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Abstract

Project Code: MRG5980053

Project Title: Some behaviors of solutions of Rational Difference Equations and Piecewise Linear
Systems of Difference Equations
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Abstract: We investigate the boundedness of special cases of solutions to rational difference

equation z,, =(a+pz, ,+yz,,2,+92,,2, ,)/ (A+Bz,,+Cz .z, +Dz .z, ,)n=0,1,2, ..

with nonnegative parameters and with nonnegative initial conditions and positive denominators.

We used the iteration method to prove the boundedness of the equations. We also investigate

the global stability, the periodic nature, equilibrium solutions and the boundedness of solutions

to system X,,; = |xn|+ayn +band vy, =X +c|y,|+d ,n=0,1, 2, .. where the initial

conditions X, and Y, are arbitrary real numbers and the parameters a, b, ¢ and d are integers -1,

0 or 1. We found some periodic characters of solutions to system X ,; = |Xn|— y,—1 and

Vou=X,+]Y,|-1,n=0,1,2, ... Moreover we can prove that every solution of system

Xoy = |Xn|— y,+<¢ andy,, =X,+|Y, |- is eventually equilibrium point where the parameters

¢ and ¢ are any positive real numbers.

Keywords: Difference equation, Rational difference equation, Periodic solution, Equilibrium

point



Executive summary

Introduction to the research problem and its significance:

In recent history there has been a surge of interest in systems of both rational and
piecewise linear difference equations due to their practical applications in evolutional biology,
neural networks [1], economics [2], and population modeling [3]. Dr. Awerbuch’s team at The
Harvard School of Public Health used systems of difference equations to model the growth rate
of mosquitoes while conducting research to determine the most effective method of mosquito
abatement [4]. There are many models in biology and ecology [5, 6, 7] that use difference
equations. The following models are examples: a discrete analogue of a model of
Haematopoiesis, a discrete Baleen whale model, neural networks, a host-parasitoid
phenolmenological model, a model of flour beetle populations growth, a discrete delay logistic
model, a simple genotype selection model, and a model of the spread of an epidemic.

The boundedness character of the solution to a system of difference equations is
necessary for understanding the global behavior of the system, including its global stability. It is
also essential in the study of most applications. There are many open problems, see Camouzis
and Ladas [8], in the area of pure difference equations. There are also many open problems
and conjectures [6] in the applied aspect of difference equations. Biologists, economists,
ecologists and other researchers are waiting for mathematicians around the globe to solve their
models, or to help them create more accurate models for their applications.

Literature review:
In 2008, Amleh et al. [9, 10] considered the rational difference equation
o Bxx X

n n—1

X . ,n=0,1,2, .. (1)
A+Bx x  +Cx _

1
with nonnegative parameters and with arbitrary nonnegative initial conditions such that the
denominator is always positive. They investigated the global stability character, the periodic
nature, and the boundedness of solutions to Eq.(1). Some patterns of boundedness are
included in Camouzis et al. [5]. The methods and techniques that they developed to better
understand the dynamics of this system are also useful in the analysis of mathematical models
which involve difference equations. They believe that the special cases of System in [5, 9, 10]
are genuine examples which provide prototypes for the development of the basic theory of
nonlinear difference equations.

For the study of piecewise linear difference equations, Devaney [12, 13] investigated the
equation, known as the gingerbreadman map,

X xn|—xn_1+1,n=0, 1,2, .. (2)

n+1 _|



which has been shown to be chaotic in certain regions and stable in others. The name of this
equation is due to the fact that solutions in the plane look like a “gingerbreadman” [14] when

graphed. Eq.(2) is equivalent to the piecewise linear system,

xn|—yn+1

Xn+1 - |

,n=0,1,2, ...
Yo =%,
Gerasimos Ladas and his team made significant contributions to the generalized system
of gingerbreadman map and gave the system to be an open problem to investigate systems in
the form of 81 piecewise linear systems:

X =|xn|+ayn+b
n=0,1,2 .. (3)

where the initial conditions xo and y, are arbitrary real numbers. They numbered the above

system by using their parameters a, b, ¢, and d. The system's number N is given by
N=27@+1)+9%b+1D+3c+D+d+1)+1

the parameters a, b, ¢, and d are integers between -1 and 1, inclusively. There are several

researchers study about system (3) such as Grove et al.[15] studied the system number 8,a = b

=-lc=1andd =0,

X =

n+1 Xn

_yn_l
,n=0,1,2, ... (4)

=x_ Tt

Yot Yn
They found that the system (4) has the unique equilibrium point (-2/5, -1/5) and there are two
prime period 3 cycles. They has been shown that every solution to system (4) is either
equilibrium point or periodic with prime period-3. Grove and Ladas [14] studied system number

da=b=d=-1landc =0,

X =

n+1 Xn

_yn_l
on=0,1,2, ... (5)
yn-H :Xn _1

They found that the system (5) has the unique equilibrium point (0, -1) and system (5) can be

reduced to second order difference equation x ., = |><n| — x__, which is periodic with prime

period-9. Lapierre[17] studied system number 10,a =c=d =-1and b = 0,

X =
,n=0,1,2,... (6)



She showed that every solution to system (6) is eventually the equilibrium point (1, 0) for every

initial condition (><O,yO ) er’. Tikjha et al. [18] studied the system number 1,a=b =c=d =-1,

Xn-H -

X —yn—l
,n=0,1,2, ... (7)

—1

Yo — %0 T Y
They found that the system (7) has the unique equilibrium point (1, -1) and there are two prime
period 6 cycles. They has been shown that every solution of system (7) is either equilibrium
point or periodic with prime period-6.

There are still some interesting systems that are special cases of system (3) such that we
can investigate the boundedness character of solutions, the global stability, and periodic nature
of the solutions. Robert M. May [5] said that “...The response to large amplitude disturbances
requires a nonlinear or global analysis, for which no general techniques are available ...”.
Objectives:

1) To investigate the boundedness of a generalization of Eq.(1), which is the rational

difference equation

oa+Pz _ +yz z +6z 7z
— n—1 n—1"n nan’n:O’lyz’m (8)
A+Bz  +Cz z +Dz _z

n—1"n—2

Zn+1

with nonnegative parameters
2) To discover the global stability character, the periodic nature, and the boundedness
of special cases of system (3).

Methodology:

1) Write computer programs to simulate the behavior of rational difference equationsand
piecewise linear systems of difference equations.

2) Simulate the behavior of solutions to both rational difference equationsand piecewise
linear systems of difference equations by changing initial conditions and parameters.

3) Analyze the behavior of solutions by recognizing the pattern in each equations or
systems.

4) Make conjectures by using analyzing results.

5) Prove the conjectures. The common idea of proofs is to separate initial condition into
few regions and find some characters of solution to the system of each region and
then establishing lemma in each region and finally summarizing the behaviors of

each system to be a theorem.



Results

The results of this research are separated into two parts which consists of boundedness
of special cases of rational difference equations in (8) and global character of special cases of

piecewise linear system (3).

Boundedness of rational difference equations:

In this section, we will show the boundedness of rational difference equations as

follows:
a+1717
N+l S (9)
Zn—lzn—Z
- a+z22, ,+01, 7 , (10)
A+ Zn—lzn—2
— o+ ﬂzn—l + 7Zn Zn—l + Zn—lzn—z (1 1)
”*1 an—l + Zn—lzn—z
Theorem 1 Let {z,} be a solution of System(9) with nonnegative parameters and with
nonnegative initial conditions and the denominator is always positive. Then System(9) has
unbounded solutions.
Proof. Consider
n+1=oz+znzn_l __a z.Z, 4 . @
Zn—lzn—Z Zn—lzn—Z Zn—lzn—Z Zn—iLZn—Z
We see that Y, , = RAER/E RN by choosing initial condition Y, Y., Y, €(0,1). Then
a
- R R S 1 "SR S
Zn—lZn—Z Zn—lZn—Z Zn—lZn—2 Zn—lzn—2
Hence {z,,} has unbounded solutions. []

Theorem2 Let {z,,} be a solution of System(10) with nonnegative parameters and with
nonnegative initial conditions and the denominator is always positive. Then System(10) is
bounded and permanent.

Proof. Consider

L QL2 402020, max{a,5} .
n+l = - T :
A+z, .7, min{A,1}
Then for n>4, we have
a Z
.., < +—"-+0

n+l

A+ Znflzn72 Zn—2



a 1 a Z
< + [ ) ] +0
A+ Zn—lzn—z Zn—2 A+ Zn—2 Zn—3 Zn—3

a 1 a 1 a Z
< + + [ +0=2 4 5} +0 |+6
A+ Zn—lzn—2 Zn—2 A+ Zn—2 Zn—3 Zn—3 A+ Zn—SZn—A

Zn—4
a a a Z, , o o

< + + + + + +0

A+ Zn—lzn—z Zn—2 (A+ anz Zn—B) Zn—2 Zn—3 (A+ Zn—3zn—4) Zn—2 Zn—3Zn—4 Zn—2 Zn—3 Zn—z

a a a 1 o6 o

< >+ ~+ Nttt —+05.

A+m® m(A+m*) m(A+m’) m® m’ m

Hence {z,} is bounded and permanent. L]

Theorem3 Let {z,} be a solution of System(11) with nonnegative parameters and with
nonnegative initial conditions and the denominator is always positive. Then System(10) is
bounded and permanent.

Proof. Consider

_a+pPr,  +yz,2,,+7,42,, > max {ﬂ’l}

= > =m.

n+l -

Bz, ,+2 .2, min {A,l}
Then for n>4, we have
a Z
Z,., < + P A ]
Bz, ,+z,,z,, B+z, , B+z,

a a Z

< + P S— [ + P + +1]+1
Bz, ,+z,,2,, B+z, , B+z ,\Bz ,+z ,z2., B+z , B+z ,

Bz, ,+z,,2,., B+z , B+z ,\Bz ,+z ,z,., B+z , B+z ,\ Bz ,+7 .7 ,
Z
B + L n2 +1J+1 +1
B+z,, B+z,,

_ a B ay N Br
Bz, ,+z,.z,, B+z_, (B+z,,)(Bz,,+7,,2,5) (B+z,,)(B+27,;)

<a+,b’+y(a+ﬂ+7(a

+(B+zn_2)(B+zn_3)Jr B+z,,



* P ap + Pr + ay” P
Bm+m? B+m (B+m)(Bm+m?’) (B+m)(B+m) (B+m)’(Bm+m?) (B+m)’
7’ 7’ ¥

“Eamy (Brmy (Brm)

Hence {z,} is bounded and permanent. []

Global character of piecewise linear systems:

In this section, we will show the global characters of two piecewise linear systems as follows:

Xn+1:|xn|_yn —1 and yn+1:Xn+|yn|_1' (11)
It is easy to verify that the following cycles being periodic solutions of System(11):
1 1 3 1
3 5 5 -1 -1 L -3
1 1 3 1 1 -1 3,
P’S.l_ 51 _g ) F?'g,g = _ga _g ) P41_ 1, 1 ) P42 = _1,
R 17 -1 1 -5, 3
3" 3 5 5

We will separate initial condition of system (11) into 8 regions as follows:
L ={xy:x=0andy =0}
L, ={x y): x=0andy =0}
L, ={(x, y): x<0andy = 0}
L, ={x y:x=0andy <0}
Q =1{x y:x>0andy> 0}
Q, ={x,y): x<0andy > 0}
Q, ={(x, y): x<0andy < 0}
Q, ={x y):x>0andy < 0}
In this report, we will choose initial condition in Q, and Q;. The following lemmas will be tools
for investigating the behaviors of solutions to the system.

Lemma 1 [19] Let {(Xn, yn)}::O be a solution of System(11). Suppose the initial condition

(X, Yy ) €{@ y)|yeR} for some positive integer N . Then {(Xn, yn)}iN+1 is eventually the

prime period-4 solution.

Lemma 2 [19] Let {(X,,¥,)} ,be a solution of System(11). Suppose the initial condition

n=

(Xy, Yy ) €{(-1y)|y € R} for some positive integer N . Then {(Xn, yn)}

o0
n=

is eventually the
N+1

prime period-4 solution.



Theorem 4 [19] Let {(Xn, yn)}w , be a solution of System(11). Suppose the initial condition

(%1 ¥0)€QUQ, UL UL, UL UL,. Then {(x,,Y, )}:zmlis eventually the prime period-3
solution or prime period-3 solution.

Now we ready to investigate behaviors of solutions to System(11). Let (XO, yO) €Q,.
Then X, >0 and Yy, >0. Thus

X, =[Xo| = Vo —1=%, — ¥, -1

Y1 =Xo+| Yo |-1= X +Y, 1.
We separate the possible solutions into 3 cases.
Casel:X,—Y,=1andso X,+Y,>1.Then X, 20 and Yy, >0.We have

X, = [X|= Vi —1=% — Yo —1— (X + Yo —1)-1=-2y, -1<0

Y, = X+ |V —1=% = Yo =14 X + Y, —1-1=2x,-3.

Casel.1:2x, —320(XO Zgj We have Y, = 2X, —3 2 0and so

X; =|X;| = Y, 1= 2y, +1-2X, +3—1=—2X, + 2y, +3

Ys =X, +|Y,|~1=-2y, 1+ 2%, —3-1=2x, -2y, 5.
Casel.1.1:-2x, + 2y, +3<0and 2X,-2Yy,—52>0

X, =|Xs| = V5 —1=2%, — 2y, -3 2%, + 2y, +5-1=1

Yo =X+ |V =1==2X; + 2y, +3+ 2%, -2y, -5-1=-3.
Casel.1.2:-2x,+2Yy,+3<0 and 2x,-2Yy,-5<0

X, =|Xs| = ¥ —1=2%, — 2y, —3—-2%, + 2y, +5-1=1

Yy =X+ |V —1==2X; + 2y, +3—2X, + 2y, +5-1=—4x; + 4y, +7

Xs = |X,|— Vs —1=1+4%, -4y, —7-1=4x, -4y, - 7>0

Vs = X, +|Vy|-1=1+4x, -4y, -7 -1=4%, -4y, -7>0

Xs = |Xs| - ¥ —1=-1

Yo = X5 +|Ys| —1=8%, -8y, —15.

We apply Lemma 1 or Lemma 2 to conclude that the solution is eventually prime period 4.
3 Yo

Casel.2:2x,—-3<0 (XO <= |azlddn y, <0
2

X3 =|Xz|— Y, =1=2y,+1-2X,+3-1=-2x,+2y,+3>0

Yo = X, +]y,|~1= -2y, ~1- 2%, +3-1= 2%, ~2y, +1<0

Xy = |Xs| = Y3 =1==2%, +2Y, +3+ 2% + 2y, ~1-1=4y, +1>0
Yy =Xy | Ya|~1=—2%; + 2y, +3+ 2%, + 2y, ~1-1=4y, +1>0



10

Xs =X~ Y, —1=4y, +1-4y, -1-1=-1

Vs =X, +|Ys| ~1=4y, +1+4y, +1-1=8y, +1>0
Xs = |Xs| - Y5 ~1=1-8y, ~1-1=-8y, -1<0

Yo = X +|Ys|-1=-1+8y, +1-1=8y, 1.

Casel.2.1.1:y,=8y,-1>0 [yo 2%)

X; = [Xs|— Y6 —1=8y, +1-8y, +1-1=1
Y, = Xs +|Y| -1=-8Yy, ~1+8y, ~1-1=-3.

Casel.2.1.2:y,=8y,-1<0 (yo <%)

X :|Xs|—y6—1=8y0+1—8y0+1—1:1

Y7 =X +|Ye| -1= -8y, ~1-8y, +1-1=-16y, -1<0
Xs =X, |-y, ~1=1+16Yy, +1-1=16y,+1>0

Y =X, +|y;|-1=1+16y, +1-1=16y, +1>0

X, =|%|— Y, ~1=16y, +1-16y, ~1-1=-1

Yo = X +|Vs| -1 =16y, +1+16y, +1-1=32y, +1>0
Xio = [Xo| = Yo =1=1-32y, ~1-1=-32y, -1<0

Vio = Xg +| V| ~1=-1+32y, +1-1=32y, -1.

1 1
Casel.2.1.2.1: =32y, -1>0 |=>vy >—
Y10 Yo (8 Yo 32j

Xil = |X10|_ y10 _1: 32y0 +1—32y0 +1—1:1
yll = XlO +|y10|_1: _32y0 _1+ 32y0 —1—1: —3

Casel.2.1.2.2:y,,=32y,-1<0 (y <3i2)

Xy =[Xo| — Vi —1= 32y, +1-32y, +1-1=1
Vi = Yo +|Yao| ~1= ~32y, —~1-32y, +1-1=-64y, ~1<0
Xy =|X|~ Vi ~1=1+64y, +1-1=64y, +1> 0
Vir = Xy +| V| -1=1+64y, +1-1=64y, +1> 0
X5 =|X| ~ Vip —1= 64y, +1-64y, ~-1-1=-1
Vis = X +|Via| -1 = 64y, +1+ 64y, +1-1=128y, +1>0
X4 = Y|~ Vi ~1=1-128y, ~1-1=-128y, -1<0
Vie = Xy3 +|Yis| ~1=-1+128y, +1-1=128y, —1.
M



So we will have a pattern of solutions to system(11).
Casell: X, — Y, <1,% + Y, =1. Then X, <0 and Yy, >0.Hence (X, ¥;)€Q, UL,.
X, = [X|= Vi —1==X) + Yo 1= Xy — Y, +1-1=-2x, +1
Y, = X+ || —1= % = Yo =1+ %, + Y, ~1-1=2x, 3.
Casel.l:x, =-2%,+1>0 and Yy, =2X,—3<0.Wehave
X =|%,| = ¥, —1==2%X, +1-2X%; +3-1=-4x,+3>0
Vs =X, +|Y,| —1==2%, +1- 2%, +3-1=—4x%,+3>0
Xy = [Xs| = V3 —1=—4%, +3+4x%,-3-1=-1
Yy =X+ |V —1=—4X; +3-4x%,+3-1=-8x%,+5>0
Xs = |X,|- ¥, —1=1+8%,-5-1=8%,-5<0
Ys =X, +|V,| ~1=-1-8%, +5-1=-8y, +3.

Casel.l.1:y, =-8y,+3=0 (xo sg)
Xs = |Xs|— Y5 —1=-8%, +5+8%, —3-1=1

Y = Xs +|Ys| ~1=8%, —5-8%, +3-1=-3.

Casel.1.2:y, =-8y,+3<0 (§< X, s%}

Xs = |Xs|— Vs —1=-8%, +5+8x%,—3-1=1
Yo = Xs +|Ys|-1=8%, —5+8%, —3-1=16%, -9 <0 by testing in interval (gﬂ

X, =[X| =Yg —1=1-16%,+9-1=-16%,+9>0
Y, = Xg +|Ys|-1=1+16%, -9 -1=—16%,+9>0
X = |X; |- y; —1=-16X%, +9+16%, -9 -1=-1

Yo =X, +|Y;|~1=—16%, + 916X, +9—1=-32x;+17 > 0 by testing in interval (gﬂ

Xo = |Xs| = Ys —1=1+32%, 17 -1=32%, -17 <0

Yo =Xy +|Vs| ~1=-1-32x%, +17 -1=-32x,+15

Xio = |Xg| — Yo —1=-32%, +17 +32%, ~15-1=1.
We apply Lemma 1 to conclude that the solution is eventually prime period 4.
Caselll: X, =Y, <L X, + Y, <1l. Then X, <0 and y, <0.

X, ==2X%, +1

y, =-2Y,-1<0.
If X, 20 then(X,,y,)eQ, UL, .

11
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Suppose that X, =-2X,+1<0 [xo > %)
X; = 2%, +2Y,-1>0
Y, =2X,+2Y, +1.

If y; <0 then(X;,y;)€Q,UL,.

Suppose thaty, =2x,+2y,+1>0 (xo —Yo <%)
X, =4X,—3

Yo = 4y0 -1.
If X, 20,y, >0then it will contradict with condition X, +Y, <1.

Suppose that x, =4x,-3<0,y, =4y,-1<0 [%< Xo <%,y0 <%} Then

X =—4X, =4y, +3
Y =4X, -4y, —3<0.
If X >0 then(X,Ys)eQ, UL,.
Suppose that X, =—-4x, -4y, +3<0 (%<xo+y0 <1j. Then
Xs =8Y, -1
Ys =—8X, +5.

If X <0,Ys <0 then it will contradict with condition X, —Y, < %

Suppose that X; =8y, —-1>0, ys =-8X,+5>0 (%< Xo <g,%< Yo <%) Then

X, =8X, +8y,—7<0
y, =—8X,+8y, +3.
If y, >0 then (x;,y;)eQ,UL,.
Suppose that y, =-8x,+8y,+3<0 (g< X — Yo <%) Then

X =—16Y, +3
ys =16x,-11<0.
If X >0 then (X, ¥5)€Q, UL,.
Suppose that X, =-16y,+3<0 [%< Yo <%} Then

X, =—16%, +16y,+7>0
Y, =—16x,-16y, +13.



If Y, <0 then (X,,¥,)€Q,UL,.

Suppose that y, =-16%, -16y, +13>0 (% <X +Y, < %) Then

Xyg =32, =7
Yio = —32X, +19.

3
If X, 20,Y,, =0then it will contradict with condition X, —Y, < 3

19 51 7
Suppose that =32y, —-7<0, =-32%,+19<0 | —<X,<—,=—=<y <—|.Then
pp X10 yO le 0 (32 0 8 8 yO 32j

X, = 32X, —32Y, —13
Y1 = 32X, +32y,-27<0.
If %, >0 then (x,,¥,)eQ,UL,.

Suppose that x,; =32x,-32Yy,-13<0 (g <Xg— Yo < é—zj.Then

X, = —64X, +39
Yy, =64y, +13.

If X, <0,Y,, <0 then it will contradict with condition X, + Y, < %
19 39 1 13

Suppose that x,, =—64x,+39>0,y,, =-64y,+13>0 | —<X,<—,=<Yy,<— |.Then

pp X12 0 y12 yO (32 0 64 8 yO 64)

X3 = —64X, + 64y, +25<0
y,; = —64x, —64y, +51.

If Y3 20 then (X3, ¥55)€Q, UL,.

X, =128%, =77
Y. =128y, -27<0.
If X, >0 then (X, Y,)eQ, UL,.

19 77
Suppose that =128x, -77<0 | —<x, <——|. Then
pp X4 0 (32 0 128j

X5 = —128x, —128y, +103
Yis =128x, -128y,—51.

If Xz <0,Y,5 <0 then it will contradict with condition 'y, < % Suppose that

13



X5 =—128x%,-128y,+103>0, y,. =128x,-128y, -51> O(% <Xyt Yo <

Then
X = —256X, +153

Y, =—256Y, +51.

If X5 =0,y =0then it will contradict with condition X, + Y, <§

153

Suppose that x,, = -256x, +153<0, y,, =—-256Y, +51< 0[256

Then
X;; = 256X, + 256y, —205

y,; =—256x, + 256y, +101<0.
If X; >0 then(x;,Y,;)eQ,UL,.

Suppose that x,, = 256X, + 256y, —205 < 0(% <X+, < 205}

256
X,s =512y, +103

Yis =512x,—-307.

If X5 <0, Y, <0 then it will contradict with condition X, -,

307 _, 77 5L _
128" 256

X, =512y, +103> 0, y,; =512x, —307 >0 (E< X, <

X,g =—512X, -512y, +409<0
Y, = 512X, —512y, —205.

If Y15 20 then (X, ¥;5)€Q, UL,

Suppose that y,y =512%, -512y, —205< O(E <X 205

128 ° 77512
Xy, =1024y, —205

Y, =—1024x, +613<0.
If X0 20 then(X,, Yy )€Q, UL,.

51 205
Suppose that x,, =1024y. —205<0 Then
pp 20 Yo (256 Yo < 1024j

X,, =1024x, ~1024y, — 409 > 0
Y, =1024%, +1024y, ~819.
If Y, 20 then(Xy, Y, )€ Q,.

Suppose that vy, =1024x,+1024y, —-819 > O(_fo:;i

_j,

51
>——, Suppose that
28 pp

Yo <—= |

205
<X, +Vy, <——|. Then
o< o

14



X,, = —2048Y, +409
Y, = 2048x%, —1229.

2
If X,, 20,Y,, >0then it will contradict with condition X, -y, < 5—22 Suppose that

307 1229 409 205
— <X, < : <Y, <
512 2048 2048 1024

X,, =—2048y,+409<0, y,, =2048x,-1229 <0 ( j . Then

X, =—2048x, + 2048y, + 819
Y, =—2048x, — 2048y +1637 < 0.
[FXp5 2 0 and(xzen y23) eQ,uUlL,.

819 205
Suppose that x,, =—2048x,+ 2048y, +819<0 | ——<X,—Vy,<——|. Then
PP 2 0 Yo (2048 o~ Yo 512)

X,, = 4096%, — 2457

y,, =4096y, -819.

1
If X,, <0,Y,, <0 then it will contradict with condition X, + Y, > 1%—294 Suppose that

2457 1229 819 205 j
<X < : <Yy <—— |- Then
4096 2048 4096 1024

X, = 4096X, 2457 20, y,, = 4096y, ~819 > 0(

X,s = 4096X, — 4096y, —1639 < 0
Y, = 4096, + 4096y —3277.

If Yp5 20 then(Xy, Y5 ) €Q, UL,
Suppose thaty,. =4096x, + 4096y —3277 < O(% <X, +Y, < 32lj Then

X, = —8192X, +4915
Y,s =—8192y, +1637<0.

If X5 20 then (X, Yos) €Q, UL,.
Suppose that X,s =—-8192x,+4915<0 4915 <Xy < 1229 . Then
8192 2048

X,, =8192x, +8192y, — 6553

y,, = —8192x, +8192y, +3277 .

819
4096

If X,; <0,Y,, <0 then it will contradict with condition y, >

Suppose that
Xy, =8192x, +8192y, —6553>0, y,, = -8192X, +8192y, +3277 >0
(6553 3277 819 3277)
—— <Xt Yo <——= <X~ Yo S—— |-
8192 4096 2048 8192
X, =16384x, —9831

15



Y, =16384y, —3277 .

7
. S ose that
4006 " PP

4915 9831 1637 205
<Xy <————,——< Y, <
8192 16384 8192 1024

If X, 20, Y,5 =0then it will contradict with condition X, +Y, <

X, =16384x, —9831<0, y,, =16384y, - 3277<:0( J Then

X, =—16384x, —16384y, +13107
Y,, =16384x, —16384y, —6555.

1
. Suppose that
16384° P

X,, =—16384x, —16384y, +13107 <0, y,, =16384x, 16384y, — 6555 < 0

(13107 3277 819 6555 j
<X+ Yy < —— ——< X~ Yy <——
16384 40962048 16384
X,y = 32768Y, —6553

Y, = —32768X, +19661.

If X,9 20, Y, =0then it will contradict with condition x, <

.
.S ose that
8192~ PP

4915 19661 6553 205 )
<X, < , <Yy <— |.
8192 32768 32768 1024

If X5 <0,Y; <0 then it will contradict with condition X, — Y, <

X, = 32768y, —6553> 0, y,, =—32768X, +19661>>o(

Then
Xy = 32768X, +32768Yy, — 26215
Yy, =—32768x, +32768y, +13107 .
19661

If X3 20, Y, =0then it will contradict with condition X, < 37768 Suppose that

X,, = 32768X, +32768Y, — 26215 < 0, y,, = —32768x, + 32768y, +13107 <0
(13107 26215 13107 _ 6555 j

, < < .
16384 ° Y 35768 32768 ° 7° “ 16384
Then

X,, = —65536Yy, +13107

Y., = 65536x, —39323<0.
If X, 20 then(X;,,Ys,)€Q,UL,.

Suppose that X,, = ~65536y, +13107 <0 (_13107 <y, <205 j Then

65536 °° 1024
Xy, = —65536X, +65536Y, + 26215 > 0

Y3 = —65536X, —65536Y, +52429.
If Y3 <O then (Xg, ¥y5)€Q, UL,

16



Suppose that y,, =—-65536X, —65536Y, +52429 > 0 (% <X+ Y, < %) Then
X3, =131072y, — 26215
Y, =—131072x, + 78643.
13107

If X5, 20,Y,, 20then it will contradict with condition X, —Y, > 37768 Suppose that

xM==131072y0—26215<:0,yM==—131072x0+78643<:0(

Then
X3 =131072x, —131072y, —52429

Y. =131072x, +131072y, 104859 < 0.
If Xg5 >0 then (X, Yas) €Q, UL,

13107 52429
Suppose that X.. =131072x, —131072y, —52429<0 | =—"—" <X +Vy. <—2" | Then
PP » 0 Yo (32768 o T Yo 131072)

X, = —262144x, +157287
Vs = —262144y, +52429

If X3 <0, Y36 <0 then it will contradict with condition X, +Y, <%. Suppose that

X3s = —262144X, +157287 > 0, y,s = 262144y, +52429 >0

78643 157287 13107 52429
<X, < : <Y, < .
131072 262144 65536 262144

Then X,, = —262144x, + 262144y, +104857 <0 and y,, =—262144x, — 262144y, +209715.
If Y3 20 then(Xy;, Yo7 ) €Q, UL,

Suppose that y,, =—262144x, — 262144y, + 209715 < 0 (

<Xg+ Yo <——= |.
262144 131072
X,y = 524288x, — 314573

V,, = 524288y, ~104859 < 0.
If X38 >0 then(x387 y38)eQ4 o L4-

78643 _ 314573
131072 0 < 524288
X,y = —524288x, —524288y, +419431> 0

Y, = 524288, — 524288y, — 209715
If Vs <O then(Xy, Vs ) €Q, UL .

Suppose that y,, =524288x, — 524288y, —209715>0 (

Suppose that X,3 =524288x, —314573 <0 ( j =0.599995,y,=0.2

209715 6555 j
————— <X =Y, <——— |.Then
524288 16384
=-1048576x, + 629145

209715 104859) Then

17
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Y, =—1048576y, +209715<0.
If X,p 20 then (X40’ y40) € Q, UL,. Suppose that Xx,, =—-1048576x, + 629145 < 0. Then

629145 314573 209715 52429
<X, < <Y, <
1048576 524288 ) 1048576 262144
X,, =1048576x, +1048576y, — 838861

Yy, =—1048576x, +1048576y, + 419429 <0

If X0 >0 then(X,,Y,)eQ, UL,.

Suppose that X,; =1048576X, +1048576y, —838861 <0. Then
X, =—2097152y, + 499431
Y, =2097152x, —1258291.

209715
If x,, <0,Y,, <0 then it will contradict with condition X, — .S that
42 Vi en it will contradict with conaition X, y0>524288 uppose tha

X,, = —2097152y, + 49943150 y,, = 2097152x, —1258291>0.Then
(1258291 314573}( 209715 _ v < 419431}
2097152 Xo 524288 \ 1048576 °° 2097152

X5 = —2097152x, — 2097152y, +1677721<0

Vs = 2097152x, — 2097152y, —838861.
If V3 20 then(X,, Vs )€Q, UL,

209751 838861

s that V. = 2097152x. — 2097152y, —838861<0 X —V <—" | Th
uppose thal Ve ° 4 ) (524288< ° y°<2097152j ="

X,, =27y, —838861
Yo = 27X, +2516581<0.
209715 838861
If X,y 20 then (X, Y, )eQ, U Ls(ZT <Y, < ZTJ'Then
X5 = 27Xy =27y, 1677721 >0
Vs = 272X, — 2%y, —3355443.
If Yy5 <O then(X,, ¥, )eQ, UL,. Then
X, =22y, +1677721
Y = 272X, —5033165.

838861
If X, >0,V,. >0 then it will contradict with condition X, -V, > ————. Suppose that
46 Yus Twi It wi v 0o~ Yo 2097152 upp
X =27y, +1677721<0 and Y, = 2% x, —5033165 <0
1258291 5033165 1677721 838861
T < 0 < 223 , 223 < 0 < T . Then

= -2%8x, + 2%y, +3355443

18
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Y =—22%, —2%y, +6710885< 0.
If X, 20 then(X,;,Y,;)€Q,UL,. Then
X, = 2% X, —10066329
V.o = 2%y, — 3355443
3355443

If X,3 <0,Y,5 <0 then it will contradict with condition X, + Y, > o7

. Suppose that

Xpg = 2% X, —10066329 >0 and Yy, = 2% Y, —3355443>0
(10066329 5033165 3355443 838861)
— <X, < , < .Then

24 0 023 24 Yo < T
X4 = 27X, — 2%y, — 6710887 <0
Vo = 2% %, + 2%y, —13421773.
If Yo 20 then(X,;,Y,;)€Q, UL, Then
Xe, = —2%x, + 20132659
Yoo =27y, +6710885<0.

20132659 5033165
If g =0 then(Xg,, Vs ) €Q, UL, (T <X, < Tj Then
X, = 25, + 25y, — 26843545
Y, = 2% Xo + 2% y, +13421773.
3355443

224
Xg, = 2%, + 2%y, — 26843545 > 0 and y,, = 2%, +2%y, +13421773> 0. Then
Xs, = 2%°x, — 40265319
Vs, = 2%y, —13421773.

If X;; <0,Y¥,; <0 then it will contradict with condition 'y, > . Suppose that

13421773

If X, 20,Y,, 20 then it will contradict with condition X, + Y, < o7

. Suppose that

X, = 2% %, — 40265319 < Oand y,, = 2°y, —13421773 <0
(20132659 40265319 3355443 13421773)
— <X, < ——-—— |. Then

225 0 226 ! 224 < 0 226

Xy =27 %, — 2%y, +53687091
Ve, = 22X, — 2%y, — 26843547 .
40265319
226
Xey = 27X, —2%°y, +53687091< 0 and Y, = 2%°x, —2%°y, — 26843547 < 0. Then
X, = 27"y, — 26843545
Yo, = 27 x, +80530637 .

If Xe3 20,y =0 then it will contradict with condition X, < . Suppose that
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X24n717 — 210(n—1)+3 Xo + 210(n—1)+3 yo _ (25n +1) and
_ ~10(n-1)+3 10(n-1)+3

Yoanar = —2 (n-b Xo +2 Yo +6,,

Xosn 16 = —0(n-1)+4 Yo+, <0 and

Yoan1e = 2o Yo — 35n -2<0,

Xpugs = =200 D x4 00Dy 4 25 41 and
_ 10(n-1)+4 10(n-1)+4
Youns = -2 Xo — 2 Yo 4§n +1’

Xoan-1a = 2100 Yo — (25n +1) and

_ 10(n-1)+5
Younaa = -2 Xy + 65n +1,

X24n_13 — 210(n—l)+5 XO _ 210(n—1)+5 yo _ (45n +1) and
y24n713 — 210(n—1)+5 XO + 210(n—1)+5 yo _ (85n + 3) ’

Xoan gy = 220 x +125 +3 and
y24n—12 = 210(n—1)+6 + (45n + 3) ’

_ 10(n-1)+6 10(n-1)+6
Xoan11 = —2 Xo +2 Yo +86, +1<0 and

Youn 1y = _l0(n-1)+6 X, — 210(n-1)+6 y, +165, +3<0,

Xoan-10 = 21 Xy — (245n +5) and
Youn-10 = rasd Yo — (85, +3),

X24n79 — _210(n—l)+7 XO _ 210(n—l)+7 yO _ (325n + 7) and
y24n_9 — 210(n—1)+7 XO _ 210(n—1)+7 yo _ (165n + 3) ]

Xoung = —2°0"* %, +485, +9 and
Yaung =20 Yo + (165, +3),

Koy, = 27008y 4 210008y (645, +13) and
Youn g = =200 V8% + 2100y 14 (325, +5) <0,

Xouns = 2"y +325, +7 and

We can formulate that formula of above solutions {(Xn, yn)}oo ,as follows: for n>1, we have

n=

20
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Youns = 220y — (966, +19),

Xogns = —2 000 x — 21009y 11285 +25 and
y24n75 — 210(n—1)+9 Xo _ 210(n—1)+9 yo _ (645n + 13) ’

Xoan-a = —210 e Yo — (645n +13) and
Yours =200 +613<0,

Xpp g = 200Dy 200Dy 4 (1285 +25) and
Voun s = 210(n—1)+10 X, + 210(n—1)+10 Yy — (2565n n 51)’

Xoanp = =200 DMy 4 (1285, +25) and
Your, = 200D — (3845, +77),

Xppq = 2100 Dy 4 200Dy 4 (2565 +51) and
Yours = _210(n—1)+11 Xy — 210(n—1)+11 Yo + (5125n +101) ]

Xy, = =210 D2y (7685, +153) and
Yoo, = 27002 % — (25605, +51),

Xy = 210002y pLOOD1Zy (5195 1103) and
y24n+1 — 210(n—1)+12 XO + 210(n—1)+12 yO _ (10245n + 205) )

Xouny = =200+ (15365, +307) and
Yoanez = =2 "Dy + (6125, +102),

Xpuneg = 200 x . — (20485, +409) and
Younes = 200 %0 + (102465, + 205),

Xouns = 200D x  — (30725, +615) and
Vounea = 2700 DM % — (10245, + 205),

Xogns = —2 0D 2100 DHy "y (409665, +819) and
y24n+5 — 210(n—1)+l4 XO _ 210(n—1)+14 yo _ (20485n + 411) ,

Xounie = 20Dy (20485, +409) and



22

Yourse = =22V %+ (614465, +1229),
for 6, =3,13107,K . It is easy to see that the limit of regions trend to the point (0.6, 0.2) which is a
member of period 3 cycle P3_2. So we can conclude that solution of the system is either eventually go out of
Q, W Q;, solution is eventually prime period 3 or prime period 4, or stay in Q; U Q; which solution satisfies
the above pattern.

Next, we will investigate solutions to the system when initial condition in third quadrant and we

will focus on the pattern of solutions which only lie in Q;. Let (X,,Y,)€Q;. Then X, <0 and
Yo <0. Thus

% :|Xo|_ Yo _1:_Xo —Yo -1

Yo =X+ | Yo [-1=% -y, -1.
If (X11 yl) ¢ Q, then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (Xv yl) € Q;, then

X, =[X| = Yo —1= X+ Yo + 1= X + Yo +1-1=2y, +1

Yo =X | Yo =1==%X = Yo —1=X; + Yo +1-1=-2x, -1,
If (XZ, y2) ¢ Q, then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (Xz, y2) € Q,, then

X3 = |X2|_ Y, =1=2x, -2y, -1

Y3 =X+ Y, | -1=2%+2y, +1.
If (X3, y3) ¢ Q,then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X3, y3) € Q,, then

Xy =|X;| - ys —1=—4x, -1

Yy =X +|Yy|-1=-4y, -3.
If (X4, y4) ¢ Q,then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X4, y4) € Q;, then

Xs =X, |-y, —1=4%, +4y, +3

Yo =X, +| Y, | -1=—-4x%,+4y, +1.
If (X5, y5) & Q3 then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (XS, y5) € Q,, then

Xs = |X5|_ Ys —1=-8y, -5

Yo = X5 +|Ys| —1=8%, +1.
If (XG, ye) ¢ Q, then we can conclude that solution of the system is eventually prime period 3 or prime

period 4. Suppose that (Xe, y6) € Q,, then
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X, = [Xs|— Y6 —1=—8%; +8Y, +3

Y7 =Xt | Ve | -1=-8% -8y, - 7.
If (X7, y7) ¢ Q,then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X7, y7) € Q,, then

X =%, | -y, —1=16%,+3

Yo = X, +|y,|-1=16y, +9.
If (XB, y8) & Q3 then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (Xs, y8) € Q,, then

Xg = |Xs| — s —~1=—16%, —16Y, —13

Yo =X+ | Yy [ -1=16X,-16y, - 7.
If (Xg, y9) & Q3 then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (Xg, yg) € Q,, then

Xy =|X| — Yo —1=32y, +19

Yio = Xg +|Yo| -1=-32%, -7 .
If (Xm, ylo) ¢ Q,then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that Xy, Yy ) € Qy, then

Xy = |X10|_ Yo —1=32%, 32y, -13

Y =X+ | Yoo | =1=32X, +32y, +25.
If (Xﬂ, yll) ¢ Q,then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (Xﬂ, yll) € Q,, then

X, = |X11| — Y, —1=-64x,-13

Yi =%y +|Y11| —1=-64y,-39.
If (X12' ylz) ¢ Q,then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X121 ylz) € Q,, then

Xi3 = |Xpp|— Y1, 1= 64X, + 64y, +51

Yig = Xpo [ Yy, | —1=—64%, + 64y, +25.
If (X13, y13) & Q3 then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X3, Y;3) € Q;, then

Xy = |X13| — Vi3 —1=-128y, - 77

Yis = Xi3 +| V15| ~1=128%, +25.



If (XM, y14) ¢ Q,then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X14’ y14) € Q,, then

Xis = Y| — Y1g —1=—128x; +128Y, +51

Vis = %o+ ]| Yy, | -1=-128x, —128y, -103.
If (X15, y15) ¢ Q,then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X15, yls) € Q,, then

Xie = |X15| — Y15 —1=256%, +51

Yis = Xis +|Y15|_1: 256y, +153.
If (X16, y16) & Q3 then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (Xie’ y16) € Q,, then

X7 = |Xi6|— Y16 —1= 256X, — 256y, — 205

Yi7 = X6+ | Yy | -1 = 256X, — 256y, —103.
If (X17, y17) ¢ Q,then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X17, y17) € Q,, then

Xjg = |X17| — Y17 -1= 512y0 +307

Yis = X7 +|¥1r| —1=-512x, —103.
If (Xlg, ylg) & Q3 then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X, Y55 ) € Qy, then

Xio = |Xis| = Y15 —1=512%, =512y, — 205

Yio = Xigt| ¥ig | -1=512X%, +512y, +409.
If (Xlg, ylg) ¢ Q,then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X19r ylg) € Q,, then

Xa0 = |Xso| = Y29 —1=—1024x, — 205

Ya0 = %19 +|Y19|_1: -1024y,-615.
If (X10' ylo) ¢ Q,then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that Xy, Y5 ) € Qy, then

Xo1 = [Xao| = Y20 —1=1024x, +1024y, +819

Yo, = XooF | ¥y | —1=—-1024x, +1024y, + 409 .
If (Xﬂ, yll) ¢ Q,then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (Xﬂ, yll) € Q,, then

Xgp = |Xgy| = Yoy —1=—2048y, —1229

24
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Yap = Xgy +|Yay| —1=2048x, +409.
If (Xlz, ylz) & Q3 then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X, ¥;, ) € Qy, then

Xg3 = |Xg| = Y2, —1=—2048X, + 2048y, +819

Yos = Xpo+| ¥, | -1=—-2048x, — 2048y, -1639.
If (X231 y23) & Q3 then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X23, y23) € Q,, then

Xas = |Xo5| = Y3 —1= 4096, +819

You = Xo3 +|Ya5| ~1= 4096y, + 2457 .
If (X24, y24) ¢ Q,then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X, Yy, ) €Q;, then

Xo5 =|Xoa |~ Yo —1=—4096x, — 4096y, —3277

Yos = X4+ | Y, | —1=4096X, — 4096y, —1639.
If (Xzs’ y25) & Q3then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X25, y25) € Q,, then

Xa6 = |Xo5| = Y5 —1=8192y, +4915

Yas = X5 +| V5| —1=—8192X, —1639.
If (XZG, yze) & Q3 then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X267 yza) € Q;, then

Xy7 = |Xo6| — Y26 —1=8192x, —8192y, —3277

Yo7 = Xps+ | Ve | -1=8192x, +8192y, + 6553.
If (X27, y27) & Q3 then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (X, ¥,; ) € Q;, then

Xog = |Xo7| = Yoy —1=—16384x, —3277

Yas = Xp7 +|Y,r| —1=—16384y, —9831.
If (Xlg, y18) 2 Q3 then we can conclude that solution of the system is eventually prime period 3 or prime
period 4. Suppose that (Xlg, ylg) € Q,, then

Xag =|Xps| — V25 —1=16384X, +16384y, +13107

Yoo = Xog+ | Vog | -1 =—16384X, +16384Yy, + 6553.

If (Xlg, ylg) & Q3 then we can conclude that solution of the system is eventually prime period 3 or prime

period 4. Suppose that (X, Y59 ) € Q;.
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We can see the pattern of solution {(X,, yn)};as follows: for n>1and X, €(a,,b,) and
yO € (Cn’dn)

Xonp =—2"""Y, — (368, +2) and

4n-1
Yono =2 Xy +0,,

Xgoy = 2" %, +2*" 1y, + 25, +1 and
Yon1 = —2' Xo ~ 2t Yo~ (45n + 3)’

Xg, = 2*"X, +26, +1 and

Vo, =2*"y, + 65, +3,

Xgn =—2"" %, —2""y, — (85, +5) and
Yenu = 2" Xo — 2% Yo— (45n + 3)’

Xgnip = 27"y, +1268, +7 and
Yoo = 2" %, — (45, +3),

g, = 2" %, —2*"y, — (85, +5) and
Yonig = 27" %, + 2"y +165, +9,

Xgna = —2""%%, — (85, +5) and
Yonrs =22y, — (245, +15),

Xgo,s =22 %, +2*"?y, +3268, +19 and
Yons = =22 %, + 22y, +166, +9,
(22 +1) (2 -3) (3x2**+1) (3x2*m-1)

here 8, =—~———~, b =——_——~ ¢ =————% d =- .
w n 5 > 24n—2 n 5 x 24n—1 n 5 % 24n—1 5 x 24n—3

Note that If X, =2y, +1>0and Yy, =—2X, —1> 0 which mean that (sz yz) € Q, then we also have

-3
interesting solutions, which initial condition (XO +¥, 2 T as follows:

X =X, — ¥, —1= 2y, +14 2%, +1-1=2%, + 2y, +1<0
Ya =X, +|Y,|—1=2y, +1-2x, —1-1=-2x, + 2y, -1
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X, = |x3|— Yy —1=-2X,-2Yy, -1+2x%, -2y, +1-1=-4y, -1
Vo = Xy +|Ys| 1= 2, +2y, +1+4 2%, — 2y +1-1=4x, +1<0
-1

Casel:x, =-4y,-1=0 (_713 Yo STJ

Xs =|X,| -y, —1=—4y, —1-4x, —1-1=—4x, -4y, —3>0
Vs = X, +|Ya| —1= -4y, —1-4%, —~1-1=—4x, -4y, -3>0
X = |Xs|— Vs —1=—4%, — 4y, -3+ 4%, +4y, +3-1=-1

We apply Lemma 2 to conclude that the solution is eventually prime period 4.
-1
Case2:x,=-4y,-1<0 |y, >I

Xs = |X,|— Vs —1=4Yy, +1-4x, —1-1=—4x; + 4y, -1>0
Vs = X, +| Y| —1= -4y, —1-4x, —1-1=—4x, -4y, -3

Case2.1:y, =—-4x,-4y,-3<0 [xo +Y, __Tsj

X =|Xs| = Y5 —1=—4X, + 4y, —1+ 4%, + 4y, +3-1=8y, +1
Yo = X5 +|Vs| —1=—4X, + 4y, —1+ 4%, + 4y, +3-1=8y, +1

Case2.1.1:x, =8y, +1>0 (yo 2;}

X, =[X| - Ys —1=8y, +1-8y, -1-1=-1

We apply Lemma 2 to conclude that the solution is eventually prime period 4.

Case 2.1.2:x, =8y, +1<0 (_Tl< Yo <%1j

X, =|Xs| = ¥ —1=-8y, —1-8y, -1-1=—16y, -3
Y, =X +| Y| ~1=8y, +1-8y, -1-1=-1
-3

1
Case2.1.2.1:x, =-16y, -3>0 |—<y <—
! Yo (4 Yo 16)

X =|%,| -y, —1=-16Yy, —3+1-1=-16y,-3>0
Yo =X +|y;|-1=-16y, -3+1-1=-16y,-3>0
X =|X|— y; ~1=—16y, -3 +16Y, +3-1=-1

We apply Lemma 2 to conclude that the solution is eventually prime period 4.

-3 -1
Case 2.1.2.2:x, =-16y,-3<0 [E <Y, _Ej

Xy =|%,| -y, —1=16y, +3+1-1=16y, +3>0
Yo =X, +|y;|-1=-16y, -3+1-1=-16y,-3<0



X, = |Xs| — Y5 ~1=16Y, +3+16Y, +3-1=32y, +5
Yo = Xg +|y8|—1=16y0 +3+16y,+3-1=32y,+5

-5 -1
Case2.1.2.21:x,=32y,+5>0 | —<vy,<—
X Yo (32 Yo 8 j

X10 :|X9|_y9 -1=-1

We apply Lemma 2 to conclude that the solution is eventually prime period 4.

-3 -5
Case2.1.222:%x,=32y,+5<0 | —<vy, <—
X :|X9|_ Yo -1= _64yo -11
Y1o:X9+|y9|_1:_1

-3 -11
Case2.1.2.2.2.1:x, =-64y, -11>0 | —<Vy, <—=
10 Yo (16 Yo 62 j

Xll = |X10| - yl() _1= _64y0 —112 O
Vi = X0 +|Vio| 1= 64y, -11>0
X = |X11| -yy—-1=-1

We apply Lemma 2 to conclude that the solution is eventually prime period 4.

Case 2.1.2.2.2.2: x,, = 64y, ~11<0 (‘6—141< Yo <;_§j
Xy = |X10|_ Yio -1= 64YO +11>0
Yin =X +|y10|_1= _64YO -11<0
X = |X11|_ yi —1=128y, +21
Yi, = Xy +|y11| _1:128y0 +21
Case 2.1.2.2.2.2.1:x, =128y, +21>0 (_—21< Yo <_—5j
128 32

X3 = |X12|_ Y1z -1=-1
We apply Lemma 2 to conclude that the solution is eventually prime period 4.

-11 21
Case2.1.2.222.2:x,=128y,+21<0 |—<VY,<—
X Yo ( 64 Yo 128)

X3 = |X12|_ Y12 -1= _256YO —43
Yis = X +|y12|_1: -1
-11 -43
Case 2.1.2.2.2.2.2.1: =-256y,—-43>0 |—<y, <——
X2 Yo [ 64 Yo 256)
Xy = |X13|_ Yis -1= _256y0 -4320

Yis = Xi3 +|Yig| 1= -256Yy, —43>0
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X, = |X11| Y -1=-1
We apply Lemma 2 to conclude that the solution is eventually prime period 4.

—43 -21
Case 2.1.2.2.2.2.2.2:x, =-256y, —-43<0 | —<y, <—=
1 Yo (256 Yo 128)

\

So we will have a pattern of solutions to system(11).

-3
Case2.2:y, =—-4x,—-4y,-3>0 (Xo +Y, < TJ which is out of the scope of initial condition.
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Next, we will consider the solution of system

Xna1 =|Xn|_yn —¢ and Y, =X, +|yn|_¢)

30

(12)

where any initial condition (XO, yo) e R? and parameter {,p € (0,oo). The following solutions

are some examples of System(12).

C [0) x0 y0
0.1 0.2 0.1 0.3
C 0] x0 y0
0.1 0.2 -1 30

Iteration XN yn
1 -0.1 -0.4
2 0.6 -0.7
3 1.4 -0.3
4 1.8 0.9
5 1 0.7
6 0.4 0.1
7 0.4 0.1
8 0.4 0.1
9 0.4 0.1
10 0.4 0.1

[teration XN yn
1 -28.9 -31.2
2 60.2 -60.3
3 120.6 -0.3
al 121 120.1
5 1 0.7
6 0.4 0.1
7 0.4 0.1
8 0.4 0.1
9 0.4 0.1
10 0.4 0.1
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C 0] x0 y0
0.1 0.2 -1 -0.3
C [0) x0 y0
0.1 0.2 -0.1 30

Iteration XN yn
1 1.4 -1.5
2 3 -0.3
3 3.4 25
a4 1 0.7
5 0.4 0.1
6 0.4 0.1
7 0.4 0.1
8 0.4 0.1
9 0.4 0.1
10 0.4 0.1

lteration XN yn
1 -29.8 -30.3
2 60.2 -60.3
3 120.6 -0.3
a4 121 120.1
5 1 0.7
6 0.4 0.1
7 0.4 0.1
8 0.4 0.1
9 0.4 0.1
10 0.4 0.1




C [0) X0 y0
10 20 -0.1 30
C [0) x0 y0
10 20 -1 -0.3

teration XN yn
1 -19.9 -50.1
2 80 -90
3 180 -30
a4 220 130
5 100 70
6 40 10
7 40 10
8 40 10
9 40 10
10 40 10

Iteration XN yn
1 11.3 -21.3
2 42.6 -30
3 82.6 -7.4
4 100 55.2
5 54.8 24.8
6 40 10
7 40 10
8 40 10
9 a0 10
10 40 10
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g [0) X0 y0
10 20 -1 30
C [0) x0 y0
10 20 0.1 0.3

Iteration XN yn
1 -19 -51
2 80 -90
3 180 -30
a4 220 130
5 100 70
6 40 10
7 40 10
8 40 10
9 40 10
10 40 10

lteration XN yn
1 9.8 -20.2
2 40 -30.4
3 80.4 -10.4
4 100.8 50
5 60.8 30.8
6 40 10
7 40 10
8 40 10
9 40 10
10 40 10
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C 0] x0 y0
0.1 20 0.1 0.3
C [0) x0 y0
0.1 20 -1 30

Iteration XN yn
1 -0.1 -20.2
2 20.4 -40.3
3 60.8 -39.9
a4 100.8 0.9
5 100 79.9
6 20.2 0.1
7 20.2 0.1
8 20.2 0.1
9 20.2 0.1
10 20.2 0.1

lteration XN yn
1 -28.9 -51
2 80 -99.9
3 180 -39.9
a4 220 120.1
5 100 79.9
6 20.2 0.1
7 20.2 0.1
8 20.2 0.1
9 20.2 0.1
10 20.2 0.1
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C 0] x0 y0
0.1 20 -1 -0.3
C [0) x0 y0
0.1 20 -0.1 30

Iteration XN yn
1 1.4 -21.3
2 22.8 -39.9
3 62.8 -37.1
4 100 57
5 94.4 74.3
6 20.2 0.1
7 20.2 0.1
8 20.2 0.1
9 20.2 0.1
10 20.2 0.1

lteration XN yn
1 -29.8 -50.1
2 80 -99.9
3 180 -39.9
a4 220 120.1
5 100 79.9
6 20.2 0.1
7 20.2 0.1
8 20.2 0.1
9 20.2 0.1
10 20.2 0.1
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C 0] x0 y0
0.1 20 -1 -0.3
C [0) x0 y0
0.1 20 -1 30

Iteration XN yn
1 1.4 -21.3
2 22.8 -39.9
3 62.8 -37.1
4 100 57
5 94.4 74.3
6 20.2 0.1
7 20.2 0.1
8 20.2 0.1
9 20.2 0.1
10 20.2 0.1

lteration XN yn
1 -28.9 -51
2 80 -99.9
3 180 -39.9
a4 220 120.1
5 100 79.9
6 20.2 0.1
7 20.2 0.1
8 20.2 0.1
9 20.2 0.1
10 20.2 0.1
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C 0] x0 y0
0.1 20 0.1 0.3
C [0) x0 y0
10 0.2 0.1 0.3

Iteration XN yn
1 -0.1 -20.2
2 20.4 -40.3
3 60.8 -39.9
a4 100.8 0.9
5 100 79.9
6 20.2 0.1
7 20.2 0.1
8 20.2 0.1
9 20.2 0.1
10 20.2 0.1

lteration XN yn
1 9.8 -0.4
2 20.2 9.2
3 21 10.8
4 20.2 10
5 20.2 10
6 20.2 10
7 20.2 10
8 20.2 10
9 20.2 10
10 20.2 10
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C 0] x0 y0
10 0.2 -1 30
C [0) x0 y0
10 0.2 -1 -0.3

Iteration XN yn
1 -19 -31.2
2 60.2 -50.4
3 120.6 9.6
a4 121 110.8
5 20.2 10
6 20.2 10
7 20.2 10
8 20.2 10
9 20.2 10
10 20.2 10

lteration XN yn
1 11.3 -1.5
2 22.8 9.6
3 23.2 13
4 20.2 10
5 20.2 10
6 20.2 10
7 20.2 10
8 20.2 10
9 20.2 10
10 20.2 10
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lteration XN yn C 0] x0 y0
1 -19.9 -30.3 10 0.2 -0.1 30
2 60.2 -50.4
3 120.6 9.6
a4 121 110.8
5 20.2 10
6 20.2 10
7 20.2 10
8 20.2 10
9 20.2 10
10 20.2 10

From the above observations, we see that the equilibrium point of system is depend on the
parameters ¢ and ¢. It is easy to verify that the equilibrium point of System(12) is (2§+(p,§).
Moreover, the solutions of the system will reach the equilibrium within six iterations. First of all
we will give lemmas for proving the main result.

For convenient to investigate solutions, we will use a notation refer to a set of points in

complex plan define as C* ={(X, y):|x|—x+]y|- y+2§—(pZ|X—|y|—(p|—||X|—Y+§|}-

Lemma 3 Let {(Xn, yn)}w ,and be a solution of System(12). Suppose the initial condition

n=
(X ¥o)€Q UL UL,. Then(x,y,)eC".
Proof. Suppose (X, Y,)€Q UL, Ul then X, 20andy, >0. Thus
Case 1: Suppose further xg 2 yo +@. We have X; =xg-yo+ ¢ >0andy; =Xo-yo—- @ 2 0.
Note that
Xl =xi+lyil-y1+28 -9 =20 -9
and
i =il =@l =lxl-y1+ {=-¢ - 0.
Hence (x4, y1) is an element of C1 and Case 1 is complete.
Case 2: Suppose Xg <Yo +@ and Xg + >y, . We have x; =Xg-Yo+ ¢ =20andy; =xo - Yo -
o <O0.
Note that
Xol =Xs +yal =y1 +28 =@ =-2% + 2y0 + 24 + @
and
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X1 =il = @ =[] =y1 + =120 -2y0+ ¢ - 20| -2 - o.

Case 2A: Suppose further 2xo- 2yq+¢ -2¢ > 0. Then
i = Iyil = @l =[xl =y1 + 1= 2%0-2y0-2¢0 = & - o.
Since Xg — Yo — @ <0, we have 2xy- 2y,-2¢ - ¢ < 0. Also note that |y;| -y, + 24 > 0, so
Xl = X1 + il =y1 + 28 —@ =lyi|-y1 + 24 -¢
>2X0-2Y0-2¢0 - ¢ - @
=i =lyil = o[ = | il =yi + £
Case 2B: Suppose further 2xy- 2yq+¢ - 2¢ < 0. Then
Xi =yl = @l =[xl =yi+ §l=-2x+ 2y -3¢ + ¢
<o+ 2yy +24 + @
=il =i +yil -y1 + 24 -9,
Hence (x4, y4) is an element of C'and Case 2 is complete.
Case 3: Suppose xg < Yo +@ and Xg + { <yo. We have x; =xo-Yyo+ ¢ <0andy; =X - Yo -
@ < 0. Note that
Xa| =X+ ly1l =y1+ 24 =@ =-xo +dyo + @
and
i = Iyal = @l =[xl -y1 + S]= 9 =&
Since xg + & <Yo, we have yq > Xo. Thus -4xq + 4y > 0. Then
il = X1+ [yil =y1 + 28 = @ =-Gx + dyo + @
> -
=i =il =@l =l -y1+ £
Hence (x4, y4) is an element of C1 and Case 3 is complete.

[

Lemma 4 Let {(Xn, yn)}::0 be a solution of System(12). Suppose the initial condition

(X, ¥o)€Q, UL,. Then(x,y,)eC".
Proof. Suppose (X, Y,)€Q, U Lthen X, <0andy, >0. Thus
Case 1: Suppose further -xg + { <yo. We have x; = -Xg—Yo+ { <0andy; =xo-yo— @ <O0.
Note that
Xa| = x4y —y1 +2¢ -d=4dy, + ¢
and

X1 =lyil = @ = xi|-y1+ {= 0 - .
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Hence (x4, y4) is an element of C and Case 1s complete.
Case 2: Suppose Xg + § =Yy We have x; = Xg-Yo+ & 20andy; =Xy -Yo - ¢ <0.Note
that
il =x1+lyi|l=y1+28 =@ =-2% +2y0+ 24 + ¢
and
i =il =@l =Tl -yi+ =} 2¥0+5-2¢|+ 2% - 24 - .
Case 2A: Suppose further - 2y, +¢ - 2¢ > 0. Then
X1 =lyil = @ =[] =y + = 2%0-2y0 = & - 30p.
Sincey; =Xo — Yo — @ <0, we have 2x,- 2y, — ¢ - 3¢ < 0. Hence (x4, y;) is an element of -
and Case 2A is complete.
Case 2B: Suppose further - 2y, +¢ - 2¢ < 0. Then
)i =yl = @l =[xl =y1 + &= 2%+ 2y0 =3¢ + ¢
Since X; = Xg — Yo + £ 20, we have 2xy + 2y, — 3¢ < 0. Hence (x4, y1) is an element of C'and

Case 2 is complete. ]

Lemma 5 Let {(Xn, yn)}:zo be a solution of System(12). Suppose the initial condition

(X, ¥5)€Q;UL,. Then(x,y,)eC.
Proof. Suppose (X, Y, )€ Q; UL, then X, <0andy, <0. Thus
il =x1 + Iyl =y1+28 =@ =2+ 2y0+ 24 + ¢ >0
and
)i =il = @l =il =yi + {I= 18 =20 - (2% - 2y0 + 2¢ + ).
Case 1: Suppose that { - 2¢ > 0. Then
X1 =il = @ =[] =y1 + & [=2% + 2y0 -4 -3¢.
Hence (x4, y4) is an element of C'and Case 1 is complete.
Case 2: Suppose that ' - 2¢ <0. Then

X1 =il = @ = [ x| =y1 + &= 2% + 2y0 -3¢ +o.
Since -2xg - 2yo +2 ¢4 > 0, we have 2x, + 2y, -3¢ < 0. Hence (x4, y4) is an element of Cland

Case 2 is complete. [

Lemma 6 Let {(Xn, yn)}:;o be a solution of System(12). Suppose the initial condition

(X, ¥s)€Q,. Then(x, ;) € c.

Proof. Suppose (X,,Y,)€Q,then X, >0andy, <0. Thus

Case 1: Suppose further xg + Yo = @ . We have x; =xo -y + ¢ >0andy; =Xg +Yo— ¢ = 0.
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Note that
il =x1 +yil-y1+28 - =20~ ¢
and
i =yl =@l =Txl-y1+ §l=-¢- 0.
Hence (x4, y4) is an element of C and Case 1s complete.
Case 2: Suppose Xg + Yo < @. We have x; =Xg-Yo+ ¢ >0andy; =Xy +yo - ¢ <0. Note
that
Xil =x1+lyil=y1+28 =@ =-2%-2¥0 + 24 + @
and

X1 =lyil = @ =[x =y1 + = 2% +5 - 20|+ 2y0 - 24 - o.

Case 2A: Suppose further - 2xq+¢ - 2¢ > 0. Then

Xi =il = @| = Xi| =y1 + § =20+ 2y0 = & - 30.
Since 2xg + & - 2@ 20and ¢ > -2xq. Thus -2Xg - 2yq + 24 + @ > 0.Sincey; =Xg +yg— @ <
0, we have 2xg + 2y, — ¢ — 3¢ < 0. Hence (x, y,) is an element of C1 and Case 2A is complete.
Case 2B: Suppose —2Xg+¢ -2¢ < 0. Then

X1 =lyil = @l =[] =y1 + & [= 2%+ 2y0 -3¢ + o.
Since yo < 0 and ¢ > 0, we have -2x, + 2y, — 3¢ < 0. Hence (x4, y4) is an element of C'and

Case 2 is complete.

[

Theorem 5 Let {(Xn, yn)}m . be a solution of System(12). Suppose the initial condition

n=|

(X, ¥o) € R? and ¢,p¢e (0,00). Then {(Xn, yn)}:o:6 is the equilibrium (24 +¢,¢).
Proof. Suppose (X,, Y, ) € R. To show that condition:
Xp + [Xo| 22 + |y2| - & + 29 (13)
is true. By Lemmas 3 through 6 we know that (x4, y;) is an element of Cl, so we have
ol = %1 +yal =y1+ 28 =@ 2 =yl = o[ = [ x| =y1 + .
Then
Xl =y1+ & + il =yi+ Tl2x =yl =@ + xi = lyil - o[- £+ 29.
Hence condition (13) is true. Next to show that condition:
X3 2 |ys| + ¢
(14)

is true. Since condition (13) is true, we have
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Xo - Yol - @ 2- o +y2- & + @
and we always have

X2-lVal- @ < ol -y + & - .
Then

X2 - y2| - @< xo| -y2 + & - .
Hence condition (14) is true. Next to show that condition:

Xg > 0,ys20and xq 2 |ys| + @ (15)
is true. Since condition (14) is true, we have

| Xs| + X3 2 ys3 +lys|- £+ 2¢
and so

Xs-lysl- @ 2-[sl+ys- ¢ + @
and we always have

X3-lys|- @ < |xs|-ys+ - 0.

Then
X3 - lysl - @< [xs[-ys+ & - @.

It is easy to verify that x4 > 0, yq > 0. Hence condition (15) is true. Next condition:
X5 20,ys>0and xs = |ys|+ {+ @

(16)

is true. Finally, it is easy to show by direct computations that (xs, y¢) = (24 +¢,¢).This

completes the proof of the theorem. ]
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Conclusion and Discussion

We use iteration method and specific choosing initial condition to prove the
boundedness of rational difference equation (9) - (11). By choosing initial condition

YooY, Y, € (0,1), we can show that equation (9) has unbounded solutions. Then we use the

iteration method to show that equation (10) and (11) are bounded and permanent. This two

methods could be apply to another family of special cases to main equation (8).

After that we investigate piecewise linear systems of difference equations. As we know,
investigating stability of system of difference equations requires theorems that involve Jacobian
matrix. So the functions of the system must are differentiable. Unfortunately, piecewise linear
systems of difference equations are the system with absolute value. So we can’t apply the
stability theorem to the piecewise linear systems. The common idea of proofs of the above
systems of piecewise linear systems is to separate initial condition into few regions and find
some characters of solution to the system of each region and then establishing lemmas and
finally summarizing the behaviors of each system to be a theorem. System(11) has periodic with
period 3 and periodic with period 4 solutions and we can show that every solution, initial
condition in Q,and Q,, is eventually the prime period-3 solution or prime period-4 solution by
applying Lemma 1 Lemma 2 and Theorem 4. The solutions are separate into many cases and
by looking at the pattern of solutions we also have many patterns of solutions in each region.
These patterns could be proved by using mathematical induction the same as [15, 18, 19]. In
System(12), we investigate the solution by changing parameters ¢, ¢ € (O,oo) and initial
condition (XO, yo) in each quadrant. The equilibrium point of System(12) is (2§+¢>,§). We see
that every solution is eventually equilibrium point within six iterations. We proved by finding the
common conditions of the solutions to System(12) in (X, Y;) to (X, Ys) and proving that each
condition is true. The solution of System(12) can be reach equilibrium point before six
iterations when initial conditions satisfy condition (12) — (16). If initial conditions satisfy condition

(14) then the solution will be equilibrium point within 3 iterations and if initial conditions satisfy

condition (16) then the solution will be equilibrium point by only 1 iteration.
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