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CHAPTER 1

Executive Summary

1.1 Introduction

Since Equilibrium problem was introduced by Ky Fan [1] and Boom and Oetli

[2], it becomes the most attractive topic for many mathematicians. We found

that many problems such as variational inequality problem, saddle point prob-

lem, minimization problem including the problem in physics, optimization theory

and economics can be reformulated to the equilibrium problem. As its first gen-

eralization, many authors mentioned how to approximate the common solutions

of some equilibrium problems but they still mostly observed in the same subset

in the same space. However, in real world problem, we normally found that some

equilibrium problems are not necessary to be considered in the same subset of the

same space. Therefore, the split equilibrium problem (SEP) which contains two

equilibrium problems was introduced and mentioned in this case. The relation

between solutions of these two equilibrium problems in SEP is that the image

of solution of one equilibrium problem under the bounded linear operator is the

solution of another one with no need to consider in the same space. That makes

SEP more general than classical equilibrium problems. Furthermore, we found

that split variational inequality problem [introduced by Censors et al.] is the

special case of SEP and we can also exactly link these problems to the split fixed

point problems. Due to its applications, these all enable us to be more widely

solve the real world problems in the future.

According to its most significance, many methods have been proposed

to approximate its solutions, for example iterative methods generated by Mann,

Halpern, Ishikawa including the CQ method, viscosity approximation method,
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hybrid projection methods and many others. Actually, these methods are com-

monly used for solving the equilibrium but when we apply these methods to split

equilibrium problems there are some conditions that we have to mention dues to

the different spaces. Some methods that are proved in different ways may get

the better sufficient conditions than the previous ones and exactly we can deduce

our method to solve the previous classical ones. Furthermore, there are several

improvements and generalizations of the methods for solving the split equilibrium

problems and related problems that have been suggested in many different ways.

These are the main objectives in this research which are to construct the

new iteration methods for solving various kinds of split equilibrium problem and

study convergence theorems which admit the better sufficient conditions. Our

main results can extend and improve the corresponding previous results in this

area and can apply to solve several problems in applied sciences and other related

branches.

Based on the objective we mention above, we propose the new iteration

scheme that improve the previous one in the literatures to solve the split equi-

librium problem together with fixed point problem under the better conditions

that avoid the norm of operators. The convergence theorem are proved and the

applications are also presented, application to split feasibility problem and ap-

plication to split convex minimization problem, respectively. Finally, numerical

examples are given to support our main theorem.

1.2 Literature Review

Throughout this work, let H1 and H2 be two real Hilbert spaces with inner

product 〈·, ·〉 and norm ‖ · ‖. Let C and Q be two nonempty closed and convex

subsets of H1 and H2, respectively. Let {xn} be a sequence in H1, we also denote

”xn → x” as strong convergence and ”xn ⇀ x” as weak convergence of the

sequence {xn} to a point x ∈ H1.

A mapping S : C → C is called nonexpansive, if

‖Sx− Sy‖ ≤ ‖x− y‖ ∀x, y ∈ C.
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The fixed point problem for the mapping S : C → C is to find x ∈ C such that

Sx = x. We denote the set of fixed point of S as Fix(S).

The equilibrium problem was first introduced and studied by Blum and

Oettli [1] which is to find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C,

where F is a bifunction from C ×C to R. Its solution set is denoted by EP (F ).

There are many authors take the most interest to solve the equilibrium

with their algorithm. In 2005, Combettes and Hirstoaga [2] introduced their al-

gorithm to approximate the solution of equilibrium problem by using iterative

method and proved the strong convergence theorem. Later, in 2007, Takahashi

and Takahashi [3] also proposed the new iterative method called ”viscosity ap-

proximation method” for finding a common solution of equilibrium problem to-

gether with fixed point problem. Moreover, based on the idea of Takahashi and

Takahashi [3], PlubTieng and PunPaeng [4] improved and introduced the new

scheme for solving the equilibrium problem. Recently, Liu et al. [5] extended the

viscosity approximation method to find a common solution of the infinite family

of fixed point problems together with equilibrium problem and other relevant

problem.

The split feasibility problem is to find x ∈ C such that Ax ∈ Q. We de-

note by C ∩A−1Q its solution set. The SFP in finite-dimensional Hilbert spaces

was first introduced by Censor and Elfving [12] for modeling inverse problems

which arise from phase retrievals, medical image reconstruction and recently in

modeling of intensity modulated radiation therapy. The SFP attracts the atten-

tion of many authors due to its application in signal processing. In order to solve

the split feasibility problem (SFP), Byrne [11] proposed the following iterative

algorithm in the framework of Hilbert spaces: x1 ∈ C and

xn+1 = PC(xn − λA∗(I − PQ)Axn), n ≥ 1, (1.1)

which is often called the CQ algorithm, where λ > 0, PC and PQ are the metric

projections on C and Q, respectively. It was shown that the sequence {xn}
converges weakly to a solution of SFP provided 0 < r < 2/‖A‖2. Since then
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several iterations have been invented for solving the SFP (see, for example, [9,

16, 17,22]).

Recently, Censor and Segal [6] proposed the iterative scheme to approx-

imate a solution of split common fixed point problem which is a generalized of

split feasibility problem and convex feasibility problem:

Let A be a real m× n matrix and let U : Rn → Rn and T : Rm → Rm be

operators with nonempty Fix(U) = C and Fix(T ) = Q. The problem is to find

x∗ ∈ C such that Ax∗ ∈ Q.

Let F1 : C × C → R and F2 : Q × Q → R be nonlinear bifunctions and

A : H1 → H2 be a bounded linear operator, the split equilibrium problem (SEP)

is to find x∗ ∈ C such that

F1(x
∗, x) ≥ 0, ∀x ∈ C,

and such that

y∗ = Ax∗ ∈ Q solves F2(y
∗, y) ≥ 0 ∀y ∈ Q.

We can see that the first part of SEP seems like the classical equilibrium

problem EP where we can denote its solution set as EP (F1). The SEP looks

like a pair of equilibrium problems which have to be solved so that the image

y∗ = Ax∗ under the given bounded operator A. We denote the solution set

of the second EP in SEP as EP (F2). The solution set of SEP is denoted by

Ω = {p ∈ EP (F1) : Ap ∈ EP (F2)}.
In 2013, Kazmi and Rizvi [7] focus on how to approximate a common so-

lution of split equilibrium problem, variational inequality problem and fixed point

problem by stating the strong convergence theorem of their iterative algorithm

as shown in the following:

un = JF1
rn (xn + γA∗(JF2

rn − I)Axn);

yn = PC(un − λnDun);

xn+1 = αnν + βnxn + γnSyn. (1.2)

They proved that {xn} generated by (1.2) converges strongly to the com-

mon solution of SEP, FPP and VI under some appropriate conditions of the

sequences {αn}, {γn}, {βn} and {λn}.
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However, it was observed that the step size γ depends on the computation

of the operator norm A∗A which is not an easy task in practice. To overcome

this difficulty, Lopez et al. [8] suggested a new way of stepsize τn as follows:

τn =
ρnf(xn)

‖∇f(xn)‖2
, ρn ∈ (0, 4).



CHAPTER 2

Preliminaries and lemmas

In this section we recall some definitions and lemmas which will be needed in

the next section. Let H be a real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖, respectively. For x, y ∈ H and λ ∈ R, we know from [18] that

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉; (2.3)

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2. (2.4)

Furthermore, for x, y, u, v ∈ H,

2〈x− y, u− v〉 = ‖x− v‖2 + ‖y − u‖2 − ‖x− u‖2 − ‖y − v‖2. (2.5)

The nearest point projection of a nonempty, closed and convex set C is denoted

by PC , that is, ‖x− PCx‖ ≤ ‖x− y‖ for all x ∈ H and y ∈ C. Such PC is called

the metric projection of H onto C. We know the metric projection PC is firmly

nonexpansive, i.e.,

‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉 (2.6)

for all x, y ∈ H. Moreover 〈x−PCx, y−PCx〉 ≤ 0 holds for all x ∈ H and y ∈ C;

see [18].

2.1 Lemmas

Lemma 2.1.1. [10] Let C be a nonempty, closed and convex subset of a real Hilbert

space H. Let T : C → C be a nonexpansive mapping. Then I − T is demiclosed

at 0, that is, if the sequence xn converges weakly to x ∈ C and ‖xn − Txn‖ → 0,

then x = Tx.
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Assumption 1. Let F : C × C → R be a bifunction satisfying the following

assumptions:

(i) F (x, x) = 0, ∀x ∈ C;

(ii) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, ∀x ∈ C;

(iii) For each x, y, z ∈ C, lim supt→0 F (tz + (1− t)x, y) ≤ F (x, y);

(iv) For each x ∈ C, y → F (x, y) is convex and lower semicontinuous.

(v) Fixed r > 0 and z ∈ C, there exists a nonempty compact convex subset K

of H1 and x ∈ C ∩K such that

F (y, x) +
1

r
〈y − x, x− z < 0〉, ∀y ∈ C \K.

Lemma 2.1.2. Let T : H → H be an operator. The following statements are

equivalent.

(i) T is firmly nonexpansive.

(ii) ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉, x, y ∈ H.

(iii) I-T is firmly nonexpansive.

Lemma 2.1.3. Assume that F1 : C × C → R satisfying Assumption 1. For r > 0

and for all x ∈ H1, define a mapping JF1
r : H → C as follows:

JF1
r x = {z ∈ C : F1(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

Then the following hold:

(i) JF1
r is nonempty and single-valued;

(ii) JF1
r is firmly nonexpansive, i.e.,

‖JF1
r x− JF1

r y‖ ≤ 〈JF1
r x− JF1

r y, x− y〉, ∀x, y ∈ H1;

(iii) Fix(JF1
r ) = EP (F1);
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(iv) EP (F1) is closed and convex.

Further, assume that F2 : Q×Q → R satisfying Assumption 1. For s > 0

and for all w ∈ H2, define a mapping JF2
s : H2 → Q as follows:

JF2
s (w) = {d ∈ Q : F2(d, e) +

1

s
〈e− d, d− w〉 ≥ 0, ∀e ∈ Q}.

Then we easily observe that JF2
s is nonempty, single-valued and firmly nonex-

pansive, EP (F2, Q) is closed and convex and Fix(JF2
s ) = EP (F2, Q), where

EP (F2, Q) is the solution set of the following equilibrium problem:

Find y∗ ∈ Q such that F2(y
∗, y) ≥ 0, ∀y ∈ Q.

Lemma 2.1.4. Let F : C × C → R be a bifunction satisfying Assumption 1 hold

and let JF1
r be defined as in Lemma 2.1.3 for r > 0. Let x, y ∈ H1 and r1, r2 > 0.

Then:

‖JF1
r2 y − JF1

r1 x‖ ≤ ‖y − x‖+
r2 − r1

r2
‖JF1

r2 y − y‖.

Lemma 2.1.5. Let {sn} be a real sequence that does not decrease at infinity, in

the sense that there exists a subsequence {snk
} so that

snk
≤ snk+1, ∀k ≥ 0.

For every n ≥ n0 define an integer sequence {Γ(n)} as

Γ(n) = max{n0 ≤ k ≤ n : sk < sk+1}.

Then Γ(n) → ∞ as n → ∞ and for all n > n0

max{sΓ(n),sn} ≤ sΓ(n)+1.



CHAPTER 3

Main Results

3.1 Strong convergence theorem

In this Chapter, we divide into three sections including strong convergence the-

orem, applicationt to split feasibility problem and application to split convex

minimization problem, respectively. We state the convergence theorem which

shows that the sequence generated by this iteration method strongly converges

to a common solution of the problems we mentioned. Moreover, we give two

applications with numerical examples for supporting our main theorem.

Let H1 and H2 be two real Hilbert spaces with the nonempty closed and

convex subsets C and Q, respectively. Let A : H1 → H2 be a bounded linear

operator. Assume that F1 : C ×C → R and F2 : Q×Q → R are the bifunctions

satisfying Assumption 1 and F2 is upper semicontinuous in the first argument.

Let S : C → C be a nonexpansive mapping such that Θ := Fix(S) ∩ Ω .= ∅. We

further define

f(xn) =
1

2
‖(I − JF2

rn )Axn‖2, n ≥ 0,

and

∇f(xn) = A∗(I − JF2
rn )Axn.

Algorithm 1 Choose an arbitrary initial guess x0 ∈ C, let the iterative sequences

{un} and {xn} be generated by

un = JF1
rn (xn − τn∇f(xn));

xn+1 = αng(xn) + βnxn + γnSun;

where g is a contraction on C, τn =
ρnf(xn)

‖∇f(xn)‖2
, ρn ∈ (0, 4).
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Theorem 3.1.1. Assume that rn ∈ (0,∞) and {αn}, {βn} and {γn} are the se-

quences in (0, 1) with αn + βn + γn = 1 satisfying the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) lim infn→∞ βn > 0;

(C3) lim infn→∞ γn > 0;

(C4) lim infn→∞ ρn(4− ρn) > 0;

(C5) lim infn→∞ rn > 0.

Then the sequence {xn} generated by Algorithm 1 converges strongly to

z = PΘg(z).

3.2 Application to split feasibility problem

For obtaining the result for the split feasibility problem, let the solution set

Θ := Fix(S) ∩ Γ .= ∅, and define

f(xn) =
1

2
‖(I − PQ)Axn‖2, n ≥ 0,

and

∇f(xn) = A∗(I − PQ)Axn.

Algorithm 2 Choose an arbitrary initial guess x0 ∈ C, let the iterative sequences

{un} and {xn} be generated by

un = PC(xn − τn∇f(xn));

xn+1 = αng(xn) + βnxn + γnSun;

where g is a contraction on C, τn =
ρnf(xn)

‖∇f(xn)‖2
, ρn ∈ (0, 4).

Theorem 3.2.1. Assume that {αn}, {βn} and {γn} are the sequences in (0, 1) with

αn+βn+γn = 1 satisfying the same conditions (C1)-(C4) in Theorem 3.1.1. Then

the sequence {xn} generated by Algorithm 2 converges strongly to z = PΘg(z).

Example 3.2.2. Let H1 = H2 = R3. Define C = {x = (x1, x2, x3) ∈ R3 :

x2
1 + x2

2 + x2
3 ≤ 1} and

Q = {x = (x1, x2, x3) ∈ R3 : 2x1 + x2 + 4x3 ≥ 1}.
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Let

A =




0 1 2

1 −1 1

2 −2 0



 .

Let S : C → C be defined by Sx = (−x1, x2,−x3) and g : C → C by g(x) = x
2

where x = (x1, x2, x3) ∈ R3.

Choose αn = 1
n+1 , βn = 0.5, γn = 0.5− 1

n+1 and En = ‖xn+1−xn‖2 < 10−4

for all n ∈ N.
We now study the effect (in terms of convergence, stability, number of

iterations required and the cpu time) of the sequence {ρn} ⊂ (0, 4) on the iterative

scheme by choosing different ρn such that inf
n
ρn(4− ρn) > 0. We choose different

choices of x1 as

Choice 1: x1 = (0, 0, 1);

Choice 2: x1 = (0.5, 0.5, 0.5);

Choice 3: x1 = (0.2, 0.6, 0.1);

Choice 4: x1 = (0.8, 0.6, 0).

The numerical experiments, using our Algorithm 2 in Theorem 3.2.1, for

each choice are reported in the following Table 1.

The convergence behavior of the error En for each choice of x1 is shown

in Figure 1-4, respectively.

50 100 150 200 250
Number of Iterations

 

ρn=n/n+1

ρn=1.5*n/n+1

ρn=2.5*n/n+1

ρn=3.5*n/n+1
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Table 3.1: Algorithm 3.7 with different cases of ρn and different choices of x1

ρn = n
n+1 ρn = 1.5n

n+1 ρn = 2.5n
n+1 ρn = 3.5n

n+1

Choice 1 No. of Iter. 97 74 52 29

cpu (Time) 0.018883 0.015916 0.011313 0.005729

Choice 2 No. of Iter. 97 74 52 41

cpu (Time) 0.026899 0.019866 0.016848 0.010174

Choice 3 No. of Iter. 97 74 52 41

cpu (Time) 0.026644 0.015758 0.011374 0.017603

Choice 4 No. of Iter. 97 74 52 30

cpu (Time) 0.023669 0.016431 0.010965 0.007143

Figure 1: Error plotting En for Choice 1 in Example 3.3.2

50 100 150 200 250 300
Number of Iterations

 

ρn=n/n+1

ρn=1.5*n/n+1

ρn=2.5*n/n+1

ρn=3.5*n/n+1

Figure 2: Error plotting En for Choice 2 in Example 3.3.2
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3.3 Application to split convex minimization problem

In this section, we consider the following split convex minimization problem as

follows:
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The proximity operator of F is defined by

proxλF (x) = argmin
y∈H

{F (y) +
1

2λ
‖x− y‖2} (3.7)

for any λ > 0. It is seen that

0 ∈ ∂F (x∗) ⇔ x∗ = proxλF (x
∗). (3.8)

Let f1, f2 : C → R ∪ {∞} be convex and lower semicontinuous. The

split convex minimization problem is to find a minimizer x∗ of f1 that Ax∗ is a

minimizer of f2, where A is a bounded linear operator.

To this end, we define

f(xn) =
1

2
‖(I − proxλf2)Axn‖2, n ≥ 0,

and

∇f(xn) = A∗(I − proxλf2)Axn.

Algorithm 3 Choose an arbitrary initial guess x0 ∈ C, let the iterative sequences

{un} and {xn} be generated by

un = proxλf1(xn − τn∇f(xn));

xn+1 = αng(xn) + βnxn + γnSun;

where g is a contraction on C, τn =
ρnf(xn)

‖∇f(xn)‖2
, ρn ∈ (0, 4).

Theorem 3.3.1. Assume that λ > 0 and {αn}, {βn} and {γn} are the sequences in

(0, 1) with αn+βn+γn = 1 satisfying the same conditions (C1)-(C4) in Theorem

3.1.1. Then the sequence {xn} generated by Algorithm 2 converges strongly to

z = PΘg(z).

Example 3.3.2. Let H1 = H2 = R3. Let f1 : R3 → R ∪ {+∞} be defined by

f1(x) = ‖x‖22 + (2, 4,−5)x+ 10

and let f2 : R3 → R ∪ {+∞} be defined by

f2(x) = ‖x‖22 − (8, 10,−8)x− 5.
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Let

A =




1 0 2

−1 3 4

2 1 0



 .

Let S : R3 → R3 be defined by Sx = (−2 − x1,−4 − x2, 0.5x3 + 1.25) and

g : R3 → R3 by g(x) = x
2 where x = (x1, x2, x3) ∈ R3. Find x ∈ R3 such that

x minimizes f1 and Ax minimize f2 and x is also a fixed point of S. Choose

αn = 1
n+1 , βn = 0.1, γn = 0.9 − 1

n+1 , λ = 1 and En = ‖xn+1 − xn‖2 < 10−4 for

all n ∈ N.

The numerical experiments, using our Algorithm 3 in Theorem 3.3.1, for

each choice are reported in the following Table 2. We choose different choices of

x1 as

Choice 1: x1 = (0, 0, 1); Choice 2: x1 = (0.5, 0.5, 0.5);

Choice 3: x1 = (0.2, 0.6, 0.1); Choice 4: x1 = (0.8, 0.6, 0).

The numerical experiments, using our Algorithm 3 in Theorem 3.3.1, for

each choice are reported in the following Table 2.

Table 3.2: Algorithm 3.7 with different cases of ρn and different choices of x1

ρn = n
n+1 ρn = 1.5n

n+1 ρn = 2.5n
n+1 ρn = 3.5n

n+1

Choice 1 No. of Iter. 97 74 52 29

cpu (Time) 0.018883 0.015916 0.011313 0.005729

Choice 2 No. of Iter. 97 74 52 41

cpu (Time) 0.026899 0.019866 0.016848 0.010174

Choice 3 No. of Iter. 97 74 52 41

cpu (Time) 0.026644 0.015758 0.011374 0.017603

Choice 4 No. of Iter. 97 74 52 30

cpu (Time) 0.023669 0.016431 0.010965 0.007143
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The convergence behavior of the error En for each choice of x1 is shown

in Figure 1-4, respectively.
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Remark 3.3.3. From our numerical experiments, it is observed that the different

choices of x1 have no effect in terms of CPU runtime for the convergence of our

algorithm. However, if the stepsizes {ρn} is taken close to 4, then the number of

iterations and the CPU runtime have small reduction.
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A modified iterative method for approximating a

common solution of split equilibrium problem and

fixed point problem in Hilbert spaces
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Abstract

In this work, we modify the iterative method for approximating a common solution of a split

equilibrium problem together with a fixed point problem in the framework of Hilbert spaces.

Without the assumption on the norm of the operator, we prove that the sequence generated

by our algorithms strongly converge to a solution of the problems. Furthermore, we also give

numerical examples which support our main theorem. Our result mainly extends and improves

the results obtained by Kazmi and Rizvi.

Keywords: split equilibrium problem; strong convergence; iterative method; fixed point problem; Hilbert

space.

AMS Subject Classification: 47H04, 47H10, 54H25.

1 Introduction

Throughout this work, let H1 and H2 be two real Hilbert spaces with inner product 〈·, ·〉 and norm

‖ · ‖. Let C and Q be two nonempty closed and convex subsets of H1 and H2, respectively. Let

{xn} be a sequence in H1, we also denote ”xn → x” as strong convergence and ”xn ⇀ x” as weak

convergence of the sequence {xn} to a point x ∈ H1.

A mapping S : C → C is called nonexpansive, if

‖Sx− Sy‖ ≤ ‖x− y‖ ∀x, y ∈ C.

The fixed point problem for the mapping S : C → C is to find x ∈ C such that Sx = x. We denote

the set of fixed point of S as Fix(S).

∗Corresponding author: u.witthayarat@hotmail.com.com (U. Witthayarat)
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The equilibrium problem was first introduced and studied by Blum and Oettli[1] which is to

find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C,

where F is a bifunction from C × C to R. Its solution set is denoted by EP (F ).

There are many authors take the most interest to solve the equilibrium with their algorithm. In

2005, Combettes and Hirstoaga [2] introduced their algorithm to approximate the solution of equi-

librium problem by using iterative method and proved the strong convergence theorem. Later, in

2007, Takahashi and Takahashi [3] also proposed the new iterative method called ”viscosity approx-

imation method” for finding a common solution of equilibrium problem together with fixed point

problem. Moreover, based on the idea of Takahashi and Takahashi [3], PlubTieng and PunPaeng[4]

improved and introduced the new scheme for solving the equilibrium problem. Recently, Liu et

al.[5] extended the viscosity approximation method to find a common solution of the infinite family

of fixed point problems together with equilibrium problem and other relevant problem.

The split feasibility problem is to find x ∈ C such that Ax ∈ Q. We denote by C ∩ A−1Q

its solution set. The SFP in finite-dimensional Hilbert spaces was first introduced by Censor

and Elfving [12] for modeling inverse problems which arise from phase retrievals, medical image

reconstruction and recently in modeling of intensity modulated radiation therapy. The SFP attracts

the attention of many authors due to its application in signal processing. In order to solve the split

feasibility problem (SFP), Byrne [11] proposed the following iterative algorithm in the framework

of Hilbert spaces: x1 ∈ C and

xn+1 = PC(xn − λA∗(I − PQ)Axn), n ≥ 1, (1.1)

which is often called the CQ algorithm, where λ > 0, PC and PQ are the metric projections on C

and Q, respectively. It was shown that the sequence {xn} converges weakly to a solution of SFP

provided 0 < r < 2/‖A‖2. Since then several iterations have been invented for solving the SFP

(see, for example, [9, 16, 17, 22]).

Recently, Censor and Segal[6] proposed the iterative scheme to approximate a solution of split

common fixed point problem which is a generalized of split feasibility problem and convex feasibility

problem:

Let A be a real m × n matrix and let U : Rn → Rn and T : Rm → Rm be operators with

nonempty Fix(U) = C and Fix(T ) = Q. The problem is to find x∗ ∈ C such that Ax∗ ∈ Q.

Let F1 : C × C → R and F2 : Q × Q → R be nonlinear bifunctions and A : H1 → H2 be a

bounded linear operator, the split equilibrium problem (SEP)is to find x∗ ∈ C such that

F1(x
∗, x) ≥ 0, ∀x ∈ C,

and such that

y∗ = Ax∗ ∈ Q solves F2(y
∗, y) ≥ 0 ∀y ∈ Q.

We can see that the first part of SEP seems like the classical equilibrium problem EP where

we can denote its solution set as EP (F1). The SEP looks like a pair of equilibrium problems
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which have to be solved so that the image y∗ = Ax∗ under the given bounded operator A. We

denote the solution set of the second EP in SEP as EP (F2). The solution set of SEP is denoted

by Ω = {p ∈ EP (F1) : Ap ∈ EP (F2)}.

In 2013, Kazmi and Rizvi[7] focus on how to approximate a common solution of split equilibrium

problem, variational inequality problem and fixed point problem by stating the strong convergence

theorem of their iterative algorithm as shown in the following:

un = JF1
rn (xn + γA∗(JF2

rn − I)Axn);

yn = PC(un − λnDun);

xn+1 = αnν + βnxn + γnSyn. (1.2)

They proved that {xn} generated by (1.2) converges strongly to the common solution of SEP,

FPP and VI under some appropriate conditions of the sequences {αn}, {γn}, {βn} and {λn}.

However, it was observed that the step size γ depends on the computation of the operator norm

A∗A which is not an easy task in practice. To overcome this difficulty, Lopez et al. [8] suggested a

new way of stepsize τn as follows:

τn =
ρnf(xn)

‖∇f(xn)‖2
, ρn ∈ (0, 4).

In this work, motivated by the previous works, we introduce the modified iterative methods

for solving the split equilibrium problem and the fixed point problem in Hilbert spaces and then

prove its strong convergence of the sequence generated by our schemes without prior knowledge

of the operator norm. Our main results complements the results of Kazmi and Rizvi[7] and other

relevant work in the literature. Finally, we give some experiments to show the efficiency and the

implementation of our purpose method.

2 Preliminaries and lemmas

In this section we recall some definitions and lemmas which will be needed in the next section.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. For x, y ∈ H

and λ ∈ R, we know from [18] that

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉; (2.1)

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2. (2.2)

Furthermore, for x, y, u, v ∈ H,

2〈x− y, u− v〉 = ‖x− v‖2 + ‖y − u‖2 − ‖x− u‖2 − ‖y − v‖2. (2.3)

The nearest point projection of a nonempty, closed and convex set C is denoted by PC , that is,

‖x− PCx‖ ≤ ‖x − y‖ for all x ∈ H and y ∈ C. Such PC is called the metric projection of H onto

C. We know the metric projection PC is firmly nonexpansive, i.e.,

‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉 (2.4)

for all x, y ∈ H. Moreover 〈x− PCx, y − PCx〉 ≤ 0 holds for all x ∈ H and y ∈ C; see [18].
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Lemma 2.1. [10] Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let

T : C → C be a nonexpansive mapping. Then I − T is demiclosed at 0, that is, if the sequence xn

converges weakly to x ∈ C and ‖xn − Txn‖ → 0, then x = Tx.

Assumption 2.2. Let F : C × C → R be a bifunction satisfying the following assumptions:

(i) F (x, x) = 0, ∀x ∈ C;

(ii) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, ∀x ∈ C;

(iii) For each x, y, z ∈ C, lim supt→0 F (tz + (1− t)x, y) ≤ F (x, y);

(iv) For each x ∈ C, y → F (x, y) is convex and lower semicontinuous.

(v) Fixed r > 0 and z ∈ C, there exists a nonempty compact convex subset K of H1 and x ∈ C∩K
such that

F (y, x) +
1

r
〈y − x, x− z < 0〉, ∀y ∈ C \K.

Lemma 2.3. Let T : H → H be an operator. The following statements are equivalent.

(i) T is firmly nonexpansive.

(ii) ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉, x, y ∈ H.

(iii) I-T is firmly nonexpansive.

Lemma 2.4. Assume that F1 : C × C → R satisfying Assumption 2.2. For r > 0 and for all

x ∈ H1, define a mapping JF1
r : H → C as follows:

JF1
r x = {z ∈ C : F1(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

Then the following hold:

(i) JF1
r is nonempty and single-valued;

(ii) JF1
r is firmly nonexpansive, i.e.,

‖JF1
r x− JF1

r y‖ ≤ 〈JF1
r x− JF1

r y, x− y〉, ∀x, y ∈ H1;

(iii) Fix(JF1
r ) = EP (F1);

(iv) EP (F1) is closed and convex.

Further, assume that F2 : Q×Q → R satisfying Assumption 2.2. For s > 0 and for all w ∈ H2,

define a mapping JF2
s : H2 → Q as follows:

JF2
s (w) = {d ∈ Q : F2(d, e) +

1

s
〈e− d, d− w〉 ≥ 0, ∀e ∈ Q}.

Then we easily observe that JF2
s is nonempty, single-valued and firmly nonexpansive, EP (F2, Q) is

closed and convex and Fix(JF2
s ) = EP (F2, Q), where EP (F2, Q) is the solution set of the following

equilibrium problem:

Find y∗ ∈ Q such that F2(y
∗, y) ≥ 0, ∀y ∈ Q.
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Lemma 2.5. Let F : C × C → R be a bifunction satisfying Assumption 2.2 hold and let JF1
r be

defined as in Lemma 2.4 for r > 0. Let x, y ∈ H1 and r1, r2 > 0. Then:

‖JF1
r2 y − JF1

r1 x‖ ≤ ‖y − x‖+
r2 − r1

r2
‖JF1

r2 y − y‖.

Lemma 2.6. Let {sn} be a real sequence that does not decrease at infinity, in the sense that there

exists a subsequence {snk} so that

snk ≤ snk+1, ∀k ≥ 0.

For every n ≥ n0 define an integer sequence {Γ(n)} as

Γ(n) = max{n0 ≤ k ≤ n : sk < sk+1}.

Then Γ(n) → ∞ as n → ∞ and for all n > n0

max{sΓ(n),sn} ≤ sΓ(n)+1.

3 Strong convergence theorem

In this section, we show the strong convergence theorem of the our generated iterative scheme in

the framework of the real Hilbert spaces.

Let H1 and H2 be two real Hilbert spaces with the nonempty closed and convex subsets C and

Q, respectively. Let A : H1 → H2 be a bounded linear operator. Assume that F1 : C × C → R
and F2 : Q×Q → R are the bifunctions satisfying Assumption 1 and F2 is upper semicontinuous

in the first argument. Let S : C → C be a nonexpansive mapping such that Θ := Fix(S) ∩Ω .= ∅.
We further define

f(xn) =
1

2
‖(I − JF2

rn )Axn‖
2, n ≥ 0,

and

∇f(xn) = A∗(I − JF2
rn )Axn.

Algorithm 1 Choose an arbitrary initial guess x0 ∈ C, let the iterative sequences {un} and {xn}
be generated by

un = JF1
rn (xn − τn∇f(xn));

xn+1 = αng(xn) + βnxn + γnSun;

where g is a contraction on C, τn =
ρnf(xn)

‖∇f(xn)‖2
, ρn ∈ (0, 4).

Theorem 3.1. Assume that rn ∈ (0,∞) and {αn}, {βn} and {γn} are the sequences in (0, 1) with

αn + βn + γn = 1 satisfying the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) lim infn→∞ βn > 0;

(C3) lim infn→∞ γn > 0;
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(C4) lim infn→∞ ρn(4− ρn) > 0;

(C5) lim infn→∞ rn > 0.

Then the sequence {xn} generated by Algorithm 1 converges strongly to z = PΘg(z).

Proof. Firstly, we would claim that the generated sequence {xn} is bounded. Put wn = xn −
τn∇f(xn). We note that I − JF1

rn is firmly nonexpansive and ∇f(z) = 0.So, by Lemma 2.3 we have

the following,

〈∇f(xn), xn − z〉 = 〈(I − JF1
rn )Axn, Axn −Az〉

≥ ‖(I − JF1
rn )Axn‖

2

= 2f(xn).

This implies that

‖xn − τn∇f(xn)− z‖2 = ‖xn − z‖2 + ‖τn∇f(xn)‖2 − 2τn〈∇f(xn), xn − z〉

≤ ‖xn − z‖2 + τ2n‖∇f(xn)‖2 − 4τnf(xn)

= ‖xn − z‖2 − ρn(4− ρn)
f2(xn)

‖∇f(xn)‖2
.

We thus obtain, since JF1
rn is firmly nonexpansive,

‖un − z‖2 = ‖JF1
rn wn − z‖2

≤ ‖wn − z‖2 − ‖JF1
rn wn − wn‖2

= ‖xn − τn∇f(xn)− z‖2 − ‖JF1
rn wn −wn‖2

= ‖xn − z‖2 − ρn(4− ρn)
f2(xn)

‖∇f(xn)‖2
− ‖JF1

rn wn − wn‖2.

We see that

‖xn+1 − z‖ ≤ αn‖g(xn)− z‖+ βn‖xn − z‖+ γn‖Sun − z‖

≤ αn‖g(xn)− g(z)‖ + αn‖g(z) − z‖+ βn‖xn − z‖+ γn‖un − z‖

≤ αnα‖xn − z‖+ αn‖g(z) − z‖+ βn‖xn − z‖+ γn‖xn − z‖

= (1− αn(1− α))‖xn − z‖+ αn‖g(z) − z‖

≤ max{‖xn − z‖, ‖g(z) − z

1− α
‖}.

Hence, the sequence {xn} is bounded by induction.
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Put M = supn∈N ‖g(xn)− z‖‖xn+1 − z‖. We next investigate the following

‖xn+1 − z‖2 ≤ ‖βnxn + γnSun − z‖2 + 2αn〈g(xn)− z, xn+1 − z〉

= βn(βn + γn)‖xn − z‖2 + γn(βn + γn)‖Sun − z‖2

−βnγn‖xn − Sun‖2 + αnM

≤ βn(1− αn)‖xn − z‖2 + γn(1− αn)‖un − z‖2

−βnγn‖xn − Sun‖2 + αnM

≤ (1− αn)
2‖xn − z‖2 − γn(1− αn)(ρn(4− ρn)

f2(xn)

‖∇f(xn)‖2
+ ‖JF1

rn wn − wn‖2)

−βnγn‖xn − Sun‖2 + αnM

≤ (1− αn)‖xn − z‖2 − γn(1− αn)(ρn(4− ρn)
f2(xn)

‖∇f(xn)‖2
+ ‖JF1

rn wn − wn‖2)

−βnγn‖xn − Sun‖2 + αnM. (3.1)

For convenience, let sn = ‖xn − z‖2 and separate the behavior of {sn} into two different cases as

follow.

Case I: {sn} is a decreasing sequence, that is, the limit of the sequence {sn} exists. Hence, it

follows that

sn+1 ≤ (1− αn)sn − γn(1− αn)(ρn(4− ρn)
f2(xn)

‖∇f(xn)‖2
+ ‖JF1

rn wn − wn‖2)

−βnγn‖xn − Sun‖2 + αnM. (3.2)

It follows that

γn(1− αn)ρn(4− ρn)
f2(xn)

‖∇f(xn)‖2
≤ (sn − sn+1) + αnM.

Hence
f(xn)

‖∇f(xn)‖
→ 0 by conditions (C1), (C3) and (C4). It follows that f(xn) = 1

2‖(I −

JF2
rn )Axn‖

2 → 0, since {xn} is bounded. Similarly, we can show that ‖JF1
rn wn − wn‖ → 0 and

‖xn − Sun‖ → 0.

Then,

‖wn − xn‖ = ‖xn − τn∇f(xn)− xn‖

= ρn
f(xn)

‖∇f(xn)‖
→ 0.

So,

‖un − xn‖ ≤ ‖un − wn‖+ ‖wn − xn‖

= ‖JF1
rn wn − wn‖+ ‖wn − xn‖

→ 0.
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It follows that ‖un − wn‖ → 0 as n → ∞. Also, we see that

‖xn − Sxn‖ ≤ ‖xn − Sun‖+ ‖Sun − Sxn‖

≤ ‖xn − Sun‖+ ‖un − xn‖

→ 0.

Next, we show that lim supn→∞〈g(z)−z, xn+1−z〉 ≤ 0, where z = PΘg(z). To show this inequality,

we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈g(z) − z, xn − z〉 = lim
i→∞

〈g(z) − z, xni − z〉.

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} which converges weakly to some

w ∈ C. Without loss of generality, we can assume that xni ⇀ w.

Now, we prove that w ∈ Fix(S) ∩Ω. Let us show that w ∈ Fix(S). Assume that w /∈ Fix(S).

Since xni ⇀ w and Sw .= w. From Opial’s condition, we have

lim inf
i→∞

‖xni − w‖ < lim inf
i→∞

‖xni − Sw‖

≤ lim inf
i→∞

(‖xni − Sxni‖+ ‖Sxni − Sw‖)

≤ lim inf
i→∞

‖xni − w‖,

which is a contradiction. Thus, we obtain w ∈ Fix(S).

Next, we show that w ∈ EP (F1). Since un = JF1
rn wn, we have

F1(un, y) +
1

rn
〈y − un, un − wn〉 ≥ 0, ∀y ∈ C.

It follows from the monotonicity of F1 that

1

rni

〈y − un, un − wn〉 ≥ F1(y, un)

and hence

〈y − uni ,
uni − wni

rni

〉 ≥ F1(y, uni).

Since ‖un − wn‖ → 0 and lim inf rn > 0, we get
uni − xni

rni

→ 0. It follows by Assumption 2.1(iv)

that 0 ≥ F1(y,w), ∀w ∈ C. For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)w. Since

y ∈ C,w ∈ C, we get yt ∈ C and hence F1(yt, w) ≤ 0. So from Assumption 2.1(i) and (iv) we have

0 = F1(yt, yt) ≤ tF1(yt, y) + (1− t)F1(yt, w) ≤ tF1(yt, y).

Therefore 0 ≤ F1(yt, y). From Assumption 2.1(iii), we have 0 ≤ F1(w, y). This implies that

w ∈ EP (F1).

Next, we show that Aw ∈ EP (F2). Since xni ⇀ w and A is a bounded linear operator, we

obtain Axni ⇀ Aw.
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Now set νni = Axni − JF2
rni

Axni . It follows that limi→∞ νni = 0 and Axni − νni = JF2
rni

Axni .

Therefore from Lemma 2.4, we have

F2(Axni − νni , z) +
1

rni

〈z − (Axni − νni), (Axni − νni)−Axni〉 ≥ 0, ∀z ∈ Q.

Since F2 is upper semicontinuous in the first argument, taking lim sup to above inequality as i → ∞
and using condition (iv), we obtain

F2(Aw, z) ≥ 0, ∀z ∈ Q,

which means that Aw ∈ EP (F2) and hence w ∈ Ω.

Now from (2.2), we have

lim sup
n→∞

〈g(z) − z, xn − z〉 = lim sup
i→∞

〈g(z) − z, xni − z〉

= 〈g(z) − z,w − z〉

≤ 0.

Thus,

lim sup
n→∞

〈g(z) − z, xn+1 − z〉 ≤ 0. (3.3)

We see that,

‖xn+1 − z‖2 = αn〈g(xn − z, xn+1 − z〉+ βn〈xn − z, xn+1 − z〉

+γn〈Sun − z, xn+1 − z〉

= αn〈g(xn)− g(z), xn+1 − z〉+ αn〈g(z) − z, xn+1 − z〉

+βn〈xn − z, xn+1 − z〉+ γn〈Sun − z, xn+1 − z〉

≤ αnα‖xn − z‖‖xn+1 − z‖+ αn〈g(z) − z, xn+1 − z〉

+βn‖xn − z‖‖xn+1 − z‖+ γn‖Sun − z‖‖xn+1 − z‖

≤ αnα‖xn − z‖‖xn+1 − z‖+ αn〈g(z) − z, xn+1 − z〉

+βn‖xn − z‖‖xn+1 − z‖+ γn‖xn − z‖‖xn+1 − z‖

= (1− αn(1− α))(‖xn − z‖‖xn+1 − z‖) + αn〈g(z) − z, xn+1 − z〉

≤ (1− αn(1− α))(
‖xn − z‖2 + ‖xn+1 − z‖2

2
) + αn〈g(z) − z, xn+1 − z〉.

So,

‖xn+1 − z‖2 ≤
(1− αn(1− α))

1 + αn(1− α)
‖xn − z‖2 + 2αn〈g(z) − z, xn+1 − z〉

=
(
1−

2αn(1− α)

1 + αn(1− α)

)
‖xn − z‖2 + 2αn〈g(z) − z, xn+1 − z〉. (3.4)

By using condition (C1), and (3.3) we can conclude that xn → z.

Case II: {sn} is not a decreasing sequence. Hence we can find a subsequence {snk} so that
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snk ≤ snk+1. In this case, we define an integer sequence {Γ(n)} as in Lemma 2.6. Since sΓ(n) ≤
sΓ(n)+1, ∀n ≥ n0. It follows that by (3.2),

sΓ(n)+1 ≤ (1− αΓ(n))sΓ(n) − γΓ(n)(1− αΓ(n))(ρΓ(n)(4− ρΓ(n))
f2(xΓ(n))

‖∇f(xΓ(n))‖2
− ‖JF1

rΓ(n)
wΓ(n) − wΓ(n)‖2)

−βΓ(n)γΓ(n)‖xΓ(n) − SuΓ(n)‖2 + αΓ(n)M.

Hence,
f(xΓ(n))

‖∇f(xΓ(n))‖
→ 0, ‖JF1

rΓ(n)
wΓ(n) − wΓ(n)‖ → 0 and ‖xΓ(n) − SuΓ(n)‖ → 0. Similar to Case I,

we can show that lim supn→∞〈g(z)− z, xΓ(n) − z〉 ≤ 0. It is easy to see that ‖xΓ(n)−xΓ(n)+1‖ → 0.

Hence, lim supn→∞〈g(z) − z, xΓ(n)+1 − z〉 ≤ 0. From (3.4), we have

sΓ(n)+1 ≤ (1− δΓ(n))sΓ(n) + 2αΓ(n)〈g(z) − z, xΓ(n)+1 − z〉

where δΓ(n) =
2αΓ(n)(1− α)

1 + αΓ(n)(1− α)
. So, δΓ(n)sΓ(n) ≤ 2αΓ(n)〈g(z) − z, xΓ(n)+1 − z〉, yields

sΓ(n) ≤
1 + αΓ(n)(1− α)

1− α
〈g(z) − z, xΓ(n)+1 − z〉.

Hence, lim supn→∞ sΓ(n) ≤ 0. By Lemma (2.6), we have sn ≤ sΓ(n). Then limn→∞ sn = limn→∞ ‖xn−
z‖2 = 0. So, xn → z. This completes the proof.

4 Applications

We next give some applications to split feasibility problem and the split convex minimization

problem.

4.1 Application to split feasibility problem

For obtaining the result for the split feasibility problem, let the solution set Θ := Fix(S) ∩ Γ .= ∅,
and define

f(xn) =
1

2
‖(I − PQ)Axn‖2, n ≥ 0,

and

∇f(xn) = A∗(I − PQ)Axn.

Algorithm 2 Choose an arbitrary initial guess x0 ∈ C, let the iterative sequences {un} and {xn}
be generated by

un = PC(xn − τn∇f(xn));

xn+1 = αng(xn) + βnxn + γnSun;

where g is a contraction on C, τn =
ρnf(xn)

‖∇f(xn)‖2
, ρn ∈ (0, 4).
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Theorem 4.1. Assume that {αn}, {βn} and {γn} are the sequences in (0, 1) with αn+βn+γn = 1

satisfying the same conditions (C1)-(C4) in Theorem 3.1. Then the sequence {xn} generated by

Algorithm 2 converges strongly to z = PΘg(z).

Example 4.2. Let H1 = H2 = R3. Define C = {x = (x1, x2, x3) ∈ R3 : x21 + x22 + x23 ≤ 1} and

Q = {x = (x1, x2, x3) ∈ R3 : 2x1 + x2 + 4x3 ≥ 1}.

Let

A =




0 1 2

1 −1 1

2 −2 0



 .

Let S : C → C be defined by Sx = (−x1, x2,−x3) and g : C → C by g(x) = x
2 where x =

(x1, x2, x3) ∈ R3.

Choose αn = 1
n+1 , βn = 0.5, γn = 0.5− 1

n+1 and En = ‖xn+1 − xn‖2 < 10−4 for all n ∈ N.

We now study the effect (in terms of convergence, stability, number of iterations required and

the cpu time) of the sequence {ρn} ⊂ (0, 4) on the iterative scheme by choosing different ρn such

that inf
n
ρn(4− ρn) > 0. We choose different choices of x1 as

Choice 1: x1 = (0, 0, 1);

Choice 2: x1 = (0.5, 0.5, 0.5);

Choice 3: x1 = (0.2, 0.6, 0.1);

Choice 4: x1 = (0.8, 0.6, 0).

The numerical experiments, using our Algorithm 2 in Theorem 4.1, for each choice are reported

in the following Table 1.

Table 1: Algorithm 3.1 with different cases of ρn and different choices of x1

ρn = n
n+1 ρn = 1.5n

n+1 ρn = 2.5n
n+1 ρn = 3.5n

n+1

Choice 1 No. of Iter. 97 74 52 29

cpu (Time) 0.018883 0.015916 0.011313 0.005729

Choice 2 No. of Iter. 97 74 52 41

cpu (Time) 0.026899 0.019866 0.016848 0.010174

Choice 3 No. of Iter. 97 74 52 41

cpu (Time) 0.026644 0.015758 0.011374 0.017603

Choice 4 No. of Iter. 97 74 52 30

cpu (Time) 0.023669 0.016431 0.010965 0.007143

The convergence behavior of the error En for each choice of x1 is shown in Figure 1-4, respec-

tively.
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Figure 3: Error plotting En for Choice 3 in Example 4.4
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Figure 4: Error plotting En for Choice 4 in Example 4.4

4.2 Application to split convex minimization problem

In this section, we consider the following split convex minimization problem as follows:

The proximity operator of F is defined by

proxλF (x) = argmin
y∈H

{F (y) +
1

2λ
‖x− y‖2} (4.1)

for any λ > 0. It is seen that

0 ∈ ∂F (x∗) ⇔ x∗ = proxλF (x
∗). (4.2)

Let f1, f2 : C → R ∪ {∞} be convex and lower semicontinuous. The split convex minimization

problem is to find a minimizer x∗ of f1 that Ax∗ is a minimizer of f2, where A is a bounded linear

operator.

To this end, we define

f(xn) =
1

2
‖(I − proxλf2)Axn‖2, n ≥ 0,

and

∇f(xn) = A∗(I − proxλf2)Axn.

Algorithm 3 Choose an arbitrary initial guess x0 ∈ C, let the iterative sequences {un} and {xn}
be generated by

un = proxλf1(xn − τn∇f(xn));

xn+1 = αng(xn) + βnxn + γnSun;

where g is a contraction on C, τn =
ρnf(xn)

‖∇f(xn)‖2
, ρn ∈ (0, 4).
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Theorem 4.3. Assume that λ > 0 and {αn}, {βn} and {γn} are the sequences in (0, 1) with

αn + βn + γn = 1 satisfying the same conditions (C1)-(C4) in Theorem 3.1. Then the sequence

{xn} generated by Algorithm 2 converges strongly to z = PΘg(z).

Example 4.4. Let H1 = H2 = R3. Let f1 : R3 → R ∪ {+∞} be defined by

f1(x) = ‖x‖22 + (2, 4,−5)x + 10

and let f2 : R3 → R ∪ {+∞} be defined by

f2(x) = ‖x‖22 − (8, 10,−8)x − 5.

Let

A =




1 0 2

−1 3 4

2 1 0



 .

Let S : R3 → R3 be defined by Sx = (−2 − x1,−4 − x2, 0.5x3 + 1.25) and g : R3 → R3 by

g(x) = x
2 where x = (x1, x2, x3) ∈ R3. Find x ∈ R3 such that x minimizes f1 and Ax minimize

f2 and x is also a fixed point of S. Choose αn = 1
n+1 , βn = 0.1, γn = 0.9 − 1

n+1 , λ = 1 and

En = ‖xn+1 − xn‖2 < 10−4 for all n ∈ N.

The numerical experiments, using our Algorithm 3 in Theorem 4.3, for each choice are reported

in the following Table 2. We choose different choices of x1 as

Choice 1: x1 = (0, 0, 1); Choice 2: x1 = (0.5, 0.5, 0.5);

Choice 3: x1 = (0.2, 0.6, 0.1); Choice 4: x1 = (0.8, 0.6, 0).

The numerical experiments, using our Algorithm 3 in Theorem 4.3, for each choice are reported

in the following Table 2.

Table 2: Algorithm 3.1 with different cases of ρn and different choices of x1

ρn = n
n+1 ρn = 1.5n

n+1 ρn = 2.5n
n+1 ρn = 3.5n

n+1

Choice 1 No. of Iter. 97 74 52 29

cpu (Time) 0.018883 0.015916 0.011313 0.005729

Choice 2 No. of Iter. 97 74 52 41

cpu (Time) 0.026899 0.019866 0.016848 0.010174

Choice 3 No. of Iter. 97 74 52 41

cpu (Time) 0.026644 0.015758 0.011374 0.017603

Choice 4 No. of Iter. 97 74 52 30

cpu (Time) 0.023669 0.016431 0.010965 0.007143



A modified self-adaptive method for the split feasibility problem 15

The convergence behavior of the error En for each choice of x1 is shown in Figure 1-4, respec-

tively.

0 50 100 150 200 250
10−5

10−4

10−3

10−2

Number of Iterations

E
n

 

 

ρn=n/n+1

ρn=1.5*n/n+1

ρn=2.5*n/n+1

ρn=3.5*n/n+1

Figure 1: Error plotting En for Choice 1 in Example 4.4

0 50 100 150 200 250 300
10−5

10−4

10−3

10−2

10−1

100

Number of Iterations

E
n

 

 

ρn=n/n+1

ρn=1.5*n/n+1

ρn=2.5*n/n+1

ρn=3.5*n/n+1

Figure 2: Error plotting En for Choice 2 in Example 4.4



A modified self-adaptive method for the split feasibility problem 16

0 50 100 150 200 250 300
10−5

10−4

10−3

10−2

10−1

Number of Iterations

E
n

 

 

ρn=n/n+1

ρn=1.5*n/n+1

ρn=2.5*n/n+1

ρn=3.5*n/n+1

Figure 3: Error plotting En for Choice 3 in Example 4.4

0 50 100 150 200 250 300
10−5

10−4

10−3

10−2

10−1

100

Number of Iterations

E
n

 

 

ρn=n/n+1

ρn=1.5*n/n+1

ρn=2.5*n/n+1

ρn=3.5*n/n+1

Figure 4: Error plotting En for Choice 4 in Example 4.4

Remark 4.5. From our numerical experiments, it is observed that the different choices of x1 have

no effect in terms of CPU runtime for the convergence of our algorithm. However, if the stepsizes

{ρn} is taken close to 4, then the number of iterations and the CPU runtime have small reduction.
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