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Abstract

Project Code: MRG 5980030

Project Title: Experimental investigation on thermal performance of heat sinks
combined with metal foam

Investigator: Asst.Prof.Dr. Kitti Nilpueng King Mongkut's University of
Technology North Bangkok

E-mail Address: nilpueng@yahoo.com

Project Period: 2 years

Thermal resistance and pressure drop of air flowing through plate fin heat sink
combined with copper foam are experimentally investigated and compared with that
obtained from conventional plate fin heat sink and flat plate heat sink combined with
copper foam. Copper foams with pore density of 30PPI, 40PPI, and 50PPI are used.
The experiments are done at air velocity ranging between 1 m/s and 5 m/s and heat
flux ranging between 9.48 kW/m2 and 12.59 kW/mZ. The experimental results showed
that the increase of air mass flux and pore density of copper foam lead to the decrease
of thermal resistance and increase of pressure drop of heat sinks. The average thermal
resistance of FPHSfoam and PFHSfoam decreased 59.3% and 72.2% whereas the
average total pressure drop of PFHSfoam and FPHSfoam is increased 9.10 times and
6.75 times when compared with PFHS. Under the similar pumping power, PFHSfoam
give the lowest thermal resistance and thermal resistance of PFHSfoam and FPHSfoam

lower than that from PFHS about 40.74% and 25.18%.

Keywords: Thermal resistance, Pressure drop, Heat transfer enhancement,

Porosity, Pore density
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Executive Summary

1. anudrduasinnzasilynn

Due to the limit of space inside the computer and high heat generation from the central processing
unit (CPU), the metal foam is developed and applied for removing heat from electronic device. The metal
foam is one type of porous media that used in heat sink applications. The main benefit of metal foam heat
sink are high surface area to volume ratio (1000-3000 m2/m3), high heat transfer rate, lightweight, and lower
cost. In the past, studies associated with heat transfer and flow characteristics of metal foam replaced heat
sink have been conducted by a number of researchers. The effect of relevant parameters on thermal
performance was investigated in both experimentally and numerically. For experimental approach, the heat
transfer coefficient and pressure drop increased with increasing the air mass velocity, thickness of the porous
layer and pore density. It was also found that the heat transfer performance of copper foam was higher than
aluminum foam. For numerical approach, the mathematical model were studied and developed for predicting
the flow and heat transfer behavior inside the metal foam. It consisted of Darcy—Forchheimer—Brinkman flow
model, the thermal equilibrium model and the thermal non-equilibrium model. However, to obtain the proper
model, the clear understanding on flow and heat transfer phenomena inside the metal foam from experiment
were need. Although, the metal foam has excellent flow-disturbing capacity and large heat-transfer area in a
compact volume, the bottom heat may be unlikely to be transferred to the top of porous medium structure
due to worse effective thermal conductivity. Recently, to improve the thermal performance of metal foam heat
sink, the combination of the metal foam into the normal heat sink and the effect of relevant parameters on
thermal performance was investigated but these knowledge were still limited. In this study, the main concern
is to investigate the relationships between flow and heat transfer behavior of air inside the plate fin heat sink
inserted with metal foam and plate-pin fin heat sink inserted with metal foam. The effects of air flow direction
arrangement, porosity of metal foams, heat flux, and air velocity on the heat transfer coefficient and pressure
drop are also investigated in this research work. The results obtained from this study are expected to be a
guideline for designing the proper thermal performance heat sink and developing mathematical model in the
future.
2. Yaqilszasd
1. To study the effects of air velocity, heat flux, flow arrangement, porosity of metal foam on flow pattern,
heat transfer coefficient and pressure drop through plate fin heat sink with metal foam, plate pin fin heat sink
with metal foam, and metal foam heat sink
2. To compare the heat transfer coefficient and pressure drop between plate fin heat sink with metal foam,

plate pin fin heat sink with metal foam, and metal foam heat sink.
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3. 92113539y

In order to examine the heat transfer coefficient and pressure drop of air flowing through heat sink
combined with metal foam, the experimental apparatus is setup. To adjust the air flow arrangement through
heat sink, the experimental apparatus is divided into 2 set for parallel flow and impingement flow as shown in
Fig. 1 and 2, respectively. The main apparatus consist of wind tunnel, fan with inverter, straightener, and test
section. Air is circulated inside the wind tunnel by using variable-speed fan with inverter. Air velocity ranging
between 1 - 4 m/s is used in the experiment. To obtain the fully developed flow before pass test section, the
air flow is arranged by straightener. The plate heater is installed at the bottom of test section base to supply
heat. The test section base and plate heater is covered with insulation. The detail of supply heat unit and test
section is schematically shown in Fig. 3. The heat flux from heater supplied to the test section base is
controlled by variac. Heat flux is regulated between 10 — 30 W/m”. The test section base temperature is
adjusted between 70-90 °C. The electric voltage and current is read by digital multimeter. The average air
temperature at inlet and outlet and heat sink base temperature is measured by T-type sheath thermocouples.
The hot wire anemometer is used to measure the air velocity inside the wind tunnel. Pressure drop of air
across the test section is read by digital manometer. The experimental conditions tested in this study is listed
in Table. 1. These conditions is selected based on real working conditions for central processing unit (CPU)
in computer. Under the steady conditions, the air velocity, base temperature, inlet and outlet air temperature,
pressure drop, supplied voltage and current are recorded. The data acquisition system are used to record the
experimental data.

In this study, there are nine test sections are used. It consist of (1) plate fin heat sink with metal
foam, (2) plate pin fin heat sink with metal foam and (3) metal foam heat sink. The schematic diagram of test
sections are presented in figures. The main dimensions of heat sink are 25 mm x 75 mm x 25 mm (width x
length x thickness). Based on the metal properties from manufactory and data obtained from literature, heat
transfer performance of copper foam was higher than aluminum foam and it was increased with increasing
the pore density. In this study, the copper (Cu) foam heat sink with porosity of 30 PPI, 40 PPI, and 50 PPI
(pore per inch) which is produced by manufactory is used in the experiment as shown in Fig.4. The

Geometrical characteristics of metal foam are presented in Table.2.

1030

300 230

288 200 Fan with inverter
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Fig. 1. Schematic diagram of the experimental apparatus for parallel flow.
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' ( Control Heat Flux }
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Fig. 2. Schematic diagram of the experimental apparatus for impingement flow.

Heat sink

Heat sink base

Thermocouple

Plate Heater +

Insulation

Fig. 3. Detail of the supply heat unit and test section.

Table. 1. Experimental conditions

Controlled variable Range

Air velocity (m/s) 1,2,3,4

Heat flux (kW/m2) 20, 25, 30
Test section base temperature (OC) 70, 80, 90

(a) (b) (c)

Fig. 4. Detail of test sections with metal foam

(a) Plate fin heat sink with metal foam (b) Plate-pin fin heat sink with metal foam (c) metal foam heat sink



30 PPI 40 PPI

50 PPI

Fig. 5. Photograph of copper metal foam at different porosity.

Table. 2. Geometrical characteristics of metal foam

Parameters Copper metal foam
Number of pores per inch 20 - 40
Density 0.85 g/cm3
Porosity 90%—95%
Purity 99.0%
Specific heat 385 J/ K kg
Thermal conductivity 401 Wim K

4. WHWNIIANRWITWIVLARDALATINT IBUARETII 6 LADK

Periods (Month)

Activity

expected outputs

0-6

7-12

13 -18

19-24

1. To read and summarize the research and
theory about the metal foam heat sink

2. To set up the experimental apparatus

1. To set up the experimental apparatus

2. To calibrate the equipment

3. To collect the experimental data

1. To collect the experimental data

2. To analyze and conclude the experimental
data

1. To complete the final report

2. To prepare the publication

- Experimental apparatus

(70%)

- Experimental apparatus
(100%)

- Experimental data (50%)
- Experimental data (100%)

- Data discussion (50 %)

- Data discussion and
conclusion (100 %)
- Publication in international

journal
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Uz U9 1 U7 2 U
1. AUIAANA LN
- AaauuNwAIIninlaTIng 156,000 | 156,000 | 312,000
2. PNAANIRY
- lanznaIuaIngu (Copper foam) 40,000 - 40,000
- wasluaula (T-type thermocouple) 5,000 5,000 10,000
- Iﬂidﬁ%’ld’g@m@laau (Metal sheet, acrylic sheet 10,000 - 10,000
and Straightener)
- TRQFEUNN 5,000 5000 | 10,000
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- ALAWNILTNIINAINTIND DY ' 5,000 5,000 10,000
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- Tadaiaas (Digital watt meter) 20,000 - 20,000
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4. AUIAANTN - - -
Hdvdszanalasins 271,000 221,000 492,000
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(a) Model A1B1

(b) Model AIB2

(c) Pin-fin heat sink fully filled with brass beads (Model A1B3) (<) Model A1B3
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Photograph of packed conditions of various-diameter brass beads filled in pin—fin heat sink.
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decomposes at high temperature density

U7 2.4 nInaa W lans lagdTn1IINIKGN

2222 uuunizasda 1En13Banzq (infilration) laslunisndalnulanzlaslaans
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SR q@mmlwmﬁmmaaanﬁmmia:m:J ﬁﬂﬁmﬁaiﬂwazgﬁﬁmmﬁwﬁﬂ NITUINNII
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A aada o aa Aa o ] v A A A A
NReITHATaAAe 1o lnulansNHuwIaWamiinlaNa §IuTalREA NITUIBNIINAAN AN
FUT D AN URZHNAA eI wIuIt D

2223 LUUNRIN Ad sl‘*fﬂszmuﬂ’rmaaumm (melt route processing) NITHAG
TWulanzuuunnizyinlas whmauisrhaadwlaveraauinailagass v‘iﬂﬁﬂaaﬁﬁmgﬂﬁ'ﬂag’
& A & @ & = o/ Aa v aa =
Tuitalane alanziinaluaznanaidluvasndsazla naulans nszuiwnmsiddafae 1w
m:mumswamﬁﬁmmgﬂﬁq@Lmzvl,w'sﬁ'usﬁau uadTalrafa é’numzmmwgué’a"lajaﬂnawa

b Aa 1 ' 1 & &V 1 c;
LLa&NﬂLﬂ@"U@ﬂ'ﬂﬂ“ﬂ%’]@l‘ﬂﬁy Talan L'ﬁ@l"mﬂw aaﬂwﬁmm@vluammua
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Aenueible s fled wih it s sintered to fusathe Abiller of aminiumis
yains of sodium ehlofide 53 grains together ed on the resulting
comGast of Salt arains

5 [ 7
oA e
=& a0 ey

When the A has mefted, 31 at i The £aft i then dissobved .. produeing an open-cell foam
pressue mm;m%ne» mgn\l':loﬁ\euh i AN
pores in the preform.

511 2.5 msw‘ﬁmMuIamTﬂU"‘J%mﬁumq

u

sufi 26 mandalwulanzlagnszuaumanaeuingg

2.2.3 Tanasuas
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Iww'ﬂammLﬂufaqia%:ﬁmwsummumndwaslﬁﬁﬁuﬁﬁaﬁ‘i’mmmnvﬁuﬁ'u Al

U q
A

RNNIDTUNANNTaW LA ALN aVD I IAANI Lﬁaoqmauﬂ’am AINAILAITIUN AN LT LTS

1
=)

WREUAINITHIAN NS auN gauauﬁaﬁﬁuﬁ RIFUHNRNINA IR NNIR I WA UTa ]

wa

a A Aa &’ 04 P
U ANITAWADIUN @lmﬁﬂJ‘Ll@I‘llQGIWNﬂa\‘]LL@\‘lLLﬁ@G@G@n‘J’I\‘m 2.1
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Compression Strength 131 psi 0.903 Mpa
Tensile Strength 1000 psi 6.9 MPa

Shear Strength 190 psi 1.31 MPa
Modulus of Elasticity (Compression) 107 kpsi 736 MPa
Modulus of Elasticity (Tension) 14.6x103 psi 101.84 MPa
Shear Modulus 40.9 kpsi 282 MPa
Vickers Hardness 35

Specific Heat 0.092 BTU/Ib-'F 0.385 J/g-C
Bulk Thermal Conductivity 5.84 BTU/ft-hr-F 10.1 W/m-C
Coefficient of Thermal Expansion (0-100°C) | 9.44x10-6 in/in--F 1.7%x10-5m/m--C

Bulk Resistivity

2.56x10-5 ohm-in

6.5x10-50hm-cm

Melting Point

1980 °F

6.5%10-5 ohm-cm

2.3 ﬂ'liii']&lt“(lﬂ?']&l%%]%

' o A = A a A A | o A o A
nIngtnaINdIas 1y aqiﬂﬂquﬂﬁgﬂaaﬁﬁ!ﬂuqm‘ﬁ.ﬂuNVILL@]ﬂ@n@ﬂuﬁ]zNWﬂ@ﬂquﬂ

dmmmnwﬁﬁqmmgﬁgﬂﬂ G99 mnn i NRIINBNAAILAROUNAILBNTNAVD I

qm%nﬂﬁﬁu@n@h@ﬁuﬁﬁﬂﬂdﬁ ANuTan
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231 nsthamausaulasnisin nrmgmelnusaulagnisinnianisiiain
o I ' o ~ ad A Aa £ o A = o =< A o
J91 Lﬂumimummnmamwm’m@mwmmulmmqmﬂumﬂmamu,aa LWaNAMNAA
% a A J Q v g: Q ] v o & v
%umaaqmwgmﬂwulmmqnauuu AaAINNNTANYINANNTawlay N1 G L a, v
[ %] €d' I [ 1 [ ‘é & ] o a %] d}/ n:l' d'
suanwmnaziduaasiuny dT/dx GmLﬂummmmmmaaqmﬁguﬂmﬂuwuﬂ AN

anufanlnariu Ui 2.1n) Wouaglugdaunslai

dT
q, <« A— 2.1)
dx
A A o ' o °
Wwa g, fasarniItnamanyTanlasnisiin
a & A4 o '
A fAanunnanuTowlrarin
A a
T QRRIEEY
A = ~ o
ABRIZHUZNIINITLARDUNVAIAMUIDY

o s [ 1 v a 3; J [ 1 o ¥
fnivdanmriisimenuianaTinuazlivagnuainiaineuian (thermal
L. g & aen Aala 6 o P o A A v & o
conductivity) T91iluaasuiansianguasainasiianuiounfouiiiin a9unnIINg
#anusaudsdanilu
dT
q, = —kA— (2.2)
dx
gun13 (2.2) #i3and1 ngnisiianuiausesniies (Fourier's law of conduction)
A A o & A v A A €
Lmawmaau‘nagmamumwaaawmuﬂuwawmmnngmawaawaomaﬂﬂ@muﬂa
A o o o Y Aa A @ Aa Ao oA
FIrvua @mmammaa"lmm’ma;@mqmﬁguqﬂﬂm?g@muqmﬁgwm LLIbD 997N
mmm@%’ummqm%nﬂﬁlugﬂﬁ 2.8% ﬁLﬂ%ammslLﬂuauﬁaﬁmﬁ:qmmgﬁam@ﬁaUaal,ﬁa
QI J Qs g: U v Y 1 v 1 {
TEUTNY X LANUINTB A% DNRINFaINITIRaa M stnumanuTandaduuinie lua

U lufiemsilduurnudr azdaadunIasnunsan L imsmuznvesanns (2.2)
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M) (2)

311 2.8 (n) uaAILATBIRANEBBIAT dT/dX §19SUNITRIAMATDR

() WEAINANIINITIHAVDIANNIDW

guN15 (2.2) Wuaumsnlddwiufonuanunuisvassinsiinnusen k s1wsu
> 1 n:ll 1 g: f-:ly n:ll a 1 =] 2 s 1 v
daudsdng g Nagluszuniealoun wufl A azlimbhodu m? dannisdismanuiou g,

Inshodu W sauaimaihanuion k azinioiu W/mK

=

M) mM31anNTeulunitisy (Plane Wall) ldRasanmsensnanuson

/=3

"meuwﬁfaimLﬁaﬁaﬁqmﬁgﬁmﬁLLazaﬁﬂLauaﬁaﬁaﬁa Lﬁaamﬂﬁaﬁoaaaﬁqm%gﬁ
. @ v & 8 A o A Ao a v A Aa A o '

LANAIN mumaumﬁmauvlmmnmmlqmwnﬂugﬂﬂmmwmqm%gum LAZRINAN
) v @ A dl U dll 1 v o a a

MIANNTOU k 22N ANAINLAT L aUNUA k 8dlUENMNT (2.2) Bad¥INNNTBUALNTA

Aazlaaanmainanusantn

kA kA
qy = _T(TZ _Tl):T(Tl -T,) (2.3)
{ A o o A \ v
Wa  q, ABDATIANNTOUN AR W ; Watt
k Aad T NTousaINid ; W/mK
A AaNuNYaINTINAIANALANIINNT AT BIANNTaU ; M
L AEANNRWIVBINGI ; m
T, AagnnRRINIewEe (1 x=0) ; K
T, AogamnlianIeuIN (N x=L) ; K
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P> o ¥ 1 % AaA o ¥ ci
3‘1.]71 2.9 MIWHIANNIIBHIBAWITIUNNAINITWIANNITAW K AN

232  AIENUMANTanlagn1INA Lﬁa"uaavl,mé'mﬁaﬁuﬁmaﬁ@qﬁﬁqmﬁﬂﬁ
memﬁ'uﬁﬁ]:ﬁmmaﬂLﬂﬁﬂumwu%am:mﬁwaavlmﬁ'ufmq NTZUIUMITLANLUR U
AMNTAUHIT MITNLNANNTaUIALNITNT BIANIIWIAUTAW LaUNIIWIANNTDLL
aanullu 2 AaNEIE AD

(n) ﬂﬂiWﬁﬂaﬁuﬁauuuuﬁaiz(ﬂeeconvedkm)
(@) NTNIAMNIDUULLULIAY (force convection)
usanrinlvaadlnatian1stafan 112N INIANNTa WL UL IZ AR INAN
meehwaoqmwnuﬁmﬂiuﬁaumaavlﬂaLﬁaammnmsﬁmaﬂmé’mﬁaﬁuﬁamaﬁ@lqﬁﬁ
A ' [ ° v a o & o ' o a [ ]
qm%gumemaﬂmu'ﬂﬂ%m@uﬁmaﬂmmu @18819NIINIANNTowLUUBRIZ lauA 11T
' v 1 Q Q Q v { =) J = { ] = v v
ANUNAMNTDUTERININIINURAIAT N WNLAAT I NN L Taune nIwianuTanluwnidu
Y Ada o o
inNduaaralvanuTan
£ o o a lg/ dl a o o % dl dl 1
nMINIANNTanLuLTIAUIz et wNadussnewanuitIaulduaslnan R aune1w

]
a a =

Aaghiaunii wiaduni Lﬁaamnmﬂmmaamswwmﬂu%ammuﬁ'aﬁ'uﬁmmL‘%’;ﬁga
NIUUUDRTE é’afumnmwLmn@hwaaqmmgﬁﬁmﬂ6] AW NMTNIANUTDBULLLIAY
ﬁﬁ]:ﬁé’@mmsmmm%auﬁqdﬂh wei tai1aziduniswianudauuuy lwuiay 6198
aumii%m%'umé’mwmswnmw%’auﬁa%iiugﬂmaq NYNITLENAIVEIRIAU (Newton's law

of cooling)

A T A @ a £ Y P 2
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€

A Genufifnvasiagfisudanueding
. Aegmmplvesiniang ; K
T, fegunnivasvedlnadaszfagvinseanldaniaiaguing ; K

a1 h, S lalasditiensiuazlagitnanas wihowas h, lussuvieslaww i

W/m2K a199fi 2.2 1luenlasssanmaas h,

{ 1 g t{ {
A19191 2.2 ﬂ'ltﬂ Sl‘.l.liz&l’lm‘lla\‘lﬂ&lﬂizaﬂﬁﬂ'ﬁW']ﬂ'TlN%E]%rﬂEll,ﬁ%ail

Us1nn289InNINIANNTaULAzTRAVD IV 1A h, (W/m?K)
ANIWIANNIBULULD RIS, 81NN 5-25
MIWIANUTIBUUUBRTE, 9 20-100
NMINIANNITDBUUVTIAL, 91N H 10-200
AMIWIANU DU, 37 50-10,000
ifmasdan 3,000-100,000
lovasinfimnaanaus 5,000-100,000

fudszdniniswiainudan h, %uagjﬁ'uqmawﬁ'a@m 9789704 1WA LTW A
Wk p, enamila g, dmshanaten k,, anuIanuien ¢, LazAnui Vv
gasv09lwa dmIuaNnuEmamsnannmInenuiawuLisuildunaniluniaa
AUTENNTAT Iz I oM He T N Tl §IANNITIVEINTNIANNTORLLLD AT N
ﬁ]*;*’il}ua%iﬁ‘ummLmﬂ@mmaaqm%gﬁﬁﬁaﬁ'uqmugﬁmawaﬂm fulsEanImsvnaiives

28918 uaze g ﬁizuumﬁsﬁauﬁfuag
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ATLaLEaIHhATADY 9 LNUAMNRWIINVOUN A BABANAIDA IR UIBNTENIDITEEN
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udnauAIMi Sa3uninzeingd, x, wanenudesnsziarunilenTouiisuny
A dl 1 Qs g; al' 1 a A; =3 s
LIIINANNABANNIRUIINT AR muumad"lmm%1Laﬂmngmﬂqmuaaﬂ"l,ﬂm]z"l,mumi
d' J ) 2 1.4.5 A & a (gﬁ U
TUNIRIINAMULRDHINNAU AN T ARG N AL T AT IR LU LA T W1 e TUAITTLN
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[ a > 2 2 = 2 a 6 3; a €n=l' L%
Tauwnulutuaut vt FwaaIulanllars andTnaeaasuad lrath NIdaasnled
WaN L H9ANNRNNUTIZRINILTINNANURIaLaz LTI NANULS e Nyl T lnaanand
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V_ L V_L
ReL = p © =2 (25)
1 v
A & o & P ] @ @ &
Lye ReL Liﬂiua@uuLua‘ma\‘ﬁ)‘@wa%mwmnmaumomumuau NI

durinduyzoz L ;1306

A AMNLTIVBIVEY I ; m/s

L 28 NIAMNVDUN O UAUANRIDAUUN ; m

P AMURIULBTBITEY e ; N/m?

u mwwum"l,@mwnamammvmmauysm; Ns/m
v anuniafwuu@n ; m?/s

1 6 o 6Aa a d' n:l' Qj (% > =
asgluaduauuasingd, Re, . maﬁ;@mLﬂaﬂmmaamﬂmumwuagﬂummwﬂu
YBIRILRZIZAUANNUIN AT DU V9109 19 daTe dwInNawtad bmaniainuinasin
WwwnannmMadfsuidasnsinanaziaufien Re, =10° udtwinnauzasaad inadased
anuastanid maddouulainislvanazisuiian Re, = 2x10° B29Nvaspadlna
ﬁﬁé’dLﬂﬁyuLLﬂmmﬂﬁaﬁ%:wa@smLiTﬁVLﬂluLLNui'@qﬁ]uﬂszﬁdﬁaﬁ;@ﬁﬁm Re, Uszamh
il 2wh°naaLiﬂua@?ﬁfmua%@saﬁg‘@ﬁL‘%mﬂﬁﬂmmaams"l,m ﬁ'@mﬂﬁ;@ﬁvlﬂms"lmlwﬁu
a & = &a &0 ) o & A 5 & o
UANIaLa3 N I um T e LU LN ST AW M ITUNIT I TIN ULz hata 5x10°11uwan

> Aa ' & 6€a 6 A a [ 4
mamﬁms"lﬁmﬂum AIVIUIUNAIBRTINUIT

2.3.3 NIMUHBIIL (Plat Plate)arniinindf (Uniform Surface Temperature)

N
q Q
ﬁ’mw:‘ﬁ’maamemﬁqmﬁgﬁﬁ’moﬁLLazm‘s"L%mfluLmumﬁmﬂumaRe <

5 . @ @ & A
5x 10 1 URLTIVULUDY A1

Nu, = 0.332(Re, }** Pr¥®

¥ 1 o 1 e a Q‘ v v
mﬂ“uagammmmmml,mm (x) LLr’ﬂiﬁ&lﬂ‘JZﬁ‘ﬂﬁﬂ’WiWﬂﬂ’ﬂ&]iﬂ%L%W’WZﬁ]‘@ VL@

h, = 0.3325(Rex)1/2 pr¥?
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ATURLDTAUN Luaﬁaﬁﬂ LLﬁzﬁ&lﬂizﬁ'ﬂﬁﬂﬁﬁﬂﬂElLﬂﬂ?ﬁ&lﬁauﬁ']'ﬂillﬂ’ﬁvl‘ﬁﬂLLfIJfUa'WJ

6 1
WISUBLERTIU 9 ldlag

Nu = 0.664(Re, )"* Pr¥® (2.6)
LS
he = 0.664%(ReL)1/2 prv 2.7)

~ 5 7
lunvlnauuuimasioeui 5 x 10 < Re, < 10" wlalae

h X 0.8
Nu, =2 = o.ozssm”[M} 2.8)
\'

s a £ % A e A Aa [
FUUTLRNININIANNUTDULRAL hc UPBRNITEWIUENI L V]&lﬂ’]ivL%ﬂLLUUL‘YIBTLI’J
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Lau‘nuummmﬁwmm‘lﬁmnmﬁuﬁms@]awmﬂwﬁw Xx=0—>L %A

o

h, = % [ h,,dx

ﬁ%'m%'ugﬂaumsvlﬁ”ﬁaﬁazvlﬁ

Nu, = hckL =0.036Pr¥* Re%® (2.9)

A & Ig A % Qs : a 6 a €: o &
FUMNIN (2.9) B duaun1IN lannIaaTuaiwIsuINTIaLe NI aInl
A = v A A ' & " v v a 6 a [
sumsn (2.9) eltamzlunsdin L >> x inuuddinindasnisaiwisuniensiaieas
a o v VY v { [} & 1 {
T lunmsdensiausovilailtaunisn 2.8) lutae x = 0 — x, Solludrenizdluas

L a a v o Qs Qs = A€ v &
wuLasingd Re, . =5x10° wazaz lasumssnsumsudseandnisnianusamdn

Nu. = 0.036Pr¥*(Re?® - 23,200) (2.10)
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2.4 NSANYNANNITBWINNATUIEUILANTDW (heat transfer from fins)
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ax = q(x+dx) +d. (2.11)
Wanguasissuunudineniidunsihanuiaunisadines uaziingnis
\udrvasirauanunuanavidunmsnianuiounainagle

7L LS +h,Pdx(T -T,)
dX X dX X+dx
2 —_—
P L I dx]+thdx(T -T.)
dx dx
2 —_—
LI dx +h Pdx(T -T,)
dx dx
d’T hP
——< (T-T_)=0 2.12
dXZ kA ( 00) ( )
Tufid P AoanuEduTaUTRIRUARING A A

g3 (2.12) duaunsaninasuundoanlsinsumansaemMaUasuilaiues

Aa

ansnnaneluasuIzuNgaNNTan trngasn N ddwsunTlsuanau1Invinlaaas

9 u

vaa

nafienag mwnﬂﬁ"hmm,aumuvl,%ﬁa’j’l

LR &=

A Aad

a a a
Wwa T, ABgmMRHNNIIUIBIAIL (N x = 0)

A =

asnuiladouauns (2.13) Iagluinanvaingudin liNausazdiiu

d?¢ h.PL?
427 KA
ngueuy 1306 (hCPLz/kA) Auriassusrfadlaniuiuainuies neitiosaninui

0=0 (2.13)

a A a 1 o v ‘gl’ dl v [ = g;
N7 AS POIATUNAWNINULRWIDUN P maawuﬂ%mmﬂmﬂummm’s L 223030 aski
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A =PL (2.14)
PL> AL
A A

dl' aa d' 1 g: | aAa [ g; =3 A
\asnniidvanaunaglusunis (2.14) nwiudfzasnnuen danudsamaninie
o PL2/A fluanusnaig wioaanuenanwie (characteristic) | a3uszun8aMNToH

< A
14320

—
h.PL" _hl (2.15)

3 v A 3 @ A L &g o [l P v o v o
annunlandzdedonuileniuueinltegludymnud deldnuandymninh

ﬂmﬁamm:miwwmwN‘St”aw:i’]magji@‘h 8N QI

2
Bi = hlzl = thL (2.16)

' Aa e & i A v & a 3
aaazliflantuiveineglugaugdnngldiuludymvesaivszuisanuion
niinanshuszIwianuiandnnag 9 3u
& = a o a @ P o
azunIImNNIndousNNINAIUIBIAIUIzIBANNTaufiagluauns (2.16) 14

agﬂumamm Bi 1fluw

d’o
de?

—-Bio=0 (2.17)
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WanAaNnTg (2.17) wanaz e

1

0 =C,e B 4 C e (2.18)

Ansn C, uaz C, dmilalasnisunudraniSanlanvevine uszlasnduadn

o A a & A o =z A P v & A &
Nﬂﬁ]z‘ﬂi’]ﬂa“m%ﬂuu Tb VBIFTUAIL TGLN@L"UU%LﬂuNauvLTﬂTaULT@lLLajﬂ'ﬂzugﬂLﬂu
T, (2.19)
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andUAN x =0 daslanriniugmnglivesvasinafiagsay g wuide
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A A A A o @ = o ' a P
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LAZATNAATINSENUNANNTO WL Y
q, =+/h.PKA(T, -T,)=+/Bi %(Tb -T,) (2.24)
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T.-T, cosh[ Bi }'*(1- ]
=11 h(Bi )"

b~ cosh(Bi
FIWAATINTENLINANUTa NN VAL TIn

q = (Bi)”kTA(Tb ~T, )tanh(Bi)"* (2.25)
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CT,-T, _cosh|(Bi}*(1-&)]+ (Bi}*(A/PL)sinh|(Bi}*(1- &)
T,-T, cosh (Bi)**(Bi }'*(A/PL)sinh(Bi)**

AATINIINUINANNTawaz LA iln

Bu)]/2 ){S'nh (Bi)” + (Bif“(A/PL)co B')w} (2.26)
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2.5 1sz&nSanvasaIuszurgaINIan (Fin Efficiency)
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w30 n= Ltanh(Bi)]/2 (2.29)

(Bi)?
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2.6 nm3tnanigluna

lumsdwisnsgafenialuvie Head loss (Calculation of Head loss) fivivai

ANNEII T LA LMW AT B IR RIV BTN

2 2
E+L+Zl:i+v_2+zz+ht_hp+hf+th (232)
y 29 y 29

WAV UNNFNNNT

Pounp = P9QN, (2.33)

Total head loss uuazudsaaniiuasAisznavdas 9 Aa nIgwiFuwan (Major

loss, h, ) a9 aTTadenIan YR uwlaINuN

a o a da X A o ® @ ] o P
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Myl afaIRITURIDAIINIT A

Q=V =AV (2.34)
y A o vL a a 3
Wa  QV  fAedannyivalilianas (m¥/s)
A fanwnninaaasvia (m?)
v Aaanuisimaspaslng (m/s)

FRIUNIIRIDATINT IAALTINIA

= pAV (2.35)

2.6.1 MIFYLFLRAN ; Friction factor (major loss)

{ Y & o [N ' '
1HadNANNARER (AP) munmaumguﬁnmma (D) auanlvedne (L)

\ = A ' .
AINNVIVITVBING (&) anausuadelumsleae (V) anunwiuinuaded valurie (o)

A
uazaNuniavasvadlng (u) lag
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AP = f(V,D,L &, u, p)

A A ' A ' a ' = A = a &
laaf (&) Aadanunernvasiavia ( niaoln mm w3a ft ) Sansanmseew
FUNTISRALT W

AP _ f(/’VD ,L,EJ (2.36)
1 V2 u DD
. 2
AsEmin T nadusuuuisey (Laminar Flow)
AP :ch(—pVD ,ij (2.37)
lpV 2 D u D
2
2
ap VL gD & (2.38)
2 D u D
MNENN1TV84 Darcy Weisbeah
AP LV?2
= =h, =f—— (2.39)
D 2g
2
%38 AP f 2V (2.40)
D 2

A ~ A v v !
WalUTy UL URNNITTINGBISNLIN

&
f = ¢(Re,5j

(M) NIAMTIRALULIIUSHY ; Re < 2300
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64
f = 2.41
laminar Re ( )

4 Y1 o o & s P VI
‘IT\‘]L‘ﬁuvl.@]’ﬂaﬁﬂiﬂﬂ’]ivl.ﬁﬂLLiJiJTT]JL%UB%% Friction factor 3z1unuUAIVUB

C oy X o ,
Reynolds number L "lmunum’mmgms: (Roughness) 1a3naLag

() nydinslnaduuuuiugn (Turbulent Flow) ; Re > 2300

L g 7, 251

Jr Re /T

(2.42)

fIRTUFNNT (2.42) \3UNIN&NNITV8I Colebrook formula

e f lasldauniif (2.42) Seflanugenifiasananadudon
=2 oA o & \ ' A Kad a '
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(2.45)
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Fully developed inlet flow
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Thin inlet boundary |ayer
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2.6.3 nymialunay (Noncircular ducts)
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NNIRIANNRUN BT FIRIUNNT IR b agNNIIN TR NFN N RSzl Tnurian

2
%

& ' [ o @ ° [V { v & a A [y
Wurianay momaﬂ"ﬁaumimmumﬁﬁgﬂmaﬁ"l,wﬂawuu 2LINIMNNITIVYINLNBY LRW
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(2.46)

A fanunninae
P dawguvauiten (Wetted perimeter)
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n pump
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3.2 7an1Inadal (Test section)
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30 PPI

40 PPI

50 PPI

A19197 3.1 ’NLAVaIIWNINaILA

Parameters Cu-30-6.7 Cu-40-6.7 Cu-50-6.6

Number of pore per inch, PPI 30 40 50

Porosity, € 0.932 0.932 0.933
Relative density (%) 6.7 6.7 6.6

Mean pore diameter , 25.4/PPI (mm) 0.846 0.635 0.508
Fiber thickness, t (mm) 0.264 0.258 0.241
Fiber length, I (mm) 1.044 1.021 0.963
Surface area per unit volume (m?/m°) 1416 1602 1745
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A1319N 3.1 auﬂamaaq@maau

Aur ens ks (W/m K x10° F
(m?) K) (m?)
PFHS 0.0094  0.889 44.51 - -

FPHStoamaoer1 0.0739 0.932 10.10 17.74  0.0279
FPHStoamaopr1 0.0832 0.932 10.10 6.62 0.0249

FPHSfoamsorer~ 0.0904  0.933 10.10 404 0.0225
PFHSoamsorer 0.0734  0.828  53.49 9.09  0.0293
PFHSoamieer 0.0817  0.828  53.49 479  0.0229
PFHSoamsorrr 0.0881  0.829  53.49 322 0.0196
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General Setting Data Area
Address : 01 IDI Dec
= Channel 0 [Kype [+0070.0 J
I= Channel 1 [K type [+0089.7 )
Fimware Version: |57 05
Channel 2 [Ktype [+00257 9
Comm WDT:[0o00  [0000  Q.1sec
Channel 3
CIC offsel(-99.91093.9C: [+0000 IK ype pou @
All Channel Input Range: [jat use .I Channel 4 [K 1ype |+0032.8 o
Data format : ineeri i
|Eng|neemg units 'I Channel 5 [ ype [+0035.2 @
Integration Time |B-Dms [50Hz) vl
Channel6  [K ype [+00a41 9
Update
Channel Mode Setting 7 Ikype | 688268 @
Channel : Range : CiC  |+00269
[cho =] [Kipe =l Hint
@  This channel is opening wire.
U :
pdate | @ Ensble " Disable @  This channel is nomal operaling.
Zero Cal. Span Cal @ This channelis disabled.

‘:l v Qd‘ o 1 1
;51]7] 3.22 ﬂmaauamwaqmugmmmema 9
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muﬁwé’uLLa:ﬁwmiﬂuﬁﬂ@hqm%Qﬁ NAGIIANUAWLAZTNEI AN A I eI N KA
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Q = r&p (Ta,i _Ta,o)

o M= pVA,

342 @NUMUBNIUANUITIN (R)

T T

R = wall,avg ~ 'a,avg

Q

343 Masnudunfeuvad e (P)

P=\fAP

¥

A A ' 2
AwNMTnavasarmeluria, m

A =
& 4 ] @ a 2

A, = AUNNIINYULNANNIBWVBIAIL, M
C, = ANUTAWINWIZVBIBN, Jkg K
& = 8ATINT AL TININVBIBNNNE, kg/s
Q = é’m’m’ﬁd’mmﬂ’n&ﬁau, W

a P 7 a (o]
Tai = qm%ﬂumaammﬁwmdmﬁmu, C

A A A o
Tao = qm‘ﬁﬂm“llﬂﬂﬂ']ﬂ’]ﬂﬂﬂ']@aﬂﬂﬂiﬂ, C

a A A ' a o
Tomg = qmmmadmmﬂmazmvlmwmmu, C

Tualag = QWANTRIBIATLIARY, °C
v = ANNLSIVBIaNMA, m/s

, 3
P = ANUAUILUUYDIDINTA, kg/m
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Thermal resistance, Rth (K/W)
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Citti Nilpuen,

* Department of Power Engineering Technology, Co

A heat sink is a passive heat
exchanger that transfers the heat
generated by an electronic or a
mechanical  device to a  fluid
medium. Heat sinks are popularly
used to cool central processing unit,
graphics processors and high- .
power semiconductor devices such as power transistors, lasers
and light emitting diodes (LEDs). Due to rapid developments of
semiconductor technology, high performance with small size
electronic devices have been generated continuously in the last
decade. Therefore, the improvement of electronic cooling system
by effective technology is very important. This research focuses
on the thermal performance improvement of plate fin heat sinks
by using metal foam.

1. To study the effect of air velocity, heat flux, and pore density of
metal foam on thermal resistance and pressure drop

2. To compare the thermal performance between plate fin heat
sink, flat plate heat sink combined with copper foam and plate fin
heat sink combined with copper foam

The experimental apparatus is set up to examine the thermal
performance of plate fin heat sink combined with copper foam as
shown in Fig.1.

L il Straightener Thermocouple

] == t ]

Vs (control hest Ban) [
N\ g ‘
L =

Triginal

Diwta bogeper

Fig.1. Schematic diagram of experimental apparatus
Photograph of test sections and copper foam is presented in
Fig. 2. Test sections consist of plate fin heat sink (PFHS), flat plate
heat sink combined with copper foam (FPHS,, Jand plate fin
heat sink combined with copper foam (PFHS; ).

30 PPIL

40 PP1

S0 PRI

FFHS  FPHS,. PFHS,..
Fig.2. Photograph of test wcuon nnd copper foam
Copper foam with different pore density of 30 PPL, 40 PPL, and
50 PPI arc used for this experiment. The test runs are done at air
velocity ranging between 1 and 5 m/s and heat flux ranging
between 9.48 and 12,59 kKW/m?2,

of Industrial

The results showed that thermal resistance of heat sinks is
decreased with increasing alr mass flux and pore density (Fig. 3
and 4). Under the simil conditi the average thermal
resistance of FPHS,, ., and I’FHS,“,,, is lower than PFHS about
59.3% and 72.2% respectively. An increase of pore density
ranging between 30 PPl and 50 PPI results in the decrease of
thermal resistance 10.77% and 7.64% for FPHS;, . and
PFHS;,, .

Fig.3. Effect of mass flux on the  Fig.4. Effect of pore density on the
thermal resistance. thermal resistance.
Pressure drop of air flowing through heat sinks increased when
air mass flux and pore density are increased (Fig.5). The pressure
drop of FPHS,,_,, and PFHS,  is increased 9.59 times and 13.23
times when compared with PFHS. To verify the proper working
conditions, the relation between thermal resistance and pumping
power is presented in Fig. 6. Under the similar pumping power,
thermal resistance of PFHS;  and PFHS;  lower than that
obtained from PFHS of 46.67% and 22.50%, respectively.
However, it is slightly changed with varying pore density.

Fig.6. The relation between thermal
resistance and pumping power.

Effect of mass flux and pore
v on the pressure drop.

Under the testing conditions, PFHS, . give the highest thermal
performance. That is, thermal resistance of PFHS,  is decreased
46.67% when compared with PFHS at the similar pumping
power.

1. S. Chingulpitak, N. Chimres, K. Nilpueng, S. Wongwises,
Experimental and numerical investigations of heat transfer and
flow characteristics of cross-cut heat sinks, International Journal
of Heat and Mass Transfer (2016), 142-153.

The authors would like to express their appreciation to the
Thailand Research Fund (TRF) for providing financial support
for this study.
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Abstract

Thermal resistance and pressure drop of air flowing through plate fin heat sink
combined with copper foam are experimentally investigated and compared with that obtained
from conventional plate fin heat sink and flat plate heat sink combined with copper foam.
Copper foams with pore density of 30PPI, 40PPI, and 50PPI are used. The experiments are
done at air velocity ranging between 1 m/s and 5 m/s and heat flux ranging between 9.48
kW/m?and 12.59 kW/m?. The experimental results showed that the increase of air mass flux
and pore density of copper foam lead to the decrease of thermal resistance and increase of
pressure drop of heat sinks. Under the similar pumping power, PFHSsam give the lowest
thermal resistance and thermal resistance of PFHStm and FPHSs.m lower than that from
PFHS about 40.74% and 25.18%.

Keywords: Thermal resistance, Pressure drop, Heat transfer enhancement, Porosity, Pore

density
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Highlights

New experimental data of thermal performance of PFHSfoam are investigated.

Copper foams with different pore density of 30PPI, 40PPI, and 50PPI are used.

Thermal performance between PFHS¢,am, FPHSam, and PFHS are compared.

The optimum thermal performance of heat sinks and working conditions are reported.

Nomenclature

Aur  Overall heat transfer area, m*

Asrontar frontal area of flow channel, m?

a intercept of linear equation

b slope of linear equation

Cpa  Specific heat at constant pressure of air, J/ kg K

AP total pressure drop, Pa

E voltage,
F inertial coefficient of heat sink
G mass flux of air, kg/s m?

k thermal conductivity of solid copper, W/m K

copper

Keopper foam thermal conductivity of copper foam, W/m K

k. effective thermal conductivity of plate fin heat sink, W/m K

| electric current, A
K permeability of heat sink

L heat sink length, m
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n&  air mass flow rate, kg/s

Pp pumping power, W

Qa heat transfer rate absorbed by the air, W
Qayg average heat transfer rate, W

Q. heat transfer rate obtained from heater, W
Rin  thermal resistance, K/W

Taiag average air temperature at inlet, K
Taoavg average air temperature at outlet, K
Toag average temperature of heat sink base, K
\Y air velocity, m/s

V& air volume flow rate, m%s

Greek symbols

£ porosity of copper foam

ens  porosity of heat sink

M dynamic viscosity, kg/ m s

p  density, kg/ m®

Subscripts

avg  average condition

i inlet condition

0 outlet condition

1. Introduction

Due to rapid developments of semiconductor technology, high performance with
small size electronic devices have been generated continuously in the last decade. This leads
to a higher heat dissipation in a confined area and the lower reliability and life time of device.

Therefore, the improvement of electronic cooling system by effective technology is very
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important. This is because the force convection heat transfer of ordinary finned heat sink
becomes insufficient and reaches its limit to remove heat under high heat flux conditions. The
metal foam heat sink is one type of effective cooling technology that used in high heat flux
applications. The main benefit of metal foam heat sink are high surface area to volume ratio
(1000-3000 m?/m®), enhance the mixing of fluid flow, good strength, and lightweight. In the
past, the studies associated with heat transfer and flow characteristics of air through metal

foam heat sink have been conducted by a number of researchers.

Mancin at al. (2010) studied the heat transfer coefficients of air flow in aluminum
open-cell foam. Seven aluminum foams with different number of pores per inch (PPI),
porosity and foam core height were tested. The experiment was conducted at heat fluxes
ranging between 25 kW/m? and 40 kW/m?. They reported that heat transfer coefficient
increased when increasing the mass flow rate and decreasing porosity. However, heat transfer
coefficient did not depend on the imposed heat flux. A simple heat transfer model was

developed based on their experimental data.

Mancin et al. (2012) presented the heat transfer coefficient and pressure drop of air
flowing through copper foam. The copper foam with number of pores per inch of 5, 10, 20,
and 40 and porosities ranging between 0.905 and 0.934 were tested. The test run were done at
the air mass flow rate ranging between 0.006 kg/s and 0.012 kg/s. The heat transfer
coefficient and pressure drop increased with the air mass velocity. They stated that the heat
transfer performance of Cu-5-6.7 showed the best results and concluded that the heat transfer

performance of the foam depended on the surface area and foam finned surface efficiency.

Ribeiro et al. (2012) investigated the thermal-hydraulic performance of air flowing
inside micro-channel condensers with open-cell metal foams. The copper metal foams with

pore densities ranging between 10 PPI and 20 PPI and porosity ranging between 0.893 and
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0.947 were tested and compared with conventional copper plain fins condenser. The air-side
pressure drop was directly proportional to the pore density and inversely proportional to the
metal foam porosity. The j-factor decreased with increasing Reynolds numbers but it was

enhanced when pore density was increased.

Wan et al. (2012) studied the flow and heat transfer of water flowing in a miniature
porous heat sink for high heat flux application. The experiment was performed at heat flux
ranging between 0 - 140 W/cm?, volumetric flow rate ranging between 5 L/h - 50 L/h. The
200 mesh stainless wire mesh with the length, width and thickness of 20, 10, and 3 mm were
used. The pore radius about 0.055 mm, porosity of 0.61, and permeability of 6.16 x 10™ m?
was used. The overall heat transfer coefficient of heat sink was increased with the increasing
the coolant flow rate and heat load. They concluded that micro heat sink had good

performance for electronics cooling at high heat fluxes.

Mancin et al. (2013) studied the forced convection of air flow through metal foams.
Twenty-one aluminum and copper foam samples with pores per linear inch ranging between
5 and 40 and porosity ranging between 0.896 and 0.956 were verified. The effect of porosity,
pore density, foam core height air mass flow rate, and imposed heat flux were investigated.
They reported that the heat transfer performance enhanced when decreasing porosity for both
copper and aluminum foam and the heat transfer performance of copper foam was higher
than aluminum foam. The pressure drop of aluminum and copper foams increased as the pore
density increased. The correlations for the heat transfer coefficient and pressure drop were

proposed based on their experimental data.

Kamath et al. (2013) studied the effect of thickness and thermal conductivity of
porosity foams on heat transfer and pressure drop in a vertical channel. The test sections were

aluminum and copper foams of 10 mm, 20 mm and 30 mm thickness with porosity of 0.95
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and 0.87. The experiment showed that the pressure drop was not sensitive to an increase in
the foam thickness. Heat transfer of metal foams enhanced by 2.6-3.8 times for the same inlet
velocity and excess temperature comparing with empty channel. The heat transfer

performance of copper foam was higher than that from aluminum foams about 4%.

Chen et al. (2013) numerically studied the heat transfer of fluid through metal-foam
porous layer within multiple discrete heated sources in a horizontal channel. The flow
mechanism was simulated based on Darcy-Brinkman—Forchheimer flow model and two-
equation energy model under thermal non-equilibrium. They stated that, under the same
Reynolds number, the increase of the solid—fluid interfacial heat exchange resulted in a
decrease of the temperatures difference between the solid and fluid phases. The pressure drop

was higher at the higher pore density, lower permeable, and smaller porosity.

Kamath et al. (2014) presented experimental investigations of convective heat transfer
in a vertical channel filled with metallic foam. Ten different pores per inch metal foam with a
width of 250 mm, length of 150 mm and thickness of 20 mm were used. The effect of inlet
velocity and heat input on the heat transfer was investigated. The experimental results found
that high temperature drop was found at an inlet velocity of 0.5 m/s. They stated that the heat

transfer enhancement was higher at low inlet velocity.

Chumpia and Hooman (2014) studied the heat transfer and pressure drop
characteristics of air through aluminium foam-wrapped tubular heat exchanger. The foam
thickness of test section varied from 5 mm to 20 mm. Test run were performed at air velocity
ranging between 0.5 and 5 m/s. The results of temperature differential between the ambient
air and the foam surface, overall thermal resistance, and pressure drops were compared with

conventional finned tube. They stated that the thermal efficiency and overall thermal
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resistance decreased with the increasing foam layer thickness. The non-dimensional forms of

pressure drop and thermal resistance correlations were proposed.

Chen and Wang (2015) investigated the effect of metal foams arrangements along the
liquid cooling heat sink. Seven arrangements by varying the pores per inch of metal foam
with four multiple channel designs were fabricated. The metal foams with pores per inch of
10, 20, and 30 were used. Thermal resistance of metal foams heat sink was reduced by more
than 62% as compared with that of empty plate design. They stated that, in order to obtain the
best performance, the larger PPl metal foam should be placed at the inlet, followed by a

smaller PPI metal foam, and the least PPI metal foam at the end part.

Chuan et al. (2015) numerically studied the fluid flow and heat transfer of porous fins
in micro channel heat sink. The solid fins were replaced by porous fins to reduce the pressure
drop across the heat sink. The results show that the pressure drop of the porous fins was
reduced by 43.0% to 47.9% at various coolant flow rates comparing with the conventional
heat sink. The simulation showed that the porous fins leads to a non-zero velocity of fluid at
the interface between the channel and porous fin and it was the primary reason for the

decrease of pressure drop in the porous fin heat sink.

Heat transfer performance of the pin—fin heat sink filled with packed brass beads
under a vertical flow was experimentally investigated by Jeng et al. (2015). They stated that
the porous properties and behaviors of the fluid flow and heat transfer was changed by
varying the diameters of brass beads. The results indicated that the average Nusselt number
of pin—fin heat sinks with packed brass beads increased 17.0-78.4% and 95.8-311.2%
comparing with the pure pin-fin heat sinks and pure packed-brass-beads heat sinks.

Empirical correlation of Nu was proposed in a non-linear heat-transfer superposition form.
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The heat transfer of air flow through the plate and metal foam matrix was investigated
theoretically and experimentally by Dixit and Ghosh (2016). High porosity copper foam
sandwiched between plates were tested under constant temperature conditions. They said the
metal foam attached to a plate can be treated as extended heat transfer surface (fins).
Comparison between the experimental data and theoretical prediction showed good

agreement.

Shih et al. (2016) studied the heat-transfer behaviour of aluminum-foam heat sinks
with a solid aluminum core under impinging-jet flow conditions. The contact ratio of heat
sinks of 0 - 0.013 were used. The results found that Nusselt number reached a maximum at
contact ratio of 0.00676 and after that the Nusselt number decreased when contact ratio

higher than 0.00676.

Nawaz et al. (2017) investigated the thermal-hydraulic performance of open-cell
aluminum metal foam heat exchanger. The effect of flow conditions and metal foam
geometry on the heat transfer coefficient was presented. Testing were done in a closed-loop
wind tunnel under dry operating condition. Experimental results showed that the metal foams
with smaller pore size gave a higher heat transfer coefficient. Conversely, the larger pores
size result in the lower pressure drop. The correlations of friction factor and the Colburn

factor were also proposed.

Feng et al. (2018) investigated the natural convection in metal foam heat sinks with
open slots. The test sections with different foam heights and slot widths were tested under
horizontal and vertical orientations. The results showed that, for given heat sink volume, open
slot width between 5-8 mm gave the maximum heat transfer coefficient. Heat transfer

coefficient was increased 14.9% - 38.2% compared with the single foam block.


http://www.sciencedirect.com/science/article/pii/S0017931016304410
http://www.sciencedirect.com/science/article/pii/S0017931016304410
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As described above, it can be clearly seen that the effect of relevant parameters, i.e.,
pore density (number of pores per inch), porosity, foam thickness, material of metal foam on
thermal performance of metal foam have studied by previous researchers. However, the
research about the combination of solid fin heat sink and metal foam are studied by only a
few researcher. Therefore, there remains room for further research, especially the comparison
of thermal performance between metal foam and solid fin heat sink combined with metal
foam. The main aim of this article is to study the effect of pore density of metal foam, heat
flux, and air velocity on thermal resistance and pressure drop of plate fin heat sink combined
with copper foam (PFHStam). The comparison of thermal performance between plate fin heat
sink combined with copper foam (PFHSam), flat plate heat sink combined with copper foam
(FPHSam), and conventional plate fin heat sink that have never been seen before are also
investigated.

2. Experimental apparatus and procedure

The experimental apparatus is set up to examine the thermal performance of plate fin
heat sink combined with copper foam as shown schematically in Fig.1. A detailed description
of the experimental setup can be seen before in previous publication [17]. It can be divided
into 4 main parts: air supply set, heat supply set, test section, and data acquisition system. Air
supply set is designed to circulate the air to test section. The rectangular channel is made of
an acrylic plate with a 5 mm thickness. Dimension of channel are 0.075 m width, 0.027 m
height, and 0.8 m length. The variable speed fan with an inverter installed at inlet section and
controlled the air velocity at range of 1 m/s —5 m/s. To straighten the air flow in a channel, a
honeycomb is mounted before air entering to the test section. All flow channel are covered
with 6.4 mm thick Aeroflex insulation to reduce the heat loss. Heat supply set consists of an
electric heater and variable transformer (variac). The 100 W plate heater with 27 mm width,

75 mm length, and 2 mm thickness is installed at the bottom of test section base. Heat flux
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from heater is controlled by using variac at ranging between 9.48 kW/m?and 12.59 kW/m?.
To prevent the heat loss to ambient, a plate heater and base of heat sink are enclosed by

bakelite plate with the 20 mm thick.

The test sections which are consist of a plate fin heat sink (PFHS), three plate fin heat
sink combined with copper foam (PFHSt.m), and three flat plate heat sink combined with
copper foam (FPHSam) as shown in Fig.2. For plate fin heat sink, the dimension of heat sink
base are 27 mm width, and 75 mm length. It consists of three plate fin with thickness of 1
mm, plate fin height of 25 mm, and channel width between plate fins of 12 mm (Fig.2a). For
plate fin heat sink combined with copper foam, two copper foams with 12 mm width, 75 mm
length, and 25 mm length are inserted into the space between plate fins (Fig.2c). Copper foam
sheet is cut by a wire cutting machine. Thermal grease paste compound silicone is used to
thermal coupling between heater and heat sinks. For flat plate heat sinks, the width and length
of heat sinks are 27 mm, and 75 mm, respectively (Fig.2b). Copper foam with 27 mm width,
75 mm length, and 25 mm height is attached on the plate heat sink base. The photographs of
copper foam with different pore density of 30PPI, 40PPI, and 50PPI which used in this
experiment are showed in Fig.3. The copper foam properties of porosity, pore density,
relative density, and surface area per unit volume which is obtained from manufacturer are

showed in Table.1.

To record the experimental data, the several type of measuring instrument are
installed. The hot wire anemometer with an accuracy of £1.0% of full scale is used to
measure the air velocity at the inlet section of channel. Pressure drop of air flow through the
test section is read by digital differential pressure manometer with an accuracy of £0.5% of
full scale. To measure air temperature, six thermocouples are installed at the inlet and outlet
section of channel. Two thermocouples are installed below the top surface of the heat sink

base 0.5 mm depth to measure heat sink wall temperature. T-type thermocouples with all
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temperature measurements uncertainty of +0.1°C are utilized. Electric power supplied to a

plate heater is recorded by power meter with an accuracy of £0.08 kW.
2.1 Properties of heat sinks combined with copper foam

In this study, three groups of heat sinks with different configuration and pore density
of metal foam are tested, including plate fin heat sink (PFHS), flat plate heat sink combined
with copper foam (FPHSt.m), and plate fin heat sink combined with copper foam
(PFHSt0am). This lead to the different porous properties and heat transfer and flow
characteristics of heat sinks. In this section, the relevant properties of each heat sinks, i.e.,
overall heat transfer surface area (Ant), porosity of heat sink (& ns), effective thermal
conductivity(k;), permeability (K) and inertial coefficient (F) are calculated and presented in
Table.2. Overall heat transfer surface area (Anr) is summation of surface area of heat sink
base, plate fin and copper foam. The surface area of copper foam calculated from surface area
per unit volume which is obtained from manufacturer. The porosity of heat sink (& ns) is
defined as ratio of void volume to the overall volume of test section (27 mm width x 75 mm
length x 25 mm height). The porosity of heat sinks combined with copper foam is calculate

based on the copper foam porosity obtained from Table.1.

The effective thermal conductivity of plate fin heat sink (PFHS) can be calculated by

following equation [12]:
k: = kcopper (1_ SHS) (1)

When Kcopper Is thermal conductivity of copper (401 W/m K) and gys is porosity of plate fin
heat sink. The effective thermal conductivity of plate fin heat sink combined with copper

foam (PFHSam) can be express as
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ks* = kcopper (1_ gHS) + kcopper foam (‘gHS) (2)

where Keopper foam 1S thermal conductivity of copper foam (10.1 W/m K) which received from
manufacturer. For flat plate heat sink combined with copper foam (FPHSt.m), the effective

thermal conductivity is equal to thermal conductivity of copper foam.

Based on the Forchheimer-extended Darcy model, the pressure drop (AP) of air flow

through heat sink with copper foam which is related with the permeability (K) and inertial

coefficient (F) can be expressed as:

AP U F 2
2ol ANV 4] — 3
L (K)V (R g )v ©)
Where p is air density, u is air viscosity, and V is air velocity inside heat sink which can be

estimated by

v ™
Afrontal P gHS

Where n& is air mass flow rate and Asontal IS frontal area of flow channel. Equation (3) can

be rearranged as follows:

AP KL PPy _asby 4)

LV K JK

According to the linear least square regression method and experimental data, the constant a
and b which are intercept and slope of linear equation are calculated from Eq. (4). Therefore,

the permeability and inertial coefficient of heat sinks with copper foam can be expressed as:

K=£ )
a
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2.2 Data reduction

Based on the recorded experimental data, the relevant parameter about heat sink
thermal performance including heat transfer rate (Q), thermal resistance (R), and pumping

power (Pp) are estimated in the following procedures:

The average heat transfer rate obtained from heat supplied from heater to the test

section (Qe) and the heat absorbed by the air (Q,) can be determined by

Q.. = Qe +Qa — El + r&olcp,a(Tao,avg _Tai,avg)
avg 2 2

(7)

where cp. is specific heat of air, Taag IS average air temperature at inlet, and Taoavg IS

average air temperature at outlet, E is voltage and I is electric current.
The thermal resistance of heat sinks (R¢,) can be expressed as

T

T avg ' ai,av
R, =8¢ =2 ®

Qavg
where Ty avg IS the average temperature of heat sink base.

The pumping power (P,) that is used to drive the air flow through the heat sink is

calculated by

P =\&p (9)
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where \& is the air volume flow rate, and AP is the total pressure drop between the inlet and
outlet of the test section. The air thermodynamics properties, i.e., density, and viscosity are

estimated at the mean temperature.

3. Results and discussion

In this section, the experimental results of thermal performance of plate fin heat sink
combined with copper foam (PFHSt.m), including thermal resistance and pressure drop are
presented. Comparison of thermal performance between plate fin heat sink (PFHS), plate fin
heat sink insert with copper foam (PFHSam) and flat plate heat sink combined with copper
foam (FPHSam) are also described.
3.2 Thermal Resistance

The effect of mass flux on thermal resistance of PFHS, PFHSt,,m and FPHSm for
different heat flux are shown in Fig. 4. As expected that the thermal resistance of heat sinks
decreased with increasing air mass flux. This is because higher air velocity result in
enhancement of turbulence intensity of air inside the flow channel. Moreover, for PFHS5am
and FPHS«.am, separation flow and mixing flow of air inside the porous structure is generated
and also increased with increasing velocity. These effects cause the enhancement of heat
transfer rate from heat sink to air and decrease of heat sink base wall temperature. Therefore,
thermal resistance of heat sinks are decreased. In Fig.4, it is also found that thermal resistance
of heat sinks are slightly changed by the varying heat flux. The reason for this is that both
heat transfer rate and temperature difference between wall base heat sink and inlet air are
increased as the heat flux is increased. However, the augmentation of heat transfer and
temperature difference are nearly the same which cause the slight change of thermal
resistance. The present measured results are consistent with that obtained from the previous

publications [1, 2].
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Comparison of the results obtained from PFHS, PFHStm and FPHS:am in Fig.4,
under the similar mass flux, it is found that the average thermal resistance of FPHS¢,m and
PFHSam is lower than PFHS about 59.3% and 72.2% respectively. It can be explained by
flow behavior of air inside porous structure, overall heat transfer area and average thermal
conductivity of heat sinks. That is, the separation flow and mixing flow inside the copper
foam cause the higher turbulence intensity of air inside heat sink. It is also found that overall
heat transfer area of FPHS,m and PFHSm iS more than PFHS about 9 times. Therefore,
thermal resistance of FPHS¢,,m and PFHSm is lower than PFHS. In addition, although the
overall heat transfer area of FPHSg.m and PFHSgam IS similar, the average thermal
conductivity of PFHSam is higher than FPHSt.m. Therefore, heat transfer rate from heat
sink base to the copper foam of PFHSs,am, IS higher. It lead to the lowest thermal resistance of
PFHStoam.

The variation of the thermal resistance with pore density of copper foam for PFHS,am
and FPHS¢,am under different mass flux are shown in Fig. 5. Thermal resistance of heat sinks
are decreased when increasing pore density. However, it observed that the decrease of
thermal resistance also depended on mass flux. That is, thermal resistance of PFHSm and
FPHSoam 1S decreased 13.57% and 10.89% as increasing pore density at low mass flux (G <
2.89 kg/m?s for PFHSam and G < 3.88 kg/m?s for FPHSam). It can be explained that heat
transfer area of copper foam is increased with increasing pore density. It also found that
higher number of pore per inch (pore density) results in higher mixing flow of air inside
copper foam. These effects lead to the enhancement of heat transfer rate and decrease of
thermal resistance. However, at high mass flux (G > 2.89 kg/m?s for PFHS.m and G > 3.88
kg/mzs for FPHStam), it is slightly decreased 7.97% and 4.39% for PFHSam and FPHSam,

respectively.
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Considering the variation of thermal resistance ratio of PFHSm and FPHStam
(Rth,prHswan! RinFrHsen) IN Fig.6 found that the average thermal resistance ratio of PFHStm
and FPHSt,.m are 0.686 for all testing conditions. The thermal resistance of PFHSum
decrease 33.8%, 32.1%, and 30.6%, for pore density 30 PPI, 40 PPI, and 50 PPl when
compared with thermal resistance of FPHSm. This is due to the fact that although overall
heat transfer area of PFHSam IS similar to FPHS+,.m, the average thermal conductivity of
PFHStam are higher than FPHS+,,m. Therefore, thermal resistance of PFHS,.m, are lower than

FPHSfoam .

3.2 Pressure Drop

In order to estimate the permeability and inertial coefficient of FPHSt.n and
PFHS+am, the experimental data of AP/LV and air velocity inside copper foam (V) is plotted
in y-axis and x-axis as shown in Fig.7. Based on the linear least square regression method,
the value of constant a, constant b, the permeability (K) and inertial coefficient (F) of
PFHSfam and FPHSt.m are presented in Table.2 and 3. It is found that permeability of
FPHSt,am are higher than that of PFHS¢.m, however the inertial coefficient (F) of FPHSam
are lower than that of PFHSs.m. The permeability and inertial coefficient of heat sinks

decreased when pore density is increased under the similar porosity.

The effect of air velocity on frictional pressure drop, inertial drag pressure drop, and
total pressure drop inside plate fin heat sink with copper foam 30 PPI is represented in Fig.8.
Although the inertial drag pressure drop and frictional pressure drop is increased with
increasing air velocity, inertial drag pressure drop much higher than frictional pressure drop.

This is because, according to Forchheimer-extended Darcy equation, the total pressure drop of

air flow through porous medium can be divided into 2 parts: pressure drop due to friction

between air and surface and pressure drop due to inertial drag which is result from separation
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flow and mixing of air inside copper foam [12]. The frictional pressure drop term is directly
proportion with velocity, however, inertial drag pressure drop term is proportional to square
of velocity. In addition, the results from this figure also observed that frictional pressure drop
higher than inertial drag pressure drop at low air velocity. However, the inertial drag pressure
drop higher than frictional pressure drop when air velocity higher than critical velocity
(V2> Vriticat)- That is, the inertial drag pressure drop plays an important role in total pressure
drop (65.38% of total pressure drop) when V2>V iica. Definition of critical velocity (Vriticar)
is velocity conditions that the inertial drag pressure drop higher than surface friction pressure
drop. Critical velocity for each heat sinks can be calculated based on the coefficient a and b

(V>a/b) as shown in Table.3 [18].

Considering the effect of mass flux on total pressure drop in Fig.9 found that, as
expected, the total pressure drop of air inside heat sinks increased with increasing mass flux.
That is, an increase of air velocity cause the higher turbulence of air flow and total pressure
drop inside the all heat sinks. It is found that the average total pressure drop of PFHS¢.m and
FPHStam is increased of 9.10 times and 6.75 times when compared with PFHS under the
similar testing conditions. It is also clearly found that, for heat sinks combined with copper
foam at pore density of 30PPI and 40PPI, the tendency of pressure drop slope is changed
when air velocity is increased. However, for heat sinks combined with copper foam at pore
density of 50PPI, the tendency of pressure drop slope is rather linear. This is because, for heat
sinks combined with copper foam at pore density of 30PPI and 40PPI, total pressure drop
linearly increased when air velocity lower than critical velocity after that total pressure drop
exponentially increased when air velocity higher than critical velocity. Therefore, the
tendency of pressure drop slope is changed. However, the testing conditions of air velocity

inside heat sinks combined with copper foam at pore density of 50PPI is lower than the
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critical velocity. Therefore, total pressure drop mainly depended on frictional pressure drop

which is directly proportion with air velocity.

Considering the effect of pore density found that on the pressure drop of air flow
inside the heat sinks increase about 1.72 times and 2.02 times for PFHSam and FPHSam
when increasing pore density from 30PPI to 50 PPI. This is because surface friction due to
surface area between air and heat sinks enhanced as pore density is increased. In the same
way, the separation flow and mixing of air flow inside the copper foam is higher when
number of pore per inch increased. These lead to the increase of flow resistance and total

pressure drop.

To compare thermal performance of heat sinks, the relation of thermal resistance and
pumping power of PFHS, PFHSfam and FPHSam is showed in Fig.10. Thermal resistance of
all heat sinks decreased as pumping power is increased. However, the thermal resistance
tendency is slightly changed when pumping power higher than about 0.4 W. This implied
that, at pumping power higher than 0.4 W, thermal resistance remain constant whereas the
fan power consumption is increased. Under the similar pumping power, average thermal
resistance of PFHSt.m and FPHSsam lower than PFHS about 40.74% and 25.18%. The
average thermal resistance of PFHSam lower than FPHS,m about 27.4%. Moreover, it is
also found that the pore density has slight effect on thermal resistance of PFHS;m and
FPHStam. However, tendency of thermal resistance PFHStam and FPHStqym slightly

decreased when decreasing the pore density of metal foam.

4. Conclusions
This article studied the effect of number of pore density of metal foam, heat flux, and
air velocity on thermal resistance and pressure drop of FPHS¢,.m. The comparisons of thermal

performance between PFHSt.m and FPHSsam with conventional PFHS are also presented.
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Copper heat sinks combined with copper foam with porosity of 0.932 and the different pore
density of 30PPI, 40PPI and 50PPI are used. The experiment are performed at air velocity
ranging from 1 m/s to 5 m/s and heat flux ranging from 9.48 kW/m?to 12.59 kW/m?. The
result showed that thermal resistance of FPHSgam and PFHStm is decreased when
increasing pore density and mass flux. The average thermal resistance of FPHSs.m and
PFHS.m decreased 59.3% and 72.2% comparing with conventional PFHS. Total pressure
drop of air inside heat sinks increased with increasing mass flux, and pore density. The
average total pressure drop of PFHS¢,am and FPHSgam is increased 9.10 times and 6.75 times
when compared with PFHS. Under the similar pumping power, the average thermal
resistance of PFHSm and FPHSam lower than PFHS about 40.74% and 25.18%. It can be
conclude that the optimum thermal performance of heat sinks is plate fin heat sink combined
with copper foam with pore density of 30 PPl under working condition of pumping power

lower than 0.4 W.
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Fig. 1. Schematic diagram of experimental apparatus.
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(a) (b) (©
Fig. 2. Photograph of test section.

(a) plate fin heat sink (PFHS)
(b) flat plate heat sink combined with copper foam (FPHS¢,am)

(c) plate fin heat sink combined with copper foam (PFHS¢am)
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Table 1. Copper foam properties

Parameters Cu-30-6.7 Cu-40-6.7 Cu-50-6.6

Number of pore per inch, PPI 30 40 50

Porosity, ¢ 0.932 0.932 0.933
Relative density (%) 6.7 6.7 6.6

Mean pore diameter , 25.4/PP1 (mm) 0.846 0.635 0.508
Fiber thickness, t (mm) 0.264 0.258 0.241
Fiber length, I (mm) 1.044 1.021 0.963
Surface area per unit volume (m?/m?) 1416 1602 1745

Table 2. Properties of test section

Aur ens ks (W/m  Kx10° F
(m?) K) (m?)
PFHS 0.0094  0.889 44.51 - -

FPHStoamsorer  0.0739  0.932 10.10 17.74  0.0279
FPHStoamaore1 0.0832  0.932 10.10 6.62  0.0249
FPHStoamsoprt~ 0.0904  0.933 10.10 404  0.0225
PFHSoamsorer 0.0734  0.828 53.49 9.09  0.0293
PFHStamaorer  0.0817  0.828 53.49 479 0.0229
PFHStoamsorr1 0.0881  0.829 53.49 322 0.0196

Table 3. Constant value obtained from linear least square regression method.

a b alb
FPHS roamaore! 158.44 95.55 1.65
FPHS foamaope1 281.15 113.79 2.47
FPHS foamsope1 460.28 131.15 3.51
PFHS foamaopei 204.46 113.94 1.79
PFHS foamaope1 388.38 123.21 3.15

PFHS foamsope1 578.18 128.49 4.49
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30 PPI

40 PPI

50 PPI

Fig. 3. Photograph of copper foam.
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