บทคัดย่อ

รหัสโครงการ: MRG5980066

ชื่อโครงการ: สมบัติของไม้ยางพาราอัดสารสกัดจากเปลือกไม้กระถินเทพา

(Properties of rubberwood impregnated with Acacia mangium

bark extracts)

ชื่อนักวิจัย และสถาบัน ดร.วิศนีย์ ยิ่งประเสริฐ

มหาวิทยาลัยสงขลานครินทร์

อีเมล์: <u>wissaneey@hotmail.com</u>, wisanee.y@psu.ac.th

ระยะเวลาโครงการ: 2 พฤษภาคม 2559 ถึง 1 พฤษภาคม 2561

บทคัดย่อ:

ผู้วิจัยทำการสกัดสารจากเปลือกไม้กระถินเทพาด้วยน้ำและวิเคราะห์องค์ประกอบทางเคมี ของสารสกัดดังกล่าว ก่อนนำสารสกัดจากเปลือกไม้กระถินเทพามาละลายในน้ำกลั่นให้ได้ความ เข้มข้น 5%, 10%, 15% และ 20% เพื่ออัดเข้าไปในเนื้อไม้ยางพาราตามวิธีการของมาตรฐาน ASTM D 1413-99 จากนั้นสังเกตสีของเนื้อไม้ยางพาราอัดสารสกัดจากเปลือกไม้กระถินเทพา ตรวจสอบ ปริมาณการคงค้างของสารสกัดในเนื้อไม้ยางพาราอัดสารสกัดจากเปลือกไม้กระถินเทพา และ วิเคราะห์ลักษณะทางกายวิภาคของเนื้อไม้ ทดสอบความคงขนาด ความสามารถในการติดกาว ความ ต้านทานต่อเชื้อราผุ และความต้านทานต่อการเข้าทำลายของปลวกใต้ดินของไม้ยางพาราอัดสารสกัด จากเปลือกไม้กระถินเทพา ผลการทดลองพบว่าในเปลือกไม้กระถินเทพามีองค์ประกอบของ สารอินทรีย์ระเหยได้มากถึง 70 ชนิด สารที่มีสัดส่วนของปริมาณมาก 5 อันดับแรกได้แก่ 4-Ethynylcyclopentene, Nitrometane, 1,2,3-Propanetriol, Ethyl palmitate และ Ethyl octadec-9-enoate ซึ่งพบในสัดส่วน 14.93%, 12.49%, 9.23%, 6.62% และ 3.55% ของปริมาณ สารที่พบทั้งหมด ไม้ยางพาราอัดสารสกัดจากเปลือกไม้กระถินเทพามีสีเข้มขึ้นตามความเข้มข้นของ สารสกัด เริ่มจากสีน้ำตาลอ่อน น้ำตาลแดง จนกระทั่งกลายเป็นสีน้ำตาลดำ สารสกัดสามารถซึมลึกลง ไปในเนื้อไม้ถึงจุดกึ่งกลางของความหนา และคงค้างอยู่ในช่องว่างภายในเซลล์ของ vessels, parenchymas และ rays อย่างไรก็ตามสารสกัดส่วนใหญ่เคลือบอยู่ที่ผิวด้านนอกของไม้ยางพารา หากใช้ความเข้มข้นของสารสกัด 15% และ 20% จะพบผงของสารสกัดแห้งอยู่บริเวณผิวด้านนอก ของไม้ยางพาราเป็นจำนวนมาก สารสกัดจากเปลือกไม้กระถินเทพาทำให้ไม้ยางพารามีความคงขนาด ดีขึ้น โดยไม้ยางพาราอัดสารสกัดความเข้มข้น 10% ให้ค่า ASE (Anti-swelling efficiency) และค่า MEE (Moisture exclusion efficiency) สูงที่สุด โดยมีค่า ASE ในด้านรัศมี ด้านสัมผัส และด้าน ตามยาว เท่ากับ 89.02±15.37%, 86.79±15.32% และ 92.32±7.53% ตามลำดับ ค่า MEE เท่ากับ 58.09±1.76% ความสามารถในการติดกาวของไม้ยางพาราอัดสารสกัดจากเปลือกไม้กระถินเทพามี แนวโน้มลดลงเมื่อปริมาณการคงค้างของสารสกัดในเนื้อไม้ยางพารามากขึ้น อย่างไรก็ตามพบว่าไม้ ยางพาราอัดสารสกัดความเข้มข้น 10% มีความสามารถในการติดกาวเทียบเคียงได้กับไม้ยางพารา สารสกัดจากเปลือกไม้กระถินเทพามีผลต่อการเข้าทำลายของเชื้อราผุ (Trametes Versicolor และ Gloeophyllum Striatum) บนไม้ยางพาราอัดสารสกัด โดยเมื่อมีปริมาณสารสกัดคงค้างอยู่ในเนื้อไม้ ยางพารามากขึ้น การสูญเสียน้ำหนักจากการเข้าทำลายของเชื้อราผุดังกล่าวมีค่าลดลง สารสกัดจาก เปลือกไม้กระถินเทพาอาจมีความเป็นพิษต่อปลวกหากปลวกได้รับสารดังกล่าวเป็นระยะเวลานาน เนื่องจากสังเกตเห็นปลวกบางส่วนตายหลังเข้ากัดกินไม้ยางพาราอัดสารสกัดจากเปลือกไม้กระถิน เทพาความเข้มข้น 15% และ 20% ในสัปดาห์ที่ 3 และ 4 ของการทดลอง โดยไม้ยางพาราอัดสาร สกัดจากเปลือกไม้กระถินเทพาความเข้มข้น 10% มีค่าการสูญเสียน้ำหนักจากการเข้าทำลายของ ปลวกใต้ดินเป็นเวลา 28 วัน น้อยที่สุด โดยมีค่าการสูญเสียน้ำหนัก 20.50(±3.02)% การวิจัยครั้งนี้ พบว่าความเข้มข้นของสารสกัดจากเปลือกไม้กระถินเทพา 10% เป็นความเข้มข้นที่เหมาะสมที่สุดใน การนำไปใช้กับไม้ยางพาราด้วยกรรมวิธีการอัดเข้าไปในเนื้อไม้ เนื่องจากย้อมสติดกับเนื้อไม้ยางพารา ได้เป็นเนื้อเดียวกัน ไม่มีผงสารสกัดแห้งติดอยู่ที่ผิวไม้ และให้สมบัติความคงขนาดของเนื้อไม้ยางพารา อัดสารสกัดดีที่สุด มีความสามารถในการติดกาวเทียบเคียงได้กับไม้ยางพารา และมีความต้านทานต่อ การเข้าทำลายของเชื้อราผูและปลวกใต้ดิน

คำหลัก ไม้ยางพารา, สารสกัด, เปลือกไม้, กระถินเทพา, การอัด

Abstract

Project Code: MRG5980066

Project Title: Properties of rubberwood impregnated with *Acacia mangium*

bark extracts

Investigator: Dr.Wissanee Yingprasert

E-mail Address: wissaneey@hotmail.com, wisanee.y@psu.ac.th

Project Period: 2 May 2016 to 1 May 2018

Abstract:

Researcher was extracted the chemical substances from Acacia mangium bark with distilled water and identified them. The solution of Acacia mangium bark extracts in distilled water was prepared at different concentrations including 5%, 10%, 15% and 20% before vacuum impregnated into rubberwood with the method described in ASTM D 1413-99. The color of rubberwood impregnated with the bark extracts was observed. The retention of the bark extracts on rubberwood was calculated. The anatomy structures, dimension stability, glue ability, decay fungal resistance and subterranean termite resistance of impregnated rubberwood were determined. The results showed that Acacia mangium bark contained as much as 70 volatile organic compounds. The five most abundant substances were: 4-ethynylcyclopentene, nitromethane, 1,2,3-propanetriol, ethyl palmitate and ethyl-octadec-9-enoate. They were found 14.93%, 12.49%, 9.23%, 6.62%, and 3.55% of total contents, respectively. The color of impregnated wood was darker according to the concentration of bark extracts from light brown to red brown and dark brown. The bark extracts can penetrate deeply in to the center of the thickness of wood and remained in the lumen of vessels, parenchymas and rays cells. However, most of bark extracts were coated on the outer surfaces of wood. If the concentration of bark extracts were 15% and 20%, the dry powders of bark extracts were found on the outer surfaces of wood. The bark extracts can improve the dimension stability of rubberwood. The wood impregnated with bark extracts at the concentration of 10% gave the highest value of ASE (Antiswelling efficiency) and MEE (Moisture exclusion efficiency). The ASE value of impregnated wood with 10% concentration of bark extracts in the radial, tangential and longitudinal direction were 89.02±15.37%, 86.79±15.32% and 92.32±7.53%, respectively. The MEE value of impregnated wood with 10% concentration of bark extracts was 58.09±1.76%. The glue ability of impregnated wood was decreased when the retention of bark extracts in wood was increased. However, the glue ability of impregnated wood with 10% concentration of bark extract was significantly similar with the glue ability of non-impregnated rubberwood. The bark extracts had affected on decay fungal (Trametes Versicolor and Gloeophyllum Striatum) resistance of impregnated wood. When the retention of bark extracts in wood was increased the percentage of weight loss of impregnated wood after the decay fungal attack was decreased. The bark extracts may be toxic to termites (Coptotermes gestroi) after they consumed the impregnated wood for a long time. It was observed that termites were died during the third and fourth week after they were attacked the impregnated wood with 15% and 20% concentration of bark extracts. The impregnated wood with 10% concentration of bark extract gave the lowest value of percentage of weight loss, 20.50(±3.02)%, after 28 days of termite attack. This research can conclude that the 10% concentration of bark extracts was the optimum concentration for vacuum impregnated into rubberwood. It can penetrate deeply into wood and no dry powder of bark extracts adhered on the outer surfaces of wood. It gave the best value of dimension stability and glue ability of impregnated wood. The decay fungal resistance and termite resistance of impregnated wood with 10% of bark extracts are better than that of rubberwood.

Keywords: Rubberwood, Bark extracts, *Acacia mangium*, Impregnation