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Abstract

Project Code : MRG5980058

Project Title : Alternative Solid Biofuel Production from Thai Municipal Solid Waste

by Hydrothermal Treatment

Investigator : Chinnathan Areeprasert, D.Eng.

E-mail Address : fengcta@ku.ac.th

Project Period : 17 May 2016 — 16 May 2018

Abstract:

Utilization of municipal solid waste (MSW) can be done through refuse-derived fuel
production. This research focuses on using hydrothermal treatment (HTT) to
improve fuel property of MSW. Results showed that the quality of treated MSW was
improved in both physical and chemical property. Heating value of the produced
fuel was higher when HTT temperature and holding time increased. From the fuel
pellet testing, the mechanical property, including compressive test, tablet hardness
test, durability test, Hardgrove grindability test, the MSW fuel pellet prepared by
HTT showed good quality and it was comparable to coal or biomass pellet.
Moreover, the moisture adsorption test showed that the MSW fuel pellet from HTT

can retain in good shape after exposure to high moisture condition.

Keywords : 3-5 words

Municipal solid waste, Hydrothermal treatment, Waste management.
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100.0% CN Normalized moisture
90.0% \ content during drying test
80.0% ' . (Fraction of total moisture)
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Percent moisture of total weight of HTT product
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Time (h)
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Percent moisture of total weight of HTT product
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Time (h)
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100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

Percent moisture of total weight of HTT product

0%

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Time (h)
@ RAW @180 °C 200 °C

Normalized moisture
content during drying test

(Fraction of total moisture)
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180/30 200/30 220/30 240/30 180/60 200/60 220/60 240/60 180/90 200/90 220/90 240/90

LAZITHINNNYINNTAUABENIFIRIUNTZUINANT HTT 71 90 Wi

Temperature (°C)/Holding time (min)

Dried input Dried product @ Dried product reduction (%)

55.0%
50.0%
45.0%
=
5
40.0% 3
o
35.0% o

e
30.09% -2

d

25.0% 5

c
20.0% S
=

311 16 ﬂ%mmmmuﬁaqw%ﬁaum:mumw (Dried input) Nﬁ@m”msvi("uﬂwﬁaﬁgw% (Dried

product) KRIINNNITLIBNIINIRUA LLa:é'm'me@awaawﬁmn”msﬁuﬁoqw%ﬁ"lﬁ (Dried product

reduction)
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A A o ea o @ ° o v a &
asnnuianmusinldnnnizuauwnsdesilulgnuldifadszlomigge wazwaow
[ v A A d. Q 1 a L= fd‘ v
TldifnvpzainszuunIanszuiuns (Zero waste) U 17 uaaidadiuvaIniadmainba
NMIRNANNNITUINNT (hiTIuineD) ‘Lm;m’ﬁ‘au"lmmsmaaa 1udmmaw§mﬁ’msﬁmaaLL‘ﬁaLLﬁaqﬂ%
Lﬂuf?{'@dmﬁamﬁq@mnmﬁ@ﬁmeﬁﬁ'@%m ﬁ'aﬁl,ﬂmwsw:miﬁ'aﬁuﬁamﬂ:gaﬂaﬂﬁoﬁuﬁﬂ%mm
ANuTugIaguad (Usunmvasuduiignsen) wenantunszuiwnns HTT WJumsltla (n3e
b4 ° aaa ° v A A [ { ° & =
maugutin) lunrsid jaseriliifenfanmaimduvasinaisiwanunn dsaaulngin
vaanaINgnInean (Dewatered liquid) INMNWTAAMUIT ldaNNIZLIUNT HTT ilaganadunm
A a A A A & A A a & o a )
vasnaIngnIneanwuIddTunonANulalRugmnndl HTT LLa:Lﬂuaﬂwm:mmnu‘Lu‘qﬂq
o aaa AI J { o v 1A :/ { o w5 £
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(Evaporated liquid) l3zninansauuiefiandasas devirlnaannmisanasuastsunmin (zUidn
lugin 13 63 15) vesdrednfivTanasiies (uungil HTT g9) gandrenadnandyanmin
| A ° &< X A A o ea o A a A |a =
NNNdY (@WnDE HTT 61) MathiiiesnnudanusiniduvesnaiigniaeanduTunmuinis
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diunsiansldadnignaasdaly (dseglutuasumsduiiung)
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Product distribution (%)
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Temperature (°C)/Holding time (min)

W Dried product i Evaporated liquid | Dewatered liquid

4 o 1 a s dl a :;’ 3 = g/ v
37 17 §ad I INRAATUHITILAGIURAIINNIZLIUMT HTT NMIIATIUAZNIBUURAY (100%
AaUSIN KRN HIRAINNNIZUIUNTT HTT / Dewatered liquid Aavifigniuaanlunszuiunis
0¥ / Evaporated liquid Aaihfignyinliazineuaizauuhs / Dried product AanAarimainaduds

wignd)
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q

nnﬁaﬂmmsmaaw‘fw Ultimate analysis Proximate analysis L@z Heating value LEAILUANTIS

N2 3 LAY 4 VAL INNAIIIN 2 wmfﬁaaﬁﬂszﬂaumomﬁmawﬁazi’mjﬂ:gaﬁlayﬁﬁ@mu
] { v v o L= & a Qs kg a
ﬂﬁﬁfuauLLa:VLaI@iLﬁ]uagﬁﬂs:mmiasa: 43.4 WRZSAURT 6.3 ONNAIAL TINRANUMLTOLNAIVLY
= o o & a & < o o a A
wLLqumaaa@mumiuammﬂﬂmwmwquu 1 sjmvl,ﬂmmm"l,mm’ml,wuaqmﬂgmaz
o Aaaa o v 1 J a s 1
sw:waﬂuﬂ’lsmﬂgmmﬁ]zml%a@a’mm‘fuauLLaz"l,aImegwu AINNINTUWFAFTINYDI
lulasiauuazaandianazwuindussdlsznaunid1anad 3nua Proximate analysis NILaad L
H ' L) . ] A & {o
A13197 3 WUINFARIUVBIRNTIZLAY (Volatile matter) HANLANNINYY VueNFARIUIA1TLEY
o . ' o ¥ o . v Ao & { A &
A9@7 (Fixed carbon) Headad wazaasIuaaddiien (Ash) haifuwaldungaan (Fnsnsainiudn
LAZAARY) AT 4 LFAIAIAINTOUYBIVLAIGUUALHAN A UL T BINRIN bAINNATELIRANT
6 = v 6 ] a > {ni val % A’ ' a o o >3 a
lalasnasuaaniniuy ‘wmﬂNamnmmw"l@wmm']maugwuamwuﬂmmmy MIATIZR L
a A ' A A o o A o o a & A A A A
Teazdraniana lndd giineatasasdiiumsnienadannlanaiianzianiaiassdasiaan g

LNNLAW

A15191 2 a9hdsznaunaail Ultimate analysis (588822899 RUNWLAS)

Sample Time (min) Carbon % Hydrogen % Nitrogen % Oxygen %
Raw - 43.4 6.3 14 48.8
30 46.9 5.8 0.5 46.8
180 °C 60 50.8 9.7 0.0 39.5
90 58.5 9.4 0.3 31.7
30 50.0 6.9 0.5 42.7
200 °C 60 45.3 9.6 0.0 451
90 62.0 12.4 0.4 251
30 52.4 7.3 0.4 39.8
220 °C 60 59.7 12.6 0.0 27.6
90 69.4 13.4 0.3 16.8
30 58.2 7.9 0.5 334
240 °C 60 62.1 12.4 0.0 25.5

90 74.4 13.5 0.3 11.8
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13197 3 Proximate analysis (3888289 WABNLAT)

Sample Time (min) Volatile matter % Fixed carbon % Ash %
Raw - 77.8 14.6 7.6
30 88.8 7.0 4.1
180 °C 60 85.0 10.7 43
90 87.3 8.3 4.4
30 89.4 6.7 3.9
200 °C 60 91.5 1.1 7.4
90 86.3 6.6 7.1
30 93.6 29 3.5
220 °C 60 85.5 6.7 7.9
90 86.9 9.2 3.9
30 924 3.9 3.7
240 °C 60 80.6 13.8 5.7
90 96.8 2.0 1.2

A15199 4 A1ANTDW (Higher heating value, HHV)

ANANIDW (MJI/kg)

Item
30 min 60 min 90 min
Raw 20.0
180 °C 21.8 33.4 27.3
200 °C 26.4 295 30.7
220 °C 314 33.0 33.2
240 °C 38.1 32.9 41.4

6.6 HANINAFALAIINUTILTS

AT DN R INIRUAFLTAUNNINARALIUIARE 6 N33 TFURUAREINANI ULAZANY 7
LFPIGIATIN 5 ﬁLﬁmLm'Lﬁ@L%ﬂLwﬁwmmﬁumuquﬁﬂma 4 mm A INARAULRES 4 A3
YNt Lﬁaamﬂmmmauﬁm%aLwﬁaﬁyﬁﬂﬂdwmmgmmmﬁmﬁaLwﬁoﬁ'ﬁvl,ﬂ M Inesey
WMeaiahanlSsuieuiuamaing nanmagauuaasluasief 6 lagn1snagaunuii
@hLaﬁwaamizgaq@ﬁﬁ@L%ﬂLwawmméTumugmﬁﬂma 4,6, w8z 8 mm #1N1IAsU A e
19.15 N, 36.94 N, uaz 54.06 N kazfnanunoaiandaudslnaiAssnuda 0.08, 0.07 was 0.09

o Q $ e Q‘ &,
mm/mm @IU[1aU TIUVWR 6 ez 8 mm ﬁ’]&l’]iﬂiﬂﬂﬂiﬁgdgﬂLW&I“I]%’%’]ﬂ‘IJ%’W] 4 mm 92.9% LLag

20



182.3% GUAIAU TaIUaIFANANULAUUDILTALTLNRITUIN 4 mm Ta 1.72 MPa Lazazanad

18% WAz 31.4% LanagaUNULNALTaINRITUIA 6 LAZ 8 mm a1uE1aL NANTNATOL WA b

1 v v ¥ a a v lhl l&’ 1 v 1 1 o 1
Lﬁu’)’]ﬂﬁl%Lﬁ@L%ﬂLwada’]&l']‘iﬂiﬁﬂ’ﬁtiﬁdq@]vl,@LW&I"II‘LL LRSATAITNLAY LL@IVL&IﬁNa&I’]ﬂﬂUﬂ']

a & @ v & Al &
AVLILALY EJI?I‘?JW]@Lﬁuw’luﬂuﬂﬂa’ldﬂlﬁfymu

A1319N 5 muwmé?umugmﬁﬂmq WALANNENVBILAATALNRIN T UM TNARELUIIEA

4 mm Dimension (mm)

6 mm Dimension (mm)

8 mm Dimension (mm)

Pellet No. Diameter Length Diameter Length Diameter Length

1 3.7 20.1 5.7 227 7.7 23.1

2 3.8 20.1 6 19.4 7.8 23.6

3 3.7 21.9 5.7 20.1 7.7 244

4 3.8 19.5 5.8 243 7.5 22.8

5 - - 5.5 23 7.5 25.5

6 - - 6 21.9 7.7 245
Maximum 3.80 21.90 6.00 24.30 7.80 25.50
mean 3.75 20.40 5.78 21.90 7.65 23.98
Minimum 3.70 19.50 5.50 19.40 7.50 22.80

S.D. 0.06 1.04 0.19 1.85 0.12 1.01

A1519%1 6 Maximum load, Compressive stress and stain at maximum load

4 mm 6 mm 8 mm
Pelet Compressive  Compressive Max. Compressive  Compressive Max. Compressive  Compressive Max.
stress at strain at stress at strain at stress at strain at
Load Load Load
Max. Load Max. Load Max. Load Max. Load Max. Load Max. Load
Number (MPa) (mm/mm) (N) (MPa) (mm/mm) (N) (MPa) (mm/mm) (N)
1 1.00 0.05 10.73 1.62 0.05 41.29 1.24 0.08 57.69
2 2.33 0.08 26.40 1.26 0.07 35.49 1.01 0.09 48.25
3 1.67 0.07 17.98 1.42 0.04 36.29 1.26 0.06 58.69
4 1.89 0.12 21.47 1.29 0.09 34.05 1.31 0.11 58.07
5 - - - 1.48 0.09 35.20 1.02 0.09 45.26
6 - - - 1.39 0.10 39.32 1.21 0.12 56.40
Maximum 2.33 0.12 26.40 1.62 0.10 41.29 1.31 0.12 58.69
mean 1.72 0.08 19.15 1.41 0.07 36.94 1.18 0.09 54.06
Minimum 1.00 0.05 10.73 1.26 0.04 34.05 1.01 0.06 45.26
S.D. 0.55 0.03 6.59 0.13 0.02 2.77 0.13 0.02 5.79

' b o [ 3 t-ﬂl v I3 o v =3 dy a A v & 1
mmiugaa (E) Lﬂ%ﬂ’]‘ﬂl%’)@ﬂ?’]&ﬂﬂldﬂﬂd?ﬁ@l DNUALTBLNRINAN E f,;(\‘] LL&@GI‘WL%%QW

Lﬁ(ﬂL‘fiaLw§oﬁfuﬁmﬂsJmmsnlumsﬁwumumiqué’ﬂﬁga M137197 7 LRAIA E Nhaann1s
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ANWIHANANNLA LATANNLATLA T mizgaqmaaluu@ia:mmmﬁ@L%mwﬁa ANaduuad E N
¥ a 1 o Qs A 1 U v U (-
PUIALTALTALNRY 4 LA 6 mm Je1 22.18 Uz 23.96 MPa aud1ay didadauwdalnatfsanis
LAlwaIUwUad 8 mm ALafuUad E Nlaaa 14.92 aAaINLAY 48.7% WAz 60.6% LiUalNuuny
YD 4 AT 6 mm ANEIAU INNNANIINARDULFANI bALALIN ﬁwLfmL%mwﬁaﬁﬁumuguﬁnmaﬁ
X o v a o, & A o o A 4 o A A v =& & A Aa
Traidw ﬁ]zmlﬂm@miqu"lmwwumaiumsz‘lumamzmﬂLmﬂuwamwnmmmmwmm

mmmﬁumug{uﬁﬂmaﬁﬁnndﬂ ﬁ’nwmzﬂ’mmﬂﬁ'ﬂ"uawﬁamaLL@iazmm@LLa@ﬂugﬂﬁ 18

@139 7 dndalugasvesdadainiaauwiadieg

Pellet 4 mm 6 mm 8 mm
Number E (MPa) E (MPa) E (MPa)

1 20.00 30.23 15.49

2 29.13 18.26 11.22

3 23.86 32.48 21.01

4 15.75 14.86 11.95

5 - 16.14 11.38

6 - 13.24 10.09

Maximum 29.13 32.48 21.01

mean 22.18 23.96 14.92

Minimum 15.75 14.86 11.22

S.D. 5.69 8.70 4.47

4 m ,_}ﬂy e 6 m

317 18 @B WEITMIAI 9RAT lATUNMINARBLKIIEA

mynageuauuds lagldiasasnasauanuuds SUNDOO 3% SH-200 shenafiuida
L%@Lwaamﬂﬁm%wumz%LﬁmﬁﬂmUmﬂﬁqmﬁamtmgoqaﬁﬁﬂL%amﬁammm%'u"lﬁ
A3197 8 ﬁawamsmaaumuﬁammﬁ@L%aLwﬁoﬁtﬁuﬂwuguﬁﬂawamuwa 4, 6 LAz 8 mm WU
@hLaﬁiwaaLLsoﬁﬁaalﬁuﬂWiﬁulﬁLﬁ@ﬂa']uL?mmﬂgqqumzﬁaﬂ% 72.3 N, 112.6 N uaz 130.4
N AUEAU F9um1a 6 waz 8 mm zaaslFusaAndn 55.7% waz 80.4% anudne ﬁaaEﬂvl,ﬁ'jfl
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£ 1 =3 g a 1 I3 v v [ |£ o
mm@Laumug{uﬁﬂmwaaLN@L%aLwaaﬁwa@ammem mLaumuguﬁnmoﬁmm@lmymu M

v =& & a = = = A X @ [ A
lﬂLﬂJ@]LfﬁﬂLWﬂ\‘]LLTGLLﬁﬁ LASIUNIBNLLINUUNIN IV ﬂﬂﬂmzﬂ’ﬁu@ﬂ‘ﬁﬂua@ﬂluzﬂﬂ 19

=1 A v & A a A
MN1379N 8 LL?\']“/]I%LW@V]’]ELV\LN@L’ﬁaLWﬂ@LﬁU%’]U@E\‘]%@ (N)

Number 4 mm 6 mm 8 mm
1 63.9 118.0 134.2

2 81.3 95.3 126.7

3 76.7 112.0 112.8

4 69.3 122.5 128.6

5 77.2 124.6 141.2

6 65.6 103.3 138.9
mean 72.3 112.6 130.4
S.D. 71 11.5 10.3

31 19 WaiTainiarwiadis guat lasunmimasauanuud

6.7 NANINATOUAMUNUNNUBITALTINES

TunsnesauaNuNuML daudsiazsiumaseulduilsinmanudusesdaisaiwss
wazszpzanlummasey lagsaisiinannasauianudulasszans 3.92% daiiluisinn
mm%maol,ﬁ@L%mwﬁaﬁauuﬁmﬁuu,a:l,ﬁu%'ﬂmagluﬁi*ju AudaitaIwasntnINT® 0%
(Maegninannasauiufinateuuiieia) mmasevazliiia 10 wifl las 5 wifiuinazi
MSLRUALTWEEITH @157197 9 1 usuiianununmuaesiadainwis (Pellet durability index :
PDI) Admaly azdnnaldinawiauazanuiwaasdaitaindslidnadad PDI atned
fuddTy Geen PDI azagluna9 94-96% uaz 91-93% lumnasaufiaan 5 wifiuaz 10 wf
ANEGU A1 PDI aAagn 100% Lilw 95% Aawadondn 5% lusewinansmasay 5 wifinsn ua
@1 PDI aA8ILREN 3% WaIMINagausn 5 wifi mnageuiawiiuindedaindsluwnuisuiid

A A & 4 LA v =
ﬂmu‘nu‘n’mgd muﬂiﬂﬁ“nm}ami"uuawiamiﬁmLmJ
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M13199 9 @1 Pellet durability index Anagay e

P @1 PDI (%)
PYUIG (mm) ANNTY (%) 5 i 10 W
3.9 95.61 92.97
* 0.0 95.01 92.3
4.0 95.88 93.29
° 0.0 94.37 91.13
3.6 95.53 92.25
° 0.0 96.29 93.65

6.8 NAN1INAFALANNLNN8 UL

srfinnusaunsnlunisueasidea (Hardgrove grindability index : HGI) U091 aL3a1NE
INNIZLIUMT HTT waaslu @119 10 w%”auﬁ'm%mwﬁwﬁ@ﬁue] o Tandiuwa 4, 6 waz
8 UaALNAINAT HGI LYINNL 76, 65 Waz 57 aUE1AU A189 HGI 209 IALTOINEIIINNTTLINNS
HTT °uaamu%”ﬂf:ﬁ@hgoﬂ’hmmm:%amaﬁv‘hmmﬂigﬂﬁu6] oA eI nasanganas
553001581 HGI d19nn 1HaRe1smdaaindsannnszuaunis HTT 31nIuauedLdunI%
AwInaINL I Lﬁm%aL‘w§<1ﬁﬁLﬁumuguﬁﬂmwm@lmy'ﬂiwzﬁﬂﬁm HGI tudn 39ivi
anusnsolumsuatugnnamefdnnin fswHinmiuadademdudamwe 8 Saduas
sz ldennnitamnedug uims HGI sastuinfilerialufuszanm 50 animdadaindnn
N3TUIUMT HTT 2w1a 8 Sadwwasanansavalalaslidasldwssmuaniinldfadiouiudin
Aurialy

®1319%1 10 Hardgrove grindability index 289l daLTBLWAINNNIZTLIBNNT HTT UaztTalwasan e

. & . Steam Torrefied
- LIALTBLNRIINN Subbituminous Wood Eucalyptus
TUA exploded microalgae
NITUIBNIT HTT coal (Indonesia)*  pellet*™* pellet*™
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Abstract

This research is intended to study fuel property and thermal decomposition behavior of hydrothermally treated municipal solid
waste (HTT-MSW) during combustion. In the experiment, simulated MSW was used as a raw material (Raw-MSW) to produce
solid biofuels at the hydrothermal reaction temperature of 180, 200, and 220 °C for 30 min by a lab-scale autoclave. The results
showed that the higher reaction temperature in the experiment increased the heating value of the product. Before the HTT process,
the Raw-MSW has 20 MJ/kg of heating value, after processed, the energy density was increased to 21.8, 26.4, 31.4 MJ/kg for 180
to 220 °C respectively. From thermogravimetric analysis result (TGA), mass loss profile of Raw-MSW and HTT-MSW showed
two major decomposition peaks and the effect of HTT on combustion was that the decomposition profile became smoother. From
kinetics study on non-isothermal thermogravimetric data, the activation energy (E) of HTT-MSW was higher than that of the Raw-
MSW and the E values were around 35 to 80 kJ/mol for the Raw-MSW and HTT-MSW.

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the 2017 International Conference on Alternative Energy in
Developing Countries and Emerging Economies.

Keywords: Hydrothermal treatment; Municipal solid waste; Thailand; Combustion; Thermogravimetric analysis.
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1. Introduction

Municipal solid waste (MSW) is a growing problem for many countries, including Thailand. The hydrothermal
treatment (HTT) is an interesting technology because it can be used with high moisture and mixed diverse materials
[1]. The HTT used high-pressure saturated steam (2-3 MPa) to change the quality of solid waste into solid fuel. The
process starts by feeding MSW into the reactor and then injected the steam while being stirred. After reaching the
target temperature, the reactor is maintained for certain holding time until MSW was converted to homogeneous

1876-6102 © 2017 The Authors. Published by Elsevier Ltd.
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products. Several works have been done on conversion of MSW such as Hwang et al performed hydrothermal
treatments using subcritical water (low temperature and high temperature) on precursors from MSW including paper,
dog food, wood, and plastic with full product analysis [2], Prawisudha et al converted Japanese MSW into solid fuel
by using large-scale hydrothermal treatment plant [3]. Other researchers applied HTT on very high moisture materials,
for example, using HTT to produce solid fuel production from paper sludge on both laboratory-scale and pilot-scale
[4] and from mycelial dreg [5]. After the solid fuel was produced by the HTT, combustion behaviour was generally
tested by using thermogravimetric analysis and several works have been done on this topic as well [6,7]. Muthuraman
el al tested hydrothermally treated MSW (HTT-MSW) on the co-combustion characteristics with different rank coal,
i.e. Indian, Indonesian and Australian coal [6]. Surum el al found three independent parallel reactions detailed
information on the pyrolysis characteristics and chemical kinetics of the most important components in MSW [8].
However, the HTT has not been applied to the Thai’s MSW and a study on kinetics of HTT-MSW during combustion
was limited. Therefore, this paper focused on the production of solid biofuel from Thai MSW using the HTT and
thermogravimetric analysis as well as the kinetics study of the HTT-MSW.

2. Material and methods
2.1. Raw materials

MSW composition used in this study was borrowed the MSW composition study of our previous work [9]. Major
composition, including organic waste, plastic, paper and textile, has been used as simulated MSW for the HTT
experiment (Raw-MSW). These samples were all prepared according to the following weight: organic (Chinese
morning glory) 17 g (68%), mixed plastic (HDPE, PET, PP) 5 g (20%), textile (cotton) 1 g (4%) and paper (office
paper and recycled paper) 2 g (8%). All materials was cut into small pieces about 1 cm length and mixed together.

2.2. Hydrothermal treatment

In the experiment, 25 g of MSW sample was mixed with 150 g of deionized water and put into the high-pressure
autoclave (500 ml). The autoclave was then sealed. Since the hydrothermal treatment process excludes the presence
of oxygen, the air inside the autoclave was purged with nitrogen from a tank for about two min. Then the heater was
set to process target temperature. The autoclave was equipped with temperature controller. The temperature was set
to 180, 200, and 220 °C. The stirrer was set to 50 rpm to stir during the process for homogeneity. The holding time
was 30 min in all cases. After the process time elapsed 30 min, the heater was turned off and the autoclave was allowed
to cool down. The cooling down period was about 1 h. The stirrer continued to operate during this time period. Each
experiment was performed two times to ensure the repeatability.

2.3. Fuel analysis

Before analysis, the Raw-MSW and the HTT products were dried at 105 °C for 24 h in an electric oven and crushed
into a powder size. The heating value were measured by a bomb calorimeter (Leco, AC-500) (ASTM D5865). The
proximate analysis was performed by simultaneous Thermal Analyzer (449 F3) (ASTM D7582) and ultimate analysis
was performed by elemental analyzer (Thermo Flash 2000) (ASTM D5373). Slagging and fouling indices are
important to understand the tendency of ash deposition during the combustion application in boiler. To calculate the
slagging and fouling indices, ash composition of the samples were determined by X-ray fluorescence analysis (XRF).
The indices that have been used to predict the slagging tendency were the Base to Acid ratio (B/A), the Silica Alumina
ratio (S/A), the Iron Calcium ratio (I/C) and the Slagging index (S), while the fouling tendency was estimated by Total
Alkalis (TA). The mathematical formulation of slagging and fouling indices used in this study can be found in [10].

2.4. Kinetic study

Thermogravimetric analysis (TGA) was performed by 209 F3 Tarsus for measuring the change in weight of the
sample during the combustion test. The sample was heated from the room temperature to 800 °C with the heating rate
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of 10 °C/min under an oxidative condition. Mass loss (TG) and the rate of the mass loss (DTG) were investigated in
this study. Moreover, kinetics study based on non-isothermal thermogravimetric data was studied as well. By studying
the kinetics parameter, the apparent activation energy (E) and the pre-exponential factor (A) can be determined. The
thermal decomposition of Raw-MSW and HTT product during the combustion process can be explained by (1):
da/dT =kKT)f(a) 1)

where k(T) is temperature-dependent rate constant, a is the extent of the conversion or the decomposed fraction of the
sample at time t, f(a) is function of conversion, which is expressed as

a:(mi_mt)/(mi_mf) (2)

where my; is the initial mass of the sample, my is the mass of the sample at time t, and my is the final mass of the sample.
The temperature dependent rate constant k(T) is generally expressed through the Arrhenius equation

k(T )=Aexp(~E / RT ) 3)

where A is the pre-exponential factor, E is the apparent activation energy, and R is the universal gas constant (8.314
J/mol-K). A mathematical term of the constant heating rate  is described as

B=dT / di (4)

then, (3) and (4) were substituted to (1), rearranged in the general form, and integrated; which gives
a T
gla)=[da/ f(a)=(4/p)[exp(~E/ RT )dT = (AE/ R)p(x) (5)
0 T

where g(a) is called as an integral of the reaction model. Explanation of the integral of the reaction model can be
found in [7]. To calculate the kinetic parameters, the temperature integral term in (5) was estimated by the Coats-
Redfern approximation [11], taking natural logarithms and rearranging yields

In(g(a)/T*)=In(AR/ BE)(1-2RT / E)—~(E/RT) (6)
Since (RT/E) << 1, the term (1-2RT/E) was approximately equal to unity (1-2RT)/E=1). Hence,

In(g(a)/T*)=In(AR/ BE)—(E/R)(1/T) )

Plotting In(g(e)/ T*) vs. (1/T) will give a straight line whose slope equals to —E/R. Therefore, the E and the A
can be determined by slope and the intercept, respectively.

3. Results and discussion
3.1. Fuel property

The composition of raw material and the product from HTT is shown in Table 1, the heating value of HTT product
was 21.8, 26.4 and 31.4 MJ/kg at 180, 200, and 220 °C HTT condition, respectively, while Raw-MSW was only 20
MJ/kg. The heating value of the HTT product increase 8.87%, 31.54% and 56.19% respectively. Proximate analysis
result showed that volatile matter (VM) was increased after HTT while fixed carbon (FC) and ash were decreased.
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Raw-MSW has 77.83% VM and it was increased to 88.83%-90.73% after treated with 180, 200, and 220 °C HTT
condition accounting 14.13%-16.57 %. Generally, the VM would be reduced by the HTT process. However, in this
work, it could be suggested that because of the HT T, organic part was mainly decomposed but plastic materials, that
contains mainly VM, were leftover with the product (not a char from the organic part). This could be the reason that
the fraction of the VM was increased after the HTT. The FC decreased from 14.55% to 7.04%-6.22% while the ash
content decreased from 7.62% to 4.13-3.05% accounting 51.61%-57.25% and 45.80%-59.97% after increased the
temperature of the HTT from 180 to 220 °C, respectively. The mass loss profile of proximate analysis showed five
reaction periods because the elements of the MSW were burning at different temperatures (data not shown). The first
period, the organic matter has burned at 200-350 °C [12]. Paper was burned in the second period at 350-440 °C [13].
In the third period, plastic and textile were burned at 440-495 °C [14]. Only small amount of mass loss was observed
until changed from N; into air at 850 °C, the MSW was turned into ash. From the ultimate analysis, the carbon content
was increased from 43.4% to 46.9-52.4% accounting 8.1%-20.7% at 180, 200 and 220 °C HTT condition, respectively.
The carbon content was increased when HTT temperature increases. This result agreed with the increase of heating
value. Hydrogen content was decreased around 8% after 180 °C HTT condition after that increased around 9.5%-
15.9% and nitrogen content were around 64.29%-71.43% with the increase of the temperature, respectively.

Table 1. Composition of raw material and product from HTT.

Samples Proximate analysis Ultimate analysis
HHV VM FC Ash C H N O*
raw 20.0 77.83 14.55 7.62 43.4 6.3 1.4 48.8
180°C 21.8 88.83 7.04 4.13 46.9 5.8 0.5 46.8
200°C 26.4 89.37 6.70 3.93 50.0 6.9 0.5 427
220°C 314 90.73 6.22 3.05 524 7.3 0.4 39.8

* Oxygen was calculated by difference.

Table 2 shows the result of the slagging and fouling indices, the B/A ratio of Raw-MSW has 9.80 after HTT and
it has decreased to around 2.266-5.36 accounting 45.3-72.8% reduction after HTT condition. Even though the huge
reduction of the B/A after the HTT, it was still in the high range deposition tendency. The S/A ratio was reduced from
3.63 of Raw-MSW to around 1.65-2.87 accounting 20.8-54.4% reduction after 180-220 °C HTT. The I/C ratio of Raw-
MSW was 0.019 before the HTT, this ratio showed 15.8% and 11.6% reduction at 180 °C and 220 °C HTT condition,
respectively but it was somehow increased in the case of 200 °C HTT condition. However, the I/C ratio seemed to be
unaffected by the HTT. S index of Raw-MSW was 1.66 and it was a medium range deposition tendency. After the
HTT, the S was showed 64.9%, 86.8% and 82.9% decrease for 180, 200 and 220 °C HTT condition, respectively. The
TA ratio was reduced from 3.02 to a very low value after the HTT (0.36-0.61) accounting 79.8%, 83.6% and 88.1%
when increase the HTT temperature from 180 to 220 °C, respectively. From the calculation of slagging and fouling
indices, it can be said that the HTT improved ash property by reducing the value of the indices.

Table 2. Slagging and fouling indices of fuels.

Sample (%) B/A ratio S/A ratio I/C ratio S index TA
Raw 9.80H 3.63L 0.019L 1.66M 3.02H
180°C 5.36H 2.27H 0.016L 0.58M 0.61H
200°C 2.66H 2.87H 0.027L 0.22L 0.49H
220°C 441H 1.65H 0.017L 0.28L 0.36M

H: high deposition tendency; M: medium deposition tendency; L: low deposition tendency.
3.2. Product appearance and yield

Fig. 1 shows the comparison of the products appearance after HTT by varying the treatment temperature. The
HTT-MSW become dark grey slurry. The size of the product was reduced and looked darker for the higher treatment
temperature. When treated at 220 °C, higher amount of liquid was obtained compared to other lower temperature
condition because the Raw-MSW was decomposed during HTT as a result of heat and pressure. Dried solid fuel (HTT-
MSW) from the treatment was around 30-34% of the wet based Raw-MSW input and when the HTT temperature was
increased, the final dried product was reduced due to higher severity of the treatment condition.
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Fig. 1 Appearance of the hydrothermally treated MSW.

3.3. Thermogravimetric analysis

Fig. 2 shows a comparative analysis of the TG and DTG profiles. The thermal decomposition of all sample were
divided into two periods. From TGA result, mass loss profile of Raw-MSW showed two adjacent major peaks in the
first section at the combustion temperature range of 200-380 °C accounting for 56% of total mass and it could be
attributed to organic and paper waste. After increased the combustion temperature to 400 °C, another two peaks with
smaller decomposition (27% of total mass) was observed. This could be devoted to a plastic material inside the MSW.
The decomposition of these materials represented more than 80% of the total mass. For the TGA of HTT-MSW, only
one single peak has observed in each region showing that the HTT did not only increase the energy density but also
smoothen the combustion behaviour of the MSW. For the HTT-MSW, at the very beginning (=100-220 °C), moisture
and light volatiles were evaporated. The TG profile of all samples showed similar characteristic. Then, a large portion
of sample was decomposed at the first period (=220-360 °C) and the second period (=380-480 °C). In more detail, at
around 340 °C, TG profiles of high HTT temperature condition (200 °C and 220 °C) diverted from that of the others
until their burnout. DTG profiles illustrated that all samples had two main peaks. The first peak and the second peak
were at around 300-330 and 410-440 °C, respectively. The peaks of the DTG profiles of HTT product was higher and
narrower than that of the Raw-MSW.
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Fig. 2 Mass loss (TG) and rate of mass loss (DTG) profile.

3.4. Kinetics study

Kinetics parameters were calculated by the first-order reaction and the results were shown in Table 3. The range
was divided into two because of the two main decomposition peaks. It should be noted that the R-squared values of
all the calculation were relatively high, except for the R-squared of range 2 of the 200 °C HTT condition. In the first
range, the temperature was selected at around 230 to 360 °C and E of Raw-MSW had 54.41 kJ. The E of HTT-MSW
for the first range was higher than that of the Raw-MSW and the value of E was around 66 to 80 kJ. The second range,
E of Raw-was around 35.25 kJ. The values of E were increased after the HT T, except for the 200 °C condition. From
the study of kinetics parameters, it can be concluded that the HTT generally increased the E values.
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Table 3. Kinetic parameters calculated by the first-order reaction.

First order Range 1 Range 2
o 2 E A o 2 E A
Sample TCO R o) i) O R gy (min)
Raw 230-360  0.9675 54.41 2.07E+05  390-485 09774 35.25 1.62E+03
180 245-355  0.9872 68.75 3.93E+06  415-445  0.9701 56.91 1.07E+05
200 250-350  0.9913 80.42 4.52E+07  405-470  0.9249 61.38 3.04E+03
220 245-355  0.9920 66.37 2.29E+06  400-480  0.9728 41.04 5.64E+03

4. Conclusion

In conclusion, the HTT can enhanced the fuel property of Thai MSW. The effect of the HTT on the fuel property
of the Raw-MSW can be summarized as follows: (1) the produced solid fuel has higher heating value and lower ash
content; (2) Slagging and fouling was improved. The thermogravimetric analysis was applied to Raw-MSW and HTT-
MSW and two-stage kinetics study was performed. It showed that the E of HTT-MSW was higher than that of the
Raw-MSW and the values of E were around 35 to 80 kJ/mol for the Raw-MSW and HTT-MSW.
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characteristic. Durability of the produced fuel pellet was generally high (91-94%) while
Hardgrove grindability index (HGI) was (57-76) higher than that of the biomass pellet
(18-22) and comparable to subbituminous coal (46-49) showing the ease of grinding.
The equilibrium moisture content of the fuel pellet was 5-6% and the small fuel pellet
reached adsorption equilibrium point faster than the large one. In sum, the fuel pellet
produced from HTT showed good fuel property as well as physical characteristic for
transportation and utilization.
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of academic paper.

English in manuscript has been entirely revised.

According to the suggestion, originality of the manuscript has been emphasized in the introduction section. The
content was modified as follows:

The fourth and fifth paragraphs of introduction section

One of the advantages of the HTT is an ability to pulverize the feedstock. The powder product facilitates a
densification process. After the densification of the raw material, the pellet immediately faces risk of disintegration
during cooling, storage, transportation, as well as handling process. Many factors affect breakage of the fuel pellet,
for example, biomass type, moisture content, lignin content, and particle size [29]. To reach certain standard, a
quantification of fuel pellet’s mechanical property, e.g. compressive test, impact crushing, and abrasion, is
necessary [30]. Mechanical strength and moisture adsorption analysis of pelletized steam-exploded Douglas Fir
(Pseudotsuga menziesii) have been performed and it was found that the pretreated fuel pellet had higher strength
and rigidity compared to the untreated pellet [31]. Fuel pellet made from torrefied sawdust was subjected to
moisture adsorption and Meyer hardness tests; results showed that the torrefied pellet had lower hardness and
adsorbed less moisture than the conventional pellet [32]. Zaini et al. (2017) studied a mechanical property of fuel
pellet made from hydrothermally treated and washed empty fruit bunch (EFB) [33]. It was found that the
mechanical strength, durability, homogeneity, and hydrophobicity of the treated EFB was better than the raw EFB
[33]. However, the pretreated fuel pellet in the literature review have been made by a single pellet method, which
the raw or pretreated material is powdered and densified at a well-controlled condition, i.e. high-pressure and
controlled temperature, using piston/cylinder or mold powered by compression machine assembled with electric
heater [31-36]. This may not resemble a practical pelletizing process. Therefore, the quantification of mechanical
property of the ideal pellet would not represent the practicality. To investigate the real physical condition of the
fuel pellet, an industrial pelletizer should be utilized for fuel pellet production. Moreover, based on our current
knowledge, no research work has been done on a quantification of mechanical property of RDF5 produced from
HTT process.

For those reasons, this research aimed to investigate the mechanical property of the hydrothermally pretreated
MSW fuel pellet using an industrial pelletizer. The paper covered fundamental study on the effect of HTT
production from MSW by lab-scale experiment and a study of fuel pellet production from large-scale experiment.
Lab-scale experiment of HTT on MSW performed at several treatment conditions. Evaluation on the effect of
HTT was done on appearance, dewatering and drying performance, and fuel property. Fuel pellet was made from
hydrothermal pretreated MSW using a flat-die pelletizer. Comprehensive test on mechanical property that
resembles a situation of fuel pellet during handling, transportation and utilization was performed. This includes
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compressive test, hardness test, durability test, and grindability test. Additionally, moisture adsorption test was
carried out to simulate a circumstance that the fuel pellet exposes to wet atmosphere.

COMMENTS TO THE AUTHOR:

Reviewer #1: Some minor comments are as follows.
(1) page 4. line 10 ; insert the name of city or region where the real MSW was sampled for large-scale
experiment.

City and region of real MSW sample for large-scale was added.

(2) page 5, line 14 ; The first part is for water~~ => The first part for water~~

The sentence was corrected according to the comment.

(3) page 5, line 44 : (a) additional of water => addition of water (b) insert how many percent of water is
necessary as a binder.

We have revised according to the comment
(a) Addition of water is necessary as a binder during pelletization

(b) Thus, wet sample with the moisture content of 26% was pelletized.

(4) page 6, lone 56 ; Durability test is ~~ => Durability is ~~

The sentence was changed according to the comment.

(5) page 8, line 53 ; Increasing the residence was also help~~ => Increasing the residence also help~~

The sentence was corrected according to the comment.

(6) page 8, line 58~59 ; It could liquified~~ => It could liquefy~~

The sentence was corrected according to the comment.

(7) page 13, line 57 ; This may due to ~~ => This might be due to ~~

The sentence was changed according to the comment.

(8) In the caption of Figure 3,specify the drying condition of 60 C for 24hr.

Caption of Figure 3 has been changed.

(9) There are two same sample of HTT-220 in Table 1. Specify the difference of the two in Table 2.

Specific information has been added. (HTT-220 °C (Large-scale)).



Reviewer #2: 1. English should be totally revised over the manuscript.

2. In introduction, the reference should be included for the classification of RDFs 1-7.

RDF has been classified into seven types listing numerically according to the American Society for Testing and
Materials (ASTM) Committee E-38 on Resource Recovery [10,11]

[10] Manser AG, Keeling A. Practical handbook of processing and recycling municipal waste: CRC Press; 1996.

[11] Sommerlad RE, Seeker WR, Finkelstein A, Kilgroe JD. Environmental characterization of refuse-derived-
fuel incinerator technology. National Waste Processing Conference, Philadelphia 1988.

3. In table 1, the moisture content has to be included and the results fully discussed in Proximate analysis.

Thank you for the suggestion on the discussion of moisture content of the sample. Moisture content of the
simulated MSW and raw MSW has been included in the text (section 2.1). Since the moisture content of the
product depended on the process step, it is difficult to include it the table. However, it was additionally discussed
in section 3.1.2 as follows:

The original moisture content of simulated MSW was about 65.7%. After the HTT, it was higher than 90%. This
was due to the large amount of addition water was utilized to simulate lab-scale HTT process. In large-scale
process where direct steam injection was utilized, the moisture content of the product was approximately 60%
due to the lower steam to raw material ratio [22]. Water removal efficiency during mechanical dewatering test of
the lab-scale HTT products was calculated by dividing the mass of the dewatered liquid by the mass of the product
after HTT. Results are presented in Figure 4a. It can be observed that the removal of water during the dewatering
was in range of 74-95%. For lab-scale product, large amount of dewatered liquid was devoted to additional water
during the HTT process.

[22] Prawisudha P, Namioka T, Yoshikawa K (2012) Coal alternative fuel production from municipal solid wastes
employing hydrothermal treatment Appl Energy 90:298-304. 10.1016/j.apenergy.2011.03.021

4. The formula of the water removal efficiency should be included in section 3.1.2.
It has been added in text in section 3.1.2.

Water removal efficiency during mechanical dewatering test of the lab-scale HTT products was calculated by
dividing the mass of the dewatered liquid by the mass of the product after HTT.

5. In the section 3.1.2 and 3.1.3, the experimental results are explained by guessing instead of the quantification
hence to fully prove the experimental findings these sections have to be completely re-written. Also, the detailed
explanation of the experimental result should be given. For example, why dose the content of fixed carbon
decrease with respect to reaction temperature whereas the carbon content increases in ultimate analysis?

Thank you for the suggestion. Section 3.1.2 and 3.1.3 were rewritten according to the comment. Detail discussion
was added as well.

Section 3.1.2

The original moisture content of simulated MSW was about 65.7%. After the HTT, it was higher than 90%. This
was due to the large amount of addition water was utilized to simulate lab-scale HTT process. In large-scale
process where direct steam injection was utilized, the moisture content of the product was approximately 60%
due to the lower steam to raw material ratio [22]. Water removal efficiency during mechanical dewatering test of
the lab-scale HTT products was calculated by dividing the mass of the dewatered liquid by the mass of the product
after HTT. Results are presented in Figure 4a. It can be observed that the removal of water during the dewatering
was in range of 74-95%. For lab-scale product, large amount of dewatered liquid was devoted to additional water
during the HTT process. The effect of the treatment temperature on the water removal was obvious. For example,
at 60 min residence time, the water removal efficiency showed 5%, 16%, and 22% enhancement when the HTT



temperature was increased from 180 to 200, 220, and 240 °C, respectively. On the other hand, the residence time
of HTT did not significantly affect water removal performance. For instance, at 220 °C, the improvement of water
removal efficiency was 14.5% and 14.8%, when the residence time was extended from 30 to 60 and 90 min,
respectively. Thus, extension of the residence time of HTT process might not give favorable dewatering
efficiency. In cell level, subcritical water can crush cell structure of organic material where bound water was
situated and this benefited the water removal process [26]. In the drying process, the effect of treatment
temperature showed the same positive outcome similar to dewatering process. The moisture of the product was
evaporated faster at the higher HTT temperature. For example, the 220 °C/30 min HTT product utilized 7 min
during 60 °C drying for evaporating 80% of total moisture whereas the original MSW needed 13 min. The effect
of the holding time on drying performance was limited. For instance, the increase of HTT holding time from 30
to 60 min (every HTT temperature) cannot accelerate moisture evaporation to reach 20% of total moisture. The
improvement of drying performance became apparent when the HTT holding time was increased to 90 min. From
dewatering and drying performance, the effect of the treatment temperature was more significant than the reaction
holding time.

[22] Prawisudha P, Namioka T, Yoshikawa K (2012) Coal alternative fuel production from municipal solid wastes
employing hydrothermal treatment Appl Energy 90:298-304. 10.1016/j.apenergy.2011.03.021

[26] Areeprasert C, Zhao P, Ma D, Shen Y, Yoshikawa K (2014) Alternative Solid Fuel Production from Paper
Sludge Employing Hydrothermal Treatment Energ Fuel 28:1198-1206. 10.1021/ef402371h

Section 3.1.3

Table 1 presents proximate analysis, ultimate analysis, heating value of raw MSW and HTT product. The heating
value of the lab-scale HTT product was increased as the HTT temperature increased. For example, at 30 min
holding time, the heating value was increased from 21.8 to 26.4 MJ/kg for 180 and 200 °C, respectively,
accounting 21.1% increase. The improvement of heating value was consistent with higher fraction of carbon
content quantified by ultimate analysis. For instance, the carbon content was increased from 43.4% in the original
MSW to 50% in 200 °C/30 min HTT product showing 15.2% increase. The carbon content of HTT product ranged
from 47 to 74% depending on the treatment condition. From the proximate analysis, the HTT product contained
higher volatile matter and lower fixed carbon content compared to the original MSW. This behavior was due to
the leftover plastic waste in the product, whose constituent is mainly volatile matter. It could be explained by that
the temperature of HTT was 180-240 °C and it dissolved the organic material, which starts to thermally decompose
at the temperature of 200 °C [39]. However, these HTT temperatures cannot fully decompose the plastic material,
which needs relatively higher temperature, i.e. 400 °C [40]. For the large-scale HTT product, the elemental
composition was typical and comparable to the raw MSW. The ash content was high representing the real situation
of waste characteristic that contains variety of inorganic material such as sand, soil, and other tiny metal scraps.
The heating value of the hydrothermally pretreated MSW was comparable or higher than that of the biomass
residues [41]; therefore, it would be a good candidate for combustion or co-combustion with other solid fuels.

[39] Zhou H, Long Y, Meng A, Li Q, Zhang Y (2015) Thermogravimetric characteristics of typical municipal
solid waste fractions during co-pyrolysis Waste Manag 38:194-200.

[40] Chattopadhyay J, Kim C, Kim R, Pak D (2008) Thermogravimetric characteristics and kinetic study of
biomass co-pyrolysis with plastics Korean Journal of Chemical Engineering 25:1047.

[41] Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for
boilers Renew Sust Energ Rev 15:2262-2289. 10.1016/j.rser.2011.02.015

6. Why is the large-scale experiment included? Is it meaningful to compare lab-scale data even though only one
result?

Large-scale experiment has been included to produce bulk mass of hydrothermally treated MSW for pelletization
process. The pelletization process was done by an industrial-scale pelletizer so the fuel pellet was produced
practically, not ideally. As mentioned in an introduction section, most of the study on pretreated fuel pellet was
conducted by lab-scale pellet making process. This cannot represent the real characteristic of fuel pellet. Lab-scale
data are compared to study the fundamental effect of HTT on MSW whereas the large-scale result increases chance
of implementation of the HTT technology and this study focuses on producing high quality RDF from HTT.



7. The resolution of figures should be increased for Figs 4-5.

The resolution was increased.
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Abstract
This paper presents a study on the effect of hydrothermal treatment (HTT) on municipal solid waste (MSW) and
mechanical property of fuel pellet. The lab-scale HTT was conducted at the condition of 180-240 °C and 30-90
min. Results showed that the HTT could improve fuel property of MSW including heating value, dewatering and
drying performance. The fuel pellet was produced at three different diameters (4, 6, and 8 mm). Tests of
mechanical property and water adsorption were performed. Results showed that the fuel pellet was able to
withstand the axial load of 19-54 N and the radial load of 72-130 N. The 8-mm pellet exhibited lowest Young’s
modulus (18.26 MPa) indicating flexibility and ductility. Durability of the fuel pellet was high (91-94%) while
the Hardgrove grindability index (HGI) was (57-76) higher than that of the biomass pellet (18-22) and the
subbituminous coal (46-49) indicating the ease of grinding. The equilibrium moisture content of the fuel pellet
was 5-6%. The small fuel pellet reached adsorption equilibrium faster than the large one. In sum, the fuel pellet

produced from HTT showed good fuel property as well as mechanical property for transportation and utilization.

1. Introduction

Expansion of community and economic activity increases waste generation rate. Municipal solid waste (MSW)
disposal becomes a critical problem of many big cities. Several works encourage to improve waste management
activity [1-3]. At this moment, large amount of MSW is dumping on a landfill site or burning at a waste incinerator.
In Europe, landfilled waste are 62.2% of the total waste while utilized waste including recycled waste, incinerated
waste, and composted waste are 11%, 21.9%, and 4.5% of the total waste, respectively [4]. In several Asian
countries, landfill and open dump are the main MSW disposal method [5] while only few nations have a
sustainable plan for waste management [6]. Landfilling of MSW will be restricted in the future because of either
regulation or economic issues [7,8]. A promising method of waste elimination is an incineration because it is able

to reduce the volume of solid waste significantly and has a very high capacity [9]. As a waste disposal center, the
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incinerator needs waste fuel to be transported to the site. However, poor characteristic such as high moisture

content, low calorific value and heterogeneity of MSW leads to the difficulty of such activity.

Refuse-derived fuel (RDF) technology has been proposed to improve MSW quality for transportation and final
utilization. In short, a basic RDF processing plant may consist of screening, shredding, size reduction,
classification, separation, drying, and densification [4]. The advantages of RDF are higher calorific value and
more homogenous physicochemical characteristic compared to the original MSW. RDF has been classified into
seven types listing numerically according to the American Society for Testing and Materials (ASTM) Committee
E-38 on Resource Recovery [10,11]: RDF-1 is a fuel without oversize waste; RDF-2 is the MSW that has been
processed to coarse particle size or ferrous metal has been separated; RDF-3, also known as fluff RDF, has better
quality because of its smaller size (95% by weight pass through a 2-inch square mesh screen) and removal of
inorganic such as metal and glass; RDF-4 is the burnable waste in a powder form; RDF-5 is the densified burnable
waste in form of pellets or briquettes; RDF-6 is the liquefied RDF; and RDF-7 is the gasified RDF. Nowadays,
RDF-3 is commonly used because of a low production cost; however, the fuel property of RDF-3 is marginally
improved. The reason is that the processing of RDF-3 mainly consists of basic mechanical separation and a
thermal drying that cannot physical and chemical property of the waste significantly. Moreover, the “fluffy” RDF
seems to face a contamination problem as well as an inefficiency in transportation due to its low density resulting

in an increase of transportation cost.

A subcritical water condition (SWC) is water that exists in the state below and near its critical point. It has
interesting properties such as catalytic behavior for organic compounds due to drastically higher amount of ionic
products compared to water at the ambient condition [12]. SWC causes degradation of substances and creates
various reactions, for instance, hydrolysis, dehydration, decarboxylation, condensation, and aromatization. These
reactions can transform biomass feedstock into other materials. The well-known applications of SWC in waste
and biomass conversion are hydrothermal carbonization (HTC) and hydrothermal treatment (HTT) processes.
HTC can convert organic materials into a carbonaceous solid product by using moderate water temperature (180-
350 °C) and pressure (2-10 MPa) [13,14]. The product from HTC is biochar that has a higher heating value and
sterilized biological substances [14,15]. The holding time of HTC is generally long and it could be in the range of
2-12 h [14,16]. However, a shorter holding time with a relatively higher pressure has been tested as well [17]. The

HTC process was applied to municipal solid waste streams [18] as well as biomass/agricultural residues [19,20].
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2. Material and methods

2.1 Municipal solid waste

Municipal solid waste (MSW) used in this study was simulated and real MSW for lab-scale and large-scale
experiment, respectively. The simulated MSW consists of major composition of MSW including organic waste,
plastic, paper and textile. The representative component of simulated MSW was Chinese morning glory for
organic waste (17 g, 68%), mixture of HDPE, PET, PP for common plastic waste (5 g, 20%), cotton cloth for
textile waste (1 g, 4%), and office paper and recycled paper for paper waste (2 g, 8%). [The moisture content of
the'Simulated MSW Was'65:7%! The length of all materials was about 1 cm. Forthe large=scale test, the MISW
(Was'from acity of Tangerang, Indonesia: The major composition was organic material (56%), paper waste (24%),
plastic waste (14%), diaper (3%), and other waste materials (3%). MOiSture content of raw MSW Was

approximately’53%: Chemical composition of the sample in this study is summarized in Table 1.

Table 1 Fuel property of the sample

2.2 Fuel pellet production

2.2.1 Hydrothermal treatment

Simulated MSW and real MSW were subjected to hydrothermal treatment (HTT) at the lab-scale and large-scale
apparatus, respectively. The objective of the lab-scale HTT test was to study the effect of the treatment condition.
The lab-scale HTT was tested at 180, 200, 220, and 240 °C at 30, 60, and 90 min. In each experiment, MSW
sample and deionized water were mixed at the ratio of 1 to 6 to ensure that the sample was submerged under the
water for an efficient treatment. They were put into an electrically heated autoclave with the volume of 500 ml.
After injection of the sample, the autoclave was sealed and air inside the autoclave was purged by filling the
nitrogen gas for about two min. Then the heater was set to the target temperature as mentioned earlier. The stirrer
was kept rotating at 50 rpm. After the process is finished, the heater was turned off and the autoclave was cooled

down. Eventually, the sample was taken out and each experiment was duplicated to ensure repeatability of the



results. The large-scale HTT experiment performed by a 10-m? reactor at the temperature of 220-230 °C for 30

min holding time aimed to produce the bulk mass of HTT product for fuel pellet production.

Figure 1 Investigation scheme of this study: (a) Effect of HTT condition; (b) Mechanical property and water

adsorption tests of fuel pellet.

2.2.2 Dewatering and drying

In the dewatering process, the pressure was applied to squeeze out the water from the lab-scale HTT product. It
was designed to use easily by applying the weight from the top. The applied weight then determines the size of
the force. Thus, the measuring of the force/pressure exerts to the sample was conveniently calculated. The
dewatering machine consists of two parts. [Fhe first part consists of a piston rod, a place to put the weight. The
second part is a sample cup whose bottom has a mesh for draining purpose. During the experiment, the sample
was wrapped by filter paper and put in the cup of the dewatering machine. Then, 6 kg of weight equivalent to 11.7
kPa of pressure was applied for 5 min. Finally, the dewatered solid product and liquid part were obtained. After
the dewatering process, the dewatered solid product was subjected to the drying process using an electric oven at
the temperature of 60 °C. The weight of the sample was measured at every hour until the rate of mass loss was
less than 0.05%. In the case of large-scale HTT product, sun drying was simply applied without dewatering and

drying tests.

2.2.3 Pelletization

Pelletization was a key to produce fuel pellet or RDF-5. It densifies small material into pellet for ease of
transportation and utilization. In this study, the sample was pelletized by a 5.5 kW flat-die pelletizer. The main
components of the flat-die pelletizer are flat die, roller, motor and gearbox [37]. The 150-mm diameter roller
rotates above the flat die which has the diameter of 90 mm. The product from the large-scale HTT was utilized in
the pelletization process. The fuel pellet was made in three diameters at 4, 6, and 8 mm. Addition of water is
necessary as a binder during pelletization. [Thus, wet sample with the moisture content of 26% was pelletized. The
fuel pellet product was then subjected to sun drying again prior to a series of mechanical property and water

adsorption tests. The moisture content of the final fuel pellet was approximately 3-5%.



2.3 Fuel analysis

To perform chemical analysis of the sample, all samples was dried at 105 °C for 24 h and then crushed into powder.
The heating value was measured by a bomb calorimeter (Leco, AC-500) according to the ASTM D5865. The
proximate analysis was performed by simultaneous Thermal Analyzer (STA 449 F3) according to the ASTM
D7582 and the ultimate analysis was performed by elemental analyzer (Thermo Flash 2000) according to the

ASTM D5373).

2.4 Mechanical property analysis

2.4.1 Compressive test

The compressive test was performed to measure the maximum load that the produced fuel pellet can withstand
before cracking or breaking. The compressive test simulates the compressive stress due to the weight on the top-
end and bottom-end of the pellets during handling, storage, or transportation. In this study, the mechanical
compressive test was done using a universal testing machine (INSTRON 5969) shown in Figure 2a. In the
experiment, the pellet was attached to the metal plate as a foundation and it was preloaded at approximately 3 N.
The load was applied to the pellet at the condition of 1 mm/min until the machine detects critically fracture or
damage. The pellet brought to this test has to meet the standard to ensure reproducibility of the result. The
dimension of the pellet was about 20 mm in length and its cylindrical shape has to be straight. The experiment

was performed 4-6 times for each pellet size.

Figure 2 Equipment used for mechanical property testing of fuel pellet: (a) Universal Testing Machine; (b)

Digital push-pull force gauge; (c) Tumbler; (d) Hardgrove Grindability Index tester.

2.4.2 Hardness test

The hardness test in this study measures the maximum compressive force on the sides of the pellet. It simulates
the force on the side of the fuel pellet. In this study, the hardness test was performed by a digital push-pull force
gauge (SUNDOO SH-200) as shown in Figure 2b. In the experiment, the fuel pellet was placed on the slot and
the force was applied until the breakage was observed. Then, the machine automatically calculated the maximum
force the pellet can withstand. The standard pellet sample mentioned earlier was also used in the test. The

experiment was repeated 6 times for each type of pellet.



2.4.3 Durability test

Durability is an important mechanical property of pellet since it represents one of the physical damages during
transportation. Tumbler shown in Figure 2c is used to estimate the pellet quality in terms of pellet durability index
(PDI). The American Society of Agricultural Engineers Standard 269.4 (ASABE) [38] suggests that the
rectangular tumbler should be made of stainless steel with an inner dimensions of 300 x 300 x 125 mm. In order
to enforce the standard tumbling motion, the box is equipped with a 230 mm long baffle, which extends 50 mm
into the container. The baffle is affixed symmetrically to a diagonal of one side of the box. The container rotates
on an axis, which is at the center and perpendicular to the sides of the box. The rotation speed was around 50 rpm.
A 500 g of pellet was tested for 5 and 10 min before being sieved manually with a 3.15 mm round mesh. PDI was
computed by dividing the whole pellet sample weight (WPW) by the initial weight (IW) of the sample and

multiply by 100 (PDI = (WPW/IW) x 100).

2.4.4 Grindability test

Hardgrove grindability index (HGI) refers to the grindability of coal. It is performed by a tool called the Hardgrove
machine. Alternative fuel pellet that normally requires grinding before utilization can borrow HGI to measure
grindability in the same way of coal. Pellet with a high HGI value (close to 100) indicates a brittle nature and can
be crushed easily whereas pellet with low HGI value (about 30-45) is hard and tough for grinding. For each test,
100 g of each pellet size (4, 6, and 8 mm diameter) were utilized. The HGI was performed according to ASTM

D409-12 using HGI tester (Preiser/Mineco 90-9301-01) as shown in Figure 2d.

2.5 Water adsorption test

The moisture adsorption test simulates high humidity condition during transportation or storage to measure the
moisture adsorption capacity of the pellet. The higher moisture adsorption capacity indicates the higher tendency
of material that exposed to humidity would undergo swelling and eventually disintegrate. The moisture adsorption
test is performed by placing the pellets in a humidity-controlled cabinet at 25-27 °C and 78-80% humidity. The
cabinet is equipped with a mist generator and a light bulb to simulate the atmosphere. A microcontroller was used
to control the mist generator and the bulb to keep the target humidity and temperature stable. The weight of
material was recorded every 15 min for the first 2 h and every 1 h for the following hour until the moisture

adsorption of the pellet sample is saturated. After placing the pellet sample in the chamber, the box has a control



o)

unit to operate the mist generator and the bulb to keep the humidity and temperature stable. In each experiment,

five pellets were tested for reproducibility of the results.

3. Results and discussion

3.1 Hydrothermally treated MSW

3.1.1 Effect of treatment condition

Appearance of the product after HTT before drying and after drying at 60 °C for 24 h is shown in Figure 3a and
3b, respectively. Comparing the product after HTT with the different the holding times, the texture of the product
at each temperature was somehow similar. In case of HTT temperature variation, the appearance of the product
was clearly different. At 180 °C HTT condition, textile was recognized while the size of plastic materials was still
big. The color of the product was dark brown. When the treatment temperature increased to 200 °C HTT, the
product became more homogeneous. The color of the product became darker when increases the temperature but
the amount of the product was reduced. At the HTT condition of 220 °C, the color of the product was almost black
and the amount of the product was obviously less than that of the lower temperature. At the temperature condition
of 240 °C, the product was completely homogeneous and turned black. The amount of the product was very few
owing to liquefaction reaction. For the dried HTT products, they were shrank and the color was less intense due

to the removal of water. Nonetheless, the general appearance was not changed.

Figure 3 The hydrothermally treated MSW from the laboratory test: (@iSCToIcB)IaICHniNGIaHo0LCHom2am

3.1.2 Dewatering and drying performance



Figure 4 Dewatering and drying performance of raw MSW and HTT product: (a) Water removal efficiency

during dewatering; Drying BlIBOI@: (b) HTT 30 min; (c) HTT 60 min; (d) HTT 90 min.
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3.2 Mechanical property of fuel pellet from hydrothermal treatment

3.2.1 Compressive test

Results from compressive test, namely maximum force, stress and strain at maximum load, and Young’s modulus,
are summarized in Table 2. The results showed that the large pellet size can withstand larger load. The average
maximum load of the sample was 19.15, 36.94, and 54.06 N at 4, 6, and 8 mm diameter of pellets, respectively.
Large diameter pellet can resist significantly higher compressive force suggesting that the pellet can retain in a
good shape during transportation and handling. It can be observed that the standard deviation of maximum load
of the 4 mm pellet was large. This was due to the pellet was relatively small causing instability of the results.
Compressive stress at maximum load was lower when the diameter of the pellet was increased. The compressive
strain at the maximum load of all pellet sizes were similar. The Young’s modulus (E) is a measurement of the
stiffness of solid material. In other words, it determines a resistant in changes of length of the sample. In this
study, the E values were calculated by determining the slope of the stress — strain profiles (average R-squared
0.9960). The average E of 4 and 6 mm pellet was 39.33 and 34.77 MPa, respectively. The average E of 8 mm
pellet has reduced to 18.26 MPa. The fuel pellet produced from HTT was considered as a low E material meaning
that it was easily to deform but flexible. From the result, 8 mm pellet, that has lower E than the other sizes, was
relatively flexible (less stiff) compared to the 4 and 6 mm pellet. This result was consistent with the pellet
compression ratios estimated by length of the pellet divided by diameter of the pellet. The compression ratio of
the pellet was 5.44, 3.79, and 3.14 for 4, 6, and 8 mm pellet, respectively. Higher compression ratio produced

denser pellet. Therefore, the 4 mm pellet was the most stiffness and this was consistent with the E value.

Table 2 Summary of mechanical property from compressive test and hardness test of fuel pellet.

Compressive stress — strain curves of the sample are presented in Figure 5 along with the visualization of the pellet

after the compression. All of the pellet was compressed until breaking and the stress-strain data was continuously
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collected. Figure 5a illustrates the stress-strain curve of the 4 mm pellet under compressive force. It was clearly
observed that the profiles were different due to the physical condition of 4 mm pellet. It was small and was not in
a complete cylindrical shape. This was technically unavoidable owning to the mechanism of the pelletizer and the
size of pellet. However, the characteristic of the stress-strain profile illustrated similar characteristic. After load
was applied, the curve was raised up considering elastic region (linear) until it reached the yield stress point. Then,
it entered partially plastic deformation region until the pellet was broken. Sample 2 (S2) showed unique
characteristic. The breakage of the pellet was locked and further densified; therefore, the broken pellet can
withstand further force during the compressive test. This is the reason why the S2 pellet had the maximum force
as well as the maximum stress. After the compressive test, it was observed that the pellet was intensely crushed
at the top-end and bended at the lower region. The failure mode was considered “crushing” showing that the pellet
cannot withstand much compressive force and cannot retain in a good form. This characteristic showed
consistency with the stiffness and Young’s modulus. Thus, 4 mm pellet was likely to bend and crush during

transportation or handling either due to the axial compressive force or radial force (discussed later) on the pellet.

Figure 5b shows the stress-strain curve and breakage of 6 mm during compressive test. The stress-strain curves
of 6 mm pellet were more consistent than that of the 4 mm pellet. From Figure 5b, the maximum compressive
stress of the 6 mm pellet was approximately in range of 1.3-1.6 MPa at the extensive strain. Two types of profiles
were observed as relatively brittle (S1 and S3) and relatively ductile (Others) characteristics. After adding the
compressive load, the brittle pellet was deformed in the elastic region with short range of plastic deformation
characteristic until breakage. Yield stress point and ultimate stress point were closed. On the other hand, the
ductile pellet characteristic showed longer both elastic and plastic deformation region before breakage. Due to the
ductile characteristic, strain of this type of pellet was extensive as shown in S5 and S6. Failure mode of 6 mm
pellet was different from that of the 4 mm pellet. There was no crushed particle in the test area. The upper part of
the pellet was slide and this failure can be considered as “shearing”. Figure 5c¢ presents stress-strain profiles of 8
mm pellet during compressive test. The characteristic of the stress-strain profiles was the most consistent. This
was because the shape of the 8 mm pellet was completely in cylindrical shape. However, two types of stress-strain
curves were observed similar to that of 6 mm pellet. Compressive stress of 8 mm pellet was lower than that of the
6 mm while strain showed the opposite relationship. Young’s modulus of 8 mm pellet was significantly reduced.
The stress-strain profiles were flat compared to the profiles of 4 and 6 mm pellet. This showed the increase of

ductility characteristic. The visualization of this important parameter can be found in the sample after the
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destructive compressive test. The 8 mm pellet after the test was rigid as no excessive crushed particles and slide
structure were observed. At the top-end of the 8 mm pellet, the particle seemed to swell as it absorbed the load
during the compressive test. The failure mode of the 8 mm pellet was different from that of the 4 and 6 mm. due

to its low modulus of elasticity.

Figure 5 Stress-strain curves and sample after compressive tests: (a): 4 mm; (b): 6 mm; (c): 8 mm.

3.2.2 Hardness test

The hardness test in this study resembles the situation which the pellet was piled up during storage. Weight from
other pellets would exert on the side. Maximum force from the hardness tests is presented in Table 2. The average
force that made 4 mm pellet broken was 72.3 N and increased to 112.6 and 130.4 N for the 6 and 8 mm diameter,
accounting 55.7% and 80.4% increase, respectively. The force was applied on the side of the pellet where it can
be distributed. The load of the hardness test was perpendicular to the pellet axial. This was different from the
compressive test in which the load was applied perpendicular to the cross sectional area of the pellet. Thus, the
pellet in this hardness test can withstand more force than that of the axial compressive ones. After the hardness
test, the crushed pellet was visualized as shown in Figure 6. All pellets were damaged regardless of the diameter.
The most destructive pellet was the 4 mm diameter. It was totally deformed and flattened. Several pieces of
crushed pellet were observed and the pellet cannot retain its original form. For the 6 and 8 mm pellets, it can retain
cylindrical shape even though the several breakage was observed. It is likely that they can be handled with minimal

broken pieces and dust, which was significantly different from the 4 mm.

Figure 6 Pellet after the hardness test.

3.2.3 Durability test

Parameters during durability test in this study were moisture content of the fuel pellet and duration of tumbling.
Two conditions of moisture content of the sample were 3.92%, which was as received moisture content of the
pellet from the indoor storage, and 0% (the sample was dried in the electrical oven before the test). The test was
last 10 min with a 5-min stop for collecting the data. This allowed a calculation of two-step pellet durability index
(PDI). The calculated PDI is presented in Table 3. It can be observed that the size and the moisture of the pellet

has no significant effect on the PDI values as they were in range of 94-96% and 91-93% for the 5 min and 10 min
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testing, respectively. In general, samples exhibit to longer abrasive condition would yield less PDI value. Attrition
of the pellet would occur at the beginning of the test due to its sharp edge and rough finishing surface. This leaded
to the significant decrease of PDI (from 100% to 95% in average, accounting 5%) during the first 5 min test. Then,
the additional reduction of PDI was only 3% after another 5 min test. From the viewpoint of European wood-
derived pellet standard, woody pellet mechanical durability should be higher than 97.5% and 98.0% to reach B
class and A1/A2 class, respectively [42]. The mechanical durability of the hydrothermally treated MSW-derived
pellet showed slightly lower than that of the woody pellet standard. [This might be due to the difference
composition of the raw material as well as the condition of the pelletization in which commercial-scale production
would generate higher heat and compressive force. For the former, biomass material contains lignin, which acts
as a binder during pelletization process. Lignin, an important structural organic polymer, undergoes glass-liquid
transition owning to high temperature condition during the pelletization that strengthens the biomass pellet by
increasing solid bridge formation [43]. On the other hand, in MSW sample, it could be suggested that another
class of polymeric material, i.e. plastic, would be a key component for such mechanism to occur. However, the
plastic material in the treated MSW was processed by high pressure and temperature steam resulting in a reduction
of plastic quantity. This may reduce the effect on strengthening the pellet product. Nevertheless, the fuel pellet
sample obtained from the hydrothermally pretreated MSW presents relatively high durability, which is good for

transportation and handling.

Table 3 Pellet durability index (PDI) in various conditions.

3.2.4 Grindability test

The Hardgrove Grindability Index (HGI) of hydrothermal fuel pellet is presented in Table 4 along with
subbituminous coal and other alternative solid fuels. The 4, 6, and 8 mm fuel pellet has HGI value of 76, 65, and
57, respectively. The HGI of fuel pellet was slightly higher than that of coal and processed biomass. The
conventional biomass pellet has significantly low HGI. Thus, it could be difficult to grind, as their HGI was
relatively low. When comparing the effect of diameter of the fuel pellet, the larger pellet diameter gave lower
grindability rate meaning that the pellet with large size was difficult to be grinded. The HGI of fuel pellet
correlated with compressive strength and durability tests. Even though the large-size fuel pellet showed its strength
through HGI and other mechanical tests that is favored by handling and transportation, it may need more energy

during grinding before feeding in a fluidized or pulverized bed combustor. Nonetheless, a typical HGI of coal for
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pulverizers is 50 [44] so the 8 mm fuel pellet could be grinded without excessive energy consumption compared

to coal.

Table 4 Hardgrove grindability index (HGI) of hydrothermal fuel pellet compared to other biomass pellet.

3.3 Water adsorption test

Figure 7 shows moisture content of fuel pellets during moisture adsorption test. It should be noted that the pellets
were totally dried prior to the test. Results showed that the larger pellets saturated more slowly and adsorbed more
water than the small pellets. The weight of the water in the sample was saturated at 5.2%, 5.5% and 5.8% for the
4, 6 and 8 mm pellets, respectively. In more detail, the 4 mm diameter pellet was firstly saturated at 120 min
followed by the 6 and 8 mm that were saturated at 180 min and 360 min, respectively. The moisture adsorption
rate was high at the beginning (30 min) then it was slightly reduced (30-60 min) and became low after 60 min
until saturation. All pellets were still in shape and no damage. It was interesting that the water adsorption of fuel
pellet produced from HTT could adsorb water at around 5-6% at its saturation regardless of the duration of high
humidity exposure. The hydrophobicity characteristic of the fuel pellet was obvious. This may due to the
decomposition of organic material in the waste stream. Such raw material contains hemicellulose whose water
adsorption characteristic is the highest among other lignocellulosic constituents [43]. Therefore, the fuel pellet
can retain in a good condition (low moisture content, high heating value, and in a good shape) indicating potential

for practical utilization.

Figure 7 Moisture content of the pellet during moisture adsorption test.

4. Conclusion
Effect of HTT on fuel property of MSW and the mechanical property of hydrothermal fuel pellet have been
investigated. Conclusion can be summarized as follows:
1. HTT can improve energy density and dewatering and drying performance of the MSW. Treatment
temperature played important role in fuel property improvement.
2. The hydrothermal fuel pellet can withstand the load of 19-54 N and 72-130 N for axial and radial load,

respectively. In general, a larger diameter fuel pellet can withstand larger force than the smaller ones.
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3. A8 mm pellet exhibits lower stress under the load while the Young’s modulus was lower (18.26 MPa)
compared to that of the smaller size pellet (22-24 MPa) indicating flexible and ductile characteristic.

4. Durability of the produced fuel pellet was high (91-94%). The Hardgrove grindability index (HGI) of the
produced fuel pellet was higher (57-76) than that of biomass pellet (18-22) and comparable to
subbituminous coal and torrefied biomass (46-49). Thus, the produced fuel pellet showed good
grindability.

5. Moisture equilibrium point of the fuel pellet was around 5-6%. Larger fuel pellet can adsorb more water
while the smaller pellet reached equilibrium faster than the larger ones.

6. HTT can be a promising method for production of fuel pellet since it showed good fuel property and

physical characteristic in form of pellet for handling, transportation, and utilization.
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Table Legend

Table 1 Fuel property of the sample.

Table 2 Summary of mechanical property from compressive test and hardness test of fuel pellet.

Table 3 Pellet durability index (PDI) in various conditions.

Table 4 Hardgrove grindability index (HGI) of hydrothermal fuel pellet compared to other biomass pellet.

Figure Caption

Figure 1 Investigation scheme of this study: (a) Effect of HTT condition; (b) Mechanical property and

adsorption tests of fuel pellet.

Figure 2 Equipment used for mechanical property testing of fuel pellet: (2) Universal Testing Machine; (b)

Digital push-pull force gauge; (c) Tumbler; (d) Hardgrove Grindability Index tester.

Figure 3 The hydrothermally treated MSW from the laboratory test: (&) before; (b) after drying at 60 °C for 24h.

Figure 4 Dewatering and drying performance of raw MSW and HTT product: (a) Water removal efficiency

during dewatering; Drying at 60.°C: (b) HTT 30 min; (c) HTT 60 min; (d) HTT 90 min.

Figure 5 Stress-strain curves and sample after compressive tests: (a): 4 mm; (b): 6 mm; (c): 8 mm.

Figure 6 Pellet after the hardness test.

Figure 7 Moisture content of the pellet during moisture adsorption test.
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Abstract
This paper presents a study on the effect of hydrothermal treatment (HTT) on municipal solid waste (MSW) and
mechanical property of fuel pellet. The lab-scale HTT was conducted at the condition of 180-240 °C and 30-90
min. Results showed that the HTT could improve fuel property of MSW including heating value, dewatering and
drying performance. The fuel pellet was produced at three different diameters (4, 6, and 8 mm). Tests of
mechanical property and water adsorption were performed. Results showed that the fuel pellet was able to
withstand the axial load of 19-54 N and the radial load of 72-130 N. The 8-mm pellet exhibited lowest Young’s
modulus (18.26 MPa) indicating flexibility and ductility. Durability of the fuel pellet was high (91-94%) while
the Hardgrove grindability index (HGI) was (57-76) higher than that of the biomass pellet (18-22) and the
subbituminous coal (46-49) indicating the ease of grinding. The equilibrium moisture content of the fuel pellet
was 5-6%. The small fuel pellet reached adsorption equilibrium faster than the large one. In sum, the fuel pellet

produced from HTT showed good fuel property as well as mechanical property for transportation and utilization.

1. Introduction

Expansion of community and economic activity increases waste generation rate. Municipal solid waste (MSW)
disposal becomes a critical problem of many big cities. Several works encourage to improve waste management
activity [1-3]. At this moment, large amount of MSW is dumping on a landfill site or burning at a waste incinerator.
In Europe, landfilled waste are 62.2% of the total waste while utilized waste including recycled waste, incinerated
waste, and composted waste are 11%, 21.9%, and 4.5% of the total waste, respectively [4]. In several Asian
countries, landfill and open dump are the main MSW disposal method [5] while only few nations have a
sustainable plan for waste management [6]. Landfilling of MSW will be restricted in the future because of either
regulation or economic issues [7,8]. A promising method of waste elimination is an incineration because it is able

to reduce the volume of solid waste significantly and has a very high capacity [9]. As a waste disposal center, the
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incinerator needs waste fuel to be transported to the site. However, poor characteristic such as high moisture

content, low calorific value and heterogeneity of MSW leads to the difficulty of such activity.

Refuse-derived fuel (RDF) technology has been proposed to improve MSW quality for transportation and final
utilization. In short, a basic RDF processing plant may consist of screening, shredding, size reduction,
classification, separation, drying, and densification [4]. The advantages of RDF are higher calorific value and
more homogenous physicochemical characteristic compared to the original MSW. RDF has been classified into
seven types listing numerically according to the American Society for Testing and Materials (ASTM) Committee
E-38 on Resource Recovery [10,11]: RDF-1 is a fuel without oversize waste; RDF-2 is the MSW that has been
processed to coarse particle size or ferrous metal has been separated; RDF-3, also known as fluff RDF, has better
quality because of its smaller size (95% by weight pass through a 2-inch square mesh screen) and removal of
inorganic such as metal and glass; RDF-4 is the burnable waste in a powder form; RDF-5 is the densified burnable
waste in form of pellets or briquettes; RDF-6 is the liquefied RDF; and RDF-7 is the gasified RDF. Nowadays,
RDF-3 is commonly used because of a low production cost; however, the fuel property of RDF-3 is marginally
improved. The reason is that the processing of RDF-3 mainly consists of basic mechanical separation and a
thermal drying that cannot physical and chemical property of the waste significantly. Moreover, the “fluffy” RDF
seems to face a contamination problem as well as an inefficiency in transportation due to its low density resulting

in an increase of transportation cost.

A subcritical water condition (SWC) is water that exists in the state below and near its critical point. It has
interesting properties such as catalytic behavior for organic compounds due to drastically higher amount of ionic
products compared to water at the ambient condition [12]. SWC causes degradation of substances and creates
various reactions, for instance, hydrolysis, dehydration, decarboxylation, condensation, and aromatization. These
reactions can transform biomass feedstock into other materials. The well-known applications of SWC in waste
and biomass conversion are hydrothermal carbonization (HTC) and hydrothermal treatment (HTT) processes.
HTC can convert organic materials into a carbonaceous solid product by using moderate water temperature (180-
350 °C) and pressure (2-10 MPa) [13,14]. The product from HTC is biochar that has a higher heating value and
sterilized biological substances [14,15]. The holding time of HTC is generally long and it could be in the range of
2-12 h [14,16]. However, a shorter holding time with a relatively higher pressure has been tested as well [17]. The

HTC process was applied to municipal solid waste streams [18] as well as biomass/agricultural residues [19,20].
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Similar to HTC, the HTT has been investigated by several researchers in recent years [21-23]. This innovative
treatment process can convert waste such as MSW, sewage sludge, paper sludge, antibiotic residue, to value-
added resources such as coal-like solid fuel or organic fertilizer showing feasibility of a large-scale process

[21,22,24-28].

One of the advantages of the HTT is an ability to pulverize the feedstock. The powder product facilitates a
densification process. After the densification of the raw material, the pellet immediately faces risk of disintegration
during cooling, storage, transportation, as well as handling process. Many factors affect breakage of the fuel pellet,
for example, biomass type, moisture content, lignin content, and particle size [29]. To reach certain standard, a
quantification of fuel pellet’s mechanical property, e.g. compressive test, impact crushing, and abrasion, is
necessary [30]. Mechanical strength and moisture adsorption analysis of pelletized steam-exploded Douglas Fir
(Pseudotsuga menziesii) have been performed and it was found that the pretreated fuel pellet had higher strength
and rigidity compared to the untreated pellet [31]. Fuel pellet made from torrefied sawdust was subjected to
moisture adsorption and Meyer hardness tests; results showed that the torrefied pellet had lower hardness and
adsorbed less moisture than the conventional pellet [32]. Zaini et al. (2017) studied a mechanical property of fuel
pellet made from hydrothermally treated and washed empty fruit bunch (EFB) [33]. It was found that the
mechanical strength, durability, homogeneity, and hydrophobicity of the treated EFB was better than the raw EFB
[33]. However, the pretreated fuel pellet in the literature review have been made by a single pellet method, which
the raw or pretreated material is powdered and densified at a well-controlled condition, i.e. high-pressure and
controlled temperature, using piston/cylinder or mold powered by compression machine assembled with electric
heater [31-36]. This may not resemble a practical pelletizing process. Therefore, the quantification of mechanical
property of the ideal pellet would not represent the practicality. To investigate the real physical condition of the
fuel pellet, an industrial pelletizer should be utilized for fuel pellet production. Moreover, based on our current
knowledge, no research work has been done on a quantification of mechanical property of RDF-5 produced from

HTT process.

For those reasons, this research aimed to investigate the mechanical property of the hydrothermally pretreated
MSW fuel pellet using an industrial pelletizer. The paper covered fundamental study on the effect of HTT
production from MSW by lab-scale experiment and a study of fuel pellet production from large-scale experiment.

Lab-scale experiment of HTT on MSW performed at several treatment conditions. Evaluation on the effect of
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HTT was done on appearance, dewatering and drying performance, and fuel property. Fuel pellet was made from
hydrothermal pretreated MSW using a flat-die pelletizer. Comprehensive test on mechanical property that
resembles a situation of fuel pellet during handling, transportation and utilization was performed. This includes
compressive test, hardness test, durability test, and grindability test. Additionally, moisture adsorption test was

carried out to simulate a circumstance that the fuel pellet exposes to wet atmosphere.

2. Material and methods

2.1 Municipal solid waste

Municipal solid waste (MSW) used in this study was simulated and real MSW for lab-scale and large-scale
experiment, respectively. The simulated MSW consists of major composition of MSW including organic waste,
plastic, paper and textile. The representative component of simulated MSW was Chinese morning glory for
organic waste (17 g, 68%), mixture of HDPE, PET, PP for common plastic waste (5 g, 20%), cotton cloth for
textile waste (1 g, 4%), and office paper and recycled paper for paper waste (2 g, 8%). The moisture content of
the simulated MSW was 65.7%. The length of all materials was about 1 cm. For the large-scale test, the MSW
was from a city of Tangerang, Indonesia. The major composition was organic material (56%), paper waste (24%),
plastic waste (14%), diaper (3%), and other waste materials (3%). Moisture content of raw MSW was

approximately 53%. Chemical composition of the sample in this study is summarized in Table 1.

Table 1 Fuel property of the sample

2.2 Fuel pellet production

2.2.1 Hydrothermal treatment

Simulated MSW and real MSW were subjected to hydrothermal treatment (HTT) at the lab-scale and large-scale
apparatus, respectively. The objective of the lab-scale HTT test was to study the effect of the treatment condition.
The lab-scale HTT was tested at 180, 200, 220, and 240 °C at 30, 60, and 90 min. In each experiment, MSW
sample and deionized water were mixed at the ratio of 1 to 6 to ensure that the sample was submerged under the
water for an efficient treatment. They were put into an electrically heated autoclave with the volume of 500 ml.
After injection of the sample, the autoclave was sealed and air inside the autoclave was purged by filling the
nitrogen gas for about two min. Then the heater was set to the target temperature as mentioned earlier. The stirrer
was kept rotating at 50 rpm. After the process is finished, the heater was turned off and the autoclave was cooled

down. Eventually, the sample was taken out and each experiment was duplicated to ensure repeatability of the
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results. The large-scale HTT experiment performed by a 10-m? reactor at the temperature of 220-230 °C for 30

min holding time aimed to produce the bulk mass of HTT product for fuel pellet production.

Figure 1 Investigation scheme of this study: (a) Effect of HTT condition; (b) Mechanical property and water

adsorption tests of fuel pellet.

2.2.2 Dewatering and drying

In the dewatering process, the pressure was applied to squeeze out the water from the lab-scale HTT product. It
was designed to use easily by applying the weight from the top. The applied weight then determines the size of
the force. Thus, the measuring of the force/pressure exerts to the sample was conveniently calculated. The
dewatering machine consists of two parts. The first part consists of a piston rod, a place to put the weight. The
second part is a sample cup whose bottom has a mesh for draining purpose. During the experiment, the sample
was wrapped by filter paper and put in the cup of the dewatering machine. Then, 6 kg of weight equivalent to 11.7
kPa of pressure was applied for 5 min. Finally, the dewatered solid product and liquid part were obtained. After
the dewatering process, the dewatered solid product was subjected to the drying process using an electric oven at
the temperature of 60 °C. The weight of the sample was measured at every hour until the rate of mass loss was
less than 0.05%. In the case of large-scale HTT product, sun drying was simply applied without dewatering and

drying tests.

2.2.3 Pelletization

Pelletization was a key to produce fuel pellet or RDF-5. It densifies small material into pellet for ease of
transportation and utilization. In this study, the sample was pelletized by a 5.5 kW flat-die pelletizer. The main
components of the flat-die pelletizer are flat die, roller, motor and gearbox [37]. The 150-mm diameter roller
rotates above the flat die which has the diameter of 90 mm. The product from the large-scale HTT was utilized in
the pelletization process. The fuel pellet was made in three diameters at 4, 6, and 8 mm. Addition of water is
necessary as a binder during pelletization. Thus, wet sample with the moisture content of 26% was pelletized. The
fuel pellet product was then subjected to sun drying again prior to a series of mechanical property and water

adsorption tests. The moisture content of the final fuel pellet was approximately 3-5%.
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2.3 Fuel analysis

To perform chemical analysis of the sample, all samples was dried at 105 °C for 24 h and then crushed into powder.
The heating value was measured by a bomb calorimeter (Leco, AC-500) according to the ASTM D5865. The
proximate analysis was performed by simultaneous Thermal Analyzer (STA 449 F3) according to the ASTM
D7582 and the ultimate analysis was performed by elemental analyzer (Thermo Flash 2000) according to the

ASTM D5373).

2.4 Mechanical property analysis

2.4.1 Compressive test

The compressive test was performed to measure the maximum load that the produced fuel pellet can withstand
before cracking or breaking. The compressive test simulates the compressive stress due to the weight on the top-
end and bottom-end of the pellets during handling, storage, or transportation. In this study, the mechanical
compressive test was done using a universal testing machine (INSTRON 5969) shown in Figure 2a. In the
experiment, the pellet was attached to the metal plate as a foundation and it was preloaded at approximately 3 N.
The load was applied to the pellet at the condition of 1 mm/min until the machine detects critically fracture or
damage. The pellet brought to this test has to meet the standard to ensure reproducibility of the result. The
dimension of the pellet was about 20 mm in length and its cylindrical shape has to be straight. The experiment

was performed 4-6 times for each pellet size.

Figure 2 Equipment used for mechanical property testing of fuel pellet: (a) Universal Testing Machine; (b)

Digital push-pull force gauge; (c) Tumbler; (d) Hardgrove Grindability Index tester.

2.4.2 Hardness test

The hardness test in this study measures the maximum compressive force on the sides of the pellet. It simulates
the force on the side of the fuel pellet. In this study, the hardness test was performed by a digital push-pull force
gauge (SUNDOO SH-200) as shown in Figure 2b. In the experiment, the fuel pellet was placed on the slot and
the force was applied until the breakage was observed. Then, the machine automatically calculated the maximum
force the pellet can withstand. The standard pellet sample mentioned earlier was also used in the test. The

experiment was repeated 6 times for each type of pellet.
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2.4.3 Durability test

Durability is an important mechanical property of pellet since it represents one of the physical damages during
transportation. Tumbler shown in Figure 2c is used to estimate the pellet quality in terms of pellet durability index
(PDI). The American Society of Agricultural Engineers Standard 269.4 (ASABE) [38] suggests that the
rectangular tumbler should be made of stainless steel with an inner dimensions of 300 x 300 x 125 mm. In order
to enforce the standard tumbling motion, the box is equipped with a 230 mm long baffle, which extends 50 mm
into the container. The baffle is affixed symmetrically to a diagonal of one side of the box. The container rotates
on an axis, which is at the center and perpendicular to the sides of the box. The rotation speed was around 50 rpm.
A 500 g of pellet was tested for 5 and 10 min before being sieved manually with a 3.15 mm round mesh. PDI was
computed by dividing the whole pellet sample weight (WPW) by the initial weight (IW) of the sample and

multiply by 100 (PDI = (WPW/IW) x 100).

2.4.4 Grindability test

Hardgrove grindability index (HGI) refers to the grindability of coal. It is performed by a tool called the Hardgrove
machine. Alternative fuel pellet that normally requires grinding before utilization can borrow HGI to measure
grindability in the same way of coal. Pellet with a high HGI value (close to 100) indicates a brittle nature and can
be crushed easily whereas pellet with low HGI value (about 30-45) is hard and tough for grinding. For each test,
100 g of each pellet size (4, 6, and 8 mm diameter) were utilized. The HGI was performed according to ASTM

D409-12 using HGI tester (Preiser/Mineco 90-9301-01) as shown in Figure 2d.

2.5 Water adsorption test

The moisture adsorption test simulates high humidity condition during transportation or storage to measure the
moisture adsorption capacity of the pellet. The higher moisture adsorption capacity indicates the higher tendency
of material that exposed to humidity would undergo swelling and eventually disintegrate. The moisture adsorption
test is performed by placing the pellets in a humidity-controlled cabinet at 25-27 °C and 78-80% humidity. The
cabinet is equipped with a mist generator and a light bulb to simulate the atmosphere. A microcontroller was used
to control the mist generator and the bulb to keep the target humidity and temperature stable. The weight of
material was recorded every 15 min for the first 2 h and every 1 h for the following hour until the moisture

adsorption of the pellet sample is saturated. After placing the pellet sample in the chamber, the box has a control
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unit to operate the mist generator and the bulb to keep the humidity and temperature stable. In each experiment,

five pellets were tested for reproducibility of the results.

3. Results and discussion

3.1 Hydrothermally treated MSW

3.1.1 Effect of treatment condition

Appearance of the product after HTT before drying and after drying at 60 °C for 24 h is shown in Figure 3a and
3b, respectively. Comparing the product after HTT with the different the holding times, the texture of the product
at each temperature was somehow similar. In case of HTT temperature variation, the appearance of the product
was clearly different. At 180 °C HTT condition, textile was recognized while the size of plastic materials was still
big. The color of the product was dark brown. When the treatment temperature increased to 200 °C HTT, the
product became more homogeneous. The color of the product became darker when increases the temperature but
the amount of the product was reduced. At the HTT condition of 220 °C, the color of the product was almost black
and the amount of the product was obviously less than that of the lower temperature. At the temperature condition
of 240 °C, the product was completely homogeneous and turned black. The amount of the product was very few
owing to liquefaction reaction. For the dried HTT products, they were shrank and the color was less intense due

to the removal of water. Nonetheless, the general appearance was not changed.

Figure 3 The hydrothermally treated MSW from the laboratory test: (a) before; (b) after drying at 60 °C for 24h.

3.1.2 Dewatering and drying performance

The original moisture content of simulated MSW was about 65.7%. After the HTT, it was higher than 90%. This
was due to the large amount of addition water was utilized to simulate lab-scale HTT process. In large-scale
process where direct steam injection was utilized, the moisture content of the product was approximately 60%
due to the lower steam to raw material ratio [22]. Water removal efficiency during mechanical dewatering test of
the lab-scale HTT products was calculated by dividing the mass of the dewatered liquid by the mass of the product
after HTT. Results are presented in Figure 4a. It can be observed that the removal of water during the dewatering
was in range of 74-95%. For lab-scale product, large amount of dewatered liquid was devoted to additional water
during the HTT process. The effect of the treatment temperature on the water removal was obvious. For example,

at 60 min residence time, the water removal efficiency showed 5%, 16%, and 22% enhancement when the HTT
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temperature was increased from 180 to 200, 220, and 240 °C, respectively. On the other hand, the residence time
of HTT did not significantly affect water removal performance. For instance, at 220 °C, the improvement of water
removal efficiency was 14.5% and 14.8%, when the residence time was extended from 30 to 60 and 90 min,
respectively. Thus, extension of the residence time of HTT process might not give favorable dewatering
efficiency. In cell level, subcritical water can crush cell structure of organic material where bound water was
situated and this benefited the water removal process [26]. In the drying process, the effect of treatment
temperature showed the same positive outcome similar to dewatering process. The moisture of the product was
evaporated faster at the higher HTT temperature. For example, the 220 °C/30 min HTT product utilized 7 min
during 60 °C drying for evaporating 80% of total moisture whereas the original MSW needed 13 min. The effect
of the holding time on drying performance was limited. For instance, the increase of HTT holding time from 30
to 60 min (every HTT temperature) cannot accelerate moisture evaporation to reach 20% of total moisture. The
improvement of drying performance became apparent when the HTT holding time was increased to 90 min. From
dewatering and drying performance, the effect of the treatment temperature was more significant than the reaction

holding time.

Figure 4 Dewatering and drying performance of raw MSW and HTT product: (a) Water removal efficiency

during dewatering; Drying at 60 °C: (b) HTT 30 min; (c) HTT 60 min; (d) HTT 90 min.

3.1.3 Fuel property

Table 1 presents proximate analysis, ultimate analysis, heating value of raw MSW and HTT product. The heating
value of the lab-scale HTT product was increased as the HTT temperature increased. For example, at 30 min
holding time, the heating value was increased from 21.8 to 26.4 MJ/kg for 180 and 200 °C, respectively,
accounting 21.1% increase. The improvement of heating value was consistent with higher fraction of carbon
content quantified by ultimate analysis. For instance, the carbon content was increased from 43.4% in the original
MSW to 50% in 200 °C/30 min HTT product showing 15.2% increase. The carbon content of HTT product ranged
from 47 to 74% depending on the treatment condition. From the proximate analysis, the HTT product contained
higher volatile matter and lower fixed carbon content compared to the original MSW. This behavior was due to
the leftover plastic waste in the product, whose constituent is mainly volatile matter. It could be explained by that
the temperature of HTT was 180-240 °C and it dissolved the organic material, which starts to thermally decompose

at the temperature of 200 °C [39]. However, these HTT temperatures cannot fully decompose the plastic material,
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which needs relatively higher temperature, i.e. 400 °C [40]. For the large-scale HTT product, the elemental
composition was typical and comparable to the raw MSW. The ash content was high representing the real situation
of waste characteristic that contains variety of inorganic material such as sand, soil, and other tiny metal scraps.
The heating value of the hydrothermally pretreated MSW was comparable or higher than that of the biomass

residues [41]; therefore, it would be a good candidate for combustion or co-combustion with other solid fuels.

3.2 Mechanical property of fuel pellet from hydrothermal treatment

3.2.1 Compressive test

Results from compressive test, namely maximum force, stress and strain at maximum load, and Young’s modulus,
are summarized in Table 2. The results showed that the large pellet size can withstand larger load. The average
maximum load of the sample was 19.15, 36.94, and 54.06 N at 4, 6, and 8 mm diameter of pellets, respectively.
Large diameter pellet can resist significantly higher compressive force suggesting that the pellet can retain in a
good shape during transportation and handling. It can be observed that the standard deviation of maximum load
of the 4 mm pellet was large. This was due to the pellet was relatively small causing instability of the results.
Compressive stress at maximum load was lower when the diameter of the pellet was increased. The compressive
strain at the maximum load of all pellet sizes were similar. The Young’s modulus (E) is a measurement of the
stiffness of solid material. In other words, it determines a resistant in changes of length of the sample. In this
study, the E values were calculated by determining the slope of the stress — strain profiles (average R-squared
0.9960). The average E of 4 and 6 mm pellet was 39.33 and 34.77 MPa, respectively. The average E of 8 mm
pellet has reduced to 18.26 MPa. The fuel pellet produced from HTT was considered as a low E material meaning
that it was easily to deform but flexible. From the result, 8 mm pellet, that has lower E than the other sizes, was
relatively flexible (less stiff) compared to the 4 and 6 mm pellet. This result was consistent with the pellet
compression ratios estimated by length of the pellet divided by diameter of the pellet. The compression ratio of
the pellet was 5.44, 3.79, and 3.14 for 4, 6, and 8 mm pellet, respectively. Higher compression ratio produced

denser pellet. Therefore, the 4 mm pellet was the most stiffness and this was consistent with the E value.

Table 2 Summary of mechanical property from compressive test and hardness test of fuel pellet.

Compressive stress — strain curves of the sample are presented in Figure 5 along with the visualization of the pellet

after the compression. All of the pellet was compressed until breaking and the stress-strain data was continuously
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collected. Figure 5a illustrates the stress-strain curve of the 4 mm pellet under compressive force. It was clearly
observed that the profiles were different due to the physical condition of 4 mm pellet. It was small and was not in
a complete cylindrical shape. This was technically unavoidable owning to the mechanism of the pelletizer and the
size of pellet. However, the characteristic of the stress-strain profile illustrated similar characteristic. After load
was applied, the curve was raised up considering elastic region (linear) until it reached the yield stress point. Then,
it entered partially plastic deformation region until the pellet was broken. Sample 2 (S2) showed unique
characteristic. The breakage of the pellet was locked and further densified; therefore, the broken pellet can
withstand further force during the compressive test. This is the reason why the S2 pellet had the maximum force
as well as the maximum stress. After the compressive test, it was observed that the pellet was intensely crushed
at the top-end and bended at the lower region. The failure mode was considered “crushing” showing that the pellet
cannot withstand much compressive force and cannot retain in a good form. This characteristic showed
consistency with the stiffness and Young’s modulus. Thus, 4 mm pellet was likely to bend and crush during

transportation or handling either due to the axial compressive force or radial force (discussed later) on the pellet.

Figure 5b shows the stress-strain curve and breakage of 6 mm during compressive test. The stress-strain curves
of 6 mm pellet were more consistent than that of the 4 mm pellet. From Figure 5b, the maximum compressive
stress of the 6 mm pellet was approximately in range of 1.3-1.6 MPa at the extensive strain. Two types of profiles
were observed as relatively brittle (S1 and S3) and relatively ductile (Others) characteristics. After adding the
compressive load, the brittle pellet was deformed in the elastic region with short range of plastic deformation
characteristic until breakage. Yield stress point and ultimate stress point were closed. On the other hand, the
ductile pellet characteristic showed longer both elastic and plastic deformation region before breakage. Due to the
ductile characteristic, strain of this type of pellet was extensive as shown in S5 and S6. Failure mode of 6 mm
pellet was different from that of the 4 mm pellet. There was no crushed particle in the test area. The upper part of
the pellet was slide and this failure can be considered as “shearing”. Figure 5c¢ presents stress-strain profiles of 8
mm pellet during compressive test. The characteristic of the stress-strain profiles was the most consistent. This
was because the shape of the 8 mm pellet was completely in cylindrical shape. However, two types of stress-strain
curves were observed similar to that of 6 mm pellet. Compressive stress of 8 mm pellet was lower than that of the
6 mm while strain showed the opposite relationship. Young’s modulus of 8 mm pellet was significantly reduced.
The stress-strain profiles were flat compared to the profiles of 4 and 6 mm pellet. This showed the increase of

ductility characteristic. The visualization of this important parameter can be found in the sample after the
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destructive compressive test. The 8 mm pellet after the test was rigid as no excessive crushed particles and slide
structure were observed. At the top-end of the 8 mm pellet, the particle seemed to swell as it absorbed the load
during the compressive test. The failure mode of the 8 mm pellet was different from that of the 4 and 6 mm. due

to its low modulus of elasticity.

Figure 5 Stress-strain curves and sample after compressive tests: (a): 4 mm; (b): 6 mm; (c): 8 mm.

3.2.2 Hardness test

The hardness test in this study resembles the situation which the pellet was piled up during storage. Weight from
other pellets would exert on the side. Maximum force from the hardness tests is presented in Table 2. The average
force that made 4 mm pellet broken was 72.3 N and increased to 112.6 and 130.4 N for the 6 and 8 mm diameter,
accounting 55.7% and 80.4% increase, respectively. The force was applied on the side of the pellet where it can
be distributed. The load of the hardness test was perpendicular to the pellet axial. This was different from the
compressive test in which the load was applied perpendicular to the cross sectional area of the pellet. Thus, the
pellet in this hardness test can withstand more force than that of the axial compressive ones. After the hardness
test, the crushed pellet was visualized as shown in Figure 6. All pellets were damaged regardless of the diameter.
The most destructive pellet was the 4 mm diameter. It was totally deformed and flattened. Several pieces of
crushed pellet were observed and the pellet cannot retain its original form. For the 6 and 8 mm pellets, it can retain
cylindrical shape even though the several breakage was observed. It is likely that they can be handled with minimal

broken pieces and dust, which was significantly different from the 4 mm.

Figure 6 Pellet after the hardness test.

3.2.3 Durability test

Parameters during durability test in this study were moisture content of the fuel pellet and duration of tumbling.
Two conditions of moisture content of the sample were 3.92%, which was as received moisture content of the
pellet from the indoor storage, and 0% (the sample was dried in the electrical oven before the test). The test was
last 10 min with a 5-min stop for collecting the data. This allowed a calculation of two-step pellet durability index
(PDI). The calculated PDI is presented in Table 3. It can be observed that the size and the moisture of the pellet

has no significant effect on the PDI values as they were in range of 94-96% and 91-93% for the 5 min and 10 min
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testing, respectively. In general, samples exhibit to longer abrasive condition would yield less PDI value. Attrition
of the pellet would occur at the beginning of the test due to its sharp edge and rough finishing surface. This leaded
to the significant decrease of PDI (from 100% to 95% in average, accounting 5%) during the first 5 min test. Then,
the additional reduction of PDI was only 3% after another 5 min test. From the viewpoint of European wood-
derived pellet standard, woody pellet mechanical durability should be higher than 97.5% and 98.0% to reach B
class and A1/A2 class, respectively [42]. The mechanical durability of the hydrothermally treated MSW-derived
pellet showed slightly lower than that of the woody pellet standard. This might be due to the difference
composition of the raw material as well as the condition of the pelletization in which commercial-scale production
would generate higher heat and compressive force. For the former, biomass material contains lignin, which acts
as a binder during pelletization process. Lignin, an important structural organic polymer, undergoes glass-liquid
transition owning to high temperature condition during the pelletization that strengthens the biomass pellet by
increasing solid bridge formation [43]. On the other hand, in MSW sample, it could be suggested that another
class of polymeric material, i.e. plastic, would be a key component for such mechanism to occur. However, the
plastic material in the treated MSW was processed by high pressure and temperature steam resulting in a reduction
of plastic quantity. This may reduce the effect on strengthening the pellet product. Nevertheless, the fuel pellet
sample obtained from the hydrothermally pretreated MSW presents relatively high durability, which is good for

transportation and handling.

Table 3 Pellet durability index (PDI) in various conditions.

3.2.4 Grindability test

The Hardgrove Grindability Index (HGI) of hydrothermal fuel pellet is presented in Table 4 along with
subbituminous coal and other alternative solid fuels. The 4, 6, and 8 mm fuel pellet has HGI value of 76, 65, and
57, respectively. The HGI of fuel pellet was slightly higher than that of coal and processed biomass. The
conventional biomass pellet has significantly low HGI. Thus, it could be difficult to grind, as their HGI was
relatively low. When comparing the effect of diameter of the fuel pellet, the larger pellet diameter gave lower
grindability rate meaning that the pellet with large size was difficult to be grinded. The HGI of fuel pellet
correlated with compressive strength and durability tests. Even though the large-size fuel pellet showed its strength
through HGI and other mechanical tests that is favored by handling and transportation, it may need more energy

during grinding before feeding in a fluidized or pulverized bed combustor. Nonetheless, a typical HGI of coal for
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pulverizers is 50 [44] so the 8 mm fuel pellet could be grinded without excessive energy consumption compared

to coal.

Table 4 Hardgrove grindability index (HGI) of hydrothermal fuel pellet compared to other biomass pellet.

3.3 Water adsorption test

Figure 7 shows moisture content of fuel pellets during moisture adsorption test. It should be noted that the pellets
were totally dried prior to the test. Results showed that the larger pellets saturated more slowly and adsorbed more
water than the small pellets. The weight of the water in the sample was saturated at 5.2%, 5.5% and 5.8% for the
4, 6 and 8 mm pellets, respectively. In more detail, the 4 mm diameter pellet was firstly saturated at 120 min
followed by the 6 and 8 mm that were saturated at 180 min and 360 min, respectively. The moisture adsorption
rate was high at the beginning (30 min) then it was slightly reduced (30-60 min) and became low after 60 min
until saturation. All pellets were still in shape and no damage. It was interesting that the water adsorption of fuel
pellet produced from HTT could adsorb water at around 5-6% at its saturation regardless of the duration of high
humidity exposure. The hydrophobicity characteristic of the fuel pellet was obvious. This may due to the
decomposition of organic material in the waste stream. Such raw material contains hemicellulose whose water
adsorption characteristic is the highest among other lignocellulosic constituents [43]. Therefore, the fuel pellet
can retain in a good condition (low moisture content, high heating value, and in a good shape) indicating potential

for practical utilization.

Figure 7 Moisture content of the pellet during moisture adsorption test.

4. Conclusion
Effect of HTT on fuel property of MSW and the mechanical property of hydrothermal fuel pellet have been
investigated. Conclusion can be summarized as follows:
1. HTT can improve energy density and dewatering and drying performance of the MSW. Treatment
temperature played important role in fuel property improvement.
2. The hydrothermal fuel pellet can withstand the load of 19-54 N and 72-130 N for axial and radial load,

respectively. In general, a larger diameter fuel pellet can withstand larger force than the smaller ones.
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3. A8 mm pellet exhibits lower stress under the load while the Young’s modulus was lower (18.26 MPa)
compared to that of the smaller size pellet (22-24 MPa) indicating flexible and ductile characteristic.

4. Durability of the produced fuel pellet was high (91-94%). The Hardgrove grindability index (HGI) of the
produced fuel pellet was higher (57-76) than that of biomass pellet (18-22) and comparable to
subbituminous coal and torrefied biomass (46-49). Thus, the produced fuel pellet showed good
grindability.

5. Moisture equilibrium point of the fuel pellet was around 5-6%. Larger fuel pellet can adsorb more water
while the smaller pellet reached equilibrium faster than the larger ones.

6. HTT can be a promising method for production of fuel pellet since it showed good fuel property and

physical characteristic in form of pellet for handling, transportation, and utilization.
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Table Legend

Table 1 Fuel property of the sample.

Table 2 Summary of mechanical property from compressive test and hardness test of fuel pellet.

Table 3 Pellet durability index (PDI) in various conditions.

Table 4 Hardgrove grindability index (HGI) of hydrothermal fuel pellet compared to other biomass pellet.

Figure Caption

Figure 1 Investigation scheme of this study: (a) Effect of HTT condition; (b) Mechanical property and

adsorption tests of fuel pellet.

Figure 2 Equipment used for mechanical property testing of fuel pellet: (2) Universal Testing Machine; (b)

Digital push-pull force gauge; (c) Tumbler; (d) Hardgrove Grindability Index tester.

Figure 3 The hydrothermally treated MSW from the laboratory test: (a) before; (b) after drying at 60 °C for 24h.

Figure 4 Dewatering and drying performance of raw MSW and HTT product: (a) Water removal efficiency

during dewatering; Drying at 60 °C: (b) HTT 30 min; (¢) HTT 60 min; (d) HTT 90 min.

Figure 5 Stress-strain curves and sample after compressive tests: (a): 4 mm; (b): 6 mm; (c): 8 mm.

Figure 6 Pellet after the hardness test.

Figure 7 Moisture content of the pellet during moisture adsorption test.
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Figure 1 Investigation scheme of this study: (a) Effect of HTT condition; (b) Mechanical

property and adsorption tests of fuel pellet.



22

Figure 2 Equipment used for mechanical property testing of fuel pellet: (a) Universal Testing
Machine; (b) Digital push-pull force gauge; (c) Tumbler; (d) Hardgrove Grindability Index

tester.
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Figure 3 The hydrothermally treated MSW from the laboratory test: : (a) before; (b) after

drying at 60 °C for 24h.
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Figure 4 Dewatering and drying performance of raw MSW and HTT product: (a) Water

removal efficiency during dewatering; Drying at 60 °C: (b) HTT 30 min; (c) HTT 60 min; (d)

HTT 90 min.
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Figure 5 Stress-strain curves and sample after compressive tests: (a): 4 mm; (b): 6 mm; (c): 8

mm.
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Figure 7 Moisture content of the pellet during moisture adsorption test.

Figure 6 Pellet after the hardness test.

—=— 4 mm

—e— 6 mm| |

8 mm

60

120

180 240 300

Time (min)

360 420

26




Revised Table

27
Table
Table 1 Fuel property of the sample.
. . Proximate analysis* (%) Ultimate analysis* (%) HHV**
Sample Time(Min) Gy T Fc [ Ash [ C | H | N | O | (Mikg)
Raw MSW - 77.8 14.6 76 | 434 | 6.3 14 | 41.3 20.0
30 88.8 7.0 41 | 469 | 58 | 05 | 427 21.8
HTT-180°C 60 85 10.7 43 | 508 | 9.7 0 |352 28.8
90 87.3 8.3 44 | 585 | 94 | 03 | 274 27.3
30 89.4 6.7 3.9 50 6.9 | 0.5 | 387 26.4
HTT-200°C 60 82.17 11.8 6.03 | 576 | 8.2 0.2 | 28.0 27.3
90 86.3 6.6 7.1 62 124 | 04 | 18.1 30.7
30 90.73 6.22 3.1 524 | 7.3 0.4 | 36.8 31.4
HTT-220°C 60 85.5 6.7 79 |59.7 | 12,6 0 |1938 29.4
90 86.9 9.2 39 |694 | 134 | 03 |13.0 334
30 95.01 | 338 | 161 | 582 | 79 | 0.5 | 318 38.1
HTT-240°C 60 80.6 13.8 5.7 62.1 | 124 0 19.8 35.3
90 90.59 | 0.05 | 936 | 744 | 135 | 0.3 | 24 41.4
HTT-220 °C [Large-scale) 30 704 | 163 | 133 [ 480 | 97 | 12 [278] 239

*Dry basis; **HHV: Higher heating value, dry basis.

Table 2 Summary of mechanical property from compressive test and hardness test of fuel pellet.

Diameter of pellet

Data

4 mm | 6 mm | 8 mm

Compressive test, Maximum load (N)
Max. 26.4 41.29 58.69
Mean 19.15 36.94 54.06
Min. 10.73 34.05 45.26
S.D. 6.59 2.77 5.79
Compressive test, Stress at maximum load (MPa)
Max. 2.33 1.62 1.31
Mean 1.72 1.41 1.18
Min. 1.00 1.26 1.01
S.D. 0.55 0.13 0.13
Compressive test, Strain at maximum load (mm/mm)
Max. 0.12 0.10 0.12
Mean 0.08 0.07 0.09
Min. 0.05 0.04 0.06
S.D. 0.03 0.02 0.02
Young’s modulus, E (MPa)
Max. 61.87 45.38 28.46
Mean 39.33 34.77 18.26
Min. 24.31 14.85 11.70
S.D. 15.94 12.77 5.54
Pellet compression ratio, (Length/Diameter)

Max. 5.92 4.19 3.40
Mean 5.44 3.79 3.14
Min. 5.13 3.23 3.00
S.D. 0.34 0.39 0.15
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Hardness test, Maximum force (N)

Max. 81.3 124.6 141.2

Mean 72.3 112.6 130.4

Min. 63.9 95.3 112.8

S.D. 7.1 115 10.3

Table 3 Pellet durability index (PDI) in various conditions.
. . PDI (%

Sizes Condition 5 min (%) 10 min
4mm 3.92% mpisture 95.61 92.97
0% moisture 95.01 92.30
6 mm 4.00% m_oisture 95.88 93.29
0% moisture 94.37 91.13
8 mm 3.57% mpisture 95.53 92.25
0% moisture 96.20 93.65

Table 4 Hardgrove grindability index (HGI) of hydrothermal fuel pellet compared to other biomass pellet.

Vuthaluru et al.

This study [38] Williams et al. [39] Wu et al. [40]
Item Hydrothermal Subbituminous Wood | Eucalyptus Steam T_orrefled
. exploded microalgae
fuel pellet Indonesian coal pellet pellet -
pellet residue
Average
diameter 4.0/6.0/8.0 - 8.4 8.4 5.9 -
(mm)
HGI 76/65/57 46-49 18 22 29 48.5
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