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ช่ือโครงการ: พฤติกรรมของผลเฉลยบางประการของสมการเชิงผลตางตรรกยะและสมการเชิงผลตางเชิงเสนเปน 
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ระยะเวลาโครงการ: 2 ปต้ังแต 2 พฤษภาคม 2559 ถึง 1 พฤษภาคม 2561  
บทคัดยอ:  เราทําการศึกษาการมีขอบเขตของกรณีเฉพาะของผลเฉลยของสมการเชิงผลตางตรรกยะ 

1 1 1 1 2 1 1 1 2( ) / ( )n n n n n n n n n n nz z z z z z A Bz Cz z Dz zα β γ δ+ − − − − − − − −= + + + + + +  n = 0, 1, 2, … ท่ีมี

พารามิเตอรและเงื่อนไขเริ่มตนไมเปนลบและตัวสวนไมเปนศูนย เราใชวิธีการทําซ้ําในการหาขอบเขตของสมการ
เชิงผลตางตรรกยะดังกลาว จากนั้นเรายังศึกษาความเสถียรวงกวาง ลักษณะการเปนคาบ ผลเฉลยท่ีเปนจุดสมดุล 
รวมถึงขอบเขตของระบบสมการเชิงผลตางเชิงเสนเปนชวง 1n n nx x ay b+ = + +  และ 1 | |n n ny x c y d+ = + + , n 

= 0, 1, 2, … เมื่อเงื่อนไขเริ่มตน 0x  และ 0y  เปนจํานวนจริงใด ๆ และพารามิเตอร a, b, c และ d เปนจํานวน

เต็ม -1, 0 หรือ 1 เราพบลักษณะการเปนคาบของผลเฉลยของระบบสมการเชิงผลตาง 1 1n n nx x y+ = − −  และ

1 | | 1n n ny x y+ = + − , n = 0, 1, 2, … . นอกจากนั้นเรายังสามารถพิสูจนไดวาผลเฉลยของระบบสมการเชิงผลตาง 

1n n nx x y ζ+ = − +  and 1 | |n n ny x y ϕ+ = + −  เปนจุดสมดุลในท่ีสุดเมื่อ ζ และ ϕ  เปนจํานวนจริงบวกใด ๆ   

 
คําหลัก : สมการเชิงผลตาง สมการเชิงผลตางตรรกยะ ผลเฉลยท่ีเปนคาบ จุดสมดุล 
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Abstract  
 
Project Code: MRG5980053 
Project Title: Some behaviors of solutions of Rational Difference Equations and Piecewise Linear  

         Systems of Difference Equations 
Investigator: Wirot  Tikjha  
E-mail Address: wirottik@psru.ac.th 
Project Period: 2 years 2 May 2016 to 1 May 2018 
Abstract: We investigate the boundedness of special cases of solutions to rational difference 
equation 1 1 1 1 2 1 1 1 2( ) / ( )n n n n n n n n n n nz z z z z z A Bz Cz z Dz zα β γ δ+ − − − − − − − −= + + + + + + n = 0, 1, 2, … 

with nonnegative parameters and with nonnegative initial conditions and positive denominators. 
We used the iteration method to prove the boundedness of the equations. We also investigate 
the global stability, the periodic nature, equilibrium solutions and the boundedness of solutions 
to system 1n n nx x ay b+ = + +  and   1 | |n n ny x c y d+ = + +  , n = 0, 1, 2, … where the initial 

conditions 0x  and 0y  are arbitrary real numbers and the parameters a, b, c and d are integers -1, 

0 or 1. We found some periodic characters of solutions to system  1 1n n nx x y+ = − −  and

1 | | 1n n ny x y+ = + − , n = 0, 1, 2, … . Moreover we can prove that every solution of system  

1n n nx x y ζ+ = − +  and 1 | |n n ny x y ϕ+ = + −  is eventually equilibrium point where the parameters 

ζ and ϕ  are any positive real numbers. 

 
Keywords: Difference equation, Rational difference equation, Periodic solution, Equilibrium 
point 
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Executive summary 
 
Introduction to the research problem and its significance:  
 In recent history there has been a surge of interest in systems of both rational and 
piecewise linear difference equations due to their practical applications in evolutional biology, 
neural networks [1], economics [2], and population modeling [3]. Dr. Awerbuch’s team at The 
Harvard School of Public Health used systems of difference equations to model the growth rate 
of mosquitoes while conducting research to determine the most effective method of mosquito 
abatement [4]. There are many models in biology and ecology [5, 6, 7] that use difference 
equations. The following models are examples: a discrete analogue of a model of 
Haematopoiesis, a discrete Baleen whale model, neural networks, a host-parasitoid 
phenolmenological model, a model of flour beetle populations growth, a discrete delay logistic 
model, a simple genotype selection model, and a model of the spread of an epidemic.  
 The boundedness character of the solution to a system of difference equations is 
necessary for understanding the global behavior of the system, including its global stability. It is 
also essential in the study of most applications. There are many open problems, see Camouzis 
and Ladas [8], in the area of pure difference equations. There are also many open problems 
and conjectures [6] in the applied aspect of difference equations.  Biologists, economists, 
ecologists and other researchers are waiting for mathematicians around the globe to solve their 
models, or to help them create more accurate models for their applications.  
Literature review: 

In 2008, Amleh et al. [9, 10] considered the rational difference equation 

                            n n 1 n 1
n 1

n n 1 n 1

x x x
x

A Bx x Cx
− −

+
− −

α β γ+ +
=

+ +
, n = 0, 1, 2, …     (1) 

with nonnegative parameters and with arbitrary nonnegative initial conditions such that the 
denominator is always positive. They investigated the global stability character, the periodic 
nature, and the boundedness of solutions to Eq.(1). Some patterns of boundedness are 
included in Camouzis et al. [5]. The methods and techniques that they developed to better 
understand the dynamics of this system are also useful in the analysis of mathematical models 
which involve difference equations.  They believe that the special cases of System in [5, 9, 10] 
are genuine examples which provide prototypes for the development of the basic theory of 
nonlinear difference equations.  

 For the study of piecewise linear difference equations, Devaney [12, 13] investigated the 
equation, known as the gingerbreadman map, 

    n 1 n n 1x x x 1+ −= − + , n = 0, 1, 2, …        (2) 
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which has been shown to be chaotic in certain regions and stable in others. The name of this 
equation is due to the fact that solutions in the plane look like a “gingerbreadman" [14] when 
graphed. Eq.(2) is equivalent to the piecewise linear system, 

    
n 1 n n

n 1 n

x x y 1

y x

+

+

= − +


=
, n = 0, 1, 2, … . 

 Gerasimos Ladas and his team made significant contributions to the generalized system 
of gingerbreadman map and gave the system to be an open problem to investigate systems in 
the form of 81 piecewise linear systems: 

    
n 1 n n

n 1 n n

x x ay b

y x c y d

+

+

= + +


= + +
, n = 0, 1, 2, …    (3) 

where the initial conditions x0 and y0 are arbitrary real numbers. They numbered the above 
system by using their parameters a, b, c, and d. The system's number N is given by 

N = 27(a + 1) + 9(b + 1) + 3(c + 1) + (d + 1) + 1 
the parameters a, b, c, and d are integers between -1 and 1, inclusively. There are several 
researchers study about system (3) such as Grove et al.[15] studied the system number 8, a = b 
= -1 c = 1 and d = 0,  

    
n 1 n n

n 1 n n

x x y 1

y x y

+

+

= − −


= +
, n = 0, 1, 2, … .    (4) 

They found that the system (4) has the unique equilibrium point (-2/5, -1/5) and there are two 
prime period 3 cycles. They has been shown that every solution to system (4) is either 
equilibrium point or periodic with prime period-3. Grove and Ladas [14] studied system number 
4, a = b = d = -1 and c = 0,  

    
n 1 n n

n 1 n

x x y 1

y x 1

+

+

= − −


= −
, n = 0, 1, 2, … .    (5) 

They found that the system (5) has the unique equilibrium point (0, -1) and system (5) can be 

reduced to second order difference equation n 1 n n 1x x x+ −= − which is periodic with prime 

period-9.  Lapierre[17] studied system number 10, a = c = d = -1 and b = 0,    

    
n 1 n n

n 1 n n

x x y

y x y 1

+

+

= −


= − −
, n = 0, 1, 2, … .    (6) 
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She showed that every solution to system (6) is eventually the equilibrium point (1, 0) for every 

initial condition ( ) 2

0 0x , y R∈ . Tikjha et al. [18] studied the system number 1, a = b = c = d = -1, 

    
n 1 n n

n 1 n n

x x y 1

y x y 1

+

+

= − −


= − −
, n = 0, 1, 2, … .    (7) 

They found that the system (7) has the unique equilibrium point (1, -1) and there are two prime 
period 6 cycles. They has been shown that every solution of system (7) is either equilibrium 
point or periodic with prime period-6.    

There are still some interesting systems that are special cases of system (3) such that we 
can investigate the boundedness character of solutions, the global stability, and periodic nature 
of the solutions. Robert M. May [5] said that “…The response to large amplitude disturbances 
requires a nonlinear or global analysis, for which no general techniques are available …”.  
Objectives:  

1) To investigate the boundedness of a generalization of Eq.(1), which is the rational  

difference equation 

            n 1 n 1 n n 1 n 2
n 1

n 1 n 1 n n 1 n 2

z z z z z
z

A Bz Cz z Dz z
− − − −

+
− − − −

α β γ δ+ + +
=

+ + +
, n = 0, 1, 2, …                (8) 

with nonnegative parameters 

 2) To discover the global stability character, the periodic nature, and the boundedness 

of special cases of system (3). 

Methodology: 
1) Write computer programs to simulate the behavior of rational difference equations and 

piecewise linear systems of difference equations. 
2) Simulate the behavior of solutions to both rational difference equations and piecewise 

linear systems of difference equations by changing initial conditions and parameters. 
3) Analyze the behavior of solutions by recognizing the pattern in each equations or 

systems.     
4) Make conjectures by using analyzing results.  
5) Prove the conjectures. The common idea of proofs is to separate initial condition into 

few regions and find some characters of solution to the system of each region and 
then establishing lemma in each region and finally summarizing the behaviors of 
each system to be a theorem.   
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Results 
The results of this research are separated into two parts which consists of boundedness 

of special cases of rational difference equations in (8) and global character of special cases of 
piecewise linear system (3).  
 
Boundedness of rational difference equations:  
 In this section, we will show the boundedness of rational difference equations as 
follows:  

     1
1

1 2

n n
n

n n

z zz
z z

α −
+

− −

+
=            (9)   

            1 1 2
1

1 2

n n n n
n

n n

z z z zz
A z z

α δ− − −
+

− −

+ +
=

+
          (10) 

1 1 1 2
1

1 1 2

n n n n n
n

n n n

z z z z zz
Bz z z

α β γ− − − −
+

− − −

+ + +
=

+
         (11) 

 
Theorem 1 Let {zn} be a solution of System(9) with nonnegative parameters and with 
nonnegative initial conditions and the denominator is always positive. Then System(9) has 
unbounded solutions. 
Proof. Consider  

    1 1
1

1 2 1 2 1 2 1 2

.n n n n
n

n n n n n n n n

z z z zz
z z z z z z z z

α α α− −
+

− − − − − − − −

+
= = + >  

We see that 1 2
1 0n n

n
y yy

α
− −

+ = →  by choosing initial condition ( )0 1 2, , 0,1y y y− − ∈ . Then  

   1 1
1

1 2 1 2 1 2 1 2

.n n n n
n

n n n n n n n n

z z z zz
z z z z z z z z

α α α− −
+

− − − − − − − −

+
= = + > ↑ ∞  

Hence {zn} has unbounded solutions.               � 
 
Theorem2 Let {zn} be a solution of System(10) with nonnegative parameters and with 
nonnegative initial conditions and the denominator is always positive. Then System(10)  is 
bounded and permanent. 
Proof. Consider 

{ }
{ }

1 1 2
1

1 2

max ,
:

min ,1
n n n n

n
n n

z z z zz m
A z z A

a δa δ− − −
+

− −

+ +
= ≥ =

+
. 

Then for 4n ≥ , we have 

1
1 2 2

n
n

n n n

zz
A z z z

α δ+
− − −

< + +
+
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     1

1 2 2 2 3 3

1 n

n n n n n n

z
A z z z A z z z

α α δ δ−

− − − − − −

 
< + + + + + + 

 

     2

1 2 2 2 3 3 3 4 4

1 1 n

n n n n n n n n n

z
A z z z A z z z A z z z

α α α δ δ δ−

− − − − − − − − −

  
< + + + + + +   + + +  

   

     
( ) ( )

2

1 2 2 2 3 2 3 3 4 2 3 4 2 3 2

n

n n n n n n n n n n n n n n n

z
A z z z A z z z z A z z z z z z z z

α α α δ δ δ−

− − − − − − − − − − − − − − −

< + + + + + +
+ + +

 

     
( ) ( )2 2 22 2

1
A m m m mm A m m A m

α α α δ δ δ< + + + + + +
+ + +

. 

Hence {zn} is bounded and permanent.          � 
 
Theorem3 Let {zn} be a solution of System(11) with nonnegative parameters and with 
nonnegative initial conditions and the denominator is always positive. Then System(10)  is 
bounded and permanent. 
Proof. Consider 

{ }
{ }

1 1 1 2
1

1 1 2

max ,1
:

min ,1
n n n n n

n
n n n

z z z z zz m
Bz z z A

βa β γ− − − −
+

− − −

+ + +
= ≥ =

+
. 

Then for 4n ≥ , we have 

1
1 1 2 2 2

1n
n

n n n n n

zz
Bz z z B z B z

γα β
+

− − − − −

< + + +
+ + +

 

1

1 1 2 2 2 2 2 3 3 3

1 1n

n n n n n n n n n n

z
Bz z z B z B z Bz z z B z B z

γα β γ α β −

− − − − − − − − − −

 
< + + + + + + + + + + + + 

 

1 1 2 2 2 2 2 3 3 3 3 3 4

2

4 4

1 1 1

n n n n n n n n n n n n n

n

n n

Bz z z B z B z Bz z z B z B z Bz z z

z
B z B z

α β γ α β γ α

γβ

− − − − − − − − − − − − −

−

− −

 
< + + + + + + + + + + +


+ + + + + + +  

 

( )( ) ( )( )

( )( )( ) ( )( )( ) ( )( )( )

1 1 2 2 2 2 2 3 2 3

32 2
2

2 3 3 3 4 2 3 4 2 3 4

n n n n n n n n n n

n

n n n n n n n n n n n

Bz z z B z B z Bz z z B z B z

z
B z B z Bz z z B z B z B z B z B z B z

α β αγ βγ

γαγ βγ
− − − − − − − − − −

−

− − − − − − − − − − −

= + + +
+ + + + + +

+ + +
+ + + + + + + + +

 

( )( )
2

2 3 2

1
n n nB z B z B z

γ γ

− − −

+ + +
+ + +
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( )( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

2 32 2 2

3 2

2 2 1.

Bm m B m B m B mB m Bm m B m Bm m B m

B mB m B m

α β αβ βγ αγ βγ

γ γ γ

< + + + + +
+ + + ++ + + + +

+ + + +
++ +

 

Hence {zn} is bounded and permanent.          � 
 

Global character of piecewise linear systems: 
In this section, we will show the global characters of two piecewise linear systems as follows:  
    1 1n n nx x y+ = − −  and  1 1n n ny x y+ = + − .         (11) 

It is easy to verify that the following cycles being periodic solutions of System(11): 

3.1

1 , 1
3
1 1, ,
3 3
1 1,
3 3

P

 − − 
 
 = − 
 
 − − 
 

3.2

3 1,
5 5
3 1, ,
5 5
1 7,
5 5

P

 
 
 
 = − − 
 
 − − 
 

4.1

1, 1
1, 1

,
1, 1
1, 1

P

− − 
 − =
 
 

− 

4.2

1, 3
3, 3

.
1, 5
5, 3

P

− 
 
 =
 −
 

− 

 

We will separate initial condition of system (11) into 8 regions as follows: 

1L  = {(x, y): x ≥ 0 and y = 0} 

2L  = {(x, y): x = 0 and y ≥ 0} 

3L  = {(x, y): x ≤ 0 and y = 0} 

4L  = {(x, y): x = 0 and y ≤ 0} 

1Q  = {(x, y): x > 0 and y > 0} 

2Q  = {(x, y): x < 0 and y > 0} 

3Q  = {(x, y): x < 0 and y < 0} 

4Q  = {(x, y): x > 0 and y < 0}. 

In this report, we will choose initial condition in 1Q  and 3Q . The following lemmas will be tools 

for investigating the behaviors of solutions to the system. 

Lemma 1 [19] Let ( ){ } 0
,n n n

x y
∞

=
be a solution of System(11). Suppose the initial condition 

( ) { }, (1, ) |N Nx y y y R∈ ∈  for some positive integer N . Then ( ){ } 1
,n n n N

x y
∞

= +
is eventually the 

prime period-4 solution.  

Lemma 2 [19] Let ( ){ } 0
,n n n

x y
∞

=
be a solution of System(11). Suppose the initial condition 

( ) { }, ( 1, ) |N Nx y y y R∈ − ∈  for some positive integer N . Then ( ){ } 1
,n n n N

x y
∞

= +
is eventually the 

prime period-4 solution.  



9 
 

Theorem 4 [19] Let ( ){ } 0
,n n n

x y
∞

=
be a solution of System(11). Suppose the initial condition 

( )0 0 2 4 1 2 3 4,x y Q Q L L L L∈ ∪ ∪ ∪ ∪ ∪ . Then ( ){ } 1
,n n n N

x y
∞

= +
is eventually the prime period-3 

solution or prime period-3 solution. 
Now we ready to investigate behaviors of solutions to System(11). Let ( )0 0 1,x y Q∈ . 

Then 0 0x >  and 0 0y > . Thus  

1 0 0 0 01 1x x y x y= − − = − −   

1 0 0 0 0| | 1 1y x y x y= + − = + − .  

We separate the possible solutions into 3 cases. 

0 0: 1Case x yΙ − ≥  and so 0 0 1x y+ > . Then 1 0x ≥   and 1 0y > . We have 

( )2 1 1 0 0 0 0 01 1 1 1 2 1 0x x y x y x y y= − − = − − − + − − = − − <   

2 1 1 0 0 0 0 01 1 1 1 2 3.y x y x y x y x= + − = − − + + − − = −  

0 0
31.1: 2 3 0
2

Case x x − ≥ ≥ 
 

. We have 2 02 3 0y x= − ≥ and so 

3 2 2 0 0 0 01 2 1 2 3 1 2 2 3x x y y x x y= − − = + − + − = − + +  

3 2 2 0 0 0 01 2 1 2 3 1 2 2 5y x y y x x y= + − = − − + − − = − − . 

      0 01.1.1: 2 2 3 0Case x y− + + ≤ and 0 02 2 5 0x y− − ≥   

4 3 3 0 0 0 01 2 2 3 2 2 5 1 1x x y x y x y= − − = − − − + + − =  

 4 3 3 0 0 0 01 2 2 3 2 2 5 1 3y x y x y x y= + − = − + + + − − − = − . 

     0 01.1.2 : 2 2 3 0Case x y− + + ≤  and 0 02 2 5 0x y− − <  

4 3 3 0 0 0 01 2 2 3 2 2 5 1 1x x y x y x y= − − = − − − + + − =  

4 3 3 0 0 0 0 0 01 2 2 3 2 2 5 1 4 4 7y x y x y x y x y= + − = − + + − + + − = − + +  

5 4 4 0 0 0 01 1 4 4 7 1 4 4 7 0x x y x y x y= − − = + − − − = − − >  

5 4 4 0 0 0 01 1 4 4 7 1 4 4 7 0y x y x y x y= + − = + − − − = − − >  

6 5 5 1 1x x y= − − = −  

6 5 5 0 01 8 8 15y x y x y= + − = − − . 

We apply Lemma 1 or Lemma 2 to conclude that the solution is eventually prime period 4.  

01.2 : 2 3 0Case x − <  0
3
2

x < 
 

จะไดวา 2 0y <   

3 2 2 0 0 0 01 2 1 2 3 1 2 2 3 0x x y y x x y= − − = + − + − = − + + >  

3 2 2 0 0 0 01 2 1 2 3 1 2 2 1 0y x y y x x y= + − = − − − + − = − − + <  

4 3 3 0 0 0 0 01 2 2 3 2 2 1 1 4 1 0x x y x y x y y= − − = − + + + + − − = + >  

4 3 3 0 0 0 0 01 2 2 3 2 2 1 1 4 1 0y x y x y x y y= + − = − + + + + − − = + >  
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5 4 4 0 01 4 1 4 1 1 1x x y y y= − − = + − − − = −  

5 4 4 0 0 01 4 1 4 1 1 8 1 0y x y y y y= + − = + + + − = + >  

6 5 5 0 01 1 8 1 1 8 1 0x x y y y= − − = − − − = − − <  

6 5 5 0 01 1 8 1 1 8 1y x y y y= + − = − + + − = − . 

     6 0 0
11.2.1.1: 8 1 0
8

Case y y y = − ≥ ≥ 
 

  

7 6 6 0 01 8 1 8 1 1 1x x y y y= − − = + − + − =  

7 6 6 0 01 8 1 8 1 1 3y x y y y= + − = − − + − − = − . 

     6 0 0
11.2.1.2 : 8 1 0
8

Case y y y = − < < 
 

 

7 6 6 0 01 8 1 8 1 1 1x x y y y= − − = + − + − =   

7 6 6 0 0 01 8 1 8 1 1 16 1 0y x y y y y= + − = − − − + − = − − <  

8 7 7 0 01 1 16 1 1 16 1 0x x y y y= − − = + + − = + >  

8 7 7 0 01 1 16 1 1 16 1 0y x y y y= + − = + + − = + >  

9 8 8 0 01 16 1 16 1 1 1x x y y y= − − = + − − − = −  

9 8 8 0 0 01 16 1 16 1 1 32 1 0y x y y y y= + − = + + + − = + >  

10 9 9 0 01 1 32 1 1 32 1 0x x y y y= − − = − − − = − − <  

10 9 9 0 01 1 32 1 1 32 1y x y y y= + − = − + + − = − . 

            10 0 0
1 11.2.1.2.1: 32 1 0
8 32

Case y y y = − ≥ > ≥ 
 

  

11 10 10 0 01 32 1 32 1 1 1x x y y y= − − = + − + − =  

11 10 10 0 01 32 1 32 1 1 3y x y y y= + − = − − + − − = − . 

           10 0
11.2.1.2.2 : 32 1 0
32

Case y y y = − < < 
 

  

11 10 10 0 01 32 1 32 1 1 1x x y y y= − − = + − + − =  

11 10 10 0 0 01 32 1 32 1 1 64 1 0y x y y y y= + − = − − − + − = − − <  

12 11 11 0 01 1 64 1 1 64 1 0x x y y y= − − = + + − = + >  

12 11 11 0 01 1 64 1 1 64 1 0y x y y y= + − = + + − = + >  

13 12 12 0 01 64 1 64 1 1 1x x y y y= − − = + − − − = −  

13 12 12 0 0 01 64 1 64 1 1 128 1 0y x y y y y= + − = + + + − = + >  

14 13 13 0 01 1 128 1 1 128 1 0x x y y y= − − = − − − = − − <  

14 13 13 0 01 1 128 1 1 128 1.y x y y y= + − = − + + − = −

M
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So we will have a pattern of solutions to system(11). 

0 0 0 0: 1, 1.Case x y x yΙΙ − < + ≥  Then 1 0x <   and 1 0y ≥ . Hence ( )1 1 2 3,x y Q L∈ ∪ . 

2 1 1 0 0 0 0 01 1 1 1 2 1x x y x y x y x= − − = − + + − − + − = − +  

2 1 1 0 0 0 0 01 1 1 1 2 3y x y x y x y x= + − = − − + + − − = − . 

2 01.1: 2 1 0Case x x= − + ≥  and  2 02 3 0y x= − < . We have 

3 2 2 0 0 01 2 1 2 3 1 4 3 0x x y x x x= − − = − + − + − = − + >  

3 2 2 0 0 01 2 1 2 3 1 4 3 0y x y x x x= + − = − + − + − = − + >  

4 3 3 0 01 4 3 4 3 1 1x x y x x= − − = − + + − − = −  

4 3 3 0 0 01 4 3 4 3 1 8 5 0y x y x x x= + − = − + − + − = − + >  

5 4 4 0 01 1 8 5 1 8 5 0x x y x x= − − = + − − = − <  

5 4 4 0 01 1 8 5 1 8 3y x y x y= + − = − − + − = − + . 

     5 0 0
31.1.1: 8 3 0
8

Case y y x = − + ≥ ≤ 
 

  

6 5 5 0 01 8 5 8 3 1 1x x y x x= − − = − + + − − =  

6 5 5 0 01 8 5 8 3 1 3y x y x x= + − = − − + − = − . 

     5 0 0
3 11.1.2 : 8 3 0
8 2

Case y y x = − + < < ≤ 
 

 

6 5 5 0 01 8 5 8 3 1 1x x y x x= − − = − + + − − =  

6 5 5 0 0 01 8 5 8 3 1 16 9 0y x y x x x= + − = − + − − = − <   by testing in interval
3 1,
8 2

 
  

  

7 6 6 0 01 1 16 9 1 16 9 0x x y x x= − − = − + − = − + >  

7 6 6 0 01 1 16 9 1 16 9 0y x y x x= + − = + − − = − + >  

8 7 7 0 01 16 9 16 9 1 1x x y x x= − − = − + + − − = −  

8 7 7 0 0 01 16 9 16 9 1 32 17 0y x y x x x= + − = − + − + − = − + >  by testing in interval 
3 1,
8 2

 
  

  

9 8 8 0 01 1 32 17 1 32 17 0x x y x x= − − = + − − = − <  

9 8 8 0 01 1 32 17 1 32 15y x y x x= + − = − − + − = − +  

10 9 9 0 01 32 17 32 15 1 1x x y x x= − − = − + + − − = . 

We apply Lemma 1 to conclude that the solution is eventually prime period 4. 

0 0 0 0: 1, 1.Case x y x yΙΙΙ − < + <  Then 1 0x <   and 1 0y < . 

2 02 1x x= − +  

2 02 1 0y y= − − < . 

If 2 0x ≥  then ( )2 2 4 4,x y Q L∈ ∪  . 
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Suppose that 2 0 0
12 1 0
2

x x x = − + < > 
 

 

3 0 02 2 1 0x x y= + − >  

3 0 02 2 1y x y= + + . 

If 3 0y ≤  then ( )3 3 4 1,x y Q L∈ ∪ .  

Suppose that 3 0 0 0 0
12 2 1 0
2

y x y x y = + + > − < 
 

 

4 04 3x x= −  

4 04 1y y= − . 

If 4 40, 0x y≥ ≥ then it will contradict with condition 0 0 1.x y+ <    

Suppose that 4 0 4 0 0 0
1 3 14 3 0, 4 1 0 ,
2 4 4

x x y y x y = − < = − < < < < 
 

. Then 

5 0 04 4 3x x y= − − +  

5 0 04 4 3 0y x y= − − < . 

If 5 0x ≥  then ( )5 5 4 4,x y Q L∈ ∪ .  

Suppose that 5 0 0 0 0
34 4 3 0 1 .
4

x x y x y = − − + < < + < 
 

 Then 

6 08 1x y= −  

6 08 5y x= − + . 

If 6 60, 0x y< <  then it will contradict with condition 0 0
1 .
2

x y− <    

Suppose that 6 0 6 0 0 0
1 5 1 18 1 0 , 8 5 0 , .
2 8 8 4

x y y x x y = − > = − + > < < < < 
 

 Then 

7 0 08 8 7 0x x y= + − <    

7 0 08 8 3y x y= − + + .  

If 7 0y ≥  then ( )7 7 2 3,x y Q L∈ ∪ .  

Suppose that 7 0 0 0 0
3 18 8 3 0 .
8 2

y x y x y = − + + < < − < 
 

 Then 

8 016 3x y= − +  

8 016 11 0y x= − < . 

If  8 0x ≥  then ( )8 8 4 4,x y Q L∈ ∪ .  

Suppose that 8 0 0
3 116 3 0 .

16 4
x y y = − + < < < 

 
 Then 

9 0 016 16 7 0x x y= − + + >    

9 0 016 16 13y x y= − − + . 
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If 9 0y ≤  then ( )9 9 4 1,x y Q L∈ ∪ .  

Suppose that 9 0 0 0 0
3 1316 16 13 0 .
4 16

y x y x y = − − + > < + < 
 

 Then 

10 032 7x y= −  

10 032 19y x= − + . 

If 10 100, 0x y≥ ≥ then it will contradict with condition 0 0
3 .
8

x y− <    

Suppose that 10 0 10 0 0 0
19 5 1 732 7 0 , 32 19 0 , .
32 8 8 32

x y y x x y = − < = − + < < ≤ ≤ < 
 

Then

11 0 032 32 13x x y= − −    

11 0 032 32 27 0y x y= + − < . 

If 11 0x ≥  then ( )11 11 4 4,x y Q L∈ ∪ .   

Suppose that 11 0 0 0 0
3 1332 32 13 0 .
8 32

x x y x y = − − < < − < 
 

Then 

12 064 39x x= − +  

12 064 13y y= − + . 

If 12 120, 0x y< <  then it will contradict with condition 0 0
13 .
16

x y+ <    

Suppose that 12 0 12 0 0 0
19 39 1 1364 39 0 , 64 13 0 , .
32 64 8 64

x x y y x y = − + ≥ = − + ≥ < ≤ ≤ < 
 

Then 

13 0 064 64 25 0x x y= − + + <    

13 0 064 64 51y x y= − − + . 

If 13 0y ≥  then ( )13 13 2 3,x y Q L∈ ∪ .  

Suppose that 13 0 0 0 0
51 1364 64 51 0 .
64 16

y x y x y = − − + < < + < 
 

 

14 0128 77x x= −  

14 0128 27 0y y= − < . 

If 14 0x ≥  then ( )14 14 4 4, .x y Q L∈ ∪   

Suppose that 14 0 0
19 77128 77 0 .
32 128

x x x = − < < < 
 

 Then 

15 0 0128 128 103x x y= − − +    

15 0 0128 128 51y x y= − − . 

If 15 150, 0x y< <  then it will contradict with condition 0
26 .

128
y <   Suppose that 
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15 0 0 15 0 0 0 0 0 0
51 103 51 13128 128 103 0 , 128 128 51 0 , .
64 128 128 32

x x y y x y x y x y = − − + ≥ = − − ≥ < + ≤ ≤ − < 
 

Then 

16 0256 153x x= − +  

16 0256 51y y= − + .  

If 16 160, 0x y≥ ≥ then it will contradict with condition 0 0
51 .
64

x y+ <    

Suppose that 16 0 16 0 0 0 0
153 77 51 27256 153 0 , 256 51 0 , .
256 128 256 128

x x y y x x y = − + < = − + < < ≤ ≤ − < 
 

 

Then 

17 0 0256 256 205x x y= + −    

17 0 0256 256 101 0y x y= − + + < . 

If 17 0x ≥  then ( )17 17 4 4,x y Q L∈ ∪ .  

Suppose that 17 0 0 0 0
51 205256 256 205 0 .
64 256

x x y x y = + − < < + < 
 

 

18 0512 103x y= − +  

18 0512 307y x= − . 

If 18 180, 0x y< <  then it will contradict with condition 0 0
51 .

128
x y− >   Suppose that 

18 0 18 0 0 0
307 77 51 103512 103 0 , 512 307 0 , .
512 128 256 512

x y y x x y = − + > = − > < < < < 
 

Then 

19 0 0512 512 409 0x x y= − − + <    

19 0 0512 512 205y x y= − − . 

If 19 0y ≥  then ( )19 19 2 3, .x y Q L∈ ∪   

Suppose that 19 0 0 0 0
51 205512 512 205 0 .

128 512
y x y x y = − − < < − < 

 
 Then 

20 01024 205x y= −  

20 01024 613 0y x= − + < . 

If 20 0x ≥  then ( )20 20 4 4,x y Q L∈ ∪ .  

Suppose that 20 0 0
51 2051024 205 0 .

256 1024
x y y = − < < < 

 
 Then 

21 0 01024 1024 409 0x x y= − − >    

21 0 01024 1024 819y x y= + − . 

If 21 0y ≥  then ( )21 21 2,x y Q∈ .   

Suppose that  21 0 0 0 0
819 2051024 1024 819 0 .

1024 256
y x y x y = + − > < + < 

 
 Then 
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22 02048 409x y= − +  

22 02048 1229y x= − . 

If 22 220, 0x y≥ ≥ then it will contradict with condition 0 0
205 .
512

x y− <   Suppose that 

22 0 22 0 0 0
307 1229 409 2052048 409 0, 2048 1229 0 ,
512 2048 2048 1024

x y y x x y = − + < = − < < < < < 
 

. Then 

23 0 02048 2048 819x x y= − + +    

23 02048 2048 1637 0y x y= − − + < . 

If 23 0x ≥  and ( )23 23 4 4,x y Q L∈ ∪ .  

Suppose that  23 0 0 0 0
819 2052048 2048 819 0
2048 512

x x y x y = − + + < < − < 
 

. Then 

24 04096 2457x x= −  

24 04096 819y y= − .  

If 24 240, 0x y< <  then it will contradict with condition 0 0
819 .

1024
x y+ >   Suppose that 

24 0 24 0 0 0
2457 1229 819 2054096 2457 0, 4096 819 0 , .
4096 2048 4096 1024

x x y y x y = − ≥ = − ≥ ≤ < < < 
 

 Then 

25 0 04096 4096 1639 0x x y= − − <    

25 04096 4096 3277y x y= + − . 

If 25 0y ≥  then ( )25 25 2 3, .x y Q L∈ ∪   

Suppose that 25 0 0 0
1637 32774096 4096 3277 0 .
2048 4096

y x y x y = + − < < + < 
 

 Then 

26 08192 4915x x= − +  

26 08192 1637 0y y= − + < . 

If 26 0x ≥  then ( )26 26 4 4,x y Q L∈ ∪ .  

Suppose that 26 0 0
4915 12298192 4915 0 .
8192 2048

x x x = − + < < < 
 

 Then 

27 0 08192 8192 6553x x y= + −    

27 0 08192 8192 3277y x y= − + + .  

If 27 270, 0x y< <  then it will contradict with condition 0
819 .
4096

y >    

Suppose that 
27 0 0 27 0 0

0 0 0 0

8192 8192 6553 0, 8192 8192 3277 0
6553 3277 819 3277, .
8192 4096 2048 8192

x x y y x y

x y x y

= + − ≥ = − + + ≥

 ≤ + < < − ≤ 
 

 

28 016384 9831x x= −  
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28 016384 3277y y= − . 

If 28 280, 0x y≥ ≥ then it will contradict with condition 0 0
3277 .
4096

x y+ <   Suppose that 

28 0 28 0 0 0
4915 9831 1637 20516384 9831 0, 16384 3277 0 , .
8192 16384 8192 1024

x x y y x y = − < = − < < < < < 
 

 Then 

29 0 016384 16384 13107x x y= − − +    

29 0 016384 16384 6555y x y= − − . 

If 29 290, 0x y≥ ≥ then it will contradict with condition 0
9831 .

16384
x <   Suppose that 

29 0 0 29 0 0

0 0 0 0

16384 16384 13107 0, 16384 16384 6555 0
13107 3277 819 6555,
16384 4096 2048 16384

x x y y x y

x y x y

= − − + < = − − <

 < + < < − < 
 

 

30 032768 6553x y= −  

30 032768 19661y x= − + . 

If 30 300, 0x y< <  then it will contradict with condition 0 0
3277 .
8192

x y− <   Suppose that 

30 0 30 0 0 0
4915 19661 6553 20532768 6553 0, 32768 19661 0 , .
8192 32768 32768 1024

x y y x x y = − ≥ = − + ≥ < ≤ ≤ < 
 

 

Then 

31 0 032768 32768 26215x x y= + −    

31 0 032768 32768 13107y x y= − + + . 

If 31 310, 0x y≥ ≥ then it will contradict with condition 0
19661 .
32768

x <  Suppose that 

31 0 0 31 0 0

0 0 0 0

32768 32768 26215 0, 32768 32768 13107 0
13107 26215 13107 6555, .
16384 32768 32768 16384

x x y y x y

x y x y

= + − < = − + + <

 < + < ≤ − < 
 

 

Then 

32 065536 13107x y= − +  

32 065536 39323 0y x= − < . 

If 32 0x ≥  then ( )32 32 4 4,x y Q L∈ ∪ .  

Suppose that 32 0 0
13107 20565536 13107 0 .
65536 1024

x y y = − + < < < 
 

 Then 

33 0 065536 65536 26215 0x x y= − + + >    

33 0 065536 65536 52429y x y= − − + . 

If 33 0y ≤  then ( )33 33 4 1,x y Q L∈ ∪ . 
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Suppose that 33 0 0 0 0
13107 5242965536 65536 52429 0 .
16384 65536

y x y x y = − − + > < + < 
 

 Then 

34 0131072 26215x y= −  

34 0131072 78643y x= − + . 

If 34 340, 0x y≥ ≥ then it will contradict with condition 0 0
13107 .
32768

x y− >   Suppose that 

34 0 34 0 0 0
78643 19661 13107 26215131072 26215 0, 131072 78643 0 , .

131072 32768 65536 131072
x y y x x y = − < = − + < < ≤ < < 

 
Then 

35 0 0131072 131072 52429x x y= − −    

35 0 0131072 131072 104859 0.y x y= + − <  

If 35 0x ≥  then ( )35 35 4 4,x y Q L∈ ∪ .  

Suppose that 35 0 0 0 0
13107 52429131072 131072 52429 0 .
32768 131072

x x y x y = − − < < + < 
 

 Then 

36 0262144 157287x x= − +  

36 0262144 52429y y= − + . 

If 36 360, 0x y< <  then it will contradict with condition 0 0
52429 .
65536

x y+ <   Suppose that 

36 0 36 0

0 0

262144 157287 0, 262144 52429 0
78643 157287 13107 52429, .

131072 262144 65536 262144

x x y y

x y

= − + > = − + >

 < < < < 
 

 

Then 37 0 0262144 262144 104857 0x x y= − + + <   and 37 0 0262144 262144 209715y x y= − − + . 

If 37 0y ≥  then ( )37 37 2 3,x y Q L∈ ∪ .  

Suppose that 37 0 0 0 0
209715 104859262144 262144 209715 0 .
262144 131072

y x y x y = − − + < < + < 
 

 Then 

38 0524288 314573x x= −  

38 0524288 104859 0y y= − < . 

If 38 0x ≥  then ( )38 38 4 4,x y Q L∈ ∪ .  

Suppose that 38 0 0 0 0
78643 314573524288 314573 0 0.599995, 0.2

131072 524288
x x x x y = − < < < = = 

 
 

39 0 0524288 524288 419431 0x x y= − − + >    

39 0 0524288 524288 209715y x y= − −  

If 39 0y ≤  then ( )39 39 4 1,x y Q L∈ ∪ .  

Suppose that 39 0 0 0 0
209715 6555524288 524288 209715 0 .
524288 16384

y x y x y = − − > < − < 
 

Then 

40 01048576 629145x x= − +  
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40 01048576 209715 0y y= − + < . 

If 40 0x ≥  then ( )40 40 4 4,x y Q L∈ ∪ . Suppose that 40 01048576 629145 0x x= − + < . Then







 <<






 <<

262144
52429

1048576
209715

524288
314573

1048576
629145

00 yx  

83886110485761048576 0041 −+= yxx  

041942910485761048576 0041 <++−= yxy  

If 40 0x ≥  then ( )41 41 4 4,x y Q L∈ ∪ .  

Suppose that 83886110485761048576 0041 −+= yxx 0< . Then 

4994312097152 042 +−= yx  

12582912097152 042 −= xy . 

If 42 420, 0x y< <  then it will contradict with condition 0 0
209715 .
524288

x y− >   Suppose that 

4994312097152 042 +−= yx >0 12582912097152 042 −= xy >0.Then 







 <<






 <<

2097152
419431

1048576
209715

524288
314573

2097152
1258291

00 yx  

0167772120971522097152 0043 ≤+−−= yxx  

83886120971522097152 0043 −−= yxy . 

If 43 0y ≥  then ( )43 43 2 3,x y Q L∈ ∪ .  

Suppose that 83886120971522097152 0043 −−= yxy <0 0 0
209751 838861
524288 2097152

x y < − < 
 

. Then  

8388612 0
22

44 −= yx  

025165812 0
22

44 <+= xy . 

If 44 0x ≥  then ( )44 44 2 3,x y Q L∈ ∪ . 





 << 22020 2

838861
2

209715 y . Then 

0167772122 0
22

0
22

45 >−−= yxx  

335544322 0
22

0
22

45 −−= yxy . 

If 45 0y ≤  then ( )41 41 4 1,x y Q L∈ ∪ . Then 

16777212 0
23

46 +−= yx  

50331652 0
23

46 −= xy . 

If 46 460, 0x y≥ ≥  then it will contradict with condition 0 0
838861 .

2097152
x y− >   Suppose that 

23
46 02 1677721 0x y= − + <  and 23

46 02 5033165 0y x= − <

0 021 23 23 22

1258291 5033165 1677721 838861,
2 2 2 2

x y < < < < 
 

. Then 

335544322 0
23

0
23

47 ++−= yxx  
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0671088522 0
23

0
23

47 <+−−= yxy . 

If 47 0x ≥  then ( )47 47 4 4,x y Q L∈ ∪ . Then 

100663292 0
24

48 −= xx  

33554432 0
24

48 −= yy . 

If 48 480, 0x y≤ ≤  then it will contradict with condition 0 0 22

3355443.
2

x y+ >   Suppose that 

24
48 02 10066329 0x x= − >  and 24

48 02 3355443 0y y= − >  

0 024 23 24 22

10066329 5033165 3355443 838861,
2 2 2 2

x y < < < < 
 

. Then 

0671088722 0
24

0
24

49 <−−= yxx  

1342177322 0
24

0
24

49 −+= yxy . 

If 49 0y ≥  then ( )47 47 4 3,x y Q L∈ ∪ . Then 

201326592 0
25

50 +−= xx  

067108852 0
25

50 <+−= yy . 

If 50 0x ≥  then ( )50 50 4 4,x y Q L∈ ∪ 





 << 23025 2

5033165
2

20132659 x . Then 

25 25
51 0 02 2 26843545x x y= + −  

1342177322 0
25

0
25

51 ++−= yxy . 

If 51 510, 0x y≤ ≤  then it will contradict with condition 0 24

3355443.
2

y >   Suppose that 

25 25
51 0 02 2 26843545 0x x y= + − >  and 25 25

51 0 02 2 13421773 0y x y= − + + > . Then 

402653192 0
26

52 −= xx  

134217732 0
26

52 −= yy . 

If 52 520, 0x y≥ ≥  then it will contradict with condition 0 0 24

13421773.
2

x y+ <   Suppose that 

26
52 02 40265319 0x x= − < and 26

52 02 13421773 0y y= − <  

0 025 26 24 26

20132659 40265319 3355443 13421773,
2 2 2 2

x y < < < < 
 

. Then 

5368709122 0
26

0
26

53 +−−= yxx  

2684354722 0
26

0
26

53 −−= yxy . 

If 53 530, 0x y≥ ≥  then it will contradict with condition 0 26

40265319 .
2

x <   Suppose that 

26 26
53 0 02 2 53687091 0x x y= − − + <  and 26 26

53 0 02 2 26843547 0y x y= − − < . Then 

268435452 0
27

54 −= yx  

805306372 0
27

54 +−= xy . 
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M 

We can formulate that formula of above solutions ( ){ } 7
,n n n

x y
∞

=
as follows: for 1n ≥ , we have  

)12(22 0
3)1(10

0
3)1(10

1724 +−+= +−+−
− n

nn
n yxx δ and 

n
nn

n yxy δ++−= +−+−
− 0

3)1(10
0

3)1(10
1724 22 , 

02 0
4)1(10

1624 <+−= +−
− n

n
n yx δ  and 

0232 0
4)1(10

1624 <−−= +−
− n

n
n yy δ , 

 
1222 0

4)1(10
0

4)1(10
1524 ++−+−= +−+−

− n
nn

n yxx δ  and 

1422 0
4)1(10

0
4)1(10

1524 ++−−= +−+−
− n

nn
n yxy δ , 

 
)12(2 0

5)1(10
1424 +−= +−

− n
n

n yx δ  and 

162 0
5)1(10

1424 ++−= +−
− n

n
n xy δ , 

 
)14(22 0

5)1(10
0

5)1(10
1324 +−−= +−+−

− n
nn

n yxx δ  and 

)38(22 0
5)1(10

0
5)1(10

1324 +−+= +−+−
− n

nn
n yxy δ , 

 
3122 0

6)1(10
1224 ++= +−

− n
n

n xx δ  and 

)34(2 6)1(10
1224 ++= +−

− n
n

ny δ , 

 
01822 0

6)1(10
0

6)1(10
1124 <+++−= +−+−

− n
nn

n yxx δ  and 

031622 0
6)1(10

0
6)1(10

1124 <++−−= +−+−
− n

nn
n yxy δ , 

 
)524(2 0

7)1(10
1024 +−= +−

− n
n

n xx δ  and 

)38(2 0
7)1(10

1024 +−= +−
− n

n
n yy δ , 

 
)732(22 0

7)1(10
0

7)1(10
924 +−−−= +−+−

− n
nn

n yxx δ  and 

)316(22 0
7)1(10

0
7)1(10

924 +−−= +−+−
− n

nn
n yxy δ , 

 
9482 0

8)1(10
824 ++−= +−

− n
n

n xx δ  and 

)316(2 0
8)1(10

824 ++= +−
− n

n
n yy δ , 

 
)1364(22 0

8)1(10
0

8)1(10
724 +−+= +−+−

− n
nn

n yxx δ  and 

0)532(22 0
8)1(10

0
8)1(10

724 <+++−= +−+−
− n

nn
n yxy δ , 

 
7322 0

9)1(10
624 ++−= +−

− n
n

n yx δ  and 
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)1996(2 0
9)1(10

624 +−= +−
− n

n
n yy δ , 

 
2512822 0

9)1(10
0

9)1(10
524 ++−−= +−+−

− n
nn

n yxx δ  and 

)1364(22 0
9)1(10

0
9)1(10

524 +−−= +−+−
− n

nn
n yxy δ , 

 
)1364(2 0

10)1(10
424 +−−= +−

− n
n

n yx δ  and 

06132 0
10)1(10

424 <+−= +−
− xy n

n , 

 
)25128(22 0

10)1(10
0

10)1(10
324 ++−= +−+−

− n
nn

n yxx δ  and 

)51256(22 0
10)1(10

0
10)1(10

324 +−+= +−+−
− n

nn
n yxy δ , 

 
)25128(2 0

11)1(10
224 ++−= +−

− n
n

n yx δ  and 

)77384(2 0
11)1(10

224 +−= +−
− n

n
n xy δ , 

 
)51256(22 0

11)1(10
0

11)1(10
124 +++−= +−+−

− n
nn

n yxx δ  and 

)101512(22 0
11)1(10

0
11)1(10

124 ++−−= +−+−
− n

nn
n yxy δ , 

 
)153768(2 0

12)1(10
24 +−−= +−

n
n

n xx δ  and 

)51256(2 0
12)1(10

24 +−−= +−
n

n
n xy δ , 

 
)103512(22 0

12)1(10
0

12)1(10
124 +−−= +−+−

+ n
nn

n xxx δ  and 

)2051024(22 0
12)1(10

0
12)1(10

124 +−+= +−+−
+ n

nn
n yxy δ , 

 
)3071536(2 0

13)1(10
224 ++−= +−

+ n
n

n xx δ  and 

)101512(2 0
13)1(10

224 ++−= +−
+ n

n
n yy δ , 

 
)4092048(2 0

13)1(10
324 +−= +−

+ n
n

n xx δ  and 

)2051024(2 0
13)1(10

324 ++= +−
+ n

n
n xy δ , 

 
)6153072(2 0

14)1(10
424 +−= +−

+ n
n

n xx δ  and 

)2051024(2 0
14)1(10

424 +−= +−
+ n

n
n xy δ , 

 
)8194096(22 0

14)1(10
0

14)1(10
524 ++−−= +−+−

+ n
nn

n yxx δ  and 

)4112048(22 0
14)1(10

0
14)1(10

524 +−−= +−+−
+ n

nn
n yxy δ , 

 
)4092048(2 0

15)1(10
624 +−= +−

+ n
n

n yx δ  and 
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)12296144(2 0
15)1(10

624 ++−= +−
+ n

n
n xy δ , 

for 3,13107,nδ = K  . It is easy to see that the limit of regions trend to the point (0.6, 0.2) which is a 

member of period 3 cycle 3.2P . So we can conclude that solution of the system is either eventually go out of 

1 3Q Q∪ , solution is eventually prime period 3 or prime period 4, or stay in 1 3Q Q∪ which solution satisfies  

the above pattern.   

Next, we will investigate solutions to the system when initial condition in third quadrant and we 
will focus on the pattern of solutions which only lie in 3Q .  Let ( )0 0 3,x y Q∈ . Then 0 0x <  and

0 0y < . Thus  

1 0 0 0 01 1x x y x y= − − = − − −   

1 0 0 0 0| | 1 1y x y x y= + − = − − .  

If ( )1 1 3,x y Q∉  then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )1 1 3,x y Q∈ , then  

 2 1 1 0 0 0 0 01 1 1 1 2 1x x y x y x y y= − − = + + − + + − = +  

2 1 1 0 0 0 0 01 1 1 1 2 1y x y x y x y x= + − = − − − − + + − = − − . 

If ( )2 2 3,x y Q∉  then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )2 2 3,x y Q∈ , then  

3 2 2 0 01 2 2 1x x y x y= − − = − −   

3 2 2 0 0| | 1 2 2 1y x y x y= + − = + + .  

If ( )3 3 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )3 3 3,x y Q∈ , then  

 4 3 3 01 4 1x x y x= − − = − −  

4 3 3 01 4 3y x y y= + − = − − . 

If ( )4 4 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )4 4 3,x y Q∈ , then  

5 4 4 0 01 4 4 3x x y x y= − − = + +   

5 4 4 0 0| | 1 4 4 1y x y x y= + − = − + + .  

If ( )5 5 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )5 5 3,x y Q∈ , then  

6 5 5 01 8 5x x y y= − − = − −  

6 5 5 01 8 1y x y x= + − = + . 

If ( )6 6 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )6 6 3,x y Q∈ , then  
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7 6 6 0 01 8 8 3x x y x y= − − = − + +   

7 6 6 0 0| | 1 8 8 7y x y x y= + − = − − − .  

If ( )7 7 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )7 7 3,x y Q∈ , then  

8 7 7 01 16 3x x y x= − − = +  

8 7 7 01 16 9y x y y= + − = + . 

If ( )8 8 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )8 8 3,x y Q∈ , then  

9 8 8 0 01 16 16 13x x y x y= − − = − − −   

9 8 8 0 0| | 1 16 16 7y x y x y= + − = − − .  

If ( )9 9 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )9 9 3,x y Q∈ , then  

 10 9 9 01 32 19x x y y= − − = +  

10 9 9 01 32 7y x y x= + − = − − . 

If ( )10 10 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )10 10 3,x y Q∈ , then  

11 10 10 0 01 32 32 13x x y x y= − − = − −   

11 10 10 0 0| | 1 32 32 25y x y x y= + − = + + .  

If ( )11 11 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )11 11 3,x y Q∈ , then  

12 11 11 01 64 13x x y x= − − = − −  

12 11 11 01 64 39y x y y= + − = − − . 

If ( )12 12 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )12 12 3,x y Q∈ , then  

13 12 12 0 01 64 64 51x x y x y= − − = + +   

13 12 12 0 0| | 1 64 64 25y x y x y= + − = − + + .  

If ( )13 13 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )13 13 3,x y Q∈ , then 

14 13 13 01 128 77x x y y= − − = − −  

14 13 13 01 128 25y x y x= + − = + . 
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If ( )14 14 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )14 14 3,x y Q∈ , then  

15 14 14 0 01 128 128 51x x y x y= − − = − + +   

15 14 14 0 0| | 1 128 128 103y x y x y= + − = − − − .  

If ( )15 15 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )15 15 3,x y Q∈ , then  

16 15 15 01 256 51x x y x= − − = +  

16 15 15 01 256 153y x y y= + − = + . 

If ( )16 16 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )16 16 3,x y Q∈ , then  

17 16 16 0 01 256 256 205x x y x y= − − = − − −   

17 16 16 0 0| | 1 256 256 103y x y x y= + − = − − .  

If ( )17 17 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )17 17 3,x y Q∈ , then  

18 17 17 01 512 307x x y y= − − = +  

18 17 17 01 512 103y x y x= + − = − − . 

If ( )18 18 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )18 18 3,x y Q∈ , then  

19 18 18 0 01 512 512 205x x y x y= − − = − −   

19 18 18 0 0| | 1 512 512 409y x y x y= + − = + + .  

If ( )19 19 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )19 19 3,x y Q∈ , then  

 20 19 19 01 1024 205x x y x= − − = − −  

20 19 19 01 1024 615y x y y= + − = − − . 

If ( )10 10 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )10 10 3,x y Q∈ , then  

21 20 20 0 01 1024 1024 819x x y x y= − − = + +   

21 20 20 0 0| | 1 1024 1024 409y x y x y= + − = − + + .  

If ( )11 11 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )11 11 3,x y Q∈ , then  

22 21 21 01 2048 1229x x y y= − − = − −  
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22 21 21 01 2048 409y x y x= + − = + . 

If ( )12 12 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )12 12 3,x y Q∈ , then  

33 22 22 0 01 2048 2048 819x x y x y= − − = − + +   

23 22 22 0 0| | 1 2048 2048 1639y x y x y= + − = − − − .  

If ( )23 23 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )23 23 3,x y Q∈ , then 

24 23 23 01 4096 819x x y x= − − = +  

24 23 23 01 4096 2457y x y y= + − = + . 

If ( )24 24 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )24 24 3,x y Q∈ , then  

25 24 24 0 01 4096 4096 3277x x y x y= − − = − − −   

25 24 24 0 0| | 1 4096 4096 1639y x y x y= + − = − − .  

If ( )25 25 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )25 25 3,x y Q∈ , then  

26 25 25 01 8192 4915x x y y= − − = +  

26 25 25 01 8192 1639y x y x= + − = − − . 

If ( )26 26 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )26 26 3,x y Q∈ , then  

27 26 26 0 01 8192 8192 3277x x y x y= − − = − −   

27 26 26 0 0| | 1 8192 8192 6553y x y x y= + − = + + .  

If ( )27 27 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )27 27 3,x y Q∈ , then  

28 27 27 01 16384 3277x x y x= − − = − −  

28 27 27 01 16384 9831y x y y= + − = − − . 

If ( )18 18 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )18 18 3,x y Q∈ , then  

29 28 28 0 01 16384 16384 13107x x y x y= − − = + +   

29 28 28 0 0| | 1 16384 16384 6553y x y x y= + − = − + + .  

If ( )19 19 3,x y Q∉ then we can conclude that solution of the system is eventually prime period 3 or prime 

period 4. Suppose that ( )19 19 3,x y Q∈ . 
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 M 
We can see the pattern of solution ( ){ } 6

,n n n
x y

∞

=
as follows: for 1n ≥ and ( )0 ,n nx a b∈  and 

( )0 ,n ny c d∈  

 ( )4 1
8 2 02 3 2n

n nx y δ−
− = − − +  and 

 4 1
8 2 02 n

n ny x δ−
− = + , 

 
 4 1 4 1

8 1 0 02 2 2 1n n
n nx x y δ− −

− = − + + +  and 

 ( )4 1 4 1
8 1 0 02 2 4 3n n

n ny x y δ− −
− = − − − + , 

 
 4

8 02 2 1n
n nx x δ= + +  and 

 4
8 02 6 3n

n ny y δ= + + , 

 
 ( )4 4

8 1 0 02 2 8 5n n
n nx x y δ+ = − − − +  and 

 ( )4 4
8 1 0 02 2 4 3n n

n ny x y δ+ = − − + , 

 
 4 1

8 2 02 12 7n
n nx y δ+

+ = + +  and 

      4 1
8 2 02 (4 3)n

n ny x δ+
+ = − − + , 

 
 4 1 4 1

8 3 0 02 2 (8 5)n n
n nx x y δ+ +

+ = − − +  and 

 4 1 4 1
8 3 0 02 2 16 9n n

n ny x y δ+ +
+ = + + + , 

 
 4 2

8 4 02 (8 5)n
n nx x δ+

+ = − − +  and 

 4 2
8 4 02 (24 15)n

n ny y δ+
+ = − − + , 

 
 4 2 4 2

8 5 0 02 2 32 19n n
n nx x y δ+ +

+ = + + +  and 

 4 2 4 2
8 5 0 02 2 16 9n n

n ny x y δ+ +
+ = − + + + , 

where 
( )4 2

4 2

2 1
5 2

n

n na
−

−

+
= −

×
, 

( )4 1

4 1

2 3
5 2

n

n nb
−

−

−
= −

×
, 

( )4 1

4 1

3 2 1
5 2

n

n nc
−

−

× +
= −

×
, 

( )4 3

4 3

3 2 1
5 2

n

n nd
−

−

× −
= −

×
. 

Note that If 2 02 1 0x y= + > and 2 02 1 0y x= − − >  which mean that ( )2 2 1,x y Q∈ then we also have 

interesting solutions,  which initial condition 0 0
3

4
x y − + ≥ 

 
 as follows:  

3 2 2 0 0 0 01 2 1 2 1 1 2 2 1 0x x y y x x y= − − = + + + − = + + <  

3 2 2 0 0 0 01 2 1 2 1 1 2 2 1y x y y x x y= + − = + − − − = − + −  
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4 3 3 0 0 0 0 01 2 2 1 2 2 1 1 4 1x x y x y x y y= − − = − − − + − + − = − −  

4 3 3 0 0 0 01 2 2 1 2 2 1 1 4 1 0y x y x y x y x= + − = + + + − + − = + <   

     4 0 0
1 11: 4 1 0

2 4
Case x y y− − = − − ≥ ≤ ≤ 

 
 

5 4 4 0 0 0 01 4 1 4 1 1 4 4 3 0x x y y x x y= − − = − − − − − = − − − ≥  

5 4 4 0 0 0 01 4 1 4 1 1 4 4 3 0y x y y x x y= + − = − − − − − = − − − ≥  

6 5 5 0 0 0 01 4 4 3 4 4 3 1 1x x y x y x y= − − = − − − + + + − = −  

We apply Lemma 2 to conclude that the solution is eventually prime period 4.  

       4 0 0
12 : 4 1 0

4
Case x y y − = − − < > 

 
 

5 4 4 0 0 0 01 4 1 4 1 1 4 4 1 0x x y y x x y= − − = + − − − = − + − ≥  

5 4 4 0 0 0 01 4 1 4 1 1 4 4 3y x y y x x y= + − = − − − − − = − − −  

        5 0 0 0 0
32.1: 4 4 3 0

4
Case y x y x y − = − − − ≤ + ≥ 

 
 

6 5 5 0 0 0 0 01 4 4 1 4 4 3 1 8 1x x y x y x y y= − − = − + − + + + − = +  

6 5 5 0 0 0 0 01 4 4 1 4 4 3 1 8 1y x y x y x y y= + − = − + − + + + − = +  

       6 0 0
12.1.1: 8 1 0

8
Case x y y − = + ≥ ≥ 

 
 

7 6 6 0 01 8 1 8 1 1 1x x y y y= − − = + − − − = −  

We apply Lemma 2 to conclude that the solution is eventually prime period 4.      

       6 0 0
1 12.1.2 : 8 1 0

4 8
Case x y y− − = + < < < 

 
 

7 6 6 0 0 01 8 1 8 1 1 16 3x x y y y y= − − = − − − − − = − −  

7 6 6 0 01 8 1 8 1 1 1y x y y y= + − = + − − − = −   

      7 0 0
1 32.1.2.1: 16 3 0

4 16
Case x y y− − = − − ≥ < ≤ 

 
 

8 7 7 0 01 16 3 1 1 16 3 0x x y y y= − − = − − + − = − − ≥   

8 7 7 0 01 16 3 1 1 16 3 0y x y y y= + − = − − + − = − − ≥  

9 8 8 0 01 16 3 16 3 1 1x x y y y= − − = − − + + − = −  

We apply Lemma 2 to conclude that the solution is eventually prime period 4.   

       7 0 0
3 12.1.2.2 : 16 3 0

16 8
Case x y y− − = − − < < ≤ 

 
 

8 7 7 0 01 16 3 1 1 16 3 0x x y y y= − − = + + − = + >   

8 7 7 0 01 16 3 1 1 16 3 0y x y y y= + − = − − + − = − − <  
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9 8 8 0 0 01 16 3 16 3 1 32 5x x y y y y= − − = + + + − = +  

9 8 8 0 0 01 16 3 16 3 1 32 5y x y y y y= + − = + + + − = +  

 9 0 0
5 12.1.2.2.1: 32 5 0

32 8
Case x y y− − = + ≥ ≤ ≤ 

 
 

10 9 9 1 1x x y= − − = −  

We apply Lemma 2 to conclude that the solution is eventually prime period 4.   

 9 0 0
3 52.1.2.2.2 : 32 5 0

16 32
Case x y y− − = + < < < 

 
 

10 9 9 01 64 11x x y y= − − = − −  

10 9 9 1 1y x y= + − = −  

      10 0 0
3 112.1.2.2.2.1: 64 11 0

16 64
Case x y y− − = − − ≥ < < 

 
 

11 10 10 01 64 11 0x x y y= − − = − − ≥  

11 10 10 01 64 11 0y x y y= + − = − − ≥  

12 11 11 1 1x x y= − − = −  

We apply Lemma 2 to conclude that the solution is eventually prime period 4.   

 10 0 0
11 52.1.2.2.2.2 : 64 11 0

64 32
Case x y y− − = − − < < < 

 
 

 11 10 10 01 64 11 0x x y y= − − = + >  

11 10 10 01 64 11 0y x y y= + − = − − <  

12 11 11 01 128 21x x y y= − − = +  

12 11 11 01 128 21y x y y= + − = +  

 12 0 0
21 52.1.2.2.2.2.1: 128 21 0

128 32
Case x y y− − = + ≥ < < 

 
 

13 12 12 1 1x x y= − − = −  

We apply Lemma 2 to conclude that the solution is eventually prime period 4.   

 12 0 0
11 212.1.2.2.2.2.2 : 128 21 0

64 128
Case x y y− − = + < < < 

 
 

13 12 12 01 256 43x x y y= − − = − −  

13 12 12 1 1y x y= + − = −  

 12 0 0
11 432.1.2.2.2.2.2.1: 256 43 0

64 256
Case x y y− − = − − ≥ < ≤ 

 
 

14 13 13 01 256 43 0x x y y= − − = − − ≥  

14 13 13 01 256 43 0y x y y= + − = − − ≥  
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12 11 11 1 1x x y= − − = −  

We apply Lemma 2 to conclude that the solution is eventually prime period 4.   

 12 0 0
43 212.1.2.2.2.2.2.2 : 256 43 0

256 128
Case x y y− − = − − < < < 

 
  

 M 
So we will have a pattern of solutions to system(11). 

 5 0 0 0 0
32.2 : 4 4 3 0

4
Case y x y x y − = − − − > + < 

 
 which is out of the scope  of initial condition.  
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 Next, we will consider the solution of system 
            1n n nx x y ς+ = − −  and  1n n ny x y ϕ+ = + −          (12) 

where any initial condition ( ) 2
0 0,x y R∈  and parameter ( ), 0,ζ ϕ ∈ ∞ . The following solutions 

are some examples of System(12).  
 
Iteration xn yn 

 
ζ ϕ x0 y0 

1 -0.1 -0.4 
 

0.1 0.2 0.1 0.3 
2 0.6 -0.7 

     3 1.4 -0.3 
     4 1.8 0.9 
     5 1 0.7 
     6 0.4 0.1 
     7 0.4 0.1 
     8 0.4 0.1 
     9 0.4 0.1 
     10 0.4 0.1 
      

Iteration xn yn 
 

ζ ϕ x0 y0 
1 -28.9 -31.2 

 
0.1 0.2 -1 30 

2 60.2 -60.3 
     3 120.6 -0.3 
     4 121 120.1 
     5 1 0.7 
     6 0.4 0.1 
     7 0.4 0.1 
     8 0.4 0.1 
     9 0.4 0.1 
     10 0.4 0.1 
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Iteration xn yn 

 
ζ ϕ x0 y0 

1 1.4 -1.5 
 

0.1 0.2 -1 -0.3 
2 3 -0.3 

     3 3.4 2.5 
     4 1 0.7 
     5 0.4 0.1 
     6 0.4 0.1 
     7 0.4 0.1 
     8 0.4 0.1 
     9 0.4 0.1 
     10 0.4 0.1 
      

Iteration xn yn 
 

ζ ϕ x0 y0 
1 -29.8 -30.3 

 
0.1 0.2 -0.1 30 

2 60.2 -60.3 
     3 120.6 -0.3 
     4 121 120.1 
     5 1 0.7 
     6 0.4 0.1 
     7 0.4 0.1 
     8 0.4 0.1 
     9 0.4 0.1 
     10 0.4 0.1 
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teration xn yn 
 

ζ ϕ x0 y0 
1 -19.9 -50.1 

 
10 20 -0.1 30 

2 80 -90 
     3 180 -30 
     4 220 130 
     5 100 70 
     6 40 10 
     7 40 10 
     8 40 10 
     9 40 10 
     10 40 10 
      

Iteration xn yn 
 

ζ ϕ x0 y0 
1 11.3 -21.3 

 
10 20 -1 -0.3 

2 42.6 -30 
     3 82.6 -7.4 
     4 100 55.2 
     5 54.8 24.8 
     6 40 10 
     7 40 10 
     8 40 10 
     9 40 10 
     10 40 10 
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Iteration xn yn 

 
ζ ϕ x0 y0 

1 -19 -51 
 

10 20 -1 30 
2 80 -90 

     3 180 -30 
     4 220 130 
     5 100 70 
     6 40 10 
     7 40 10 
     8 40 10 
     9 40 10 
     10 40 10 
      

Iteration xn yn 
 

ζ ϕ x0 y0 
1 9.8 -20.2 

 
10 20 0.1 0.3 

2 40 -30.4 
     3 80.4 -10.4 
     4 100.8 50 
     5 60.8 30.8 
     6 40 10 
     7 40 10 
     8 40 10 
     9 40 10 
     10 40 10 
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Iteration xn yn 

 
ζ ϕ x0 y0 

1 -0.1 -20.2 
 

0.1 20 0.1 0.3 
2 20.4 -40.3 

     3 60.8 -39.9 
     4 100.8 0.9 
     5 100 79.9 
     6 20.2 0.1 
     7 20.2 0.1 
     8 20.2 0.1 
     9 20.2 0.1 
     10 20.2 0.1 
      

Iteration xn yn 
 

ζ ϕ x0 y0 
1 -28.9 -51 

 
0.1 20 -1 30 

2 80 -99.9 
     3 180 -39.9 
     4 220 120.1 
     5 100 79.9 
     6 20.2 0.1 
     7 20.2 0.1 
     8 20.2 0.1 
     9 20.2 0.1 
     10 20.2 0.1 
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Iteration xn yn 

 
ζ ϕ x0 y0 

1 1.4 -21.3 
 

0.1 20 -1 -0.3 
2 22.8 -39.9 

     3 62.8 -37.1 
     4 100 5.7 
     5 94.4 74.3 
     6 20.2 0.1 
     7 20.2 0.1 
     8 20.2 0.1 
     9 20.2 0.1 
     10 20.2 0.1 
      

Iteration xn yn 
 

ζ ϕ x0 y0 
1 -29.8 -50.1 

 
0.1 20 -0.1 30 

2 80 -99.9 
     3 180 -39.9 
     4 220 120.1 
     5 100 79.9 
     6 20.2 0.1 
     7 20.2 0.1 
     8 20.2 0.1 
     9 20.2 0.1 
     10 20.2 0.1 
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Iteration xn yn 

 
ζ ϕ x0 y0 

1 1.4 -21.3 
 

0.1 20 -1 -0.3 
2 22.8 -39.9 

     3 62.8 -37.1 
     4 100 5.7 
     5 94.4 74.3 
     6 20.2 0.1 
     7 20.2 0.1 
     8 20.2 0.1 
     9 20.2 0.1 
     10 20.2 0.1 
      

Iteration xn yn 
 

ζ ϕ x0 y0 
1 -28.9 -51 

 
0.1 20 -1 30 

2 80 -99.9 
     3 180 -39.9 
     4 220 120.1 
     5 100 79.9 
     6 20.2 0.1 
     7 20.2 0.1 
     8 20.2 0.1 
     9 20.2 0.1 
     10 20.2 0.1 
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Iteration xn yn 

 
ζ ϕ x0 y0 

1 -0.1 -20.2 
 

0.1 20 0.1 0.3 
2 20.4 -40.3 

     3 60.8 -39.9 
     4 100.8 0.9 
     5 100 79.9 
     6 20.2 0.1 
     7 20.2 0.1 
     8 20.2 0.1 
     9 20.2 0.1 
     10 20.2 0.1 
      

Iteration xn yn 
 

ζ ϕ x0 y0 
1 9.8 -0.4 

 
10 0.2 0.1 0.3 

2 20.2 9.2 
     3 21 10.8 
     4 20.2 10 
     5 20.2 10 
     6 20.2 10 
     7 20.2 10 
     8 20.2 10 
     9 20.2 10 
     10 20.2 10 
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Iteration xn yn 

 
ζ ϕ x0 y0 

1 -19 -31.2 
 

10 0.2 -1 30 
2 60.2 -50.4 

     3 120.6 9.6 
     4 121 110.8 
     5 20.2 10 
     6 20.2 10 
     7 20.2 10 
     8 20.2 10 
     9 20.2 10 
     10 20.2 10 
      

Iteration xn yn 
 

ζ ϕ x0 y0 
1 11.3 -1.5 

 
10 0.2 -1 -0.3 

2 22.8 9.6 
     3 23.2 13 
     4 20.2 10 
     5 20.2 10 
     6 20.2 10 
     7 20.2 10 
     8 20.2 10 
     9 20.2 10 
     10 20.2 10 
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Iteration xn yn 

 
ζ ϕ x0 y0 

1 -19.9 -30.3 
 

10 0.2 -0.1 30 
2 60.2 -50.4 

     3 120.6 9.6 
     4 121 110.8 
     5 20.2 10 
     6 20.2 10 
     7 20.2 10 
     8 20.2 10 
     9 20.2 10 
     10 20.2 10 
      

From the above observations, we see that the equilibrium point of system is depend on the 
parameters ζ and ϕ . It is easy to verify that the equilibrium point of System(12) is ( )2 ,ζ ϕ ζ+ . 

Moreover, the solutions of the system will reach the equilibrium within six iterations. First of all 
we will give lemmas for proving the main result.  
 For convenient to investigate solutions, we will use a notation refer to a set of points in 

complex plan define as ( ){ }1 , : 2C x y x x y y x y x yζ ϕ ϕ ζ= − + − + − ≥ − − − − + . 

Lemma 3  Let ( ){ } 0
,n n n

x y
∞

=
and be a solution of System(12). Suppose the initial condition 

( )0 0 1 1 2,x y Q L L∈ ∪ ∪ . Then ( ) 1
1 1,x y C∈ . 

Proof. Suppose ( )0 0 1 1 3,x y Q L L∈ ∪ ∪ then 0 0x ≥ and 0 0y ≥ . Thus 

Case 1: Suppose further x0 ≥ y0 +ϕ . We have x1 = x0 – y0 + ζ  > 0 and y1 = x0 – y0 – ϕ  ≥ 0. 

Note that 
|x1| – x1 + |y1| – y1 + 2ζ  – ϕ  = 2ζ  – ϕ  

and 
|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= –ζ  – ϕ . 

Hence (x1, y1) is an element of C1 and Case 1 is complete. 
Case 2: Suppose x0 < y0 +ϕ  and x0 + ζ ≥ y0 . We have x1 = x0 – y0 + ζ  ≥ 0 and y1 = x0 – y0 – 

ϕ  < 0.  

 Note that 
|x1| – x1 + |y1| – y1 + 2ζ  – ϕ  = -2x0 + 2y0 + 2ζ  + ϕ  

and 
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|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= |2x0 - 2y0 +ζ - 2ϕ | – 2ζ  – ϕ . 
 

Case 2A: Suppose further 2x0 - 2y0 +ζ - 2ϕ  ≥ 0. Then  
|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= 2x0 - 2y0 - 2ϕ  – ζ  – ϕ . 

Since x0 – y0 – ϕ  < 0, we have 2x0 - 2y0 - 2ϕ  – ζ < 0. Also note that |y1| – y1 + 2ζ > 0, so  
|x1| – x1 + |y1| – y1 + 2ζ  –ϕ  = |y1| – y1 + 2ζ  –ϕ  
    > 2x0 - 2y0 - 2ϕ  – ζ  – ϕ  

    = |x1 – |y1| – ϕ | – | |x1| – y1 + ζ |. 
Case 2B: Suppose further 2x0 - 2y0 +ζ - 2ϕ  < 0. Then  

|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= -2x0 + 2y0  – 3ζ  + ϕ  
    < -2x0 + 2y0  + 2ζ  + ϕ  
    = |x1| – x1 + |y1| – y1 + 2ζ  –ϕ . 

Hence (x1, y1) is an element of C1and Case 2 is complete. 
Case 3: Suppose x0 < y0 +ϕ  and x0 + ζ < y0. We have x1 = x0 – y0 + ζ  < 0 and y1 = x0 – y0 – 

ϕ  < 0. Note that 
|x1| – x1 + |y1| – y1 + 2ζ  – ϕ  = -4x0 + 4y0 + ϕ  

and 
|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= ϕ  –ζ . 

Since x0 + ζ < y0, we have y0 > x0. Thus -4x0 + 4y0 > 0. Then 

|x1| – x1 + |y1| – y1 + 2ζ  – ϕ  = -4x0 + 4y0 + ϕ  
    > ϕ  –ζ  
    = |x1 – |y1| – ϕ | – | |x1| – y1 + ζ |.  

Hence (x1, y1) is an element of C1 and Case 3 is complete.              

� 
 

Lemma 4  Let ( ){ } 0
,n n n

x y
∞

=
be a solution of System(12). Suppose the initial condition 

( )0 0 2 3,x y Q L∈ ∪ . Then ( ) 1
1 1,x y C∈ .  

Proof. Suppose ( )0 0 2 3,x y Q L∈ ∪ then 0 0x < and 0 0y ≥ . Thus  

Case 1: Suppose further -x0 + ζ < y0. We have x1 = -x0 – y0 + ζ  < 0 and y1 = x0 – y0 – ϕ  < 0. 

Note that 
|x1| – x1 + |y1| – y1 + 2ζ  – d = 4y0 + ϕ  

and 
|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= ϕ  – ζ . 
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Hence (x1, y1) is an element of C1 and Case 1 is complete. 
Case 2: Suppose -x0 + ζ ≥ y0. We have x1 = -x0 – y0 + ζ  ≥ 0 and y1 = x0 – y0 – ϕ  < 0. Note 

that 
|x1| – x1 + |y1| – y1 + 2ζ  – ϕ  = -2x0 + 2y0 + 2ζ  + ϕ  

and 
|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= |- 2y0 +ζ - 2ϕ | + 2x0 – 2ζ  – ϕ . 

Case 2A: Suppose further - 2y0 +ζ - 2ϕ  ≥ 0. Then  

|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= 2x0 - 2y0  – ζ  – 3ϕ . 
Since y1 = x0 – y0 – ϕ  < 0, we have 2x0 - 2y0  – ζ  – 3ϕ < 0. Hence (x1, y1) is an element of C1 

and Case 2A is complete. 
Case 2B: Suppose further - 2y0 +ζ - 2ϕ  < 0. Then  

|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= 2x0 + 2y0  – 3ζ  + ϕ  

Since x1 = -x0 – y0 + ζ  ≥ 0, we have 2x0 + 2y0  – 3ζ < 0. Hence (x1, y1) is an element of C1and 

Case 2 is complete.                        � 
 

Lemma 5  Let ( ){ } 0
,n n n

x y
∞

=
be a solution of System(12). Suppose the initial condition 

( )0 0 3 4,x y Q L∈ ∪ . Then ( ) 1
1 1,x y C∈ .  

Proof. Suppose ( )0 0 3 4,x y Q L∈ ∪ then 0 0x ≤ and 0 0y < . Thus 

|x1| – x1 + |y1| – y1 + 2ζ  – ϕ  = -2x0 + 2y0 + 2ζ  + ϕ  > 0 
and 

|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= |ζ  – 2ϕ | - (-2x0 - 2y0 + 2ζ  + ϕ ). 
Case 1: Suppose that ζ  – 2ϕ  ≥ 0. Then  

|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= 2x0 + 2y0 -ζ  -3ϕ . 

Hence (x1, y1) is an element of C1and Case 1 is complete. 
Case 2: Suppose that ζ  – 2ϕ  < 0. Then  

|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= 2x0 + 2y0 -3ζ  +ϕ . 
Since -2x0 - 2y0 +2ζ > 0, we have 2x0 + 2y0 -3ζ < 0. Hence (x1, y1) is an element of C1and 

Case 2 is complete.                  � 
 

Lemma 6  Let ( ){ } 0
,n n n

x y
∞

=
be a solution of System(12). Suppose the initial condition 

( )0 0 4,x y Q∈ . Then ( ) 1
1 1,x y C∈ .  

Proof. Suppose ( )0 0 4,x y Q∈ then 0 0x > and 0 0y < . Thus  

Case 1: Suppose further x0 + y0 ≥ ϕ  . We have x1 = x0 – y0 + ζ  > 0 and y1 = x0 + y0 – ϕ  ≥  0. 
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Note that 
|x1| – x1 + |y1| – y1 + 2ζ  – ϕ  =  2ζ – ϕ  

and 
|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= –ζ – ϕ . 

Hence (x1, y1) is an element of C1 and Case 1 is complete. 
Case 2: Suppose x0 + y0 < ϕ . We have x1 = x0 – y0 + ζ  > 0 and y1 = x0 + y0 – ϕ  < 0. Note 
that 

|x1| – x1 + |y1| – y1 + 2ζ  – ϕ  = -2x0 - 2y0 + 2ζ  + ϕ  
and 

|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= |2x0 +ζ - 2ϕ | + 2y0 – 2ζ  – ϕ . 
 

Case 2A: Suppose further – 2x0 +ζ - 2ϕ  ≥ 0. Then  

|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= 2x0 + 2y0  – ζ  – 3ϕ . 
Since 2x0  + ζ  – 2ϕ  ≥ 0 and ζ > -2x0. Thus -2x0 - 2y0 + 2ζ  + ϕ  > 0. Since y1 = x0 + y0 – ϕ  < 

0, we have 2x0 + 2y0  – ζ  – 3ϕ < 0. Hence (x1, y1) is an element of C1 and Case 2A is complete. 
Case 2B: Suppose  – 2x0 +ζ - 2ϕ  < 0. Then  

|x1 – |y1| – ϕ | – | |x1| – y1 + ζ |= -2x0 + 2y0  – 3ζ  + ϕ . 

Since y0 < 0 and ζ > 0, we have -2x0 + 2y0  – 3ζ < 0. Hence (x1, y1) is an element of C1and 
Case 2 is complete.                                   

� 
 

Theorem 5  Let ( ){ } 0
,n n n

x y
∞

=
be a solution of System(12). Suppose the initial condition 

( ) 2
0 0,x y R∈  and ( ), 0,ζ ϕ ∈ ∞ . Then ( ){ } 6

,n n n
x y

∞

=
is the equilibrium ( )2 ,ζ ϕ ζ+ .  

Proof. Suppose ( ) 2
0 0,x y R∈ . To show that condition:      

x2 + |x2| ≥ y2 + |y2| - ζ  + 2ϕ            (13) 

is true. By Lemmas 3 through 6 we know that (x1, y1) is an element of C1, so we have  
  |x1| – x1 + |y1| – y1 + 2ζ  – ϕ  ≥ |x1 – |y1| – ϕ | – | |x1| – y1 + ζ |.  

Then  
  |x1| – y1 + ζ  + | |x1| – y1 + ζ | ≥ x1 – |y1| – ϕ  + |x1 – |y1| – ϕ | – ζ + 2ϕ . 
Hence condition (13) is true.  Next to show that condition:    

x3 ≥  |y3| + ϕ                   
(14) 

is true. Since condition (13) is true, we have  
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    x2 - |y2| - ϕ  ≥ - |x2| + y2 - ζ  + ϕ    
and we always have  
    x2 - |y2| - ϕ  ≤   |x2| - y2 + ζ  - ϕ .   
Then 
    |x2 - |y2| - ϕ | ≤   |x2| - y2 + ζ  - ϕ .   
Hence condition (14) is true.  Next to show that condition:     
    x4 ≥ 0, y4 ≥ 0 and x4 ≥  |y4| + ϕ            (15) 

is true. Since condition (14) is true, we have  
    | x3| + x3 ≥  y3 + |y3| - ζ + 2ϕ    

and so 
    x3 - |y3| - ϕ  ≥ - |x3| + y3 - ζ  + ϕ    
and we always have  
    x3 - |y3| - ϕ  ≤   |x3| - y3 + ζ  - ϕ .   
Then   
    |x3 - |y3| - ϕ | ≤   |x3| - y3 + ζ  - ϕ .    
It is easy to verify that x4 ≥ 0, y4 ≥ 0.  Hence condition (15) is true. Next condition: 
       x5 ≥ 0, y5 ≥ 0 and x5 =  |y5| + ζ + ϕ         

(16)  
is true. Finally, it is easy to show by direct computations that (x6, y6) = ( )2 ,ζ ϕ ζ+ .This 

completes the proof of the theorem.               � 
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Conclusion and Discussion  

 We use iteration method and specific choosing initial condition to prove the 

boundedness of rational difference equation (9) – (11).  By choosing initial condition 

( )0 1 2, , 0,1y y y− − ∈ , we can show that equation (9) has unbounded  solutions. Then we use the 

iteration method to show that equation (10) and (11) are bounded and permanent. This two 

methods could be apply to another family of special cases to main equation (8).  

After that we investigate piecewise linear systems of difference equations. As we know, 

investigating stability of system of difference equations requires theorems that involve Jacobian 

matrix. So the functions of the system must are differentiable. Unfortunately, piecewise linear 

systems of difference equations are the system with absolute value. So we can’t apply the 

stability theorem to the piecewise linear systems. The common idea of proofs of the above 

systems of piecewise linear systems is to separate initial condition into few regions and find 

some characters of solution to the system of each region and then establishing lemmas and 

finally summarizing the behaviors of each system to be a theorem. System(11) has periodic with 

period 3 and periodic with period 4 solutions and we can show that every solution, initial 

condition in 1Q and 4Q , is eventually the prime period-3 solution or prime period-4 solution by 

applying Lemma 1 Lemma 2 and Theorem 4. The solutions are separate into many cases and 

by looking at the pattern of solutions we also have many patterns of solutions in each region. 

These patterns could be proved by using mathematical induction the same as [15, 18, 19].  In 

System(12), we investigate the solution by changing parameters ( ), 0,ζ ϕ ∈ ∞  and initial 

condition ( )0 0,x y  in each quadrant. The equilibrium point of System(12) is ( )2 ,ζ ϕ ζ+ . We see 

that every solution is eventually equilibrium point within six iterations. We proved by finding the 

common conditions of the solutions to System(12)  in ( )1 1,x y  to ( )6 6,x y  and proving that each 

condition is true. The solution of System(12)  can be reach equilibrium point before six 

iterations when initial conditions satisfy condition (12) – (16). If initial conditions satisfy condition 

(14) then the solution will be equilibrium point within 3 iterations and if initial conditions satisfy 

condition (16) then the solution will be equilibrium point by only 1 iteration.  
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