

รายงานฉบับสมบูรณ์

การผลิตเชื้อเพลิงแข็งชีวภาพจากขยะชุมชนในประเทศไทยด้วย
กระบวนการไฮโดรเทอร์มอลทรีทเม้นท์

**Alternative Solid Biofuel Production from Thai Municipal Solid Waste by
Hydrothermal Treatment**

โดย ชินธันย์ อารีประเสริฐ

ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์
มหาวิทยาลัยเกษตรศาสตร์

เมษายน พ.ศ. 2561

สัญญาเลขที่ MRG5980058

รายงานฉบับสมบูรณ์

การผลิตเชื้อเพลิงแข็งชีวภาพจากขยะชุมชนในประเทศไทยด้วย กระบวนการไฮโดรเทอร์มอลทรีทเม้นท์

**Alternative Solid Biofuel Production from Thai Municipal Solid Waste by
Hydrothermal Treatment**

ผู้จัด

ชนธนย์ อารีประเสริฐ

สังกัด

มหาวิทยาลัยเกษตรศาสตร์

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย และ
มหาวิทยาลัยเกษตรศาสตร์

(ความเห็นในรายงานนี้เป็นของผู้จัด สก.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

รหัสโครงการ: **MRG5980058**

ชื่อโครงการ: การผลิตเชื้อเพลิงแข็งชีวภาพจากขยะชุมชนในประเทศไทยด้วยกระบวนการไฮโดรเทอร์มอลทรีทเม้นท์

ชื่อนักวิจัย และสถานที่: อ.ดร.ชินธันย์ อารีประเสริฐ มหาวิทยาลัยเกษตรศาสตร์

อีเมล: fengcta@ku.ac.th

ระยะเวลาโครงการ: 17 พฤษภาคม 2559 – 16 พฤษภาคม 2561

บทคัดย่อ:

การนำขยะมูลฝอยมาใช้ประโยชน์ทางเพลิงงานเป็นทางเลือกหนึ่งที่น่าสนใจ การแปรรูปขยะมูลฝอยในปัจจุบันสามารถทำได้ด้วยการผลิตเชื้อเพลิงแข็ง Refuse-derived fuel หรือ RDF ซึ่งสามารถทำให้การขันส่งเชื้อเพลิงขยะมีประสิทธิภาพเพิ่มมากขึ้น งานวิจัยนี้เป็นการนำเทคโนโลยีไฮโดรเทอร์มอลทรีทเม้นท์ (Hydrothermal treatment, HTT) มาใช้เพื่อเพิ่มคุณภาพให้ขยะมูลฝอย จากการทดสอบกระบวนการไฮโดรเทอร์มอลทรีทเม้นท์ กับขยะมูลฝอยชุมชนเพื่อผลิตเป็นเชื้อเพลิงแข็งอัดเม็ด พบว่ากระบวนการไฮโดรเทอร์มอลทรีทเม้นท์สามารถแปรรูปขยะมูลฝอยเป็นเชื้อเพลิงที่มีคุณภาพได้ สามารถนำไปใช้เป็นพลังงานทดแทนได้ต่อไป จากการวิเคราะห์ตัวอย่างพบว่า เชื้อเพลิงที่ได้มีค่าความร้อนที่สูงขึ้นเมื่อใช้อุณหภูมิกับเวลาของกระบวนการไฮโดรเทอร์มอลทรีทเม้นท์มากขึ้น และผลิตภัณฑ์ที่ได้สามารถลดความชื้นได้เร็วกว่าขยะมูลฝอยทั่วไป จากการทดสอบเม็ดเชื้อเพลิงที่ได้จากการกระบวนการ HTT ได้เชื้อเพลิงที่มีความแข็งแรงและมีคุณสมบัติใกล้เคียงกับเชื้อเพลิงแข็งอื่น ๆ เช่นถ่านหินหรือถ่านชีมวล นอกจากนั้นยังดูดความชื้นกลับในอัตราที่ต่ำกว่า ทำให้สามารถต่อสภาวะการเก็บเชื้อเพลิงได้ดี

คำหลัก : จำนวน 3-5 คำ

ขยะมูลฝอย, ไฮโดรเทอร์มอล ทรีทเม้นท์, การจัดการขยะ

Abstract

Project Code : MRG5980058

Project Title : Alternative Solid Biofuel Production from Thai Municipal Solid Waste by Hydrothermal Treatment

Investigator : Chinnathan Areeprasert, D.Eng.

E-mail Address : fengcta@ku.ac.th

Project Period : 17 May 2016 – 16 May 2018

Abstract:

Utilization of municipal solid waste (MSW) can be done through refuse-derived fuel production. This research focuses on using hydrothermal treatment (HTT) to improve fuel property of MSW. Results showed that the quality of treated MSW was improved in both physical and chemical property. Heating value of the produced fuel was higher when HTT temperature and holding time increased. From the fuel pellet testing, the mechanical property, including compressive test, tablet hardness test, durability test, Hardgrove grindability test, the MSW fuel pellet prepared by HTT showed good quality and it was comparable to coal or biomass pellet. Moreover, the moisture adsorption test showed that the MSW fuel pellet from HTT can retain in good shape after exposure to high moisture condition.

Keywords : 3-5 words

Municipal solid waste, Hydrothermal treatment, Waste management.

บทสรุปผู้บริหาร (Executive Summary)

ที่มาและความสำคัญของปัญหา

การนำขยะมูลฝอยมาใช้ประโยชน์ทางเพลิงงานเป็นทางเลือกหนึ่งที่น่าสนใจ การแปรรูปขยะมูลฝอยในปัจจุบันสามารถทำได้ด้วยการผลิตเชื้อเพลิงแข็ง Refuse-derived fuel หรือ RDF ซึ่งสามารถทำให้การขันส่งเชื้อเพลิงขยะมีประสิทธิภาพเพิ่มมากขึ้น เนื่องจากผ่านกระบวนการอบแห้ง และอัดแห้ง อย่างไรก็ตามหากต้องการเชื้อเพลิงแข็งที่มีคุณสมบัติทางเชื้อเพลิงที่ดีจำเป็นต้องใช้เทคโนโลยีการแปรรูปที่สามารถเปลี่ยนแปลงคุณสมบัติทางกายภาพและทางเคมีของขยะมูลฝอยได้ งานวิจัยนี้เป็นการนำเทคโนโลยีไฮโดรเทอร์มอลทรีมเม้นท์ (Hydrothermal treatment, HTT) มาใช้เพื่อเพิ่มคุณภาพให้ขยะมูลฝอยโดยกระบวนการ HTT ซึ่งใช้น้ำสภาวะกึ่งวิกฤต (Subcritical water condition) ในการบำบัดสารอินทรีซึ่งสามารถนำมาใช้กับวัสดุได้หลายชนิด รวมทั้งวัสดุที่มีหลากหลายชนิดผสมกัน (Heterogeneous material) และวัสดุที่มีความชื้นสูง (High moisture content) ซึ่งเหมาะสมกับการนำมาใช้กับขยะมูลฝอยในประเทศไทย หลังจากผ่านการบำบัดแล้วจะแปรรูปเป็นเชื้อเพลิงแข็งที่ได้คุณภาพสูง ดังนั้นการแปรรูปขยะมูลฝอยเป็นเชื้อเพลิงเพื่อนำไปใช้ในโรงไฟฟ้า จึงเป็นทางเลือกหนึ่งที่สามารถกำจัดขยะมูลฝอยได้อย่างเหมาะสมและสามารถนำไปใช้ประโยชน์ได้

วัตถุประสงค์

- เพื่อผลิตเชื้อเพลิงแข็งจากขยะมูลฝอยในประเทศไทยโดยกระบวนการไฮโดรเทอร์มอลทรีมเม้นท์
- เพื่อศึกษาคุณสมบัติของขยะมูลฝอยหลังจากผ่านกระบวนการไฮโดรเทอร์มอลทรีมเม้นท์
- เพื่อศึกษาคุณสมบัติหลังจากนำผลิตภัณฑ์ไปเข้ากระบวนการอัดแห้งเป็นเชื้อเพลิงแข็งอัดแห้ง
- ทดสอบคุณภาพของเชื้อเพลิงแข็งอัดแห้งที่ผลิตจากการกระบวนการไฮโดรเทอร์มอลทรีมเม้นท์

วิธีทดลอง

ขยะจำลองและการกระบวนการไฮโดรเทอร์มอลทรีมเม้นท์

การเตรียมตัวอย่างขยะทำโดยการไปเก็บข้อมูลส่วนประกอบต่างๆ ของขยะมูลฝอยจริงจากศูนย์กำจัดขยะมูลฝอยหนองแขม กรุงเทพมหานคร เพื่อเก็บข้อมูลมาพิจารณาถึงสัดส่วนของขยะนิดต่างๆ โดยนำองค์ประกอบของขยะที่มีสัดส่วนสูงที่สุด ลำดับต้นๆ ได้แก่ ขยะอินทรีซ พลาสติก กระดาษ และผ้า มาจัดเตรียมวัตถุดิบจากสัดส่วนดังกล่าวเพื่อนำมาทำการทดลอง ไฮโดรเทอร์มอลทรีมเม้นท์ กระบวนการไฮโดรเทอร์มอลทรีมเม้นท์ (HTT) จะใช้หม้อนึ่งความดันสูง (Autoclave) ในการทำการทดลอง โดยภายในหม้อนึ่งจะมีเครื่องทำความร้อน (Heater) คอยให้ความร้อนแก่ตัวหม้อนึ่งและมีไม็กวน (Stirrer) การทดลองจะทำในหลายอุณหภูมิ (180 200 220 และ 240 องศาเซลเซียส) และในหลายช่วงเวลา (30 60 90 นาที) เพื่อทดสอบหาอุณหภูมิและเวลาการทำปฏิกิริยาที่เหมาะสมแก่การแปรรูปเชื้อเพลิงแข็งที่มีคุณภาพ

การบีบหัวและการอบแห้ง

ผลิตภัณฑ์ที่ได้จากการกระบวนการ HTT จะมีหัวอุปในปริมาณมากเนื่องจากใช้หัวเป็นตัวทำปฏิกิริยา ดังนั้นจึงจำเป็นต้องรีดหัวก่อนนำไปดำเนินการอื่นๆ ต่อไป เครื่องมือที่ใช้ในการรีดหัวเป็นเครื่องมือในระดับห้องปฏิบัติการ ซึ่งใช้แรงกดเพื่อบีบหัวออก โดยได้ออกแบบให้มีความง่ายในการใช้งานด้วยวิธีการใช้หัวหนกถ่วงเป็นตัวกำหนดขนาดของแรง ทำให้ง่ายต่อการวัดแรงที่ส่งไปยังหัวออกมานอกจากนี้ การบีบหัวจะช่วยลดการหลุดร่องรอยของสารเคมีที่ติดตัวหัว ทำให้หัวไม่หลุดร่องรอย

ป้องกันให้ไม่ให้มีเนื้อของผลิตภัณฑ์หลุดออกไป ใช้น้ำหนักกดที่ 6 กิโลกรัม ขณะทำการบีบแนบบัวใช้เวลาประมาณ 90 วินาทีจะทำให้น้ำส่วนใหญ่ในตัวอย่างถูกรีดออก ระยะเวลาที่ใช้ในการบีบแนบถูกกำหนดให้เท่ากันในทุกๆ ผลิตภัณฑ์ที่นำมาทดสอบ หลังจากได้ผลิตภัณฑ์ที่ผ่านการรีดน้ำแล้ว จะเป็นต้องทำการอบตัวอย่างเพื่อทดสอบประสิทธิภาพการตากแห้งด้วยความร้อน (Drying performance) การทดสอบด้วยวิธีการอบคล้ายคลึงกับการตากตัวอย่างกลางแดดหรือการอบตัวอย่างด้วยเครื่องอบ โดยวิธีการทดสอบจะใช้ตู้อบไฟฟ้าที่อุณหภูมิที่ 60 องศาเซลเซียส

การวิเคราะห์ตัวอย่างเบื้องต้น

การวิเคราะห์ตัวอย่างผลิตภัณฑ์จะใช้วิธีการวิเคราะห์คุณสมบัติของเชื้อเพลิงแข็งเบื้องต้นทั้งหมด 3 แบบคือ Heating value analysis (ASTM D5865) Proximate analysis (ASTM D7582) และ Ultimate analysis (ASTM D3176)

การทดสอบความแข็งแรงของเชื้อเพลิงแข็ง

การทดสอบความแข็งแรงของเชื้อเพลิงแข็งใช้เครื่อง Universal testing machine (UTM) รุ่น INSTRON 5969 ในการกดอัดเครื่อง UTM เป็นเครื่องมือทดสอบที่ใช้ทดสอบแรงดึงและแรงอัด (ความหนาต่อแรงดึง การยืดตัว ณ จุดขาด การเสียรูปและค่าโมดูลัส) ของชั้นงานคงรูป โดยจะให้แรงดึงหรือแรงอัดกับชิ้นทดสอบด้วยอัตราความเร็วคงที่ จนกระทั่งชิ้นทดสอบขาดหรือเสียหายและบันทึกค่าแรงดึง (Tension force) หรือค่าแรงอัด (Compression force) ที่เปลี่ยนไปตามระยะเวลาการยืดตัวหรือการเสียรูป (Deformation) ของวัสดุ นำค่าที่ได้ไปคำนวณและสร้างกราฟความสัมพันธ์ระหว่างความเค้น (Stress) กับความเครียด (Strain)

การทดสอบความทนทาน

ทดสอบความทนทานของเม็ดเชื้อเพลิง (Durability test) โดยการใส่เม็ดเชื้อเพลิงลงไปในกล่องเหล็กมาตรฐาน The American Society of Agricultural Engineers Standard 269.4 (ASABE) ขนาด $300 \times 300 \times 125$ มิลลิเมตร ภายในกล่องเหล็ก จะมีแผ่นเหล็กบางยาน 230 มิลลิเมตร และกว้าง 50 มิลลิเมตร ติดในแนวนอนแบบล่องเหล็ก เพื่อคุณภาพเม็ดเชื้อเพลิง คำนวณค่าความทนทานของเชื้อเพลิงอัดเม็ด (Pellet Durability Index : PDI) ด้วยสมการ ค่าความทนทานของเชื้อเพลิงอัดเม็ด (PDI) = $(WPW/IW) \times 100$

การทดสอบความยากง่ายในการบดอัด

Hardgrove Grindability Index (HGI) หมายถึง ความยากง่ายในการบดถ่านหินให้ได้ขนาดตามที่ต้องการ (Grindability) โดยใช้ Hardgrove Machine เป็นเครื่องมือในการทดสอบ ถ่านหินที่มีค่า HGI ที่มีค่าสูง (ใกล้เคียง 100) และแสดงว่ามีลักษณะเประ สามารถบดได้ง่าย ส่วนถ่านหินที่มีค่า HGI ต่ำ (ประมาณ 30-45)

การทดสอบการดูดซึมน้ำ

การทดสอบการดูดซึมน้ำ เป็นการทดสอบเพื่อหาค่าการดูดซึมน้ำหรือเปอร์เซ็นต์น้ำหนักที่เพิ่มขึ้น ของเม็ดเชื้อเพลิง โดยจะนำตัวอย่างเม็ดเชื้อเพลิงทั้ง 3 ขนาด อายุ่งละ 3 เม็ดนำมาใส่ในกล่องที่ควบคุมอุณหภูมิ 25-27 องศาเซลเซียส และความชื้น

สมพักษ์ที่ร้อยละ 78-80 ในช่วงช้าๆ มองแรกจะทำการบันทึกค่าสำหรับทุกๆ 15 นาที หลังจากนั้นจะบันทึกค่าหันๆ หนึ่งชั่วโมง จะกระทบเม็ดเชื้อเพลิงนั้นไม่มีสำหรับเพิ่มขึ้นอีกต่อไป

แผนการดำเนินงาน

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Planning	█																							
Lab HTT		█	█	█																				
experiment – 1		█	█	█																				
Analysis and review			█	█	█																			
Lab HTT						█	█																	
experiment – 2																								
Analysis and review								█	█	█														
Mid-term progress report											█	█												
Pelletization experiment											█	█	█	█	█	█								
Analysis and review												█	█	█	█	█								
Writing a paper																█	█	█	█	█	█	█	█	█
Final report																					█	█	█	█

สารบัญ

1. ข้อมูลเกี่ยวกับโครงการวิจัย.....	2
2. ความสำคัญและที่มาของปัญหางานวิจัย	2
3. ทฤษฎี และกรอบแนวความคิด	3
3.1 กระบวนการไฮโดรเทอร์มอลทรีทเม้นท์	3
3.2 กระบวนการอัดแห้ง	3
3.3 เอกสารอ้างอิงและคำอว่าเพิ่มเติม	4
4. วัตถุประสงค์	5
5. อุปกรณ์และวิธีการดำเนินการ.....	6
5.1 ขยะจำลอง.....	6
5.2 กระบวนการไฮโดรเทอร์มอลทรีทเม้นท์	6
5.3 การบีบหัวและกรอบแห้ง	7
5.4 การวิเคราะห์ตัวอย่างเบื้องต้น	8
5.5 เครื่องมือในการอัดแห้ง	8
5.6 การทดสอบความแข็งแรงของเชือกเพลิงแข็ง	9
5.7 การทดสอบความทนทาน.....	10
5.8 การทดสอบความยากง่ายในการบดอัด	11
5.9 การทดสอบการดูดซึมหัว	11
6 ผลการทดลองและวิจารณ์ผลการทดลอง	12
6.1 การเตรียมตัวอย่างขยะ	12
6.2 ลักษณะของผลิตภัณฑ์ที่ได้	12
6.3 ผลการบีบหัวและกรอบแห้งตัวอย่าง	14
6.4 ปริมาณและสัดส่วนผลิตภัณฑ์ที่ได้	15
6.5 วิเคราะห์คุณสมบัติทางเคมี	19
6.6 ผลการทดสอบความแข็งแรง	20
6.7 ผลการทดสอบความทนทานของเม็ดเชือกเพลิง	23
6.8 ผลการทดสอบความยากง่ายในการบด	24
6.9 ผลการทดสอบการดูดซึมหัว	25
7. สรุปและข้อเสนอแนะ	25

1. ข้อมูลเกี่ยวกับโครงการวิจัย

หัวหน้าโครงการ อ.ดร.ชินรันย์ อารีประเสริฐ

ที่ปรึกษาในประเทศไทย ผศ.ดร.วิชัย ศิริวงศ์

ต้นสังกัด ภาควิชาชีวกรรมเครื่องกล คณะชีวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

ที่ปรึกษาต่างประเทศ Professor Kunio Yoshikawa (Ph.D.)

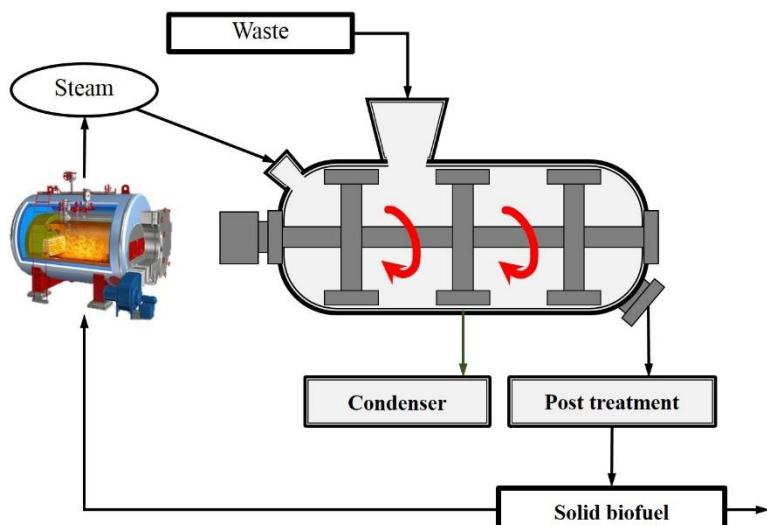
ทุนสนับสนุน 600,000 บาท

ระยะเวลาดำเนินโครงการ 2 ปี

คำสำคัญ Hydrothermal treatment; Waste to energy; Municipal solid waste; pellet.

2. ความสำคัญและที่มาของปัญหางานวิจัย

ในปี พ.ศ.2556 ปริมาณขยะมูลฝอยในประเทศไทยมีปริมาณ 26.77 ล้านตัน แต่มีเพียงแค่ 7.2 ล้านตันหรือประมาณ 27% จากขยะทั้งหมด ได้ถูกกำจัดอย่างเหมาะสม ซึ่งขยะที่เหลือที่ไม่ได้ถูกกำจัด อย่างเหมาะสม ได้กลายเป็นปัญหาที่ใหญ่มากของประเทศไทย มีอุบัติเหตุครั้งใหญ่เกิดขึ้นในเดือนเมษายน ปี พ.ศ. 2557 คือ เพลิงไหม้สถานที่ทึ่งขยะในเขตจังหวัดสมุทรปราการ ส่งผลเสียต่อสุขภาพของผู้ที่อยู่อาศัยในละแวกนั้น และยังไม่สามารถหาสาเหตุการเกิดเพลิงไหม้ได้ แต่คาดการณ์ได้ว่าเกิดจากก้าซมีเทนที่สะสมขึ้นในกองขยะที่ถูกทิ้งอย่างไม่เหมาะสม การเผาไหม้ของก้าซมีเทนมีความร้อนสูงมาก ในเวลาไม่ถึงสักคราห์ไฟก็ลุกไหม้จนเกิดเพลิงไหม้ที่ทึ่งขยะอีก 6 พื้นที่ ซึ่งที่ทึ่งขยะทั้งหมดในประเทศไทยล้วนมีความเสี่ยงต่อการเกิดเพลิงไหม้ทั้งสิ้น กระบวนการกำจัดขยะมูลฝอยในปี พ.ศ.2556 มีการทึ่งขยะแบบไม่มีการควบคุมมากกว่า 75% ซึ่งนับว่าเป็นปัญหาขนาดใหญ่ นำมาซึ่งความเสี่ยงที่จะเกิดเพลิงไหม้จากขยะที่ไม่ได้ผ่านกระบวนการคัดแยกที่ถูกต้อง ซึ่งสารพิษที่เกิดจากเพลิงไหม้จากขยะนั้นมีความอันตรายสูงมาก อย่างไรก็ตามสัดส่วนของการกำจัดขยะที่มีการควบคุมมีอยู่ประมาณ 16% การกำจัดขยะด้วยวิธีการเผาที่มีการควบคุมมีพิษทางอากาศนั้นมีเพียง 3% และในส่วนที่นำขยะกลับมาใช้ประโยชน์มีเพียง 1% เท่านั้น


การนำขยะมูลฝอยมาใช้ประโยชน์ทางเพลิงงานเป็นทางเลือกหนึ่งที่น่าสนใจ การแปรรูปขยะมูลฝอยในปัจจุบันสามารถทำได้ด้วยการผลิตเชื้อเพลิงแข็ง Refuse-derived fuel หรือ RDF ซึ่งสามารถทำให้การขันส่งเชื้อเพลิงขยะมีประสิทธิภาพเพิ่มมากขึ้น เนื่องจากผ่านกระบวนการอบแห้ง และอัดแท่งอย่างไรก็ตามหากต้องการเชื้อเพลิงแข็งที่มีคุณสมบัติทางเชื้อเพลิงที่ดี จำเป็นต้องใช้เทคโนโลยีการแปรรูปที่สามารถเปลี่ยนแปลงคุณสมบัติทางกายภาพและทางเคมีของขยะมูลฝอยได้ งานวิจัยนี้เป็นการนำเทคโนโลยีไฮโดรเทอร์มอลทรีฟเม้นท์ (Hydrothermal treatment, HTT) มาใช้เพื่อเพิ่มคุณภาพให้ขยะมูลฝอย โดยกระบวนการ HTT ซึ่งใช้น้ำสภาวะกึ่งวิกฤต (Subcritical water condition) ในการบำบัดสารอินทรีย์ ซึ่งสามารถนำมาใช้กับวัสดุได้หลายชนิด รวมทั้งวัสดุที่มีลักษณะนิ่ดผสมกัน (Heterogeneous material) และวัสดุที่มีความชื้นสูง (High moisture content) ซึ่งเหมาะสมกับการนำมาใช้กับขยะมูลฝอยในประเทศไทย หลังจากผ่านการบำบัดแล้วจะแปรรูปเป็นเชื้อเพลิงแข็งที่ได้

คุณภาพสูง ดังนั้นการแปรรูปขยะมูลฝอยเป็นเชื้อเพลิงเพื่อนำไปใช้ในโรงไฟฟ้า จึงเป็นทางเลือกหนึ่งที่สามารถกำจัดขยะมูลฝอยได้อย่างเหมาะสมและสามารถนำไปใช้ประโยชน์ได้

3. ทฤษฎี และกรอบแนวความคิด

3.1 กระบวนการไฮโดรเทอร์มอลทรีฟเม้นท์

กระบวนการไฮโดรเทอร์มอลทรีฟเม้นท์ (HTT) เป็นการใช้งานร่วมกันระหว่างน้ำกับความร้อน เพื่อเปลี่ยนแปลงคุณภาพของวัตถุดิบจำพวกขยะมูลฝอยให้กลายเป็นเชื้อเพลิงแข็ง โดยจะใช้น้ำที่อยู่ใน สภาวะกึ่งวิกฤติที่อุณหภูมิ 100 ถึง 374 องศาเซลเซียส (จุดวิกฤติของน้ำอยู่ที่ 374 องศาเซลเซียส ความดัน 22MPa) เป็นตัวทำการย่อยสลาย กระบวนการเริ่มต้นโดยการนำวัตถุดิบในลงไปในถังปฏิกรณ์ (Reactor) จากนั้นจะทำการฉีดไอน้ำอีมตัวที่มีความดันสูงเข้าไปในถังปฏิกรณ์ และให้ทำการปั่นป่วนเป็น เวลาตามที่กำหนดไว้ โดยมีความดันและอุณหภูมิคงที่ และมีไม็กวน (Stirrer) เพื่อกวนวัตถุดิบให้ กล้ายเป็นเนื้อเดียวกัน หลังจากดำเนินการเสร็จสิ้นจะได้ผลิตภัณฑ์จากการกระบวนการไฮโดรเทอร์มอลทรีฟ เม้นท์ ซึ่งจะนำไปเข้าสู่กระบวนการแปรรูปผลิตภัณฑ์ต่อไป

รูปที่ 1 การทำงานของกระบวนการไฮโดรเทอร์มอลทรีฟเม้นท์

3.2 กระบวนการอัดแห้ง

ขยะมูลฝอยและชีวมวลสามารถนำมาใช้แทนที่เชื้อเพลิงจากซากดึกดำบรรพ์ที่จะนำมาเปลี่ยนเป็นพลังงานในโรงงานต่างๆ ซึ่งชีวมวลเหลือทิ้ง เช่น เศษไม้ เปลือกข้าว ชานอ้อย ฯลฯ ได้มีการนำมาใช้ประโยชน์ด้านพลังงานมากขึ้น อย่างไรก็ตามลักษณะทางกายภาพของชีวมวลเหลือทิ้งคือมี ความหนาแน่นต่ำ ซึ่งเป็นปัญหาอย่างมากในการใช้งานและการขนส่ง โดยทั่วไปความหนาแน่นของขยะ ชีวมวลจะมีน้อยมาก ประมาณ $40-200 \text{ kg/m}^3$ เมื่อนำมาเทียบกับเชื้อเพลิงถ่านหินจะมีความหนาแน่นสูง กว่า โดยเชื้อเพลิงถ่านหินจะมีความหนาแน่นประมาณ $600-900 \text{ kg/m}^3$ ดังนั้นกระบวนการอัดแห้งจึงมี ความจำเป็นอย่างหลีกเลี่ยงไม่ได้ กระบวนการพื้นฐานที่ใช้ในการเพิ่มความหนาแน่นคือการใช้ความดัน

ในการช่วยอัด สำหรับชีวมวลสามารถใช้แค่แรงอัดเพียงอย่างเดียวโดยไม่ต้องเติมสารใดๆเพิ่มเติม ขณะที่มูลฝอยมีความหนาแน่นต่ำ เช่นเดียวกับชีวมวล ดังนั้นก่อนนำมาใช้งานจึงต้องมีการแปรรูป เช่นเดียวกับ

3.3 เอกสารอ้างอิงและค้นคว้าเพิ่มเติม

- [1] Praksa fire leads to calls for nationwide dumpsite controls. <http://www.nationmultimedia.com/national/Praksa-fire-leads-to-calls-for-nationwide-dumpsite-30230655.html>: The nation; Accessed: 13 July 2015.
- [2] Daniel H, Bhada-Tata P. What a waste: a global review of solid waste management. 2012.
- [3] Nakamura M, Zhang H, Millrath K, Themelis NJ. Modeling of Waste-to-Energy Combustion with Continuous Variation of the Solid Waste Fuel. ASME 2003 International Mechanical Engineering Congress and Exposition: American Society of Mechanical Engineers; 2003. p. 69-78.
- [4] Choi K-I, Lee S-H, Lee D-H, Osako M. Fundamental characteristics of input waste of small MSW incinerators in Korea. *Waste Manag.* 2008; 28: 2293-300.
- [5] Lee J-M, Kim D-W, Kim J-S, Na J-G, Lee S-H. Co-combustion of refuse derived fuel with Korean anthracite in a commercial circulating fluidized bed boiler. *Energy.* 2010; 35: 2814-8.
- [6] Chang Y-H, Chen W, Chang N-B. Comparative evaluation of RDF and MSW incineration. *J Hazard Mater.* 1998; 58: 33-45.
- [7] Kruse A, Dinjus E. Hot compressed water as reaction medium and reactant. *J Supercrit Fluids.* 2007; 39: 362-80.
- [8] Brunner G. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. *J Supercrit Fluids.* 2009; 47: 373-81.
- [9] Mumme J, Eckervogt L, Pielert J, Diakite M, Rupp F, Kern J. Hydrothermal carbonization of anaerobically digested maize silage. *Bioresour Technol.* 2011; 102: 9255-60.
- [10] He C, Giannis A, Wang J-Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. *Appl Energy.* 2013; 111: 257-66.
- [11] Park S-J, Bae J-S, Lee D-W, Ra HW, Hong J-C, Choi Y-C. Effects of Hydrothermally Pretreated Sewage Sludge on the Stability and Dispersibility of Slurry Fuel Using Pulverized Coal. *Energ Fuel.* 2011; 25: 3934-9.
- [12] Sevilla M, Fuertes AB. The production of carbon materials by hydrothermal carbonization of cellulose. *Carbon.* 2009; 47: 2281-9.
- [13] Parshetti GK, Liu Z, Jain A, Srinivasan MP, Balasubramanian R. Hydrothermal carbonization of sewage sludge for energy production with coal. *Fuel.* 2013; 111: 201-10.
- [14] Berge ND, Ro KS, Mao J, Flora JR, Chappell MA, Bae S. Hydrothermal carbonization of municipal waste streams. *Environ Sci Technol.* 2011; 45: 5696-703.
- [15] Wiedner K, Rumpel C, Steiner C, Pozzi A, Maas R, Glaser B. Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. *Biomass Bioenerg.* 2013; 59: 264-78.
- [16] Oliveira I, Blohse D, Ramke HG. Hydrothermal carbonization of agricultural residues. *Bioresour Technol.* 2013; 142: 138-46.
- [17] Zhang L, Champagne P, Xu C. Bio-crude production from secondary pulp/paper-mill sludge and waste newspaper via co-liquefaction in hot-compressed water. *Energy.* 2011; 36: 2142-50.

[18] Xu C, Lancaster J. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water. *Water Res.* 2008; 42: 1571-82.

[19] Xu C, Etcheverry T. Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts. *Fuel.* 2008; 87: 335-45.

[20] Xu C, Lancaster J. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water. *Water Res.* 2008; 42: 1571-82.

[21] Namioka T, Morohashi Y, Yamane R, Yoshikawa K. Hydrothermal treatment of dewatered sewage sludge cake for solid fuel production. *J Environ Eng.* 2009; 4: 68-77.

[22] Prawisudha P, Namioka T, Yoshikawa K. Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment. *Appl Energy.* 2012; 90: 298-304.

[23] Muthuraman M, Namioka T, Yoshikawa K. A comparative study on co-combustion performance of municipal solid waste and Indonesian coal with high ash Indian coal: A thermogravimetric analysis. *Fuel Process Technol.* 2010; 91: 550-8.

[24] Nakhshiniev B, Gonzales HB, Yoshikawa K. Hydrothermal treatment of date palm lignocellulose residue for organic fertilizer conversion: effect on cell wall and aerobic degradation rate. *Compost Sci Util.* 2012; 20: 245-53.

[25] Sakaguchi M, Laursen K, Nakagawa H, Miura K. Hydrothermal upgrading of Loy Yang Brown coal — Effect of upgrading conditions on the characteristics of the products. *Fuel Process Technol.* 2008; 89: 391-6.

[26] Indrawan B, Prawisudha P, Yoshikawa K. Chlorine-free solid fuel production from municipal solid waste. *J Jpn Inst Energ.* 2011; 90: 1171-82.

[27] Kaliyan N, Morey RV. Factors affecting strength and durability of densified biomass products. *Biomass Bioenerg.* 2009; 33: 337-59.

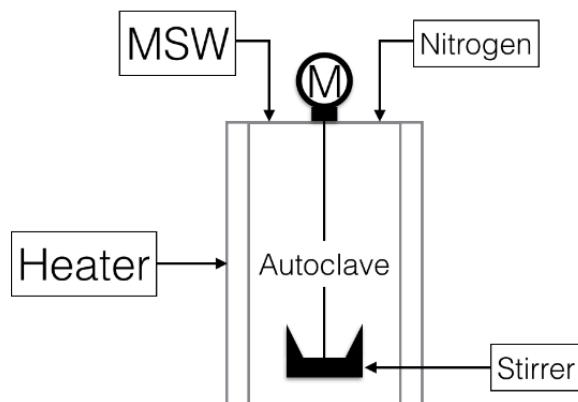
[28] Li Y, Liu H. High-pressure densification of wood residues to form an upgraded fuel. *Biomass Bioenerg.* 2000; 19: 177-86.

[29] Li H, Liu X, Legros R, Bi XT, Lim CJ, Sokhansanj S. Pelletization of torrefied sawdust and properties of torrefied pellets. *Appl Energy.* 2012; 93: 680-5.

[30] Lam PS, Sokhansanj S, Bi X, Lim CJ, Melin S. Energy Input and Quality of Pellets Made from Steam-Exploded Douglas Fir (*Pseudotsuga menziesii*). *Energ Fuel.* 2011; 25: 1521-8.

4. วัตถุประสงค์

- เพื่อผลิตเชื้อเพลิงแข็งจากขยะมูลฝอยในประเทศไทยโดยกระบวนการไอโอดเรอร์มอลทรีฟเม้นท์
- เพื่อศึกษาคุณสมบัติของขยะมูลฝอยหลังจากผ่านกระบวนการไอโอดเรอร์มอลทรีฟเม้นท์
- เพื่อศึกษาคุณสมบัติหลังจากนำผลิตภัณฑ์ไปเข้ากระบวนการอัดแห้งเป็นเชื้อเพลิงแข็งอัดแห้ง
- ทดสอบคุณภาพของเชื้อเพลิงแข็งอัดแห้งที่ผลิตจากการกระบวนการไอโอดเรอร์มอลทรีฟเม้นท์

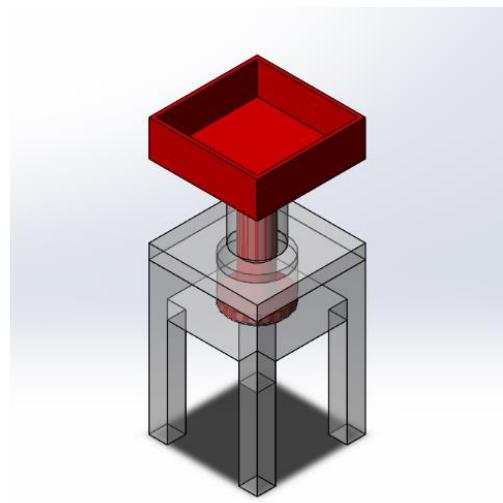

5. อุปกรณ์และวิธีการดำเนินการ

5.1 ขยะจำลลง

การเตรียมตัวอย่างขยะทำโดยการไปเก็บข้อมูลส่วนประกอบต่างๆ ของขยะมูลฝอยจริงจากศูนย์กำจัดขยะมูลฝอยหนองแขม กรุงเทพมหานคร เพื่อเก็บข้อมูลมาพิจารณาถึงสัดส่วนของขยะชนิดต่างๆ โดยนำองค์ประกอบของขยะที่มีสัดส่วนสูงที่สุดลำดับต้นๆ ได้แก่ ขยะอินทรีย์ พลาสติก กระดาษ และผ้า มาจัดเตรียมวัตถุดิบจากสัดส่วนดังกล่าวเพื่อนำมาทำการทดลองไฮโดรเทอร์มอลทรีทเม้นท์

5.2 กระบวนการไฮโดรเทอร์มอลทรีทเม้นท์

กระบวนการไฮโดรเทอร์มอลทรีทเม้นท์ (HTT) จะใช้ม้อนนึ่งความดันสูง (Autoclave) แสดงในรูปที่ 2 ในการทำการทดลอง โดยภายในหม้อนึ่งจะมีเครื่องทำความร้อน (Heater) คอยให้ความร้อนแก่ตัวหม้อนึ่งและมีไม็กวัน (Stirrer) เพื่อความกวนให้ขยะที่ใส่ลงไปในหม้อนึ่งเคลื่อนไหวและทำให้กระบวนการมีการกระจายตัวของอุณหภูมิอย่างสม่ำเสมอ หลังจากใส่ตัวอย่างลงในถังปฏิกรณ์และปิดให้แน่น ต้องเติมก๊าซไนโตรเจน (N_2) ใส่เข้าไปในหม้อนึ่งเพื่อไล่ก๊าซออกซิเจน (O_2) เนื่องจากกระบวนการ HTT ดำเนินการภายใต้สภาวะที่ไม่มีก๊าซออกซิเจน เพราะออกซิเจนอาจทำให้เกิดปฏิกิริยาเคมีได้ส่วนประกอบอื่นๆ ที่สำคัญในการทำงาน ได้แก่ ตัววัดอุณหภูมิที่อยู่ภายในหม้อนึ่ง ตัววัดความเร็วของไม็กวัน และบีบมือเพื่อนำมือไปหล่อเย็นตัวหม้อนึ่ง เพื่อป้องกันความเสียหายที่เกิดขึ้นจากความร้อน


รูปที่ 2 การทำงานของหม้อนึ่งความดันสูง

กระบวนการทำการทดลองสามารถสรุปได้ดังนี้ ขั้นแรกจะนำวัตถุดิบทั้งหมดที่เตรียมไว้ใส่ลงไปในหม้อนึ่งความดันสูง หลังจากนั้นจะเติมน้ำประสาจากไอโอน (Deionized water) จนนาท่วมวัตถุดิบให้ทั่วถึงกันทั้งหมดและปิดฝาหม้อนึ่ง ขั้นตอนต่อไปคือการก๊าซไนโตรเจนเข้าไปในหม้อนึ่ง เพื่อไล่ก๊าซออกซิเจนออกไป จากนั้นจะทำการเดินระบบของหม้อนึ่งความดันสูง โดยมีไม็กวันคอยกวนวัตถุดิบให้เป็นเนื้อเดียวกัน การทดลองจะทำในหลายอุณหภูมิ (180 200 220 และ 240 องศาเซลเซียส) และใน

helyay chawng we la (30 60 90 na thi) เพื่อทดสอบหาอุณหภูมิและเวลาการทำปฏิกิริยาที่เหมาะสมแก่การประรูปเชือเพลิงแข็งที่มีคุณภาพ

5.3 การบีบนำ้และการอบแห้ง

ผลิตภัณฑ์ที่ได้จากการกระบวนการ HTT จะมีนำ้ออยู่ในปริมาณมากเนื่องจากใช้น้ำเป็นตัวทำปฏิกิริยา ดังนั้นจึงจำเป็นต้องรีดนำ้อก่อนนำไปดำเนินการอื่นๆ ต่อไป เครื่องมือที่ใช้ในการรีดนำ้อเป็นเครื่องมือในระดับห้องปฏิบัติการ ซึ่งใช้แรงกดเพื่อบีบนำ้ออก โดยได้ออกแบบให้มีความง่ายในการใช้งานด้วยวิธีการใช้น้ำหนักถ่วงเป็นตัวกำหนดขนาดของแรง ทำให้ง่ายต่อการวัดแรงที่ส่งไปขนะรีดนำ้อ ยกมา นอกจานนั้นยังสามารถกำหนดปริมาณแรงที่ส่งไปในแต่ละตัวอย่างผลิตภัณฑ์ได้ เครื่องรีดนำ้อประกอบด้วยชิ้นส่วนหลักสองส่วน คือตัวบีบนำ้ ซึ่งมีลักษณะคล้ายก้านลูกสูบโดยด้านบนของก้านเป็นที่ใส่น้ำหนักเพื่อใช้ในการบีบนำ้ออก ส่วนอีกด้านเป็นกลมมีหน้าที่สัมผัสถักบัวตุ่ดิบ เมื่อมีนำ้อหนักแผ่นกลมจะบีบตัวอย่างที่เปี่ยกนำ้ ทำให้รีดนำ้ออกได้ ในส่วนที่สองของเครื่องบีบนำ้คือฐานของเครื่องซึ่งประกอบด้วยทรงกระบอกไว้ใส่สิ่งที่ต้องการบีบนำ้ โดยจะมีตะแกรงรองตรงกันทรงกระบอกเพื่อระบายน้ำ เครื่องมือที่ใช้แสดงในรูปที่ 3 ในการบีบนำ้อจากผลิตภัณฑ์ดำเนินการโดยห่อผลิตภัณฑ์ด้วยผ้าขาวบางสองชั้นเพื่อป้องกันให้ไม่ให้มีเนื้อของผลิตภัณฑ์หลุดออกไป ใช้น้ำหนักกดที่ 6 กิโลกรัม ขณะทำการบีบนำ้พบว่าใช้เวลาประมาณ 90 วินาทีจะทำให้น้ำส่วนใหญ่ในตัวอย่างถูกรีดออก ระยะเวลาที่ใช้ในการบีบนำ้ถูกกำหนดให้เท่ากันในทุกๆ ผลิตภัณฑ์ที่นำมาทดสอบ

รูปที่ 3 ภาพจำลองเครื่องรีดนำ้

หลังจากได้ผลิตภัณฑ์ที่ผ่านการรีดนำ้แล้ว จะเป็นต้องทำการอบตัวอย่างเพื่อทดสอบประสิทธิภาพการตากแห้งด้วยความร้อน (Drying performance) การทดสอบด้วยวิธีการอบคล้ายคลึงกับการตากตัวอย่างกลางแดดหรือการอบตัวอย่างด้วยเครื่องอบ โดยวิธีการทดสอบจะใช้ตู้อบไฟฟ้าที่อุณหภูมิที่ 60 องศาเซลเซียสซึ่งเป็นอุณหภูมิที่ไม่สูงเกินไป (ในความเป็นจริงหากอุณหภูมิสูงเกินไปจะต้องใช้พลังงานในการอบสูง) และไม่ต่ำเกินไป (หากต่ำเกินไปจะใช้เวลานาน) การอบแห้งตัวอย่างที่

ผ่านกระบวนการ HTT และบีบัน้ำออกแล้วจะวัดน้ำหนักของผลิตภัณฑ์ทุกๆ หนึ่งชั่วโมง เพื่อดูปริมาณน้ำที่ระเหยออกจากผลิตภัณฑ์จนกว่าตัวอย่างนั้นจะไม่มีน้ำหลงเหลืออยู่ภายใน

5.4 การวิเคราะห์ตัวอย่างเบื้องต้น

การวิเคราะห์ตัวอย่างผลิตภัณฑ์จะใช้วิธีการวิเคราะห์คุณสมบัติของเชื้อเพลิงเบื้องต้น ทั้งหมด 3 แบบคือ Heating value analysis Proximate analysis และ Ultimate analysis ตัวอย่างของเครื่องมือวิเคราะห์แสดงในรูปที่ 4 การวิเคราะห์ค่าความร้อน (Heating value analysis) ดำเนินการโดยใช้เครื่อง Bomb calorimeter (Leco, AC-500) เพื่อวัดค่าความร้อนมีหน่วยเป็น MJ/kg (ASTM D5865) ชนิดที่สองคือการตรวจ Proximate analysis (ASTM D7582) โดยใช้เครื่อง Simultaneous Thermal Analyzer (STA) ในการวิเคราะห์ สุดท้ายจึงตรวจหาองค์ประกอบทางเคมี คาร์บอน (C) ไฮโดรเจน (H) ในไฮโดรเจน (N) ด้วย Ultimate analysis (ASTM D3176) โดยใช้เครื่อง Elemental Analyzer (Thermo Flash 2000) ในการวิเคราะห์ อย่างไรก็ตามยังจำเป็นต้องทำการวิเคราะห์ตัวอย่างที่ได้ด้วยกระบวนการอื่นอีก เช่น Fourier transform infrared spectroscopy (FTIR) และวิเคราะห์ตัวอย่างน้ำที่ได้หลังการบีบ รีดน้ำออกด้วย Inductively Coupled Plasma (ICP) และวิเคราะห์ด้วยวิธีการอื่นๆ ตามความเหมาะสม ต่อไป

รูปที่ 4 เครื่องมือ a. Bomb calorimeter b. Elemental analyzer c. Simultaneous Thermal Analyzer

5.5 เครื่องมือในการอัดแท่ง

การผลิตเม็ดเชื้อเพลิงจากผลิตภัณฑ์ที่ได้จากการกระบวนการ HTT โดยการใช้เครื่องอัดแบบหัวแบนราบ (Flat die) เป็นเครื่องอัดที่ใช้วัสดุที่เป็นแผงหรือมีขนาดเล็ก โดยมีส่วนประกอบหลัก คือ หัวอัด และลูกกลิ้ง โดยลูกกลิ้งจะหมุนอยู่ด้านบนหัวอัด เครื่องอัดแท่งที่ใช้ (รูปที่ 5) มีกำลัง 5.5 kW โดยหัวอัดและลูกกลิ้งมีเส้นผ่านศูนย์กลาง 150 และ 90 mm ตามลำดับ ซึ่งจะผลิตเม็ดเชื้อเพลิงที่มีเส้นผ่านศูนย์กลางทั้งหมด 3 ขนาดคือ 4, 6 และ 8 mm โดยนำวัสดุที่ได้จากการกระบวนการ HTT ที่มีความชื้นประมาณร้อยละ 26 ใส่เครื่องอัดแท่งดังกล่าว ความชื้นหรือน้ำในตัวอย่างจะทำหน้าที่เป็นตัวประสานในการอัดแท่ง ผลิตภัณฑ์เชื้อเพลิงเบื้องต้นที่ได้ถูกนำไปตากแดดเพื่อทำให้แห้ง ก่อนนำไปทดสอบคุณสมบัติทางกายภาพต่อไป

5.6 การทดสอบความแข็งแรงของเชือเพลิงแข็ง

การทดสอบความแข็งแรงของเชือเพลิงแข็งใช้เครื่อง Universal testing machine (UTM) รุ่น INSTRON 5969 ใน การ กดอัด เครื่อง UTM เป็นเครื่องมือทดสอบที่ใช้หาสมบัติแรงดึงและแรงอัด (ความหนาต่อแรงดึง การยืดตัว ณ จุดขาด การเสียรูป และค่าโมดูลัส) ของชิ้นงานคงรูป โดยจะให้แรงดึงหรือแรงอัดกับชิ้นทดสอบด้วยอัตราความเร็วคงที่ จนกระทั่งชิ้นทดสอบขาดหรือเสียหายและบันทึกค่าแรงดึง (Tension force) หรือค่าแรงอัด (Compression force) ที่เปลี่ยนไปตามระบบการยืดตัว หรือการเสียรูป (Deformation) ของวัสดุ นำค่าที่ได้ไปคำนวณและสร้างกราฟความสัมพันธ์ระหว่างความดัน (Stress) กับความเครียด (Strain) เครื่อง UTM แสดงในรูปที่ 6 (ซ้าย) นอกจากนั้นจะทดสอบความแข็งของแท่งเชือเพลิงที่ผลิตได้โดยจะใช้เครื่องทดสอบความแข็ง SUNDOO รุ่น SH-200 แสดงในรูปที่ 6 (ขวา)

รูปที่ 5 เครื่องอัดแบบหัวแบบรำ ที่ใช้ในการผลิตเม็ดเชือเพลิง

รูปที่ 6 เครื่อง Universal testing machine (ซ้าย) และเครื่องทดสอบความแข็ง (ขวา)

5.7 การทดสอบความทนทาน

ทดสอบความทนทานของเม็ดเชือเพลิง (Durability test) โดยการใส่เม็ดเชือเพลิงลงไปในกล่องเหล็กมารฐาน The American Society of Agricultural Engineers Standard 269.4 (ASABE) ขนาด $300 \times 300 \times 125$ มิลลิเมตร ภายในกล่องเหล็ก จะมีแผ่นเหล็กบางยawa 230 มิลลิเมตร และกว้าง 50 มิลลิเมตร ติดในแนวนอนแบบกล่องเหล็ก เพื่อคุณภาพของเม็ดเชือเพลิง

ขั้นตอนการทดลองเม็ดต่อไปนี้

- ก่อนเริ่มการทดลองจะซั่งตัวอย่างเม็ดเชือเพลิง จำนวน $1,100$ กรัม
- นำตัวเม็ดเชือเพลิงร่อนด้วยตะแกรงร่อนที่มีขนาดรูตะแกรง $1/8$ นิ้ว เพื่อแยกสิ่งปนเปื้อนหรือเม็ดเชือเพลิงที่ไม่สมบูรณ์ออกออก โดยเก็บเฉพาะเม็ดเชือเพลิงที่ค้างอยู่บนตะแกรงร่อน
- ซั่งตัวอย่างเม็ดเชือเพลิงจำนวน 500 ± 10 กรัม ด้วยค่าความละเอียด 0.1 กรัม (IW)
- นำตัวอย่างเม็ดเชือเพลิงจำนวน 500 ± 10 กรัม ใส่ลงในเครื่องทดสอบความทนทาน แล้วหมุนด้วยอัตรา 50 ± 2 รอบ/นาที ทั้งหมด 500 รอบ (เป็นเวลา 10 นาที)
- นำตัวอย่างเม็ดเชือเพลิง ออกจากเครื่องทดสอบความทนทาน และนำมาร่อนด้วยตะแกรงร่อนที่มีขนาดรูตะแกรง $1/8$ นิ้ว เพื่อแยกส่วนที่แตกหักออกและซั่งน้ำหนักด้วยความละเอียด 0.1 กรัม (WPW)
- คำนวณค่าความทนทานของเชือเพลิงอัดเม็ด (Pellet Durability Index : PDI) ด้วยสมการ ค่าความทนทานของเชือเพลิงอัดเม็ด (PDI) = $(WPW/IW) \times 100$

หลังจากผลิตกล่องเหล็กเพื่อทำการทดสอบหาค่า PDI ตามมาตรฐาน ASABE และนำมาติดตั้งกับรอกเพื่อทดสอบ เข้ากับตัวมอเตอร์กำลัง $1/2$ แรงม้าที่แสดงใน รูปที่ 7 แต่ไม่สามารถทดสอบให้เหลือ 50 รอบต่อนาทีได้ รอบของกล่องเหล็กหลังทดสอบแล้ว สามารถทำได้ที่ 60 รอบต่อนาที จึงต้องติดตั้งอุปกรณ์เพิ่มเติมคือตัวหรี่กระแสไฟ (Dimmer) เพื่อลดกำลังไฟที่ส่งเข้าไปให้กับมอเตอร์ลง ทำให้มอเตอร์หมุนช้าลง หลังจากนั้นได้ทำการวัดรอบอีกครั้งหนึ่ง พบว่ากล่องเหล็กสามารถหมุนที่ความเร็วรอบประมาณ $53-57$ รอบต่อนาที ถือว่าเพียงพอต่อการใช้งาน

รูปที่ 7 เครื่องทดสอบความทนทานของเม็ดเชือเพลิง

5.8 การทดสอบความยากง่ายในการบดอัด

Hardgrove Grindability Index (HGI) หมายถึง ความยากง่ายในการบดถ่านหินให้ได้ขนาดตามที่ต้องการ (Grindability) โดยใช้ Hardgrove Machine เป็นเครื่องมือในการทดสอบ ถ่านหินที่มีค่า HGI ที่มีค่าสูง (ใกล้เคียง 100) แสดงว่ามีลักษณะเปราะ สามารถบดได้ง่าย ส่วนถ่านหินที่มีค่า HGI ต่ำ (ประมาณ 30-45) จะเป็นถ่านหินที่แข็งและเหนียวง่าย การทดสอบแต่ละครั้งจะใช้มีดเชือเพลิง ประมาณ 100 กรัมต่อขนาด (4, 6 และ 8 มิลลิเมตร) โดยจะใช้มาตรฐาน ASTM D409-12 และใช้เครื่อง HGI tester (Preiser/Mineco 90-9301-1) ในการทดสอบ ซึ่งแสดงใน รูปที่ 8

รูปที่ 8 เครื่อง HGI tester (Preiser/Mineco 90-9301-1)

5.9 การทดสอบการดูดซึมน้ำ

การทดสอบการดูดซึมน้ำ เป็นการทดสอบเพื่อหาค่าการดูดซึมน้ำหรือเปอร์เซ็นต์น้ำหนักที่เพิ่มขึ้นของเม็ดเชือเพลิง โดยจะนำตัวอย่างเม็ดเชือเพลิงทั้ง 3 ขนาด อย่างละ 3 เม็ดนำมาใส่ในกล่องที่ควบคุมอุณหภูมิ (รูปที่ 9) 25-27 องศาเซลเซียส และความชื้นสัมพัทธ์ที่ร้อยละ 78-80 ในช่วงชั่วโมงแรกจะทำการบันทึกค่าน้ำหนักทุกๆ 15 นาที หลังจากนั้นจะบันทึกค่าหนักทุกๆ หนึ่งชั่วโมง จะกระทั่งเม็ดเชือเพลิงนั้นไม่มีน้ำหนักเพิ่มขึ้นอีกต่อไป

รูปที่ 9 กล่องควบคุมอุณหภูมิ และความชื้น

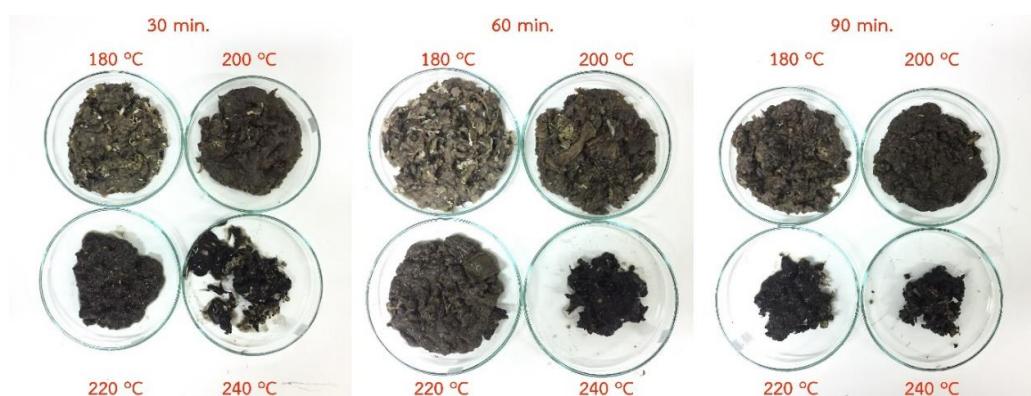
6 ผลการทดลองและวิจารณ์ผลการทดลอง

6.1 การเตรียมตัวอย่างขยะ

จากการเก็บข้อมูลส่วนประกอบต่างๆ ของขยะมูลฝอยจากศูนย์กำจัดขยะมูลฝอยหนองแขม ได้ข้อมูลมาพิจารณาถึงสัดส่วนของขยะชนิดต่างๆ ซึ่งขยะมูลฝอยส่วนใหญ่อยู่ในประเภท ขยะอินทรีย์ พลาสติก กระดาษ และผ้า จานนี้จัดเตรียมวัตถุดิบเพื่อนำมาทำการทดลอง โดยขยะอินทรีย์จะใช้เป็นผักบุ้งแทนเป็นตัวแทน เนื่องจากมีปริมาณน้ำสูง (สมอขยะอินทรีย์) หาได้ง่าย และราคาถูก ดังนั้น สัดส่วนของปริมาณขยะที่จะนำมาทดลองคือ ผักบุ้ง 68% กระดาษ 8% ผ้า 4% และ พลาสติก 20% ดังแสดงในตารางที่ 1 โดยขยะพลาสติกจะประกอบด้วยชนิดพลาสติก PET 4% HDPE 12% และ PP 4% โดยปริมาณน้ำที่ใช้ในการทดลอง อยู่ประมาณ 6 เท่าของน้ำหนักขยะที่ทำการทดลอง ตัวอย่างขยะที่นำมาทดลองแสดงในรูปที่ 10

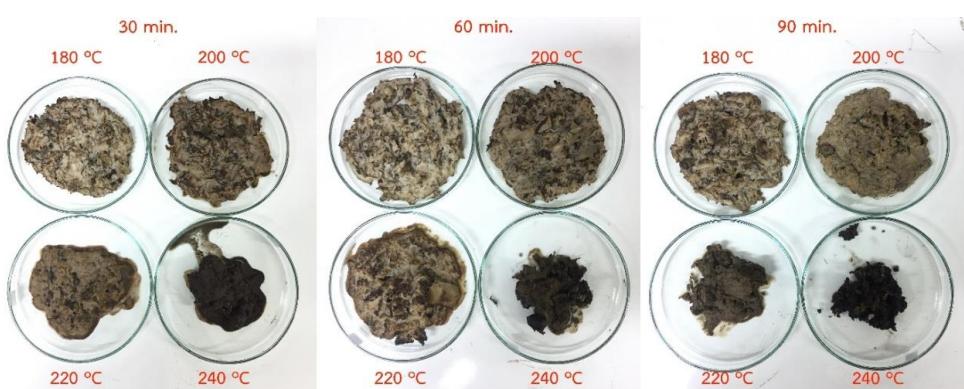
ตารางที่ 1 น้ำหนักขยะที่ใช้ในการทดลอง

ชนิดขยะ	ผักบุ้ง	กระดาษ	ผ้า	พลาสติก PET	พลาสติก PP	พลาสติก HDPE
น้ำหนัก (กรัม)	17	2	1	1	1	3
ร้อยละ	68	8	4	4	4	12



รูปที่ 10 วัตถุดิบที่ใช้ในการทดลองไฮโดรเทอร์มอลทรีทเม้นท์

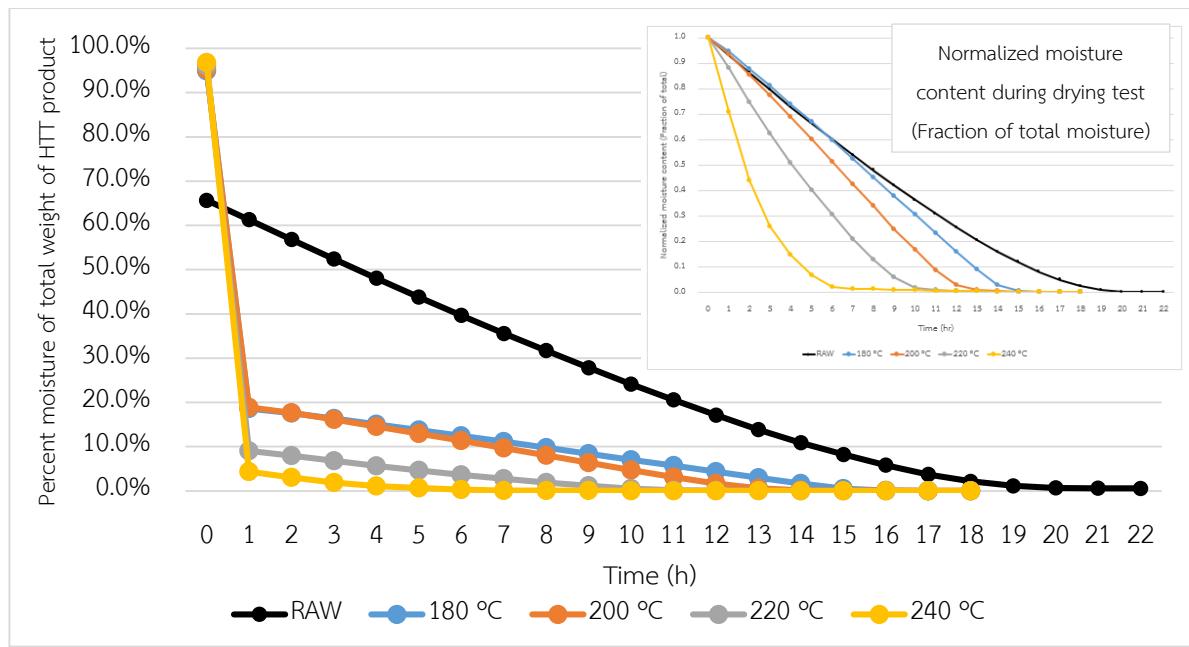
6.2 ลักษณะของผลิตภัณฑ์ที่ได้


ในการทดลองไฮโดรเทอร์มอลทรีทเม้นท์ (HTT) จะทดลองโดยใช้อุณหภูมิและเวลาที่แตกต่างกัน โดยจะใช้อุณหภูมิตั้งแต่ 180 200 220 240 องศาเซลเซียส และเวลาในการทำปฏิกิริยาจะใช้ 30 60 และ 90 นาที ตามลำดับ เพื่อวิเคราะห์ความแตกต่างของตัวแปรต่างๆ ที่มีผลต่อผลิตภัณฑ์ จึงนำ

ผลิตภัณฑ์ทั้งหมดที่ผ่านการทดลองแล้วมาเปรียบเทียบกัน โดยเปรียบเทียบจากเวลาที่ใช้ในการทดลองที่แตกต่างกันแต่ใช้อุณหภูมิเดียวกัน จากรูปที่ 11 จะสังเกตได้ว่าลักษณะของเนื้อผลิตภัณฑ์จะมีความใกล้เคียงกัน ความแตกต่างไม่ค่อยชัดเจน แต่เมื่อเปรียบเทียบกับอุณหภูมิที่แตกต่างกัน เนื้อของผลิตภัณฑ์จะมีความแตกต่างค่อนข้างชัดเจนในแต่ละช่วงของอุณหภูมิ โดยในอุณหภูมิที่ 180 องศาเซลเซียส เนื้อของผลิตภัณฑ์จะยังมีบางส่วนที่คงสภาพ และเป็นชิ้นใหญ่ สีของเนื้อผลิตภัณฑ์จะเป็นสีดำปนน้ำตาล ในอุณหภูมิถัดไปที่ 200 องศาเซลเซียส เนื้อของผลิตภัณฑ์จะมีความละเอียดมากขึ้นอย่างชัดเจน สีของเนื้อผลิตภัณฑ์มีความดำมากขึ้น แต่ปริมาณที่เก็บได้ของผลิตภัณฑ์นั้นน้อยลง คาดว่าเกิดจากการสลายตัวของวัตถุถ้วน (Decompose) ทำให้ละลายออกไปกับน้ำที่บีบออก ส่วนในอุณหภูมิถัดไปที่ 220 องศาเซลเซียส เนื้อผลิตภัณฑ์มีความละเอียดเกือบทั้งหมด มีสีดำสนิท และปริมาณที่เก็บได้มีปริมาณน้อยลงกว่าช่วงอุณหภูมิที่ผ่านมา ในช่วงอุณหภูมิสุดท้ายที่ 240 องศาเซลเซียส ผลิตภัณฑ์มีเนื้อที่ละเอียดหมดทุกส่วน มีสีดำสนิท ส่วนปริมาณที่เก็บได้ในช่วงอุณหภูมนี้ มีปริมาณน้อยลงอย่างชัดเจน

รูปที่ 11 ลักษณะของผลิตภัณฑ์ในช่วงอุณหภูมิ และเวลาต่างๆ

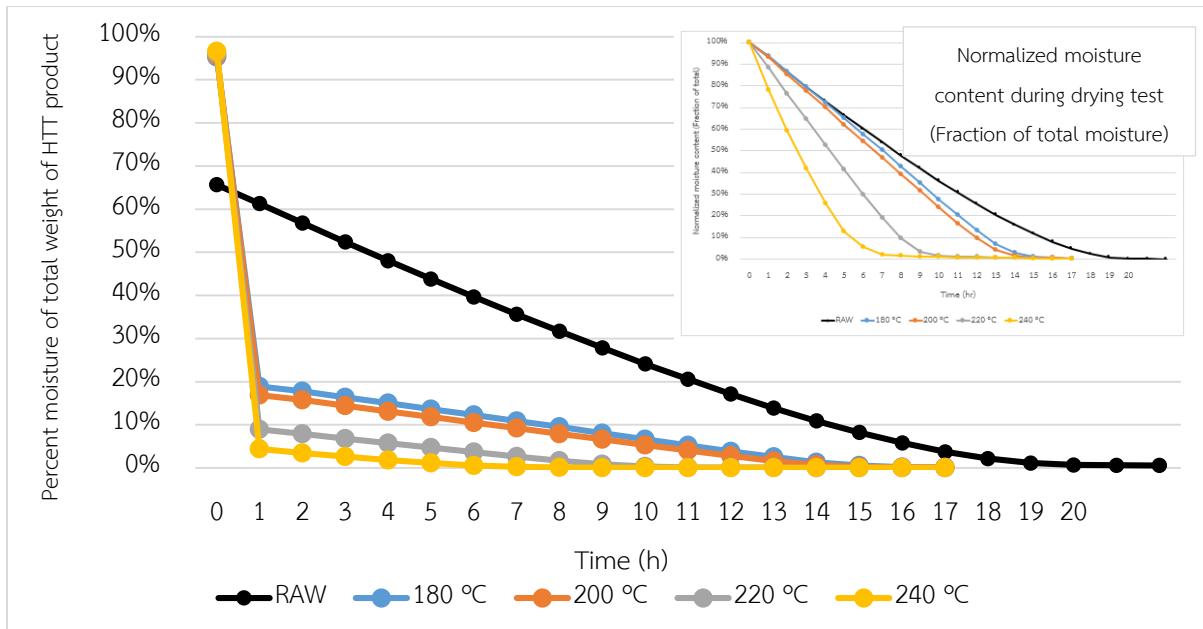
หลังจากนั้นจะนำผลิตภัณฑ์ที่ได้จากการบวนการ HTT ไปอบเพื่อไล่ไอน้ำออกจนแห้งที่อุณหภูมิ 60 องศาเซลเซียส ผลิตภัณฑ์ที่อบแห้งแล้วแสดงในรูปที่ 12 โดยใช้เวลาประมาณ 20 ถึง 24 ชั่วโมงในการอบ หลังจากเอาออกจากการอบแล้วพบว่า เนื้อของผลิตภัณฑ์มีการยุบตัวเล็กน้อย และมีสีที่ซีดลงอย่างชัดเจน แต่ลักษณะโดยทั่วไปไม่เปลี่ยนแปลงมาก



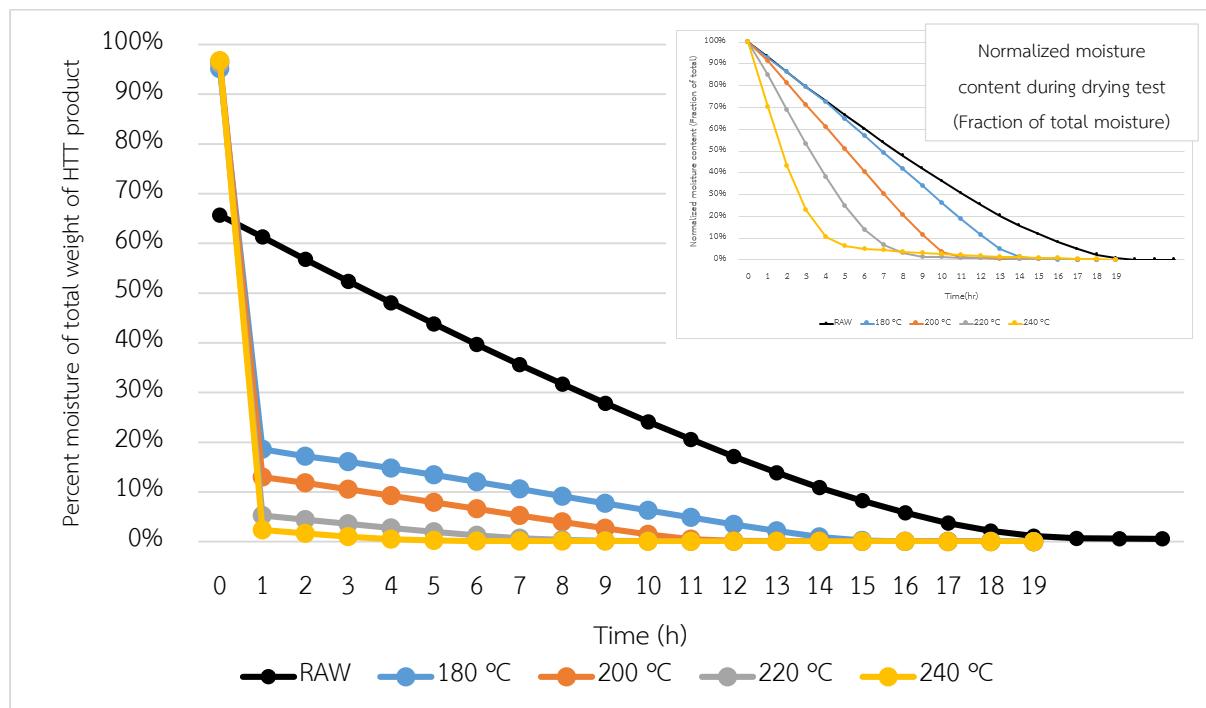
รูปที่ 12 ลักษณะของผลิตภัณฑ์ที่ผ่านการอบที่อุณหภูมิ 60 องศาเซลเซียส เป็นเวลา 20-24 ชั่วโมง

6.3 ผลการบีบน้ำและอบแห้งตัวอย่าง

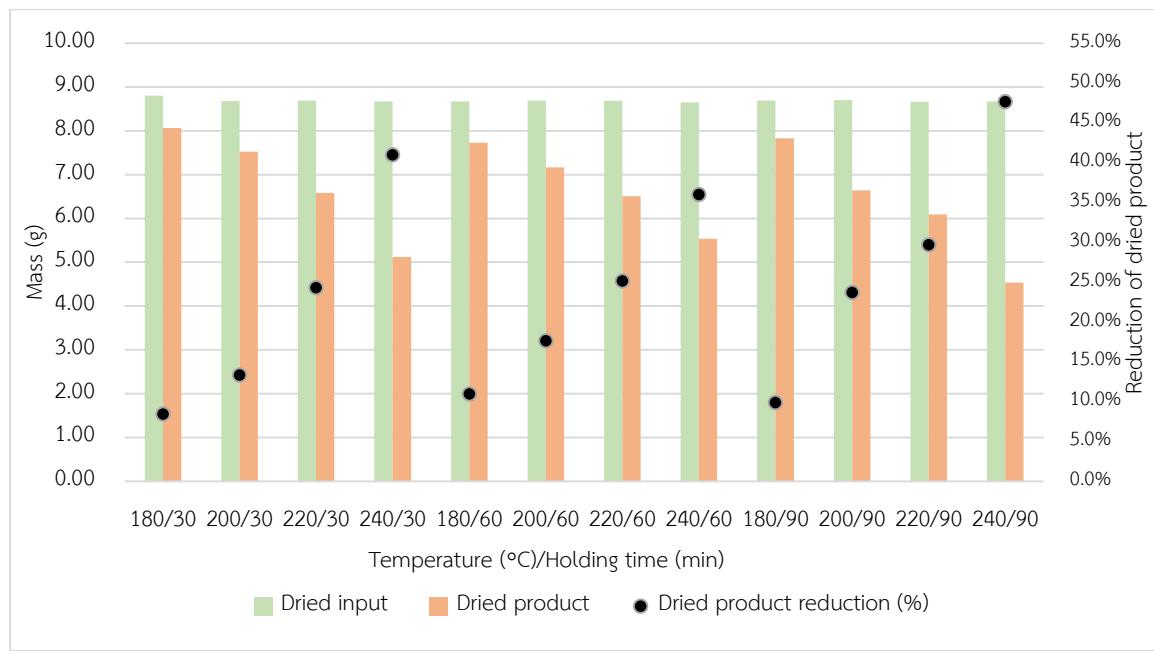
ความชื้นตั้งต้นของขบวนผลอยตัวอย่างอยู่ที่ประมาณร้อยละ 65 ของน้ำหนักทั้งหมด หลังจากได้ตัวอย่างที่ผ่านกระบวนการ HTT จึงดำเนินการบีบน้ำเพื่อลดปริมาณความชื้นด้วยวิธีทางกล จากการทดลองซึ่งแสดงในรูปที่ 13 ถึง 15 สำหรับระยะเวลาการทำปฏิกิริยาที่ 30 ถึง 90 ตามลำดับ โดยเพื่อความสะดวกในการแสดงกราฟผลการทดลองเบื้องต้น ตามแนวแกนนอน (Time, h) ให้ชั่วโมงที่ 0 คือปริมาณน้ำก่อนถูกบีบ และชั่วโมงที่ 1 แสดงปริมาณหลังการบีบน้ำ ซึ่งในความเป็นจริงได้ทำการทดลองบีบน้ำที่ 90 วินาที จากผลการทดลองพบว่า ปริมาณน้ำเพิ่มขึ้นสูงหลังจาก HTT ทั้งนี้เนื่องจากกระบวนการ HTT ใช้น้ำในการทำปฏิกิริยาทำให้ปริมาณน้ำเพิ่มมากขึ้น ปริมาณน้ำที่เพิ่มมากขึ้นแต่ต่างกันเล็กน้อยสำหรับแต่ละเงื่อนไขการทำปฏิกิริยา หลังจากทำการบีบน้ำออก ปริมาณน้ำหรือความชื้นในตัวอย่างลดลงสูงมากในทุกรุ่น โดยเฉพาะช่วงอุณหภูมิ HTT ที่สูงเช่น 220 และ 240 องศาเซลเซียส ทั้งนี้เนื่องมาจากการสลายตัวของขบวนผลอยตัวอย่างที่อุณหภูมิและความดันสูง ทำให้ผนังเซลล์ของสารอินทรีย์ที่มีน้ำอยู่ภายใน (Bound water) สลายตัว และทำให้น้ำหรือความชื้นเหล่านั้นสามารถหลุดออกมาระหว่างน้ำภายนอก (Free water) ที่สามารถถูกดูดออกมากจากตัวอย่างได้อย่างง่ายดาย ดังนั้นการรีดน้ำจึงสามารถลดปริมาณน้ำในตัวอย่างลงได้อย่างมีนัยยะสำคัญ


ในขั้นตอนการอบแห้งผลิตภัณฑ์ หากวิเคราะห์ปริมาณความชื้นโดยใช้อุณหภูมิเป็นตัวประเมินความแตกต่างของผลิตภัณฑ์จะพบว่า เมื่อยิ่งใช้อุณหภูมิที่มากขึ้น ปริมาณความชื้นในเนื้อของผลิตภัณฑ์จะน้อยลงตามลำดับ (เนื่องจากถูกบีบน้ำออกไป ทำให้ปริมาณน้ำในตัวอย่างขณะเริ่มต้นการทดลองอบแห้งแตกต่างกัน) ยิ่งใช้อุณหภูมิ HTT สูงเท่าไหร่ ก็จะยิ่งทำการอบแห้งเร็วมากขึ้นคือ มีอัตราการลดลงของปริมาณความชื้นที่สูง (รูปเล็กในรูปที่ 13 ถึง 15) เนื่องจากผลิตภัณฑ์หลังจาก HTT ถูกย่อยให้มีขนาดเล็กลงอย่างมีนัยยะสำคัญ เช่น HTT ที่ 220 และ 240 องศาเซลเซียส ตัวยเหตุนี้ทำให้ปริมาณความชื้นระหว่างการอบของชุดอุณหภูมิ 180 และ 200 องศาเซลเซียส กับ 220 และ 240 องศาเซลเซียส มีความแตกต่างกัน ซึ่งสามารถพบได้ในทุกๆ ระยะเวลาการทำปฏิกิริยา หากนำมาวิเคราะห์โดยใช้เวลาในการทำปฏิกิริยาเป็นตัวประเมิน จะพบว่า หากเพิ่มเวลาที่ใช้ในการทำปฏิกิริยา จะทำให้ปริมาณความชื้นในเนื้อผลิตภัณฑ์จะน้อยลง ในทุกอุณหภูมิที่ทำปฏิกิริยา

รูปที่ 13 ปริมาณความชื้นก่อน (0h) และหลังการบีบรีดน้ำ (1h) แต่ระยะเวลาจังหวะการบีบน้ำคือ 90 วินาที และระหว่างที่ทำการอบตัวอย่างสำหรับกระบวนการ HTT ที่ 30 นาที

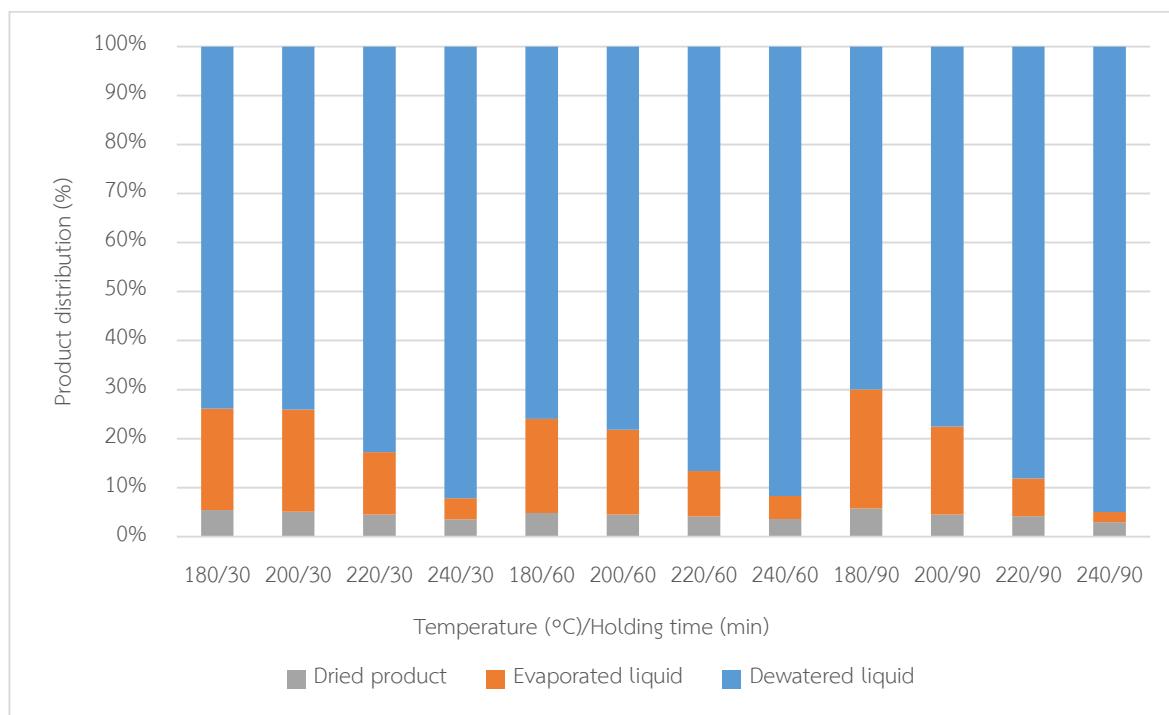

6.4 ปริมาณและสัดส่วนผลิตภัณฑ์ที่ได้

หลังจากทำการอบแห้งเรียบร้อยแล้ว จึงทำการซั่นน้ำหนักเพื่อหาหนักแห้งของผลิตภัณฑ์สุกชิ เพื่อดูความแตกต่างของผลิตภัณฑ์ของแข็งสุกชิจากแต่ละช่วงอุณหภูมิและเวลาของกระบวนการ HTT ผลที่ได้จะพบว่าเมื่ออุณหภูมิสูงขึ้น เนื้อของแข็งแห้งสุกชิที่สามารถเก็บได้จะยิ่งมีปริมาณน้อยลง สอดคล้องกับผลการวิเคราะห์ลักษณะของผลิตภัณฑ์ที่ได้ ปริมาณของแข็งแห้งสุกชิ (หรือเชือเพลิงแข็ง แห้งสุกชิ) และร้อยละการลดลงปริมาณของแข็งแห้งสุกชิหลังจากการ HTT และการทำให้แห้ง ของทุกการทดลองแสดงในรูปที่ 16 ซึ่งพบว่าในทุกระยะเวลาการทำการทำปฏิกิริยา เมื่อเพิ่มอุณหภูมิจะทำให้ ปริมาณของแข็งแห้งสุกชิลดลง ที่อุณหภูมิ HTT 240 องศาเซลเซียสพบว่าทำให้ปริมาณของแข็งแห้ง สุกชิลดลงถึงร้อยละ 35 ถึง 50 การลดลงของผลิตภัณฑ์ของแข็งแห้งสุกชิทำให้ปริมาณผลิตภัณฑ์สุกชิท้าย คือเชือเพลิงแข็งอัดแห้งมีปริมาณน้อยลง ส่งผลกระทบต่อปริมาณผลิตภัณฑ์ที่ได้ ในการกลับกันการเพิ่ม อุณหภูมิ HTT ทำให้ค่าความร้อนสูง (ตารางที่ 4) ขึ้นซึ่งจะเพิ่มมูลค่าให้เชือเพลิงแข็งอัดแห้ง ทั้งสอง ปัจจัยเหล่านี้ส่งผลกระทบโดยตรงกับลักษณะการใช้งานจริงของผลิตภัณฑ์และความคุ้มค่าทาง เศรษฐศาสตร์ของกระบวนการ HTT



รูปที่ 14 ปริมาณความชื้นก่อน (0h) และหลังการบีบรีดน้ำ (1h แต่ระยะเวลาจังการบีบน้ำคือ 90 วินาที) และระหว่างที่ทำการอบตัวอย่างสำหรับกระบวนการ HTT ที่ 60 นาที

หากพิจารณาอย่างละเอียดจะพบว่าระยะเวลาทำปฏิกิริยามีผลต่อปริมาณของแข็งแห้งสูตรชั้นกัน คือ ระยะเวลาการทำปฏิกิริยาที่เพิ่มขึ้นจะทำให้ปริมาณของแข็งแห้งสูตรชั้นกันลดลงได้ชัดเมื่อเพิ่มระยะเวลาการทำปฏิกิริยาจาก 30 เป็น 60 และ 90 นาทีตามลำดับ ตัวอย่างเช่น ในกรณี 90 นาทีที่อุณหภูมิ 200 องศาเซลเซียส มีการลดลงของของแข็งแห้งสูตรชั้นกันที่เท่ากับที่อุณหภูมิ 220 องศาเซลเซียสที่ระยะเวลา 60 นาที ซึ่งจะพบว่าในปริมาณของผลิตภัณฑ์ที่ได้จะสามารถปรับเปลี่ยนได้โดยขึ้นอยู่กับอุณหภูมิและเวลาในการทำปฏิกิริยา จากราคาข้างต้นคือ การลดอุณหภูมิและเพิ่มระยะเวลาการทำปฏิกิริยา ซึ่งสามารถลดพลังงานที่ต้องใช้ได้จากการลดอุณหภูมิการทำปฏิกิริยา แต่อย่างไรก็ตาม ต้องเพิ่มระยะเวลาการทำปฏิกิริยาให้นานขึ้น ซึ่งหมายถึงการเพิ่มเวลาของกระบวนการ (ลดความสามารถในการทำงาน) และอาจต้องใช้พลังงานเพิ่มเนื่องจากต้องรักษาสภาพของกระบวนการให้นานขึ้น



รูปที่ 15 ปริมาณความชื้นก่อน (0h) และหลังการบีบวีด้า (1h แต่ระยะเวลาจังหวะการบีบวีด้าคือ 90 วินาที) และระหว่างที่ทำการอบตัวอย่างสำหรับกระบวนการ HTT ที่ 90 นาที

รูปที่ 16 ปริมาณของสุทธิก่อนกระบวนการฯ (Dried input) ผลิตภัณฑ์ของสุทธิ (Dried product) หลังจากการทั้งหมด และอัตราการลดลงของผลิตภัณฑ์แห้งสุทธิที่ได้ (Dried product reduction)

เนื่องจากผลิตภัณฑ์ที่ได้จากการกระบวนการต้องนำไปใช้งานให้เกิดประโยชน์สูงสุด และพยายามไม่ให้เกิดขยะจากการกระบวนการ (Zero waste) รูปที่ 17 แสดงสัดส่วนของผลิตภัณฑ์ที่ได้ทั้งหมดจากการกระบวนการ (ไม่รวมก๊าซ) ในทุกเงื่อนไขการทดลอง ในส่วนของผลิตภัณฑ์ของแข็งแห้งสุกชิ เป็นสัดส่วนน้อยที่สุดจากผลิตภัณฑ์ทั้งหมด ทั้งนี้เป็นเพราะสารตั้งต้นหรือขยะมูลฝอยตั้งต้นมีปริมาณความชื้นสูงอยู่แล้ว (ปริมาณของแข็งแห้งสุกชิต่ำ) นอกจากนั้นกระบวนการ HTT เป็นการใช้ไอน้ำ (หรือการผสมน้ำ) ในการทำปฏิกิริยาทำให้เกิดผลิตภัณฑ์ที่เป็นของเหลวจำนวนมาก ซึ่งส่วนใหญ่เป็นของเหลวที่ถูกรีดออก (Dewatered liquid) จากผลิตภัณฑ์ที่ได้จากการกระบวนการ HTT เมื่อสังเกตปริมาณของเหลวที่ถูกรีดออกพบว่ามีปริมาณเพิ่มขึ้นเมื่อเพิ่มอุณหภูมิ HTT และเป็นลักษณะเดียวกันในทุกๆ ระยะเวลาการทำปฏิกิริยา การเพิ่มขึ้นของของเหลวที่ถูกรีดออกทำให้ปริมาณน้ำที่จำเป็นต้องระเหยออก (Evaporated liquid) ในระหว่างการทำปฏิกิริยา ซึ่งทำให้อัตราการลดลงของปริมาณน้ำ (รูปเล็กในรูปที่ 13 ถึง 15) ของตัวอย่างที่มีปริมาณน้ำน้อย (อุณหภูมิ HTT สูง) สูงกว่าตัวอย่างที่มีปริมาณน้ำมากกว่า (อุณหภูมิ HTT ต่ำ) ทั้งนี้เนื่องจากผลิตภัณฑ์ที่เป็นของเหลวที่ถูกรีดออกมีปริมาณมากจึงจำเป็นต้องทำการตรวจวัดทางเคมีเพื่อให้ทราบถึงองค์ประกอบและสามารถนำไปใช้ประโยชน์หรือดำเนินการจัดการได้อย่างถูกต้องต่อไป (ยังอยู่ในขั้นตอนการดำเนินการ)

รูปที่ 17 สัดส่วนของผลิตภัณฑ์ที่เกิดขึ้นหลังจากการกระบวนการ HTT การรีดน้ำและการอบแห้ง (100% คือปริมาณผลิตภัณฑ์หลังจากการกระบวนการ HTT / Dewatered liquid คือน้ำที่ถูกบีบออกในกระบวนการรีดน้ำ / Evaporated liquid คือน้ำที่ถูกทำให้ระเหยขณะอบแห้ง / Dried product คือผลิตภัณฑ์ของแข็งแห้งสุกชิ)

6.5 วิเคราะห์คุณสมบัติทางเคมี

การวิเคราะห์คุณสมบัติทางเคมีของผลิตภัณฑ์ในส่วนที่เป็นของแข็งหรือเชือเพลิงแข็งที่ได้จากทุกเงื่อนไขการทดลองด้วย Ultimate analysis Proximate analysis และ Heating value แสดงในตารางที่ 2 3 และ 4 ตามลำดับ จากตารางที่ 2 พบว่าองค์ประกอบทางเคมีของตัวอย่างขยะมูลฝอยมีสัดส่วนคาร์บอนและไฮโดรเจนอยู่ที่ประมาณร้อยละ 43.4 และร้อยละ 6.3 ตามลำดับ ซึ่งผลิตภัณฑ์เชือเพลิงขยะมีแนวโน้มของสัดส่วนคาร์บอนและไฮโดรเจนเพิ่มสูงขึ้น โดยที่ไปสังเกตได้ว่าหากเพิ่มอุณหภูมิและระยะเวลาในการทำปฏิกิริยาจะทำให้สัดส่วนคาร์บอนและไฮโดรเจนสูงขึ้น หากพิจารณาสัดส่วนของไฮโดรเจนและออกซิเจนจะพบว่าเป็นองค์ประกอบที่มีค่าลดลง จากผล Proximate analysis ที่แสดงในตารางที่ 3 พบว่าสัดส่วนของสารระเหย (Volatile matter) มีค่าเพิ่มมากขึ้น ขณะที่สัดส่วนของคาร์บอนคงตัว (Fixed carbon) มีค่าลงลง และสัดส่วนของขี้เถ้า (Ash) ไม่มีแนวโน้มที่ชัดเจน (มีทั้งกรณีที่เพิ่มขึ้นและลดลง) ในตารางที่ 4 แสดงค่าความร้อนของขยะตั้งต้นและผลิตภัณฑ์เชือเพลิงที่ได้จากการบวนการไฮโดรเทอร์มอลทรีฟเม้นท์ พบว่าผลิตภัณฑ์ที่ได้มีค่าความร้อนสูงขึ้นอย่างมีนัยยะสำคัญ การวิเคราะห์ในรายละเอียดหรือกลไกต่างๆ ที่เกี่ยวข้องจะดำเนินการภายหลังจากได้ผลวิเคราะห์จากเครื่องมือชนิดอื่น ๆ เพิ่มเติม

ตารางที่ 2 องค์ประกอบทางเคมี Ultimate analysis (ร้อยละของน้ำหนักแห้ง)

Sample	Time (min)	Carbon %	Hydrogen %	Nitrogen %	Oxygen %
Raw	-	43.4	6.3	1.4	48.8
	30	46.9	5.8	0.5	46.8
	60	50.8	9.7	0.0	39.5
180 °C	90	58.5	9.4	0.3	31.7
	30	50.0	6.9	0.5	42.7
	60	45.3	9.6	0.0	45.1
200 °C	90	62.0	12.4	0.4	25.1
	30	52.4	7.3	0.4	39.8
	60	59.7	12.6	0.0	27.6
220 °C	90	69.4	13.4	0.3	16.8
	30	58.2	7.9	0.5	33.4
	60	62.1	12.4	0.0	25.5
240 °C	90	74.4	13.5	0.3	11.8

ตารางที่ 3 Proximate analysis (ร้อยละของน้ำหนักแห้ง)

Sample	Time (min)	Volatile matter %	Fixed carbon %	Ash %
Raw	-	77.8	14.6	7.6
	30	88.8	7.0	4.1
	60	85.0	10.7	4.3
	90	87.3	8.3	4.4
180 °C	30	89.4	6.7	3.9
	60	91.5	1.1	7.4
	90	86.3	6.6	7.1
	30	93.6	2.9	3.5
200 °C	60	85.5	6.7	7.9
	90	86.9	9.2	3.9
	30	92.4	3.9	3.7
	60	80.6	13.8	5.7
220 °C	90	96.8	2.0	1.2
	30			
240 °C	60			
	90			
	30			

ตารางที่ 4 ค่าความร้อน (Higher heating value, HHV)

Item	ค่าความร้อน (MJ/kg)		
	30 min	60 min	90 min
Raw		20.0	
180 °C	21.8	33.4	27.3
200 °C	26.4	29.5	30.7
220 °C	31.4	33.0	33.2
240 °C	38.1	32.9	41.4

6.6 ผลการทดสอบความแข็งแรง

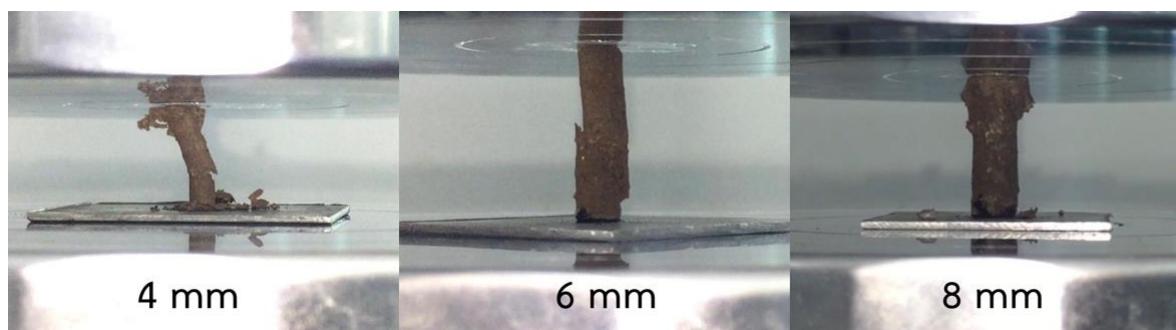
เม็ดเชื้อเพลิงหงหงดคำเนินการทดสอบขนาด 6 ครั้ง มีเส้นผ่านศูนย์กลาง และความยาว ที่แสดงดังตารางที่ 5 มีเพียงแค่เม็ดเชื้อเพลิงขนาดเส้นผ่านศูนย์กลาง 4 mm ที่ทำการทดสอบเพียง 4 ครั้ง เท่านั้น เนื่องจากขนาดของเม็ดเชื้อเพลิงนี้เล็กกว่ามาตรฐานตามเม็ดเชื้อเพลิงทั่วไป จึงทำการทดสอบเพียงเพื่อนำมาเปรียบเทียบกับขนาดอื่นๆ ผลการทดสอบแสดงในตารางที่ 6 โดยการทดสอบพบว่า ค่าเฉลี่ยของภาระสูงสุดที่เม็ดเชื้อเพลิงขนาดเส้นผ่านศูนย์กลาง 4, 6, และ 8 mm สามารถรับได้คือ 19.15 N, 36.94 N, และ 54.06 N และค่าความเครียดมีค่าค่อนข้างใกล้เคียงกันคือ 0.08, 0.07 และ 0.09 mm/mm ตามลำดับ ซึ่งขนาด 6 และ 8 mm สามารถรับภาระสูงสุดเพิ่มขึ้นจากขนาด 4 mm 92.9% และ

182.3% ตามลำดับ ในส่วนของค่าความเค้นของเม็ดเชือเพลิงขนาด 4 mm มีค่า 1.72 MPa และจะลดลง 18% และ 31.4% เมื่อทดสอบกับเม็ดเชือเพลิงขนาด 6 และ 8 mm ตามลำดับ ผลการทดสอบแสดงให้เห็นว่าถ้าใช้เม็ดเชือเพลิงสามารถรับภาระสูงสุดได้เพิ่มขึ้น และค่าความเค้น แต่ไม่มีผลมากกับค่าความเครียดเมื่อใช้ขนาดเส้นผ่านศูนย์กลางที่ใหญ่ขึ้น

ตารางที่ 5 ขนาดเส้นผ่านศูนย์กลาง และความยาวของเม็ดเชือเพลิงที่ใช้ในการทดสอบแรงอัด

		4 mm Dimension (mm)		6 mm Dimension (mm)		8 mm Dimension (mm)	
Pellet No.	Diameter	Length	Diameter	Length	Diameter	Length	
1	3.7	20.1	5.7	22.7	7.7	23.1	
2	3.8	20.1	6	19.4	7.8	23.6	
3	3.7	21.9	5.7	20.1	7.7	24.4	
4	3.8	19.5	5.8	24.3	7.5	22.8	
5	-	-	5.5	23	7.5	25.5	
6	-	-	6	21.9	7.7	24.5	
Maximum	3.80	21.90	6.00	24.30	7.80	25.50	
mean	3.75	20.40	5.78	21.90	7.65	23.98	
Minimum	3.70	19.50	5.50	19.40	7.50	22.80	
S.D.	0.06	1.04	0.19	1.85	0.12	1.01	

ตารางที่ 6 Maximum load, Compressive stress and stain at maximum load


Pellet	4 mm			6 mm			8 mm		
	Compressive stress at Max. Load	Compressive strain at Max. Load	Max. Load	Compressive stress at Max. Load	Compressive strain at Max. Load	Max. Load	Compressive stress at Max. Load	Compressive strain at Max. Load	Max. Load
	(MPa)	(mm/mm)	(N)	(MPa)	(mm/mm)	(N)	(MPa)	(mm/mm)	(N)
1	1.00	0.05	10.73	1.62	0.05	41.29	1.24	0.08	57.69
2	2.33	0.08	26.40	1.26	0.07	35.49	1.01	0.09	48.25
3	1.67	0.07	17.98	1.42	0.04	36.29	1.26	0.06	58.69
4	1.89	0.12	21.47	1.29	0.09	34.05	1.31	0.11	58.07
5	-	-	-	1.48	0.09	35.20	1.02	0.09	45.26
6	-	-	-	1.39	0.10	39.32	1.21	0.12	56.40
Maximum	2.33	0.12	26.40	1.62	0.10	41.29	1.31	0.12	58.69
mean	1.72	0.08	19.15	1.41	0.07	36.94	1.18	0.09	54.06
Minimum	1.00	0.05	10.73	1.26	0.04	34.05	1.01	0.06	45.26
S.D.	0.55	0.03	6.59	0.13	0.02	2.77	0.13	0.02	5.79

ค่าบังโนดูลัส (E) เป็นค่าที่ใช้วัดความแข็งของวัสดุ ถ้าเม็ดเชือเพลิงมีค่า E สูง แสดงให้เห็นว่า เม็ดเชือเพลิงนั้นมีความสามารถในการต้านทานการบุบตัวได้สูง ตารางที่ 7 แสดงค่า E ที่ได้จากการ

คำนวณค่าความเดัน และความเครียด ณ ภาระสูงสุดของในแต่ละขนาดเม็ดเชือเพลิง ค่าเฉลี่ยของ E ที่ขนาดเม็ดเชือเพลิง 4 และ 6 mm มีค่า 22.18 และ 23.96 MPa ตามลำดับ ซึ่งมีค่าค่อนข้างใกล้เคียงกัน แต่ในส่วนของ 8 mm ค่าเฉลี่ยของ E ที่ได้คือ 14.92 ลดลงจากเดิม 48.7% และ 60.6% เมื่อเทียบกับของ 4 และ 6 mm ตามลำดับ จากผลการทดสอบแสดงให้เห็นว่า ถ้าเม็ดเชือเพลิงมีเส้นผ่าศูนย์กลางที่ใหญ่ขึ้น จะทำให้เกิดการยุบได้ง่ายขึ้นเมื่อรับภาระในแรงกระทำที่เท่ากันเมื่อเทียบกับเม็ดเชือเพลิงที่มีขนาดเส้นผ่าศูนย์กลางที่เล็กกว่า ลักษณะการแตกหักของตัวอย่างแต่ละขนาดแสดงในรูปที่ 18

ตารางที่ 7 ค่ายังโมดูลสของเม็ดเชือเพลิงขนาดต่างๆ

Pellet	4 mm	6 mm	8 mm
Number	E (MPa)	E (MPa)	E (MPa)
1	20.00	30.23	15.49
2	29.13	18.26	11.22
3	23.86	32.48	21.01
4	15.75	14.86	11.95
5	-	16.14	11.38
6	-	13.24	10.09
Maximum	29.13	32.48	21.01
mean	22.18	23.96	14.92
Minimum	15.75	14.86	11.22
S.D.	5.69	8.70	4.47

รูปที่ 18 เม็ดเชือเพลิงขนาดต่างๆหลังได้รับการทดสอบแรงอัด

การทดสอบความแข็ง โดยใช้เครื่องทดสอบความแข็ง SUNDOO รุ่น SH-200 ด้วยการบีบเม็ดเชือเพลิงจากด้านข้างจนกระแทกเม็ดเสียหายมากที่สุดเพื่อหาแรงสูงสุดที่เม็ดเชือเพลิงสามารถรับได้ ตารางที่ 8 คือผลการทดสอบหาแรงจากเม็ดเชือเพลิงที่เส้นผ่าศูนย์กลางขนาด 4, 6 และ 8 mm พบว่า ค่าเฉลี่ยของแรงที่ต้องใช้ในการบีบให้เกิดความเสียหายสูงสุดนั้นจะต้องใช้ 72.3 N, 112.6 N และ 130.4 N ตามลำดับ ซึ่งขนาด 6 และ 8 mm จะต้องใช้แรงเพิ่มขึ้น 55.7% และ 80.4% ตามลำดับ จึงสรุปได้ว่า

ขนาดเส้นผ่านศูนย์กลางของเม็ดเชื้อเพลิงมีผลต่อความแข็ง ถ้าเส้นผ่านศูนย์กลางมีขนาดใหญ่ขึ้น จะทำให้เม็ดเชื้อเพลิงแข็งแรง และทนทานก็แรงบีบมากยิ่งขึ้น ลักษณะการแตกหักแสดงในรูปที่ 19

ตารางที่ 8 แรงที่ใช้เพื่อทำให้เม็ดเชื้อเพลิงเสียหายสูงสุด (N)

Number	4 mm	6 mm	8 mm
1	63.9	118.0	134.2
2	81.3	95.3	126.7
3	76.7	112.0	112.8
4	69.3	122.5	128.6
5	77.2	124.6	141.2
6	65.6	103.3	138.9
mean	72.3	112.6	130.4
S.D.	7.1	11.5	10.3

รูปที่ 19 เม็ดเชื้อเพลิงขนาดต่างๆ หลังได้รับการทดสอบความแข็ง

6.7 ผลการทดสอบความทนทานของเม็ดเชื้อเพลิง

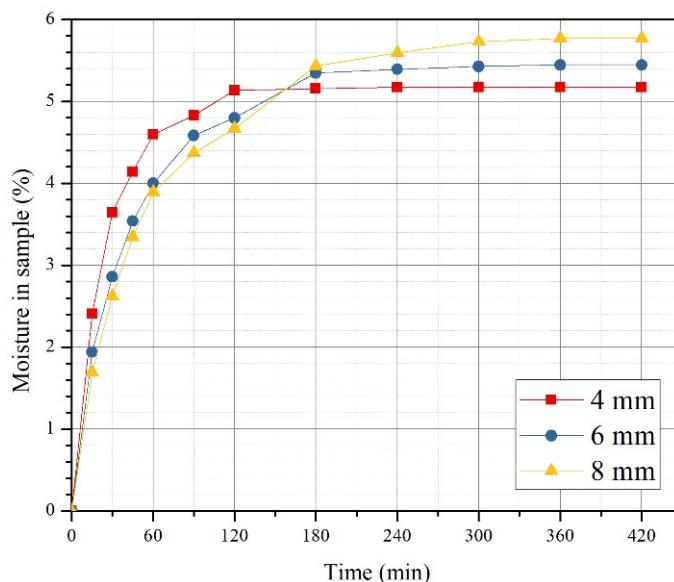
ในการทดสอบความทนทาน ตัวแปรที่จะนำมาทดสอบได้แก่ปริมาณความชื้นของเม็ดเชื้อเพลิง และระยะเวลาในการทดสอบ โดยตัวอย่างที่นำมาทดสอบมีความชื้นโดยประมาณ 3.92% ซึ่งเป็นปริมาณความชื้นของเม็ดเชื้อเพลิงที่อบแห้งแล้วและเก็บรักษาอยู่ในที่ร่ม กับเม็ดเชื้อเพลิงที่มีความชื้น 0% (ตัวอย่างถูกนำมาทดสอบทันทีหลังอบแห้งเสร็จ) การทดสอบจะใช้เวลา 10 นาที โดย 5 นาทีแรกจะทำการเก็บค่าเช่นเดียวกัน ตารางที่ 9 เป็นดัชนีความทนทานของเม็ดเชื้อเพลิง (Pellet durability index : PDI) ที่คำนวณไว้ จะสังเกตได้ว่าขนาดและความชื้นของเม็ดเชื้อเพลิงไม่มีผลต่อค่า PDI อย่างมีนัยสำคัญ ซึ่งค่า PDI จะอยู่ในช่วง 94-96% และ 91-93% ใน การทดสอบที่เวลา 5 นาทีและ 10 นาที ตามลำดับ ค่า PDI ลดลงจาก 100% เป็น 95% คิดเป็น 5% ในระหว่างการทดสอบ 5 นาทีแรก แต่ ค่า PDI ลดลงเพียง 3% หลังการทดสอบอีก 5 นาที การทดสอบนี้ชี้ให้เห็นว่าเม็ดเชื้อเพลิงในงานวิจัยนี้มีความทนทานสูง ซึ่งมีประโยชน์ต่อการขนส่งหรือการจัดเก็บ

ตารางที่ 9 ค่า Pellet durability index ที่ทดสอบได้

ขนาด (mm)	ความชื้น (%)	ค่า PDI (%)	
		5 นาที	10 นาที
4	3.9	95.61	92.97
	0.0	95.01	92.3
6	4.0	95.88	93.29
	0.0	94.37	91.13
8	3.6	95.53	92.25
	0.0	96.29	93.65

6.8 ผลการทดสอบความยากง่ายในการบด

ดัชนีความสามารถในการบดละอี้ด (Hardgrove grindability index : HGI) ของเม็ดเชื้อเพลิง จากการบด HTT แสดงใน ตารางที่ 10 พร้อมกับเชื้อเพลิงชนิดอื่นๆ เม็ดเชื้อเพลิงขนาด 4, 6 และ 8 มิลลิเมตรค่า HGI เท่ากับ 76, 65 และ 57 ตามลำดับ ค่าของ HGI ของเม็ดเชื้อเพลิงจากการบด HTT ของงานวิจัยนี้มีค่าสูงกว่าถ่านและชีวนะที่ทำการแปรรูปอื่นๆ ขณะที่เม็ดเชื้อเพลิงจากชีวนะ ธรรมดามีค่า HGI ต่ำมาก เมื่อพิจารณาเม็ดเชื้อเพลิงจากการบด HTT จากขนาดของเส้นผ่าแนวนูนย์กลางพบว่า เม็ดเชื้อเพลิงที่มีเส้นผ่านศูนย์กลางขนาดใหญ่กว่าจะทำให้ค่า HGI นั้นต่ำ จึงมีทำ ความสามารถในการบดนั้นยากกว่าขนาดที่เล็กกว่า ถึงแม้ว่าการบดเม็ดเชื้อเพลิงขนาด 8 มิลลิเมตร จะทำได้ยากกว่าขนาดอื่นๆ แต่การค่า HGI ของถ่านหินที่ใช้ทั่วไปมีประมาณ 50 ดังนั้นเม็ดเชื้อเพลิงจากการบด HTT ขนาด 8 มิลลิเมตรสามารถบดได้โดยไม่ต้องใช้พลังงานมากเกินไปเมื่อเทียบกับถ่านหินทั่วไป


ตารางที่ 10 Hardgrove grindability index ของเม็ดเชื้อเพลิงจากการบด HTT และเชื้อเพลิงอื่นๆ

ชนิด	เม็ดเชื้อเพลิงจาก กระบวนการ HTT	Subbituminous coal (Indonesia)*	Wood pellet**	Eucalyptus pellet**	Steam exploded pellet**	Torrefied microalgae residue***
ขนาด (mm)	4/6/8	-	8.4	8.4	5.9	-
ค่า HGI	76/65/57	46-49	18	22	29	48.5

* H. Vuthaluru, R. Brooke, D. Zhang, H. Yan, Effects of moisture and coal blending on Hardgrove Grindability Index of Western Australian coal, Fuel Process Technol, 81 (2003) 67-76. ** O. Williams, C. Eastwick, S. Kingman, D. Giddings, S. Lormor, E. Lester, Investigation into the applicability of Bond Work Index (BWI) and Hardgrove Grindability Index (HGI) tests for several biomasses compared to Colombian La Loma coal, Fuel, 158 (2015) 379-387. *** K.-T. Wu, C.-J. Tsai, C.-S. Chen, H.-W. Chen, The characteristics of torrefied microalgae, Appl Energy, 100 (2012) 52-57.

6.9 ผลการทดสอบการดูดซึมน้ำ

จากรูปที่ 20 แสดงให้เห็นว่าเม็ดเชือเพลิงที่มีขนาดใหญ่กว่า ดูดซึมน้ำได้มากกว่า และอิ่มตัวได้ช้ากว่าขนาดเล็ก น้ำหนักที่เปลี่ยนไปจากน้ำหนักเดิมของเม็ดเชือเพลิงขนาด 4, 6 และ 8 mm คือ 5.17%, 5.54% และ 5.77% ตามลำดับ เวลาในการอิ่มตัวของเม็ดเชือเพลิงขนาด 4 mm จะใช้เวลา 120 นาที ในส่วนของขนาด 6 และ 8 mm จะใช้เวลาเพิ่มขึ้นเป็น 180 นาที และ 360 นาทีตามลำดับ เมื่อดำเนินการทดลองเสร็จสิ้น เม็ดเชือเพลิงทั้งหมดยังแข็งแรง และยังคงรูปตามเดิม

รูปที่ 20 เปอร์เซ็นต์น้ำหนักที่เพิ่มขึ้นของเม็ดเชือเพลิงแต่ละขนาด

7. สรุปและข้อเสนอแนะ

จากการทดสอบกระบวนการไอกอโรมอลทรีเม้นท์กับขยะมูลฝอยชุมชนเพื่อผลิตเป็นเชือเพลิงแข็ง อัดเม็ด พบว่ากระบวนการไอกอโรมอลทรีเม้นท์สามารถแปรรูปขยะมูลฝอยเป็นเชือเพลิงที่มีคุณภาพได้ สามารถนำไปใช้เป็นพลังงานทดแทนได้ต่อไป จากการวิเคราะห์ตัวอย่างพบว่า เชือเพลิงที่ได้มีค่าความร้อนที่สูงขึ้นเมื่อใช้อุณหภูมิกับเวลาของกระบวนการไอกอโรมอลทรีเม้นท์มากขึ้น และ ผลิตภัณฑ์ที่ได้สามารถลดความชื้นได้เร็วกว่าขยะมูลฝอยทั่วไป จากการทดสอบเม็ดเชือเพลิงที่ได้จากกระบวนการ HTT ได้เชือเพลิงที่มีความแข็งแรงและมีคุณสมบัติใกล้เคียงกับเชือเพลิงแข็งอื่นๆ เช่นถ่านหินหรือถ่านชีมวล นอกจากนั้นยังดูดความชื้นกลับในอัตราที่ต่ำกว่า ทำให้สามารถทนต่อสภาวะการเก็บเชือเพลิงได้ดี ข้อเสนอแนะสำหรับงานวิจัยนี้คือควรมีการศึกษาเพิ่มเติมโดยใช้ขยะมูลฝอยจริงมาทดสอบ จะทำให้ได้ผลการทดลองที่แม่นยำมากขึ้น นอกจากนั้นควรมีการวิเคราะห์ถึงทฤษฎีและปฏิกริยาทางเคมีที่เกิดขึ้นในการเปลี่ยนรูปขยะมูลฝอยเป็นเชือเพลิงทดแทน

Output จากโครงการ

1. Phasee, Phatavee, and Chinnathan Areeprasert. "Thermal Decomposition Behavior during Combustion of Hydrothermally Treated MSW by Thermogravimetric Analysis." *Energy Procedia* 138 (2017): 616-621.
2. Phasee, Phatavee, and Chinnathan Areeprasert. "An investigation on mechanical property of MSW-derived fuel pellet produced from hydrothermal treatment" *Journal of Material Cycles and Waste Management* (IF: 1.604) Under review.

ກາດພໍາວກ

ກາດພໍາວກ ກ.

Phasee, Phatavee, and Chinnathan Areeprasert. "Thermal Decomposition Behavior during Combustion of Hydrothermally Treated MSW by Thermogravimetric Analysis." Energy Procedia 138 (2017): 616-621.

ກາດພໍາວກ ຂ.

Phasee, Phatavee, and Chinnathan Areeprasert. "An investigation on mechanical property of MSW-derived fuel pellet produced from hydrothermal treatment" Journal of Material Cycles and Waste Management (IF: 1.604) Under review.

2017 International Conference on Alternative Energy in Developing Countries and Emerging Economies
2017 AEDCEE, 25 - 26 May 2017, Bangkok, Thailand

Thermal Decomposition Behavior during Combustion of Hydrothermally Treated MSW by Thermogravimetric Analysis

Phatavee Phasee and Chinnathan Areeprasert*

*Department of Mechanical Engineering, Faculty of Engineering, Kasetsart University,
50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand.*

Abstract

This research is intended to study fuel property and thermal decomposition behavior of hydrothermally treated municipal solid waste (HTT-MSW) during combustion. In the experiment, simulated MSW was used as a raw material (Raw-MSW) to produce solid biofuels at the hydrothermal reaction temperature of 180, 200, and 220 °C for 30 min by a lab-scale autoclave. The results showed that the higher reaction temperature in the experiment increased the heating value of the product. Before the HTT process, the Raw-MSW has 20 MJ/kg of heating value, after processed, the energy density was increased to 21.8, 26.4, 31.4 MJ/kg for 180 to 220 °C respectively. From thermogravimetric analysis result (TGA), mass loss profile of Raw-MSW and HTT-MSW showed two major decomposition peaks and the effect of HTT on combustion was that the decomposition profile became smoother. From kinetics study on non-isothermal thermogravimetric data, the activation energy (E) of HTT-MSW was higher than that of the Raw-MSW and the E values were around 35 to 80 kJ/mol for the Raw-MSW and HTT-MSW.

© 2017 The Authors. Published by Elsevier Ltd.

Peer-review under responsibility of the scientific committee of the 2017 International Conference on Alternative Energy in Developing Countries and Emerging Economies.

Keywords: Hydrothermal treatment; Municipal solid waste; Thailand; Combustion; Thermogravimetric analysis.

* Corresponding author. Tel.: +662-797-0999.

E-mail address: fengta@ku.ac.th

1. Introduction

Municipal solid waste (MSW) is a growing problem for many countries, including Thailand. The hydrothermal treatment (HTT) is an interesting technology because it can be used with high moisture and mixed diverse materials [1]. The HTT used high-pressure saturated steam (2-3 MPa) to change the quality of solid waste into solid fuel. The process starts by feeding MSW into the reactor and then injected the steam while being stirred. After reaching the target temperature, the reactor is maintained for certain holding time until MSW was converted to homogeneous

products. Several works have been done on conversion of MSW such as Hwang et al performed hydrothermal treatments using subcritical water (low temperature and high temperature) on precursors from MSW including paper, dog food, wood, and plastic with full product analysis [2], Prawisudha et al converted Japanese MSW into solid fuel by using large-scale hydrothermal treatment plant [3]. Other researchers applied HTT on very high moisture materials, for example, using HTT to produce solid fuel production from paper sludge on both laboratory-scale and pilot-scale [4] and from mycelial dreg [5]. After the solid fuel was produced by the HTT, combustion behaviour was generally tested by using thermogravimetric analysis and several works have been done on this topic as well [6,7]. Muthuraman et al tested hydrothermally treated MSW (HTT-MSW) on the co-combustion characteristics with different rank coal, i.e. Indian, Indonesian and Australian coal [6]. Sürüm et al found three independent parallel reactions detailed information on the pyrolysis characteristics and chemical kinetics of the most important components in MSW [8]. However, the HTT has not been applied to the Thai's MSW and a study on kinetics of HTT-MSW during combustion was limited. Therefore, this paper focused on the production of solid biofuel from Thai MSW using the HTT and thermogravimetric analysis as well as the kinetics study of the HTT-MSW.

2. Material and methods

2.1. Raw materials

MSW composition used in this study was borrowed the MSW composition study of our previous work [9]. Major composition, including organic waste, plastic, paper and textile, has been used as simulated MSW for the HTT experiment (Raw-MSW). These samples were all prepared according to the following weight: organic (Chinese morning glory) 17 g (68%), mixed plastic (HDPE, PET, PP) 5 g (20%), textile (cotton) 1 g (4%) and paper (office paper and recycled paper) 2 g (8%). All materials was cut into small pieces about 1 cm length and mixed together.

2.2. Hydrothermal treatment

In the experiment, 25 g of MSW sample was mixed with 150 g of deionized water and put into the high-pressure autoclave (500 ml). The autoclave was then sealed. Since the hydrothermal treatment process excludes the presence of oxygen, the air inside the autoclave was purged with nitrogen from a tank for about two min. Then the heater was set to process target temperature. The autoclave was equipped with temperature controller. The temperature was set to 180, 200, and 220 °C. The stirrer was set to 50 rpm to stir during the process for homogeneity. The holding time was 30 min in all cases. After the process time elapsed 30 min, the heater was turned off and the autoclave was allowed to cool down. The cooling down period was about 1 h. The stirrer continued to operate during this time period. Each experiment was performed two times to ensure the repeatability.

2.3. Fuel analysis

Before analysis, the Raw-MSW and the HTT products were dried at 105 °C for 24 h in an electric oven and crushed into a powder size. The heating value were measured by a bomb calorimeter (Leco, AC-500) (ASTM D5865). The proximate analysis was performed by simultaneous Thermal Analyzer (449 F3) (ASTM D7582) and ultimate analysis was performed by elemental analyzer (Thermo Flash 2000) (ASTM D5373). Slagging and fouling indices are important to understand the tendency of ash deposition during the combustion application in boiler. To calculate the slagging and fouling indices, ash composition of the samples were determined by X-ray fluorescence analysis (XRF). The indices that have been used to predict the slagging tendency were the Base to Acid ratio (B/A), the Silica Alumina ratio (S/A), the Iron Calcium ratio (I/C) and the Slagging index (S), while the fouling tendency was estimated by Total Alkalies (TA). The mathematical formulation of slagging and fouling indices used in this study can be found in [10].

2.4. Kinetic study

Thermogravimetric analysis (TGA) was performed by 209 F3 Tarsus for measuring the change in weight of the sample during the combustion test. The sample was heated from the room temperature to 800 °C with the heating rate

of 10 °C/min under an oxidative condition. Mass loss (TG) and the rate of the mass loss (DTG) were investigated in this study. Moreover, kinetics study based on non-isothermal thermogravimetric data was studied as well. By studying the kinetics parameter, the apparent activation energy (E) and the pre-exponential factor (A) can be determined. The thermal decomposition of Raw-MSW and HTT product during the combustion process can be explained by (1):

$$d\alpha / dT = k(T) f(\alpha) \quad (1)$$

where $k(T)$ is temperature-dependent rate constant, α is the extent of the conversion or the decomposed fraction of the sample at time t , $f(\alpha)$ is function of conversion, which is expressed as

$$\alpha = (m_i - m_t) / (m_i - m_f) \quad (2)$$

where m_i is the initial mass of the sample, m_t is the mass of the sample at time t , and m_f is the final mass of the sample. The temperature dependent rate constant $k(T)$ is generally expressed through the Arrhenius equation

$$k(T) = A \exp(-E / RT) \quad (3)$$

where A is the pre-exponential factor, E is the apparent activation energy, and R is the universal gas constant (8.314 J/mol·K). A mathematical term of the constant heating rate β is described as

$$\beta = dT / dt \quad (4)$$

then, (3) and (4) were substituted to (1), rearranged in the general form, and integrated; which gives

$$g(\alpha) = \int_0^\alpha d\alpha / f(\alpha) = (A / \beta) \int_{T_0}^T \exp(-E / RT) dT = (AE / \beta R) p(x) \quad (5)$$

where $g(\alpha)$ is called as an integral of the reaction model. Explanation of the integral of the reaction model can be found in [7]. To calculate the kinetic parameters, the temperature integral term in (5) was estimated by the Coats-Redfern approximation [11], taking natural logarithms and rearranging yields

$$\ln(g(\alpha) / T^2) = \ln(AR / \beta E) (1 - 2RT / E) - (E / RT) \quad (6)$$

Since $(RT/E) \ll 1$, the term $(1-2RT/E)$ was approximately equal to unity $(1-2RT/E \approx 1)$. Hence,

$$\ln(g(\alpha) / T^2) = \ln(AR / \beta E) - (E / R)(1/T) \quad (7)$$

Plotting $\ln(g(\alpha) / T^2)$ vs. $(1/T)$ will give a straight line whose slope equals to $-E/R$. Therefore, the E and the A can be determined by slope and the intercept, respectively.

3. Results and discussion

3.1. Fuel property

The composition of raw material and the product from HTT is shown in Table 1, the heating value of HTT product was 21.8, 26.4 and 31.4 MJ/kg at 180, 200, and 220 °C HTT condition, respectively, while Raw-MSW was only 20 MJ/kg. The heating value of the HTT product increase 8.87%, 31.54% and 56.19% respectively. Proximate analysis result showed that volatile matter (VM) was increased after HTT while fixed carbon (FC) and ash were decreased.

Raw-MSW has 77.83% VM and it was increased to 88.83%-90.73% after treated with 180, 200, and 220 °C HTT condition accounting 14.13%-16.57 %. Generally, the VM would be reduced by the HTT process. However, in this work, it could be suggested that because of the HTT, organic part was mainly decomposed but plastic materials, that contains mainly VM, were leftover with the product (not a char from the organic part). This could be the reason that the fraction of the VM was increased after the HTT. The FC decreased from 14.55% to 7.04%-6.22% while the ash content decreased from 7.62% to 4.13-3.05% accounting 51.61%-57.25% and 45.80%-59.97% after increased the temperature of the HTT from 180 to 220 °C, respectively. The mass loss profile of proximate analysis showed five reaction periods because the elements of the MSW were burning at different temperatures (data not shown). The first period, the organic matter has burned at 200-350 °C [12]. Paper was burned in the second period at 350-440 °C [13]. In the third period, plastic and textile were burned at 440-495 °C [14]. Only small amount of mass loss was observed until changed from N₂ into air at 850 °C, the MSW was turned into ash. From the ultimate analysis, the carbon content was increased from 43.4% to 46.9-52.4% accounting 8.1%-20.7% at 180, 200 and 220 °C HTT condition, respectively. The carbon content was increased when HTT temperature increases. This result agreed with the increase of heating value. Hydrogen content was decreased around 8% after 180 °C HTT condition after that increased around 9.5%-15.9% and nitrogen content were around 64.29%-71.43% with the increase of the temperature, respectively.

Table 1. Composition of raw material and product from HTT.

Samples	Proximate analysis					Ultimate analysis		
	HHV	VM	FC	Ash	C	H	N	O*
raw	20.0	77.83	14.55	7.62	43.4	6.3	1.4	48.8
180°C	21.8	88.83	7.04	4.13	46.9	5.8	0.5	46.8
200°C	26.4	89.37	6.70	3.93	50.0	6.9	0.5	42.7
220°C	31.4	90.73	6.22	3.05	52.4	7.3	0.4	39.8

* Oxygen was calculated by difference.

Table 2 shows the result of the slagging and fouling indices, the B/A ratio of Raw-MSW has 9.80 after HTT and it has decreased to around 2.266-5.36 accounting 45.3-72.8% reduction after HTT condition. Even though the huge reduction of the B/A after the HTT, it was still in the high range deposition tendency. The S/A ratio was reduced from 3.63 of Raw-MSW to around 1.65-2.87 accounting 20.8-54.4% reduction after 180-220 °C HTT. The I/C ratio of Raw-MSW was 0.019 before the HTT, this ratio showed 15.8% and 11.6% reduction at 180 °C and 220 °C HTT condition, respectively but it was somehow increased in the case of 200 °C HTT condition. However, the I/C ratio seemed to be unaffected by the HTT. S index of Raw-MSW was 1.66 and it was a medium range deposition tendency. After the HTT, the S was showed 64.9%, 86.8% and 82.9% decrease for 180, 200 and 220 °C HTT condition, respectively. The TA ratio was reduced from 3.02 to a very low value after the HTT (0.36-0.61) accounting 79.8%, 83.6% and 88.1% when increase the HTT temperature from 180 to 220 °C, respectively. From the calculation of slagging and fouling indices, it can be said that the HTT improved ash property by reducing the value of the indices.

Table 2. Slagging and fouling indices of fuels.

Sample (%)	B/A ratio	S/A ratio	I/C ratio	S index	TA
Raw	9.80H	3.63L	0.019L	1.66M	3.02H
180°C	5.36H	2.27H	0.016L	0.58M	0.61H
200°C	2.66H	2.87H	0.027L	0.22L	0.49H
220°C	4.41H	1.65H	0.017L	0.28L	0.36M

H: high deposition tendency; M: medium deposition tendency; L: low deposition tendency.

3.2. Product appearance and yield

Fig. 1 shows the comparison of the products appearance after HTT by varying the treatment temperature. The HTT-MSW become dark grey slurry. The size of the product was reduced and looked darker for the higher treatment temperature. When treated at 220 °C, higher amount of liquid was obtained compared to other lower temperature condition because the Raw-MSW was decomposed during HTT as a result of heat and pressure. Dried solid fuel (HTT-MSW) from the treatment was around 30-34% of the wet based Raw-MSW input and when the HTT temperature was increased, the final dried product was reduced due to higher severity of the treatment condition.

Fig. 1 Appearance of the hydrothermally treated MSW.

3.3. Thermogravimetric analysis

Fig. 2 shows a comparative analysis of the TG and DTG profiles. The thermal decomposition of all sample were divided into two periods. From TGA result, mass loss profile of Raw-MSW showed two adjacent major peaks in the first section at the combustion temperature range of 200-380 °C accounting for 56% of total mass and it could be attributed to organic and paper waste. After increased the combustion temperature to 400 °C, another two peaks with smaller decomposition (27% of total mass) was observed. This could be devoted to a plastic material inside the MSW. The decomposition of these materials represented more than 80% of the total mass. For the TGA of HTT-MSW, only one single peak has observed in each region showing that the HTT did not only increase the energy density but also smoothen the combustion behaviour of the MSW. For the HTT-MSW, at the very beginning (\approx 100-220 °C), moisture and light volatiles were evaporated. The TG profile of all samples showed similar characteristic. Then, a large portion of sample was decomposed at the first period (\approx 220-360 °C) and the second period (\approx 380-480 °C). In more detail, at around 340 °C, TG profiles of high HTT temperature condition (200 °C and 220 °C) diverted from that of the others until their burnout. DTG profiles illustrated that all samples had two main peaks. The first peak and the second peak were at around 300-330 and 410-440 °C, respectively. The peaks of the DTG profiles of HTT product was higher and narrower than that of the Raw-MSW.

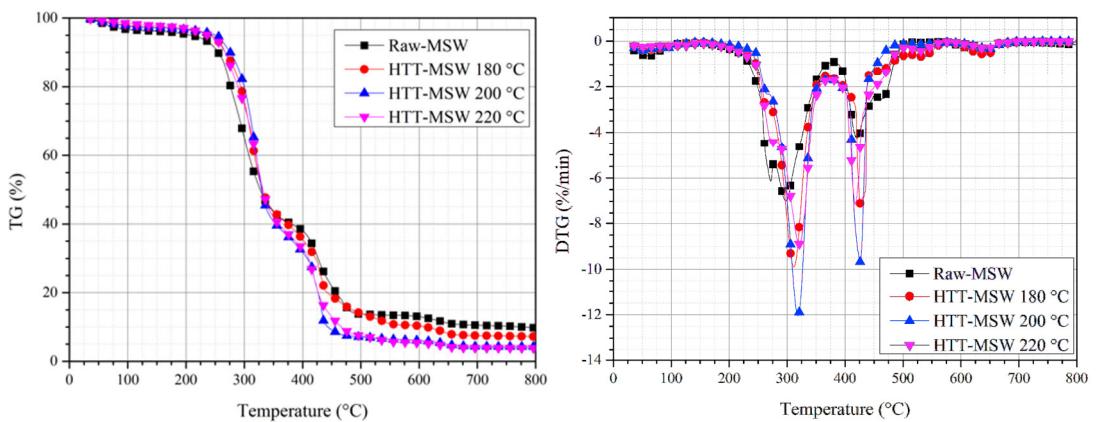


Fig. 2 Mass loss (TG) and rate of mass loss (DTG) profile.

3.4. Kinetics study

Kinetics parameters were calculated by the first-order reaction and the results were shown in Table 3. The range was divided into two because of the two main decomposition peaks. It should be noted that the R-squared values of all the calculation were relatively high, except for the R-squared of range 2 of the 200 °C HTT condition. In the first range, the temperature was selected at around 230 to 360 °C and E of Raw-MSW had 54.41 kJ. The E of HTT-MSW for the first range was higher than that of the Raw-MSW and the value of E was around 66 to 80 kJ. The second range, E of Raw-was around 35.25 kJ. The values of E were increased after the HTT, except for the 200 °C condition. From the study of kinetics parameters, it can be concluded that the HTT generally increased the E values.

Table 3. Kinetic parameters calculated by the first-order reaction.

First order	Range 1				Range 2			
	Sample	T (°C)	R ²	E (kJ/mol)	A (min ⁻¹)	T (°C)	R ²	E (kJ/mol)
Raw	230-360	0.9675	54.41	2.07E+05	390-485	0.9774	35.25	1.62E+03
180	245-355	0.9872	68.75	3.93E+06	415-445	0.9701	56.91	1.07E+05
200	250-350	0.9913	80.42	4.52E+07	405-470	0.9249	61.38	3.04E+03
220	245-355	0.9920	66.37	2.29E+06	400-480	0.9728	41.04	5.64E+03

4. Conclusion

In conclusion, the HTT can enhanced the fuel property of Thai MSW. The effect of the HTT on the fuel property of the Raw-MSW can be summarized as follows: (1) the produced solid fuel has higher heating value and lower ash content; (2) Slagging and fouling was improved. The thermogravimetric analysis was applied to Raw-MSW and HTT-MSW and two-stage kinetics study was performed. It showed that the E of HTT-MSW was higher than that of the Raw-MSW and the values of E were around 35 to 80 kJ/mol for the Raw-MSW and HTT-MSW.

Acknowledgement

This research is funded by the Waste and Biomass Conversion Laboratory and the Thailand Research Fund.

Reference

- [1] Lu L, Namioka T, Yoshikawa K. Effects of hydrothermal treatment on characteristics and combustion behaviors of municipal solid wastes. *Appl Energy* 2011;88:3659-64.
- [2] Hwang IH, Aoyama H, Matsuto T, Nakagishi T, Matsuo T. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water. *Waste Manag* 2012;32:410-6.
- [3] Prawisudha P, Namioka T, Yoshikawa K. Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment. *Appl Energy* 2012;90:298-304.
- [4] Areeprasert C, Zhao P, Ma D, Shen Y, Yoshikawa K. Alternative Solid Fuel Production from Paper Sludge Employing Hydrothermal Treatment. *Energ Fuel* 2014;28:1198-206.
- [5] Ma D, Zhang G, Zhao P, Areeprasert C, Shen Y, Yoshikawa K, et al. Hydrothermal Treatment of Antibiotic Mycelial Dreg: More Understanding from Fuel Characteristics. *Chem Eng J* 2015;inpress.
- [6] Muthuraman M, Namioka T, Yoshikawa K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis. *Appl Energy* 2010;87:141-8.
- [7] Areeprasert C, Chanyavanich P, Ma D, Shen Y, Prabowo B, Yoshikawa K. Combustion characteristics and kinetics study of hydrothermally treated paper sludge by thermogravimetric analysis. *Biofuels* 2014;5:673-85.
- [8] Sørum L, Grønli M, Hustad JE. Pyrolysis characteristics and kinetics of municipal solid wastes. *Fuel* 2001;80:1217-27.
- [9] Areeprasert C, Kaharn J, Inseemeesak B, Phasee P, Khaobang C, Kuhavichanun A, et al. A comparative study on characteristic of locally source-separated and mixed MSW in Bangkok with possibility of material recycling. *J Mater Cycles Waste*:1-12.
- [10] Areeprasert C, Chanyavanich P, Ma D, Shen Y, Yoshikawa K. Effect of hydrothermal treatment on co-combustion of paper sludge with coal: thermal behavior, NO emissions, and slagging/fouling tendency. *Biofuels* 2016;8:187-96.
- [11] Coats AW, Redfern JP. Kinetic Parameters from Thermogravimetric Data. *Nature* 1964;201:68.
- [12] Zhou H, Long Y, Meng A, Li Q, Zhang Y. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis. *Waste Management* 2015;38:194-200.
- [13] Grammelis P, Basinas P, Malliopoulos A, Sakellaropoulos G. Pyrolysis kinetics and combustion characteristics of waste recovered fuels. *Fuel* 2009;88:195-205.
- [14] Chattopadhyay J, Kim C, Kim R, Pak D. Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastics. *Korean Journal of Chemical Engineering* 2008;25:1047-53.

Journal of Material Cycles and Waste Management
An investigation on mechanical property of MSW-derived fuel pellet produced from hydrothermal treatment
--Manuscript Draft--

Manuscript Number:	JMCW-D-17-00452R1	
Full Title:	An investigation on mechanical property of MSW-derived fuel pellet produced from hydrothermal treatment	
Article Type:	Original Article	
Corresponding Author:	Chinnathan Areeprasert, D.Eng. Kasetsart University Bangkok, THAILAND	
Corresponding Author Secondary Information:		
Corresponding Author's Institution:	Kasetsart University	
Corresponding Author's Secondary Institution:		
First Author:	Phatavee Phasee	
First Author Secondary Information:		
Order of Authors:	Phatavee Phasee Chinnathan Areeprasert, D.Eng.	
Order of Authors Secondary Information:		
Funding Information:	The Thailand Research Fund (MRG5980058)	Dr. Chinnathan Areeprasert
Abstract:	This paper presents a study on the effect of hydrothermal treatment (HTT) on municipal solid waste (MSW) and mechanical property analysis of fuel pellet. The lab-scale testing of the HTT was done at 180-240 °C with different holding time (30-90 min). Results showed that the HTT could improve fuel property including heating value and dewatering and drying performance. The fuel pellet was produced at three different diameters (4, 6, and 8 mm). Testing of mechanical property and water adsorption test were performed. Results showed that the fuel pellet could withstand the load of 19-54 N and 72-130 N for axial and radial load, respectively, and 8 mm pellet exhibited lowest Young's modulus (15 MPa) indicating flexibility and ductility characteristic. Durability of the produced fuel pellet was generally high (91-94%) while Hardgrove grindability index (HGI) was (57-76) higher than that of the biomass pellet (18-22) and comparable to subbituminous coal (46-49) showing the ease of grinding. The equilibrium moisture content of the fuel pellet was 5-6% and the small fuel pellet reached adsorption equilibrium point faster than the large one. In sum, the fuel pellet produced from HTT showed good fuel property as well as physical characteristic for transportation and utilization.	
Response to Reviewers:	see attachment	

Response to Reviewer

Dear Editor and Reviewers,

Thank you very much for revising our manuscript. Your comments help improve quality of manuscript. Please find below the response to the comments. We have improved the manuscript according to your comments and hope that it will be accepted for publication in Journal of Material Cycles and Waste Management.

Your Sincerely,

Chinnathan Areeprasert, D.Eng.

The authors should prepare the manuscript with academically good English because it is hard to understand due to poor English writing style. According to the reviewers' comments, please entirely revise the manuscript. The authors also should emphasize the originality because the current article is suitable for technical report instead of academic paper.

English in manuscript has been entirely revised.

According to the suggestion, originality of the manuscript has been emphasized in the introduction section. The content was modified as follows:

The fourth and fifth paragraphs of introduction section

One of the advantages of the HTT is an ability to pulverize the feedstock. The powder product facilitates a densification process. After the densification of the raw material, the pellet immediately faces risk of disintegration during cooling, storage, transportation, as well as handling process. Many factors affect breakage of the fuel pellet, for example, biomass type, moisture content, lignin content, and particle size [29]. To reach certain standard, a quantification of fuel pellet's mechanical property, e.g. compressive test, impact crushing, and abrasion, is necessary [30]. Mechanical strength and moisture adsorption analysis of pelletized steam-exploded Douglas Fir (*Pseudotsuga menziesii*) have been performed and it was found that the pretreated fuel pellet had higher strength and rigidity compared to the untreated pellet [31]. Fuel pellet made from torrefied sawdust was subjected to moisture adsorption and Meyer hardness tests; results showed that the torrefied pellet had lower hardness and adsorbed less moisture than the conventional pellet [32]. Zaini et al. (2017) studied a mechanical property of fuel pellet made from hydrothermally treated and washed empty fruit bunch (EFB) [33]. It was found that the mechanical strength, durability, homogeneity, and hydrophobicity of the treated EFB was better than the raw EFB [33]. However, the pretreated fuel pellet in the literature review have been made by a single pellet method, which the raw or pretreated material is powdered and densified at a well-controlled condition, i.e. high-pressure and controlled temperature, using piston/cylinder or mold powered by compression machine assembled with electric heater [31-36]. This may not resemble a practical pelletizing process. Therefore, the quantification of mechanical property of the ideal pellet would not represent the practicality. To investigate the real physical condition of the fuel pellet, an industrial pelletizer should be utilized for fuel pellet production. Moreover, based on our current knowledge, no research work has been done on a quantification of mechanical property of RDF5 produced from HTT process.

For those reasons, this research aimed to investigate the mechanical property of the hydrothermally pretreated MSW fuel pellet using an industrial pelletizer. The paper covered fundamental study on the effect of HTT production from MSW by lab-scale experiment and a study of fuel pellet production from large-scale experiment. Lab-scale experiment of HTT on MSW performed at several treatment conditions. Evaluation on the effect of HTT was done on appearance, dewatering and drying performance, and fuel property. Fuel pellet was made from hydrothermal pretreated MSW using a flat-die pelletizer. Comprehensive test on mechanical property that resembles a situation of fuel pellet during handling, transportation and utilization was performed. This includes

compressive test, hardness test, durability test, and grindability test. Additionally, moisture adsorption test was carried out to simulate a circumstance that the fuel pellet exposes to wet atmosphere.

COMMENTS TO THE AUTHOR:

Reviewer #1: Some minor comments are as follows.

(1) page 4. line 10 ; insert the name of city or region where the real MSW was sampled for large-scale experiment.

City and region of real MSW sample for large-scale was added.

(2) page 5, line 14 ; The first part is for water~~ => The first part for water~~

The sentence was corrected according to the comment.

(3) page 5, line 44 : (a) additional of water => addition of water (b) insert how many percent of water is necessary as a binder.

We have revised according to the comment

(a) Addition of water is necessary as a binder during pelletization

(b) Thus, wet sample with the moisture content of 26% was pelletized.

(4) page 6, lone 56 ; Durability test is ~~ => Durability is ~~

The sentence was changed according to the comment.

(5) page 8, line 53 ; Increasing the residence was also help~~ => Increasing the residence also help~~

The sentence was corrected according to the comment.

(6) page 8, line 58~59 ; It could liquified~~ => It could liquefy~~

The sentence was corrected according to the comment.

(7) page 13, line 57 ; This may due to ~~ => This might be due to ~~

The sentence was changed according to the comment.

(8) In the caption of Figure 3,specify the drying condition of 60 C for 24hr.

Caption of Figure 3 has been changed.

(9) There are two same sample of HTT-220 in Table 1. Specify the difference of the two in Table 2.

Specific information has been added. (HTT-220 °C (Large-scale)).

Reviewer #2: 1. English should be totally revised over the manuscript.

2. In introduction, the reference should be included for the classification of RDFs 1-7.

RDF has been classified into seven types listing numerically according to the American Society for Testing and Materials (ASTM) Committee E-38 on Resource Recovery [10,11]

[10] Manser AG, Keeling A. Practical handbook of processing and recycling municipal waste: CRC Press; 1996.

[11] Sommerlad RE, Seeker WR, Finkelstein A, Kilgroe JD. Environmental characterization of refuse-derived-fuel incinerator technology. National Waste Processing Conference, Philadelphia 1988.

3. In table 1, the moisture content has to be included and the results fully discussed in Proximate analysis.

Thank you for the suggestion on the discussion of moisture content of the sample. Moisture content of the simulated MSW and raw MSW has been included in the text (section 2.1). Since the moisture content of the product depended on the process step, it is difficult to include it the table. However, it was additionally discussed in section 3.1.2 as follows:

The original moisture content of simulated MSW was about 65.7%. After the HTT, it was higher than 90%. This was due to the large amount of addition water was utilized to simulate lab-scale HTT process. In large-scale process where direct steam injection was utilized, the moisture content of the product was approximately 60% due to the lower steam to raw material ratio [22]. Water removal efficiency during mechanical dewatering test of the lab-scale HTT products was calculated by dividing the mass of the dewatered liquid by the mass of the product after HTT. Results are presented in Figure 4a. It can be observed that the removal of water during the dewatering was in range of 74-95%. For lab-scale product, large amount of dewatered liquid was devoted to additional water during the HTT process.

[22] Prawisudha P, Namioka T, Yoshikawa K (2012) Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment *Appl Energy* 90:298-304. 10.1016/j.apenergy.2011.03.021

4. The formula of the water removal efficiency should be included in section 3.1.2.

It has been added in text in section 3.1.2.

Water removal efficiency during mechanical dewatering test of the lab-scale HTT products was calculated by dividing the mass of the dewatered liquid by the mass of the product after HTT.

5. In the section 3.1.2 and 3.1.3, the experimental results are explained by guessing instead of the quantification hence to fully prove the experimental findings these sections have to be completely re-written. Also, the detailed explanation of the experimental result should be given. For example, why dose the content of fixed carbon decrease with respect to reaction temperature whereas the carbon content increases in ultimate analysis?

Thank you for the suggestion. Section 3.1.2 and 3.1.3 were rewritten according to the comment. Detail discussion was added as well.

Section 3.1.2

The original moisture content of simulated MSW was about 65.7%. After the HTT, it was higher than 90%. This was due to the large amount of addition water was utilized to simulate lab-scale HTT process. In large-scale process where direct steam injection was utilized, the moisture content of the product was approximately 60% due to the lower steam to raw material ratio [22]. Water removal efficiency during mechanical dewatering test of the lab-scale HTT products was calculated by dividing the mass of the dewatered liquid by the mass of the product after HTT. Results are presented in Figure 4a. It can be observed that the removal of water during the dewatering was in range of 74-95%. For lab-scale product, large amount of dewatered liquid was devoted to additional water during the HTT process. The effect of the treatment temperature on the water removal was obvious. For example, at 60 min residence time, the water removal efficiency showed 5%, 16%, and 22% enhancement when the HTT

temperature was increased from 180 to 200, 220, and 240 °C, respectively. On the other hand, the residence time of HTT did not significantly affect water removal performance. For instance, at 220 °C, the improvement of water removal efficiency was 14.5% and 14.8%, when the residence time was extended from 30 to 60 and 90 min, respectively. Thus, extension of the residence time of HTT process might not give favorable dewatering efficiency. In cell level, subcritical water can crush cell structure of organic material where bound water was situated and this benefited the water removal process [26]. In the drying process, the effect of treatment temperature showed the same positive outcome similar to dewatering process. The moisture of the product was evaporated faster at the higher HTT temperature. For example, the 220 °C/30 min HTT product utilized 7 min during 60 °C drying for evaporating 80% of total moisture whereas the original MSW needed 13 min. The effect of the holding time on drying performance was limited. For instance, the increase of HTT holding time from 30 to 60 min (every HTT temperature) cannot accelerate moisture evaporation to reach 20% of total moisture. The improvement of drying performance became apparent when the HTT holding time was increased to 90 min. From dewatering and drying performance, the effect of the treatment temperature was more significant than the reaction holding time.

[22] Prawisudha P, Namioka T, Yoshikawa K (2012) Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment *Appl Energy* 90:298-304. 10.1016/j.apenergy.2011.03.021

[26] Areeprasert C, Zhao P, Ma D, Shen Y, Yoshikawa K (2014) Alternative Solid Fuel Production from Paper Sludge Employing Hydrothermal Treatment *Energ Fuel* 28:1198-1206. 10.1021/ef402371h

Section 3.1.3

Table 1 presents proximate analysis, ultimate analysis, heating value of raw MSW and HTT product. The heating value of the lab-scale HTT product was increased as the HTT temperature increased. For example, at 30 min holding time, the heating value was increased from 21.8 to 26.4 MJ/kg for 180 and 200 °C, respectively, accounting 21.1% increase. The improvement of heating value was consistent with higher fraction of carbon content quantified by ultimate analysis. For instance, the carbon content was increased from 43.4% in the original MSW to 50% in 200 °C/30 min HTT product showing 15.2% increase. The carbon content of HTT product ranged from 47 to 74% depending on the treatment condition. From the proximate analysis, the HTT product contained higher volatile matter and lower fixed carbon content compared to the original MSW. This behavior was due to the leftover plastic waste in the product, whose constituent is mainly volatile matter. It could be explained by that the temperature of HTT was 180-240 °C and it dissolved the organic material, which starts to thermally decompose at the temperature of 200 °C [39]. However, these HTT temperatures cannot fully decompose the plastic material, which needs relatively higher temperature, i.e. 400 °C [40]. For the large-scale HTT product, the elemental composition was typical and comparable to the raw MSW. The ash content was high representing the real situation of waste characteristic that contains variety of inorganic material such as sand, soil, and other tiny metal scraps. The heating value of the hydrothermally pretreated MSW was comparable or higher than that of the biomass residues [41]; therefore, it would be a good candidate for combustion or co-combustion with other solid fuels.

[39] Zhou H, Long Y, Meng A, Li Q, Zhang Y (2015) Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis *Waste Manag* 38:194-200.

[40] Chattopadhyay J, Kim C, Kim R, Pak D (2008) Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastics *Korean Journal of Chemical Engineering* 25:1047.

[41] Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers *Renew Sust Energ Rev* 15:2262-2289. 10.1016/j.rser.2011.02.015

6. Why is the large-scale experiment included? Is it meaningful to compare lab-scale data even though only one result?

Large-scale experiment has been included to produce bulk mass of hydrothermally treated MSW for pelletization process. The pelletization process was done by an industrial-scale pelletizer so the fuel pellet was produced practically, not ideally. As mentioned in an introduction section, most of the study on pretreated fuel pellet was conducted by lab-scale pellet making process. This cannot represent the real characteristic of fuel pellet. Lab-scale data are compared to study the fundamental effect of HTT on MSW whereas the large-scale result increases chance of implementation of the HTT technology and this study focuses on producing high quality RDF from HTT.

7. The resolution of figures should be increased for Figs 4-5.

The resolution was increased.

An investigation on mechanical property of MSW-derived fuel pellet produced from hydrothermal treatment

Phatavee Phasee and Chinnathan Areeprasert*

Department of Mechanical Engineering, Faculty of Engineering, Kasetsart University,
50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand.

Keywords: Hydrothermal treatment; Fuel pellet; Mechanical property; MSW.

*Corresponding author – Email: fengcta@ku.ac.th; Tel: +662 797 0999.

Abstract

This paper presents a study on the effect of hydrothermal treatment (HTT) on municipal solid waste (MSW) and mechanical property of fuel pellet. The lab-scale HTT was conducted at the condition of 180-240 °C and 30-90 min. Results showed that the HTT could improve fuel property of MSW including heating value, dewatering and drying performance. The fuel pellet was produced at three different diameters (4, 6, and 8 mm). Tests of mechanical property and water adsorption were performed. Results showed that the fuel pellet was able to withstand the axial load of 19-54 N and the radial load of 72-130 N. The 8-mm pellet exhibited lowest Young's modulus (18.26 MPa) indicating flexibility and ductility. Durability of the fuel pellet was high (91-94%) while the Hardgrove grindability index (HGI) was (57-76) higher than that of the biomass pellet (18-22) and the subbituminous coal (46-49) indicating the ease of grinding. The equilibrium moisture content of the fuel pellet was 5-6%. The small fuel pellet reached adsorption equilibrium faster than the large one. In sum, the fuel pellet produced from HTT showed good fuel property as well as mechanical property for transportation and utilization.

1. Introduction

Expansion of community and economic activity increases waste generation rate. Municipal solid waste (MSW) disposal becomes a critical problem of many big cities. Several works encourage to improve waste management activity [1-3]. At this moment, large amount of MSW is dumping on a landfill site or burning at a waste incinerator. In Europe, landfilled waste are 62.2% of the total waste while utilized waste including recycled waste, incinerated waste, and composted waste are 11%, 21.9%, and 4.5% of the total waste, respectively [4]. In several Asian countries, landfill and open dump are the main MSW disposal method [5] while only few nations have a sustainable plan for waste management [6]. Landfilling of MSW will be restricted in the future because of either regulation or economic issues [7,8]. A promising method of waste elimination is an incineration because it is able to reduce the volume of solid waste significantly and has a very high capacity [9]. As a waste disposal center, the

incinerator needs waste fuel to be transported to the site. However, poor characteristic such as high moisture content, low calorific value and heterogeneity of MSW leads to the difficulty of such activity.

Refuse-derived fuel (RDF) technology has been proposed to improve MSW quality for transportation and final utilization. In short, a basic RDF processing plant may consist of screening, shredding, size reduction, classification, separation, drying, and densification [4]. The advantages of RDF are higher calorific value and more homogenous physicochemical characteristic compared to the original MSW. RDF has been classified into seven types listing numerically according to the American Society for Testing and Materials (ASTM) Committee E 38 on Resource Recovery [10,11]: RDF-1 is a fuel without oversize waste; RDF-2 is the MSW that has been processed to coarse particle size or ferrous metal has been separated; RDF-3, also known as fluff RDF, has better quality because of its smaller size (95% by weight pass through a 2-inch square mesh screen) and removal of inorganic such as metal and glass; RDF-4 is the burnable waste in a powder form; RDF-5 is the densified burnable waste in form of pellets or briquettes; RDF-6 is the liquefied RDF; and RDF-7 is the gasified RDF. Nowadays, RDF-3 is commonly used because of a low production cost; however, the fuel property of RDF-3 is marginally improved. The reason is that the processing of RDF-3 mainly consists of basic mechanical separation and a thermal drying that cannot physical and chemical property of the waste significantly. Moreover, the “fluffy” RDF seems to face a contamination problem as well as an inefficiency in transportation due to its low density resulting in an increase of transportation cost.

A subcritical water condition (SWC) is water that exists in the state below and near its critical point. It has interesting properties such as catalytic behavior for organic compounds due to drastically higher amount of ionic products compared to water at the ambient condition [12]. SWC causes degradation of substances and creates various reactions, for instance, hydrolysis, dehydration, decarboxylation, condensation, and aromatization. These reactions can transform biomass feedstock into other materials. The well-known applications of SWC in waste and biomass conversion are hydrothermal carbonization (HTC) and hydrothermal treatment (HTT) processes. HTC can convert organic materials into a carbonaceous solid product by using moderate water temperature (180-350 °C) and pressure (2-10 MPa) [13,14]. The product from HTC is biochar that has a higher heating value and sterilized biological substances [14,15]. The holding time of HTC is generally long and it could be in the range of 2-12 h [14,16]. However, a shorter holding time with a relatively higher pressure has been tested as well [17]. The HTC process was applied to municipal solid waste streams [18] as well as biomass/agricultural residues [19,20].

Similar to HTC, the HTT has been investigated by several researchers in recent years [21-23]. This innovative treatment process can convert waste such as MSW, sewage sludge, paper sludge, antibiotic residue, to value-added resources such as coal-like solid fuel or organic fertilizer showing feasibility of a large-scale process [21,22,24-28].

One of the advantages of the HTT is an ability to pulverize the feedstock. The powder product facilitates a densification process. After the densification of the raw material, the pellet immediately faces risk of disintegration during cooling, storage, transportation, as well as handling process. Many factors affect breakage of the fuel pellet, for example, biomass type, moisture content, lignin content, and particle size [29]. To reach certain standard, a quantification of fuel pellet's mechanical property, e.g. compressive test, impact crushing, and abrasion, is necessary [30]. Mechanical strength and moisture adsorption analysis of pelletized steam-exploded Douglas Fir (*Pseudotsuga menziesii*) have been performed and it was found that the pretreated fuel pellet had higher strength and rigidity compared to the untreated pellet [31]. Fuel pellet made from torrefied sawdust was subjected to moisture adsorption and Meyer hardness tests; results showed that the torrefied pellet had lower hardness and adsorbed less moisture than the conventional pellet [32]. Zaini et al. (2017) studied a mechanical property of fuel pellet made from hydrothermally treated and washed empty fruit bunch (EFB) [33]. It was found that the mechanical strength, durability, homogeneity, and hydrophobicity of the treated EFB was better than the raw EFB [33]. However, the pretreated fuel pellet in the literature review have been made by a single pellet method, which the raw or pretreated material is powdered and densified at a well-controlled condition, i.e. high-pressure and controlled temperature, using piston/cylinder or mold powered by compression machine assembled with electric heater [31-36]. This may not resemble a practical pelletizing process. Therefore, the quantification of mechanical property of the ideal pellet would not represent the practicality. To investigate the real physical condition of the fuel pellet, an industrial pelletizer should be utilized for fuel pellet production. Moreover, based on our current knowledge, no research work has been done on a quantification of mechanical property of RDF-5 produced from HTT process.

For those reasons, this research aimed to investigate the mechanical property of the hydrothermally pretreated MSW fuel pellet using an industrial pelletizer. The paper covered fundamental study on the effect of HTT production from MSW by lab-scale experiment and a study of fuel pellet production from large-scale experiment. Lab-scale experiment of HTT on MSW performed at several treatment conditions. Evaluation on the effect of

HTT was done on appearance, dewatering and drying performance, and fuel property. Fuel pellet was made from hydrothermal pretreated MSW using a flat-die pelletizer. Comprehensive test on mechanical property that resembles a situation of fuel pellet during handling, transportation and utilization was performed. This includes compressive test, hardness test, durability test, and grindability test. Additionally, moisture adsorption test was carried out to simulate a circumstance that the fuel pellet exposes to wet atmosphere.

2. Material and methods

2.1 Municipal solid waste

Municipal solid waste (MSW) used in this study was simulated and real MSW for lab-scale and large-scale experiment, respectively. The simulated MSW consists of major composition of MSW including organic waste, plastic, paper and textile. The representative component of simulated MSW was Chinese morning glory for organic waste (17 g, 68%), mixture of HDPE, PET, PP for common plastic waste (5 g, 20%), cotton cloth for textile waste (1 g, 4%), and office paper and recycled paper for paper waste (2 g, 8%). The moisture content of the simulated MSW was 65.7%. The length of all materials was about 1 cm. For the large-scale test, the MSW was from a city of Tangerang, Indonesia. The major composition was organic material (56%), paper waste (24%), plastic waste (14%), diaper (3%), and other waste materials (3%). Moisture content of raw MSW was approximately 53%. Chemical composition of the sample in this study is summarized in Table 1.

Table 1 Fuel property of the sample

2.2 Fuel pellet production

2.2.1 Hydrothermal treatment

Simulated MSW and real MSW were subjected to hydrothermal treatment (HTT) at the lab-scale and large-scale apparatus, respectively. The objective of the lab-scale HTT test was to study the effect of the treatment condition. The lab-scale HTT was tested at 180, 200, 220, and 240 °C at 30, 60, and 90 min. In each experiment, MSW sample and deionized water were mixed at the ratio of 1 to 6 to ensure that the sample was submerged under the water for an efficient treatment. They were put into an electrically heated autoclave with the volume of 500 ml. After injection of the sample, the autoclave was sealed and air inside the autoclave was purged by filling the nitrogen gas for about two min. Then the heater was set to the target temperature as mentioned earlier. The stirrer was kept rotating at 50 rpm. After the process is finished, the heater was turned off and the autoclave was cooled down. Eventually, the sample was taken out and each experiment was duplicated to ensure repeatability of the

results. The large-scale HTT experiment performed by a 10-m³ reactor at the temperature of 220-230 °C for 30 min holding time aimed to produce the bulk mass of HTT product for fuel pellet production.

Figure 1 Investigation scheme of this study: (a) Effect of HTT condition; (b) Mechanical property and water adsorption tests of fuel pellet.

2.2.2 Dewatering and drying

In the dewatering process, the pressure was applied to squeeze out the water from the lab-scale HTT product. It was designed to use easily by applying the weight from the top. The applied weight then determines the size of the force. Thus, the measuring of the force/pressure exerts to the sample was conveniently calculated. The dewatering machine consists of two parts. The first part consists of a piston rod, a place to put the weight. The second part is a sample cup whose bottom has a mesh for draining purpose. During the experiment, the sample was wrapped by filter paper and put in the cup of the dewatering machine. Then, 6 kg of weight equivalent to 11.7 kPa of pressure was applied for 5 min. Finally, the dewatered solid product and liquid part were obtained. After the dewatering process, the dewatered solid product was subjected to the drying process using an electric oven at the temperature of 60 °C. The weight of the sample was measured at every hour until the rate of mass loss was less than 0.05%. In the case of large-scale HTT product, sun drying was simply applied without dewatering and drying tests.

2.2.3 Pelletization

Pelletization was a key to produce fuel pellet or RDF-5. It densifies small material into pellet for ease of transportation and utilization. In this study, the sample was pelletized by a 5.5 kW flat-die pelletizer. The main components of the flat-die pelletizer are flat die, roller, motor and gearbox [37]. The 150-mm diameter roller rotates above the flat die which has the diameter of 90 mm. The product from the large-scale HTT was utilized in the pelletization process. The fuel pellet was made in three diameters at 4, 6, and 8 mm. Addition of water is necessary as a binder during pelletization. Thus, wet sample with the moisture content of 26% was pelletized. The fuel pellet product was then subjected to sun drying again prior to a series of mechanical property and water adsorption tests. The moisture content of the final fuel pellet was approximately 3-5%.

2.3 Fuel analysis

To perform chemical analysis of the sample, all samples were dried at 105 °C for 24 h and then crushed into powder. The heating value was measured by a bomb calorimeter (Leco, AC-500) according to the ASTM D5865. The proximate analysis was performed by simultaneous Thermal Analyzer (STA 449 F3) according to the ASTM D7582 and the ultimate analysis was performed by elemental analyzer (Thermo Flash 2000) according to the ASTM D5373).

2.4 Mechanical property analysis

2.4.1 Compressive test

The compressive test was performed to measure the maximum load that the produced fuel pellet can withstand before cracking or breaking. The compressive test simulates the compressive stress due to the weight on the top-end and bottom-end of the pellets during handling, storage, or transportation. In this study, the mechanical compressive test was done using a universal testing machine (INSTRON 5969) shown in Figure 2a. In the experiment, the pellet was attached to the metal plate as a foundation and it was preloaded at approximately 3 N. The load was applied to the pellet at the condition of 1 mm/min until the machine detects critically fracture or damage. The pellet brought to this test has to meet the standard to ensure reproducibility of the result. The dimension of the pellet was about 20 mm in length and its cylindrical shape has to be straight. The experiment was performed 4-6 times for each pellet size.

Figure 2 Equipment used for mechanical property testing of fuel pellet: (a) Universal Testing Machine; (b) Digital push-pull force gauge; (c) Tumbler; (d) Hardgrove Grindability Index tester.

2.4.2 Hardness test

The hardness test in this study measures the maximum compressive force on the sides of the pellet. It simulates the force on the side of the fuel pellet. In this study, the hardness test was performed by a digital push-pull force gauge (SUNDOO SH-200) as shown in Figure 2b. In the experiment, the fuel pellet was placed on the slot and the force was applied until the breakage was observed. Then, the machine automatically calculated the maximum force the pellet can withstand. The standard pellet sample mentioned earlier was also used in the test. The experiment was repeated 6 times for each type of pellet.

2.4.3 Durability test

Durability is an important mechanical property of pellet since it represents one of the physical damages during transportation. Tumbler shown in Figure 2c is used to estimate the pellet quality in terms of pellet durability index (PDI). The American Society of Agricultural Engineers Standard 269.4 (ASABE) [38] suggests that the rectangular tumbler should be made of stainless steel with an inner dimensions of 300 x 300 x 125 mm. In order to enforce the standard tumbling motion, the box is equipped with a 230 mm long baffle, which extends 50 mm into the container. The baffle is affixed symmetrically to a diagonal of one side of the box. The container rotates on an axis, which is at the center and perpendicular to the sides of the box. The rotation speed was around 50 rpm. A 500 g of pellet was tested for 5 and 10 min before being sieved manually with a 3.15 mm round mesh. PDI was computed by dividing the whole pellet sample weight (WPW) by the initial weight (IW) of the sample and multiply by 100 ($PDI = (WPW/IW) \times 100$).

2.4.4 Grindability test

Hardgrove grindability index (HGI) refers to the grindability of coal. It is performed by a tool called the Hardgrove machine. Alternative fuel pellet that normally requires grinding before utilization can borrow HGI to measure grindability in the same way of coal. Pellet with a high HGI value (close to 100) indicates a brittle nature and can be crushed easily whereas pellet with low HGI value (about 30-45) is hard and tough for grinding. For each test, 100 g of each pellet size (4, 6, and 8 mm diameter) were utilized. The HGI was performed according to ASTM D409-12 using HGI tester (Preiser/Mineco 90-9301-01) as shown in Figure 2d.

2.5 Water adsorption test

The moisture adsorption test simulates high humidity condition during transportation or storage to measure the moisture adsorption capacity of the pellet. The higher moisture adsorption capacity indicates the higher tendency of material that exposed to humidity would undergo swelling and eventually disintegrate. The moisture adsorption test is performed by placing the pellets in a humidity-controlled cabinet at 25-27 °C and 78-80% humidity. The cabinet is equipped with a mist generator and a light bulb to simulate the atmosphere. A microcontroller was used to control the mist generator and the bulb to keep the target humidity and temperature stable. The weight of material was recorded every 15 min for the first 2 h and every 1 h for the following hour until the moisture adsorption of the pellet sample is saturated. After placing the pellet sample in the chamber, the box has a control

unit to operate the mist generator and the bulb to keep the humidity and temperature stable. In each experiment, five pellets were tested for reproducibility of the results.

3. Results and discussion

3.1 Hydrothermally treated MSW

3.1.1 Effect of treatment condition

Appearance of the product after HTT before drying and after drying at 60 °C for 24 h is shown in Figure 3a and 3b, respectively. Comparing the product after HTT with the different holding times, the texture of the product at each temperature was somehow similar. In case of HTT temperature variation, the appearance of the product was clearly different. At 180 °C HTT condition, textile was recognized while the size of plastic materials was still big. The color of the product was dark brown. When the treatment temperature increased to 200 °C HTT, the product became more homogeneous. The color of the product became darker when increases the temperature but the amount of the product was reduced. At the HTT condition of 220 °C, the color of the product was almost black and the amount of the product was obviously less than that of the lower temperature. At the temperature condition of 240 °C, the product was completely homogeneous and turned black. The amount of the product was very few owing to liquefaction reaction. For the dried HTT products, they were shrank and the color was less intense due to the removal of water. Nonetheless, the general appearance was not changed.

Figure 3 The hydrothermally treated MSW from the laboratory test: (a) before; (b) after drying at 60 °C for 24h

3.1.2 Dewatering and drying performance

The original moisture content of simulated MSW was about 65.7%. After the HTT, it was higher than 90%. This was due to the large amount of addition water was utilized to simulate lab-scale HTT process. In large-scale process where direct steam injection was utilized, the moisture content of the product was approximately 60% due to the lower steam to raw material ratio [22]. Water removal efficiency during mechanical dewatering test of the lab-scale HTT products was calculated by dividing the mass of the dewatered liquid by the mass of the product after HTT. Results are presented in Figure 4a. It can be observed that the removal of water during the dewatering was in range of 74-95%. For lab-scale product, large amount of dewatered liquid was devoted to additional water during the HTT process. The effect of the treatment temperature on the water removal was obvious. For example, at 60 min residence time, the water removal efficiency showed 5%, 16%, and 22% enhancement when the HTT

temperature was increased from 180 to 200, 220, and 240 °C, respectively. On the other hand, the residence time of HTT did not significantly affect water removal performance. For instance, at 220 °C, the improvement of water removal efficiency was 14.5% and 14.8%, when the residence time was extended from 30 to 60 and 90 min, respectively. Thus, extension of the residence time of HTT process might not give favorable dewatering efficiency. In cell level, subcritical water can crush cell structure of organic material where bound water was situated and this benefited the water removal process [26]. In the drying process, the effect of treatment temperature showed the same positive outcome similar to dewatering process. The moisture of the product was evaporated faster at the higher HTT temperature. For example, the 220 °C/30 min HTT product utilized 7 min during 60 °C drying for evaporating 80% of total moisture whereas the original MSW needed 13 min. The effect of the holding time on drying performance was limited. For instance, the increase of HTT holding time from 30 to 60 min (every HTT temperature) cannot accelerate moisture evaporation to reach 20% of total moisture. The improvement of drying performance became apparent when the HTT holding time was increased to 90 min. From dewatering and drying performance, the effect of the treatment temperature was more significant than the reaction holding time.

Figure 4 Dewatering and drying performance of raw MSW and HTT product: (a) Water removal efficiency during dewatering; Drying at 60 °C: (b) HTT 30 min; (c) HTT 60 min; (d) HTT 90 min.

3.1.3 Fuel property

Table 1 presents proximate analysis, ultimate analysis, heating value of raw MSW and HTT product. The heating value of the lab-scale HTT product was increased as the HTT temperature increased. For example, at 30 min holding time, the heating value was increased from 21.8 to 26.4 MJ/kg for 180 and 200 °C, respectively, accounting 21.1% increase. The improvement of heating value was consistent with higher fraction of carbon content quantified by ultimate analysis. For instance, the carbon content was increased from 43.4% in the original MSW to 50% in 200 °C/30 min HTT product showing 15.2% increase. The carbon content of HTT product ranged from 47 to 74% depending on the treatment condition. From the proximate analysis, the HTT product contained higher volatile matter and lower fixed carbon content compared to the original MSW. This behavior was due to the leftover plastic waste in the product, whose constituent is mainly volatile matter. It could be explained by that the temperature of HTT was 180-240 °C and it dissolved the organic material, which starts to thermally decompose at the temperature of 200 °C [39]. However, these HTT temperatures cannot fully decompose the plastic material,

which needs relatively higher temperature, i.e. 400 °C [40]. For the large-scale HTT product, the elemental composition was typical and comparable to the raw MSW. The ash content was high representing the real situation of waste characteristic that contains variety of inorganic material such as sand, soil, and other tiny metal scraps. The heating value of the hydrothermally pretreated MSW was comparable or higher than that of the biomass residues [41]; therefore, it would be a good candidate for combustion or co-combustion with other solid fuels.

3.2 Mechanical property of fuel pellet from hydrothermal treatment

3.2.1 Compressive test

Results from compressive test, namely maximum force, stress and strain at maximum load, and Young's modulus, are summarized in Table 2. The results showed that the large pellet size can withstand larger load. The average maximum load of the sample was 19.15, 36.94, and 54.06 N at 4, 6, and 8 mm diameter of pellets, respectively. Large diameter pellet can resist significantly higher compressive force suggesting that the pellet can retain in a good shape during transportation and handling. It can be observed that the standard deviation of maximum load of the 4 mm pellet was large. This was due to the pellet was relatively small causing instability of the results. Compressive stress at maximum load was lower when the diameter of the pellet was increased. The compressive strain at the maximum load of all pellet sizes were similar. The Young's modulus (E) is a measurement of the stiffness of solid material. In other words, it determines a resistant in changes of length of the sample. In this study, the E values were calculated by determining the slope of the stress – strain profiles (average R-squared 0.9960). The average E of 4 and 6 mm pellet was 39.33 and 34.77 MPa, respectively. The average E of 8 mm pellet has reduced to 18.26 MPa. The fuel pellet produced from HTT was considered as a low E material meaning that it was easily to deform but flexible. From the result, 8 mm pellet, that has lower E than the other sizes, was relatively flexible (less stiff) compared to the 4 and 6 mm pellet. This result was consistent with the pellet compression ratios estimated by length of the pellet divided by diameter of the pellet. The compression ratio of the pellet was 5.44, 3.79, and 3.14 for 4, 6, and 8 mm pellet, respectively. Higher compression ratio produced denser pellet. Therefore, the 4 mm pellet was the most stiffness and this was consistent with the E value.

Table 2 Summary of mechanical property from compressive test and hardness test of fuel pellet.

Compressive stress – strain curves of the sample are presented in Figure 5 along with the visualization of the pellet after the compression. All of the pellet was compressed until breaking and the stress-strain data was continuously

collected. Figure 5a illustrates the stress-strain curve of the 4 mm pellet under compressive force. It was clearly observed that the profiles were different due to the physical condition of 4 mm pellet. It was small and was not in a complete cylindrical shape. This was technically unavoidable owing to the mechanism of the pelletizer and the size of pellet. However, the characteristic of the stress-strain profile illustrated similar characteristic. After load was applied, the curve was raised up considering elastic region (linear) until it reached the yield stress point. Then, it entered partially plastic deformation region until the pellet was broken. Sample 2 (S2) showed unique characteristic. The breakage of the pellet was locked and further densified; therefore, the broken pellet can withstand further force during the compressive test. This is the reason why the S2 pellet had the maximum force as well as the maximum stress. After the compressive test, it was observed that the pellet was intensely crushed at the top-end and bended at the lower region. The failure mode was considered “crushing” showing that the pellet cannot withstand much compressive force and cannot retain in a good form. This characteristic showed consistency with the stiffness and Young’s modulus. Thus, 4 mm pellet was likely to bend and crush during transportation or handling either due to the axial compressive force or radial force (discussed later) on the pellet.

Figure 5b shows the stress-strain curve and breakage of 6 mm during compressive test. The stress-strain curves of 6 mm pellet were more consistent than that of the 4 mm pellet. From Figure 5b, the maximum compressive stress of the 6 mm pellet was approximately in range of 1.3-1.6 MPa at the extensive strain. Two types of profiles were observed as relatively brittle (S1 and S3) and relatively ductile (Others) characteristics. After adding the compressive load, the brittle pellet was deformed in the elastic region with short range of plastic deformation characteristic until breakage. Yield stress point and ultimate stress point were closed. On the other hand, the ductile pellet characteristic showed longer both elastic and plastic deformation region before breakage. Due to the ductile characteristic, strain of this type of pellet was extensive as shown in S5 and S6. Failure mode of 6 mm pellet was different from that of the 4 mm pellet. There was no crushed particle in the test area. The upper part of the pellet was slide and this failure can be considered as “shearing”. Figure 5c presents stress-strain profiles of 8 mm pellet during compressive test. The characteristic of the stress-strain profiles was the most consistent. This was because the shape of the 8 mm pellet was completely in cylindrical shape. However, two types of stress-strain curves were observed similar to that of 6 mm pellet. Compressive stress of 8 mm pellet was lower than that of the 6 mm while strain showed the opposite relationship. Young’s modulus of 8 mm pellet was significantly reduced. The stress-strain profiles were flat compared to the profiles of 4 and 6 mm pellet. This showed the increase of ductility characteristic. The visualization of this important parameter can be found in the sample after the

destructive compressive test. The 8 mm pellet after the test was rigid as no excessive crushed particles and slide structure were observed. At the top-end of the 8 mm pellet, the particle seemed to swell as it absorbed the load during the compressive test. The failure mode of the 8 mm pellet was different from that of the 4 and 6 mm. due to its low modulus of elasticity.

Figure 5 Stress-strain curves and sample after compressive tests: (a): 4 mm; (b): 6 mm; (c): 8 mm.

3.2.2 Hardness test

The hardness test in this study resembles the situation which the pellet was piled up during storage. Weight from other pellets would exert on the side. Maximum force from the hardness tests is presented in Table 2. The average force that made 4 mm pellet broken was 72.3 N and increased to 112.6 and 130.4 N for the 6 and 8 mm diameter, accounting 55.7% and 80.4% increase, respectively. The force was applied on the side of the pellet where it can be distributed. The load of the hardness test was perpendicular to the pellet axial. This was different from the compressive test in which the load was applied perpendicular to the cross sectional area of the pellet. Thus, the pellet in this hardness test can withstand more force than that of the axial compressive ones. After the hardness test, the crushed pellet was visualized as shown in Figure 6. All pellets were damaged regardless of the diameter. The most destructive pellet was the 4 mm diameter. It was totally deformed and flattened. Several pieces of crushed pellet were observed and the pellet cannot retain its original form. For the 6 and 8 mm pellets, it can retain cylindrical shape even though the several breakage was observed. It is likely that they can be handled with minimal broken pieces and dust, which was significantly different from the 4 mm.

Figure 6 Pellet after the hardness test.

3.2.3 Durability test

Parameters during durability test in this study were moisture content of the fuel pellet and duration of tumbling. Two conditions of moisture content of the sample were 3.92%, which was as received moisture content of the pellet from the indoor storage, and 0% (the sample was dried in the electrical oven before the test). The test was last 10 min with a 5-min stop for collecting the data. This allowed a calculation of two-step pellet durability index (PDI). The calculated PDI is presented in Table 3. It can be observed that the size and the moisture of the pellet has no significant effect on the PDI values as they were in range of 94-96% and 91-93% for the 5 min and 10 min

testing, respectively. In general, samples exhibit to longer abrasive condition would yield less PDI value. Attrition of the pellet would occur at the beginning of the test due to its sharp edge and rough finishing surface. This leaded to the significant decrease of PDI (from 100% to 95% in average, accounting 5%) during the first 5 min test. Then, the additional reduction of PDI was only 3% after another 5 min test. From the viewpoint of European wood-derived pellet standard, woody pellet mechanical durability should be higher than 97.5% and 98.0% to reach B class and A1/A2 class, respectively [42]. The mechanical durability of the hydrothermally treated MSW-derived pellet showed slightly lower than that of the woody pellet standard. This might be due to the difference composition of the raw material as well as the condition of the pelletization in which commercial-scale production would generate higher heat and compressive force. For the former, biomass material contains lignin, which acts as a binder during pelletization process. Lignin, an important structural organic polymer, undergoes glass-liquid transition owing to high temperature condition during the pelletization that strengthens the biomass pellet by increasing solid bridge formation [43]. On the other hand, in MSW sample, it could be suggested that another class of polymeric material, i.e. plastic, would be a key component for such mechanism to occur. However, the plastic material in the treated MSW was processed by high pressure and temperature steam resulting in a reduction of plastic quantity. This may reduce the effect on strengthening the pellet product. Nevertheless, the fuel pellet sample obtained from the hydrothermally pretreated MSW presents relatively high durability, which is good for transportation and handling.

Table 3 Pellet durability index (PDI) in various conditions.

3.2.4 Grindability test

The Hardgrove Grindability Index (HGI) of hydrothermal fuel pellet is presented in Table 4 along with subbituminous coal and other alternative solid fuels. The 4, 6, and 8 mm fuel pellet has HGI value of 76, 65, and 57, respectively. The HGI of fuel pellet was slightly higher than that of coal and processed biomass. The conventional biomass pellet has significantly low HGI. Thus, it could be difficult to grind, as their HGI was relatively low. When comparing the effect of diameter of the fuel pellet, the larger pellet diameter gave lower grindability rate meaning that the pellet with large size was difficult to be grinded. The HGI of fuel pellet correlated with compressive strength and durability tests. Even though the large-size fuel pellet showed its strength through HGI and other mechanical tests that is favored by handling and transportation, it may need more energy during grinding before feeding in a fluidized or pulverized bed combustor. Nonetheless, a typical HGI of coal for

pulverizers is 50 [44] so the 8 mm fuel pellet could be grinded without excessive energy consumption compared to coal.

Table 4 Hardgrove grindability index (HGI) of hydrothermal fuel pellet compared to other biomass pellet.

3.3 Water adsorption test

Figure 7 shows moisture content of fuel pellets during moisture adsorption test. It should be noted that the pellets were totally dried prior to the test. Results showed that the larger pellets saturated more slowly and adsorbed more water than the small pellets. The weight of the water in the sample was saturated at 5.2%, 5.5% and 5.8% for the 4, 6 and 8 mm pellets, respectively. In more detail, the 4 mm diameter pellet was firstly saturated at 120 min followed by the 6 and 8 mm that were saturated at 180 min and 360 min, respectively. The moisture adsorption rate was high at the beginning (30 min) then it was slightly reduced (30-60 min) and became low after 60 min until saturation. All pellets were still in shape and no damage. It was interesting that the water adsorption of fuel pellet produced from HTT could adsorb water at around 5-6% at its saturation regardless of the duration of high humidity exposure. The hydrophobicity characteristic of the fuel pellet was obvious. This may due to the decomposition of organic material in the waste stream. Such raw material contains hemicellulose whose water adsorption characteristic is the highest among other lignocellulosic constituents [43]. Therefore, the fuel pellet can retain in a good condition (low moisture content, high heating value, and in a good shape) indicating potential for practical utilization.

Figure 7 Moisture content of the pellet during moisture adsorption test.

4. Conclusion

Effect of HTT on fuel property of MSW and the mechanical property of hydrothermal fuel pellet have been investigated. Conclusion can be summarized as follows:

1. HTT can improve energy density and dewatering and drying performance of the MSW. Treatment temperature played important role in fuel property improvement.
2. The hydrothermal fuel pellet can withstand the load of 19-54 N and 72-130 N for axial and radial load, respectively. In general, a larger diameter fuel pellet can withstand larger force than the smaller ones.

3. A 8 mm pellet exhibits lower stress under the load while the Young's modulus was lower (18.26 MPa) compared to that of the smaller size pellet (22-24 MPa) indicating flexible and ductile characteristic.
4. Durability of the produced fuel pellet was high (91-94%). The Hardgrove grindability index (HGI) of the produced fuel pellet was higher (57-76) than that of biomass pellet (18-22) and comparable to subbituminous coal and torrefied biomass (46-49). Thus, the produced fuel pellet showed good grindability.
5. Moisture equilibrium point of the fuel pellet was around 5-6%. Larger fuel pellet can adsorb more water while the smaller pellet reached equilibrium faster than the larger ones.
6. HTT can be a promising method for production of fuel pellet since it showed good fuel property and physical characteristic in form of pellet for handling, transportation, and utilization.

5. Acknowledgement

This research has received funding from the Thailand Research Fund (MRG5980058). Authors would like to thank Dr. Kunio Yoshikawa and Dr. Wichai Siwakosit for essential advice, Waste and Biomass Conversion Laboratory, Department of Mechanical Engineering, Faculty of Engineering, Kasetsart University, for research facility, and Dr. Bayu Indrawan, Center of Waste Management of Indonesia, for substantial support.

6. Reference

- [1] Zhuang Y, Wu SW, Wang YL, Wu WX, Chen YX (2008) Source separation of household waste: a case study in China Waste Manag 28:2022-2030. 10.1016/j.wasman.2007.08.012
- [2] Aphale O, Thyberg KL, Tonjes DJ (2015) Differences in waste generation, waste composition, and source separation across three waste districts in a New York suburb Resour Conserv Recy 99:19-28.
- [3] Areeprasert C, Kaharn J, Inseemeesak B, Phasee P, Khaobang C, Kuhavichanun A, et al. (2018) A comparative study on characteristic of locally source-separated and mixed MSW in Bangkok with possibility of material recycling J Mater Cycles Waste 20:302-313.
- [4] Caputo AC, Pelagagge PM (2002) RDF production plants: I Design and costs Appl Therm Eng 22:423-437.
- [5] Visvanathan C, Trankler J. Municipal solid waste management in Asia: A comparative analysis. workshop on sustainable landfill management2003. p. 3-5.

[6] Shekdar AV (2009) Sustainable solid waste management: an integrated approach for Asian countries Waste Manag 29:1438-1448. 10.1016/j.wasman.2008.08.025

[7] Cheng H, Hu Y (2010) Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China Bioresour Technol 101:3816-3824. 10.1016/j.biortech.2010.01.040

[8] Zaman AU (2013) Identification of waste management development drivers and potential emerging waste treatment technologies International Journal of Environmental Science and Technology:(IJEST) 10:455.

[9] McKay G (2002) Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration Chem Eng J 86:343-368.

[10] Manser AG, Keeling A. Practical handbook of processing and recycling municipal waste: CRC Press; 1996.

[11] Sommerlad RE, Seeker WR, Finkelstein A, Kilgroe JD. Environmental characterization of refuse-derived-fuel incinerator technology. National Waste Processing Conference, Philadelphia1988.

[12] Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant J Supercrit Fluids 39:362-380. 10.1016/j.supflu.2006.03.016

[13] Mumme J, Eckervogt L, Pielert J, Diakite M, Rupp F, Kern J (2011) Hydrothermal carbonization of anaerobically digested maize silage Bioresour Technol 102:9255-9260. 10.1016/j.biortech.2011.06.099

[14] He C, Giannis A, Wang J-Y (2013) Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior Appl Energy 111:257-266. 10.1016/j.apenergy.2013.04.084

[15] Park S-J, Bae J-S, Lee D-W, Ra HW, Hong J-C, Choi Y-C (2011) Effects of Hydrothermally Pretreated Sewage Sludge on the Stability and Dispersibilty of Slurry Fuel Using Pulverized Coal Energ Fuel 25:3934-3939. 10.1021/ef200893p

[16] Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose Carbon 47:2281-2289. 10.1016/j.carbon.2009.04.026

[17] Parshetti GK, Liu Z, Jain A, Srinivasan MP, Balasubramanian R (2013) Hydrothermal carbonization of sewage sludge for energy production with coal Fuel 111:201-210. 10.1016/j.fuel.2013.04.052

[18] Berge ND, Ro KS, Mao J, Flora JR, Chappell MA, Bae S (2011) Hydrothermal carbonization of municipal waste streams *Environ Sci Technol* 45:5696-5703. 10.1021/es2004528

[19] Wiedner K, Rumpel C, Steiner C, Pozzi A, Maas R, Glaser B (2013) Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale *Biomass Bioenerg* 59:264-278. 10.1016/j.biombioe.2013.08.026

[20] Oliveira I, Blohse D, Ramke HG (2013) Hydrothermal carbonization of agricultural residues *Bioresour Technol* 142:138-146. 10.1016/j.biortech.2013.04.125

[21] Namioka T, Morohashi Y, Yamane R, Yoshikawa K (2009) Hydrothermal treatment of dewatered sewage sludge cake for solid fuel production *J Environ Eng* 4:68-77. 10.1299/jee.4.68

[22] Prawisudha P, Namioka T, Yoshikawa K (2012) Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment *Appl Energy* 90:298-304. 10.1016/j.apenergy.2011.03.021

[23] Muthuraman M, Namioka T, Yoshikawa K (2010) A comparative study on co-combustion performance of municipal solid waste and Indonesian coal with high ash Indian coal: A thermogravimetric analysis *Fuel Process Technol* 91:550-558. 10.1016/j.fuproc.2009.12.018

[24] Nakhshiniev B, Gonzales HB, Yoshikawa K (2012) Hydrothermal treatment of date palm lignocellulose residue for organic fertilizer conversion: effect on cell wall and aerobic degradation rate *Compost Sci Util* 20:245-253.

[25] Ma D, Zhang G, Zhao P, Areeprasert C, Shen Y, Yoshikawa K, et al. (2015) Hydrothermal Treatment of Antibiotic Mycelial Dreg: More Understanding from Fuel Characteristics *Chem Eng J* impress. 10.1016/j.cej.2015.01.041

[26] Areeprasert C, Zhao P, Ma D, Shen Y, Yoshikawa K (2014) Alternative Solid Fuel Production from Paper Sludge Employing Hydrothermal Treatment *Energ Fuel* 28:1198-1206. 10.1021/ef402371h

[27] Ma D, Zhang G, Areeprasert C, Li C, Shen Y, Yoshikawa K, et al. (2016) Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue *Chem Eng J* 284:708-715.

[28] Areeprasert C, Scala F, Coppola A, Urciuolo M, Chirone R, Chanyavanich P, et al. (2016) Fluidized bed co-combustion of hydrothermally treated paper sludge with two coals of different rank *Fuel Process Technol* 144:230-238.

[29] Kaliyan N, Vance Morey R (2009) Factors affecting strength and durability of densified biomass products Biomass Bioenerg 33:337-359. 10.1016/j.biombioe.2008.08.005

[30] Krogh S (1980) Crushing characteristics Powder Technol 27:171-181.

[31] Lam PS, Sokhansanj S, Bi X, Lim CJ, Melin S (2011) Energy Input and Quality of Pellets Made from Steam-Exploded Douglas Fir (*Pseudotsuga menziesii*) Energ Fuel 25:1521-1528. 10.1021/ef101683s

[32] Li H, Liu X, Legros R, Bi XT, Jim Lim C, Sokhansanj S (2012) Pelletization of torrefied sawdust and properties of torrefied pellets Appl Energy 93:680-685. 10.1016/j.apenergy.2012.01.002

[33] Zaini IN, Novianti S, Nurdiauwati A, Irhamna AR, Aziz M, Yoshikawa K (2017) Investigation of the physical characteristics of washed hydrochar pellets made from empty fruit bunch Fuel Process Technol 160:109-120.

[34] Stelte W, Nielsen NPK, Hansen HO, Dahl J, Shang L, Sanadi AR (2013) Reprint of: Pelletizing properties of torrefied wheat straw Biomass Bioenerg 53:105-112.

[35] Stelte W, Clemons C, Holm JK, Sanadi AR, Ahrenfeldt J, Shang L, et al. (2011) Pelletizing properties of torrefied spruce Biomass Bioenerg 35:4690-4698.

[36] Peng J, Bi X, Sokhansanj S, Lim C (2013) Torrefaction and densification of different species of softwood residues Fuel 111:411-421.

[37] Areeprasert C, Kaewmorakot S, Suwanwattana W, Rungrueangwattanachot N, Klahan J, Siripaiboon C, et al. (2016) Fertilizer Pellet Production from Filter Cake and Water as a Binder Employing a Flat-die Pelletizer Thai Society of Agricultural Engineering Journal 22.

[38] ASABE A (2000) 269.4. Cubes, pellets and crumbles—definitions and methods for determining density, durability and moisture content ASAE Standards St Joseph,(MI): The American Society of Agricultural Engineers:537-539.

[39] Zhou H, Long Y, Meng A, Li Q, Zhang Y (2015) Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis Waste Manag 38:194-200.

[40] Chattopadhyay J, Kim C, Kim R, Pak D (2008) Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastics Korean Journal of Chemical Engineering 25:1047.

[41] Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers *Renew Sust Energ Rev* 15:2262-2289. 10.1016/j.rser.2011.02.015

[42] European Pellet Council (2015), ENplus Handbook Part 3 Pellet Quality Requirements

[43] Kambo HS, Dutta A (2014) Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization *Appl Energy* 135:182-191.

[44] Hower J (1990) Hardgrove grindability index and petrology used as an enhanced predictor of coal feed rate *Energeia* (Lexington, Kentucky);(USA) 1.

Table Legend

Table 1 Fuel property of the sample.

Table 2 Summary of mechanical property from compressive test and hardness test of fuel pellet.

Table 3 Pellet durability index (PDI) in various conditions.

Table 4 Hardgrove grindability index (HGI) of hydrothermal fuel pellet compared to other biomass pellet.

Figure Caption

Figure 1 Investigation scheme of this study: (a) Effect of HTT condition; (b) Mechanical property and adsorption tests of fuel pellet.

Figure 2 Equipment used for mechanical property testing of fuel pellet: (a) Universal Testing Machine; (b) Digital push-pull force gauge; (c) Tumbler; (d) Hardgrove Grindability Index tester.

Figure 3 The hydrothermally treated MSW from the laboratory test: (a) before; (b) after drying at 60 °C for 24h.

Figure 4 Dewatering and drying performance of raw MSW and HTT product: (a) Water removal efficiency during dewatering; Drying at 60 °C: (b) HTT 30 min; (c) HTT 60 min; (d) HTT 90 min.

Figure 5 Stress-strain curves and sample after compressive tests: (a): 4 mm; (b): 6 mm; (c): 8 mm.

Figure 6 Pellet after the hardness test.

Figure 7 Moisture content of the pellet during moisture adsorption test.

An investigation on mechanical property of MSW-derived fuel pellet produced from hydrothermal treatment

Phatavee Phasee and Chinnathan Areeprasert*

Department of Mechanical Engineering, Faculty of Engineering, Kasetsart University,
50 Ngam Wong Wan Road, Lat Yao, Chatuchak, Bangkok 10900, Thailand.

Keywords: Hydrothermal treatment; Fuel pellet; Mechanical property; MSW.

*Corresponding author – Email: fengcta@ku.ac.th; Tel: +662 797 0999.

Abstract

This paper presents a study on the effect of hydrothermal treatment (HTT) on municipal solid waste (MSW) and mechanical property of fuel pellet. The lab-scale HTT was conducted at the condition of 180-240 °C and 30-90 min. Results showed that the HTT could improve fuel property of MSW including heating value, dewatering and drying performance. The fuel pellet was produced at three different diameters (4, 6, and 8 mm). Tests of mechanical property and water adsorption were performed. Results showed that the fuel pellet was able to withstand the axial load of 19-54 N and the radial load of 72-130 N. The 8-mm pellet exhibited lowest Young's modulus (18.26 MPa) indicating flexibility and ductility. Durability of the fuel pellet was high (91-94%) while the Hardgrove grindability index (HGI) was (57-76) higher than that of the biomass pellet (18-22) and the subbituminous coal (46-49) indicating the ease of grinding. The equilibrium moisture content of the fuel pellet was 5-6%. The small fuel pellet reached adsorption equilibrium faster than the large one. In sum, the fuel pellet produced from HTT showed good fuel property as well as mechanical property for transportation and utilization.

1. Introduction

Expansion of community and economic activity increases waste generation rate. Municipal solid waste (MSW) disposal becomes a critical problem of many big cities. Several works encourage to improve waste management activity [1-3]. At this moment, large amount of MSW is dumping on a landfill site or burning at a waste incinerator. In Europe, landfilled waste are 62.2% of the total waste while utilized waste including recycled waste, incinerated waste, and composted waste are 11%, 21.9%, and 4.5% of the total waste, respectively [4]. In several Asian countries, landfill and open dump are the main MSW disposal method [5] while only few nations have a sustainable plan for waste management [6]. Landfilling of MSW will be restricted in the future because of either regulation or economic issues [7,8]. A promising method of waste elimination is an incineration because it is able to reduce the volume of solid waste significantly and has a very high capacity [9]. As a waste disposal center, the

1 incinerator needs waste fuel to be transported to the site. However, poor characteristic such as high moisture
2 content, low calorific value and heterogeneity of MSW leads to the difficulty of such activity.
3
4
5

6 Refuse-derived fuel (RDF) technology has been proposed to improve MSW quality for transportation and final
7 utilization. In short, a basic RDF processing plant may consist of screening, shredding, size reduction,
8 classification, separation, drying, and densification [4]. The advantages of RDF are higher calorific value and
9 more homogenous physicochemical characteristic compared to the original MSW. RDF has been classified into
10 seven types listing numerically according to the American Society for Testing and Materials (ASTM) Committee
11 E-38 on Resource Recovery [10,11]: RDF-1 is a fuel without oversize waste; RDF-2 is the MSW that has been
12 processed to coarse particle size or ferrous metal has been separated; RDF-3, also known as fluff RDF, has better
13 quality because of its smaller size (95% by weight pass through a 2-inch square mesh screen) and removal of
14 inorganic such as metal and glass; RDF-4 is the burnable waste in a powder form; RDF-5 is the densified burnable
15 waste in form of pellets or briquettes; RDF-6 is the liquefied RDF; and RDF-7 is the gasified RDF. Nowadays,
16 RDF-3 is commonly used because of a low production cost; however, the fuel property of RDF-3 is marginally
17 improved. The reason is that the processing of RDF-3 mainly consists of basic mechanical separation and a
18 thermal drying that cannot physical and chemical property of the waste significantly. Moreover, the “fluffy” RDF
19 seems to face a contamination problem as well as an inefficiency in transportation due to its low density resulting
20 in an increase of transportation cost.
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38 A subcritical water condition (SWC) is water that exists in the state below and near its critical point. It has
39 interesting properties such as catalytic behavior for organic compounds due to drastically higher amount of ionic
40 products compared to water at the ambient condition [12]. SWC causes degradation of substances and creates
41 various reactions, for instance, hydrolysis, dehydration, decarboxylation, condensation, and aromatization. These
42 reactions can transform biomass feedstock into other materials. The well-known applications of SWC in waste
43 and biomass conversion are hydrothermal carbonization (HTC) and hydrothermal treatment (HTT) processes.
44 HTC can convert organic materials into a carbonaceous solid product by using moderate water temperature (180-
45 350 °C) and pressure (2-10 MPa) [13,14]. The product from HTC is biochar that has a higher heating value and
46 sterilized biological substances [14,15]. The holding time of HTC is generally long and it could be in the range of
47 2-12 h [14,16]. However, a shorter holding time with a relatively higher pressure has been tested as well [17]. The
48 HTC process was applied to municipal solid waste streams [18] as well as biomass/agricultural residues [19,20].
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Similar to HTC, the HTT has been investigated by several researchers in recent years [21-23]. This innovative treatment process can convert waste such as MSW, sewage sludge, paper sludge, antibiotic residue, to value-added resources such as coal-like solid fuel or organic fertilizer showing feasibility of a large-scale process [21,22,24-28].

One of the advantages of the HTT is an ability to pulverize the feedstock. The powder product facilitates a densification process. After the densification of the raw material, the pellet immediately faces risk of disintegration during cooling, storage, transportation, as well as handling process. Many factors affect breakage of the fuel pellet, for example, biomass type, moisture content, lignin content, and particle size [29]. To reach certain standard, a quantification of fuel pellet's mechanical property, e.g. compressive test, impact crushing, and abrasion, is necessary [30]. Mechanical strength and moisture adsorption analysis of pelletized steam-exploded Douglas Fir (*Pseudotsuga menziesii*) have been performed and it was found that the pretreated fuel pellet had higher strength and rigidity compared to the untreated pellet [31]. Fuel pellet made from torrefied sawdust was subjected to moisture adsorption and Meyer hardness tests; results showed that the torrefied pellet had lower hardness and adsorbed less moisture than the conventional pellet [32]. Zaini et al. (2017) studied a mechanical property of fuel pellet made from hydrothermally treated and washed empty fruit bunch (EFB) [33]. It was found that the mechanical strength, durability, homogeneity, and hydrophobicity of the treated EFB was better than the raw EFB [33]. However, the pretreated fuel pellet in the literature review have been made by a single pellet method, which the raw or pretreated material is powdered and densified at a well-controlled condition, i.e. high-pressure and controlled temperature, using piston/cylinder or mold powered by compression machine assembled with electric heater [31-36]. This may not resemble a practical pelletizing process. Therefore, the quantification of mechanical property of the ideal pellet would not represent the practicality. To investigate the real physical condition of the fuel pellet, an industrial pelletizer should be utilized for fuel pellet production. Moreover, based on our current knowledge, no research work has been done on a quantification of mechanical property of RDF-5 produced from HTT process.

For those reasons, this research aimed to investigate the mechanical property of the hydrothermally pretreated MSW fuel pellet using an industrial pelletizer. The paper covered fundamental study on the effect of HTT production from MSW by lab-scale experiment and a study of fuel pellet production from large-scale experiment. Lab-scale experiment of HTT on MSW performed at several treatment conditions. Evaluation on the effect of

1 HTT was done on appearance, dewatering and drying performance, and fuel property. Fuel pellet was made from
2 hydrothermal pretreated MSW using a flat-die pelletizer. Comprehensive test on mechanical property that
3 resembles a situation of fuel pellet during handling, transportation and utilization was performed. This includes
4 compressive test, hardness test, durability test, and grindability test. Additionally, moisture adsorption test was
5 carried out to simulate a circumstance that the fuel pellet exposes to wet atmosphere.
6
7
8
9

10 2. Material and methods
11
12

13 2.1 Municipal solid waste
14
15

16 Municipal solid waste (MSW) used in this study was simulated and real MSW for lab-scale and large-scale
17 experiment, respectively. The simulated MSW consists of major composition of MSW including organic waste,
18 plastic, paper and textile. The representative component of simulated MSW was Chinese morning glory for
19 organic waste (17 g, 68%), mixture of HDPE, PET, PP for common plastic waste (5 g, 20%), cotton cloth for
20 textile waste (1 g, 4%), and office paper and recycled paper for paper waste (2 g, 8%). The moisture content of
21 the simulated MSW was 65.7%. The length of all materials was about 1 cm. For the large-scale test, the MSW
22 was from a city of Tangerang, Indonesia. The major composition was organic material (56%), paper waste (24%),
23 plastic waste (14%), diaper (3%), and other waste materials (3%). Moisture content of raw MSW was
24 approximately 53%. Chemical composition of the sample in this study is summarized in Table 1.
25
26
27
28
29
30
31
32
33
34
35

36 [Table 1 Fuel property of the sample](#)
37
38
39

40 2.2 Fuel pellet production
41
42

43 2.2.1 Hydrothermal treatment
44
45

46 Simulated MSW and real MSW were subjected to hydrothermal treatment (HTT) at the lab-scale and large-scale
47 apparatus, respectively. The objective of the lab-scale HTT test was to study the effect of the treatment condition.
48 The lab-scale HTT was tested at 180, 200, 220, and 240 °C at 30, 60, and 90 min. In each experiment, MSW
49 sample and deionized water were mixed at the ratio of 1 to 6 to ensure that the sample was submerged under the
50 water for an efficient treatment. They were put into an electrically heated autoclave with the volume of 500 ml.
51 After injection of the sample, the autoclave was sealed and air inside the autoclave was purged by filling the
52 nitrogen gas for about two min. Then the heater was set to the target temperature as mentioned earlier. The stirrer
53 was kept rotating at 50 rpm. After the process is finished, the heater was turned off and the autoclave was cooled
54 down. Eventually, the sample was taken out and each experiment was duplicated to ensure repeatability of the
55
56
57
58
59
60
61
62
63
64
65

1 results. The large-scale HTT experiment performed by a 10-m³ reactor at the temperature of 220-230 °C for 30
2 min holding time aimed to produce the bulk mass of HTT product for fuel pellet production.
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 1 Investigation scheme of this study: (a) Effect of HTT condition; (b) Mechanical property and water adsorption tests of fuel pellet.

2.2.2 Dewatering and drying

In the dewatering process, the pressure was applied to squeeze out the water from the lab-scale HTT product. It was designed to use easily by applying the weight from the top. The applied weight then determines the size of the force. Thus, the measuring of the force/pressure exerts to the sample was conveniently calculated. The dewatering machine consists of two parts. The first part consists of a piston rod, a place to put the weight. The second part is a sample cup whose bottom has a mesh for draining purpose. During the experiment, the sample was wrapped by filter paper and put in the cup of the dewatering machine. Then, 6 kg of weight equivalent to 11.7 kPa of pressure was applied for 5 min. Finally, the dewatered solid product and liquid part were obtained. After the dewatering process, the dewatered solid product was subjected to the drying process using an electric oven at the temperature of 60 °C. The weight of the sample was measured at every hour until the rate of mass loss was less than 0.05%. In the case of large-scale HTT product, sun drying was simply applied without dewatering and drying tests.

2.2.3 Pelletization

Pelletization was a key to produce fuel pellet or RDF-5. It densifies small material into pellet for ease of transportation and utilization. In this study, the sample was pelletized by a 5.5 kW flat-die pelletizer. The main components of the flat-die pelletizer are flat die, roller, motor and gearbox [37]. The 150-mm diameter roller rotates above the flat die which has the diameter of 90 mm. The product from the large-scale HTT was utilized in the pelletization process. The fuel pellet was made in three diameters at 4, 6, and 8 mm. Addition of water is necessary as a binder during pelletization. Thus, wet sample with the moisture content of 26% was pelletized. The fuel pellet product was then subjected to sun drying again prior to a series of mechanical property and water adsorption tests. The moisture content of the final fuel pellet was approximately 3-5%.

1 2.3 Fuel analysis

2 To perform chemical analysis of the sample, all samples was dried at 105 °C for 24 h and then crushed into powder.
3
4 The heating value was measured by a bomb calorimeter (Leco, AC-500) according to the ASTM D5865. The
5 proximate analysis was performed by simultaneous Thermal Analyzer (STA 449 F3) according to the ASTM
6 D7582 and the ultimate analysis was performed by elemental analyzer (Thermo Flash 2000) according to the
7 ASTM D5373).

8
9
10
11
12
13
14 2.4 Mechanical property analysis

15
16 2.4.1 Compressive test

17
18 The compressive test was performed to measure the maximum load that the produced fuel pellet can withstand
19 before cracking or breaking. The compressive test simulates the compressive stress due to the weight on the top-
20 end and bottom-end of the pellets during handling, storage, or transportation. In this study, the mechanical
21 compressive test was done using a universal testing machine (INSTRON 5969) shown in Figure 2a. In the
22 experiment, the pellet was attached to the metal plate as a foundation and it was preloaded at approximately 3 N.
23
24 The load was applied to the pellet at the condition of 1 mm/min until the machine detects critically fracture or
25 damage. The pellet brought to this test has to meet the standard to ensure reproducibility of the result. The
26 dimension of the pellet was about 20 mm in length and its cylindrical shape has to be straight. The experiment
27 was performed 4-6 times for each pellet size.

28
29
30
31
32
33
34 Figure 2 Equipment used for mechanical property testing of fuel pellet: (a) Universal Testing Machine; (b)
35
36
37
38
39 Digital push-pull force gauge; (c) Tumbler; (d) Hardgrove Grindability Index tester.

40
41
42
43
44
45 2.4.2 Hardness test

46
47 The hardness test in this study measures the maximum compressive force on the sides of the pellet. It simulates
48 the force on the side of the fuel pellet. In this study, the hardness test was performed by a digital push-pull force
49 gauge (SUNDOO SH-200) as shown in Figure 2b. In the experiment, the fuel pellet was placed on the slot and
50 the force was applied until the breakage was observed. Then, the machine automatically calculated the maximum
51 force the pellet can withstand. The standard pellet sample mentioned earlier was also used in the test. The
52 experiment was repeated 6 times for each type of pellet.

1 2.4.3 Durability test

2 Durability is an important mechanical property of pellet since it represents one of the physical damages during
3 transportation. Tumbler shown in Figure 2c is used to estimate the pellet quality in terms of pellet durability index
4 (PDI). The American Society of Agricultural Engineers Standard 269.4 (ASABE) [38] suggests that the
5 rectangular tumbler should be made of stainless steel with an inner dimensions of 300 x 300 x 125 mm. In order
6 to enforce the standard tumbling motion, the box is equipped with a 230 mm long baffle, which extends 50 mm
7 into the container. The baffle is affixed symmetrically to a diagonal of one side of the box. The container rotates
8 on an axis, which is at the center and perpendicular to the sides of the box. The rotation speed was around 50 rpm.
9 A 500 g of pellet was tested for 5 and 10 min before being sieved manually with a 3.15 mm round mesh. PDI was
10 computed by dividing the whole pellet sample weight (WPW) by the initial weight (IW) of the sample and
11 multiply by 100 ($PDI = (WPW/IW) \times 100$).
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2.4.4 Grindability test

Hardgrove grindability index (HGI) refers to the grindability of coal. It is performed by a tool called the Hardgrove machine. Alternative fuel pellet that normally requires grinding before utilization can borrow HGI to measure grindability in the same way of coal. Pellet with a high HGI value (close to 100) indicates a brittle nature and can be crushed easily whereas pellet with low HGI value (about 30-45) is hard and tough for grinding. For each test, 100 g of each pellet size (4, 6, and 8 mm diameter) were utilized. The HGI was performed according to ASTM D409-12 using HGI tester (Preiser/Mineco 90-9301-01) as shown in Figure 2d.

2.5 Water adsorption test

The moisture adsorption test simulates high humidity condition during transportation or storage to measure the moisture adsorption capacity of the pellet. The higher moisture adsorption capacity indicates the higher tendency of material that exposed to humidity would undergo swelling and eventually disintegrate. The moisture adsorption test is performed by placing the pellets in a humidity-controlled cabinet at 25-27 °C and 78-80% humidity. The cabinet is equipped with a mist generator and a light bulb to simulate the atmosphere. A microcontroller was used to control the mist generator and the bulb to keep the target humidity and temperature stable. The weight of material was recorded every 15 min for the first 2 h and every 1 h for the following hour until the moisture adsorption of the pellet sample is saturated. After placing the pellet sample in the chamber, the box has a control

1 unit to operate the mist generator and the bulb to keep the humidity and temperature stable. In each experiment,
2 five pellets were tested for reproducibility of the results.
3
4
5

6 3. Results and discussion
7
8 3.1 Hydrothermally treated MSW
9
10 3.1.1 Effect of treatment condition

11 Appearance of the product after HTT before drying and after drying at 60 °C for 24 h is shown in Figure 3a and
12 3b, respectively. Comparing the product after HTT with the different the holding times, the texture of the product
13 at each temperature was somehow similar. In case of HTT temperature variation, the appearance of the product
14 was clearly different. At 180 °C HTT condition, textile was recognized while the size of plastic materials was still
15 big. The color of the product was dark brown. When the treatment temperature increased to 200 °C HTT, the
16 product became more homogeneous. The color of the product became darker when increases the temperature but
17 the amount of the product was reduced. At the HTT condition of 220 °C, the color of the product was almost black
18 and the amount of the product was obviously less than that of the lower temperature. At the temperature condition
19 of 240 °C, the product was completely homogeneous and turned black. The amount of the product was very few
20 owing to liquefaction reaction. For the dried HTT products, they were shrank and the color was less intense due
21 to the removal of water. Nonetheless, the general appearance was not changed.
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36 Figure 3 The hydrothermally treated MSW from the laboratory test: (a) before; (b) after drying at 60 °C for 24h.
37
38
39

40 3.1.2 Dewatering and drying performance
41
42

43 The original moisture content of simulated MSW was about 65.7%. After the HTT, it was higher than 90%. This
44 was due to the large amount of addition water was utilized to simulate lab-scale HTT process. In large-scale
45 process where direct steam injection was utilized, the moisture content of the product was approximately 60%
46 due to the lower steam to raw material ratio [22]. Water removal efficiency during mechanical dewatering test of
47 the lab-scale HTT products was calculated by dividing the mass of the dewatered liquid by the mass of the product
48 after HTT. Results are presented in Figure 4a. It can be observed that the removal of water during the dewatering
49 was in range of 74-95%. For lab-scale product, large amount of dewatered liquid was devoted to additional water
50 during the HTT process. The effect of the treatment temperature on the water removal was obvious. For example,
51 at 60 min residence time, the water removal efficiency showed 5%, 16%, and 22% enhancement when the HTT
52
53
54
55
56
57
58
59
60
61
62
63
64
65

temperature was increased from 180 to 200, 220, and 240 °C, respectively. On the other hand, the residence time of HTT did not significantly affect water removal performance. For instance, at 220 °C, the improvement of water removal efficiency was 14.5% and 14.8%, when the residence time was extended from 30 to 60 and 90 min, respectively. Thus, extension of the residence time of HTT process might not give favorable dewatering efficiency. In cell level, subcritical water can crush cell structure of organic material where bound water was situated and this benefited the water removal process [26]. In the drying process, the effect of treatment temperature showed the same positive outcome similar to dewatering process. The moisture of the product was evaporated faster at the higher HTT temperature. For example, the 220 °C/30 min HTT product utilized 7 min during 60 °C drying for evaporating 80% of total moisture whereas the original MSW needed 13 min. The effect of the holding time on drying performance was limited. For instance, the increase of HTT holding time from 30 to 60 min (every HTT temperature) cannot accelerate moisture evaporation to reach 20% of total moisture. The improvement of drying performance became apparent when the HTT holding time was increased to 90 min. From dewatering and drying performance, the effect of the treatment temperature was more significant than the reaction holding time.

Figure 4 Dewatering and drying performance of raw MSW and HTT product: (a) Water removal efficiency during dewatering; Drying at 60 °C: (b) HTT 30 min; (c) HTT 60 min; (d) HTT 90 min.

3.1.3 Fuel property

Table 1 presents proximate analysis, ultimate analysis, heating value of raw MSW and HTT product. The heating value of the lab-scale HTT product was increased as the HTT temperature increased. For example, at 30 min holding time, the heating value was increased from 21.8 to 26.4 MJ/kg for 180 and 200 °C, respectively, accounting 21.1% increase. The improvement of heating value was consistent with higher fraction of carbon content quantified by ultimate analysis. For instance, the carbon content was increased from 43.4% in the original MSW to 50% in 200 °C/30 min HTT product showing 15.2% increase. The carbon content of HTT product ranged from 47 to 74% depending on the treatment condition. From the proximate analysis, the HTT product contained higher volatile matter and lower fixed carbon content compared to the original MSW. This behavior was due to the leftover plastic waste in the product, whose constituent is mainly volatile matter. It could be explained by that the temperature of HTT was 180-240 °C and it dissolved the organic material, which starts to thermally decompose at the temperature of 200 °C [39]. However, these HTT temperatures cannot fully decompose the plastic material,

which needs relatively higher temperature, i.e. 400 °C [40]. For the large-scale HTT product, the elemental composition was typical and comparable to the raw MSW. The ash content was high representing the real situation of waste characteristic that contains variety of inorganic material such as sand, soil, and other tiny metal scraps. The heating value of the hydrothermally pretreated MSW was comparable or higher than that of the biomass residues [41]; therefore, it would be a good candidate for combustion or co-combustion with other solid fuels.

3.2 Mechanical property of fuel pellet from hydrothermal treatment

3.2.1 Compressive test

Results from compressive test, namely maximum force, stress and strain at maximum load, and Young's modulus, are summarized in Table 2. The results showed that the large pellet size can withstand larger load. The average maximum load of the sample was 19.15, 36.94, and 54.06 N at 4, 6, and 8 mm diameter of pellets, respectively. Large diameter pellet can resist significantly higher compressive force suggesting that the pellet can retain in a good shape during transportation and handling. It can be observed that the standard deviation of maximum load of the 4 mm pellet was large. This was due to the pellet was relatively small causing instability of the results. Compressive stress at maximum load was lower when the diameter of the pellet was increased. The compressive strain at the maximum load of all pellet sizes were similar. The Young's modulus (E) is a measurement of the stiffness of solid material. In other words, it determines a resistant in changes of length of the sample. In this study, the E values were calculated by determining the slope of the stress – strain profiles (average R-squared 0.9960). The average E of 4 and 6 mm pellet was 39.33 and 34.77 MPa, respectively. The average E of 8 mm pellet has reduced to 18.26 MPa. The fuel pellet produced from HTT was considered as a low E material meaning that it was easily to deform but flexible. From the result, 8 mm pellet, that has lower E than the other sizes, was relatively flexible (less stiff) compared to the 4 and 6 mm pellet. This result was consistent with the pellet compression ratios estimated by length of the pellet divided by diameter of the pellet. The compression ratio of the pellet was 5.44, 3.79, and 3.14 for 4, 6, and 8 mm pellet, respectively. Higher compression ratio produced denser pellet. Therefore, the 4 mm pellet was the most stiffness and this was consistent with the E value.

Table 2 Summary of mechanical property from compressive test and hardness test of fuel pellet.

Compressive stress – strain curves of the sample are presented in Figure 5 along with the visualization of the pellet after the compression. All of the pellet was compressed until breaking and the stress-strain data was continuously

1 collected. Figure 5a illustrates the stress-strain curve of the 4 mm pellet under compressive force. It was clearly
2 observed that the profiles were different due to the physical condition of 4 mm pellet. It was small and was not in
3 a complete cylindrical shape. This was technically unavoidable owing to the mechanism of the pelletizer and the
4 size of pellet. However, the characteristic of the stress-strain profile illustrated similar characteristic. After load
5 was applied, the curve was raised up considering elastic region (linear) until it reached the yield stress point. Then,
6 it entered partially plastic deformation region until the pellet was broken. Sample 2 (S2) showed unique
7 characteristic. The breakage of the pellet was locked and further densified; therefore, the broken pellet can
8 withstand further force during the compressive test. This is the reason why the S2 pellet had the maximum force
9 as well as the maximum stress. After the compressive test, it was observed that the pellet was intensely crushed
10 at the top-end and bended at the lower region. The failure mode was considered “crushing” showing that the pellet
11 cannot withstand much compressive force and cannot retain in a good form. This characteristic showed
12 consistency with the stiffness and Young’s modulus. Thus, 4 mm pellet was likely to bend and crush during
13 transportation or handling either due to the axial compressive force or radial force (discussed later) on the pellet.
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28 Figure 5b shows the stress-strain curve and breakage of 6 mm during compressive test. The stress-strain curves
29 of 6 mm pellet were more consistent than that of the 4 mm pellet. From Figure 5b, the maximum compressive
30 stress of the 6 mm pellet was approximately in range of 1.3-1.6 MPa at the extensive strain. Two types of profiles
31 were observed as relatively brittle (S1 and S3) and relatively ductile (Others) characteristics. After adding the
32 compressive load, the brittle pellet was deformed in the elastic region with short range of plastic deformation
33 characteristic until breakage. Yield stress point and ultimate stress point were closed. On the other hand, the
34 ductile pellet characteristic showed longer both elastic and plastic deformation region before breakage. Due to the
35 ductile characteristic, strain of this type of pellet was extensive as shown in S5 and S6. Failure mode of 6 mm
36 pellet was different from that of the 4 mm pellet. There was no crushed particle in the test area. The upper part of
37 the pellet was slide and this failure can be considered as “shearing”. Figure 5c presents stress-strain profiles of 8
38 mm pellet during compressive test. The characteristic of the stress-strain profiles was the most consistent. This
39 was because the shape of the 8 mm pellet was completely in cylindrical shape. However, two types of stress-strain
40 curves were observed similar to that of 6 mm pellet. Compressive stress of 8 mm pellet was lower than that of the
41 6 mm while strain showed the opposite relationship. Young’s modulus of 8 mm pellet was significantly reduced.
42 The stress-strain profiles were flat compared to the profiles of 4 and 6 mm pellet. This showed the increase of
43 ductility characteristic. The visualization of this important parameter can be found in the sample after the
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

destructive compressive test. The 8 mm pellet after the test was rigid as no excessive crushed particles and slide structure were observed. At the top-end of the 8 mm pellet, the particle seemed to swell as it absorbed the load during the compressive test. The failure mode of the 8 mm pellet was different from that of the 4 and 6 mm. due to its low modulus of elasticity.

Figure 5 Stress-strain curves and sample after compressive tests: (a): 4 mm; (b): 6 mm; (c): 8 mm.

3.2.2 Hardness test

The hardness test in this study resembles the situation which the pellet was piled up during storage. Weight from other pellets would exert on the side. Maximum force from the hardness tests is presented in Table 2. The average force that made 4 mm pellet broken was 72.3 N and increased to 112.6 and 130.4 N for the 6 and 8 mm diameter, accounting 55.7% and 80.4% increase, respectively. The force was applied on the side of the pellet where it can be distributed. The load of the hardness test was perpendicular to the pellet axial. This was different from the compressive test in which the load was applied perpendicular to the cross sectional area of the pellet. Thus, the pellet in this hardness test can withstand more force than that of the axial compressive ones. After the hardness test, the crushed pellet was visualized as shown in Figure 6. All pellets were damaged regardless of the diameter. The most destructive pellet was the 4 mm diameter. It was totally deformed and flattened. Several pieces of crushed pellet were observed and the pellet cannot retain its original form. For the 6 and 8 mm pellets, it can retain cylindrical shape even though the several breakage was observed. It is likely that they can be handled with minimal broken pieces and dust, which was significantly different from the 4 mm.

Figure 6 Pellet after the hardness test.

3.2.3 Durability test

Parameters during durability test in this study were moisture content of the fuel pellet and duration of tumbling. Two conditions of moisture content of the sample were 3.92%, which was as received moisture content of the pellet from the indoor storage, and 0% (the sample was dried in the electrical oven before the test). The test was last 10 min with a 5-min stop for collecting the data. This allowed a calculation of two-step pellet durability index (PDI). The calculated PDI is presented in Table 3. It can be observed that the size and the moisture of the pellet has no significant effect on the PDI values as they were in range of 94-96% and 91-93% for the 5 min and 10 min

1 testing, respectively. In general, samples exhibit to longer abrasive condition would yield less PDI value. Attrition
 2 of the pellet would occur at the beginning of the test due to its sharp edge and rough finishing surface. This leaded
 3 to the significant decrease of PDI (from 100% to 95% in average, accounting 5%) during the first 5 min test. Then,
 4 the additional reduction of PDI was only 3% after another 5 min test. From the viewpoint of European wood-
 5 derived pellet standard, woody pellet mechanical durability should be higher than 97.5% and 98.0% to reach B
 6 class and A1/A2 class, respectively [42]. The mechanical durability of the hydrothermally treated MSW-derived
 7 pellet showed slightly lower than that of the woody pellet standard. This might be due to the difference
 8 composition of the raw material as well as the condition of the pelletization in which commercial-scale production
 9 would generate higher heat and compressive force. For the former, biomass material contains lignin, which acts
 10 as a binder during pelletization process. Lignin, an important structural organic polymer, undergoes glass-liquid
 11 transition owing to high temperature condition during the pelletization that strengthens the biomass pellet by
 12 increasing solid bridge formation [43]. On the other hand, in MSW sample, it could be suggested that another
 13 class of polymeric material, i.e. plastic, would be a key component for such mechanism to occur. However, the
 14 plastic material in the treated MSW was processed by high pressure and temperature steam resulting in a reduction
 15 of plastic quantity. This may reduce the effect on strengthening the pellet product. Nevertheless, the fuel pellet
 16 sample obtained from the hydrothermally pretreated MSW presents relatively high durability, which is good for
 17 transportation and handling.

37 **Table 3 Pellet durability index (PDI) in various conditions.**

38
 39
 40
 41 **3.2.4 Grindability test**

42 The Hardgrove Grindability Index (HGI) of hydrothermal fuel pellet is presented in Table 4 along with
 43 subbituminous coal and other alternative solid fuels. The 4, 6, and 8 mm fuel pellet has HGI value of 76, 65, and
 44 57, respectively. The HGI of fuel pellet was slightly higher than that of coal and processed biomass. The
 45 conventional biomass pellet has significantly low HGI. Thus, it could be difficult to grind, as their HGI was
 46 relatively low. When comparing the effect of diameter of the fuel pellet, the larger pellet diameter gave lower
 47 grindability rate meaning that the pellet with large size was difficult to be grinded. The HGI of fuel pellet
 48 correlated with compressive strength and durability tests. Even though the large-size fuel pellet showed its strength
 49 through HGI and other mechanical tests that is favored by handling and transportation, it may need more energy
 50 during grinding before feeding in a fluidized or pulverized bed combustor. Nonetheless, a typical HGI of coal for
 51

1 pulverizers is 50 [44] so the 8 mm fuel pellet could be grinded without excessive energy consumption compared
 2 to coal.
 3
 4
 5

6 **Table 4 Hardgrove grindability index (HGI) of hydrothermal fuel pellet compared to other biomass pellet.**
 7
 8
 9

10 **3.3 Water adsorption test**
 11

12 Figure 7 shows moisture content of fuel pellets during moisture adsorption test. It should be noted that the pellets
 13 were totally dried prior to the test. Results showed that the larger pellets saturated more slowly and adsorbed more
 14 water than the small pellets. The weight of the water in the sample was saturated at 5.2%, 5.5% and 5.8% for the
 15 4, 6 and 8 mm pellets, respectively. In more detail, the 4 mm diameter pellet was firstly saturated at 120 min
 16 followed by the 6 and 8 mm that were saturated at 180 min and 360 min, respectively. The moisture adsorption
 17 rate was high at the beginning (30 min) then it was slightly reduced (30-60 min) and became low after 60 min
 18 until saturation. All pellets were still in shape and no damage. It was interesting that the water adsorption of fuel
 19 pellet produced from HTT could adsorb water at around 5-6% at its saturation regardless of the duration of high
 20 humidity exposure. The hydrophobicity characteristic of the fuel pellet was obvious. This may due to the
 21 decomposition of organic material in the waste stream. Such raw material contains hemicellulose whose water
 22 adsorption characteristic is the highest among other lignocellulosic constituents [43]. Therefore, the fuel pellet
 23 can retain in a good condition (low moisture content, high heating value, and in a good shape) indicating potential
 24 for practical utilization.
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37

38 **Figure 7 Moisture content of the pellet during moisture adsorption test.**
 39
 40

41 **4. Conclusion**
 42
 43

44 Effect of HTT on fuel property of MSW and the mechanical property of hydrothermal fuel pellet have been
 45 investigated. Conclusion can be summarized as follows:
 46
 47

48 1. HTT can improve energy density and dewatering and drying performance of the MSW. Treatment
 49 temperature played important role in fuel property improvement.
 50
 51 2. The hydrothermal fuel pellet can withstand the load of 19-54 N and 72-130 N for axial and radial load,
 52 respectively. In general, a larger diameter fuel pellet can withstand larger force than the smaller ones.
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65

1 3. A 8 mm pellet exhibits lower stress under the load while the Young's modulus was lower (18.26 MPa)
2 compared to that of the smaller size pellet (22-24 MPa) indicating flexible and ductile characteristic.
3
4 4. Durability of the produced fuel pellet was high (91-94%). The Hardgrove grindability index (HGI) of the
5 produced fuel pellet was higher (57-76) than that of biomass pellet (18-22) and comparable to
6 subbituminous coal and torrefied biomass (46-49). Thus, the produced fuel pellet showed good
7 grindability.
8
9 5. Moisture equilibrium point of the fuel pellet was around 5-6%. Larger fuel pellet can adsorb more water
10 while the smaller pellet reached equilibrium faster than the larger ones.
11
12 6. HTT can be a promising method for production of fuel pellet since it showed good fuel property and
13 physical characteristic in form of pellet for handling, transportation, and utilization.

22 5. Acknowledgement
23

24 This research has received funding from the Thailand Research Fund (MRG5980058). Authors would like to
25 thank Dr. Kunio Yoshikawa and Dr. Wichai Siwakosit for essential advice, Waste and Biomass Conversion
26 Laboratory, Department of Mechanical Engineering, Faculty of Engineering, Kasetsart University, for research
27 facility, and Dr. Bayu Indrawan, Center of Waste Management of Indonesia, for substantial support.
28
29

34 6. Reference
35

36 [1] Zhuang Y, Wu SW, Wang YL, Wu WX, Chen YX (2008) Source separation of household waste: a case study
37 in China Waste Manag 28:2022-2030. 10.1016/j.wasman.2007.08.012
38
39 [2] Aphale O, Thyberg KL, Tonjes DJ (2015) Differences in waste generation, waste composition, and source
40 separation across three waste districts in a New York suburb Resour Conserv Recy 99:19-28.
41
42 [3] Areeprasert C, Kaharn J, Inseemeesak B, Phasee P, Khaobang C, Kuhavichanun A, et al. (2018) A comparative
43 study on characteristic of locally source-separated and mixed MSW in Bangkok with possibility of material
44 recycling J Mater Cycles Waste 20:302-313.
45
46 [4] Caputo AC, Pelagagge PM (2002) RDF production plants: I Design and costs Appl Therm Eng 22:423-437.
47
48 [5] Visvanathan C, Trankler J. Municipal solid waste management in Asia: A comparative analysis. workshop
49 on sustainable landfill management2003. p. 3-5.
50
51

1 [6] Shekdar AV (2009) Sustainable solid waste management: an integrated approach for Asian countries Waste
2 Manag 29:1438-1448. 10.1016/j.wasman.2008.08.025

3

4 [7] Cheng H, Hu Y (2010) Municipal solid waste (MSW) as a renewable source of energy: current and future
5 practices in China Bioresour Technol 101:3816-3824. 10.1016/j.biortech.2010.01.040

6

7

8 [8] Zaman AU (2013) Identification of waste management development drivers and potential emerging waste
9 treatment technologies International Journal of Environmental Science and Technology:(IJEST) 10:455.

10

11

12 [9] McKay G (2002) Dioxin characterisation, formation and minimisation during municipal solid waste (MSW)
13 incineration Chem Eng J 86:343-368.

14

15

16 [10] Manser AG, Keeling A. Practical handbook of processing and recycling municipal waste: CRC Press; 1996.

17

18

19 [11] Sommerlad RE, Seeker WR, Finkelstein A, Kilgroe JD. Environmental characterization of refuse-derived-
20 fuel incinerator technology. National Waste Processing Conference, Philadelphia1988.

21

22

23

24 [12] Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant J Supercrit Fluids 39:362-
25 380. 10.1016/j.supflu.2006.03.016

26

27

28 [13] Mumme J, Eckervogt L, Pielert J, Diakite M, Rupp F, Kern J (2011) Hydrothermal carbonization of
29 anaerobically digested maize silage Bioresour Technol 102:9255-9260. 10.1016/j.biortech.2011.06.099

30

31

32 [14] He C, Giannis A, Wang J-Y (2013) Conversion of sewage sludge to clean solid fuel using hydrothermal
33 carbonization: Hydrochar fuel characteristics and combustion behavior Appl Energy 111:257-266.

34

35

36

37 [15] Park S-J, Bae J-S, Lee D-W, Ra HW, Hong J-C, Choi Y-C (2011) Effects of Hydrothermally Pretreated
38 Sewage Sludge on the Stability and Dispersibilty of Slurry Fuel Using Pulverized Coal Energ Fuel 25:3934-3939.

39

40

41

42 [16] Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose
43 Carbon 47:2281-2289. 10.1016/j.carbon.2009.04.026

44

45

46 [17] Parshetti GK, Liu Z, Jain A, Srinivasan MP, Balasubramanian R (2013) Hydrothermal carbonization of
47 sewage sludge for energy production with coal Fuel 111:201-210. 10.1016/j.fuel.2013.04.052

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

[18] Berge ND, Ro KS, Mao J, Flora JR, Chappell MA, Bae S (2011) Hydrothermal carbonization of municipal waste streams *Environ Sci Technol* 45:5696-5703. 10.1021/es2004528

[19] Wiedner K, Rumpel C, Steiner C, Pozzi A, Maas R, Glaser B (2013) Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale *Biomass Bioenerg* 59:264-278. 10.1016/j.biombioe.2013.08.026

[20] Oliveira I, Blohse D, Ramke HG (2013) Hydrothermal carbonization of agricultural residues *Bioresour Technol* 142:138-146. 10.1016/j.biortech.2013.04.125

[21] Namioka T, Morohashi Y, Yamane R, Yoshikawa K (2009) Hydrothermal treatment of dewatered sewage sludge cake for solid fuel production *J Environ Eng* 4:68-77. 10.1299/jee.4.68

[22] Prawisudha P, Namioka T, Yoshikawa K (2012) Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment *Appl Energy* 90:298-304. 10.1016/j.apenergy.2011.03.021

[23] Muthuraman M, Namioka T, Yoshikawa K (2010) A comparative study on co-combustion performance of municipal solid waste and Indonesian coal with high ash Indian coal: A thermogravimetric analysis *Fuel Process Technol* 91:550-558. 10.1016/j.fuproc.2009.12.018

[24] Nakhshiniev B, Gonzales HB, Yoshikawa K (2012) Hydrothermal treatment of date palm lignocellulose residue for organic fertilizer conversion: effect on cell wall and aerobic degradation rate *Compost Sci Util* 20:245-253.

[25] Ma D, Zhang G, Zhao P, Areeprasert C, Shen Y, Yoshikawa K, et al. (2015) Hydrothermal Treatment of Antibiotic Mycelial Dreg: More Understanding from Fuel Characteristics *Chem Eng J* impress. 10.1016/j.cej.2015.01.041

[26] Areeprasert C, Zhao P, Ma D, Shen Y, Yoshikawa K (2014) Alternative Solid Fuel Production from Paper Sludge Employing Hydrothermal Treatment *Energ Fuel* 28:1198-1206. 10.1021/ef402371h

[27] Ma D, Zhang G, Areeprasert C, Li C, Shen Y, Yoshikawa K, et al. (2016) Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue *Chem Eng J* 284:708-715.

[28] Areeprasert C, Scala F, Coppola A, Urciuolo M, Chirone R, Chanyavanich P, et al. (2016) Fluidized bed co-combustion of hydrothermally treated paper sludge with two coals of different rank *Fuel Process Technol* 144:230-238.

1 [29] Kaliyan N, Vance Morey R (2009) Factors affecting strength and durability of densified biomass products
2 Biomass Bioenerg 33:337-359. 10.1016/j.biombioe.2008.08.005

3

4 [30] Krogh S (1980) Crushing characteristics Powder Technol 27:171-181.

5

6

7 [31] Lam PS, Sokhansanj S, Bi X, Lim CJ, Melin S (2011) Energy Input and Quality of Pellets Made from Steam-
8 Exploded Douglas Fir (*Pseudotsuga menziesii*) Energ Fuel 25:1521-1528. 10.1021/ef101683s

9

10

11 [32] Li H, Liu X, Legros R, Bi XT, Jim Lim C, Sokhansanj S (2012) Pelletization of torrefied sawdust and
12 properties of torrefied pellets Appl Energy 93:680-685. 10.1016/j.apenergy.2012.01.002

13

14

15 [33] Zaini IN, Novianti S, Nurdiauwati A, Irhamna AR, Aziz M, Yoshikawa K (2017) Investigation of the physical
16 characteristics of washed hydrochar pellets made from empty fruit bunch Fuel Process Technol 160:109-120.

17

18

19 [34] Stelte W, Nielsen NPK, Hansen HO, Dahl J, Shang L, Sanadi AR (2013) Reprint of: Pelletizing properties
20 of torrefied wheat straw Biomass Bioenerg 53:105-112.

21

22

23 [35] Stelte W, Clemons C, Holm JK, Sanadi AR, Ahrenfeldt J, Shang L, et al. (2011) Pelletizing properties of
24 torrefied spruce Biomass Bioenerg 35:4690-4698.

25

26

27 [36] Peng J, Bi X, Sokhansanj S, Lim C (2013) Torrefaction and densification of different species of softwood
28 residues Fuel 111:411-421.

29

30

31 [37] Areeprasert C, Kaewmorakot S, Suwanwattana W, Rungrueangwattanachot N, Klahan J, Siripaiboon C, et
32 al. (2016) Fertilizer Pellet Production from Filter Cake and Water as a Binder Employing a Flat-die Pelletizer
33 Thai Society of Agricultural Engineering Journal 22.

34

35

36 [38] ASABE A (2000) 269.4. Cubes, pellets and crumbles—definitions and methods for determining density,
37 durability and moisture content ASAE Standards St Joseph,(MI): The American Society of Agricultural
38 Engineers:537-539.

39

40

41 [39] Zhou H, Long Y, Meng A, Li Q, Zhang Y (2015) Thermogravimetric characteristics of typical municipal
42 solid waste fractions during co-pyrolysis Waste Manag 38:194-200.

43

44

45 [40] Chattopadhyay J, Kim C, Kim R, Pak D (2008) Thermogravimetric characteristics and kinetic study of
46 biomass co-pyrolysis with plastics Korean Journal of Chemical Engineering 25:1047.

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

1 [41] Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for
2 boilers Renew Sust Energ Rev 15:2262-2289. 10.1016/j.rser.2011.02.015
3
4

5 [42] European Pellet Council (2015), ENplus Handbook Part 3 Pellet Quality Requirements
6
7

8 [43] Kambo HS, Dutta A (2014) Strength, storage, and combustion characteristics of densified lignocellulosic
9 biomass produced via torrefaction and hydrothermal carbonization Appl Energy 135:182-191.
10
11

12 [44] Hower J (1990) Hardgrove grindability index and petrology used as an enhanced predictor of coal feed rate
13 Energeia (Lexington, Kentucky);(USA) 1.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table Legend

1
2 Table 1 Fuel property of the sample.
3
4

5 Table 2 Summary of mechanical property from compressive test and hardness test of fuel pellet.
6
7

8 Table 3 Pellet durability index (PDI) in various conditions.
9

10 Table 4 Hardgrove grindability index (HGI) of hydrothermal fuel pellet compared to other biomass pellet.
11
12
13
14
15

Figure Caption

16 Figure 1 Investigation scheme of this study: (a) Effect of HTT condition; (b) Mechanical property and
17 adsorption tests of fuel pellet.
18

19 Figure 2 Equipment used for mechanical property testing of fuel pellet: (a) Universal Testing Machine; (b)
20
21 Digital push-pull force gauge; (c) Tumbler; (d) Hardgrove Grindability Index tester.
22

23 Figure 3 The hydrothermally treated MSW from the laboratory test: (a) before; (b) after drying at 60 °C for 24h.
24
25

26 Figure 4 Dewatering and drying performance of raw MSW and HTT product: (a) Water removal efficiency
27 during dewatering; Drying at 60 °C: (b) HTT 30 min; (c) HTT 60 min; (d) HTT 90 min.
28
29

30 Figure 5 Stress-strain curves and sample after compressive tests: (a): 4 mm; (b): 6 mm; (c): 8 mm.
31
32

33 Figure 6 Pellet after the hardness test.
34
35

36 Figure 7 Moisture content of the pellet during moisture adsorption test.
37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

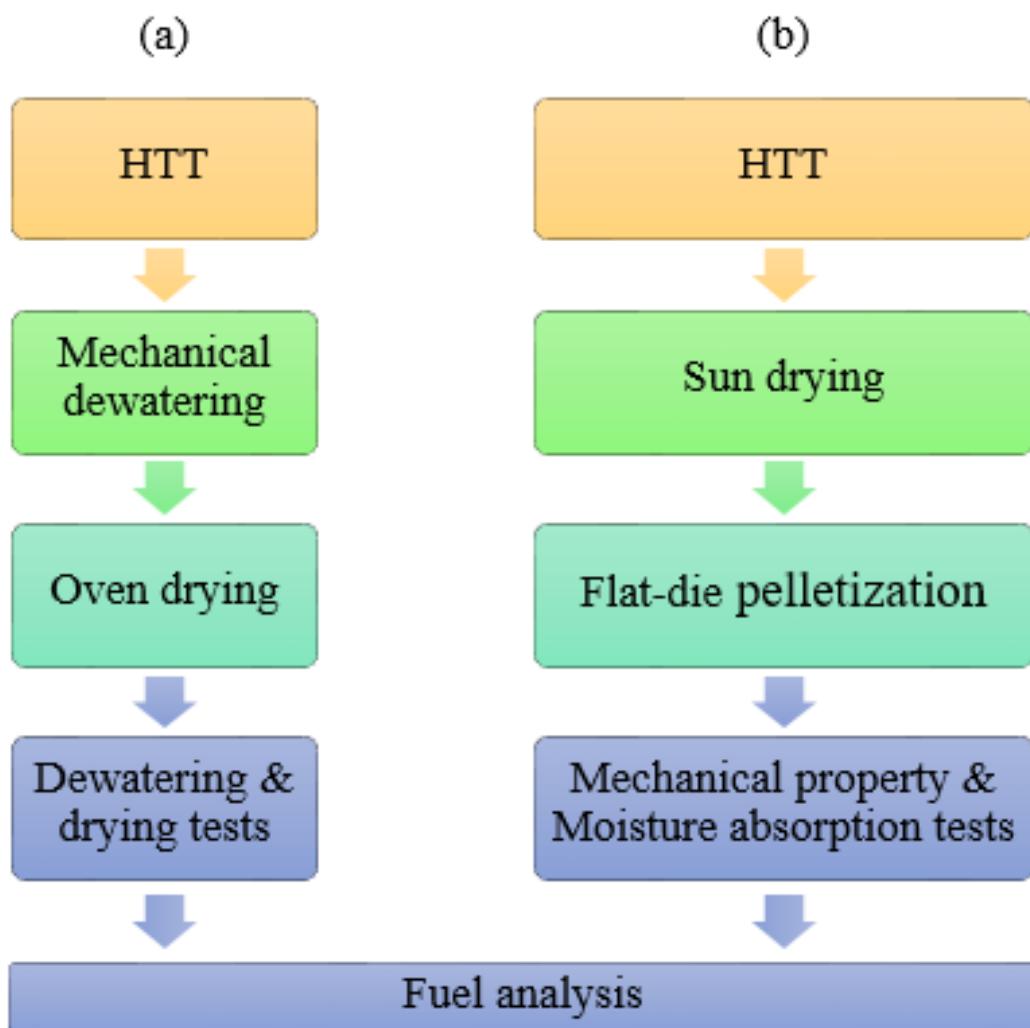


Figure 1 Investigation scheme of this study: (a) Effect of HTT condition; (b) Mechanical property and adsorption tests of fuel pellet.

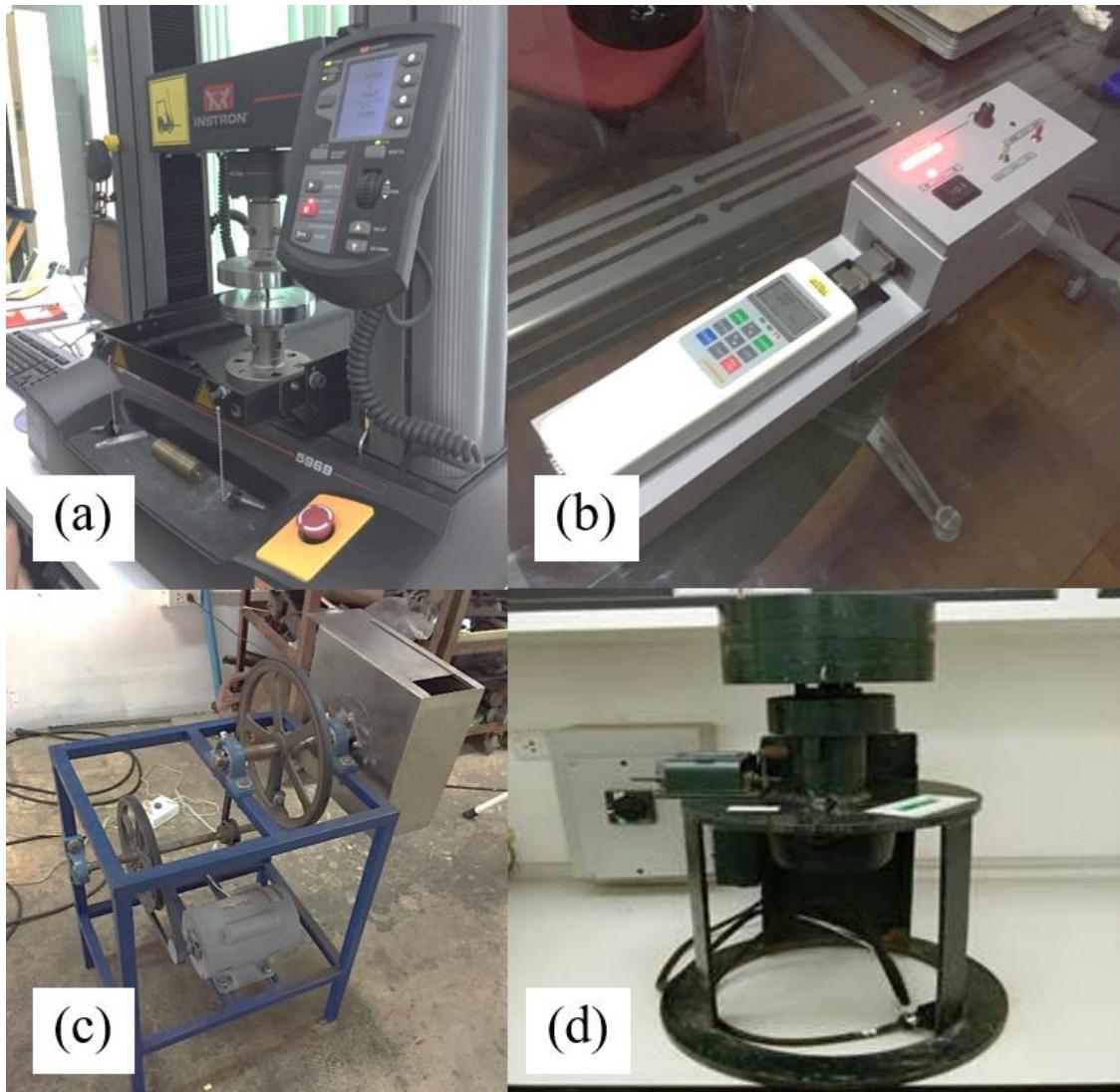


Figure 2 Equipment used for mechanical property testing of fuel pellet: (a) Universal Testing Machine; (b) Digital push-pull force gauge; (c) Tumbler; (d) Hardgrove Grindability Index tester.

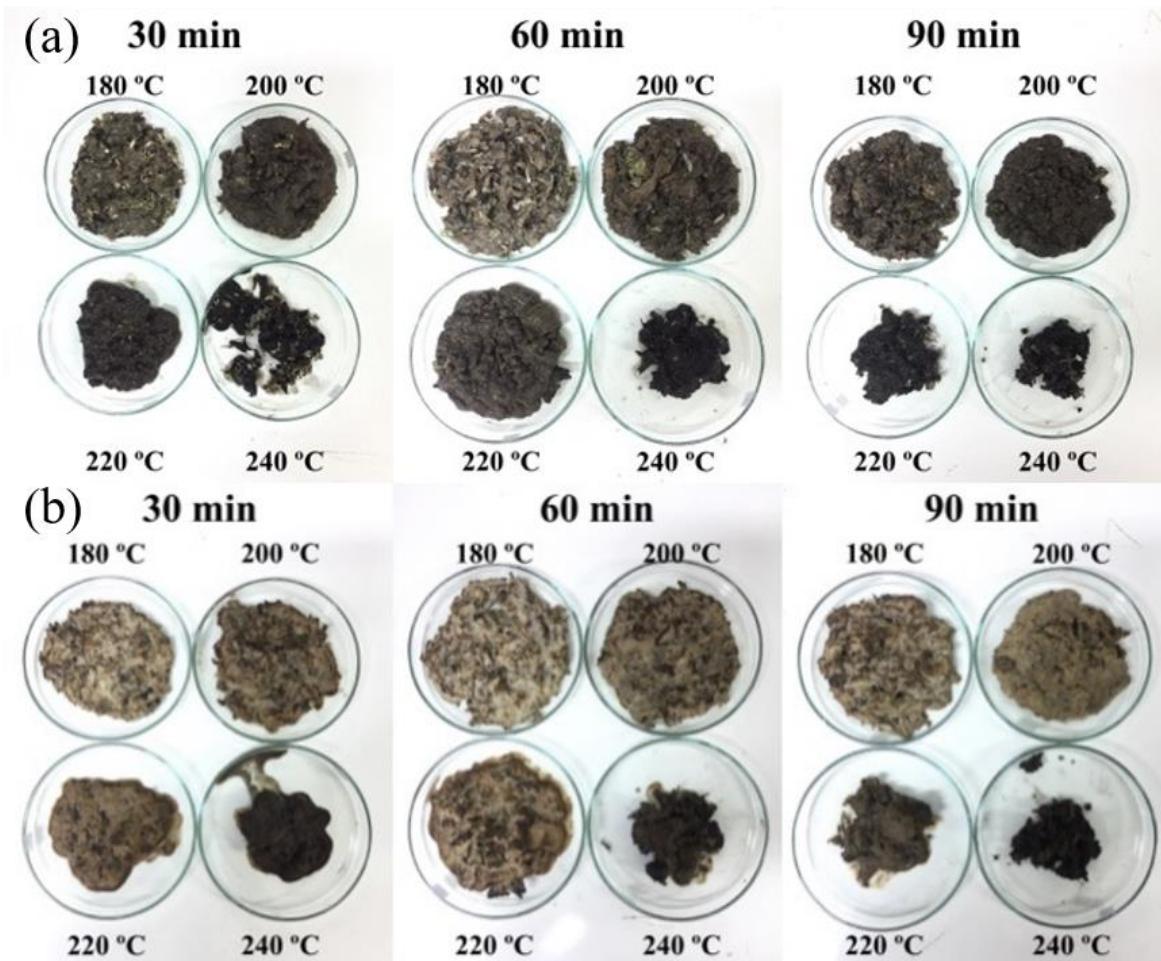


Figure 3 The hydrothermally treated MSW from the laboratory test: : (a) before; (b) after
drying at 60 °C for 24h.

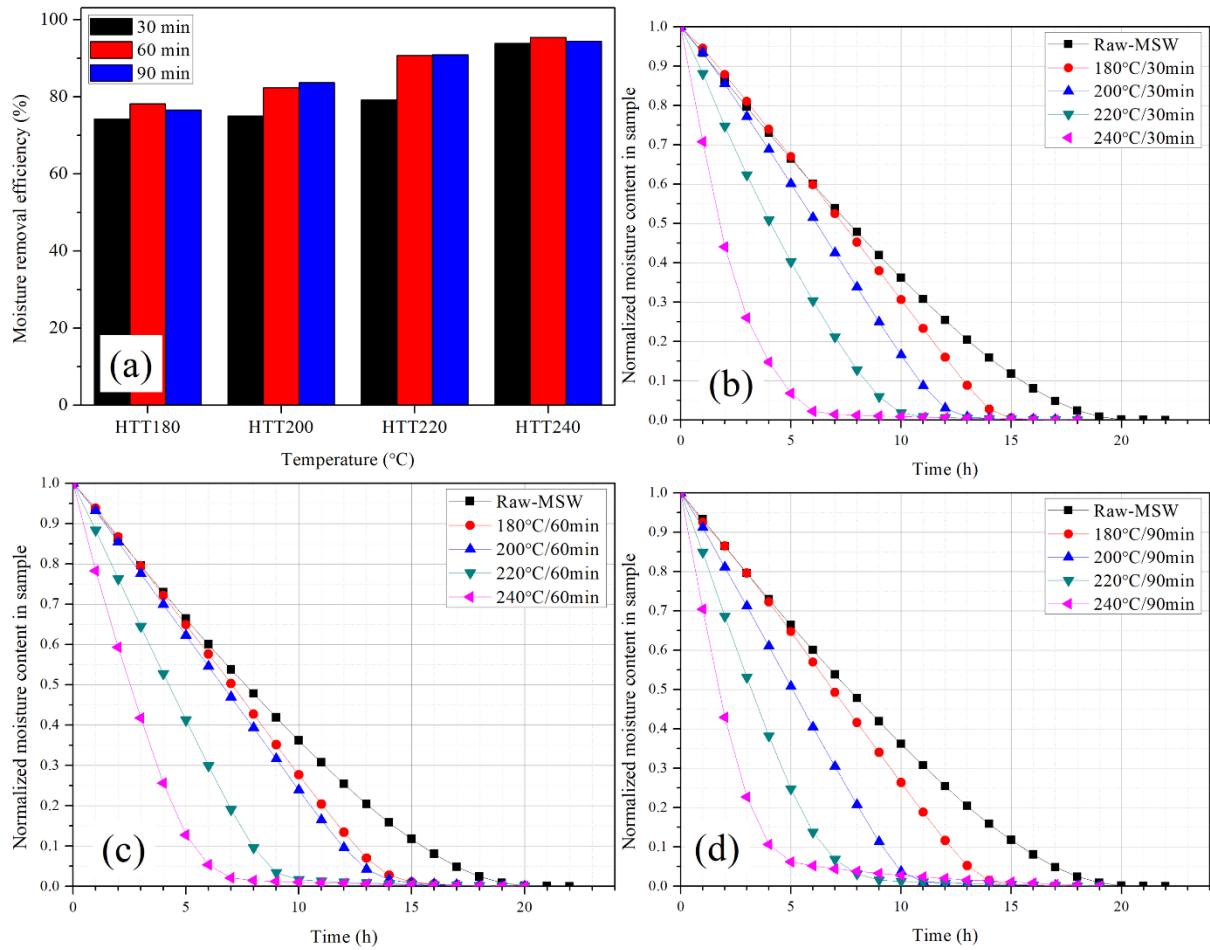


Figure 4 Dewatering and drying performance of raw MSW and HTT product: (a) Water removal efficiency during dewatering; Drying at 60 °C: (b) HTT 30 min; (c) HTT 60 min; (d) HTT 90 min.

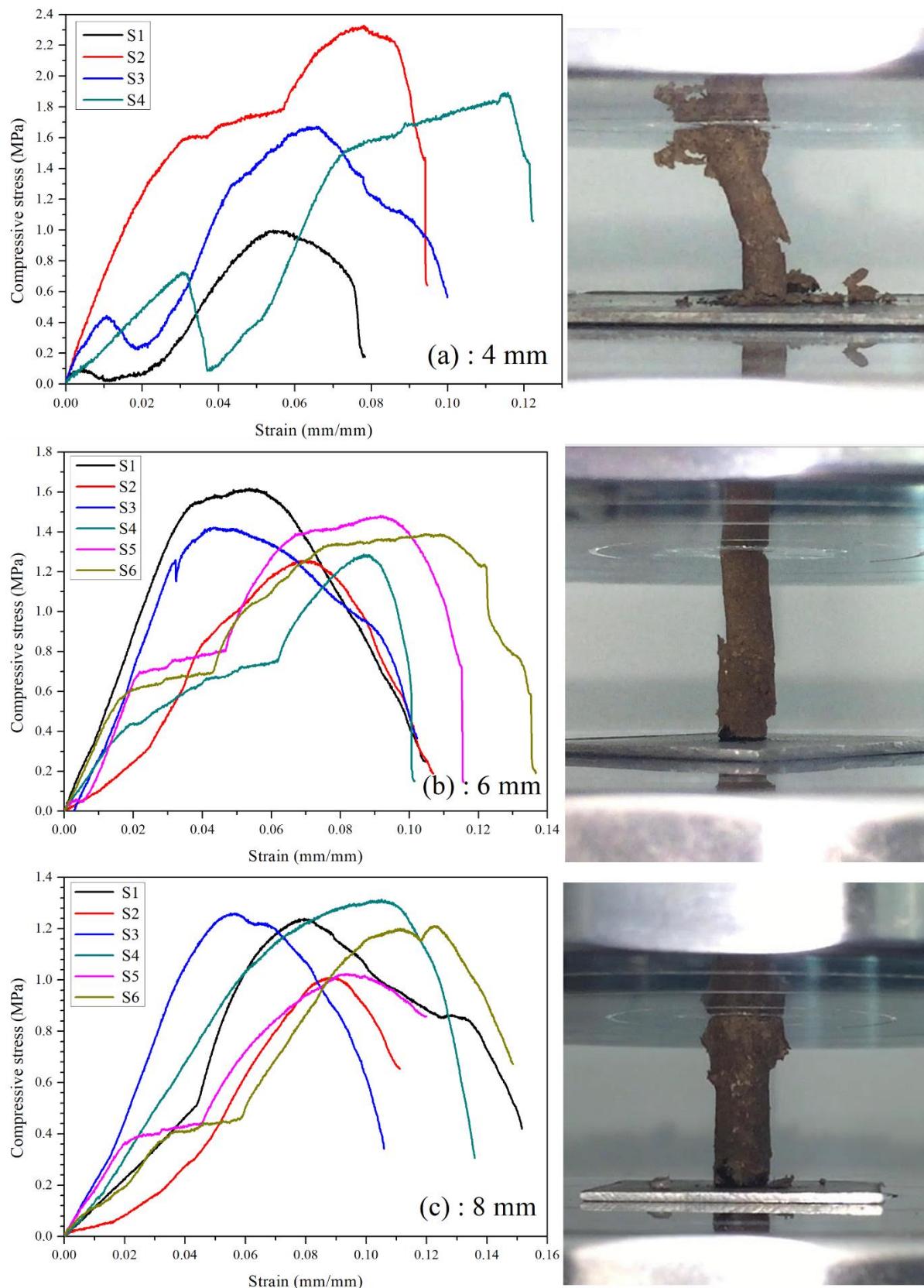


Figure 5 Stress-strain curves and sample after compressive tests: (a): 4 mm; (b): 6 mm; (c): 8 mm.

Figure 6 Pellet after the hardness test.

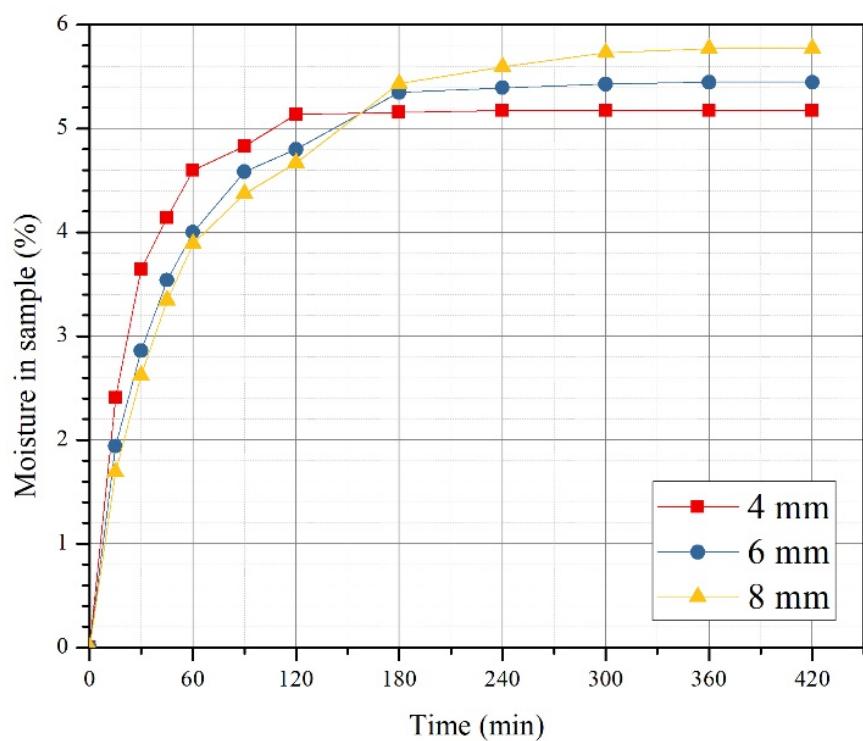


Figure 7 Moisture content of the pellet during moisture adsorption test.

Table

Table 1 Fuel property of the sample.

Sample	Time (min)	Proximate analysis* (%)			Ultimate analysis* (%)				HHV** (MJ/kg)
		VM	FC	Ash	C	H	N	O	
Raw MSW	-	77.8	14.6	7.6	43.4	6.3	1.4	41.3	20.0
HTT-180 °C	30	88.8	7.0	4.1	46.9	5.8	0.5	42.7	21.8
	60	85	10.7	4.3	50.8	9.7	0	35.2	28.8
	90	87.3	8.3	4.4	58.5	9.4	0.3	27.4	27.3
HTT-200 °C	30	89.4	6.7	3.9	50	6.9	0.5	38.7	26.4
	60	82.17	11.8	6.03	57.6	8.2	0.2	28.0	27.3
	90	86.3	6.6	7.1	62	12.4	0.4	18.1	30.7
HTT-220 °C	30	90.73	6.22	3.1	52.4	7.3	0.4	36.8	31.4
	60	85.5	6.7	7.9	59.7	12.6	0	19.8	29.4
	90	86.9	9.2	3.9	69.4	13.4	0.3	13.0	33.4
HTT-240 °C	30	95.01	3.38	1.61	58.2	7.9	0.5	31.8	38.1
	60	80.6	13.8	5.7	62.1	12.4	0	19.8	35.3
	90	90.59	0.05	9.36	74.4	13.5	0.3	2.4	41.4
HTT-220 °C (Large-scale)	30	70.4	16.3	13.3	48.0	9.7	1.2	27.8	23.9

*Dry basis; **HHV: Higher heating value, dry basis.

Table 2 Summary of mechanical property from compressive test and hardness test of fuel pellet.

Data	Diameter of pellet		
	4 mm	6 mm	8 mm
Compressive test, Maximum load (N)			
Max.	26.4	41.29	58.69
Mean	19.15	36.94	54.06
Min.	10.73	34.05	45.26
S.D.	6.59	2.77	5.79
Compressive test, Stress at maximum load (MPa)			
Max.	2.33	1.62	1.31
Mean	1.72	1.41	1.18
Min.	1.00	1.26	1.01
S.D.	0.55	0.13	0.13
Compressive test, Strain at maximum load (mm/mm)			
Max.	0.12	0.10	0.12
Mean	0.08	0.07	0.09
Min.	0.05	0.04	0.06
S.D.	0.03	0.02	0.02
Young's modulus, E (MPa)			
Max.	61.87	45.38	28.46
Mean	39.33	34.77	18.26
Min.	24.31	14.85	11.70
S.D.	15.94	12.77	5.54
Pellet compression ratio, (Length/Diameter)			
Max.	5.92	4.19	3.40
Mean	5.44	3.79	3.14
Min.	5.13	3.23	3.00
S.D.	0.34	0.39	0.15

Hardness test, Maximum force (N)			
Max.	81.3	124.6	141.2
Mean	72.3	112.6	130.4
Min.	63.9	95.3	112.8
S.D.	7.1	11.5	10.3

Table 3 Pellet durability index (PDI) in various conditions.

Sizes	Condition	PDI (%)	
		5 min	10 min
4 mm	3.92% moisture	95.61	92.97
	0% moisture	95.01	92.30
6 mm	4.00% moisture	95.88	93.29
	0% moisture	94.37	91.13
8 mm	3.57% moisture	95.53	92.25
	0% moisture	96.20	93.65

Table 4 Hardgrove grindability index (HGI) of hydrothermal fuel pellet compared to other biomass pellet.

Item	This study	Vuthaluru et al. [38]	Williams et al. [39]			Wu et al. [40]
	Hydrothermal fuel pellet	Subbituminous Indonesian coal	Wood pellet	Eucalyptus pellet	Steam exploded pellet	Torrefied microalgae residue
Average diameter (mm)	4.0/6.0/8.0	-	8.4	8.4	5.9	-
HGI	76/65/57	46-49	18	22	29	48.5