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Abstract 

Based on our previous work in Precharattana (2016), we proposed an HIV-CA 
model which concerned effects of cell-mediated immunities. The model composes of CD4, 
CD8, CTL, and DC. We found that our proposed model could represent the HIV infection 
dynamics closer to the typical infection dynamics in clinics than those models in previous 
works whose concerned such a CD4 cells function. We point out that our proposed model 
could shows the dynamics of healthy cells at the transient drop during the primary infection 
approximately 50% of the initial concentration, and at that transient drop the rebounding 
of the healthy cells is due to effects of cell-mediated immunities we added into the model. 
Therefore, in this present work, in order to come closer to the mechanic of cells interaction 
in clinics we propose to (i) add the more kinds of immune cells that play roles in the 
process of cell-mediated immunities into the system; moreover, (highlight) add the 
physical characteristics of the immune cells such as sizes and velocities into the model.
 In this work, the variation of crucial parameters i.e. the initial number of virus 
particles and the initial number of CD4+ T cells living in the lymphoid organ are focused. 
Samples of cell population dynamics for various cases for the infection, which tends to 
represent an individual patient, are presented. 
 
 
Keywords : Infectious disease, Cellular automata, Spatial model, HIV-1 infection, Cell-
mediated immunity 
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Executive Summary  
Ever since HIV-1 was first diagnosed in human, thousands of scientific works have been 

undertaken to explore the biological mechanisms involved in infection and progression of the infectious 
disease. Since the majority of the virus resides in the lymphoid tissue that the interactions of virus-
host tend towards locality, cellular automaton (CA) model, mathematical biological modeling taking into 
account the local interaction, have thus been introduced to understand those interactions and to 
discover more in-depth knowledge of the infectious disease within the infected host. 

 In a cellular automaton (CA), the system of interest consists of a collection of cells in 
which each cell is identified by one of a number of specified states. The progress of the system is 
tracked by changing the states of the cells. The state of each cell changes according to a set of local 
rules which depends on the state of that cell and those of its neighbor cells.     

 Many years ago, several CA models have been developed to explain the dynamics of 
HIV-1 infection. However, only a few models successfully described the two time scales (short-range 
in weeks; long-range in years) observed during the course of HIV-1 infection and the entire phases in 
the progression of the disease. The first CA model that can reproduce the entire dynamics of HIV-1 
infection was proposed by Santos et al.. They described the dynamics of HIV-1 infection based on the 
change of states of white blood cells, namely the CD4+ T lymphocytes (CD4+ T cells). The states of 
those cells could be healthy, infected-stage 1 - the newly infected cells, infected-stage 2 - the infected 
cells that were interacted by immune response, or dead. Then, other CA research works also have 
been applied for investigation of dynamics among the virus-host interactions for several aspects 
including: the robustness of the model against changes in different model parameters, the dynamics 
features against the different symmetries and dimensionalities of the model lattices, and the dynamics 
behaviors against several treatments.  

 Although it was found that the CA models can use to explain the entire dynamics of HIV-
1 infection, the studies of spatiotemporal pattern formation revealed that those simulation results are 
artifacts due to the spatial properties inherent to cellular automata and do not realistically reflect the 
immune’s responses to the viral attack. Therefore, except the role of CD4+ T cells, Precharattana et 
al. thus proposed the roles of other kinds of immune cells, i. e. the cell-mediated immunity, including 
the mechanisms of cells’ mobility into their system. And with the model, it was found that the 
rebounding of the healthy cells level after the virus’ primary attack is due to the effects of HIV-1 specific 
immune responses, but still the model could be used to describe only the primary phase of HIV-1 
infection. 

 Therefore, in this work, we will again develop a simple, but yet comprehensive and 
practically useful stochastic CA model to discuss the process of HIV-1 infection in a lymphoid reservoir. 
With the model the role of HIV-1 target cells, i.e. the CD4+ T cells, the roles of cell-mediated immunity, 
i.e. the CD8+ cytotoxic T lymphocytes (CTLs) and the CD4+ helper T lymphocytes, and the role of 
antigen-presenting cells (APCs), i.e. the dendritic cells (DCs), including the mechanisms of cells’ 
mobility and their kinetics associated with the HIV-1 infection, for instance cells’ proliferation and cells’ 
differentiation, will be presented and incorporated. 

 We focus on the dynamics of the cell-mediated immunity because several studies have 
clearly demonstrated that the CTLs play a key role as the primary effectors in the control of HIV-1 



after the primary attack. The CD4+ T cells and their life’s cycle are viewed as the major reservoir to 
be infected by HIV-1 because it was found that the cells are the main source of HIV-1 replication and 
dissemination in the lymphoid organ, moreover the infected CD4+ T cells produce more than 98% of 
the newly free virus particles. In addition, among the APCs, we selected the DCs to be the main route 
of HIV-1 transmission to lymphoid organ since typically the majority of DCs are located in the mucosa 
and the lymphoid tissue. They are classified as the first cells encountering the virus during sexual 
transmission. Moreover, it has been suggested that DCs mediate the spread of HIV-1 to CD4+T cells 
in the lymphoid tissue and also been identified as the most efficient APCs during the course of infection. 
Thus, we focus our attention on the influence of DCs in the role of trans-infection of CD4+T cells and 
the initiation of the virus-specific immune response (the CD4+ helper T cells and the CTLs) in our work.  

 We expected that our proposed model can show the progression of the infection which 
may guide the improvement of other research works or inspire future knowledge.  
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Chapter I 

Introduction to the research problem and its significance 

 

Ever since HIV-1 was first diagnosed in human, thousands of scientific works [1-

3] have been undertaken to explore the biological mechanisms involved in infection and 

progression of the infectious disease. Since the majority of the virus resides in the lymphoid 

tissue [4] that the interactions of virus-host tend towards locality, cellular automaton (CA) 

model, mathematical biological modeling taking into account the local interaction, have thus 

been introduced to understand those interactions and to discover more in-depth knowledge of 

the infectious disease within the infected host. 

In a cellular automaton (CA), the system of interest consists of a collection of cells 

in which each cell is identified by one of a number of specified states. The progress of the 

system is tracked by changing the states of the cells. The state of each cell changes according 

to a set of local rules which depends on the state of that cell and those of its neighbor cells [5, 

6].     

Many years ago, several CA models [7, 8] have been developed to explain the 

dynamics of HIV-1 infection. However, only a few models successfully described the two time 

scales (short-range in weeks; long-range in years) observed during the course of HIV-1 

infection and the entire phases in the progression of the disease. The first CA model that can 

reproduce the entire dynamics of HIV-1 infection was proposed by Santos et al. [9]. They 

described the dynamics of HIV-1 infection based on the change of states of white blood cells, 

namely the CD4+ T lymphocytes (CD4+ T cells). The states of those cells could be healthy, 

infected-stage 1 - the newly infected cells, infected-stage2 - the infected cells that were 

interacted by immune response, or dead. Then, other CA research works also have been applied 

for investigation of dynamics among the virus-host interactions for several aspects including: 

the robustness of the model against changes in different model parameters [10, 11], the 

dynamics features against the different symmetries and dimensionalities of the model lattices 

[10-13], and the dynamics behaviors against several treatments [14-16].  

Although it was found that the CA models can use to explain the entire dynamics 

of HIV-1 infection, the studies of spatiotemporal pattern formation revealed that those 

simulation results are artifacts due to the spatial properties inherent to cellular automata [17, 

18] and do not realistically reflect the immune’s responses to the viral attack. Therefore, except 

the role of CD4+ T cells, Precharattana et al. [19] thus proposed the roles of other kinds of 

immune cells, i. e. the cell-mediated immunity, including the mechanisms of cells’ mobility 

into their system. And with the model, it was found that the rebounding of the healthy cells 
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level after the virus’ primary attack is due to the effects of HIV-1 specific immune responses, 

but still the model could be used to describe only the primary phase of HIV-1 infection. 

Therefore, in this work, we will again develop a simple, but yet comprehensive 

and practically useful stochastic CA model to discuss the process of HIV-1 infection in a 

lymphoid reservoir. With the model the role of HIV-1 target cells, i.e. the CD4+ T cells, the 

roles of cell-mediated immunity, i.e. the CD8+ cytotoxic T lymphocytes (CTLs) and the CD4+ 

helper T lymphocytes, and the role of antigen-presenting cells (APCs), i.e. the dendritic cells 

(DCs), including the mechanisms of cells’ mobility and their kinetics associated with the HIV-

1 infection, for instance cells’ proliferation and cells’ differentiation, will be presented and 

incorporated. 

  We focus on the dynamics of the cell-mediated immunity because several studies 

[20, 21] have clearly demonstrated that the CTLs play a key role as the primary effectors in the 

control of HIV-1 after the primary attack. The CD4+ T cells and their life’s cycle are viewed as 

the major reservoir to be infected by HIV-1 because it was found that the cells are the main 

source of HIV-1 replication and dissemination in the lymphoid organ [22, 23], moreover the 

infected CD4+ T cells produce more than 98% of the newly free virus particles [3, 24, 25]. In 

addition, among the APCs, we selected the DCs to be the main route of HIV-1 transmission to 

lymphoid organ since typically the majority of DCs are located in the mucosa and the lymphoid 

tissue [26]. They are classified as the first cells encountering the virus during sexual 

transmission [27]. Moreover, it has been suggested that DCs mediate the spread of HIV-1 to 

CD4+T cells in the lymphoid tissue and also been identified as the most efficient APCs during 

the course of infection [28-30]. Thus, we focus our attention on the influence of DCs in the role 

of trans-infection of CD4+T cells and the initiation of the virus-specific immune responses (the 

CD4+ helper T cells and the CTLs) in our work. While the Ms are not only named to be the 

APCs, but also be the first cells infected by the virus and be the very source cells of virus 

production when the CD4+ T cell are markly depleted. Though the productively infected Ms are 

reported to be not relatively more in lymph node [31] we design the Ms to have function as both 

the APCs in the role of trans-infection of CD4+T cells and the initiation of the virus-specific 

immune responses as similar as the CDs, and in the role of cis-infection, be the infected 

reservoir and producing the virus as CD4+ T cells in ours. 

 

We expected that our proposed model can show the disease’s progression which 

may guide the improvement of other research works or inspire future knowledge.  
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Chapter II 

Literature review 

 

Human   Immunodeficiency   Virus   type   1   (HIV-1)   

The   infection   of   Human   Immunodeficiency   Virus   type   1   (HIV-1),  

causing   Acquired Immunodeficiency Syndrome (AIDS), is responsible for millions of deaths 

worldwide. The features which make HIV-1 very effective in its action against human being 

includes: (i) its high replication rate; (ii) its high mutation rate; and (iii) its ability in progressive 

reduction in the number of immune cells, to be specific, CD4+ T cells.  

HIV-1 pathogenesis 

Like all viruses, HIV-1 cannot grow or reproduce on its own. In order to make new 

copies of itself, it must infect into the cells of a living organism. Infected by HIV-1 can cause 

a latent infection in cells of immune system or may activate the cells to produce infectious virus. 

The virus production leads to death of the infected cells, as well as death of uninfected 

lymphocytes, subsequent immune deficiencies, and clinical AIDS.   

After HIV-1 enters a human body, dendritic cells (DCs) will arrest the virus and 

then the DCs incorporated with the HIV-1 will move to the lymphoid organs, where the virus 

are presented and simultaneously infect to the T lymphocytes. The integrated provirus may be 

activated in infected cells leading to production of viral particles and spread of the infection.  

During the course of infection, CD4+ T cells are noted to be the major source that 

produces viral particles [3, 24, 25]. The result of this event leads to the depletion of the infected 

CD4+ T cells, as well as death of the uninfected. Although other infected cells, such as DCs, 

macrophages, and other immune cells may also die during the infectious process, resulting in 

destruction of the architecture of lymphoid organs; the significance of these functional defects 

has not been established. Therefore, loss of CD4+ T cells remains the most reliable indicator of 

disease progression.  

In this research work, we thus will focus on the dynamics of CD+ T cells as they 

are the source of HIV-1 infection, and will incorporate the life cycle of CD4+ T cells associated 

with HIV-1 infection, as illustrated in Figure 1, in our model.   

 

http://www.avert.org/hiv.htm
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Figure 1 Schematic summary of the CD4+T cells kinetics associated with HIV-

1 infection [25].  

 

Clinical features of HIV-1 infection 

     In order to track evolution of HIV-1 infection, pathogenesis medical professionals 

use the CD4+ T cells count and viral load in HIV-1 patient blood to refer the stage of disease 

progression and to decide when to begin treatment.  Since the infection start, patients will be 

able to live proximately 12 years until death.  The typically development of HIV-1 infection is 

divided in three phases as shown in Figure 2:  

 

Figure 2 Typical dynamics of HIV-1 infection [32].  

 

(i) Primary  HIV-1  infection:  The  immediately  increase  in  plasma  viral  level  

leads  to  the  existence of viraemic peak. At the same time the drop in CD4+ T cells level 
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occurs. Notice that these all develop during just a few weeks (approximately 3-6 weeks) in most 

patients with the symptoms similar to flu.    

(ii) Chronic asymptomatic HIV-1 infection:   The   HIV-specific   immune   

response   partially eliminates HIV-1.  At  this  moment,  the  CD4+  T  cells  are  sufficient  to  

defend  against other pathogens.  But  considering  all  of  this  stage,  which  takes  the  order  

of years,  the  virus  replication relates to the depletion of CD4+ T cells level by the patients do 

not perform any clinical symptoms.  

(iii) Last stage HIV-1 infection: This period could be determined to be the 

onset of AIDS. Because  of  the  outbreak  of  HIV-1 with  the  rapidly  decrease  in  CD4+  T  

cells  lower  than  200  copies per  L, the patients can be attacked by the constitutional 

symptoms and opportunistic diseases, and then die.             

 

Role of immunity  

  Immunity is defined as resistance to disease, specifically infectious disease. 

Immune system is the collection of cells, tissues, and molecules that mediate resistance to 

infection, and  the coordinated reaction of the cells and molecules to infectious microbes is 

called immune response. Host defense mechanisms which mediate the initial protection against 

infections is called innate immunity, and those which develop more slowly and mediate later, 

but even more effective to defense against infections is called adaptive immunity.  

 

  Adaptive immune response 

  The task of the adaptive immune response is to defense against the infectious 

agents, and this is why defects in the adaptive immune system results in increased susceptibility 

to infections. The system of adaptive immune consists of lymphocytes and their products, i.e. 

antibodies. Whereas the mechanisms of the innate immunity recognize structures shared by 

classes of microbes in epithelia barriers and circulation, the cells of adaptive immunity express 

receptors that specifically recognize different substances, called antigens, produced by 

microbes in lymphoid organs.  

  Two types of adaptive immunity are humoral immunity and cell-mediated 

immunity. They are mediated by different cells and molecules, and are designed to provide 

defense against different functions. Humoral immunity has function in defense against 

extracellular microbes and is mediated by proteins called antibodies which they are secreted by 

cells called B lymphocytes. In contrast, cell-mediated immunity has function in defense 

against intracellular microbes and is mediated by cells called T lymphocytes.  

  In this study we are interested in the infection of HIV-1 that are mediated by 

function of cell-mediated immunity and will incorporate effects of the immunity into our model.   
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  Types of Cell-mediated immunity  

  Types of cell-mediated immunity could be classified according the reaction 

designed to eliminate different types of intracellular microbes: CD4+ helper T cells activate 

phagocytes to destroy microbes residing in the vesicles of these phagocytes, and CD8+ 

cytotoxic T lymphocytes (CTLs) kill any cell containing microbes or microbial proteins in the 

cytoplasm. 

 

 How T lymphocytes eradicate HIV-1 infection: Activation of Cell-Mediated 

Immunity and Elimination of Cell-Associated the virus 

After HIV-1 enters a human body, dendritic cells (DCs), the antigen presenting 

cells (APCs) that are the most efficient stimulators of naïve T cells [28-30], would arrest the 

virus and then process the antigen into their epitopes, binding to a major histocompability 

complex (MHC) molecule. The resulting complex then incorporates the antigen into the 

membrane of the DCs. Afterward, these DCs then move to the lymphoid tissue and to the 

spleen, where they can present the epitopes to various clones of T lymphocytes [33, 34]. Once, 

naïve T cells enter lymph nodes from the circulation, they will rapidly move around in the 

nodes, scanning the surfaces of the DCs for the presence of the antigen. When a T cell 

recognizes antigen, the cell will then transiently stops moving and initiates its activation 

program. 

 On activation by the antigen, the antigen-specific T cells begin to secrete 

cytokines, whose function of them stimulates the proliferation of the antigen-specific T cells, 

resulting in a rapid increase in the number of antigen-specific lymphocytes. This process is 

called clonal expansion. A faction of these activated T lymphocytes undergo the process of 

differentiation, which results in the conversion of naïve T cells, whose function is to recognize 

microbial antigens, into a population of effector T cells, whose function is to eliminate the virus. 

Some effector T cells may remain in the lymph node, where they function to eradicate infected 

cells in the lymphoid organ or to provide signals to B cells that promote antibody responses 

against the virus. Other effector T cells leave the lymphoid organs where they differentiated 

from naïve T cells, enter the circulation, and migrate to any site of infection. Some of the 

progeny of the T cells that have proliferated in response to antigen develop into memory T cells, 

which are long-lived and functionally inactive and circulated for month or years, ready to 

rapidly respond to repeat exposures to the same evidence. As effector T cells eliminate the 

infectious agent, the stimuli that trigger T cell expansion and differentiation also are eliminated. 

As a result, the greatly expanded clone of antigen-specific lymphocytes dies, thereby the system 
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returns to its basal resting state [35-37]. Steps in the activation of T cells in response to the 

antigen-recognition are shown in Figure 3. 

 

Figure 3 Naïve T cells recognize MHC-associated peptide antigens displayed 

on antigen-presenting cells (APCs). The T cells respond by producing cytokines, such as IL-2 

and expressing receptors for these cytokines, leading to an anticrime pathway of cell 

proliferation. The result is clonal expansion of the T cells. Some of the progeny differentiate 

into effector cells, which serve various functions in cell-mediated immunity, and memory cells, 

which survive for long periods [38]. 

  

In this research, we focus on the mechanisms of cell-mediated immunity in which 

the naive T cells are activated, and then proliferate and differentiate into the effectors. To be 

specific, dynamics of CD8+ T cells which are directly activated by DCs and then proliferate and 

differentiate into effector CD8+ T cells (CD8+ cytotoxic T lymphocytes: CTLS )whose function 

is to kill the infected cells harboring antigens in the cytoplasm, and dynamics of CD4+ T cells 

that are directly activated by DCs and then proliferate and differentiate into effector CD4+ T 

cells (CD4+ helper T cells) whose function is,  by secreting interleukin 2 (IL-2), to stimulate 

CD8+ T cells to proliferate and differentiate into CD8+ cytotoxic T lymphocytes (CTLs) [38, 

39]. The evidence of these interested interactions may be occurring in lymphoid organ, i.e. the 

T cell zone called Paracortex in the lymph nodes or Periarteriolar lymphoid sheath (PALS) in 

the spleen. Figure 4 shows the biological concept that it will be applied for our CA rules in our 

model.  
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 Figure 4 Mechanisms of cell-mediated immunity to eradicate HIV-1 infection in 

lymphoid tissue of our model. The events that cause T lymphocytes proliferation and 

differentiation include: (i) if the DCs directly bind to the CD8+T cells, they would result in 

proliferation and differentiation of the CD8+T cells into effector CD8+T cells known as CD8+ 

cytotoxic T lymphocytes, CTLs, (ii) if the DCs directly bind to the CD4+T cells, the DCs would 

secrete interleukin 1 (IL-1) which stimulates the CD4+T cells and causes the particular cells to 

proliferate and differentiate into effector cells called CD4+ helper T cells. In addition, (iii) the 

binding of DCs to the CD4+T cells also causes the CD4+ helper T cells to secrete interleukin 2 

(IL-2). This compound then would stimulate the CD8+T cells and cause these particular cells to 

proliferate and differentiate into the CTLs [40]. 
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On the road of using Cellular automaton to study HIV-1 infection dynamics  

  To date there is neither a prophylaxis which can keep the immunity safety from 

HIV-1, nor a cure for the disease. Even though several studies [1, 2] have been designed to 

explain the mechanism between HIV-1 and our immune system, further study is required for 

completely understanding of the exact mechanism and finding an effective treatment.  To that 

end, studying in silico is one of common ways to investigate biological mechanisms for its less 

time and budget consuming. Also, when studying treatment effects, computational investigation 

allows researchers to control all factors involving the infection.  

  Considering studying in silico, differential equations [41] seem to be a standard 

way to describe different aspects of the dynamics of the host and virus interaction. However, 

these mathematical techniques are limit to describe the spatiotemporal pattern formation and 

cannot capture the stochastic properties of HIV-1 dynamics. Moreover, supported by the 

experimental evidence that the majority of HIV-1’s target cells (CD4+ T cells) and its infected 

progression is in the lymphoid tissues [4], including the spread of HIV -1 infection among cell-

to-cell is seem to be more important than cell-to-virus transmission [42, 43]. This means that 

studying the local interaction which a major drives by the cellular automaton (CA) approach 

thus plays an important role for the HIV-1 infection dynamics. 

 

  Cellular automaton 

 Cellular automaton (CA) [5] are dynamical system which discrete in space and 

time. It composed of a collection of cells (or grids) which we call a lattice whose play a role as 

a virtual world of cells. Each cell in the lattice can exist in one of a number of k possible states, 

where k is a finite number ≥ 2, to identify local states of the cells in a current time. In the simple 

case where each cell can exist in two possible states (k = 2), the state of each cell can be labeled 

by the symbols 0 or 1 and graphically by white or black. In more anthropomorphic terms, we 

can think of cells in the 0 (white) states as “dead” and those in the 1 (black) state as “alive”. 

Each state of the cell can be labeled by a time-dependent variable t

iS that arrays on the lattice 

of N sites, i = 0, 1, 2, …, N – 1 (for two dimensional CA and three dimensional CA it can be 

labeled by using indices i, j and i, j, k, respectively). The collection of all local states of the cells 

is called a configuration.  

 The progression of the system is tracked by changing the states of those cells which 

are updated simultaneously at discrete time steps (t = 1, 2, 3, …) according to a set of local 

rules or local transition function ( F ), depending on the current state of that cell and those of 

its neighbor cells - the cells surrounding a specified cell. This alteration of cell states takes place 

synchronously for all cells in the lattice.  
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The equation of motion which map a configuration at one time step to the next of 

the value S of a site at position i, for instance, in one dimensional CA with a rule that depends 

only on nearest neighbors could be written as  t

i

t

i

t

i

t

i SSSFS 11

1 ,, 
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For a two dimensional CA and three dimensional CA, there are several possible 

lattices and neighborhood structures. In this research work, for the two dimensional CA, we 

consider a square lattice with neighborhood structure as illustrated in Figure 5. A square shaped 

cellular automaton with Moore neighborhood condition then evolves in analogy according to   
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Figure 5 Moore neighborhoods condition (r = 1) for 2-dimensional cellular 

automaton which consists of a central cell (i, j), and its four neighbors, i. e. north (i, +1j), west (i-

1, j), south (i, j-1) and east (i+1, j), in addition, second nearest neighbors north-east (i+1, j+1), 

north-west (i-1, j+1), south-east (i+1, j-1) and south-west (i-1, j-1), totaling nine cells. The red 

region indicates the central cell which is updated according to the state of the cells marked in 

yellow. 

 

For the three dimensional CA, we consider a square cubic with neighborhood 

structure as illustrated in Figure 6. A cube shaped cellular automaton with Moore neighborhood 

condition then evolves in analogy according to   
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Figure 6 Moore neighborhoods condition (r = 1) for 3-dimensional cellular 

automaton which consists of a central cell (i, j, k), and its 26 neighbors, i. e. 6 nearest neighbors 

(i, j, k-1), (i, j, k+1), (i, j-1, k), (i, j+1, k), (i-1, j, k), (i+1, j, k); 12 the second nearest neighbors 

(i, j-1, k-1), (i, j-1, k+1), (i, j+1, k-1), (i, j+1, k+1), (i-1, j, k-1), (i-1, j, k+1), (i-1, j-1, k), (i-1, j+1, 

k), (i+1, j, k-1), (i+1, j, k+1), (i+1, j-1, k), (i+1, j+1, k); and 8 the third nearest neighbors (i-1, j-

1, k-1), (i-1, j-1, k+1), (i-1, j+1, k-1), (i-1, j+1, k+1), (i+1, j-1, k-1), (i+1, j-1, k+1), (i+1, j+1, k-

1), (i+1, j+1, k+1), totaling 27 cells. The red region indicates the central cube which is updated 

according to the state of the cubes marked in yellow. 

 

The advantage of cellular automaton is in providing us an ability to model complex 

dynamical phenomena by reformulating the macroscopic behavior into microscopic and 

mesoscopic rules. A set of rules specifies the time and space evolution of the system, which is 

discrete in both variables. These systems have attracted a great deal of interest in recent years 

because even with very simple rules of CA can show very complex evolution patterns. It is 

recognized that repeated applications of simple rules can lead to extremely complex behavior 

that can emulate physical [45, 46], social [47] and biological systems [48]. 
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  Studying of HIV-1 infection dynamics using cellular automaton  

  The first CA model that could reproduce the entire dynamics of HIV-1 infection 

in a model, was proposed by Santos et al. [9]. With the model, an infected lymph node was 

viewed approximately as a mesh structure with a fractal dimension close to two. Therefore, 

based on this choice, a two dimensional cellular automaton model was defined to represent 

configurations using periodic conditions on the boundary in explanation the state changes of 

CD4+ T cells, occurred in a lymph node. Each lattice site in the system was defined to be the 

position occupied by a CD4+ T cell which its state could be: Healthy, Infected stage 1 - a newly 

infected cell, Infected stage 2 - an infected cell that has been already recognized by the immune 

response, and dead. To update each configuration, the Moore’s neighborhood was used 

according to the set of CA rules.  The dynamics of healthy cells, infected cells (stage 1+stage 

2), and dead cells simulated by Santos et al.’s model which agree closely to the time evolution 

of the number of CD4+ T cells in  the  peripheral  blood  and  the  plasma vireamia  titer  shown  

in  clinical  experiment are shown in Figure 7. 

 

  Figure 7 The dynamics of healthy cells, infected cells (stage 1+stage 2), and 

dead cells simulated by Santos et al.’s model. 

 

  A year later the declaration of the successfulness of Santos et al. [9]’s model , 

Strain and Levine [49] had studied the model of Santos et al. and commented that although the 

model could reproduce the entire phases of HIV-1 infection, it still has some limitation 

particularly in using some parameters to complete the dynamics of the model. More 

specifically, the simulation results would agree with the experiments only for the values used 

in the model. Therefore, more or less during in years 2004-2013, it comes to the trend of using 

CA model for HIV-1 infection which the research dimensions were the studies of the robustness 
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of the model in changes of the grid shapes [12], the dimensionalities [10, 11, 13], and the 

parameters [10, 11] of the model. Followed by an attempt to increase the diversity of virion and 

its quantity which related to the rate of infection [50, 51] coupled with the presentations on the 

effect of treatments [14-16]; including, especially, the beginning in task of consideration the 

model conditions taken into account the pattern formation that affects cell population [18]  in 

which it became to our attention in solving the artifacts and to increasing the more sensibility 

in immunology by incorporating the other kind of immune cells except the CD4+ T cells into 

the model [52].  

 

 So, based on this choice, we will conduct a stochastic CA model which 

incorporates effects of cell-mediated immunity, i.e. the CD8+ cytotoxic T lymphocytes (CTLs), 

and the CD4+ helper T lymphocytes, to discuss the dynamics of HIV-1 infection in a lymphoid 

reservoir, to be specific, 2-dimensional cellular automaton for a lymphoid tissue. With the 

model, the role of HIV-1 target cells, i.e. the CD4+ T cells, the roles of cell-mediated immunity, 

i.e. the CD8+ cytotoxic T lymphocytes (CTLs) and the CD4+ helper T lymphocytes, and the 

role of antigen-presenting cells, i.e. the dendritic cells (DCs), including the mechanisms of 

cells’ mobility and their kinetics associated with the HIV-1 infection, for instance cells’ 

proliferation and cells’ differentiation, will be presented and incorporated. Moreover, the 

dynamics cell population is noted to be the aspects that will be discussed with the results from 

clinics.  
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The process on HIV-1 infection and how the immune cells are changed its state when the 

infected was infected to our lymphoid tissues  

 

Figure 8 Flowchart of Dendritic cell cycle. 

 

After HIV-1 entries into human body. As function of APCs, Dendritic cells will bind the virus 

for presenting the virus to the T cells. In the case of a Dendritic cell that is bind with the virus 

presents the virus to CTL, the Dendritic cell with virus will be killed to get rid of the virus. 

In case of the Dendritic cell presents the virus to either CD4+ T cells, helper T cell, or CD8+ T 

cells, it will be licensed as dendritic cell with virus called Licensed Dendritic cell which the cell 

would waiting the CTL to kill itself later.  
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Figure 9 Flowchart of Macrophage cycle. 

 

After HIV-1 entries into human body. As function of APCs, Macrophages will phagocyte the 

virus for presenting the virus to the T cells. If the Macrophage with the virus (Mv) present the 

virus to the Helper T cell, the lock and key model will happen. The helper cell will help the 

Macrophage kill the swallowed virus. However, If the Macrophage with the virus (Mv) present 

the virus to CD4 cells or CD8 cells. The Macrophage with the virus will be licensed (Licensed 

Macrophage) as it is the cell with virus.  This is a sign that this cell is an infected cell that awaits 

CTL to eliminate. When the CTL comes it will destroys the infected Macrophage cells. 

Macrophage will burst the viruses when it is killed. 
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  Figure 10 Flowchart of CD4+T cells cycle.  

 

On the other hand, when CD4+ T cell is presented a virus by a Dendritic cell or a Macrophage, 

the CD4+ T cell itself will have the opportunity either to be activated to a helper T cell that is 

responsible for helping the Macrophage to get rid of the holed virus, or it could become an 

infected cells by both from the presenting of the viruses by the Dendritic cells and the 

Macrophage, and the direct attacks from the virus and the infected CD4+ T cell. 

If the infection drives the CD4+ T cell become an actively infected cells, the cell will be able to 

infect and pass on the virus to other immune cells within the system suddenly. However, in case 

of the infection drives the CD4+ T cell to the latent state. The virus will be embedded inside the 

latent cell, do not released or infect to other immune cells. The latent infected cell will disguise 

the virus for a moment until the right time or until it is stimulated by the environment 

surrounding itself (here is the actively infected cells). It therefore reinstated itself to a 

stimulating state, release the virus and later infected to other cells. 

Changes the state to actively infected cells or latent infected cells after this infection can occur 

either within the infection of CD4+ T cells or helper T cells that are directly infected by the 

virus or from the infected cells i.e. actively infected cells, or from APCs function i.e. Dendritic 

cells with virus or Macrophage with virus. However, it is also found that the abortive infection 

that causes the CD4+ T cells to be transiently turned its state to the abortive infected cells could 

be occurred in the case that CD4+ T cells are infected by the virus directly or the actively 

infected cells due to the incomplete infection. 

 

Based on the above biological mechanisms. When we understanding how mechanism changes 

and how the virus-cell mediated immunity interaction is performed. Therefore, we thus adapted 

the mechanism and used it to create our computational model shown in next chapter as 

following. 
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Chapter III 

Proposed Model 

From the Biological concept to CA components and algorithms 

 

Lattice and cell state 

To mimic the interaction among the HIV-1  and the specific immune cell responses residence 

on a patch of lymphoid tissue at paracortex zone in a lymph node, a 2D cellular automaton with 

a square lattice sized 100 x 100 grids was developed. Each grid in the lattice is designed to be 

either a position being a state of an immune cell or a cluster of the viruses, or an empty space 

in the lymphoid tissues. One cell grid is assigned as a square grid sized 7 x 7 μm2. This is to 

compromise between the sizes of the virus, and those of the immune cells (i.e. the T cells whose 

function is the cell-mediated immunities, and the Dendritic cells and the Macrophages whose 

function is the antigen representing cells). Each state of the cells and its meaning are: 

 

Table 1 Cell type and its meaning used in our model. 

Cell type and symbol Description  

Cluster of virus (𝑉) HIV-1 cells that entry into the human lymphoid tissue. 

CD4+ T cell (𝐶𝐷4) A T cell that presents CD4+ cell receptors on its surface. 

This state of the cell could be the state of the 𝐶𝐷4 that turns 

its state from the 𝐴𝑏𝐼𝑛 , or either a naïve healthy 𝐶𝐷4 cell 

that has never been in contacted with the 𝑉 or the infected 

cells such as the 𝐴𝐼𝑛 , the 𝐷𝐶𝑣 , the 𝑀𝑣 , the 𝐿𝐶𝐷 , or the 

𝐿𝑀 before.  

Helper T cell (ℎ𝑒𝑙𝑝𝑒𝑟) A differentiate state of the 𝐶𝐷4 cell that is activated by the 

𝐷𝐶𝑣 or the 𝑀𝑣. The state of this CD4+T cell will provide 

help to other cells in immune response by recognizing the 

antigen. 

Abortive infected (𝐴𝑏𝐼𝑛) A state of an infected CD4+T cell that has abortive infection 

in which the virus fails to replicate and no infective virus is 

produced. The situation may result from an infection with 

defective viruses or the host cell is non-permissive and 

prohibits the replication of the virus. Therefore, the state of 

this infected CD4+T cell cannot neither infect nor release 

the viruses to other immune cells.  

Actively infected (𝐴𝐼𝑛) An infected state of a 𝐶𝐷4  that could infect the other 

immune cells actively.  

Latently infected (𝐿𝐼𝑛) An infected CD4+T cell that stays in latent state. It cannot 

neither infect other immune cells nor release the viruses. 

Express infected (𝐸𝐼𝑛) An Actively infected CD4+T cell ( 𝐴𝐼𝑛 ) or a License 

Macrophage (𝐿𝑀) that is weakened by the CTL ) 𝐶𝑇𝐿(  or 

the expiration. 

CD8+ T cell (𝐶𝐷8) A T cell that presents CD8+ cell receptors on its surface. 
This state of the cell is a naïve cell that has never been in 

contacted with the infected cells such as the  , the 𝑀𝑣 , the 

𝐿𝐷𝐶 , or the 𝐿𝑀 before. 
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CTL (𝐶𝑇𝐿) A differentiate state of the 𝐶𝐷8 cell that is activated by 

either a 𝐷𝐶𝑣, an  𝐿𝐷𝐶, an 𝑀𝑣, or an 𝐿𝑀 to turn its function 

to cytotoxic T lymphocyte for killing the antigen and the 

infected cells. 

DC (𝐷𝐶) An antigen-presenting cell (APC) whose function is 

boosting the immune response system by processing 

the antigen material by using the phagocytosis system and 

then present it on the surface to the cell mediated 

immunities i.e. 𝐶𝐷4, ℎ𝑒𝑙𝑝𝑒𝑟, and 𝐶𝐷8. This state of the 

𝐷𝐶 is a naïve healthy cell that has never been in contacted 

with the 𝑉 before. 

Antigen-bearing DC (𝐷𝐶𝑣) A 𝐷𝐶 that binds HIV-1 at its vesicle or swallowed the virus 

into its cytoplasm. 

License DC (𝐿𝐶𝐷) A 𝐷𝐶𝑣 that is licensed by the cell mediated immunities i.e. 

𝐶𝐷4, ℎ𝑒𝑙𝑝𝑒𝑟, and 𝐶𝐷8. 

Macrophage (𝑀) An antigen-presenting cell (APC) whose function is 

boosting the immune response system by processing 

the antigen material by using the phagocytosis system and 

then present it on the surface to the cell mediated 

immunities i.e. 𝐶𝐷4, ℎ𝑒𝑙𝑝𝑒𝑟, and 𝐶𝐷8. This state of the 𝑀 

cell could be a naïve healthy cell that has never been in 

contacted with the 𝑉 before, or the state of the cell that 

turns its state from the 𝑀𝑣. 

Macrophage with virus (𝑀𝑣) An 𝑀 that binds HIV-1 at its vesicle or swallowed the virus 

into its cytoplasm.  

Licensed macrophage (𝐿𝑀) An 𝑀𝑣 that is licensed by the cell mediated immunities i.e. 

𝐶𝐷4, and 𝐶𝐷8. 

Dead (𝐷) An immune cell that dies due to the expiration, or it is killed 

by the immune responses. 

Burst cell (𝐵𝑢𝑟𝑠𝑡) A dead  𝐴𝐼𝑛  cell or a dead 𝑀𝑣 cell that explodes the  𝑉 

cells while it was ding.  

Empty space (𝐸) A gap within the lymphoid tissues that is a pathway for the 

immune cells interaction.  

 

Cell characters: sizes, lifespan, and velocities  

Apart from the various types of immune cells, we also have determined the sizes and the 

velocities of the cells in this works. Based on the immunological evidences, we have found that 

the T cells have an average diameter of 7 μm [53] [54] , the DCs have a diameter sizes more or 

less during 10-16 μm  to the biggest size found is 25 μm [55] , and the sizes of the Macrophages 

are during 15-21 μm [56] [57] which it is seem that the sizes of the APCs might 4 times larger 

than the T cells. Therefore, we thus compromise between the diameter’s size of the APCs and 

the T cells, and assigned a grid in our model to be 7 𝜇𝑚2 and use one cell grid in our system to 

represent a position of the T cell while that of the APCs occupy four cell grids.  

However, besides the compromising among the sizes of the immune cells, we also investigate 

the size of the viruses, and found that size of HIV-1 are diameter around 90-260 nm [58, 59] 

[60] which is very small - approximately 100 times smaller than the white blood cells. So, in 

https://en.wikipedia.org/wiki/Antigen
https://en.wikipedia.org/wiki/Antigen
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case of virus, we thus assign it to be a cluster of HIV-1 that contains an amount of HIV-1 

particles approximately 88 particles at a position of a grid. 

Moreover, speaking of the cells’ movement, while the velocities of T cells are found more or 

less during 10-15 𝜇𝑚/𝑚𝑖𝑛 [61-63], until as fast as 25 𝜇𝑚/𝑚𝑖𝑛 [64], the APCs are very as slow 

as 1.64-2.7  𝜇𝑚/𝑚𝑖𝑛 [61] [65]. Therefore, we thus assign the T cells movement to be a radius 

1≤r ≤2, and the APCs to be r = 1 from a specified position in a time step. In contrast, the 

velocities of the viruses are very fast i.e. 120-180 𝜇𝑚/𝑚𝑖𝑛 [66] when compare to the velocities 

of the immune cells. Therefore, we thus assign virus’ velocities to be 17≤r ≤26 in ours.  

For the more clearly understanding, following are the table that summarize and show how the 

biological information were transferred to our proposed computational parameters (see Table 

2). 

 

Table 2 The comparison between the biological variables and the computational 

parameters used in our model. 

 

Cell type Biology Computer 

Size (𝝁𝒎) Life span 

(days) 

Velocity 

(𝝁𝒎/𝒎𝒊𝒏) 

Size 

(grid) 

Time 

delay; 𝝉 

(time step) 

Motion radius; 

r 

Cluster of virus (𝑉) 90-160 nm [58], 

95-175 nm [59], 

120-260 nm 

[60] 

6 hr (half-life) 

[67] 

120-180 
[66] 

1 𝜏𝑉=540 17≤r ≤26 

CD4+ T cell (𝐶𝐷4) 7 [53, 54] 165-365 [68] 10 [61, 62], 

10.2-

12.7,10-15 

[63], 

maximum = 

25 [64] 

1 𝜏𝐶𝐷4 
237,600-

525,600 

1≤r ≤2 

Helper T cell 

(ℎ𝑒𝑙𝑝𝑒𝑟) 

7 [53, 54] 60 hr [69] 5 [61] 1 𝜏𝑇ℎ = 3,600 r = 1 

Abortive infected 

(𝐴𝑏𝐼𝑛) 

7 [53, 54] 145 days 

(half-life) 

[67] 

NA 1 𝜏𝐴𝑏𝐼𝑛 
= 302,400 

1≤r ≤2 

adhoc 

Actively infected 

(𝐴𝐼𝑛) 

7 [53, 54] 1-2 [70] NA 

 

1 2 days 

𝜏𝐴𝐼𝑛 = 

2,880 

1≤r ≤2 

adhoc 

Latently infected 

(𝐿𝐼𝑛) 

7 [53, 54] 8.5 (half-life) 

[67] 

NA 

 

1 𝜏𝐿𝐼𝑛= 4,320 

 

1≤r ≤2 

adhoc 

Express infected 

(𝐸𝐼𝑛) 

7  (T cell( [53, 

54] 
21(macrophage) 

[56] 

NA 

 

NA 

 

1 (T cell) 

4 

(macrophage) 

𝜏𝐸𝐼𝑛= 720 

Adhoc 

1≤r ≤2 (T cell) 

r = 1 

(macrophage) 

CD8+ T cell (𝐶𝐷8) 7 [53, 54] 165-365 [68] 10, 10.2-

12.7,10-15, 

1 𝜏𝐶𝐷8 = 

237,600-

525,600 

1≤r ≤2 
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maximum = 

25 

CTL (𝐶𝑇𝐿) 7 [53, 54] 60 hr [69] 5 [61] 1 𝜏𝐶𝑇𝐿 = 

3,600 

r = 1 

DC (𝐷𝐶) 10-16 (the 

biggest 25) [55] 

1-11 [71] 2.7-1.64, 2-

3 [61] 

4 𝜏𝐷𝐶 = 

1,440-

15,840 

r = 1 

Antigen-bearing 

DC (𝐷𝐶𝑣) 

10-16 (the 

biggest 25) [55] 

60 hr [71] NA 4 𝜏𝐷𝐶𝑣 = 

3,600 

r = 1 

adhoc 

License DC (𝐿𝐶𝐷) 10-16 (the 

biggest 25) [55] 

36 hr [72, 73] NA 4 𝜏𝐿𝐷𝐶 = 

2,160 

r = 1 

adhoc 

Macrophage (𝑀) 21 [56], 15-18 

[57] 

25-30 [57] 2.5 [65] 4 𝜏𝑀 = 

36,000-

43,200 

r = 1 

Macrophage with 

virus (𝑀𝑣) 

21 [56], 15-18 

[57] 

NA NA 4 𝜏𝑀𝑣=10,080 

adhoc 

r = 1 

Licensed 

macrophage (𝐿𝑀) 

21 [56], 15-18 

[57] 

NA NA 4 𝜏𝐿𝑀= 5,760 

adhoc 

r = 1 

Dead (𝐷) Depend on cell 

type 

- - Depend on 

cell type 
𝜏𝐷 = 1 - 

Burst cell (𝐷) Depend on cell 

type 

- - Depend on 

cell type 
𝜏𝐵 = 1 - 

Empty space (𝐸) 7 - - - - - 
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Model mechanism  

Initial condition, flow, and data collection  

The initial configuration of HIV-1 infection dynamics begin with the arrival of the viruses at 

day 0 in a patch of lymphoid tissue within a LN. It is randomly consisting of the fundamental 

states of immune cells are the 𝐶𝐷4 cells, the 𝐶𝐷8 cells, the DC cells, and the M cells with the 

probability PCD4, PCD8, PDC, and PM,  respectively mixed with the cluster of V with Pv  . Figure 

11 shows a sample of initial configuration of our proposed model. 

 

Figure 11 the initial configuration. 

 

The CA lattice is governed by periodic boundary conditions where the cell leaving one side of 

the lattice reappears on the opposite site. To process each configuration, all states of the cells, 

except the dead (D) and the burst (Burst) are randomly moved to an empty space (E) (to 

represent the cells’ mobility) with a different radius of the Moore’s neighborhood (to represent 

the cells’ velocity). Later, the state of each cell is updated according to the CA rules (to represent 

the cells’ differentiation). Then, the number of each cell type is counted and noted and following 

by the configuration is announced as one time step which is taken as one minute in real life (see 

Figure 12).  
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Figure 12 Flow diagram of the algorithm in our CA model. 
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Transition CA Rules  

A set of updating rules for CD4+ T cell 

 

Figure 13 Transition rules for updating a CD4 cell, an AbIn cell, an LIn cell, an AIn cell, 

and an ExIn cell position. 

Rule A:  

A CD4 cell becomes (A1) either an AbIn cell with probability x1 = 0.95, an 

AIn cell with probability x2 = 0.99(1-x1), or an LIn 

cell with probability x3 = 0.01(1-x1) after contacts 

with a Virus cell. 

(A2) either an AbIn cell with probability x4 = 0.95, an 

AIn cell with probability x5 = 0.99(1-x4), or an LIn 

cell with probability x6 = 0.01(1-x4) after contacts 

with an AIn cell. 

(A3) either a helper cell with probability x7 = 8....8, an 

AIn cell with probability x8 = 0.0001, or an LIn cell 

with probability x9 = 0.0001 after contacts with a 

DCv cell.  

(A4) either a helper cell with probability x10 = 8....8, 

an AIn cell with probability x11 = 0.0001, or an LIn 
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cell with probability x12= 0.0001 after contacts with 

an Mv cell.  

(A5) a Dead cell after 𝜏𝐶𝐷4  time step. 

 

Rule B: An AbIn cell turns its stated to a CD4 cell after 𝜏𝐴𝑏𝐼𝑛 time step. 

Rule C: An LIn cell becomes an AIn cell after 𝜏𝐿𝐼𝑛 timestep, or contacts with an AIn 

cell.  

Rule D: An AIn cell becomes an ExIn cell after 𝜏𝐴𝐼𝑛 time step, or contacts with a CTL 

cell. 

Rule E: An ExIn cell becomes a Burst cell after 𝜏𝐸𝑥𝐼𝑛 time step. 

 

A set of updating rules for helper T cell 

 

Figure 14 Transition rules for updating a helper cell position. 

Rule F:  

A helper cell becomes (F1) either an AIn cell with probability x14 = 0.0495, or 

an LIn cell with probability x15 = 0.0005 after 

contacts with a Virus cell. Otherwise, its stays 

unchanged its state with probability x13 = 0.95. 

(F2) either an AIn cell with probability x17 = 0.0495, or 

an LIn cell with probability x18 = 0.0005 after 
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contacts with a AIn cell. Otherwise, its stays 

unchanged its state with probability x16 = 0.95. 

(F3) either an AIn cell with probability x20 = 0.0001, or 

an LIn cell with probability x21 = 0.0001 after 

contacts with a DCv cell. Otherwise, its stays 

unchanged its state with probability x19 = 0.9998. 

(F4) either an AIn cell with probability x23 = 0.0001, or 

an LIn cell with probability x24 = 0.0001 after 

contacts with a Mv cell. Otherwise, its stays 

unchanged its state with probability x22 = 0.9998. 

(F5) a Dead cell after 𝜏ℎ𝑒𝑙𝑝𝑒𝑟 time step. 

 

A set of updating rules for CD8+ T cell 

 

Figure 15 Transition rules for updating a CD8 cell and a CTL cell position. 

 

Rule G:  

A CD8 cell becomes  

 

(G1) a CTL cell after contacts with an DCv cell, an LDC 

cell, an Mv cell, an LM cell. 

(G2) a Dead cell after  𝜏𝐶𝐷8 time step. 

 

Rule H: A CTL cell becomes a Dead cell after  𝜏𝐶𝑇𝐿 time step. 
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A set of updating rules for DC 

 

Figure 16 Transition rules for updating a DC cell, a DCv cell, and an LDC cell position. 

 

Rule I: 

A DC cell becomes  

 

(I1) a DCv cell after contacts with a Virus cell. 

(I2) a Dead cell after 𝜏𝐷𝐶  time step. 

 

Rule J: 

A DCv cell becomes  

 

(J1) an LDC cell after contacts with either a CD4 cell, a 

helper cell, or a CD8 cell. 

(J2) a Dead cell after 𝜏𝐷𝐶𝑣 time step, or contacts with a 

CTL cell.  

 

Rule K: 

An LDC cell becomes a Dead cell after 𝜏𝐿𝐷𝐶 time step, or contacts with a CTL 

cell. 
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A set of updating rules for Macrophage  

 

Figure 17 Transition rules for updating an M cell, an Mv cell, and an LM cell position. 

 

Rule L: 

A M cell becomes  

 

(L1) an Mv cell after contacts with a Virus cell.  

(L2) an Dead cell after 𝜏𝑀  time step. 

 

Rule M: 

A Mv cell becomes  

 

(M1) an LM cell after contacts with either a CD4 cell, or 

a CD8 cell.  

(M2) turns its state to an M cell after contacts with a 

helper cell. 

(M3) an ExIn cell after 𝜏𝑀𝑣 time step, or contacts with a 

CTL cell.  

 

Rule N:  

An LM cell becomes an ExIn cell after 𝜏𝐿𝑀 time step, or contacts with a CTL 

cell. 
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Figure 18 Transition rules for updating a Virus cluster position. 

 

Rule O:   

A Virus cluster 

position becomes 

an Empty space after contacts with either a CD4  cell, a 

helper cell, an AIn cell, an M  cell, an Mv cell, an LM 

cell, DC cell, a DCv cell, or an LDC cell. 

 

Rule P:  

A Dead cell becomes an Empty space.   

 

Rule Q:  

A Burst cell becomes an Empty space.   
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A set of updating rules for Empty space 

 

Figure 19 Transition rules for updating an Empty space position. 

 

Rule R: 

An Empty space is 

replenished by 

(R1) a Virus cluster, a CD4 cell, a CD8 cell, a DC cell, 

an M cell with probability x25, x26 x27, x28, and x29, 

respectively randomly. This is to represent the 

filling in either the movement of immune cells or 

virus cell from other systems.  

(R2) a Virus cluster more or less during r ≤ 2 among the 

Burst cell position with probability x30 due to the 

infected cell’s explode. 

(R3) a Virus cell more or less during r ≤ 2 among the Mv 

cell and LM cell position with probability x31 due 

to viral secretion of Mv cell and LM cell during the 

infection lifetime. 
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Used parameters, meaning and values 

 

Table 3 the parameters, their meaning, and the assigned values used in our model.  

Used 

parameters 

Meanings Values 

𝑥1 Probability that a  𝐶𝐷4 cell becomes an 

 𝐴𝑏𝐼𝑛  cell after contacts with a  𝑉  cell  

 

95%-99% and 𝑥1 >> (𝑥2 + 𝑥3) [25] 

0.95 

(95% of 𝑥1 + 𝑥2 + 𝑥3) 

𝑥2 Probability that a  𝐶𝐷4 cell becomes an 

 𝐴𝐼𝑛  cell after contacts with a  𝑉  cell 

 

[25] 

0.99(1-𝑥1) 

𝑥3 Probability that a  𝐶𝐷4 cell becomes an 

 𝐿𝐼𝑛  cell after contacts with a  𝑉  cell 

 

0.1%-1% of 𝑥2 [31] 

0.01(1-𝑥1) 

(1% of 𝑥2) 

𝑥4 Probability that a  𝐶𝐷4 cell becomes an 

 𝐴𝑏𝐼𝑛   cell after contacts with  an  𝐴𝐼𝑛  

cell 

 

95%-99% and 𝑥4 >> (𝑥5 + 𝑥6) [25] 

0.95 

(95% of 𝑥4 + 𝑥5 + 𝑥6) 

𝑥5 Probability that a  𝐶𝐷4 cell becomes 

an 𝐴𝐼𝑛   cell after contacts with  an  𝐴𝐼𝑛  

cell 

[25] 

0.0495 

𝑥6 Probability that a  𝐶𝐷4 cell becomes an 

 𝐿𝐼𝑛  cell after contacts with  an  𝐴𝐼𝑛  cell 

 

0.1%-1% of 𝑥5 [31] 

0.0005 

(1% of 𝑥5) 

𝑥7 Probability that a  𝐶𝐷4 cell becomes a  𝑇ℎ   

cell after contacts with  a  𝐷𝐶𝑣  cell  

 

0.9998 

 

 

adhoc 
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𝑥8 Probability that a  𝐶𝐷4 cell becomes an 

 𝐴𝐼𝑛  cell after contacts with  a  𝐷𝐶𝑣  cell  

 

𝑥8 + 𝑥9 → 0 

0.0001 

 

 

adhoc 

𝑥9 Probability that a  𝐶𝐷4 cell becomes an 

 𝐿𝐼𝑛   cell after contacts with  a  𝐷𝐶𝑣  cell  

 

𝑥8 + 𝑥9 → 0 

0.0001 

 

 

adhoc 

𝑥10 Probability that a  𝐶𝐷4 cell becomes a  𝑇ℎ   

cell after contacts with  an  𝑀𝑣  cell  

 

0.9998 

 

adhoc 

𝑥11 Probability that a  𝐶𝐷4 cell becomes an 

 𝐴𝐼𝑛  cell after contacts with  an  𝑀𝑣  cell  

 

0.0001 

 

 

adhoc 

𝑥12 Probability that a  𝐶𝐷4 cell becomes an 

 𝐿𝐼𝑛  cell after contacts with  an  𝑀𝑣 cell  

 

0.0001 

 

adhoc 

𝑥13 Probability that a  𝑇ℎ  cell stays 

unchanged after contacts with a  𝑉  cell 

 

95%-99% and 𝑥13 >> (𝑥14 + 𝑥15) [25] 

0.95 

(95% of 𝑥13 + 𝑥14 + 𝑥15) 

𝑥14 Probability that a  𝑇ℎ   cell becomes an 

 𝐴𝐼𝑛  cell after contacts with a  𝑉  cell  

 

0.0495 

𝑥14 = 0.99(1 – 𝑥13) 

 

adhoc 

𝑥15 Probability that a  𝑇ℎ   cell becomes an 

 𝐿𝐼𝑛  cell after contacts with a  𝑉  cell  

 

0.1%-1% of 𝑥14 [31] 

0.0005 

(1% of  𝑥14) 

𝑥15 = 0.01(1 – 𝑥13) 

𝑥16 Probability that a  𝑇ℎ   cell stays 

unchanged after contacts with an  𝐴𝐼𝑛  

cell 

 

95%-99% and 𝑥16 >> (𝑥17 + 𝑥18) [25] 

𝑥16 = 0.95 (𝑥16 + 𝑥17 + 𝑥18) 

(95% of𝑥16 + 𝑥17 + 𝑥18) 
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𝑥17 Probability that a  𝑇ℎ   cell becomes an 

 𝐴𝐼𝑛  cell after contacts with an  𝐴𝐼𝑛  cell 

0.0495 

𝑥17 = 0.99(1 – 𝑥16) 

 

adhoc 

𝑥18 Probability that a  𝑇ℎ   cell becomes an 

 𝐿𝐼𝑛  cell after contacts with an  𝐴𝐼𝑛  cell 

 

 0.1%-1% of 𝑥17 [31] 

0.0005 

(1% of  𝑥17) 

𝑥18 = 0.01(1 – 𝑥16) 

𝑥19 Probability that a  𝑇ℎ   cell stays 

unchanged after contacts with a  𝐷𝐶𝑣  cell 

 

 95%-99% and 𝑥19 >> (𝑥20 + 𝑥21) [25] 

0.9998 

𝑥19 = 0.95 (𝑥19 + 𝑥20 + 𝑥21) 

(95% of 𝑥19 + 𝑥20 + 𝑥21) 

𝑥20 Probability that a  𝑇ℎ   cell becomes an 

 𝐴𝐼𝑛  cell after contacts with a  𝐷𝐶𝑣  cell 

0.0001 

𝑥20 = 0.99(1 – 𝑥19) 

𝑥21 Probability that a  𝑇ℎ  cell becomes an 

 𝐿𝐼𝑛  cell after contacts with a  𝐷𝐶𝑣  cell 

0.0001 

𝑥21 = 0.01(1 – 𝑥19) 

𝑥22 Probability that a  𝑇ℎ   cell stays 

unchanged after contacts with a  𝑀𝑣  cell 

 

 95%-99% and 𝑥22 >> (𝑥23 + 𝑥324) [25] 

0.9998 

 

 

𝑥23 Probability that a  𝑇ℎ   cell becomes an 

 𝐴𝐼𝑛  cell after contacts with a  𝑀𝑣  cell 

0.0001 

 

adhoc 

𝑥24 Probability that a  𝑇ℎ  cell becomes an 

 𝐿𝐼𝑛  cell after contacts with a  𝑀𝑣  cell 

0.0001 

 

adhoc 

𝑥25  Probability that an  𝐸𝑚𝑝𝑡  cell is 

replenished by a  𝑉  cell  

0.5 

adhoc 

𝑥26 Probability that an  𝐸𝑚𝑝𝑡   cell is 

replenished by a  𝐶𝐷4 cell 

0.2  

adhoc 

𝑥27 Probability that an  𝐸𝑚𝑝𝑡   cell is 

replenished by a  𝐶𝐷8 cell 

0.2 

adhoc 

𝑥28 Probability that an  𝐸𝑚𝑝𝑡   cell is 

replenished by a  𝐷𝐶  cell 

0.05 

adhoc 

𝑥29 Probability that an  𝐸𝑚𝑝𝑡  cell is 

replenished by an  𝑀  cell 

0.05 

adhoc 
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𝑥30 Probability that an  𝐸𝑚𝑝𝑡   cell is 

replenished by  a  𝑉   cell due to the 

infected cell combrustion (r<=2) 

0.05 

adhoc 

𝑥31 Probability that an  𝐸𝑚𝑝𝑡   cell is 

replenished by  a  𝑉  cell due to the viral 

released from an infected cell 

 

𝑥31 < 𝑥30 

 

0.1 

adhoc 
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Chapter IV 

Results and Discussion 

 

Following are samples of our simulation results cases when PCD8, PDC , and PM  are set to be 

zero (case when there is no initial CD8+ T cells, DC, and M cells in LN), and the (i) ratio 

between Pv and  PCD4  and (ii) maximum density of cell population in LN are varied. The 

simulation results would show how our CA model could represent how differences of the cell 

dynamics when the initial condition is difference (which mimics an individual patient). 

Moreover, because one time step in our model is equal to one minute in real life, therefore, for 

the sake of understanding, only the first 60 days after the infection thus presented due to the 

highly disease progression.  
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Figure 20 Cell population dynamics case when cell density = 100%, Pv = 1, and PCD4 =0. 

X-axis is days of infection. Y-axis is number of cell population. 

Cell density in LN 100% 

Pv 1 

PCD4 0 



36 
 

    

    

    

    
Figure 21 Cell population dynamics case when cell density = 100%, Pv = 0.8, and PCD4 =0.2. 

X-axis is days of infection. Y-axis is number of cell population. 

Cell density in LN 100% 

Pv 0.8 

PCD4 0.2 
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Figure 22 Cell population dynamics case when cell density = 100%, Pv = 0.6, and PCD4 =0.4. 

X-axis is days of infection. Y-axis is number of cell population. 

Cell density in LN 100% 

Pv 0.6 

PCD4 0.4 
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Figure 23 Cell population dynamics case when cell density = 80%, Pv = 1, and PCD4 =0. 

X-axis is days of infection. Y-axis is number of cell population. 

Cell density in LN 80% 

Pv 1 

PCD4 0 
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Figure 24 Cell population dynamics case when cell density = 80%, Pv = 0.8, and PCD4 =0.2. 

X-axis is days of infection. Y-axis is number of cell population. 

Cell density in LN 80% 

Pv 0.8 

PCD4 0.2 
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Figure 24 Cell population dynamics case when cell density = 80%, Pv = 0.6, and PCD4 =0.4. 

X-axis is days of infection. Y-axis is number of cell population. 

Cell density in LN 80% 

Pv 0.6 

PCD4 0.4 
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Figure 25 Cell population dynamics case when cell density = 60%, Pv = 1, and PCD4 =0. 

X-axis is days of infection. Y-axis is number of cell population. 

 

Cell density in LN 60% 

Pv 1 

PCD4 0 
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Figure 26 Cell population dynamics case when cell density = 60%, Pv = 0.8, and PCD4 =0.2. 

X-axis is days of infection. Y-axis is number of cell population. 

Cell density in LN 60% 

Pv 0.8 

PCD4 0.2 
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Figure 27 Cell population dynamics case when cell density = 60%, Pv = 0.6, and PCD4 =0.4. 

X-axis is days of infection. Y-axis is number of cell population. 

 

Cell density in LN 60% 

Pv 0.6 

PCD4 0.4 
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Figure 28 Cell population dynamics case when cell density = 40%, Pv = 1, and PCD4 =0. 

X-axis is days of infection. Y-axis is number of cell population. 

Cell density in LN 40% 

Pv 1 

PCD4 0 
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Figure 29 Cell population dynamics case when cell density = 40%, Pv = 0.8, and PCD4 =0.2. 

X-axis is days of infection. Y-axis is number of cell population. 

Cell density in LN 40% 

Pv 0.8 

PCD4 0.2 
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Figure 30 Cell population dynamics case when cell density = 40%, Pv = 0.6, and PCD4 =0.4. 

X-axis is days of infection. Y-axis is number of cell population. 

Cell density in LN 40% 

Pv 0.6 

PCD4 0.4 
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Figure 31 Cell population dynamics case when cell density = 20%, Pv = 1, and PCD4 =0. 

X-axis is days of infection. Y-axis is number of cell population. 

Cell density in LN 20% 

Pv 1 

PCD4 0 
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Figure 32 Cell population dynamics case when cell density = 20%, Pv = 0.8, and PCD4 =0.2. 

X-axis is days of infection. Y-axis is number of cell population. 

Cell density in LN 20% 

Pv 0.8 

PCD4 0.2 
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Figure 33 Cell population dynamics case when cell density = 20%, Pv = 0.6, and PCD4 =0.4. 

X-axis is days of infection. Y-axis is number of cell population. 

Cell density in LN 20% 

Pv 0.6 

PCD4 0.4 
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Chapter V 

Conclusion 

 

In this work, an HIV-CA model which concerned effects of cell-mediated immunities is 

presented. The role of HIV-1 target cells, i.e. the CD4+ T cells, the roles of cell-mediated 

immunities, i.e. the CD8+ cytotoxic T lymphocytes (CTLs) and the CD4+ helper T 

lymphocytes, and the role of antigen-presenting cells (APCs), i.e. the dendritic cells (DCs) 

and the macrophages, including the mechanisms of cells’ mobility and their kinetics 

associated with the HIV-1 infection, for instance cells’ proliferation and cells’ differentiation, 

are incorporated onto the model.  

By using the proposed model according the proposed CA rules and kinetics, it found that our 

model could represent the dynamics of cell population related the HIV-specific immune 

responses. With this report, our simulation results shows how the variations in the cell initial 

concentration, i.e. the initial number of virus particles and the initial number of CD4+ T cells 

in lymphoid tissue here, could affect the HIV infection dynamics. Noted that, for the sake of 

understanding, only the first 60 days simulation results after the infection are presented due to 

the frequency of our set configurations and the highly disease progression.  
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