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The domination game played on a graph G  consists of two players, Dominator and Staller, who 

alternately choose a vertex of G . The chosen vertex and its neighbors are said to be dominated by the chosen 

vertex. A player can only choose a vertex that dominates at least one new vertex.  The game ends when all 

vertices are dominated. Dominator aims to finish the game in as few turns as possible while Staller aims to 

finish the game in as many turns as possible.  The game domination number ( )g G  (respectively ' ( )g G ) 

of type 1 (respectively type 2) is the total number of turns both players use in a game which Dominator 

(respectively Staller) starts and both players use optimal strategies. 

In this project we aim to determine the game domination numbers ( )g G  and ' ( )g G  when G   is 

a forest of paths and when G  has large maximum degree with respect to the number of vertices. 
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1 Executive Summary

A set S in a graph G is a dominating set if any vertex of G not in S is adjacent to some
vertex in S. Domination has applications in many resource allocation problems such as
transceivers installation. For example, in installing wifi access points on a building, the
common requirements are that the wifi signal should cover every place on the building and
the cost of installation should be minimal. Domination is a widely studied topic with over
one thousand research papers dedicated to this topic. For more information on domination,
we refer the reader to [7, 8].

There are many variations of domination. In this project, we study the game version
called domination game which was introduced by Brešar, Klavžar and Rall [2] in 2010.
The domination game is played on a graph by two players, Dominator and Staller, who
alternately chooses a vertex of the graph. After a player chooses a vertex, that vertex and
its neighbors are said to be dominated. A vertex is valid to choose if its closed neighborhood
contains at least one undominated vertex. The game ends when all vertices are dominated.
Dominator aims to finish the game in as few moves as possible while Staller aims to finish
the game in as many moves as possible. The game domination number γg(G), (respectively
γ′g(G)) is the total number of moves both players use in a game played on a graph G which
Dominator (respectively Staller) starts and both players use optimal strategies.

The first bound of the game domination number was obtained in term of the domination
number: γ(G) ≤ γg(G) ≤ 2γ(G) − 1 for any graph G [2]. From [2, 10], the two game
domination numbers of a graph can differ by at most one. In fact for any pair of positive
integers (k, l) that differ by at most one except for (2, 1) there is a graph G such that
γg(G) = k and γ′g(G) = l [2, 10, 11].

A partially-dominated graph is a graph whose some vertices are declared dominated from
the beginning. The notion of game domination numbers extends naturally to partially-
dominated graphs by considering the numbers of moves to dominate the remaining undom-
inated vertices.

A partially-dominated graph H is the residual graph of a partially-dominated graph G if
H is obtained from G by deleting all vertices which are invalid moves and deleting all edges
joining dominated vertices. Let H be the residual graph of a partially-dominated graph G.
Since removing vertices that are invalid moves does not affect the game, γg(G) = γg(H),
γ′g(G) = γ′g(H) and we can replace the game played on G by the game played on H.

A fundamental tool for analyzing domination game is proved in [10]:

Theorem 1. [10] (Continuation Principle) Let G be a (partially-dominated) graph and let
A and B be subsets of V (G). Let GA and GB be the partially-dominated graphs in which the
sets A and B have already been dominated, respectively. If B ⊆ A, then γg(GA) ≤ γg(GB)
and γ′g(GA) ≤ γ′g(GB).

Let G = (V,E) and H = (V ′, E ′) be partially-dominated graphs where A and B are the
sets of dominated vertices of G and H, respectively. The union of G and H, denoted by
G∪H, is the partially-dominated graph with the vertex set V ∪V ′, the edge set E∪E ′ and the
set of dominated vertices A∪B. If V and V ′ are disjoint, then the union is disjoint, denoted
by G+H. P. Dorbec, G. Košmrlj and G. Renault [6] found bounds for the game domination
number of a disjoint union of two graphs in terms of the game domination number of each
graph.

Determining game domination numbers of graphs is not an easy task even for the simplest
connected graphs such as paths and cycles [12]. In this project, we divide our results in two



parts. In the first part, we determine the game domination numbers of a disjoint union of
paths and cycles together with optimal strategies for both players. Our proofs rely on the
following observation.

When the domination game is played on a disjoint union of paths and cycles, at any
stage of the game, the residual graph is a disjoint union of cycles and partially-dominated
paths with some endpoints dominated. In other words, the type of the graph does not
change during the game. Therefore, if we can find an optimal first move, we have an optimal
strategy for the whole game.

In the second part, we give a recursive formula for computing the game domination
numbers of a galaxy (a forest of stars). Our proofs make use of the observation that we can
assume that the centers of the stars are dominated without affecting the game domination
numbers.

2 Game domination numbers of a disjoint union of

paths and cycles

In this section, we give the formula for the game domination numbers of a disjoint union of
paths and cycles. For the details of the proofs we refer the reader to our manuscript given
in the appendix.

Definition 2. Let Pn denote a path with n vertices. Let P ′n denote a partially-dominated
path Pn+1 with the left end vertex dominated. Let P ′′n denote a partially-dominated path
Pn+2 with both end vertices dominated.

Observe that each of Pn, P ′n and P ′′n has n undominated vertices.

Definition 3. A partially-dominated graph is PC if each of its component is either Pn, P ′n,
P ′′n or Cn for some positive integer n.

Definition 4. Let G be a PC graph. A component of G is called a path-component if it is
a Pn, P

′
n or P ′′n for some positive integer n. A component of G is called a cycle-component if

it is a cycle.

Definition 5. For i ∈ {0, 1, 2, 3}, a path Pn is said to be in class [i] if n ≡ i (mod 4), a
partially-dominated P ′n (or P ′′n ) is said to be in class [i]∗ if n ≡ i (mod 4) and a cycle Cn is
said to be in class i if n ≡ i (mod 4). The classes [i]> and [i]∗> are defined similarly but
they only consist (partially-dominated) paths with at least 5 undominated vertices.

The following paramenters will be useful for describing the game domination numbers of
a PC graph.

Definition 6. For a partially-dominated graph G, let a(G), b(G), c(G), d(G), and e(G) be

the numbers of components of G that are in [2]∗, [3]∗, [3], 1 ∪ 2 , and 3 , respectively.

Definition 7. Let a, b and c be integers. Define

f(a, b, c) =

⌈
a− c− 1

2
+
b

4

⌉
.



Definition 8. Let G be a PC graph. Define

δ(G) =

{
1 if d(G) 6= 0 and e(G) ≡ θ + f(a, b, c)−

⌈
b
2

⌉
(mod 2)

0 else
,

and

δ′(G) =

{
1 if d(G) 6= 0 and e(G) 6≡ θ + f(a, b+ 1, c)−

⌈
b−1
2

⌉
(mod 2)

0 else
.

Definition 9. Let G = Pn1 + · · ·+Pnk
+P ′m1

+ · · ·+P ′mr
+P ′′s1 + · · ·+P ′′sl +Ct1 + · · ·+Ctq .

Define θ(G) =
⌈
n1

2

⌉
+ · · ·+

⌈
nk

2

⌉
+
⌈
m1

2

⌉
+ · · ·+

⌈
mr

2

⌉
+
⌈
s1
2

⌉
+ · · ·+

⌈
sl
2

⌉
+
⌈
t1
2

⌉
+ · · ·+

⌈ tq
2

⌉
.

For a PC graph G the number θ(G) is the sum of the ceiling of half the number of
undominated vertices of each component of G.

The Continuation Principle allows us to make the following assumption.

Assumption 10. Throughout this section assume that at any stage of the game Dominator
plays in such a way that the set of additional vertices dominated by his move is not properly
contained in that of other choice’s and Staller plays in such a way that the set of additional
vertices dominated by his move does not properly contain that of other choice’s.

At any stage of the domination game played on a disjoint union of paths and cycles,
the residual graph is always a PC graph. This reduces our analysis to just determining an
optimal first move for each player in any PC graph. Recall that by our convention the left
most vertex of P ′n is dominated. The following theorem gives the game domination numbers
of a PC graph and optimal strategies.

Theorem 11. Let G be a PC graph. Let θ = θ(G), a = a(G), b = b(G), c = c(G), d =
d(G), e = e(G), δ = δ(G) and δ′ = δ′(G). Then

γg(G) = θ + f(a, b, c)−
⌈
b

2

⌉
− d− e+ δ

and

γ′g(G) = θ + f(a, b+ 1, c)−
⌈
b− 1

2

⌉
− d− e+ δ′.

Moreover, an optimal strategy for each player is as follows.
A Dominator’s optimal strategy: Each turn Dominator plays on a component of the residual
graph of G chosen from the class in the following order.

D1. [2]∗> or [3]∗

D2. [1]>, [1]∗>, [3] or {P ′2, P ′′2 }

D3. [2]>

D4. [0], [0]∗ or {P1, P
′
1, P

′′
1 , P2}

D5. 0 or 3



D6. 1

D7. 2

When Dominator plays on a path-component, he plays to dominate the left most undom-
inated vertices.

A Staller’s optimal strategy: Each turn Staller plays on a component of the residual graph
of G chosen from the class in the following order.

S1. [0]∗ or [3]∗

S2. [0], [2]∗, [2] or [3]

S3. [1]∗ or [1]

S4. 0 or 3

S5. 1

S6. 2

When Staller plays on a component from [1] or [2], he plays in such a way that the resulting
residual graph of this component contains a component from [1]∗. When Staller plays on a
component from [0] or [3], he plays to dominate the two left most vertices. When Staller
plays on any other path-component, he plays to dominate one new vertex.

3 Game domination numbers of a galaxy

In this section, we give a recursive formula for the game domination numbers of a galaxy.
For the details of the proofs we refer the reader to our manuscript given in the appendix.

A star is a tree which has a vertex that is adjacent to all other vertices, called a center.
We denote a star with k leaves by Sk. For convenience, when considering S1, we let one
vertex be its center and another is not. Therefore every star has a unique center. A forest
is a graph whose components are trees. A galaxy is a graph whose components are stars. In
a galaxy, it does not matter whether the centers are dominated initially or not.

Lemma 12. Let F be a galaxy and let C be a set of some centers of F that are not isolated
vertices. Then γg(F ) = γg(F |C) and γ′g(F ) = γ′g(F |C).

By Lemma 12, we can make the following assumptions without affecting the game dom-
ination numbers.

Assumption 13. Throughout this section, when considering a galaxy, we assume that all
isolated centers are already dominated.

In general, for a given graph G and a subgraph H of G, it is not necessary true that
γg(G) ≥ γg(H) or γ′g(G) ≥ γ′g(H). For example, let G = S3 and H be the subgraph of G
consisting of the three leaves. Then γg(G) = 1 < 3 = γg(H) and γ′g(G) = 2 < 3 = γ′g(H).
However, for a forest of stars, if the subgraph has fewer or equal number of components,
then the inequalities hold.



Lemma 14. Let G be a forest of stars and F be a subgraph of G. If the number of components
of F is no more than the number of components of G, then γg(G) ≥ γg(F ) and γ′g(G) ≥
γ′g(F ).

Now we compare two galaxies that differ in only one component.

Lemma 15. Let F be a forest of stars. For positive integers a and b, let Fa = F + Sa and
Fb = F + Sb. If a ≥ b, then γg(Fa) ≥ γg(Fb) and γ′g(Fa) ≥ γ′g(Fb).

By the Continuation Principle, we can assume that Dominator always plays on a center
of some star and Staller always plays on a leaf of some star. Next, we show how Dominator
chooses a vertex optimally.

Theorem 16. Let F be a partially-dominated forest of stars. Then a Dominator’s optimal
strategy is to play on a center with the most number of undominated neighbors.

In the next lemma, we compare two galaxies with equal number of components that
satisfy a certain ordering. As a consequence, we obtain a Staller’s optimal strategy.

Lemma 17. Let F = Sn1 + · · · + Snm and G = St1 + · · · + Stm where n1 ≤ · · · ≤ nm

and t1 ≤ · · · ≤ tm. If
∑j

i=1 ni ≥
∑j

i=1 ti for all 1 ≤ j ≤ m and
∑m

i=1 ni =
∑m

i=1 ti, then
γg(F ) ≥ γg(G) and γ′g(F ) ≥ γ′g(G).

Theorem 18. Let F be a forest of stars. Then a Staller’s optimal strategy is to play on a
leaf vertex adjacent to a center with the most number of undominated neighbors.

The following theorem give a recursive formula for computing the game domination
numbers of a galaxy.

Theorem 19. Let F = r1Sn1 + · · · + rmSnm and G = r1Sn1 + · · · + rm−1Snm−1 where
1 ≤ n1 < · · · < nm. Then

γg(F ) =


1 if m = 1 and rm = 1

r1 if nm = 1

rm + γg(G+ rm
2
Snm−1) if nm > 1 and rm is even

rm + γ′g(G+ rm−1
2
Snm−1) if nm > 1 and rm is odd

and

γ′g(F ) =


2 if m = 1, rm = 1 and nm ≥ 2

r1 if nm = 1

rm + γ′g(G+ rm
2
Snm−1) if nm > 1 and rm is even

rm + γg(G+ rm+1
2
Snm−1) if nm > 1 and rm is odd

.

Now we find some minimal galaxies that has largest possible game domination numbers
with respect to the number of components. First let’s consider when all stars in a galaxy
that have different numbers of leaves.



Theorem 20. Let Fm = Sn1 + · · ·+ Snm where 1 ≤ n1 < · · · < nm. Then

γg(Fm) =


1 if m = 1

2m− 2 if m > 1 and n1 = 1

2m− 1 if m > 1 and n1 > 1

and

γ′g(Fm) =

{
2m− 1 if n1 = 1

2m if n1 > 1.

Corollary 21. Let Fm = Sn1 + · · ·+ Snm where m > 1 and 1 ≤ n1 < · · · < nm. Then

γg(Fm) =

{
2m− 2 if n1 = 1

2m− 1 if n1 > 1

and

γ′g(Fm) =

{
2m− 1 if n1 = 1

2m if n1 > 1.

In particular, γg(Fm) < γ′g(Fm).

Lemma 22. Let Fm = S2+S3+· · ·+Sm+Sm where m > 1. Then γg(Fm) = γ′g(Fm) = 2m−1.

Corollary 23. For a positive integer m, the forest Fm = S2 + S3 + · · ·+ Sm+1 is a minimal
galaxy that realizes the pair (2m− 1, 2m).

Lemma 24. For an integer m and a positive integer n, we have⌈ m

2n−1

⌉
=

⌊
m− 1

2n−1

⌋
+ 1.

Finally we find minimal graphs among galaxies consisting isomorphic stars that satisfy
the upperbounds of [2].

Theorem 25. Let m and n be positive integers. Then

γg(mSn) = 2m−
⌈ m

2n−1

⌉
and

γ′g(mSn) = 2m−
⌊ m

2n−1

⌋
.

Corollary 26. Let m and n be positive integers. Then γg(mSn) = γ′g(mSn) if and only if
2n−1|m.

Proof. By Theorem 25 and since
⌈

m
2n−1

⌉
=
⌊

m
2n−1

⌋
if and only if 2n−1|m.

Corollary 27. Among the forests of m isomorphic stars, the forest mSn is a minimal forest
that realizes the pair (2m− 1, 2m) where n is the smallest integer greater than 1 + log2m.
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Abstract

The domination game is played on a graph G by two players, Dominator and Staller,
who alternately chooses a vertex of G in such a way that at least one new vertex is
dominated. The game ends when all vertices are dominated. Dominator aims to finish
the game in as few moves as possible while Staller aims to finish the game in as many
moves as possible. The game domination number γg(G) (respectively γ′g(G)) is the total
number of moves both players use in a game which Dominator (respectively Staller)
starts and both players use optimal strategies.

In this paper we determine the game domination numbers of a disjoint union of
paths and cycles.

Keywords: domination game, game domination number, disjoint union of paths and cycles
AMS 2010 Subject Classification: 05C57, 91A43, 05C69

1 Introduction

The domination game is played on a graph by two players, Dominator and Staller, who
alternately chooses a vertex of the graph. After a player chooses a vertex, that vertex and
its neighbors are said to be dominated. A vertex is valid to choose if its closed neighborhood
contains at least one undominated vertex. The game ends when all vertices are dominated.
Dominator aims to finish the game in as few moves as possible while Staller aims to finish
the game in as many moves as possible. The game domination number γg(G), (respectively
γ′g(G)) is the total number of moves both players use in a game played on a graph G which
Dominator (respectively Staller) starts and both players use optimal strategies.

∗corresponding author, supported by The Thailand Research Fund (research grant no. MRG5980091).
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The domination game was introduced by Brešar, Klavžar and Rall [1] in 2010 where the
first bound of the game domination number was obtained in term of the domination number:
γ(G) ≤ γg(G) ≤ 2γ(G)− 1 for any graph G. From [1, 3], the two game domination numbers
of a graph can differ by at most one. In fact for any pair of positive integers (k, l) that
differ by at most one except for (2, 1) there is a graph G such that γg(G) = k and γ′g(G) = l
[1, 3, 4].

A partially-dominated graph is a graph whose some vertices are declared dominated from
the beginning. The notion of game domination numbers extends naturally to partially-
dominated graphs by considering the numbers of moves to dominate the remaining undom-
inated vertices.

A partially-dominated graph H is the residual graph of a partially-dominated graph G if
H is obtained from G by deleting all vertices which are invalid moves and deleting all edges
joining dominated vertices. Let H be the residual graph of a partially-dominated graph G.
Since removing vertices that are invalid moves does not affect the game, γg(G) = γg(H),
γ′g(G) = γ′g(H) and we can replace the game played on G by the game played on H.

A fundamental tool for analyzing domination game is proved in [3]:

Theorem 1. [3] (Continuation Principle) Let G be a (partially-dominated) graph and let A
and B be subsets of V (G). Let GA and GB be the partially-dominated graphs in which the
sets A and B have already been dominated, respectively. If B ⊆ A, then γg(GA) ≤ γg(GB)
and γ′g(GA) ≤ γ′g(GB).

Let G = (V,E) and H = (V ′, E ′) be partially-dominated graphs where A and B are the
sets of dominated vertices of G and H, respectively. The union of G and H, denoted by
G∪H, is the partially-dominated graph with the vertex set V ∪V ′, the edge set E∪E ′ and the
set of dominated vertices A∪B. If V and V ′ are disjoint, then the union is disjoint, denoted
by G+H. P. Dorbec, G. Košmrlj and G. Renault [2] found bounds for the game domination
number of a disjoint union of two graphs in terms of the game domination number of each
graph.

Determining game domination numbers of graphs is not an easy task even for the sim-
plest connected graphs such as paths and cycles [5]. In this paper, we determine the game
domination numbers of a disjoint union of paths and cycles together with optimal strategies
for both players. Our proofs rely on the following observation.

When the domination game is played on a disjoint union of paths and cycles, at any
stage of the game, the residual graph is a disjoint union of cycles and partially-dominated
paths with some endpoints dominated. In other words, the type of the graph does not
change during the game. Therefore, if we can find an optimal first move, we have an optimal
strategy for the whole game.

In Section 2, we define related parameters and give lemmas that will be used for compar-
ing choices of moves. In Section, 3 we determine the game domination numbers of a disjoint
union of paths and cycles together with optimal strategies.

2 Parameters for a disjoint union of paths and cycles

In this section, we introduce notation and parameters for describing the game domination
numbers of a disjoint union of paths and cycles. Moreover, lemmas that are useful for
comparing different moves are given.
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Definition 2. Let Pn denote a path with n vertices. Let P ′n denote a partially-dominated
path Pn+1 with the left end vertex dominated. Let P ′′n denote a partially-dominated path
Pn+2 with both end vertices dominated.

Observe that each of Pn, P ′n and P ′′n has n undominated vertices.

Definition 3. A partially-dominated graph is PC if each of its component is either Pn, P ′n,
P ′′n or Cn for some positive integer n.

Definition 4. Let G be a PC graph. A component of G is called a path-component if it is
a Pn, P

′
n or P ′′n for some positive integer n. A component of G is called a cycle-component if

it is a cycle.

Definition 5. For i ∈ {0, 1, 2, 3}, a path Pn is said to be in class [i] if n ≡ i (mod 4), a
partially-dominated P ′n (or P ′′n ) is said to be in class [i]∗ if n ≡ i (mod 4) and a cycle Cn is
said to be in class i if n ≡ i (mod 4). The classes [i]> and [i]∗> are defined similarly but
they only consist (partially-dominated) paths with at least 5 undominated vertices.

The following paramenters will be useful for describing the game domination numbers of
a PC graph.

Definition 6. For a partially-dominated graph G, let a(G), b(G), c(G), d(G), and e(G) be

the numbers of components of G that are in [2]∗, [3]∗, [3], 1 ∪ 2 , and 3 , respectively.

Definition 7. Let a, b and c be integers. Define

f(a, b, c) =

⌈
a− c− 1

2
+
b

4

⌉
.

Definition 8. Let G be a PC graph. Define

δ(G) =

{
1 if d(G) 6= 0 and e(G) ≡ θ + f(a, b, c)−

⌈
b
2

⌉
(mod 2)

0 else
,

and

δ′(G) =

{
1 if d(G) 6= 0 and e(G) 6≡ θ + f(a, b+ 1, c)−

⌈
b−1
2

⌉
(mod 2)

0 else
.

Definition 9. Let G = Pn1 + · · ·+Pnk
+P ′m1

+ · · ·+P ′mr
+P ′′s1 + · · ·+P ′′sl +Ct1 + · · ·+Ctq .

Define θ(G) =
⌈
n1

2

⌉
+ · · ·+

⌈
nk

2

⌉
+
⌈
m1

2

⌉
+ · · ·+

⌈
mr

2

⌉
+
⌈
s1
2

⌉
+ · · ·+

⌈
sl
2

⌉
+
⌈
t1
2

⌉
+ · · ·+

⌈ tq
2

⌉
.

For a PC graph G the number θ(G) is the sum of the ceiling of half the number of
undominated vertices of each component of G.

In the remaining of this section, we present lemmas that will be useful for comparing a
player’s moves.

Lemma 10. Let a, b, c and i be integers. Then the following statements hold.

(i) f(a+ i, b, c) = f(a, b+ 2i, c) = f(a, b, c− i).

(ii) f(a, b, c) + i = f(a+ 2i, b, c) = f(a, b+ 4i, c) = f(a, b, c− 2i).

3
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(iii) If i ≥ 0, then f(a+ i, b, c) ≥ f(a, b, c).

(iv) If i ≥ 0, then f(a, b+ i, c) ≥ f(a, b, c).

Proof. The results follow from direct computation.

Lemma 11. For an integer n, the following statements hold.

(i)
⌈
n
2

+ 1
2

⌉
=
⌈
n
2

+ 1
4

⌉
.

(ii)
⌈
n
2

+ 1
4

⌉
−
⌈
n
2

⌉
=

{
0 if n is odd

1 if n is even
.

(iii)
⌈
n
2

⌉
−
⌈
n−1
2

⌉
=

{
0 if n is even

1 if n is odd
.

Proof. The results follow from direct computation.

Lemma 12. Let a and c be integers. Then f(a, 0, c) + 1 = f(a+ 1, 1, c).

Proof. Since f(a, 0, c) + 1 =
⌈
a−c−1

2

⌉
+ 1 =

⌈
a−c
2

+ 1
2

⌉
and f(a + 1, 1, c) =

⌈
a−c
2

+ 1
4

⌉
, the

result follows from Lemma 11(i).

Lemma 13. Let a, b and c be integers. Then the following values are either 0 or 1.

(i)
(
f(a, b+ 1, c)−

⌈
b−1
2

⌉)
−
(
f(a, b+ 2, c)−

⌈
b
2

⌉)
.

(ii)
(
f(a+ 1, b+ 2, c)−

⌈
b−1
2

⌉)
−
(
f(a+ 2, b, c)−

⌈
b
2

⌉)
.

(iii)
(
f(a+ 1, b+ 1, c)−

⌈
b−1
2

⌉)
−
(
f(a, b, c)−

⌈
b−2
2

⌉)
.

Proof.

(i) Since (f(a, b + 1, c) −
⌈
b−1
2

⌉
) − (f(a, b + 2, c) −

⌈
b
2

⌉
) =

⌈
a−c−1

2
+ b+1

4

⌉
−
⌈
a−c−1

2
+ b+2

4

⌉
−⌈

b−1
2

⌉
+
⌈
b
2

⌉
, the result follows from Lemma 11.

(ii) By Lemma 10(i), f(a + 2, b, c) = f(a + 1, b + 2, c). Then the result follows from Lemma
11(iii).

(iii) In (i), replace a with a+ 1 and then use Lemma 10(ii) to obtain the result.

3 Main results

In this section we find the game domination numbers of a disjoint union of paths and cycles
together with optimal strategies for both players. We start by invoking the Continuation
Principle to simplify our analysis.

When comparing two choices of moves, if the set of additional vertices dominated by
making the first choice is contained in the set of additional vertices dominated by making
the second choice, then the first choice is not worse than the second choice for Dominator (and
the second choice is not worse than the first choice for Staller). Therefore the Continuation
Principle allows us to make the following assumption.
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Assumption 14. Throughout this paper assume that at any stage of the game Dominator
plays in such a way that the set of additional vertices dominated by his move is not properly
contained in that of other choice’s and Staller plays in such a way that the set of additional
vertices dominated by his move does not properly contain that of other choice’s.

At any stage of the domination game played on a disjoint union of paths and cycles,
the residual graph is always a PC graph. This reduces our analysis to just determining an
optimal first move for each player in any PC graph. Recall that by our convention the left
most vertex of P ′n is dominated. The following theorem gives the game domination numbers
of a PC graph and optimal strategies.

Theorem 15. Let G be a PC graph. Let θ = θ(G), a = a(G), b = b(G), c = c(G), d =
d(G), e = e(G), δ = δ(G) and δ′ = δ′(G). Then

γg(G) = θ + f(a, b, c)−
⌈
b

2

⌉
− d− e+ δ

and

γ′g(G) = θ + f(a, b+ 1, c)−
⌈
b− 1

2

⌉
− d− e+ δ′.

Moreover, an optimal strategy for each player is as follows.
A Dominator’s optimal strategy: Each turn Dominator plays on a component of the residual
graph of G chosen from the class in the following order.

D1. [2]∗> or [3]∗

D2. [1]>, [1]∗>, [3] or {P ′2, P ′′2 }

D3. [2]>

D4. [0], [0]∗ or {P1, P
′
1, P

′′
1 , P2}

D5. 0 or 3

D6. 1

D7. 2

When Dominator plays on a path-component, he plays to dominate the left most undom-
inated vertices.

A Staller’s optimal strategy: Each turn Staller plays on a component of the residual graph
of G chosen from the class in the following order.

S1. [0]∗ or [3]∗

S2. [0], [2]∗, [2] or [3]

S3. [1]∗ or [1]

S4. 0 or 3

S5. 1

5
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S6. 2

When Staller plays on a component from [1] or [2], he plays in such a way that the resulting
residual graph of this component contains a component from [1]∗. When Staller plays on a
component from [0] or [3], he plays to dominate the two left most vertices. When Staller
plays on any other path-component, he plays to dominate one new vertex.

Proof. Let A and B be the desired values of γg(G) and γ′g(G), respectively. We induct on the
number of undominated vertices of graphs. One can check that the theorem holds for any
graph with fewer than 4 undominated vertices. Assume that G has at least 4 undominated
vertices. First, we show that γg(G) = A. To prove this, we find Dominator’s optimal first
move by considering all his valid first moves on a Dominator-start game.

Let H be the residual graph of G after Dominator plays his first move on G. Then
γg(G) ≤ 1 + γ′g(H) with equality if Dominator plays his first move optimally. We divide our
arguments based on the choice of Dominator’s first move. In each case, we count the number
of moves of the game with specified Dominator’s first move and the remaining moves are
played optimally by both players. After Dominator makes his first move, the component in
G on which he plays will either be

1. reduced to nothing in H if Dominator plays his first move on a component of G with
at most three undominated vertices,

2. reduced to one component in H if Dominator plays his first move on a cycle-component
of G, or his first move dominates the first three undominated vertices or the last
three undominated vertices of a path-component of G with at least four undominated
vertices, or

3. reduced to two components in H if his first move does not dominate the first undomi-
nated vertex nor the last undominated vertex of a path-component of G with at least
five undominated vertices.

Table 1 and Table 2 show the values of 1+γ′g(H) for all residual graphs H obtained from
Dominator making first moves on G where Table 1 deals with the case that Dominator makes
his first move on a path-component of G and Table 2 deals with the case that Dominator
makes his first move on a cycle-component of G. The first column of each table shows the
classes of components on which Dominator plays his first move. The second column shows
the classes of residual graphs of the components that were played on. The third to eighth
columns show the changes in values of parameters t ∈ {θ, a, b, c, d, e} where ∆t = t(H)−t(G).
In Table 1 the columns corresponding to ∆d and ∆e are not shown because ∆d and ∆e are
always 0 there. The last column shows the values of 1 + γ′g(H) and how they compare.

Now we show how to obtain the entries in Table 1 and Table 2. First let’s consider when
the component on which Dominator plays his first move is in [0] ∪ [0]∗.

Case 1 The component in G on which Dominator played is reduced to one component
in H. Then that component of H is in [1]∗. Therefore θ(H) = θ − 1, a(H) = a, b(H) = b,
c(H) = c, d(H) = d and e(H) = e. By the induction hypothesis we have γ′g(H) = θ − 1 +

f(a, b + 1, c)−
⌈
b−1
2

⌉
− d− e + δ′(H). Hence the number of moves of the game in this case

is equal to

θ + f(a, b+ 1, c)−
⌈
b− 1

2

⌉
− d− e+ δ′(H). (1)
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For convenience, let H1 denote the graph H in Case 1.
Case 2 The component in G on which Dominator played is reduced to two components

in H.
Case 2.1 One of the two components of H is in [0]∗ and the other is in [1]∗. Then

θ(H) = θ − 1, a(H) = a, b(H) = b, c(H) = c, d(H) = d and e(H) = e. By the induction
hypothesis we have γ′g(H) = θ − 1 + f(a, b + 1, c) −

⌈
b−1
2

⌉
− d − e + δ′(H). Moreover

δ′(H) = δ′(H1). Hence the number of moves of the game in this case is equal to (1)
Case 2.2 One of the two components of H is in [2]∗ and the other is in [3]∗. Then

θ(H) = θ − 1, a(H) = a + 1, b(H) = b + 1, c(H) = c, d(H) = d and e(H) = e. By the
induction hypothesis we have γ′g(H) = θ− 1 + f(a+ 1, b+ 2, c)−

⌈
b
2

⌉
− d− e+ δ′(H). Hence

the number of moves of the game in this case is equal to

θ + f(a+ 1, b+ 2, c)−
⌈
b

2

⌉
− d− e+ δ′(H). (*)

Now we compare (*) and (1). By Lemma 13(iii) the difference(
θ + f(a+ 1, b+ 2, c)−

⌈
b

2

⌉)
−
(
θ + f(a, b+ 1, c)−

⌈
b− 1

2

⌉)
is either 0 or 1. If the difference is 1, then (*)− (1) ≥ 0 since δ′(H), δ′(H1) ∈ {0, 1}. If the
difference is 0, then δ′(H) = δ′(H1) and (*)− (1) = 0. So (*) ≥ (1). Therefore, Dominator’s
optimal first move on [0] ∪ [0]∗ is to follow Case 1 or Case 2.1 which results in the total of
(1) moves.

The remaining entries on the tables and the comparisons can be obtained in a similar
manner. Therefore, when Dominator plays on a path-component, his optimal move on that
component is to dominate the left most undominated vertices. Now we compare the optimal
moves on components from different classes.

Claim 1. (i) (3) = (5)

(ii) (2) = (6)

Proof of claim. First we show (3) = (5). Let H3 and H5 be the H’s in (3) and (5),
respectively. By Lemma 10(i) the difference(

θ + f(a− 1, b+ 2, c)−
⌈
b

2

⌉
− d− e

)
−
(
θ − 1 + f(a, b, c)−

⌈
b− 2

2

⌉
− d− e

)
is equal to 0. It follows that δ′(H3) = δ′(H5). Therefore (3) = (5). Similarly, we have
(2) = (6).

�

Claim 2. (5) ≤ (2) ≤ (4) ≤ (1) ≤ (7) ≤ (8) ≤ (9).

Proof of claim. First we show (5) ≤ (2). Let H2 and H5 be the H’s in (2) and (5),
respectively. By Lemma 13(iii) the difference(

θ − 1 + f(a+ 1, b+ 1, c)−
⌈
b− 1

2

⌉
− d− e

)
−
(
θ − 1 + f(a, b, c)−

⌈
b− 2

2

⌉
− d− e

)
is either 0 or 1. If the difference is 1, then (2)− (5) ≥ 0 since δ′(H2), δ

′(H5) ∈ {0, 1}. If the
difference is 0, then δ′(H2) = δ′(H5) and (2) − (5) = 0. Therefore (2) ≥ (5). Similarly, the
other inequalities can be shown. �
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1st move Residual ∆θ ∆a ∆b ∆c 1 + γ′g(H) Remark

[0] ∪ [0]∗ [1]∗ −1 0 0 0 θ + f(a, b+ 1, c)−
⌈
b−1
2

⌉
− d− e+ δ′(H) =: (1)

[0]∗, [1]∗

[2]∗, [3]∗ −1 1 1 0 θ + f(a+ 1, b+ 2, c)−
⌈
b
2

⌉
− d− e+ δ′(H) ≥ (1)

[1]> ∪ [1]∗> [2]∗
−2 1 0 0 θ − 1 + f(a+ 1, b+ 1, c)−

⌈
b−1
2

⌉
− d− e+ δ′(H) =: (2)

[0]∗, [2]∗

[1]∗, [1]∗ −1 0 0 0 θ + f(a, b+ 1, c)−
⌈
b−1
2

⌉
− d− e+ δ′(H) ≥ (2)

[3]∗, [3]∗ −1 0 2 0 θ + f(a, b+ 3, c)−
⌈
b+1
2

⌉
− d− e+ δ′(H) = (2)

[2]∗>

[3]∗ −1 −1 1 0 θ + f(a− 1, b+ 2, c)−
⌈
b
2

⌉
− d− e+ δ′(H) =: (3)

[0]∗, [3]∗

[1]∗, [2]∗ −1 0 0 0 θ + f(a, b+ 1, c)−
⌈
b−1
2

⌉
− d− e+ δ′(H) ≥ (3)

[2]>

[3]∗ −1 0 1 0 θ + f(a, b+ 2, c)−
⌈
b
2

⌉
− d− e+ δ′(H) =: (4)

[0]∗, [3]∗

[1]∗, [2]∗ −1 1 0 0 θ + f(a+ 1, b+ 1, c)−
⌈
b−1
2

⌉
− d− e+ δ′(H) ≥ (4)

[3]∗

[0]∗ −2 0 −1 0 θ − 1 + f(a, b, c)−
⌈
b−2
2

⌉
− d− e+ δ′(H) =: (5)

[0]∗, [0]∗

[1]∗, [3]∗ −1 0 0 0 θ + f(a, b+ 1, c)−
⌈
b−1
2

⌉
− d− e+ δ′(H) ≥ (5)

[2]∗, [2]∗ −2 2 −1 0 θ − 1 + f(a+ 2, b, c)−
⌈
b−2
2

⌉
− d− e+ δ′(H) ≥ (5)

[3]

[0]∗ −2 0 0 −1 θ − 1 + f(a, b+ 1, c− 1)−
⌈
b−1
2

⌉
− d− e+ δ′(H) =: (6)

[0]∗, [0]∗

[1]∗, [3]∗ −1 0 1 −1 θ + f(a, b+ 2, c− 1)−
⌈
b
2

⌉
− d− e+ δ′(H) ≥ (6)

[2]∗, [2]∗ −2 2 0 −1 θ − 1 + f(a+ 2, b+ 1, c− 1)−
⌈
b−1
2

⌉
− d− e+ δ′(H) ≥ (6)

P1, P
′
1, P

′′
1 , P2 − −1 0 0 0 θ + f(a, b+ 1, c)−

⌈
b−1
2

⌉
− d− e+ δ′(H) = (1)

P ′2, P
′′
2 − −1 −1 0 0 θ + f(a− 1, b+ 1, c)−

⌈
b−1
2

⌉
− d− e+ δ′(H) = (2)

Table 1: Effect of Dominator’s first moves on a path-component

1st move Residual ∆θ ∆a ∆b ∆c ∆d ∆e 1 + γ′g(H) Remark

0 [1]∗ −1 0 0 0 0 0 θ + f(a, b+ 1, c)−
⌈
b−1
2

⌉
− d− e+ δ′(H) =: (7)

1 [2]∗ −2 1 0 0 −1 0 θ − 1 + f(a+ 1, b+ 1, c)−
⌈
b−1
2

⌉
− (d− 1)− e+ δ′(H) =: (8)

2 [3]∗ −1 0 1 0 −1 0 θ + f(a, b+ 2, c)−
⌈
b
2

⌉
− (d− 1)− e+ δ′(H) =: (9)

3 [0]∗ −2 0 0 0 0 −1 θ − 1 + f(a, b+ 1, c)−
⌈
b−1
2

⌉
− d− (e− 1) + δ′(H) = (7)

Table 2: Effect of Dominator’s first moves on a cycle-component
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Claim 3. (i) If G has a component in [2]∗> or [3]∗, then A = (3) = (5).

(ii) If G has no components in [2]∗> or [3]∗ but G has a component in [1]>, [1]∗>, [3] or
{P ′2, P ′′2 } then A = (2) = (6).

(iii) If G has no components in [2]∗>, [3]∗, [1]>, [1]∗>, [3] or {P ′2, P ′′2 } but G has a component
in [2]>, then A = (4).

(iv) If G has no components in [2]∗>, [3]∗, [1]>, [1]∗>, [3], {P ′2, P ′′2 } or [2]> but G has a
component in [0], [0]∗ or {P1, P

′
1, P

′′
1 , P2} then A = (1).

(v) If G has no path-components but G has a component in 0 or 3 , then A = (7).

(vi) If G has no path-components and no components in 0 or 3 , but G has a component

in 1 , then A = (8).

(vii) If G only has components in 2 , then A = (9).

Proof of claim. (i) Suppose G has a component in [3]∗. By Claim 1 and Claim 2 we can
assume that Dominator’s optimal first move is to play on this component. Let H5 be the H
in (5). By Table 1 we have θ(H5) = θ − 2, a(H5) = a, b(H5) = b− 1, c(H5) = c, d(H5) = d
and e(H5) = e. Consider δ(G) and δ′(H5). Notice that
e(G) ≡ θ + f(a, b, c)−

⌈
b
2

⌉
(mod 2)

⇔ e(H5) ≡ θ − 2 + f(a, b, c)−
⌈
b−2
2

⌉
+ 1 (mod 2)

⇔ e(H5) ≡ θ(H5) + f(a(H5), b(H5) + 1, c(H5))−
⌈
b(H5)−1

2

⌉
+ 1 (mod 2)

⇔ e(H5) 6≡ θ(H5) + f(a(H5), b(H5) + 1, c(H5))−
⌈
b(H5)−1

2

⌉
(mod 2).

Therefore δ(G) = δ′(H5). Hence θ + f(a, b, c) −
⌈
b
2

⌉
− d − e + δ(G) = θ − 1 + f(a, b, c) −⌈

b−2
2

⌉
− d − e + δ′(H5). That is A = (5). Similarly, if G has a component in [2]∗>, one can

show that A = (3).

(ii) Since G has no components in [2]∗> or [3]∗, we have b = 0. By Claim 1 and Claim 2 we
can assume that Dominator’s optimal first move is to play on this component. Suppose G
has a component in [1]> ∪ [1]∗>. Let H2 be the H in (2). By Table 1, we have θ(H2) = θ− 2,
a(H2) = a+ 1, b(H2) = b = 0, c(H2) = c, d(H2) = d and e(H2) = e.

Consider δ(G) and δ′(H2). By Lemma 12, we have
e(G) ≡ θ + f(a, 0, c) (mod 2)
⇔ e(H2) ≡ θ − 1 + f(a+ 1, 1, c) (mod 2)
⇔ e(H2) 6≡ θ − 2 + f(a+ 1, 1, c) (mod 2)
⇔ e(H2) 6≡ θ(H2) + f(a(H2), 1, c(H2)) (mod 2).
Therefore δ(G) = δ′(H2). Hence θ+ f(a, 0, c)− d− e+ δ(G) = θ− 1 + f(a+ 1, 1, c)−

⌈−1
2

⌉
−

d− e+ δ′(H2). That is A = (2). Similarly, if G has a component in [3] or {P ′2, P ′′2 }, one can
show that A = (6).
(iii)-(vii) Apply the same process as the proof of (i) and (ii).

�
In the above argument we have considered Dominator’s all possible first moves. By Claim

1 and Claim 2, we have (3) = (5) ≤ (2) = (6) ≤ (4) ≤ (1) ≤ (7) ≤ (8) ≤ (9). By this and
Claim 3 we have γg(G) = A and the stated Dominator’s strategy is optimal.
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1st move Residual ∆θ ∆a ∆b ∆c 1 + γg(H
′) Remark

[0]∗

[3]∗ 0 0 1 0 θ + 1 + f(a, b+ 1, c)−
⌈
b+1
2

⌉
− d− e+ δ(H ′) =: (10)

[2]∗ −1 1 0 0 θ + f(a+ 1, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) ≤ (10)

[0]∗, [1]∗ −1 0 0 0 θ + f(a, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) ≤ (10)

[2]∗, [3]∗ −1 1 1 0 θ + f(a+ 1, b+ 1, c)−
⌈
b+1
2

⌉
− d− e+ δ(H ′) ≤ (10)

[1]∗

[0]∗ −1 0 0 0 θ + f(a, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) =: (11)

[3]∗ −1 0 1 0 θ + f(a, b+ 1, c)−
⌈
b+1
2

⌉
− d− e+ δ(H ′) ≤ (11)

[0]∗, [2]∗ −2 1 0 0 θ − 1 + f(a+ 1, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) ≤ (11)

[1]∗, [1]∗ −1 0 0 0 θ + f(a, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) ≤ (11)

[3]∗, [3]∗ −1 0 2 0 θ + f(a, b+ 2, c)−
⌈
b+2
2

⌉
− d− e+ δ(H ′) ≤ (11)

[2]∗

[1]∗ 0 −1 0 0 θ + 1 + f(a− 1, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) =: (12)

[0]∗ −1 −1 0 0 θ + f(a− 1, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) ≤ (12)

[0]∗, [3]∗ −1 −1 1 0 θ + f(a− 1, b+ 1, c)−
⌈
b+1
2

⌉
− d− e+ δ(H ′) ≤ (12)

[1]∗, [2]∗ −1 0 0 0 θ + f(a, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) ≤ (12)

[3]∗

[2]∗ −1 1 −1 0 θ + f(a+ 1, b− 1, c)−
⌈
b−1
2

⌉
− d− e+ δ(H ′) =: (13)

[1]∗ −1 0 −1 0 θ + f(a, b− 1, c)−
⌈
b−1
2

⌉
− d− e+ δ(H ′) ≤ (13)

[0]∗, [0]∗ −2 0 −1 0 θ − 1 + f(a, b− 1, c)−
⌈
b−1
2

⌉
− d− e+ δ(H ′) ≤ (13)

[1]∗, [3]∗ −1 0 0 0 θ + f(a, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) ≤ (13)

[2]∗, [2]∗ −2 2 −1 0 θ − 1 + f(a+ 2, b− 1, c)−
⌈
b−1
2

⌉
− d− e+ δ(H ′) ≤ (13)

[0]

[2]∗ −1 1 0 0 θ + f(a+ 1, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) = (12)

[0]∗, [1]∗ −1 0 0 0 θ + f(a, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) ≤ (12)

[2]∗, [3]∗ −1 1 1 0 θ + f(a+ 1, b+ 1, c)−
⌈
b+1
2

⌉
− d− e+ δ(H ′) ≤ (12)

[1]

[3]∗ −1 0 1 0 θ + f(a, b+ 1, c)−
⌈
b+1
2

⌉
− d− e+ δ(H ′) ≤ (11)

[0]∗, [2]∗ −2 1 0 0 θ − 1 + f(a+ 1, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) ≤ (11)

[1]∗, [1]∗ −1 0 0 0 θ + f(a, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) = (11)

[3]∗, [3]∗ −1 0 2 0 θ + f(a, b+ 2, c)−
⌈
b+2
2

⌉
− d− e+ δ(H ′) ≤ (11)

[2]

[0]∗ −1 0 0 0 θ + f(a, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) ≤ (12)

[0]∗, [3]∗ −1 0 1 0 θ + f(a, b+ 1, c)−
⌈
b+1
2

⌉
− d− e+ δ(H ′) ≤ (12)

[1]∗, [2]∗ −1 1 0 0 θ + f(a+ 1, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) = (12)

[3]

[1]∗ −1 0 0 −1 θ + f(a, b, c− 1)−
⌈
b
2

⌉
− d− e+ δ(H ′) = (12)

[0]∗, [0]∗ −2 0 0 −1 θ − 1 + f(a, b, c− 1)−
⌈
b
2

⌉
− d− e+ δ(H ′) ≤ (12)

[1]∗, [3]∗ −1 0 1 −1 θ + f(a, b+ 1, c− 1)−
⌈
b+1
2

⌉
− d− e+ δ(H ′) ≤ (12)

[2]∗, [2]∗ −2 2 0 −1 θ − 1 + f(a+ 2, b, c− 1)−
⌈
b
2

⌉
− d− e+ δ(H ′) ≤ (12)

P1 − −1 0 0 0 θ + f(a, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) = (11)

Table 3: Effect of Staller’s first moves on a path-component

1st move Residual ∆θ ∆a ∆b ∆c ∆d ∆e 1 + γg(H
′) Remark

0 [1]∗ −1 0 0 0 0 0 θ + f(a, b, c)−
⌈
b
2

⌉
− d− e+ δ(H ′) =: (14)

1 [2]∗ −2 1 0 0 −1 0 θ − 1 + f(a+ 1, b, c)−
⌈
b
2

⌉
− (d− 1)− e+ δ(H ′) =: (15)

2 [3]∗ −1 0 1 0 −1 0 θ + f(a, b+ 1, c)−
⌈
b+1
2

⌉
− (d− 1)− e+ δ(H ′) =: (16)

3 [0]∗ −2 0 0 0 0 −1 θ − 1 + f(a, b, c)−
⌈
b
2

⌉
− d− (e− 1) + δ(H ′) =: (17)

Table 4: Effect of Staller’s first moves on a cycle-component
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Next, we show that γ′g(G) = B. To prove this, we find Staller’s optimal first move by
considering all his valid first moves on a Staller-start game.

Let H ′ be the residual graph of G after Staller plays his first move on G. Then γ′g(G) ≥
1 + γg(H

′) with equality if Staller plays his first move optimally. We divide our arguments
based on the choice of Staller’s first move. In each case, we count the number of moves with
specified Staller’s first move and the remaining moves are played optimally by both players.
After Staller makes his first move, the component in G on which he plays will either be

1. reduced to nothing in H ′ if Staller plays his first move on a component of G that is
P1, P

′
1, P

′′
1 , P2 or C3,

2. reduced to one component in H ′ if Staller plays his first move on a cycle-component
of G with at least four vertices, or his first move dominates the first undominated
vertex or the last undominated vertex of a path-component of G with at least two
undominated vertices (excluding P2), or

3. reduced to two components in H ′ if his first move does not dominate the first undomi-
nated vertex and the last undominated vertex of a path-component of G with at least
five undominated vertices.

Table 3 and Table 4 show the values of 1 + γg(H
′) for all residual graphs H ′ obtained

from Staller making first moves on G where Table 3 deals with the case that Staller makes
his first move on a path-component of G and Table 4 deals with the case that Staller makes
his first move on a cycle-component of G. The first column of each table shows the classes
of components on which Staller plays his first move. The second column shows the classes
of residual graphs of the component that were played on. The third to eighth columns show
the changes in values of parameter t ∈ {θ, a, b, c, d, e} where ∆t = t(H ′)− t(G). (In Table 3
the columns corresponding to ∆d and ∆e are not shown because ∆d and ∆e are always 0.)
The last column shows the values of 1 + γg(H

′) and how they compare.

Now we show how to obtain the entries in the tables. Let’s consider when the component
on which Staller plays his first move is in [0]∗.

Case 1 The component in G on which Staller played is reduced to one component in H ′.
Then that component of H ′ is in [3]∗ or [2]∗.

Case 1.1 The component of H ′ is in [3]∗. Therefore θ(H ′) = θ, a(H ′) = a, b(H ′) = b+ 1,
c(H ′) = c, d(H ′) = d and e(H ′) = e. By the induction hypothesis we have γg(H

′) =
θ + f(a, b + 1, c) −

⌈
b+1
2

⌉
− d − e + δ(H ′). Hence the number of moves of the game in this

case is equal to

θ + 1 + f(a, b+ 1, c)−
⌈
b+ 1

2

⌉
− d− e+ δ(H ′). (10)

For convenience, let H ′1 denote the graph H ′ in Case 1.1.
Case 1.2 The component of H ′ is in [2]∗. Therefore θ(H ′) = θ − 1, a(H ′) = a + 1,

b(H ′) = b, c(H ′) = c, d(H ′) = d and e(H ′) = e. By the induction hypothesis we have
γg(H

′) = θ− 1 + f(a+ 1, b, c)−
⌈
b
2

⌉
−d− e+ δ(H ′). Hence the number of moves of the game

in this case is equal to

θ + f(a+ 1, b, c)−
⌈
b

2

⌉
− d− e+ δ(H ′). (**)
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Now we compare (10) and (**). Consider the difference(
θ + 1 + f(a, b+ 1, c)−

⌈
b+ 1

2

⌉)
−
(
θ + f(a+ 1, b, c)−

⌈
b

2

⌉)
which is 0 or 1 by Lemma 13(i). If the difference is 1, then (10)−(**) ≥ 0 since δ(H ′), δ(H ′1) ∈
{0, 1}. If the difference is 0, then δ(H ′1) = δ(H ′) and (10)− (**) = 0. So (10) ≥ (**).

Case 2 The component in G on which Staller played is reduced to two components in H ′.

Case 2.1 One component of H ′ is in [0]∗ and the other is in [1]∗. Then θ(H ′) = θ − 1,
a(H ′) = a, b(H ′) = b, c(H ′) = c, d(H ′) = d and e(H ′) = e. By the induction hypothesis we
have γg(H

′) = θ − 1 + f(a, b, c) −
⌈
b
2

⌉
− d − e + δ(H ′). Hence the number of moves of the

game in this case is equal to

θ + f(a, b, c)−
⌈
b

2

⌉
− d− e+ δ(H ′). (†)

Now we compare (10) and (†). Consider the difference(
θ + 1 + f(a, b+ 1, c)−

⌈
b+ 1

2

⌉)
−
(
θ + f(a, b, c)−

⌈
b

2

⌉)
which is greater than or equal to 0 by Lemma 13(i). If the difference is greater than or equal
to 1, then (10)−(†) ≥ 0 since δ(H ′), δ(H ′1) ∈ {0, 1}. If the difference is 0, then δ(H ′1) = δ(H ′)
and (10)− (†) = 0. So (10) ≥ (†).

Case 2.2 One component of H ′ is in [2]∗ and the other is in [3]∗. Then θ(H ′) = θ − 1,
a(H ′) = a + 1, b(H ′) = b + 1, c(H ′) = c, d(H ′) = d and e(H ′) = e. By the induction
hypothesis we have γg(H

′) = θ − 1 + f(a + 1, b + 1, c) −
⌈
b+1
2

⌉
− d − e + δ(H ′). Hence the

number of moves of the game in this case is equal to

θ + f(a+ 1, b+ 1, c)−
⌈
b+ 1

2

⌉
− d− e+ δ(H ′). (††)

Now we compare (10) and (††). Consider the difference(
θ + 1 + f(a, b+ 1, c)−

⌈
b+ 1

2

⌉)
−
(
θ + f(a+ 1, b+ 1, c)−

⌈
b+ 1

2

⌉)
which is greater than or equal to 0 by Lemma 10. If the difference is greater than 0, then
(10) − (††) ≥ 0 since δ(H ′), δ(H ′1) ∈ {0, 1}. If the difference is 0, then δ(H ′1) = δ(H ′) and
(10)− (††) = 0. So (10) ≥ (††).

Therefore, Staller’s optimal first move on [0]∗ is to follow Case 1.1 which results in the
total of (10) moves.

The remaining entries on the tables and the comparisons can be obtained in a similar
manner. Therefore, we have the following Staller’s optimal first move on each class of path-
components. When Staller plays on a component from [1] or [2], he plays in such a way
that the resulting residual graph of this component contains a component from [1]∗. When
Staller plays on a component from [0] or [3], he plays to dominate the two left most vertices.
When Staller plays on any other path-component, he plays to dominate one new vertex.

Now we compare the optimal move from each class.
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Claim 4. (i) (10) = (13)

(ii) (14) = (17)

Proof of claim. Let H ′10 and H ′13 be the H ′’s in (10) and (13), respectively. Consider the
difference(

θ + 1 + f(a, b+ 1, c)−
⌈
b+ 1

2

⌉
− d− e

)
−
(
θ + f(a+ 1, b− 1, c)−

⌈
b− 1

2

⌉
− d− e

)
which is equal to 0 by Lemma 10(i). It follows that δ(H ′10) = δ(H ′13). Therefore (10) = (13).
Similarly, we have (14) = (17).

�

Claim 5. (10) ≥ (12) ≥ (11) ≥ (14) ≥ (15) ≥ (16).

Proof of claim. Let H ′10 and H ′12 be the H ′’s in (10) and (12), respectively. Consider the
difference(

θ + 1 + f(a, b+ 1, c)−
⌈
b+ 1

2

⌉
− d− e

)
−
(
θ + 1 + f(a− 1, b, c)−

⌈
b

2

⌉
− d− e

)
which is 0 or 1 by Lemma 13(iii). If the difference is 1, then (10) − (12) ≥ 0 since
δ(H ′10), δ(H

′
12) ∈ {0, 1}. If the difference is 0, then δ(H ′10) = δ(H ′12) and (10) = (12).

Therefore (10) ≥ (12). Similarly, the other inequalities can be shown. �

Claim 6. (i) If G has a component in [0]∗ or [3]∗, then B = (10) = (13).

(ii) If G has no components in [0]∗ or [3]∗ but G has a component in [2]∗, [0], [2] or [3],
then B = (12).

(iii) If G has no components in [0]∗, [3]∗, [2]∗, [0], [2] or [3] but G has a component in [1]∗

or [1], then B = (11).

(iv) If G has no path-components but G has a component in 0 or 3 , then B = (14) =
(17).

(v) If G has no path-components and no components in 0 or 3 but G has a component

in 1 , then B = (15).

(vi) If G only has components in 2 , then B = (16).

Proof of claim. (i) Suppose G has a component in [0]∗. By Claim 4 and Claim 5 we can
assume that Staller’s optimal first move is to play on this component. Let H ′10 be the H ′ in
(10). By Table 3 we have θ(H ′10) = θ, a(H ′10) = a, b(H ′10) = b + 1, c(H ′10) = c, d(H ′10) = d
and e(H ′10) = e. Consider δ′(G) and δ(H ′10). Notice that
e(G) 6≡ θ + f(a, b+ 1, c)−

⌈
b−1
2

⌉
(mod 2)

⇔ e(G) ≡ θ + f(a, b+ 1, c)−
⌈
b−1
2

⌉
− 1 (mod 2)

⇔ e(H ′10) ≡ θ(H ′10) + f(a(H ′10), b(H
′
10), c(H

′
10))−

⌈
b(H′

10)−2
2

⌉
− 1 (mod 2)

⇔ e(H ′10) ≡ θ(H ′10) + f(a(H ′10), b(H
′
10), c(H

′
10))−

⌈
b(H′

10)

2

⌉
(mod 2).

Therefore δ′(G) = δ(H ′10). Hence θ+ f(a, b+ 1, c)−
⌈
b−1
2

⌉
− d− e+ δ′(G) = θ+ 1 + f(a, b+

1, c) −
⌈
b+1
2

⌉
− d − e + δ(H ′10). That is B = (10). Similarly, if G has a component in [3]∗,

13
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one can show that B = (13).

(ii) Since G has no components in [0]∗ or [3]∗, we have b = 0. Suppose G has a component in
[2]∗. By Claim 4 and Claim 5 we can assume that Staller’s optimal first move is to play on
this component. Let H ′12 be the H ′ in (12). By Table 3, we have θ(H ′12) = θ, a(H ′12) = a−1,
b(H ′12) = b = 0, c(H ′12) = c, d(H ′12) = d and e(H ′12) = e.

Consider δ′(G) and δ(H ′12). By Lemma 12
e(G) 6≡ θ + f(a, 1, c) (mod 2)
⇔ e(G) ≡ θ + f(a, 1, c)− 1 (mod 2)
⇔ e(H ′12) ≡ θ(H ′12) + f(a(H ′12) + 1, 1, c(H ′12))− 1 (mod 2)
⇔ e(H ′12) ≡ θ(H ′12) + f(a(H ′12), 0, c(H

′
12)) (mod 2).

Therefore δ′(G) = δ(H ′12). Hence θ+f(a, b+1, c)−
⌈
b−1
2

⌉
−d−e+δ′(G) = θ+f(a+1, b, c)−⌈

b
2

⌉
− d − e + δ(H ′12). That is B = (12). Similarly, if G has a component in [0], [2] or [3],

one can show that B = (12).

(ii)-(vii) Apply the same process.
�

In the above argument we have considered Staller’s all possible first moves. By Claim 4
and Claim 5, we have (10) = (13) ≥ (12) ≥ (11) ≥ (14) = (17) ≥ (15) ≥ (16). By this and
Claim 6 we have γ′g(G) = B and the stated Staller’s strategy is optimal.

Since a disjoint union of paths and cycles is a PC graph with no partially-dominated
paths, we have the following theorem.

Theorem 16. Let G be a disjoint union of paths and cycles. Let θ = θ(G), c = c(G), d =
d(G), e = e(G), δ = δ(G) and δ′ = δ′(G). Then

γg(G) = θ +

⌈
−c− 1

2

⌉
− d− e+ δ

and

γ′g(G) = θ +

⌈
−c
2
− 1

4

⌉
− d− e+ δ′.

Proof. Note that a(G) = b(G) = 0. By Theorem 15, we have γg(G) = θ+f(0, 0, c)−d−e+δ =
θ+
⌈−c−1

2

⌉
−d−e+δ and γ′g(G) = θ+f(0, 1, c)−

⌈−1
2

⌉
−d−e+δ′ = θ+

⌈−c−1
2

+ 1
4

⌉
−d−e+δ′ =

θ +
⌈−c

2
− 1

4

⌉
− d− e+ δ′.

Corollary 17. Let G be a forest of paths. Let θ = θ(G) and c = c(G). Then

γg(G) = θ +

⌈
−c− 1

2

⌉
and

γ′g(G) = θ +

⌈
−c
2
− 1

4

⌉
.

Proof. By Theorem 16.
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Corollary 18. Let G be a disjoint union of cycles. Let θ = θ(G), d = d(G), e = e(G), δ =
δ(G) and δ′ = δ′(G). Then

γg(G) = θ − d− e+ δ

and
γ′g(G) = θ − d− e+ δ′.

Proof. By Theorem 16.
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GAME DOMINATION NUMBERS OF A GALAXY

Kraiwit Laopreeda and Chalermpong Worawannotai

Abstract. Domination game is a game played on a graph by two players,

Dominator and Staller. They alternately choose a vertex on the graph;
the chosen vertex and all of its neighbors will be dominated. A vertex

is valid to choose if at least one vertex in its closed neighborhood is

undominated. The game ends when all the vertices on the graph are
dominated. Dominator’s goal is to minimize the total number of chosen

vertices so that the game ends as soon as possible. On the other hand,

Staller’s goal is to maximize the total number of chosen vertices so that
the game is prolonged as much as possible. A game domination number

is the total number of vertices chosen to finish a domination game when

Dominator and Staller play optimally.
In this paper, we determine the game domination numbers of a galaxy

(a forest of stars).

1. Introduction

A dominating set of a graph G = (V,E) is a subset S of V such that all
vertices of G are either in S or adjacent to some member of S. The domination
number of a graph G, denoted by γ(G), is the cardinality of a minimum domi-
nating set of G. Domination can be applied to allocate resource efficiently and
thoroughly. Because of such application, domination is a widely studied topic
in graph theory. For more information about domination, see [7, 8].

In 2010, Brešar [3] has introduced a variation of domination as a game called
domination game. The game is played on a graph by two players, Dominator
and Staller. They alternately choose a vertex on the graph; the chosen vertex
and all of its neighbors will be dominated. A vertex is valid to choose if at
least one vertex in its closed neighborhood is undominated. The game ends
when all the vertices on the graph are dominated; in other words, the set of
chosen vertices becomes a dominating set. Dominator’s goal is to minimize
the total number of chosen vertices so that the game ends as soon as possible.
On the other hand, Staller’s goal is to maximize the total number of chosen
vertices so that the game is prolonged as much as possible. For a graph G,
we let DS(G) denote the domination game on G which Dominator starts the
game, and let SD(G) denote the domination game on G which Staller starts

2010 Mathematics Subject Classification. 05C57, 91A43, 05C69.

Key words and phrases. domination game, game domination number, galaxy.
This work was financially supported by The Thailand Research Fund (research grant no.

MRG5980091).
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2 K. LAOPREEDA AND C. WORAWANNOTAI

the game. A game domination number is the total number of vertices chosen to
finish a domination game when Dominator and Staller play optimally. Game
domination numbers of DS(G) and SD(G) are denoted by γg(G) and γ′g(G)
respectively.

Domination games played on trees and forests have been studied by many
authors [2, 4, 5, 9]. Effect of graph operations such as vertex-removal, edge-
removal and union are also studied [1, 6]. In this paper, we focus on finding
the game domination numbers of a galaxy (a forest of stars). Section 2 recalls
related definitions and well-known results. Section 3 presents Dominator’s and
Staller’s optimal strategies for playing domination games on a galaxy. We will
use these strategies to find recursive formulas of the game domination numbers.
Finally, in Section 4, we find some minimal galaxies that have largest possible
game domination numbers with respect to the number of components.

2. Preliminaries

In this section, we recall some definitions and useful results.
A star is a tree which has a vertex that is adjacent to all other vertices,

called a center. We denote a star with k leaves by Sk. For convenience, when
considering S1, we let one vertex be its center and another is not. Therefore
every star has a unique center. A forest is a graph whose components are trees.
A galaxy is a graph whose components are stars.

Brešar, Klavžar and Rall gave the bounds of the game domination number
in terms of the domination number.

Theorem 2.1. [3] For any graph G, we have γ(G) ≤ γg(G) ≤ 2γ(G)− 1.

The two types of game domination numbers of a graph differ by at most
one.

Theorem 2.2. [3, 9, 11] For any graph G, we have |γg(G)− γ′g(G)| ≤ 1.

For a pair of positive integers k and l, we say that the pair (k, l) is realizable
if there exists a graph G such that γg(G) = k and γ′g(G) = l. By Theorem 2.2,
we know that k− 1 ≤ l ≤ k+ 1 holds for any realizable pair (k, l). In fact, any
such pair except (2, 1) is realizable [3, 9, 10].

For a graph G and a subset A of V (G), let G|A be the partially-dominated
graph arising from G with A dominated. To find the game domination numbers
of G|A, we consider only the number of vertices chosen after A is dominated.

The proofs in our paper require comparing choices of a move. One cru-
cial tool for analyzing such choices is the Continuation Principle which was
introduced by Brešar, Klavžar and Rall [3] and was formally proved later by
Kinnersley [9].

Lemma 2.3. [9, Lemma 2.1] (Continuation Principle). Let G be a graph, and
fix A, B ⊆ V(G). If B ⊆ A, then γg(G|A) ≤ γg(G|B) and γ′g(G|A) ≤ γ′g(G|B).



GAME DOMINATION NUMBERS OF A GALAXY 3

Recall that at any moment in the domination game, a vertex is valid if
itself and its neighbors are not completely dominated. The residual graph
of a partially-dominated graph G is a partially-dominated graph obtained by
removing all invalid vertices and all edges joining dominated vertices in G.
Removing invalid vertices and all edges joining dominate vertices do not affect
the game as stated by the following lemma.

Lemma 2.4. [9, p7] Let H be the residual graph of G. Then γg(G) = γg(H)
and γ′g(G) = γ′g(H).

3. Game domination numbers of a galaxy

In this section we find the optimal strategies for Dominator and Staller to
play the domination games on a galaxy. We will use those strategies to find
recursive formulas for computing the game domination numbers.

First, we show that on a galaxy, it does not matter whether the centers are
dominated initially or not.

Lemma 3.1. Let F be a galaxy and let C be a set of some centers of F that
are not isolated vertices. Then γg(F ) = γg(F |C) and γ′g(F ) = γ′g(F |C).

Proof. Let’s consider a star with at least one leaf. If a player plays on the
center, all of the vertices of the star will be dominated. On the other hand, if
a player plays on a leaf, that leaf and the center will be dominated. The center
of the star and at least one additional vertex will be dominated by a first move
on the star. We can conclude that dominated centers do not affect the game.
Therefore, γg(F ) = γg(F |C) and γ′g(F ) = γ′g(F |C). �

By Lemma 3.1, we can make the following assumptions without affecting
the game domination numbers.

Assumption 3.2. From now on when we consider galaxies, we assume that
all non-isolated centers are already dominated.

In general, for a given graph G and a subgraph H of G, it is not necessary
true that γg(G) ≥ γg(H) or γ′g(G) ≥ γ′g(H). For example, let G = S3 and H be
the subgraph of G consisting of the three leaves. Then γg(G) = 1 < 3 = γg(H)
and γ′g(G) = 2 < 3 = γ′g(H). However, for a galaxy, if the subgraph has fewer
or equal number of components, then the inequalities hold.

Lemma 3.3. Let G be a galaxy and F be a subgraph of G. If the number of
components of F is at most the number of components of G, then γg(G) ≥
γg(F ) and γ′g(G) ≥ γ′g(F ).

Proof. For a positive integer m, let G = Sn1 + Sn2 + · · ·+ Snm be a galaxy of
m stars where 1 ≤ n1 ≤ n2 ≤ · · · ≤ nm and F = St1 + St2 + · · · + Stk be a
subgraph of G where k ≤ m and 1 ≤ t1 ≤ t2 · · · ≤ tk. For i = {1, 2, . . . , k},
observe that ti ≤ ni+m−k so we can view Sti in F as a subgraph of Sni+m−k

in
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G. Note that F is the residual graph of G|(V (G) \ V (F )). By Lemma 2.3 and
Lemma 2.4, we have

γg(G) ≥ γg(G|V (G) \ V (F )) = γg(F )

and

γ′g(G) ≥ γ′g(G|V (G) \ V (F )) = γ′g(F ).

�

Now we compare two galaxies that differ in only one component.

Lemma 3.4. Let F be a galaxy. For positive integers a ≥ b, let Fa = F + Sa

and Fb = F + Sb. Then γg(Fa) ≥ γg(Fb) and γ′g(Fa) ≥ γ′g(Fb).

Proof. By Lemma 3.3. �

By Lemma 2.3, we can assume that Dominator always plays on a center of
some star and Staller always plays on a leaf of some star. Next, we show how
Dominator chooses a vertex optimally.

Theorem 3.5. Let F be a partially-dominated galaxy. Then a Dominator’s
optimal strategy is to play on a center with the most number of undominated
neighbors.

Proof. Without loss of generality we consider only the DS game. Let Sa and
Sb be components in F where Sa has the most number of undominated leaves.
We will compare the effect of playing the center of Sa and the center of Sb. Let
Fa and Fb be the residual graphs after Dominator chose the center on Sa and
Sb respectively. We can view Fa as a subgraph of Fb so γ′g(Fa) ≤ γ′g(Fb) by
Lemma 3.4. Therefore, a Dominator’s optimal strategy is to play on a center
with the most number of undominated neighbors. �

In the next lemma, we compare two galaxies with the same number of com-
ponents and the same number of leaves that satisfy a certain ordering. As a
consequence, we obtain a Staller’s optimal strategy.

Lemma 3.6. Let F = Sn1
+ · · · + Snm

and G = St1 + · · · + Stm where n1 ≤
· · · ≤ nm and t1 ≤ · · · ≤ tm. If

∑j
i=1 ni ≥

∑j
i=1 ti for all 1 ≤ j ≤ m and∑m

i=1 ni =
∑m

i=1 ti, then γg(F ) ≥ γg(G) and γ′g(F ) ≥ γ′g(G).

Proof. We will prove by induction on the total numbers of leaves in the graphs.
For F = G = S1, we get γg(F ) ≥ γg(G) and γ′g(F ) ≥ γ′g(G). Now let F =

Sn1
+ · · · + Snm

, and G = St1 + · · · + Stm where
∑j

i=1 ni ≥
∑j

i=1 ti for all
1 ≤ j ≤ m and

∑m
i=1 ni =

∑m
i=1 ti = v. Let’s consider the SD games. In the

first move, Staller must choose a leaf on some component that satisfies

γ′g(F ) = 1 + max
i∈{1,2,...,m}

γg(Sn1 + · · ·+ Sni−1 + Sni−1 + Sni+1 + · · ·+ Snm).



GAME DOMINATION NUMBERS OF A GALAXY 5

Without loss of generality, let Staller choose a leaf on Snj
where j = 1 or

nj−1 < nj . For i ∈ {1, 2, . . . ,m}, let ri be the number of undominated leaves
on Sni after Staller chose a leaf on Snj . That is

ri =

{
ni, i 6= j

ni − 1, i = j.

That gives r1 ≤ · · · ≤ rm. For i ∈ {1, 2, . . . ,m}, let ui be the number of

undominated leaves on Sni
after Staller chose a leaf on Snm

. We get
∑k

i=1 ri ≤∑k
i=1 ui for k ∈ {1, 2, . . . ,m}. Since

∑m
i=1 ri =

∑m
i=1 ui = v − 1, by the

induction hypothesis we have

(1) γ′g(F ) = 1 + γg(Sn1
+ · · ·+ Snm−1

+ Snm−1).

In the same way, γ′g(G) = 1 + γg(St1 + · · ·+ Stm−1
+ Stm−1). Since

∑k
i=1 ni ≥∑k

i=1 ti for k ∈ {1, 2, . . . ,m} and (
∑m

i=1 ni)− 1 = (
∑m

i=1 ti)− 1 = v− 1, by the
induction hypothesis, we get

γg(Sn1
+ · · ·+ Snm−1

+ Snm−1) ≥ γg(St1 + · · ·+ Stm−1
+ Stm−1).

Therefore,

γ′g(F ) ≥ γ′g(G).

Now let’s consider the DS games. Since
∑m

i=1 ni =
∑m

i=1 ti and
∑m−1

i=1 ni ≥∑m−1
i=1 ti, we have nm ≤ tm. By Theorem 3.5,

γg(F ) = 1 + γ′g(Sn1 + · · ·+ Snm−1)

and

γg(G) = 1 + γ′g(St1 + · · ·+ Stm−1).

Let H = St1 + · · ·+Stm−2
+Stm−1+(tm−nm). Observe that the numbers of leaves

in Sn1
+ · · ·+ Snm−1

and H are equal. By the induction hypothesis, we get

γ′g(Sn1 + · · ·+ Snm−1) ≥ γ′g(H).

By Lemma 3.4, we get

γ′g(H) ≥ γ′g(St1 + · · ·+ Stm−1
).

Therefore, γg(F ) ≥ γg(G). The proof is completed by the mathematical induc-
tion. �

Theorem 3.7. Let F be a galaxy. Then a Staller’s optimal strategy is to play
on a leaf vertex adjacent to a center with the most number of undominated
neighbors.

Proof. By the Equation (1) in the proof of Lemma 3.6. �

The following theorem give a recursive formula for computing the game
domination numbers of a galaxy. Since γg(S0) = γ′g(S0) = γg(S1) = γ′g(S1), we
may only consider galaxies without isolated vertices.
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Theorem 3.8. Let F = r1Sn1
+ · · ·+rmSnm

and G = r1Sn1
+ · · ·+rm−1Snm−1

where 1 ≤ n1 < · · · < nm. Then

γg(F ) =


1 if m = 1 and rm = 1

r1 if nm = 1

rm + γg(G+ rm
2 Snm−1) if nm > 1 and rm is even

rm + γ′g(G+ rm−1
2 Snm−1) if nm > 1 and rm is odd

and

γ′g(F ) =


2 if m = 1, rm = 1 and nm ≥ 2

r1 if nm = 1

rm + γ′g(G+ rm
2 Snm−1) if nm > 1 and rm is even

rm + γg(G+ rm+1
2 Snm−1) if nm > 1 and rm is odd

.

Proof. Clearly the statement holds for a star and for a galaxy consisting of
only S1’s. Now assume nm > 1. Consider how both players play during the
first rm turns. By Theorem 3.5 and Theorem 3.7, both players will play on
a component Snm

which has not been played. When Dominator plays, all of
the vertices of an Snm

will be dominated. When Staller plays, an Snm
will

be reduced to an Snm−1. Let’s consider the DS game first. If rm is even,
Dominator and Staller will play for rm

2 turns each. After these first rm moves,
F is reduced to r1Sn1 + · · ·+ rm−1Snm−1 + rm

2 Snm−1 or G+ rm
2 Snm−1. Since

Dominator plays first, the (rm + 1)th turn is Dominator’s turn. If rm is odd,
Dominator will play for rm+1

2 turns and Staller will play for rm−1
2 turns. After

these first rm moves, F is reduced to r1Sn1 + · · ·+rm−1Snm−1 + rm−1
2 Snm−1 or

G + rm−1
2 Snm−1. Since Dominator plays first, the (rm + 1)th turn is Staller’s

turn. Therefore

γg(F ) =

{
rm + γg(G+ rm

2 Snm−1) if rm is even

rm + γ′g(G+ rm−1
2 Snm−1) if rm is odd

.

By applying the similar argument to the SD game, we get

γ′g(F ) =

{
rm + γ′g(G+ rm

2 Snm−1) if rm is even

rm + γg(G+ rm+1
2 Snm−1) if rm is odd

.

�
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4. Extremal galaxies

Note that the domination number of a galaxy equals its number of compo-
nents. By Theorem 2.1 and Theorem 2.2, for a galaxy F with m components,

(2) γg(F ) ≤ 2m− 1

and

(3) γ′g(F ) ≤ 2m.

In this section, we find some minimal galaxies that achieve these bounds. First
let’s consider galaxies whose stars have different numbers of leaves.

Theorem 4.1. Let Fm = Sn1
+ · · ·+ Snm

where 1 ≤ n1 < · · · < nm. Then

γg(Fm) =


1 if m = 1

2m− 2 if m > 1 and n1 = 1

2m− 1 if m > 1 and n1 > 1

and

γ′g(Fm) =

{
2m− 1 if n1 = 1

2m if n1 > 1
.

Proof. We induct on m. Clearly, γg(Sn1) = 1 and

γ′g(Sn1) =

{
1 if n1 = 1

2 if n1 > 1.

By applying Theorem 3.5 and Theorem 3.7 we get

γg(Sn1
+ Sn2

) = 1 + γ′g(Sn1
)

=

{
2 if n1 = 1

3 if n1 > 1

and

γ′g(Sn1
+ Sn2

) = 1 + γg(Sn1
+ Sn2−1)

= 2 + γ′g(Sn1)

=

{
3 if n1 = 1

4 if n1 > 1.

For an integer k ≥ 2, suppose

γg(Fk) =

{
2k − 2 if n1 = 1

2k − 1 if n1 > 1
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and

γ′g(Fk) =

{
2k − 1 if n1 = 1

2k if n1 > 1
.

By applying Theorem 3.5 and Theorem 3.7 we get

γg(Fk+1) = 1 + γ′g(Fk)

=

{
2(k + 1)− 2 if n1 = 1

2(k + 1)− 1 if n1 > 1

and

γ′g(Fk+1) = 2 + γ′g(Fk)

=

{
2(k + 1)− 1 if n1 = 1

2(k + 1) if n1 > 1
.

The proof is completed by the mathematical induction. �

When m > 1 and n1 > 1, the graph Fm in Theorem 4.1 satisfies the upper-
bounds (2) and (3). We now find a minimal galaxy that satisfies the bounds.

Lemma 4.2. Let Fm = (S2 + S3 + · · · + Sm) + Sm where m > 1. Then
γg(Fm) = γ′g(Fm) = 2m− 1.

Proof. We induct on m. For m = 2, we get

γg(S2 + S2) = 3 = 2(2)− 1,

and

γ′g(S2 + S2) = 3 = 2(2)− 1.

For an integer k ≥ 2, suppose γg((S2 + S3 + · · · + Sk) + Sk) = γ′g((S2 + S3 +
· · ·+ Sk) + Sk) = 2k − 1. By Theorem 3.8 and Theorem 4.1, we get

γg((S2 + S3 + · · ·+ Sk+1) + Sk+1) = 2 + γg((S2 + S3 + · · ·+ Sk) + Sk)

= 2 + (2k − 1)

= 2k + 1

= 2(k + 1)− 1

and

γ′g((S2 + S3 + · · ·+ Sk+1) + Sk+1) = 2 + γ′g((S2 + S3 + · · ·+ Sk) + Sk)

= 2 + (2k − 1)

= 2k + 1

= 2(k + 1)− 1.

The proof is completed by the mathematical induction. �
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Theorem 4.3. For a positive integer m, the galaxy Fm = S2 +S3 + · · ·+Sm+1

is a minimal galaxy that realizes the pair (2m− 1, 2m).

Proof. By Theorem 4.1, Fm realizes the pair (2m− 1, 2m). We will show that
any proper subgraph G of Fm has γ′g(G) < 2m. By Lemma 3.3, it suffices
to consider subgraphs with m components. Let G = Sn1

+ Sn2
+ · · · + Snm

be a proper subgraph of Fm, where 1 ≤ n1 ≤ n2 ≤ · · · ≤ nm. Observe that
ni ≤ i + 1 for 1 ≤ i ≤ m. Let j = max{i|ni 6= i + 1}. Let F ′m be the graph
obtained from Fm by removing a leaf in Sj+1, that is F ′m = S2 +S3 + · · ·+Sj +
Sj + Sj+2 + · · ·+ Sm+1. Observe that G is a subgraph of F ′m. By Lemma 3.3,
we get γ′g(G) ≤ γ′g(F ′m). Let F ′′m be the graph obtained from Fm by removing
a leaf in Sm+1, that is F ′′m = S2 + S3 + · · · + Sm + Sm. By Lemma 4.2, we
have γ′g(F ′′m) = 2m − 1. By Lemma 3.6, we have γ′g(F ′m) ≤ γ′g(F ′′m). Thus
γ′g(G) ≤ γ′g(F ′m) ≤ γ′g(F ′′m) = 2m−1 so G cannot realize the pair (2m−1, 2m).
Therefore, Fm is a minimal galaxy that realizes the pair (2m− 1, 2m). �

Next we consider galaxies that contain only one type of stars and find min-
imal graphs among these galaxies that satisfy the upperbounds (2) and (3).

Lemma 4.4. For an integer m and a positive integer n, we have⌈ m

2n−1

⌉
=

⌊
m− 1

2n−1

⌋
+ 1.

Proof. Write m = b2n−1 + r where b is an integer and 0 ≤ r < 2n−1. We have⌈ m

2n−1

⌉
=

⌈
b2n−1 + r

2n−1

⌉
= b+

⌈ r

2n−1

⌉
and ⌊

m− 1

2n−1

⌋
+ 1 =

⌊
b2n−1 + r − 1

2n−1

⌋
+ 1 = b+

⌊
r − 1

2n−1

⌋
+ 1.

Therefore,
⌈

m
2n−1

⌉
=
⌊
m−1
2n−1

⌋
+ 1. �

Theorem 4.5. Let m and n be positive integers. Then

γg(mSn) = 2m−
⌈ m

2n−1

⌉
and

γ′g(mSn) = 2m−
⌊ m

2n−1

⌋
.

Proof. We induct on n. Let n = 1. We get

γg(mS1) = m = 2m−
⌈ m

21−1

⌉
and

γ′g(mS1) = m = 2m−
⌊ m

21−1

⌋
.

Now, for a positive integer k, suppose γg(mSk) = 2m−
⌈

m
2k−1

⌉
and γ′g(mSk) =

2m −
⌊

m
2k−1

⌋
. We use Theorem 3.8, Lemma 4.4 and the induction hypothesis
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to find γg(mSk+1) and γ′g(mSk+1) as follows.
When m is even,

γg(mSk+1) = m+ γg

(m
2
Sk

)
= m+ 2

(m
2

)
−
⌈ m

2

2k−1

⌉
= 2m−

⌈m
2k

⌉
and

γ′g(mSk+1) = m+ γ′g

(m
2
Sk

)
= m+ 2

(m
2

)
−
⌊ m

2

2k−1

⌋
= 2m−

⌊m
2k

⌋
.

When m is odd,

γg(mSk+1) = m+ γ′g

(
m− 1

2
Sk

)
= m+ 2

(
m− 1

2

)
−
⌊ m−1

2

2k−1

⌋
= 2m− 1−

⌊
m− 1

2k

⌋
= 2m− 1−

⌈m
2k

⌉
+ 1

= 2m−
⌈m

2k

⌉
and

γ′g(mSk+1) = m+ γg

(
m+ 1

2
Sk

)
= m+ 2

(
m+ 1

2

)
−
⌈ m+1

2

2k−1

⌉
= 2m+ 1−

⌈
m+ 1

2k

⌉
= 2m+ 1−

⌊m
2k

⌋
− 1

= 2m−
⌊m

2k

⌋
.

The proof is completed by the mathematical induction. �

Corollary 4.6. Let m and n be positive integers. Then γg(mSn) = γ′g(mSn)

if and only if 2n−1|m.
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Proof. By Theorem 4.5 and since
⌈

m
2n−1

⌉
=
⌊

m
2n−1

⌋
if and only if 2n−1|m. �

Corollary 4.7. Among the galaxies of m isomorphic stars, the galaxy mSn is
the minimal galaxy that realizes the pair (2m− 1, 2m) where n is the smallest
integer greater than 1 + log2m.

Proof. Observe that 0 < m < 2n−1. Therefore
⌈

m
2n−1

⌉
= 1 and

⌊
m

2n−1

⌋
= 0. By

Theorem 4.5, we have

γg(mSn) = 2m−
⌈ m

2n−1

⌉
= 2m− 1

and

γ′g(mSn) = 2m−
⌊ m

2n−1

⌋
= 2m.

Next, we show that mSn is the minimal galaxy of m isomorphic stars
that realizes the pair (2m − 1, 2m). Let G = mSn−l be a graph where l ∈
{1, 2, · · · , n− 1}. Since n− l ≤ 1 + log2m, we have m

2n−l−1 ≥ 1. Thus⌊ m

2n−l−1

⌋
≥ 1.

Therefore

γ′g(G) = 2m−
⌊ m

2n−l−1

⌋
< 2m.

Hence G cannot realize the pair (2m − 1, 2m). Therefore mSn is the minimal
galaxy of m isomorphic stars which realizes the pair (2m− 1, 2m). �
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[1] B. Brešar, P. Dorbec, S. Klavžar, and G. Košmrlj, “Domination game: effect of edge-
and vertex-removal,” Discreate Math. 330 (2014) 1–10.

[2] B. Brešar, S. Klavžar, G. Košmrlj and D.F. Rall, “Domination game: External families

of graph for 3/5-conjectures,” Discrete Appl. Math. 161 (2013) 1308–1316.
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