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CHAPTER 1

Executive Summary

1.1 Introduction

Since Equilibrium problem was introduced by Ky Fan [1] and Boom and Oetli
2], it becomes the most attractive topic for many mathematicians. We found
that many problems such as variational inequality problem, saddle point prob-
lem, minimization problem including the problem in physics, optimization theory
and economics can be reformulated to the equilibrium problem. As its first gen-
eralization, many authors mentioned how to approximate the common solutions
of some equilibrium problems but they still mostly observed in the same subset
in the same space. However, in real world problem, we normally found that some
equilibrium problems are not necessary to be considered in the same subset of the
same space. Therefore, the split equilibrium problem (SEP) which contains two
equilibrium problems was introduced and mentioned in this case. The relation
between solutions of these two equilibrium problems in SEP is that the image
of solution of one equilibrium problem under the bounded linear operator is the
solution of another one with no need to consider in the same space. That makes
SEP more general than classical equilibrium problems. Furthermore, we found
that split variational inequality problem [introduced by Censors et al.] is the
special case of SEP and we can also exactly link these problems to the split fixed
point problems. Due to its applications, these all enable us to be more widely
solve the real world problems in the future.

According to its most significance, many methods have been proposed
to approximate its solutions, for example iterative methods generated by Mann,

Halpern, Ishikawa including the CQ method, viscosity approximation method,



hybrid projection methods and many others. Actually, these methods are com-
monly used for solving the equilibrium but when we apply these methods to split
equilibrium problems there are some conditions that we have to mention dues to
the different spaces. Some methods that are proved in different ways may get
the better sufficient conditions than the previous ones and exactly we can deduce
our method to solve the previous classical ones. Furthermore, there are several
improvements and generalizations of the methods for solving the split equilibrium
problems and related problems that have been suggested in many different ways.

These are the main objectives in this research which are to construct the
new iteration methods for solving various kinds of split equilibrium problem and
study convergence theorems which admit the better sufficient conditions. Our
main results can extend and improve the corresponding previous results in this
area and can apply to solve several problems in applied sciences and other related
branches.

Based on the objective we mention above, we propose the new iteration
scheme that improve the previous one in the literatures to solve the split equi-
librium problem together with fixed point problem under the better conditions
that avoid the norm of operators. The convergence theorem are proved and the
applications are also presented, application to split feasibility problem and ap-
plication to split convex minimization problem, respectively. Finally, numerical

examples are given to support our main theorem.

1.2 Literature Review

Throughout this work, let H; and Hs; be two real Hilbert spaces with inner
product (-,-) and norm | - ||. Let C' and @ be two nonempty closed and convex
subsets of H; and Hs, respectively. Let {x,} be a sequence in H;, we also denote
"x, — 2”7 as strong convergence and "z, — x” as weak convergence of the
sequence {z,} to a point x € H;.

A mapping S : C' — C'is called nonexpansive, if

[Sz = Syl| < lz —yl| Va,y € C.



The fixed point problem for the mapping S : C' — C'is to find z € C such that
Sz = x. We denote the set of fixed point of S as Fiz(95).

The equilibrium problem was first introduced and studied by Blum and
Oettli [1] which is to find x € C' such that

F(z,y) >0, VyeC,

where F' is a bifunction from C' x C' to R. Its solution set is denoted by EP(F).

There are many authors take the most interest to solve the equilibrium
with their algorithm. In 2005, Combettes and Hirstoaga [2] introduced their al-
gorithm to approximate the solution of equilibrium problem by using iterative
method and proved the strong convergence theorem. Later, in 2007, Takahashi
and Takahashi [3] also proposed the new iterative method called ”viscosity ap-
proximation method” for finding a common solution of equilibrium problem to-
gether with fixed point problem. Moreover, based on the idea of Takahashi and
Takahashi [3], PlubTieng and PunPaeng [4] improved and introduced the new
scheme for solving the equilibrium problem. Recently, Liu et al. [5] extended the
viscosity approximation method to find a common solution of the infinite family
of fixed point problems together with equilibrium problem and other relevant
problem.

The split feasibility problem is to find x € C' such that Az € Q). We de-
note by C'N A~1Q its solution set. The SFP in finite-dimensional Hilbert spaces
was first introduced by Censor and Elfving [12] for modeling inverse problems
which arise from phase retrievals, medical image reconstruction and recently in
modeling of intensity modulated radiation therapy. The SFP attracts the atten-
tion of many authors due to its application in signal processing. In order to solve
the split feasibility problem (SFP), Byrne [11] proposed the following iterative

algorithm in the framework of Hilbert spaces: x; € C and
Tpy1 = Po(x, — NAY(I — Pg)Ax,), n > 1, (1.1)

which is often called the CQ algorithm, where A > 0, Po and P are the metric
projections on C' and @, respectively. It was shown that the sequence {x,}

converges weakly to a solution of SFP provided 0 < r < 2/||A||>. Since then



several iterations have been invented for solving the SFP (see, for example, [9,
16,17,22]).

Recently, Censor and Segal [6] proposed the iterative scheme to approx-
imate a solution of split common fixed point problem which is a generalized of
split feasibility problem and convex feasibility problem:

Let A be a real m x n matrix and let U : R* — R™ and T : R™ — R™ be
operators with nonempty Fiz(U) = C and Fiz(T) = (). The problem is to find
x* € C such that Az* € Q.

Let I} : C xC — R and F; : () X () — R be nonlinear bifunctions and
A: Hy — H, be a bounded linear operator, the split equilibrium problem (SEP)
is to find z* € C such that

Fi(z*,2) >0, Yz e C,
and such that
y* = Az € Q solves Fy(y*,y) >0 Yy € Q.

We can see that the first part of SEP seems like the classical equilibrium
problem EP where we can denote its solution set as FP(F;). The SEP looks
like a pair of equilibrium problems which have to be solved so that the image
y* = Az* under the given bounded operator A. We denote the solution set
of the second EP in SEP as EP(F,). The solution set of SEP is denoted by
Q={pe EP(F)): Ap € EP(F,)}.

In 2013, Kazmi and Rizvi [7] focus on how to approximate a common so-
lution of split equilibrium problem, variational inequality problem and fixed point
problem by stating the strong convergence theorem of their iterative algorithm

as shown in the following:
u, = Jf;l (x, + 7A*(Jf:f — 1) Az,);
Tpil = QpV+ By + YnSYn. (1.2)

They proved that {z, } generated by (1.2) converges strongly to the com-

mon solution of SEP, FPP and VI under some appropriate conditions of the

sequences {ay, }, {7}, {Bn} and {\,}.



However, it was observed that the step size v depends on the computation
of the operator norm A*A which is not an easy task in practice. To overcome

this difficulty, Lopez et al. [8] suggested a new way of stepsize 7,, as follows:

pnf(xn)
= Ve €O

Tn



CHAPTER 2

Preliminaries and lemmas

In this section we recall some definitions and lemmas which will be needed in

the next section. Let H be a real Hilbert space with inner product (-, -) and
norm || - ||, respectively. For x,y € H and A\ € R, we know from [18] that
Iz + yl* < lll* + 2{y, = + v); (2.3)

Az + (1= Nyl* = Azl + @ = Myl =A@ =Nz —yl*.  (24)

Furthermore, for x,y,u,v € H,
2(z —yu—v) =z —ol> + ly — ul® = lz —ul* — [ly — " (2.5)

The nearest point projection of a nonempty, closed and convex set C' is denoted
by Pg, that is, ||z — Poz|| < ||z — y|| for all x € H and y € C. Such P is called
the metric projection of H onto C'. We know the metric projection Pg is firmly

nonexpansive, i.e.,
|Pox — Poyl|* < (Pox — Pey,x — y) (2.6)

for all z,y € H. Moreover (x — Pox,y — Pox) < 0 holds for all x € H and y € C;
see [18].

2.1 Lemmas

Lemma 2.1.1. [10] Let C' be a nonempty, closed and convex subset of a real Hilbert
space H. Let T : C'— C' be a nonexpansive mapping. Then I — T is demiclosed
at 0, that is, if the sequence x,, converges weakly to x € C and ||z, — Tx,| — 0,
then x = Tx.



Assumption 1. Let F' : C x C' — R be a bifunction satisfying the following

assumptions:
(i) F(z,x) =0, Vx € C;
(i) F is monotone, i.c., F(z,y) + F(y,z) <0, Yz € C;
(iii) For each x,y,z € C,limsup, o F(tz + (1 —t)z,y) < F(z,y);
(iv) For each x € C,y — F(x,y) is convex and lower semicontinuous.

(v) Fized r > 0 and z € C, there exists a nonempty compact convexr subset K
of Hi and x € C N K such that

1
F(y,x)+;(y—x,x—z<0>, Vy e C\ K.

Lemma 2.1.2. Let T : H — H be an operator. The following statements are

equivalent.

(i) T is firmly nonexpansive.

(ii) | Tz = Ty|* < (z —y, T = Ty), v,y € H.
(11i) I-T is firmly nonexpansive.

Lemma 2.1.3. Assume that Fy : C x C' — R satisfying Assumption 1. Forr >0
and for all x € Hy, define a mapping JI' - H — C as follows:

Jhe ={z€C: F(zvy) —|—%(y—z,z—x> >0, VyeC}.
Then the following hold:
(i) JI is nonempty and single-valued;
(ii) JE is firmly nonexpansive, i.e.,

ijlx - ‘]flyH < <Jf1x - Jfly,gj - y>7 Vl',y € Hl;

(iii) Fixz(J) = EP(F);



(iv) EP(Fy) is closed and conver.

Further, assume that F5 : Q x Q — R satisfying Assumption 1. For s > 0
and for all w € H,, define a mapping J2 : Hy — Q as follows:

JE2(w) :{dEQ:Fg(d,e)%—é(e—d,d—w) >0, Ve e Q}.

Then we easily observe that J2 is nonempty, single-valued and firmly nonex-
pansive, EP(Fy, Q) is closed and convex and Fiz(JI?) = EP(F,,Q), where
EP(F;,Q) is the solution set of the following equilibrium problem:

Find y* € @ such that Fy(y*,y) >0, Vy € Q.

Lemma 2.1.4. Let F': C' x C' — R be a bifunction satisfying Assumption 1 hold
and let JI' be defined as in Lemma 2.1.8 forr > 0. Let x,y € Hy and ry,r9 > 0.

Then:
o —T

15y = Tl < ly — =l + 1775y = yll-

T2

Lemma 2.1.5. Let {s,} be a real sequence that does not decrease at infinity, in

the sense that there exists a subsequence {sp, } so that
Sn, < Spt1, VE2>0.
For every n > nq define an integer sequence {I'(n)} as
I(n) =max{ng <k <mn:sp < Sgs1}
Then I'(n) — 0o as n — oo and for all n > ny

max{sr(n). s, } < S0(n)41-



CHAPTER 3
Main Results

3.1 Strong convergence theorem

In this Chapter, we divide into three sections including strong convergence the-
orem, applicationt to split feasibility problem and application to split convex
minimization problem, respectively. We state the convergence theorem which
shows that the sequence generated by this iteration method strongly converges
to a common solution of the problems we mentioned. Moreover, we give two
applications with numerical examples for supporting our main theorem.

Let H; and Hy be two real Hilbert spaces with the nonempty closed and
convex subsets C' and @), respectively. Let A : H; — Hs be a bounded linear
operator. Assume that F} : C' x C' — R and Fy : Q x @ — R are the bifunctions
satisfying Assumption 1 and F; is upper semicontinuous in the first argument.
Let S : C — C be a nonexpansive mapping such that © := Fiz(S)NQ # (. We
further define

Fla) = 0T = T2 Az, P, n >0,

and
Vf(z,) = A*(I — J?)Az,.
Algorithm 1 Choose an arbitrary initial guess xg € C, let the iterative sequences
{u,} and {x,} be generated by
U, = Ji}(xn — 1.V [f(z,));
Tt = g(Tn) + Bun + VnSup;

Pt (Tn)

where g is a contraction on C, 7,, = ————, pn € (0,4).

IV f () 1>



10

Theorem 3.1.1. Assume that r, € (0,00) and {a,},{Bn} and {v,} are the se-
quences in (0,1) with o, + B, + v = 1 satisfying the following conditions:

(C1) limy oo 0y = 0 and Y07 |y, = 00;

(C2) liminf, . 8, > 0;

(C3) liminf, o v, > 0;

(C4) iminf, o pn(4 — pn) > 0;

(C5) liminf, o 7, > 0.

Then the sequence {x,} generated by Algorithm 1 converges strongly to
z = Pog(z).

3.2 Application to split feasibility problem

For obtaining the result for the split feasibility problem, let the solution set
© := Fiz(S)NT # (0, and define

1
fxa) = 511 = Po)Awy|*, n 20,
and
Vi(x,) =A"(I— Py)Ax,.

Algorithm 2 Choose an arbitrary initial guess x¢ € C, let the iterative sequences

{u,} and {x,} be generated by

Up = PC(xn - Tan(xn)),
Tp+l = ang(mn) + 5n$n + ’ynsuru

where g is a contraction on C, 7, = m pn € (0,4).

’ IV f () > ’
Theorem 3.2.1. Assume that {a,,},{5,} and {y.} are the sequences in (0, 1) with
an+LBn+vn = 1 satisfying the same conditions (C1)-(C4) in Theorem 3.1.1. Then

the sequence {x,} generated by Algorithm 2 converges strongly to z = Pog(2).

Example 3.2.2. Let H = Hy = R3. Define C = {x = (v1,19,23) € R? :
T3+ 23+ 22 < 1} and

Q = {z = (v1,79,73) € R®: 201 + 29 + 43 > 1}.
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Let
0 1 2
A= 1 -1 1
2 -2 0

Let S : C' — C be defined by Sz = (—x1,2, —73) and g : C — C by g(x) = §

where x = (x1, 19, 23) € R3.

Choose o, = n+r1, Bn=0.5,v, = 0.5—n+rl and E,, = ||z,41—2n|l2 < 1074
for all n € N.

We now study the effect (in terms of convergence, stability, number of
iterations required and the cpu time) of the sequence {p,} C (0, 4) on the iterative
scheme by choosing different p,, such that infp, (4 — p,) > 0. We choose different
choices of x; as !

Choice 1: x; = (0,0, 1);
Choice 2: x; = (0.5,0.5,0.5);
Choice 3: ;1 = (0.2,0.6,0.1);
Choice 4: x; = (0.8,0.6,0).

The numerical experiments, using our Algorithm 2 in Theorem 3.2.1, for
each choice are reported in the following Table 1.

The convergence behavior of the error £, for each choice of x; is shown

in Figure 1-4, respectively.

- = = p=ninet
- = —p=15 N

—— =25+

L p =35 i+
n’
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Table 3.1: Algorithm 3.7 with different cases of p, and different choices of x;
1.5n __2.5n __ 3.5n

. n _
p”_n—i-l pn_n-l—l pn—n—{—l pn_n-i—l

Choice 1 No. of Iter. 97 74 52 29
cpu (Time) 0.018883 0.015916 0.011313  0.005729

Choice 2 No. of Iter. 97 74 52 41
cpu (Time) 0.026899 0.019866 0.016848 0.010174

Choice 3 No. of Iter. 97 74 52 41
cpu (Time) 0.026644 0.015758 0.011374 0.017603

Choice 4 No. of Iter. 97 74 52 30
cpu (Time) 0.023669 0.016431 0.010965 0.007143

Figure 1: Error plotting F), for Choice 1 in Example 3.3.2

| | — — o
50 100 150 200 250 300
Number of Iterations

Figure 2: Error plotting F,, for Choice 2 in Example 3.3.2
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== p =/
n
— — —p, =15+

——p,=2.5"/n+1

L p, =35It

50 100 150 200 250 300
Number of Iterations

Figure 3: Error plotting F), for Choice 3 in Example 3.3.2

- = p =nin+1
n —
— — —p,=1.5" i+ El
——— p,=2.5" i+
e p =35/
.
N
N ~
NN
NEREN e
N N
N ‘~
N N
\ N ‘'~
- ~ = ~
I I — il i il R TP
50 100 150 200 250 300

Number of Iterations

Figure 4: Error plotting F,, for Choice 4 in Example 3.3.2

3.3 Application to split convex minimization problem

In this section, we consider the following split convex minimization problem as

follows:
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The proximity operator of F' is defined by
1
provir(z) = arg min{F(y) + ollz — yll*} (3.7)
for any A > 0. It is seen that
0 € OF (z*) & x* = proxp(x™). (3.8)

Let fi,f2 : C — R U {oco} be convex and lower semicontinuous. The
split convex minimization problem is to find a minimizer z* of f; that Az* is a
minimizer of fy, where A is a bounded linear operator.

To this end, we define

1
f(@n) = ST = prowap,) Aza|*, n >0,

and

Vf(x,) = A1 — proxys,)Az,.
Algorithm 3 Choose an arbitrary initial guess xg € C, let the iterative sequences
{u,} and {x,} be generated by

Up = proxys (o — TV f(2n));

Tpn+1 = Oéng(xn) + ﬂnxn + %SUm

Pt (Tn)

where g is a contraction on C, 7,, = —H2, pn € (0,4).

IV f ()
Theorem 3.3.1. Assume that A > 0 and {ay,}, {Bn} and {v,} are the sequences in
(0,1) with cv, + Bn+7n = 1 satisfying the same conditions (C1)-(C4) in Theorem
3.1.1. Then the sequence {x,} generated by Algorithm 2 converges strongly to
z = Pog(z).

Example 3.3.2. Let Hy = Hy = R3. Let f; : R? — RU {+o0} be defined by
filx) = |l=l5 + (2,4, =5)x + 10
and let fy : R — R U {+oo} be defined by

fa(x) = |l2]3 = (8,10, —8)x — 5.
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Let

A=| 41

Let S : R® — R3 be defined by Sz = (—2 — x1,—4 — 19,0.523 + 1.25) and
g:R> = R? by g(x) = £ where v = (1,x2,23) € R®. Find x € R® such that
x minimizes fi and Ax minimize fo and x is also a fized point of S. Choose
o, = #1, Bn=0.1, v, =09 — n+r1 ,A=1and E, = ||Tns1 — T,)2 < 1074 for
allm € N.

The numerical experiments, using our Algorithm 3 in Theorem 3.3.1, for
each choice are reported in the following Table 2. We choose different choices of
Ty as
Choice 1: x; = (0,0,1);  Choice 2: x; = (0.5,0.5,0.5);

Choice 3: x; = (0.2,0.6,0.1);  Choice 4: z; = (0.8,0.6,0).
The numerical experiments, using our Algorithm 3 in Theorem 3.3.1, for

each choice are reported in the following Table 2.

Table 3.2: Algorithm 3.7 with different cases of p, and different choices of x;

. _n _ 1.5n __ 2.5n _ 3.5n
Pn=nq1i Pn=ns1 Pr=ng1 Pr = g

Choice 1 No. of Iter. 97 74 52 29
cpu (Time) 0.018883 0.015916 0.011313 0.005729

Choice 2 No. of Iter. 97 74 52 41
cpu (Time) 0.026899 0.019866 0.016848 0.010174

Choice 3 No. of Iter. 97 74 H2 41
cpu (Time) 0.026644 0.015758 0.011374 0.017603

Choice 4 No. of Iter. 97 74 52 30
cpu (Time) 0.023669 0.016431 0.010965 0.007143
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The convergence behavior of the error E,, for each choice of x; is shown

in Figure 1-4, respectively.

- = = p=nin+t
- = —p=15 N

—— p =25+

o p 85T+

50 100 150 200 250
Number of Iterations

Figure 1: Error plotting E,, for Choice 1 in Example 3.3.2
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Number of lterations

Figure 2: Error plotting F),, for Choice 2 in Example 3.3.2
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Figure 3: Error plotting E,, for Choice 3 in Example 3.3.2

[
- = —p,=15M e
——— p,=25"in+1

““““ p,=3.5"n/n+1

N
I3
3
N
a
3
@
3
3

Number of Iterations

Figure 4: Error plotting F),, for Choice 4 in Example 3.3.2

Remark 3.3.3. From our numerical experiments, it is observed that the different
choices of x1 have no effect in terms of CPU runtime for the convergence of our
algorithm. However, if the stepsizes {p,} is taken close to 4, then the number of

iterations and the CPU runtime have small reduction.
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fixed point problem in Hilbert spaces
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Abstract

In this work, we modify the iterative method for approximating a common solution of a split
equilibrium problem together with a fixed point problem in the framework of Hilbert spaces.
Without the assumption on the norm of the operator, we prove that the sequence generated
by our algorithms strongly converge to a solution of the problems. Furthermore, we also give
numerical examples which support our main theorem. Our result mainly extends and improves
the results obtained by Kazmi and Rizvi.

Keywords: split equilibrium problem; strong convergence; iterative method; fixed point problem; Hilbert

space.

AMS Subject Classification: 47H04, 47H10, 54H25.

1 Introduction

Throughout this work, let Hy and Hy be two real Hilbert spaces with inner product (-, ) and norm
| - |]. Let C and @ be two nonempty closed and convex subsets of H; and Hj, respectively. Let
{z,,} be a sequence in Hy, we also denote "z, — z” as strong convergence and "xz,, — x” as weak

convergence of the sequence {z,} to a point = € Hj.

A mapping S : C — C is called nonexpansive, if
Sz = Sy|| < [z =yl Va,y € C.

The fized point problem for the mapping S : C — C is to find = € C such that Sz = z. We denote
the set of fixed point of S as Fiz(S).

*Corresponding author: u.witthayarat@hotmail.com.com (U. Witthayarat)
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The equilibrium problem was first introduced and studied by Blum and Oettli[1] which is to
find z € C such that
F(z,y) 20, VyeC,

where F' is a bifunction from C' x C to R. Its solution set is denoted by EP(F).

There are many authors take the most interest to solve the equilibrium with their algorithm. In
2005, Combettes and Hirstoaga [2] introduced their algorithm to approximate the solution of equi-
librium problem by using iterative method and proved the strong convergence theorem. Later, in
2007, Takahashi and Takahashi [3] also proposed the new iterative method called " viscosity approz-
imation method” for finding a common solution of equilibrium problem together with fixed point
problem. Moreover, based on the idea of Takahashi and Takahashi [3], PlubTieng and PunPaeng]]
improved and introduced the new scheme for solving the equilibrium problem. Recently, Liu et
al.[5] extended the viscosity approximation method to find a common solution of the infinite family

of fixed point problems together with equilibrium problem and other relevant problem.

The split feasibility problem is to find z € C such that Az € Q. We denote by C N A~'Q
its solution set. The SFP in finite-dimensional Hilbert spaces was first introduced by Censor
and Elfving [12] for modeling inverse problems which arise from phase retrievals, medical image
reconstruction and recently in modeling of intensity modulated radiation therapy. The SFP attracts
the attention of many authors due to its application in signal processing. In order to solve the split
feasibility problem (SFP), Byrne [11] proposed the following iterative algorithm in the framework
of Hilbert spaces: 1 € C' and

Tnt1 = Po(zn, — NA*(I — Pg)Azy), n>1, (1.1)

which is often called the CQ algorithm, where A > 0, Pc and Py are the metric projections on C
and @, respectively. It was shown that the sequence {x,} converges weakly to a solution of SFP
provided 0 < r < 2/||A||%. Since then several iterations have been invented for solving the SFP

(see, for example, [9, 16, 17, 22]).

Recently, Censor and Segal[(] proposed the iterative scheme to approximate a solution of split
common fized point problem which is a generalized of split feasibility problem and convex feasibility

problem:

Let A be a real m x n matrix and let U : R — R™ and 7" : R™ — R™ be operators with
nonempty Fiz(U) = C and Fiz(T) = Q. The problem is to find z* € C such that Az* € Q.

Let 1 : C x C — Rand Fy : Q X @ — R be nonlinear bifunctions and A : Hy — Hs be a
bounded linear operator, the split equilibrium problem (SEP)is to find x* € C such that

Fi(z*,z) >0, Yz e C,

and such that
y* = Az" € Q solves Fy(y*,y) >0 Yy € Q.

We can see that the first part of SEP seems like the classical equilibrium problem EP where

we can denote its solution set as EP(Fy). The SEP looks like a pair of equilibrium problems
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which have to be solved so that the image y* = Axz* under the given bounded operator A. We
denote the solution set of the second EP in SEP as EP(F5). The solution set of SEP is denoted
by Q@ ={p € EP(F\): Ap € EP(F,)}.

In 2013, Kazmi and Rizvi[7] focus on how to approximate a common solution of split equilibrium
problem, variational inequality problem and fixed point problem by stating the strong convergence

theorem of their iterative algorithm as shown in the following:

Up = JE (@ + YA (T2 — 1) Azy);

1
yn = Po(up, — A\yDuy);
Tpi1 = apV+ BnZn + Y SYn. (1.2)

They proved that {z,} generated by (1.2) converges strongly to the common solution of SEP,
FPP and VI under some appropriate conditions of the sequences {au, }, {7}, {fn} and {\,}.

However, it was observed that the step size v depends on the computation of the operator norm
A* A which is not an easy task in practice. To overcome this difficulty, Lopez et al. [8] suggested a

new way of stepsize 7, as follows:

pnf (zn)
Tn = va(l'n)”y Pn € (074)'

In this work, motivated by the previous works, we introduce the modified iterative methods
for solving the split equilibrium problem and the fixed point problem in Hilbert spaces and then
prove its strong convergence of the sequence generated by our schemes without prior knowledge
of the operator norm. Our main results complements the results of Kazmi and Rizvi][7] and other
relevant work in the literature. Finally, we give some experiments to show the efficiency and the

implementation of our purpose method.

2 Preliminaries and lemmas

In this section we recall some definitions and lemmas which will be needed in the next section.
Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively. For z,y € H
and A € R, we know from [18] that

lz +yl* < ll2[* + 2(y, @ + y); (2.1)
1Az + (1= Nyl = Alz[* + (1 = Dyl = 21 = Nz =yl (2.2)

Furthermore, for x,y,u,v € H,
2(x —y,u—v) = |z — 0| + [ly — u|* = [l — ull* = |y — |, (2.3)

The nearest point projection of a nonempty, closed and convex set C' is denoted by Pg, that is,
|lx — Pox| < ||x —y|| for all x € H and y € C. Such P¢ is called the metric projection of H onto

C. We know the metric projection P¢ is firmly nonexpansive, i.e.,
|Pox — Poy||* < (Pex — Poy,x —y) (2.4)

for all x,y € H. Moreover (z — Pcx,y — Pox) < 0 holds for all x € H and y € C; see [15].
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Lemma 2.1. [10] Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let
T :C — C be a nonexpansive mapping. Then I —T is demiclosed at 0, that is, if the sequence x,
converges weakly to x € C and ||x,, — Txy|| — 0, then x = Tx.

Assumption 2.2. Let F : C x C' — R be a bifunction satisfying the following assumptions:
(i) F(z,z) =0, Yo € C;
(i) F is monotone, i.e., F(x,y) + F(y,x) <0, Vz € C;
(i1i) For each x,y,z € C,limsup,_,o F(tz+ (1 —t)x,y) < F(z,y);
(iv) For each x € C,y — F(x,y) is convex and lower semicontinuous.

(v) Fizedr >0 and z € C, there exists a nonempty compact convex subset K of Hy andz € CNK
such that )
F(y,x) + ;(y—m,:z: —2<0), Vye C\ K.

Lemma 2.3. Let T : H — H be an operator. The following statements are equivalent.
(i) T is firmly nonexpansive.
(ii) | Tz — Ty|? < (x —y,Tx — Ty), x,y € H.

(iii) I-T is firmly nonexpansive.

Lemma 2.4. Assume that F1 : C x C — R satisfying Assumption 2.2. For r > 0 and for all
x € Hy, define a mapping JI* : H — C as follows:

Jhe ={zeC: Fi(zy) + %(y—z,z —z) >0, VyeC}.
Then the following hold:
(i) JEt is nonempty and single-valued;
(ii) JI is firmly nonexpansive, i.e.,
195 = Tyl < (T = Iy, @ = y), ey € Hos
(iii) Fix(JF) = EP(Fy);
(iv) EP(Fy) is closed and convez.

Further, assume that Fs : Q x Q — R satisfying Assumption 2.2. For s > 0 and for all w € Ho,
define a mapping JI2 : Hy — Q as follows:

TP (w) = {deQ: Fg(d,e)+§<e—d,d—w> >0, Ve e Q).

Then we easily observe that J SF 2 is nonempty, single-valued and firmly nonexpansive, EP(F5, Q) is
closed and convex and Fiz(J2) = EP(F,,Q), where EP(F3, Q) is the solution set of the following
equilibrium problem:

Find y* € @ such that Fy(y*,y) >0, Vy € Q.
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Lemma 2.5. Let [ : C x C — R be a bifunction satisfying Assumption 2.2 hold and let JI be
defined as in Lemma 2.4 for r > 0. Let x,y € Hy and r1,r9 > 0. Then:

ro —T1
175y =y

2

A

Lemma 2.6. Let {s,} be a real sequence that does not decrease at infinity, in the sense that there
exists a subsequence {sy, } so that
Sny, < Snpt1, Yk >0.
For every n > ng define an integer sequence {I'(n)} as
I'(n) =max{ng <k <n:sp < sk}

Then I'(n) — oo as n — oo and for all n > ny

max{sr(n),s,} < Sr(n)+1-

3 Strong convergence theorem

In this section, we show the strong convergence theorem of the our generated iterative scheme in

the framework of the real Hilbert spaces.

Let Hy and Hs be two real Hilbert spaces with the nonempty closed and convex subsets C' and
Q, respectively. Let A : Hi — Hs be a bounded linear operator. Assume that F; : C x C — R
and F5 : Q X @ — R are the bifunctions satisfying Assumption 1 and F5 is upper semicontinuous
in the first argument. Let S : C'— C be a nonexpansive mapping such that © := Fiz(S) N Q # 0.
We further define
Flan) = I = T2 Az, > 0,

and
Vf(zn) = A*(I — JE2) Az,

Algorithm 1 Choose an arbitrary initial guess x¢ € C, let the iterative sequences {u,} and {x,}

be generated by
Uy = Jf;l (n, — TV f(zn));
Tn+l = ang(xn) + Bpxy, + Vnsun§

pnf(xy)
Frae o€ 04

Theorem 3.1. Assume that ry, € (0,00) and {an},{Bn} and {v,} are the sequences in (0,1) with

where g is a contraction on C, 7,, =

an + Bn + Yo = 1 satisfying the following conditions:

(C1) limy oo v, = 0 and >0 | ayy = 00;
(C2) liminf,,—~ By > 0;
(C3) liminf,, 00 vn > 0;
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(C4) liminf,, o0 pn(4 — pn) > 0;
(C5) liminf,, 00 75 > 0.

Then the sequence {x,} generated by Algorithm 1 converges strongly to z = Pog(z).
Proof. Firstly, we would claim that the generated sequence {x,} is bounded. Put w, = z, —

.V f(z). We note that I — J! is firmly nonexpansive and V f(z) = 0.So, by Lemma 2.3 we have
the following,

(Vf(xn),zn — 2) (I - Jf;l)Amn, Az, — Az)

> || = I Azl ?
= 2f(zp).
This implies that
120 = TV fzn) =2l = llzn — 2|7 + |7V f(20)|* = 27(V f(zn), 20 — 2)
<l = 2P + 2V f ()P — 47 f ()
= w2l = pala = pu) L

We thus obtain, since Jf; ! is firmly nonexpansive,

lun = 2l =[5 wn — 2|f?

IN

o — 2[|* = |52 wn — wa®

|z — TV f(20) — z||2 - ||J7ilwn - wn”2

fz(mn)
2 F} 2
= — - 4— —— — || J rw, — .
We see that
lZnt1 — 2 < anllg(zn) — 2l + Ballzn — 2[| + ullSun — 2|
< anllg(zn) — 9(2)|| + anllg(z) — 2| + Bullzn — 2] + Yo llun — 2|
< apallry — 2|l + anllg(z) — 2| + Bullzn — 2[| + wllzn — ||

= (1 —an(l=a))|zn — 2] + anllg(z) — 2|l
(2) — 2

9
max{||zn — 2, 5= II}-

Hence, the sequence {x,} is bounded by induction.
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Put M = sup,,ey [|9(2n) — 2||[|xn+1 — 2||. We next investigate the following

Tt =217 < Ban + 1 Sun — 2[1 + 200 {g(wn) — 2, 2041 — 2)
= Bu(Bn +ym)llzn — 21 + Y0 (Br + 70) S — 2|
—BpYnllzn — Sun||? + anM
< Bl = an)llen — 27 + (1 = an)up — 2|
— B VnllTn — Sun||2 +anM
< (L =an)?llzn = 27 = (1 = an)(pn(d = pu) T57rms S + [T wn — wnl|?)
IV f(@n)|I? "
—Bnulln — Sup||* + anM
2
< (= ap)lan =2l = (1 — an)(pa(4 - Pn)% + || T wn — wa?)
— B0 — Sun||* + an M. (3.1)
For convenience, let s, = ||z, — 2||?> and separate the behavior of {s,} into two different cases as
follow.

Case I {s,} is a decreasing sequence, that is, the limit of the sequence {s,} exists. Hence, it
follows that

f2(@n) " )

Snt1 < (1 - an)sn — (1l —an)(pn(4 - pn) ”Vf( )H2 + HJ rn Wn — wn” )
_/Bn’Yonn - Sunuz + anM- (32)

It follows that
’Vn(l - an)pn(4 - pn)Ln)z < (Sn - Sn—i-l) + ap M.
IV f (@)
Tn

Hence L — 0 by conditions (C1), (C3) and (C4). It follows that f(z,) = 3||(I —

IV f ()]

JI?)Ax,||? — 0, since {z,} is bounded. Similarly, we can show that [|J  w, — wy| — 0 and
|zn, — Suyn|| — 0.

Then,
”wn - xn” = Hxn - Tnvf(xn) - xn”
-, f(mn)
"IV ()l
— 0.
So,

lun —znll < flun — wall + [Jwy — 24|
= ”Jf;lwn — Wyl + |lwy — 24|

— 0.
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It follows that ||u, — wy| — 0 as n — co. Also, we see that

|z — Szl < |z — Sun| + [[Sun — Sz ||
< len = Sun|l + (lun — 4|
— 0.

Next, we show that limsup,, .. (9(2) —z, zp+1 — 2) < 0, where z = Pog(z). To show this inequality,

we choose a subsequence {x,,} of {z,} such that

limsup(g(z) — z,x, — 2) = lim (9(z) — 2, zp, — 2).
n— o0 1—00

Since {xy, } is bounded, there exists a subsequence {wnzj} of {zy,} which converges weakly to some

w € C. Without loss of generality, we can assume that z,, — w.

Now, we prove that w € Fixz(S) N . Let us show that w € Fiz(S). Assume that w ¢ Fiz(S).

Since z,, — w and Sw # w. From Opial’s condition, we have

liminf ||z,, —w| < liminf|z,, — Sw]|

1— 00 11— 00

< liminf(||zn, — Son, || + [[Szn, — Swl])
11— 00

<

liminf ||z, —w||,
1—00

which is a contradiction. Thus, we obtain w € Fiz(S).

Next, we show that w € EP(Fy). Since u,, = Jf;lwn, we have

1
Fl(umy) + T_<y_umun _wn> >0, Vy e C.
n

It follows from the monotonicity of Fi that

1
_<y — Unp, Up — wn> > Fl(yyun)
Tn,;

and hence

Up, — Wp,
<y — Un;, ri> > Fl(y7uni)'

uz

Up, — Tn,
Since ||ty — wy| — 0 and liminf 7, > 0, we get ———— — 0. It follows by Assumption 2.1(iv)

ni
that 0 > Fi(y,w), Yw € C. For t with 0 < ¢t < 1 and y € C, let y4 = ty + (1 — t)w. Since
y € C,w e C, we get y; € C and hence F(y, w) < 0. So from Assumption 2.1(i) and (iv) we have

0= F1(ys,yt) < tF1(ye,y) + (1 — ) Fi(ye, w) < tF1(ye, y)-

Therefore 0 < Fi(y;,y). From Assumption 2.1(iii), we have 0 < Fj(w,y). This implies that
w € EP(F).

Next, we show that Aw € EP(Fy). Since x,, — w and A is a bounded linear operator, we

obtain Az,, — Aw.
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Now set v, = Az, — J&2 Az, . It follows that lim;_,o0 vy, = 0 and Az, — vy, = JF2 Az, .
7 7 Tn.: 7 7 7 7 T, 7

Therefore from Lemma 2.4, we have

Fy(Axp, — vp,, 2) + L(z — (Azp, — vp,), (Azp, — vp,) — Axy,) >0, Vz € Q.

Tn,

Since F5 is upper semicontinuous in the first argument, taking lim sup to above inequality as i — oo

and using condition (iv), we obtain
Fy(Aw,z) >0, Vz € Q,

which means that Aw € EP(F3) and hence w € €.

Now from (2.2), we have

limsup(g(z) — z,x, — 2) = limsup(g(z) — z,zp, — 2)
n—00 1—+00
= W) —zw=2)
< 0.
Thus,
limsup(g(z) — z,zp+1 — 2) < 0. (3.3)
n—oo
We see that,
|21 = 217 = anlg(en — 2, 2n41 = 2) + Bultn — 2, 2n41 — 2)
+Yn(Sun, — 2, Tpt1 — 2)
= an(.g('rn) - g(z)amn-i-l - Z> + an<g(z) — 2, Tp+l — Z>
+/8n<xn — Z,Tp41 — Z> + 7n<5un — Z,Tp4+1 — Z>
< anallzn — 2|l — 2l + an(9(2) — 2, 2040 — 2)
+Bnllzn = zllllznis — 2l + Wl Sun — 2ll[lzn1 — 2]
< anallzn = zfllen — 2l 4+ anlg(z) — 2, 00400 — 2)
+Bnllzn — 2|l[|zn41 — 2l + Vnllzn — 2[l[|Tnt1 — 2|l
= (=on(d=a))(lzn = 2lllznt1 = 2[)) + anlg(2) = 2, 2011 — 2)
lon = 21? + 241 — 2|
< (- an(l - @)= 5 )+ anlg(z) = 2, ng1 — 2).
So,
(1= an(l—a))
fonss =21 < el =2l + 20{9() = 2,01 = 2
200, (1 — @) )
_ (1 _ m) 2n — 2|1 + 2an(g(2) — 2, Tns1 — 2). (3.4)

By using condition (C1), and (3.3) we can conclude that x,, — 2.

Case II: {s,} is not a decreasing sequence. Hence we can find a subsequence {s,, } so that
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Sny < Sny,,- In this case, we define an integer sequence {I'(n)} as in Lemma 2.6. Since sp(,) <
8P(n)+1, V1 > ng. It follows that by (3.2),

f2(xf‘ n )
srm+1 < (L= arm)srm) — 1rm) (1 — arm)) (Prm) (4 — Pr(n))m — 5 wrm) = wrell?)

—Brm)¥rmllzrm) — SurmlI” + arm M.

IV (@rm)l
we can show that limsup,,_,,.(9(2) — 2, @) — 2) < 0. It is easy to see that ||xp(,) — Zp@)+1 [ — 0.

Hence, — 0, HJf;l(n)wp(n) —wp(p || = 0 and [|zpg) — Supg,l| — 0. Similar to Case I,

Hence, limsup,,_,(9(2) — 2, Zr(n)41 — 2) < 0. From (3.4), we have
sp(n)+1 < (1 = 0p(n))sr(n) + 20rm) (9(2) — 2, Tp(n)+1 — 2)

_ QQF(n)(l — a)
Cl+app(l -«

where dp(y,) ) 80, Or(n)ST(n) < 201y (9(2) — 2, Trm)41 — 2), yields

1+ Oél"(n)(l —a)

1l—«a

SP(n) < (9(2) = 2, Zp(ny41 — 2)-

Hence, lim sup,,_,« sr(n) < 0. By Lemma (2.6), we have s, < sp,). Then limy, o0 85 = limy, o0 [|[ 20—

z|[> = 0. So, x, — 2. This completes the proof. O

4 Applications

We next give some applications to split feasibility problem and the split convex minimization

problem.

4.1 Application to split feasibility problem

For obtaining the result for the split feasibility problem, let the solution set © := Fiz(S)NT # 0,
and define

I(I — Pg)Awnlf?, n >0,

f(zn) :%

and
Vi(x,) =A"(I — Pg)Azxy,.

Algorithm 2 Choose an arbitrary initial guess x¢ € C, let the iterative sequences {u,} and {x,}

be generated by

u, = Polx, — 1,V f(x)):
Tnt1 = O‘ng(xn) + Bnn + YnSun;

pnf(fﬂn)
FFae o€ 04

where g is a contraction on C, 7,, =
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Theorem 4.1. Assume that {a,},{fn} and {v,} are the sequences in (0,1) with a, + By +yn =1
satisfying the same conditions (C1)-(C4) in Theorem 3.1. Then the sequence {xy} generated by
Algorithm 2 converges strongly to z = Pgg(z).

Example 4.2. Let H; = Hy = R3. Define C = {z = (z1,79,23) € R? : 22 + 23 + 2% < 1} and

Q= {z = (z1, 29, 73) € R : 221 + 29 + 423 > 1}.

Let
0O 1 2
A= 1 -1 1
2 -2 0

Let S : C — C be defined by Sx = (—x1,22,—x3) and g : C — C by g(x) = § where v =
($1,$2,$3) € Rg‘

Choose oy, = Bn=0.5 v, =05— - and E,, = ||£ps1 — Znll2 < 107 for all n € N.

nL-i-l’ n+1
We now study the effect (in terms of convergence, stability, number of iterations required and
the cpu time) of the sequence {p,} C (0,4) on the iterative scheme by choosing different p,, such
that infp, (4 — pn) > 0. We choose different choices of z; as
Choicg 1: 1 = (0,0,1);
Choice 2: 1 = (0.5,0.5,0.5);
Choice 3: x1 = (0.2,0.6,0.1);
Choice 4: x; = (0.8,0.6,0).

The numerical experiments, using our Algorithm 2 in Theorem 4.1, for each choice are reported
in the following Table 1.

Table 1: Algorithm 3.1 with different cases of p,, and different choices of x

—__n _ 1.5n __ 2.5n __ 3.5n
p"_n—l—l pn_n—l-l pn_n—i-l pn_n—i-l

Choice 1 No. of Iter. 97 74 52 29
cpu (Time) 0.018883  0.015916  0.011313  0.005729

Choice 2 No. of Iter. 97 74 52 41
cpu (Time) 0.026899  0.019866 0.016848 0.010174

Choice 3 No. of Iter. 97 74 52 41
cpu (Time) 0.026644  0.015758  0.011374  0.017603

Choice 4 No. of Iter. 97 74 52 30
cpu (Time) 0.023669 0.016431  0.010965  0.007143

The convergence behavior of the error F, for each choice of 1 is shown in Figure 1-4, respec-

tively.
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Figure 3: Error plotting F,, for Choice 3 in Example 4.4
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Figure 4: Error plotting F,, for Choice 4 in Example 4.4

4.2 Application to split convex minimization problem

In this section, we consider the following split convex minimization problem as follows:
The proximity operator of F' is defined by
1
roxyp(z) = argmin{ F(y) + — ||z — y||? 4.1
provap(v) = argmin{F(y) + oy lv = y[7} (4.1)
for any A > 0. It is seen that
0 € OF (z*) & a* = prox p(z*). (4.2)
Let fi1, fo: C — RU{oo} be convex and lower semicontinuous. The split convex minimization

problem is to find a minimizer x* of f; that Az is a minimizer of fy, where A is a bounded linear

operator.

To this end, we define
1
f(CCn) = 5”(1 —pTOSC)\f2)ACCnH2, n >0,

and
Vf(xn) = A(I — prozyys,)Axy,.

Algorithm 3 Choose an arbitrary initial guess xg € C, let the iterative sequences {u,} and {z,}

be generated by

up = proxxs (tn — TV f(2n));
Tn+1 = ang(xn) + /ann + Vnsun;
pnf(x
where g is a contraction on C, 7,, = M pn € (0,4).

IV f () 1>

13
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Theorem 4.3. Assume that X\ > 0 and {ay},{8,} and {v,} are the sequences in (0,1) with
an + Bn + v = 1 satisfying the same conditions (C1)-(C4) in Theorem 3.1. Then the sequence
{z,} generated by Algorithm 2 converges strongly to z = Pgg(z).

Example 4.4. Let Hy = Hy = R3. Let f; : R® = R U {+00} be defined by
fi(z) = |lzll3 + (2,4, -5)z + 10

and let fo : R3 — RU {400} be defined by
falw) = |23 = (8,10, ~8)z — 5.

Let

Let S : R® — R3 be defined by Sx = (—2 — w1, —4 — 19,0523 + 1.25) and g : R — R3 by
g(z) = 5 where x = (x1,72,73) € R3. Find x € R? such that x minimizes f1 and Az minimize
fo and x is also a fized point of S. Choose o, = n%rl, Bp =01, v, = 0.9 — A =1 and

o
E, = ||zpt1 — xpll2 < 1074 for allm € N.

The numerical experiments, using our Algorithm 3 in Theorem 4.3, for each choice are reported
in the following Table 2. We choose different choices of x1 as
Choice 1: z1 = (0,0,1);  Choice 2: z1 = (0.5,0.5,0.5);
Choice 3: x1 = (0.2,0.6,0.1);  Choice 4: z; = (0.8,0.6,0).

The numerical experiments, using our Algorithm 3 in Theorem 4.3, for each choice are reported
in the following Table 2.

Table 2: Algorithm 3.1 with different cases of p,, and different choices of x

—__n _ 1.5n __ 2.5n __ 3.5n
Pn =731 Pn=5n31 Pn= 51 Prn= 541

Choice 1 No. of Iter. 97 74 52 29
cpu (Time) 0.018883 0.015916  0.011313  0.005729

Choice 2 No. of Iter. 97 74 52 41
cpu (Time) 0.026899 0.019866 0.016848 0.010174

Choice 3 No. of Iter. 97 74 52 41
cpu (Time) 0.026644  0.015758  0.011374  0.017603

Choice 4 No. of Iter. 97 74 52 30
cpu (Time) 0.023669 0.016431  0.010965  0.007143
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The convergence behavior of the error F, for each choice of x; is shown in Figure 1-4, respec-

tively.
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Remark 4.5. From our numerical experiments, it is observed that the different choices of x1 have
no effect in terms of CPU runtime for the convergence of our algorithm. Howewver, if the stepsizes

{pn} is taken close to 4, then the number of iterations and the CPU runtime have small reduction.
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ON SOLVING SPLIT EQUILIBRIUM PROBLEM IN REAL HILBERT
SPACES WITH ITS APPLICATIONS
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In this talk, we propose a new iterative scheme for finding a common solution of split
equilibrium problem and fixed point problem in real Hilbert spaces. We prove the strong
convergence theorem under the suitable conditions and especially with our the assumption
of the norm of operator. Moreover, we discuss about its applications together with some
numerical examples with support the main theorem in addition. Our results improve and
extend the result optained by Kazmi and Rizvi and many previous ones in the literatures.
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