รูปแบบปกรายงานฉบับสมบูรณ์

۹۱	ไกนอก	1
ш	ICIMPIC	1

ปกนอกใช้กระดาษสีนวล ตัวหนังสือสีดำ สันปก มีโลโก้ สกว. สกอ. ห่างจากขอบบน 1 นิ้ว และชื่อโครงการวิจัย

หน้าปกใน

สัญญาเลขที่
รายงานวิจัยฉบับสมบูรณ์
โครงการ
ผู้วิจัย สังกัด 1 2
สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษาและสำนักงานกองทุนสนับสนุนการวิจั
(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป

บทคัดย่อ

รหัสโครงการ: MRG5980142

ชื่อโครงการ: การพัฒนาวัสดุขั้นสูงสำหรับการเปลี่ยนไบโอเอทานอลสู่สารเคมีที่มีมูลค่า ด้วยปฏิกิริยาเคมี

ชื่อหักวิจัย และสถาบัน: ดร. การันต์ บ่อบัวทอง ภาควิชาเคมี คณะวิทยาศาสตร์และ เทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

อีเมล์: karan_b@rmutt.ac.th

ระยะเวลาโครงการ: 2 พฤษภาคม 2559 ถึง 1 พฤษภาคม 2561

บทคัดย่อ:

ในงานวิจัยนี้มีวัตถุประสงค์ในการออกแบบอนุภาคนาโนของโลหะผสมทองและพาลาเดียม (Au-Pd nanoparticles) และอนุภาคนาโนของโลหะผสมทองและเงิน (Au-Ag nanoparticles) โดย พิจารณาอิทธิพลของ ensemble effect และ ligand effect ต่อประสิทธิภาพการเร่งปฏิกิริยา ออกซิเดชันของไบโอเอทานอลด้วยระเบียบวิธีทางเคมีคอมพิวเตอร์ (computational chemistry) และ แบบจำลองเสมือนจริงของวัสดุเพื่อเป็นแนวทางในสังเคราะห์ตัวเร่งปฏิกิริยาดังกล่าว (experimental study) จากนั้นทดสอบการสังเคราะห์อะซิทัลดีไฮด์และเอทิลอะซิเทตจากไบโอเอทานอลให้ได้ร้อยละ ของผลิตภัณฑ์และร้อยละของการเลือกเกิดสูงมากกว่า 96 เปอร์เซ็นต์ นอกจากนี้จะมีการศึกษากลไก การเกิดปฏิกิริยาออกซิเดชันของไบโอเอทานอลด้วยระเบียบวิธีทางเคมีคอมพิวเตอร์อีกด้วย ซึ่งจาก ผลการคำนวณดังกล่าวจะทำให้เข้าใจกลไกการเกิดปฏิกิริยามากขึ้น เป็นข้อมูลที่สำคัญและเป็น แนวทางในการออกแบบตัวเร่งปฏิกิริยาชนิดโลหะผสมที่ประสิทธิภาพสูงสำหรับปฏิกิริยาเคมีอื่น ๆ ต่อไป

คำหลัก : อนุภาคนาโนของโลหะผสมทองและพาลาเดียม ทองและเงิน อะซิทัลดีไฮด์ ไบโอเอทานอล

Abstract

Project Code: MRG5980142

Project Title: Advanced Materials for Catalytic Conversion of Bioethanol to Valuable

Chemicals

Investigator: Dr. Karan Bobuatong

E-mail Address : karan_b@rmutt.ac.th

Project Period: May 2nd 2016 to May 1st 2018

Abstract:

The catalytic conversion of bioethanol to valuable chemicals is a promising trend in the sustainable chemistry because the chemical industry intends to make a gradual shift from fossil to renewable resources. We are therefore going to develop the efficient catalysts, Au-Pd and Au-Ag bimetallic nanoparticles for the selective oxidation of bioethanol using combined theoretical and experimental studies. The roles of ensemble (geometric) and ligand (electronic) effects towards the reactivity of bioethanol conversion will be systematically investigated by means of state-of-the-art quantum chemical techniques. Subsequently, the reaction mechanisms that govern the reaction rate and product selectivity are planned for investigation using the novel molecular modeling and cutting edge simulations. The catalyst preparation, characterization and catalytic testing will be performed according the experimental techniques adopted from our previous studies. Finally, the evaluation of the results obtained from theoretical and experimental studies will be performed in order to understand the structure-activity relationship of bioethanol conversion on Au-Pd and Au-Ag bimetallic nanoparticles. The fundamental factors including the detail of the mechanistic, energetic and electronic properties of the selective oxidation of bioethanol will be better understood. They will be basic knowledge that is important to expand the scope of bioethanol utilization to high value chemicals, especially, in the country which has abundant agricultural resources such as Thailand.

Keywords: Au–Pd Au–Ag bimetallic nanoparticles acetaldehyde bioethanol

Executive Summary

1. ความสำคัญและที่มาของปัญหา

การลดลงของทรัพยากรแก๊สธรรมชาติและน้ำมันดิบอย่างต่อเนื่องส่งผลให้อุตสาหกรรมเคมีค่อยๆ เปลี่ยน การใช้ทรัพยากรดังกล่าวเป็นทรัพยากรทดแทนเช่น ไบโอเอทานอล (bioethanol) เพื่อผลิตเชื้อเพลิงชีวภาพและ สารเคมีต่างๆ ใบโอเอทานอลส่วนใหญ่ถูกใช้สำหรับการผสมลงในน้ำมันเบนซินเพื่อเป็นเชื้อเพลิงแต่ใน ขณะเดียวกันไบโอเอทานอลยังสามารถใช้เป็นสารตั้งต้นในการสังเคราะห์สารเคมีที่มีมูลค่าสูงได้อีกด้วย เช่น อะซิทัล ดีไฮด์ (acetaldehyde) เอทิลีน (ethylene) เอทิลีนออกไซด์ (ethylene oxide) เอทิลอะซิเทต (ethyl acetate) และบิว ทาไดอีน (butadiene) อย่างไรก็ตามในขั้นตอนการสังเคราะห์สารเคมีดังกล่าวต้องใช้เกลือของโลหะ (metal salts) เช่นแอมโมเนียมโครเมต (ammonium chromate) และคอบเปอร์แอมมิโนออกซาเลต (copper amino oxalate) จำนวนมาก อีกทั้งยังต้องใช้ร่วมกับตัวทำละลายที่มีพิษเช่น ไดเมทิลฟอร์มาไมด์ (DMF) และโครโรฟอร์ม (chloroform) ในสภาวะอุณหภูมิสูงมากกว่าสองร้อยองศาเซลเซียส ซึ่งนับเป็นกระบวนการที่สร้างสารก่อมลพิษและ สิ้นเปลืองพลังงาน ดังนั้นการค้นคว้าวิจัยเพื่อออกแบบตัวเร่งปฏิกิริยาเคมีที่มีประสิทธิภาพสูงสำหรับการสังเคราะห์ สารเคมีที่มีมูลค่าจากไบโอเอทานอลภายใต้สภาวะที่ไม่รุนแรง (mild conditions) ด้วยกระบวนการผลิตที่เป็นมิตรต่อ สิ่งแวดล้อมจึงมีความสำคัญ อนุภาคนาโนของโลหะผสมสองชนิด (bimetallic nanoparticles) หลายกลุ่มสามารถทำ หน้าที่เป็นตัวเร่งปฏิกิริยาเคมีที่ดีกว่าอนุภาคนาโนของโลหะชนิดเดียว (monometallic nanoparticles) โดยเฉพาะ อนุภาคนาโนของโลหะผสมทองและพาลาเดียม (Au-Pd nanoparticles) และอนุภาคนาโนของโลหะผสมทองและเงิน (Au-Ag nanoparticles) ซึ่งพบว่าสามารถเร่งปฏิกิริยาเคมีได้หลายชนิดโดยปราศจากการใช้ตัวทำละลาย (solventless conditions) ที่อุณหภูมิไม่เกินหนึ่งร้อยองศาเซลเซียส ร้อยละของผลิตภัณฑ์ (percent yield) และร้อย ละของการเลือกเกิด (percent selectivity) สูงมากกว่า 96 เปอร์เซ็นต์ ของเสียจากขบวนการสังเคราะห์ (waste) มี น้อยมาก ซึ่งนับว่าเป็นกระบวนการสังเคราะห์ที่เป็นมิตรกับสิ่งแวดล้อม ผลสัมฤทธิ์จากการพัฒนาอนุภาคนาโนของ โลหะผสมสองชนิดที่ผ่านมาเป็นแรงกระตุ้นให้กลุ่มวิจัยของเราสนใจที่จะดำเนินงานวิจัยและพัฒนาอนุภาคนาโนของ โลหะผสมสองชนิดสำหรับการสังเคราะห์สารเคมีที่มีมูลค่าเช่นอะซิทัลดีไฮด์ (acetaldehyde) และเอทิลอะซิเทต (ethyl acetate) จากไบโอเอทานอล ด้วยวิธีทางทฤษฎี (Theoretical study) ควบคู่กับการทดลอง (Experimental study)ในสภาวะปราศจากตัวทำละลายที่อุณหภูมิห้อง (room temperature) ในงานวิจัยนี้จะออกแบบอนุภาคนาโน ของโลหะผสมทองและพาลาเดียม (Au-Pd nanoparticles) และอนุภาคนาโนของโลหะผสมทองและเงิน (Au-Ag nanoparticles) โดยพิจารณาอิทธิพลของ ensemble effect และ ligand effect ต่อประสิทธิภาพการเร่งปฏิกิริยา ออกซิเดชันของไบโอเอทานอลด้วยระเบียบวิธีทางเคมีคอมพิวเตอร์ (computational chemistry) และแบบจำลอง เสมือนจริงของวัสดุเพื่อเป็นแนวทางในสังเคราะห์ตัวเร่งปฏิกิริยาดังกล่าว (experimental study) จากนั้นทดสอบการ สังเคราะห์อะซิทัลดีไฮด์และเอทิลอะซิเทตจากไบโอเอทานอลให้ได้ร้อยละของผลิตภัณฑ์และร้อยละของการเลือกเกิด สูงมากกว่า 96 เปอร์เซ็นต์ นอกจากนี้จะมีการศึกษากลไกการเกิดปฏิกิริยาออกซิเดชันของไบโอเอทานอลด้วย ระเบียบวิธีทางเคมีคอมพิวเตอร์อีกด้วย ซึ่งจากผลการคำนวณดังกล่าวจะทำให้เข้าใจกลไกการเกิดปฏิกิริยามากขึ้น เป็นข้อมูลที่สำคัญและเป็นแนวทางในการออกแบบตัวเร่งปฏิกิริยาชนิดโลหะผสมที่ประสิทธิภาพสูงสำหรับปฏิกิริยา เคมีอื่นๆต่อไป

2. วัตถุประสงค์

- 2.1 ออกแบบตัวเร่งปฏิกิริยาอนุภาคนาโนของโลหะผสมทองและพาลาเดียม (Au-Pd nanoparticles) และอนุภาคนาโนของโลหะผสมทองและเงิน (Au-Ag nanoparticles) สำหรับสังเคราะห์อะซิทัลดีไฮด์ และเอทิลอะซิเทตจากไบโอเอทานอล โดยใช้ระเบียบวิธีการคำนวณทางเคมีคอมพิวเตอร์
- 2.2 สังเคราะห์ตัวเร่งปฏิกิริยาอนุภาคนาโนของโลหะผสมทองและพาลาเดียมและอนุภาคนาโนของโลหะผสมทองและเงิน ตามขนาดเส้นผ่าศูนย์กลางของอนุภาค อัตราส่วนระหว่างโลหะผสมและสภาพ พื้นผิวอนุภาคนาโนของโลหะผสมที่ได้จากการศึกษาทางทฤษฎี
- 2.3 ทดสอบประสิทธิภาพการเร่งปฏิกิริยาออกซิเดชันของไบโอเอทานอล เพื่อหาร้อยละสารผลิตภัณฑ์ (percent yield) และร้อยละการเลือกเกิด (percent selectivity) ในสังเคราะห์อะซิทัลดีไฮด์ และ เอทิลอะซิเทต
- 2.4 ศึกษากลไกการเกิดปฏิกิริยาออกซิเดชันของไบโอเอทานอลเพื่อเลือกเกิดอะซิทัลดีไฮด์และเอทิลอะซิเทต บนตัวเร่งปฏิกิริยาอนุภาคนาโนของโลหะผสมทองและพาลาเดียมและอนุภาคนาโนของโลหะผสมทอง และเงินโดยใช้ระเบียบวิธีการคำนวณทางเคมีคอมพิวเตอร์
- 3. ระเบียบวิธีวิจัย
- 3.1 คันหาและสรุปงานวิจัยที่เกี่ยวข้องกับปฏิกิริยาออกซิเดชันของไบโอเอทานอลในฐานข้อมูลทางวิชาการ นานาชาติเช่น ISI และ Scopus
- 3.2 ออกแบบตัวเร่งปฏิกิริยาอนุภาคนาโนของโลหะผสมทองและพาลาเดียม (Au-Pd nanoparticles) และ อนุภาคนาโนของโลหะผสมทองและเงิน (Au-Ag nanoparticles) ที่เหมาะสมกับสารตั้งต้นหรือไบโอเอทานอล
 - 3.2.1 โครงสร้างและองค์ประกอบบนพื้นผิวของอนุภาคนาโนของโลหะผสม

ประยุกต์หลักการ ensemble effect และ ligand effect ซึ่งเป็นหลักการสำคัญในการอธิบายอิทธิพลของ โครงสร้างและองค์ประกอบบนพื้นผิวของอนุภาคนาโนของโลหะผสม สารตั้งต้น ต่อความว่องไวของปฏิกิริยาเคมีบน อนุภาคนาโนของโลหะผสมร่วมกับการคำนวณด้วยระเบียบวิธีเคมีคำนวณ Density Fictional Theory (DFT) ชนิด M06 (ระเบียบวิธีที่จะใช้ในการศึกษา) โดยเปลี่ยนแปลงระยะระหว่างโลหะและจำนวนอะตอมของโลหะชนิดที่สองเช่น โลหะพาลาเดียมบนโลหะทองจนกระทั่งพบการกระจายตัวของโลหะพาลาเดียมที่เสถียรที่สุด

- 3.2.2 เปรียบเทียบพลังงานการดูดซับของไบโอเอทานอลบนอนุภาคนาโนของโลหะผสม เปรียบเทียบพลังงาน การดูดซับของไบโอเอทานอลบนอนุภาคนาโนของโลหะผสมที่คำนวณด้วยระเบียบวิธี Density Fictional Theory (DFT) ชนิด M06 พลังงานอิสระของกิปส์ (Gibbs free energy) จะถูกคำนวณโดยวิธี single-point calculation ด้วย ระเบียบวิธีการคำนวณแบบใหม่คือ completely renormalized coupled cluster (CC) method with singles, doubles, and non-iterative triples หรือ CR-CC(2,3)
- 3.3 การสังเคราะห์ตัวเร่งปฏิกิริยาอนุภาคนาโนของโลหะผสมทองและพาลาเดียม และอนุภาคนาโนของโลหะผสมทองและเงิน สังเคราะห์ตัวเร่งปฏิกิริยาอนุภาคนาโนของโลหะผสมทองและพาลาเดียม และอนุภาคนาโนของโลหะผสมทองและเงิน ด้วยขนาดและอัตราส่วนระหว่างโลหะ Au Pd และ Ag ที่ตรงกับระเบียบวิธี เคมีคำนวณ โดยใช้ HAuCl₄ PdCl₂ AgNO₃ เป็นแหล่งที่มาของโลหะทอง พาลาเดียมและเงินตามลำดับ NaBH₄ ถูกใช้เป็นตัวรีดิวซ์โลหะแต่ละชนิดเพื่อให้รวมตัวกันเร็วขึ้น พอลิเมอร์ PVP เป็นวัสดุสำหรับยึด อนุภาคนาโนของโลหะผสม
- 3.4 พิสูจน์ลักษณะพื้นผิว ขนาดและอัตราส่วนระหว่างโลหะ Au Pd และ Ag ของ อนุภาคนาโนของโลหะ

ผสมทองและพาลาเดียม และอนุภาคนาโนของโลหะผสมทองและเงินด้วยเครื่องจุลทรรศน์อิเล็กตรอน แบบส่องกราด (SEM) และ เครื่องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM)

3.5 ทดสอบปฏิกิริยาออกซิเดชันของไบโอเอทานอลในสภาวะปราศจากตัวทำละลาย ณ. อุณหภูมิต่างๆโดย ไม่เกิน 40 °C และหาร้อยละการเลือกเกิด (percent selectivity) และร้อยละสารผลิตภัณฑ์ (percent yield) ของ อะซิทัลดีไฮด์ และ เอทิลอะซิเทต

3.6 คำนวณโครงสร้างและพลังงานจากกลไกการเกิดปฏิกิริยาที่นำเสนอ

ในการคำนวณโครงสร้างและพลังงาน จะคำนวณตามการดำเนินไปของปฏิกิริยา (Reaction Coordinates) ซึ่ง ประกอบด้วยการดูดซับสารตั้งตัน (adsorption) สถานะทรานซิชั่น (transition state) สารมัธยันตร์ (intermediate) และสารผลิตภัณฑ์ (product) โดยใช้ระเบียบวิธี Minnesota density functionals ชนิด M06 และใช้เบซิตเซต 6-31G(d,p) สำหรับอะตอมของโลหะ ทอง พาลาเดียมและเงิน ใช้เบซิตเซต Stuttgart Effective Core Potential basis (ECP) และเพื่อให้การคำนวณถูกต้องมากขึ้น พลังงานอิสระของกิปส์ (Gibbs free energy) จะคำนวณแบบ single-point calculation ด้วยระเบียบวิธีการคำนวณแบบใหม่คือ completely renormalized coupled cluster (CC) method with singles, doubles, and non-iterative triples หรือ CR-CC(2,3) นอกจากนี้จะวิเคราะห์ประจุและความหนาแน่น ของอิเล็กตรอนโดยใช้วิธี natural atomic orbital (NAO) และ natural bond orbital (NBO) สำหรับการหาสถานะท รานซิชั่นจะใช้ Berny Algorithm และยืนยันสถานะทรานซิชั่นนั้นด้วยการคำนวณความถี่ ซึ่งแต่ละสถานะทรานซิชั่น จะมีเพียงหนึ่ง imaginary frequency เท่านั้น การคำนวณทั้งหมดจะใช้โปรแกรม Gaussian 09

- 3.7 วิเคราะห์ข้อมูลและคุณสมบัติต่างๆ จากโครงสร้างที่คำนวณได้
- วิเคราะห์โครงสร้าง พันธะ (Å) และมุม (o) ของการดูดซับสารตั้งต้น สถานะทรานซิชั่น สารมัธยันตร์ และ สารผลิตภัณฑ์
- วิเคราะห์ค่าประจุและความหนาแน่นของอิเล็กตรอน
- คำนวณและวิเคราะห์ค่าพลังงาน จากแต่ละขั้นตอนของกลไกการเกิดปฏิกิริยา

Results and Discussion

1 Structures of Au₈ and Au₆Pd₂

To validate the reliability of our computational method, we first performed structural optimization for various two-dimensional (2D) and three-dimensional (3D) Au8 isomers. The optimized structures of Au_8 isomers are shown in Figure 1. and the relative energies are compiled in Table 1. As compare the relative stability among Au8 isomers, it is found that the two-dimentional with D_{4h} symmetric structure of Au8 is the lowest energy structure which is separated by 3.8 kcal/mol from the next higher Cs symmetric isomer. This planar structure is in agreement with the guide line for the study of the dimensionality gold clusters in which neutral gold clusters, Au_n , have a planar structure for $n \le 8$, whereas the crossover from planarity to nonplanarity occurs at clusters larger than Au_8 . It appears that the calculated average nearest-neighbor bond length of gold atoms is 2.80 Å, which is in agreement well with previous experimental (2.79 Å) and theoretical studies (2.69-2.77 Å).

Figure 1. Optimized structure of various two-dimentional (2D) and three-dimentional (3D) Au₈ isomers

Table 1. The relative energy of different 2-dimentional (2D) and 3-dimentional (3D) Au₈ isomers. All values are shown in kcal mol⁻¹.

Structure	Energy (kcal mol ⁻¹)
Au_2D_1	0.0
Au_2D_2	12.3
Au_2D_3	31.0
Au_2D_4	18.9
Au_3D_1	3.8
Au_3D_2	14.4
Au_3D_3	20.1
Au_3D_4	12.8
Au_3D_5	26.3
Au_3D_6	15.3
Au_3D_7	7.4

The distribution of Mulliken charges presented in Figure 2a. indicates that the charge distribution is not uniform over all the atoms of Au8, as high electron densities appear at the apex sites where the gold atoms are less coordinated, and the highly coordinated gold atoms have a lower electron density. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of planar D_{4h} symmetric Au₈, which are depicted in Figure 2b, reveals that HOMO is localized at low-coordinated gold atoms. This result demonstrates that Metiu and co-workers correctly predicted the electron distribution characteristics of the gold clusters in which the valence electrons of gold clusters are not localized at the planar surface, but at the apex, corner and step. It is worthy of note that although an elegant theoretical study which describes the need of basis sets toward the complete limit (CBS) beyond the MP2 and CCSD(T) level of theory on the prediction of dimensionality of Au_8 were reported these computational methods are not the practical choices for simulating the reaction mechanisms catalyzed by gold clusters due to the high computational demand. The hybrid meta-GGA functionals such as M06 functional employed in this study provides the similar tendency of electronic properties in comparison with those of reported experimental and theoretical studies as well as allowing computations to be completed in an affordable time. Based on previous studies together with our results described above, it is reasonable to expect that the computational method in the present study would be appropriate for further investigations into the aerobic oxidation of benzyl alcohol.

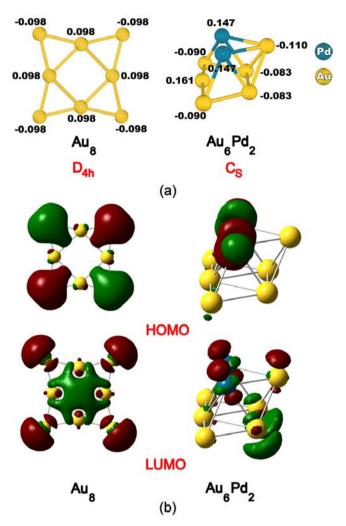
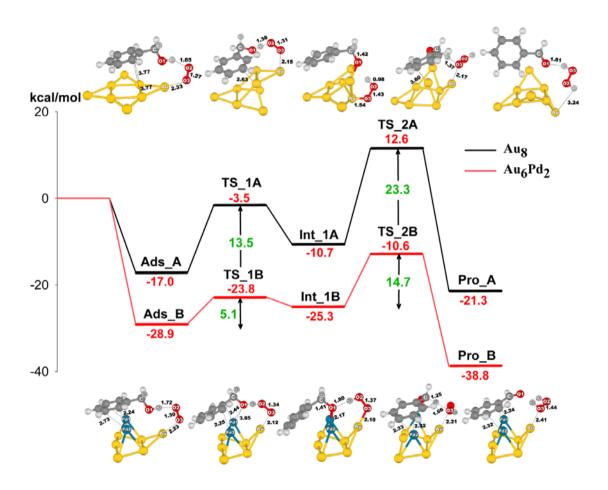
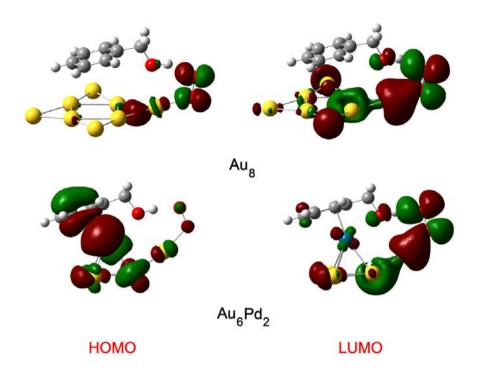



Figure 2. a) The lowest-energy structure of Au8 and Au6Pd2 with Mulliken atomic charges, and b) the HOMO and LUMO of Au8 and Au6Pd2 (the contour value is 0.02 electron/Å3).

To obtain the Au_6Pd_2 bimetallic NCs, two Pd atoms are substituted on various positions of the most stable and the second-most stable isomers of Au8 (Au_2D_1 and Au_3D_1). The lowest energy of Au_6Pd_2 are shown in Figure 2a. with more optimized structures and the relative energies are provided in the Supporting information (Figure S1 and Table S1). The most stable structure found for Au_6Pd_2 maintains the nonplannar Cs symmetry in which two Pd atoms are located on the adjacent position. We found that the introduction of two Pd atoms in Au_8 clusters is sufficient to shift the 2D-3D transition to lower nuclearities compared to pure gold clusters and slightly enhances the Mulliken charge on the neighbor Au atoms due to the lower electron affinity of the Pd atoms. This characteristic of Au_6Pd_2 could facilitate electron density transfer into the $2\pi^*$ orbital of O_2 and inducing the binding of O_2 to Au_6Pd_2 cluster which are described in the following section.


2 Benzaldyhyde formation: pathways and energetics

The adsorption of the alcohols and O_2 on catalysts are considered as a primary step for the sequent aerobic oxidation of alcohols. We first study their adsorption behavior on Au_8 and Au_6Pd_2 clusters. The optimized adsorption complexes are shown in Figure 3 (Ads_A and Ads_B) and the structural parameters are provided in Table 2. After the isolated catalyst clusters are optimized, O_2 is initially placed on the apex Au atom which possess the highest negative charge followed by coadsorption with benzyl alcohol molecule.

Figure 3. Calculated energy profile and optimized structures for the aerobic oxidation of benzyl alcohol to benzaldehyde over Au₈ and Au₆Pd₂, Part I. All energy values are shown in kcal mol-1 and distances are expressed in Å.

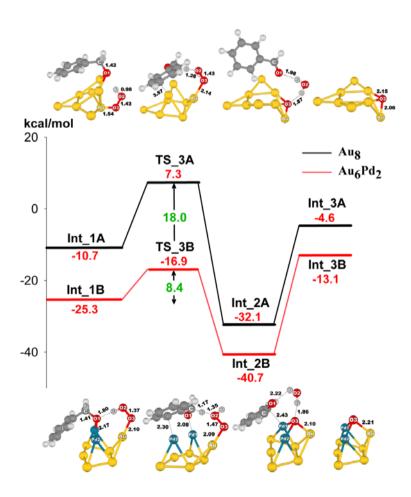
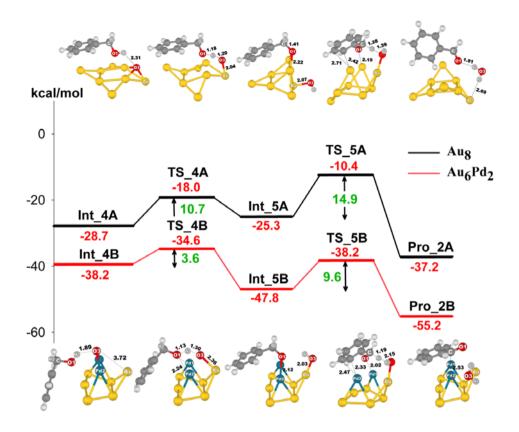

This adsorption mode of O₂ has recently been reported as the initial step for the oxidation of methanol on gold clusters because it shows a pronounced cooperative

Figure 4. Calculated energy profile and optimized structures for the aerobic oxidation of benzyl alcohol to benzaldehyde over Au₈ and Au₆Pd₂, Part I. All energy values are shown in kcal mol⁻¹ and distances are expressed in Å.


effect in the activation of molecular oxygen and possesses highly catalytic activity for the oxidation of methanol. Similarity, we found that O_2 acts as the charge acceptor from the Au8 and Au6Pd2 as providing evidences that Mulliken charges on apex Au atoms attached to O2 decrease from δq = -0.098 to -0.079 and δq = -0.110 to -0.065 for Au8 and Au6Pd2 cluster, respectively (Table 2) whereas the charges on the O2 molecule increase to δq = -0.219 and δq = -0.234 with respect to free O2 (δq = 0.0) for Au8 and Au6Pd2 cluster, respectively. Moreover, the overlapping of LUMOs between catalyst clusters and O2 of adsorption complexes depicted in Figure 4. also indicate the possibility of electron transfer from catalysts clusters to $2\pi^*$ of adsorbed O2. As the results, the O-O bond of the adsorbed O2 molecules are increased to 1.27 Å and 1.30 Å for Au8 and Au₆Pd₂ cluster, respectively. These O-O bond lengths are elongated to the value between that of the experimental values of O2 (1.207 Å) and O2- (1.347 Å) molecules. These results suggest that the electronic structure of the adsorbed O2 molecules are influenced by electron transfer from catalyst clusters, leading to the formation of a superoxo-like species which was experimentally observed as an active species in the selective oxidation of alcohol.60

As shown in Figure 3, The calculated adsorption energy of O_2 and benzyl alcohol on Au_6Pd_2 cluster is predicted to be 28.9 kcal mol-1 which is larger than that of obtained in the case of Au_8 cluster for 11.9 kcal mol-1. These results can be understood by analyzing the frontier molecular orbitals and charges on atoms of both adsorption complexes. Figure 4 shows that the HOMOs of bimetallic cluster are mostly located on Pd atoms and contacts with HOMOs of benzene fragment of benzyl alcohol whereas this characteristic is not observed over Au8. Moreover, the Mulliken charges analysis confirms that there are charges transferred from the benzene fragment of benzyl alcohol to Pd atoms in which the charges on the Pd atoms decrease from $\delta q = 0.147$ to 0.101. These results imply that once the adsorption complex between benzyl alcohol and O2 on gold-rich Au–Pd bimtallic surface is formed, the interaction between positively charged Pd atoms and benzyl alcohol via π -bond interaction and electrons transfer from catalyst cluster to O_2 are crucial to stabilize such adsorption complex.

Figure 5. Calculated energy profile and optimized structures for the aerobic oxidation of benzyl alcohol to benzaldehyde over Au₈ and Au₆Pd₂, Part II. All energy values are shown in kcal mol⁻¹ and distances are expressed in Å.

The roles of Pd are not only to enhance the electron density on the neighbor gold atoms and responsible for the stability the adsorption complex over Au₆Pd₂, but also significantly stabilize the corresponding transition structures. As can be seen in Figure 3, it appear that in the present of two Pd atoms of Au6Pd2, the transition state of H-abstraction by a superoxo-like species (TS_1B) is significantly more stable than that of Au8 (TS_1A) resulting in ~2.5 orders of magnitude of activation barrier lower than Au8 catalyst (5.1 vs. 13.5 kcal mol-1). The 2D to 3D evolution of gold cluster in TS 1A is not a surprise since the fully relaxed geometry optimization can change the cluster geometry considerably and/or its charge distribution, especially the adsorption near the apex, corner and edge sites. Consequently, the transition structure reorients itself to form the interaction between and benzene fragment of benzyl alcohol and gold cluster. The transition states lead to the formation of a hydroperoxyl-like species, AuOOH, (Int_1A and Int_1B) which is considered as the key reagents/intermediates in the oxidation of alcohols. The adsorption energies of these intermediates are estimated to be -10.7 and -25.3 kcal mol-1 for Au8 and Au₆Pd₂, respectively. The difference in the stability of the intermediates can be explained by the fact that the benzylic alkoxide in the latter case occupies a bridge position between two positively charged Pd atoms resulting in the stronger interaction which is also indicated by shorter bond distance of O-Pd compared with O-Au (2.17 vs 2.25 Å) [discuss charges]. Subsequently, these key intermediates can be transformed to either benzaldehyde and H2O (Figure 3) or benzaldehyde and H₂O (Figure 5) via the H_B-abstraction. Our calculation shows that the benzaldyhyde formation is energetically prefer to proceed via TS_3A and TS_3B (Figure 5) in which H_B being abstracted by the same oxygen atom involved the O-H bond dissociation of benzyl alcohol in the first transition state yielding as a consequent benzaldehyde and H2O coadsorp on the catalyst clusters. This elementary mechanism can be achieved by using the activation barriers of 18.0 and 8.4 kcal mol-1 for Au8 and Au6Pd2, respectively. Our calculated result is in comparable well with an experimental observation in which the use of molecular oxygen as oxidant in the oxidation of alcohols generates water as the byproduct. After overcoming the small barriers, TS_3A and TS_3B, benzaldehyde and H2O can be desorbed leaving chemisorbed atomic oxygen in the bridge positions on Au_8 and $\mathrm{Au}_6\mathrm{Pd}_2$.

Figure 6. Calculated energy profile and optimized structures for the aerobic oxidation of benzyl alcohol to benzaldehyde over Au₈ and Au₆Pd₂, Part III. All energy values are shown in kcal mol-1 and distances are expressed in Å

It is seen from Figure 6 that the chemisorbed atomic oxygen can be directly removed by the reaction with another benzyl alcohol. We further propose reaction pathway of benzaldyhyde formation which is generated in the same manner with reaction mechanisms described above, O–H bond dissociation followed by H $_{\beta}$ -abstraction of benzyl alcohol. This elementary mechanism is initiated by the adsorption of benzyl alcohol on catalysts forming the hydrogen bond between hydroxyl group and chemisorbed atomic oxygen with the calculated adsorption energies of -28.7 and -38.2 kcal mol-1 for Au $_{8}$ and Au $_{6}$ Pd $_{2}$, respectively. The adsorption energies are substantially affected by charge distribution and the relaxation near bridge positions of chemisorbed atomic oxygen. Table 4 shows that the charge distribution to chemisorbed atomic oxygen on Au $_{6}$ Pd2 is more pronounced than Au $_{8}$ ($\delta q = -0.663$ vs -0.612) leading to a strong hydrogen bonding and yielding a more stable adsorption complex. In the transition state, the O–H bond of benzyl alcohol is activated by chemisorbed atomic oxygen. We observe the dissociation of the O1–H1 bond and the association of the O3–H1 bond, respectively. As summarized in Table 4, the O1–H1 bond is

lengthened from 0.97 to 1.18 Å and 0.99 to 1.10 Å for Au₈ and Au₆Pd₂, respectively, whereas the O3–H1 distance contracts to 1.20 Å and 1.35 Å for Au₈ and Au₆Pd₂, respectively. In this configuration, the chemisorbed atomic oxygen is moved closer to the apex gold atom meanwhile the phenyl group of benzyl alcohol is only slightly affected in the course of the progression of the reaction. The activation barriers taken with respect to the adsorption complex are predicted to be 10.7 and 3.6 kcal mol-1 for Au₈ and Au₆Pd₂, respectively. These values are slightly lower than 13.5 and 5.1 kcal mol-1 obtained from O–H bond dissociation by superoxo-like species (TS_1A and TS_1B). Again, an explanation for the low activation barriers of this elementary step is suggested by the difference in charge distribution for the chemisorbed atomic oxygen on catalyst clusters. For example, the negative Mulliken charge on chemisorbed atomic oxygen of the Int_4A and Int_4B are larger than that on the O1 atom of superoxo-like species in the Ads_A and Ads_B (-0.612 vs. -0.578 and -0.663 vs. -0.580). Thus, the O–H bond cleavage activated by chemisorbed atomic oxygen is kinetically preferable than the superoxo-like species.

Table 2. Selected interatomic distances (Å) and charge parameters (Mulliken charge on atom) of adsorption complex, intermediates, transition states, and products for the aerobic oxidation of benzyl alcohol to benzaldehyde, Part I, on Au₈ and Au₆Pd₂.

	Adsorption		1 st TS		Int_1		2 nd TS		Product	
	Ads_A	Ads_B	TS_1A	TS_1B	Int_1A	Int_1B	TS_2A	TS_2B	Pro_A	Pro_B
$R_{ ext{O1-H1}}$	0.98	0.99	1.08	1.32	2.36	1.80	4.39	3.89	3.90	2.02
$R_{ m O2 ext{-}H1}$	1.85	1.72	1.38	1.10	0.98	0.99	0.97	0.97	0.97	0.98
$R_{ ext{O2-O3}}$	1.29	1.30	1.31	1.34	1.44	1.37	1.42	1.41	1.44	1.44
$R_{ m O3-Au}$	2.23	2.23	2.15	2.12	2.08	2.10	2.17	2.21	4.82	2.41
$R_{ m O2 ext{-}H2}$	4.12	3.74	3.10	2.83	5.11	3.75	2.17	2.26	1.84	1.90
$R_{ m O3-H2}$	4.93	4.73	4.22	4.05	6.07	4.79	1.37	1.76	0.98	0.98
$R_{ ext{C-O1}}$	1.40	1.40	1.41	1.40	1.42	1.41	1.33	1.34	1.22	1.23
$q_{ m Au}$	-0.079	-0.065	0.081	0.008	0.103	-0.049	0.087	-0.005	-0.104	-0.048
$q_{ m O1}$	-0.529	-0.524	-0.581	-0.592	-0.578	-0.580	-0.538	-0.499	0.423	-0.513
q_{O2}	-0.239	-0.266	-0.338	-0.295	-0.349	-0.283	-0.300	-0.293	-0.296	-0.318
q_{O3}	-0.219	-0.234	-0.256	-0.274	-0.384	-0.311	-0.401	-0.352	-0.366	-0.310
$q_{ m H1}$	0.357	0.380	0.473	0.490	0.390	0.407	0.368	0.366	0.384	0.377
$q_{ m H2}$	0.077	0.094	0.146	0.125	0.136	0.143	0.311	0.243	0.393	0.388
$q_{ m Pd1}$	-	0.010	-	0.174	-	0.202	-	0.193	-	-0.007
$q_{ m Pd2}$	-	0.010	-	0.039	-	0.202	-	0.099	-	0.060

The resulting benzylic alkoxide occupy a bridge position on Au8 and Au6Pd2 as it was found in Int_1A and Int_1B. Subsequently, the H_{β} being transferred to a surface hydroxyl group with the optimized C- H_{β} distances of 1.28 and 1.15 Å for Au_{8} and $Au_{6}Pd_{2}$,

respectively meanwhile the C–O bond length shortens to ~1.34 Å, indicating the characteristic of carbonyl

Table 3. Selected interatomic distances (Å) and charge parameters (Mulliken charge on atom) of intermediates, and transition states for the aerobic oxidation of benzyl alcohol to benzaldehyde, Part II, on Au₈ and Au₆Pd₂.

	Int_1 Int_1A Int_1B		3 rd TS		Int	:_2	Int_3		
			TS_3A TS_3B		Int_2A Int_2B		Int_3A	Int_3B	
$R_{ m O1 ext{-}H1}$	2.36	1.80	3.48	4.12	3.17	2.19	=	_	
$R_{ m O2 ext{-}H1}$	0.98	0.99	0.98	0.94	0.97	0.96	=	-	
$R_{ m O2\text{-}O3}$	1.44	1.37	1.43	1.47	2.76	2.78	-	-	
$R_{ m O3 ext{-}Au}$	2.08	2.10	2.16	2.09	2.04	2.10	-	-	
$R_{ m O2 ext{-}H2}$	5.11	3.75	1.28	1.35	0.97	0.97	-	_	
$R_{ m O3 ext{-}H2}$	6.07	4.79	2.14	2.41	1.87	1.86	=	-	
$R_{ ext{C-Ol}}$	1.42	1.41	1.31	1.37	1.22	1.23	_	-	
$q_{ m Au}$	0.103	-0.049	0.039	-0.035	0.247	0.112	0.226	0.070	
q_{Ol}	-0.578	-0.580	-0.494	-0.593	-0.398	-0.408	-	-	
q_{O2}	-0.283	-0.349	-0.280	-0.414	-0.651	-0.682	-	-	
q_{O3}	-0.384	-0.311	-0.353	-0.321	-0.654	-0.586	-0.502	-0.545	
$q_{ m H1}$	0.390	0.407	0.405	0.412	0.372	0.347	-	_	
$q_{ m H2}$	0.136	0.143	0.347	0.145	0.343	0.378	-	_	
$q_{ m Pd1}$	-	0.202	-	0.207	-	0.138	-	0.277	
$q_{ m Pd2}$	-	0.202	=	0.207	-	0.175	=	0.277	

group producing benzaldehyde and H_2O coadsorp on catalyst clusters. Comparing the activation barriers between proposed reaction pathways, we found that the elementary mechanism of H_β -abstraction requires more activation energies than that of the O-H bond dissociation for both catalysts. The similar trends has been recently reported by experimental and theoretical studies that the presence of chemisorbed oxygen atoms on the gold nanoparticles has a strong influence on the first step of the reaction, decreasing the activation energy for deprotonation of the alcohol hydroxyl group, but less enhance the dissociation of the C-H $_\beta$ bond. Therefore, the latter step can be considered as the rate determining step for alcohol oxidation on gold nanoclusters. Consequently, the products, benzaldehyde and H_2O are adsorbed at catalyst clusters with the calculated adsorption energies of -37.2 and -55.2 kcal mol-1 for Au_8 and Au_6Pd_2 respectively. These predicted reactions are exothermic, benzaldehyde and H_2O require desorption energies of 21.1 and 24.8 kcal mol⁻¹ for Au_8 and Au_6Pd_2 , respectively. Overall, reaction profiles presented in this study show that the presence of Pd in Au_6Pd_2 bimetallic cluster can significantly enhance the overall catalytic activity

Table 4. Selected interatomic distances (Å) and charge parameters (Mulliken charge on atom) of intermediates, transition states, and products for the aerobic oxidation of benzyl alcohol to benzaldehyde, Part III, on Au₈ and Au₆Pd₂.

	Int_4		4 th TS		Int_5		5 th TS		Product	
	Int_4A	Int_4B	TS_4A	TS_4B	Int_5A	Int_5B	TS_5A	TS_5B	Pro_2A	Pro_2B
$R_{\mathrm{O1-H1}}$	0.97	0.99	1.18	1.10	5.20	2.36	4.08	4.43	3.17	2.06
$R_{ m O3 ext{-}H1}$	2.31	1.73	1.20	1.35	0.97	0.97	1.39	0.97	0.96	0.97
$R_{ m O3 ext{-}Au}$	2.05	3.19	2.04	1.94	2.07	2.03	2.13	2.07	3.65	3.67
$R_{ m O3 ext{-}H2}$	4.59	3.33	3.70	3.78	6.16	4.54	1.39	2.15	0.97	0.96
$R_{ ext{C-O1}}$	1.41	1.38	1.40	1.42	1.41	1.41	1.34	1.35	1.22	1.23
$q_{ m Au}$	0.196	0.195	0.197	0.112	0.007	0.077	0.094	0.082	-0.088	-0.139
$q_{ m O1}$	-0.506	-0.580	-0.502	-0.570	-0.524	-0.573	-0.537	-0.560	-0.405	-0.461
q_{O3}	-0.612	-0.663	-0.610	-0.652	-0.609	-0.646	-0.612	-0.634	-0.641	-0.576
$q_{ m H1}$	0.372	0.396	0.320	0.490	0.320	0.340	0.346	0.328	0.356	0.364
$q_{ m H2}$	0.112	0.126	0.111	0.224	0.124	0.149	0.235	0.304	0.362	0.365
$q_{ m Pd1}$	-	0.279	-	0.266	-	0.281	_	0.257	-	0.097
$q_{ m Pd2}$	-	0.279	_	0.093	_	0.281	_	0.081	-	-0.023

compared to Au₈. This result can comparable well with the reported experimental study that the enhancement in the selectivity and conversion towards benzaldyhyde observed for goldrich Au–Pd catalysts, being maximized for Au₈₀–Pd₂₀, rather than for palladium-rich ones. In addition, the reaction mechanisms involved the hydride transfer directly to gold and palladium forming Au–H and Pd–H as intermediates on catalyst clusters enriched in the palladium atoms are of interesting. Further comprehensive investigations of the reaction mechanisms are underway. Finally we hope that our simplified investigation for aerobic oxidation of benzyl alcohol to benzaldehyde might help advance the development of designer multimetallic catalyst for aerobic oxidation of alcohols.

4. Conclusions

In the present study, we have shown how the presence of Pd in Au-Pd nanocluster can significantly affect the reaction mechanisms of the aerobic oxidation of benzyl alcohol to benzaldehyde. Our results can be summarized as follows:

- 1. The reaction is initiated by the activation of O_2 molecule on a low-coordinated Au atom forming a peroxide-like species followed by the hydrogen abstraction from the hydroxyl group of benzyl alcohol. Subsequently, $C-H_{\beta}$ bond dissociation occurs to produce either benzaldyhyde and H_2O_2 or benzaldyhyde and H_2O . Gold nanocluster has been demonstrated as an effective catalyst for the reaction, however significant improvement in the stability of the adsorbed substrates has been observed upon incorporation of Pd.
- 2. The promotional roles of Pd involve the enhancement in the electron distribution to next-nearest-neighbor gold atom that facilitates the activation of O₂ and substantially affects to the stability the adsorption complex and transition states yielding as a consequence the low activation barriers compared to gold nanocluster. The difference in activation energy barrier is also reasonably interpreted by the NBO analysis of the transition states.
- 3. Our calculations indicate that the reaction preferentially proceeds via deprotonation of O–H bond of benzyl alcohol followed by C–H $_{\beta}$ bond dissociation producing benzaldehyde and H $_2$ O. Another possible reaction pathway for H $_2$ O $_2$ formation can also be responsible for the reasonable catalytic activity of this reaction because of the low activation barrier.
- 4. The calculated energy profiles show that the activation of the O–H bond of benzyl alcohol is significantly facilitated by the presence of active oxygen species bound to the catalyst nanoclusters (superoxide-like and chemisorbed atomic oxygen species,), while the effect on the barrier for C–H_β bond dissociation is much less. Thus, the latter step is considered to be the rate determining step which is also in agreement with experimental observations.

Acknowledgments

K.B. gratefully acknowledges the support from The Thailand Research Fund (Project No. MRG5980142) and Commission on Higher Education, Ministry of Education, THAILAND. The computations were partly performed using computer facility at Large scale Simulation Research Laboratory (LSR), National e-Science Infrastructure Consortium, THAILAND.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ระบุชื่อผู้แต่ง ชื่อเรื่อง ชื่อวารสาร ปี เล่มที่ เลขที่ และหน้า) หรือผลงานตามที่คาดไว้ในสัญญาโครงการ

ผลงานวิจัยกำลังอยู่ในระหว่างการพิจารณาจากผู้ทรงคุณวุฒิ (reviewers) ของ วารสารวิชาการระดับนานาชาติ

- 2. อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุม วิชาการ หนังสือ การจดสิทธิบัตร)
 - 2.1 งานประชุมวิชาการระดับนานาชาติ "Pure and Applied Chemistry International Conference 2017 (PACCON 2017)" ระหว่างวันที่ 2-3 กุมภาพันธ์ 2560 ณ โรงแรม เซ็นทราศูนย์ราชการและคอนเวนชั่นเซ็นเตอร์ ถนนแจ้งวัฒนะ กรุงเทพมหานคร
 - 2.2 The 21th International Annual Symposium on Computational Science and Engineering (ANSCSE21) ระหว่างวันพฤหัสบดีที่ 3 สิงหาคม ถึงวันศุกร์ที่ 4 สิงหาคม 2560 ณ. อุทยานวิทยาศาสตร์ประเทศไทย จังหวัด ปทุมธานี
 - 2.3 การประชุมประจำปี "นักวิจัยรุ่นใหม่...พบ...เมธีวิจัยอาวุโส สกว." ครั้งที่ 17 ระหว่าง วันพุธที่ 10 – วันศุกร์ที่ 12 มกราคม พ.ศ. 2561 ณ โรงแรมเดอะรีเจ้นท์ ชะอำ บีช รี สอร์ท จังหวัดเพชรบุรี