For a neutral scalar field, we assume the solution

p(xt)=e "y(x). ®)

The Klein-Gordon equation becomes

() =[V(x)—{o-a ()} y(x) (6)

In this case, superradiance can occur. We see that the term
[—@(x)] is responsible for superradiance. For a charged
scalar field, we obtain

() =[V(x)—{o-a(x)-q@()} y(x), ()

where ( is the charge of the scalar field. The term
[@—@(x)—q®(x)] is also responsible for superradiance.

III. FLUXES IN SUPERRADIANCE PHENOMENON

In ordinary phenomena of wave scattering, we are familiar
with the term ‘probability’ through both ‘reflection
probability’ and ‘transmission probability’. For a more
general situation, including the case of superradiance, it is
preferable to calculate the quantities in terms of fluxes rather
than probabilities. The general conservation law can be
described by

reflected transmitted 1 - Fdissipated : (8)

In this paper, we are interested in cases of non-dissipation,

where Ficsipatea =0 The general cases, including dissipation,

can be found in [21]. In ordinary cases, if the transmitted flux

is non-negative F_ . >0 , it can be reduced to

transmission probability F T . Moreover, the

transmitted
reflected flux also reduces to reflection probability
F =R. Therefore (8) becomes

reflected



International Journal of Engineering and Technology, Vol. 8, No. 4, April 2016

R+T=1. ©)

This is the familiar conservation law of probabilities. On
the other hand, in the case of superradiance, we have
FE <0. It cannot be interpreted as the transmission

transmitted
probability. Thus, in any situation, we should work with
quantities in terms of fluxes rather than probabilities.

IV. Toy MODEL FOR SUPERRADIANCE

Consider the Klein-Gordon equation in 1+1 dimensions

| (6, —i@(x))’ +¢*0% ~V(x) [w(t,x)=0.  (10)

—iot

Assuming the solution y(t,x)=e"“"(x), we obtain

¢ oy (x)=V(x)~{o-a(x)ylyx). (1)

Now, we simplify the problem by letting V(x)—0 and
taking
@(x)=COsign(x), (12)

where Q) is a constant. Moreover, we set ¢ =1. Therefore,
(11) becomes

Oy (x)=—{—Qsign(x) y/(x). (13)
The solutions to (13) are given by
ik_x —ik_x
w(x)= elk +re for x<0’ (14)
te"™" for x>0

where r is the reflection amplitude, t is the transmission
amplitude, and

k:=(0FQ). (15)
Note that
k.k =a®—QF. (16)
Thus, we obtain
sign(k, k_)=sign(o’ —Q%). (17)

Assuming that wave moves from left to right and crosses
the border at the origin, we have

—ik_x%

e +re ™% te™*. (18)
The continuity of the wave function leads to
1+r=t. (19)

The continuity of the derivative of the wave function leads
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to
k (1-r)=k,t. (20)
Solving the equations, we obtain
k-
1+r=—(1-r)- (21)
k+
Rearranging it gives
__k+ -k :_(a)—Q)—(a)+Q) :+9. 22)
k. +k (0—DN)+(w+Q) 1)
Since the reflection amplitude is normalization

independent, the result is valid. The reflected flux is given by

2

F

reflected

(23)

=| r'|2= a)z

However, the transmission amplitude depends on the
normalization. For the relativistic Klein-Gordon equation,
the normalization factor is

ik_x
PLS

Therefore, the normalized solutions to (13) are given by

(24)

ik_x —ik_x
\/;k |+\;:|k | for x<0
- - 25
=1 L @
c for x>0
V2lk, |
The continuity of the wave function leads to
1+r t (26)

N TalNALal

The continuity of the derivative of the wave function leads
to

k k
—(1-r)=——=—t- 27)
NALE V2lk, |
Solving the equations, we obtain
1+r :£ 1-r . (28)
NALARLSNALE
Rearranging it gives
_ k. -k :_(a)—Q)—(a)+Q) :+9' (29)

k +k (0—D)+(w+Q) w

Substituting in (26), we obtain
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k Q -Q +Q
po (1, Q) [lo=Qlfo+Q) o9
| k_| w |o+Q|\ o
The reflected flux is given by
2
F;‘eﬂected :l r |2: 2 (28)
@
Ifla)I >|Q|,wehave
e ’a)—Q [w+§2} N -
o+Q| o 0]
2
=sign(w) ,[1-— - (29)
W
Therefore, the transmitted flux is given by
QZ
tP=1-"2>0. (30)
0]
We see that
Freﬂected+|t|2=1' (31)
In this case, we can write
F'transmitted :l t |22 0 : (32)
On the other hand, if | @| <|Q|, we have
‘e (0-Q) (a)+Qj_ N — o
(0+Q)\ o w
QZ
=sign(w),|——-1- (33)
0]
The transmitted flux is given by
QZ
[tf=—-1. (34)
0]
We see that
E‘eﬂected_ltlzzl' (35)
In this case, we can write
transmitted =- I t |2S 0 : (36)
We summarize both the cases by
QZ
. 2
Ftransmitted = Slgn(k+k_)| t | = 1 - E . (37)
Thus, we can write
reflected + F:cransmitted = 1 : (3 8)
Using (17), this can be rewritten as
|r? +sign(k, k)| t|’=1. (39)

Explicitly, this is not a conservation of probability, but
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rather, a conservation of flux.

V. CONCLUSION

Superradiance is a phenomenon of scattering in which the
amplitude of the reflected wave is more than that of the
incident wave because the incident wave extracts energy
from the reflective obstacle. In this paper, a simple toy model
of superradiance has been presented. In the case of
superradiance, we have achieved the conservation of flux
instead of the conservation of probability. The concept of
conservation of probability is only valid in the absence of
superradiance. So, in any situation (both with and without
superradiance) we can write the conservation of flux

E’eﬂected + F'transmitted =1 (40)
if there is no dissipation. This can be rewritten as
|r? +sign(k, k)| t|*=1. (41)
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ABSTRACT

From the quantum point of view, black holes are unstable and emit so-
called Hawking radiation. Specifically, the Myers-Perry black holes are
generalized rotating Kerr black holes in higher-dimensions, popular in
both Kaluza-Klein and braneworld scenarios, which might in principle
be detected through their Hawking radiation. One specific black hole
characteristic is the greybody factor, defined in terms of the transmis-
sion probability of Hawking radiation back-scattered from the black hole
gravitational potential barrier. In this paper, some rigorous bounds on
the greybody factor for spin-zero Hawking radiation emitted in the zero-
angular-momentum mode from the Myers-Perry black holes are calcu-
lated. This calculation serves as a template for other angular momentum
modes.
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Spin-Zero Hawking Radiation: Bounds on the Zero-Angular-Momentum Mode Emission
from Myers-Perry Black Holes

1. Introduction

Classically anything and everything, even light, which enters a black hole
cannot escape. As a consequence, no one can (directly) see the black hole.
However from the quantum point of view, black holes are unstable and emit
so-called Hawking radiation, see ref. (Hawking (1975)). When Hawking radia-
tion propagates in the black hole spacetime, it is modified by the curvature of
spacetime resulting from that black hole. In particular, when Hawking radia-
tion is back scattered from the black hole gravitational potential barrier, only
the transmitted radiation can be observed from spatial infinity. This modified
Hawking radiation, therefore, can be thought of as greybody radiation. The
quantity known as the greybody factor is defined in terms of the transmission
probability.

In this paper some rigorous bounds are calculated for the greybody factors
for spin-zero Hawking radiation, emitted in the zero-angular-momentum mode
from Myers-Perry black holes.

2. Mpyers-Perry Black Holes

The Myers-Perry black holes are the generalization of four-dimensional Kerr
black holes to (4 + n) dimensions. The (4 + n)-dimensional Myers-Perry black
holes can be described by the (4 + n)-dimensional Myers-Perry metric (Myers
et al. (1986)), (Emparan et al. (2008))

b))
ds” = —di*+ S dr®+ 26+ (r* +a”) sin® 0d¢>2+rn/flz (dt—asin® §d¢)*+1* cos® 602y,
(1)
where
A=r+ad®— nﬁi172:T2+a200829’ (2)
T

and dQ? is the metric on n-sphere which is given by
n—1
dQ? = db? + sin® 0,d03 + sin? 0; sin® O,d03 +- . .. + (H sin? 9i> do?.  (3)
i=1

Here p is a free parameter that determines the mass and angular momentum
of the black hole. In particular, the mass and angular momentum of the black
hole are defined by

(n+2)An12 2a
T 2)nt2 ) ond J =
el n+2

Mpu = Mg, (4)

Malaysian Journal of Mathematical Sciences 3
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where A, 1 is the area of an (n + 2)-dimensional unit sphere which is given by
27T(n+3)/2

T[(n+3)/2] (5)

An+2 -

The event horizon is located at riy which can be found from A(rg) = 0. We
are interested in spin zero (scalar field) Hawking radiation emitted from Myers-
Perry black holes. The equation of motion for scalar fields on the Myers-Perry
black hole background takes the form

Ou (V=99 8,®) = 0. (6)
By separation of variables,
O(t,1,0,0,01,...,0,) = e ™ R (r)Sem (0)Yn (61, ..., 60,),  (7)

the radial equation is given by (Boonserm et al. (2014b))

d2
= U 0)| Roan(r) =0 ®
Here 7, is the tortoise coordinate given by
r? + a?
dr, = dr.
r NG r (9)
This can explicitly be expressed as
T2 2
Ty = . TA—ETC; dr ~ ApIn(r —rg) + By(r). (10)

The quantity Ujsm, (r) is the Teukolsky potential given by

A(r) jGG+n—1a®  n(n-2)A>r) nA(r)
Ujem(r) (2 +a2)? [)‘jém + 2 + 472 T
B 3r2A(r) (rA(r)" | ,_ _ma 2
(r2 + a2)2 r2 + a2 < r2 4 a2> : (11)

Here \jon, is the separation constant. In this work, we are interested in the
zero-angular-momentum mode (m = 0). Therefore, the Teukolsky potential
becomes

Alr i(j4+n—1a®> n(n—2)A(r
Ujtmeo(r) = (7“2—;(1)2)2 [)\jtz,m—o + i+ " ) + ( 4T2) (r)
A 3PA0) | A0 s (12)
2r (r2 4 a?) r“+a

4 Malaysian Journal of Mathematical Sciences
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We can rewrite the Teukolsky potential as

Ujt.m=0(r) = Vig.m=o(r) — w?, (13)
where
A(r) jG+n—1)a%® nn-—2)Ar)
Viem=olr) = e [Mem=o F 2 LT
nA’(r) 3r2A(r) (rA(r))
— 14
T (r2+a2)?  r?+a? (14)

Figures [1] and [2] shows the potential V/m—o(r) in five (n = 1) and six (n = 2)
dimensions.

Potential
°
e
o

Figure 1: The Myers-Perry potential for n = 1.

3. Rigorous Bounds on Greybody Factors

In general, the exact greybody factors are impossible to obtain even for the
Schwarzschild black hole, which is by far the simplest case. Thus, it is of interest
to develop new methods in calculating the greybody factors. One of them is to
place some rigorous bounds on the greybody factors. The relevant bounds were
first developed in Visser (1999). They were further developed in Boonserm et
al. (2008a), Boonserm et al. (2009), Boonserm (2009), Boonserm et al. (2010a)
and Boonserm et al. (2010b). These bounds have been specifically applied to
black hole systems (Boonserm et al. (2008b), Ngampitipan et al. (2013a),
Ngampitipan et al. (2013b), Boonserm et al. (2013) and Boonserm et al.
(2014a)). General and robust bounds on the greybody factors are given by

Malaysian Journal of Mathematical Sciences 5
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oa\‘\‘

0.6

Potential

0.4

Figure 2: The Myers-Perry potential for n = 2.

(Visser (1999), Boonserm et al. (2008a) and Boonserm et al. (2009))
Tjem > sech® (/ ﬁdr*) , (15)

— 00

where

VIR 4 Uy () + 220

2h(ry) '
and h(r,) is any positive function. We choose h(r.) = w and consider the
m = 0 case. Then,

9 = (16)

1 [ 1 jG+n—1)a?  n(n—2)A(r)
T > h? | — M i
= [Qw /rH r2 + a2 {)\ﬂ’mo + r2 + 472
nA'(r) 3r2A(r) (rA(r))
T (r2 + a2)? Torra (|7 (17)

We can show that the argument of the absolute value is positive for r > ry.
Thus, we can write

oo . . . 2 _
T > sech’ {1 / l{mm_o L dtn=1a  nln—2)AE)

2w Jpy T2+ a? r2 4r2

A’ 3r2A A(r))

AC) 3tA0) A0, "
2r (r2 + a?) r“+a

Performing the first integral, we obtain
 Njtm= Ajtm= < Nipme
/ ;e, _g dr = 250 arctan = = 225M=0 arctan (19)
g TCta a af,. a TH
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By integrating by parts, we can show that

[ =
B

This integral can be explicitly performed and gives

3r2A(r) (rA(r))

(r2 +a2)?®  r*+a?

[ r2A(r) .
dr/rH 7( zdr. (20)

r2 + a?)

> r2A(r) n  n(n—2) (4 +ad?) n+2 n+4 a?
73d7" = Y 3 2F1 1; 9 [
(12 + a?) 8r 8(n + 2)r; 2 2 Th
a? 1 a
——————>< + — arctan —. 21
b (2 + a?) + 5, Brctan - (21)

Here o F} (21, 22, 23, 24) is the hypergeometric function. The j-dependent inte-
gral yields

/ ‘7(];;‘ 3“ gr=dUtn-0 jGtn-0 0@ (22)
g T2(r2+a?) TH a rH
Calculating the n-dependent integral, we obtain
<1 n(n—2)A(r)  nA'(r) n? (rf + a?) n+2 n+4 a®
71 o w2 T | T Tt I\ T
m T2 ta r r (n+2)r}, h
-2
+M + 2 arctan L. (23)
dry a TH
Collecting all the results, we obtain
2 1
Tj@,»m:(] 2 sech m]jg,mzo . (24)
Here
n(2n—-3) . n (rg + a?) n+2 n+4 a?
Ligme maem—- )4+ 10 p (1 .
j€,m=0 8 + .](.] +n ) + 87"12{ 2471 ) 2 ) ) ) 7"12{
a? 2n+1 rH a
-7 —1 Nit.m=0| — arctan —(25
+4(712{+a2) [ 5 JE+n—=1)+ N\, 0} aarcanrH( )

In the limit a — 0, n = 0 and j = 0, we obtain

lim I —p = lim o’ + 1+)\7 P ! t a4 —1+)\

i —04me0 = li _ - ; m=0 | — arctan — | = —+Xi—0.¢.m=0-

a0 I=06m=0= 70 4(7‘1%I +a?) 2 J=0,6m=0 a TH 2 Y 0,6,;m=0
(26)

Figures [3] and (4] show the bounds on the greybody factors as a function of w
in five (n = 1) and six (n = 2) dimensions, respectively. Figures [5] and [6] show
the bounds on the greybody factors as a function of the black hole angular
momentum in five (n = 1) and six (n = 2) dimensions, respectively.
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omega

Figure 3: The bounds on the greybody factors as a function of w for n = 1.

4. Conclusion

In this paper, we have obtained rigorous bounds on the greybody factors
for spin-zero Hawking radiation emitted in the zero-angular-momentum mode
from the Myers-Perry black holes. Qualitatively, the bounds seem to decrease
in higher dimensions. In five dimensions corresponding to n = 1, the bounds
decrease when increasing the black hole angular momentum. In six dimensions
corresponding to n = 2, the bounds increase to reach the maximum and start
to decrease when increasing the black hole angular momentum.

Acknowledgments

This research has been supported by Ratchadapisek Sompoch Endowment
Fund, Chulalongkorn University (Sci-Super 2014-032), by a grant for the pro-
fessional development of new academic staff from the Ratchadapisek Somphot
Fund at Chulalongkorn University, by the Thailand Toray Science Foundation
(TTSF), by the Thailand Research Fund (TRF), by the Office of the Higher
Education Commission (OHEC), Chulalongkorn University (MRG5680171),
and by the Research Strategic plan program (A1B1). AC was supported by
the Thailand Toray Science Foundation (TTSF) and Thailand Excellence in
Physics project (THEP). PB was additionally supported by a scholarship from
the Royal Government of Thailand. TN was also additionally supported by
a scholarship from the Development and Promotion of Science and Technol-
ogy talent project (DPST). MV was supported by the Marsden Fund, and
by a James Cook fellowship, both administered by the Royal Society of New

8 Malaysian Journal of Mathematical Sciences



“SC74-tritos” — 2015/4/20 — 16:36 — page 9 — #9

Spin-Zero Hawking Radiation: Bounds on the Zero-Angular-Momentum Mode Emission
from Myers-Perry Black Holes

008 e
/ \
/
/ \
/ \
0064 |/ \
® / \
5 \
s
£ \
) \
2 \
3 004 \
g \
§ \
2
3
g
5
3
a
002
~
~
0 2 2 6 8 10
omega

Figure 4: The bounds on the greybody factors as a function of w for n = 2.

Zealand.

References

Malaysian Journal of Mathematical Sciences



“SC74-tritos” — 2015/4/20 — 16:36 — page 10 — #10

Ngampitipan T, Boonserm P, Chatrabhuti A and Visser M

05

04

03

Bounds on greybody factors

0.2

0.1-

0.2 0.4 0.6 0.8 1 12 14 16 18 2

Figure 5: The bounds
for n = 1.

on the greybody factors as a function of the black hole angular momentum

00276

00274

00272 \
0.027 \\

0.0268 \

0.0266
0.2 0.4 0.6 0.8 1 12 14

Figure 6: The bounds
for n = 2.

10

on the greybody factors as a function of the black hole angular momentum

Malaysian Journal of Mathematical Sciences



nsBUIYAaINaIANNUIazluvesnsdaululynisnszid g
arouduly 1 4
Lower bounds on transmission probabilities in one-dimensional

quantum scattering problems
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Abstract

Quantum mechanics is the theory that describes dynamics of small objects such as atom and
molecule. In this paper, Schrodinger’s wave mechanics, a part of quantum mechanics, is studied. The central
equation of this wave mechanics is the Schrodinger’s equation. Solving this equation, quantum system
dynamics can be described. In this work, the quantum scattering problem in one dimension is studied. Wave
functions are obtained by exactly solving the Schrodinger’s equation in case of the delta function potential
and the rectangular potential. The transmission and reflection probabilities are calculated from the obtained
wave functions. Lower bounds on the transmission probabilities are presented. Finally, the lower bounds on
the transmission probabilities are applied to the delta function potential and the rectangular potential
problems. The results show that the exact transmission probabilities satisfy the lower bounds on the

transmission probabilities.
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—00
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—00
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