

รายงานวิจัยฉบับสมบูรณ์

โครงการ การสำรวจกาแล็กซี่ที่ปลดปล่อยก๊าซใน ช่วงเวลา 9 พันล้านปีที่ผ่านมาของจักรวาล

โดย ดร. สุรพงษ์ อยู่มา

เดือน ปี ที่เสร็จโครงการ เมษายน พ.ศ. 2561

สัญญาเลขที่ MRG5980153

รายงานวิจัยฉบับสมบูรณ์

โครงการ การสำรวจกาแล็กซี่ที่ปลดปล่อยก๊าซใน ช่วงเวลา 9 พันล้านปีที่ผ่านมาของจักรวาล

โดย ดร. สุรพงษ์ อยู่มา ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษาและสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Abstract

Project Code: MRG5980153

Project Title: Complete Survey of Galaxies with Large-Scale Outflow over the Past 9

Billion Years of the Universe

Investigator: Dr. Suraphong Yuma

Department of Physics, Faculty of Science, Mahidol University

E-mail Address: suraphong.yum@mahidol.ac.th

Project Period: 2 years (May 2016 - April 2018)

We conduct a systematic search for galaxies with [OII]λ3727, [OIII]λ5007, and $H\alpha\lambda6563$ emission lines extended over at least 30 kpc (9x10¹⁷ km) at z=0.1-1.5 covering the past 9 billion years of the universe. These extended emission-line galaxies are thought to be in the middle of gas outflow process on a galactic scale large enough to prevent star forming activity in the galaxies. We find 77 galaxies at z=0.40-1.46 based on our new selection method that securely identify galaxies with the extended emission line measured down to 1.2x10⁻¹⁸ erg/s/cm²/kpc². We identify activities of an active galactic nucleus (AGN) in eight galaxies with X-ray and radio data and find that the fraction of AGN contribution increases with increasing the isophotal area criterion of the extended emission. With the Kolmogorov-Smirnov and Anderson-Darling tests, we confirm the difference in stellar mass distribution between galaxies with large-scale outflowing gas and normal star forming galaxies at 90% confidence level, suggesting that galactic-scale outflows tend to be more prominent in more massive galaxies. Exploiting our sample homogeneously selected over large area, we derive their number densities and find that the number densities decrease drastically with redshifts toward the present-day universe at a rate larger than that of the decrease of cosmic star formation densities.

Keywords: galaxies: evolution, galaxies: formation, galaxies: high-redshift

บทคัดย่อ

รหัสโครงการ: MRG5980153

ชื่อโครงการ: การสำรวจกาแล็กซี่ที่ปลดปล่อยก๊าซในช่วงเวลา 9 พันล้านปีที่ผ่านมาของจักรวาล

ชื่อนักวิจัย: ดร. สุรพงษ์ อยู่มา

ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

E-mail Address: suraphong.yum@mahidol.ac.th

ระยะเวลาโครงการ: 2 ปี (พฤษภาคม 2559 – เมษายน 2561)

กาแล็กซี่ คือ ระบบที่ประกอบด้วยดาวฤกษ์นับล้านๆดวง และกลุ่มก๊าซชนิดต่างๆมากมาย เช่น กาแล็กซี่ทางช้างเผือกซึ่งเป็นที่อยู่ของระบบสุริยะของเรา จักรวาลประกอบไปด้วยกาแล็กซี่หลาย ชนิดทั้งที่เป็นรูปกังหันที่กำลังสร้างดาวฤกษ์ใหม่ๆ และแบบรีที่ไม่มีการสร้างดาวใหม่แล้ว งานวิจัยชิ้นนี้ เป็นการสำรวจหากาแล็กซี่แบบกังหัน ที่กำลังจะเปลี่ยนไปเป็นกาแล็กซี่แบบรี โดยการปลดปล่อยก๊าซ ออกจากกาแล็กซี่ซึ่งเป็นเหตุให้การสร้างดาวหยุดลง กระบวนการนี้นับเป็นกระบวนการที่สำคัญอย่าง มาก ในการทำความเข้าใจการเกิดและวิวัฒนาการของกาแล็กซึ่ในจักรวาล **เราได้คิดค้นวิธีใหม่ในการ** ค้นหากาแล็กซี่ที่อยู่ในกระบวนการหยุดสร้างดาวอย่างมีระบบ โดยการใช้ระเบียบขั้นตอนทาง **คอมพิวเตอร์ เพื่อให้สามารถคัดกรองกาแล็กซี่ได้ครั้งละหลายพันระบบ** นั่นคือ เราจะสามารถ มีกาแล็กซี่ที่อยู่ในกระบวนการนี้เป็นปริมาณเท่าไรในช่วงเวลาหนึ่งๆ คำนวณได้ว่า งานวิจัยนี้จึงสามารถนำไปประยุกต์ใช้กับการสำรวจท้องฟ้าขนาดใหญ่ในอนาคตได้เป็นอย่างดี งานวิจัยนี้ เราสำรวจกาแล็กซี่ทั้งหมดในพื้นที่หนึ่งจากช่วงเวลา 9 พันล้านปีที่แล้วจนถึงปัจจุบัน และ พบว่าปริมาณกาแล็กซึ่ชนิดนี้ที่แต่ละช่วงอายุของจักรวาลลดลงอย่างมีนัยสำคัญจากเมื่อ9 พันล้านปีที่ แล้ว วิวัฒนาการนี้ สอดคล้องกับวิวัฒนาการของอัตราการสร้างดาวฤกษ์ของจักรวาลที่ลดลงเมื่อเวลา เข้าใกล้ปัจจุบันมากขึ้น อัตราการสร้างดาวฤกษ์ที่ลดลงของจักรวาล อาจเป็นผลส่วนหนึ่งมาจาก กระบวนการปลดปล่อยก๊าซก็เป็นได้ อย่างไรก็ตาม ขนาดของการสำรวจที่จำกัดทำให้ในครั้งนี้เราไม่ สามารถศึกษาปริมาณกาแล็กซึ่ชนิดนี้ที่เวลาใกล้ๆกับปัจจุบันได้ เราจำเป็นจะต้องขยายการสำรวจ ออกไปโดยใช้ข้อมูลที่มีขนาดใหญ่ขึ้น

คำหลัก: วิวัฒนาการของกาแล็กซี่, การเกิดของกาแล็กซี่, กาแล็กซี่ที่อยู่ไกล

1 Introduction to research problem and its significance

In the present-day universe (z=0), galaxies containing billions of stars can be divided into two main categories according to their appearances: a spiral/disk galaxy, and an elliptical galaxy (Hubble 1926, ApJ, 64, 321). A spiral or disk galaxy is a galaxy that consists of a flat, rotating disk with spiral arms and a concentrate bulge at the center. It contains gas and dust, which are crucial ingredients in star formation process, and forms new stars at star formation rate (SFR) in the order of a few to hundreds of solar masses per year. In contrast, an elliptical galaxy is featureless, contains mostly old stars, and rarely forms new stars. This morphological classification scheme of galaxies is so called "Hubble sequence" or "Hubble tuning fork".

Deep sky surveys reveal the existence of the Hubble sequence up to z=1 covering 7.7 billion years of the universe. The number density and stellar mass of overall galaxies and spiral galaxies remain constant since z=1, whereas those of elliptical galaxies significantly increase with decreasing redshift (McIntosh et al. 2005, ApJ, 632, 191; Bundy et al. 2006, ApJ, 651, 120; Faber et al. 2007, ApJ, 665, 265). Furthermore, the luminosity density, the total amount of light emitted by galaxies per unit sky volume, decreases consistently for spiral galaxies but remains constant for the elliptical galaxies. The results suggest that star formation in spiral galaxies needs to be halted causing them to migrate into the elliptical galaxies.

A crucial mechanism that prevents the galaxy from forming new stars is called "the quenching process," which involves hot gas flowing out of the galaxies. Despite the existence of outflow in all galaxies, only a small fraction of galaxies shows gas outflow with velocity high enough to escape the potential well of their dark matter halos and are probably in the middle of the quenching process of star formation. Gas in most star-forming galaxies may be expelled out to the interstellar medium, but eventually return to the center of galaxies. The exact fraction of galaxies showing large-scale outflow strong enough to quench the star formation at each epoch of the universe are still unknown. The systematic survey of galaxies experiencing large-scale outflow is thus desirable.

In 2013, we successfully introduced the first systematic search for galaxies with large-scale outflow feature, which we call an "[OII] blob" or "OIIB" (Yuma et al. 2013, ApJ, 779, 53). Extended profile of metal emission (e.g., oxygen emission) favors the gas outflow scenario rather than inflow of pristine gas from metal-poor IGM. With deep narrowband image covering a survey volume of 1.9×10^5 Mpc³, we discovered a giant [OII] blob, named OIIB1, with a spatial extent of [OII] emission over 75 kpc and identified a total of 12 OIIBs with >30-kpc extension at z~1.2. OIIB1 is identified as an active galactic nucleus (AGN), while the others are normal star-forming galaxies. As a systematic search, we are able to determine the number density of large-scale

outflowing galaxies for the first time. The number density of OIIB1-type giant blobs with an AGN is $5x10^{-6}$ Mpc⁻³ at $z\sim1.2$, which is comparable to that of AGNs driving outflow at the similar redshift. It is implied from the number density of small OIIBs that only 3% of star-forming galaxies at $z\sim1$ are quenching the star formation through an outflow involving extended [OII] emission. This research has been in the press release of the University of Tokyo and Subaru observatory, and it was on the news throughout Japan and the USA.

In this project, we expand our systematic search toward higher and lower redshifts to obtain more insight in the evolution of galactic-scale outflow and subsequent evolution of star-formation quenching process of galaxies. We applied the idea of searching for extended [OII] emission indicating an outflow to other optical emission lines, i.e., [OIII] and H alpha (hereafter Ha), both of which are strong emission lines in star-forming galaxies. Although the Ha emission line is not metal emission that shares the same hypothesis of being gas outflow from the galaxies as [OII] or [OIII] emission, the extended Ha emission seen in local starbursts with strong outflow like M82 suggests that spatially extended Ha emission line can also be used as an indicator for large-scale outflow. With deep and large-area imaging data from the Subaru-XMM Deep Sky survey (SXDS), we were able to carry out systematic search for large-scale outflowing galaxies in various epochs ranging from the present day universe (z~0) to z~1.5 depending on the emission lines.

2 Objectives

- 2.1 To pursue a systematic survey of galaxies with large-scale outflow or blobs at redshifts of z=0-1.5, covering the past 9 billion years of the universe.
- 2.2 To study physical properties of blobs including stellar mass, age, and SFR and their evolution toward lower redshifts.
- 2.3 To understand the evolution of AGN/stellar feedback and subsequent quenching process that turns star-forming galaxies into the passively evolving elliptical galaxies.

3 Methodology

3.1 Creating photometric catalog of all objects in SXDS

We made a photometric catalog that contains magnitudes of objects in the SXDS field. The catalog does not contain only the objects we are interested in, but also includes all stars and nearby galaxies that happen to be in the same field. Thus the accuracy of our catalog can be examined by checking the well-known objects in the SXDS/UDS field that already have published photometry.

3.2 Identifying [OII], [OIII], Ha emitters at z=0-1.5

We used the narrowband technique to isolate star-forming galaxies at the specific redshifts with strong emission lines, which we call emitters. The strong emission line that falls into the narrowband filter can be [OII] 3727, [OIII] 5007, and Ha 6563 depending on redshifts of the galaxies. We classified each type of emitters by determining their photometric redshifts using the photometric catalog constructed in 3.1. At the end of this step, we have catalog of [OII], [OIII], and Ha emitters at z=0-1.5 with strong [OII], [OIII], Ha emission, respectively.

3.3 Constructing images that contain only the emission line

Because the narrowband image contains the light from both an emission line and stellar continuum of the galaxy, we need to subtract the interpolated continuum from the narrowband images to make the emission-line images.

3.4 <u>Isolating [OII], [OIII], Ha blobs with galactic-scale outflow at z=0-1.5</u>

From the entire sample of [OII], [OII], Ha emitters at z=0-1.5 obtained in step 3.2, we selected only those with spatial extent over 30 kpc by using the Pl's own technique introduced in Yuma et al. (2013).

3.5 Examining physical properties of all blobs by SED fitting

We investigated and discussed the correlation between the physical properties of blobs and the extension of their emission lines. The evolution of these properties of blobs are discussed. Furthermore, it is also interesting to figure out any physical difference between blobs with extended emission lines and normal emitters at the same redshifts.

3.6 <u>Investigating number densities of blobs with large-scale outflow at each epoch</u> and their evolution with time

As a systematic search, we were able to determine the number densities of blobs at each specific epoch of the universe selected in 3.4, and finally discuss their evolution and subsequent quenching process from z=1.5 to z=0.

4. Results (Note that the results are already published in The Astrophysical Journal)

4.1 Ha, [OII], and [OIII] blobs at z=0.4-1.5

I searched for the galaxies with a spatially extended [OII], [OIII], or Ha emission line, which I call [OII], [OIII], or Ha blobs respectively, at z=0.1-1.5. However, I found the blobs only at z=0.40. Galaxies with the extended Ha emission line or Ha blobs have been found only at z=0.40. The largest Ha blobs at z=0.40 shows the Ha emission line over a physical area of 1549 kpc². This object is spectroscopically confirmed to be at z=0.407 (Simpson et al. 2012). The extended Ha flux of this blob is $1.18x10^{-15}$ erg/s/cm²/kpc². The Ha luminosity is $6.94x10^{41}$ erg/s. It is identified as a radio source

with 1.4-GHz flux density of 120 $\,\mu$ Jy (C. Simpson in private communication). Hence this Ha blob is likely to be powered by an AGN.

Similarly, the blobs with other extended emission lines are obtained. Four and thirteen [OIII] blobs with the isophotal area of [OIII] emission over 900 kpc^2 are obtained at z=0.63 and z=0.83, respectively. At higher redshifts (z>1), blobs are selected with the extended [OII] emission line. The table below summarizes the number of blobs I obtained at each redshift.

Redshift	Emission line	Number of blobs ^a
0.40	$\mathrm{H}\alpha\lambda6563$	6 (2/33%)
0.63 0.83	[О III] $\lambda 5007$ [О III] $\lambda 5007$	4 (0) 13 (0)
1.19 1.46	[Ο 11]λ3727 [Ο 11]λ3727	11 (2/18%) 43 (4/9%)

^aParentheses show the number of blobs with X-ray (0.5-10 keV) or radio (1.4GHz) counterpart, which are considered to host AGNs, and the percentage of possible AGN fraction.

Table 1: Summary of final sample of blobs

4.2 AGN Contribution

With very large spatial extent of the emission line, the blobs are possibly powered by the feedback from an active galactic nucleus (AGN). The contribution of an AGN is investigated by crossmatching the blob samples with the X-ray and radio catalogs by Ueda et al. (2008) and Simpson et al. (2012), respectively. I consider the blob as an AGN host if it has either an X-ray or radio counterpart. The numbers of blobs that have X-ray and/or radio counterparts are listed in the parentheses in Table 1. Although a majority of the blobs have no X-ray and/or radio counterpart, they can possibly host X-ray faint, radio-quiet, and/or heavily obscured AGN. Therefore, the percentage of the AGN contribution in Table 1 can be considered as a lower limit.

4.3 Stellar properties

The stellar properties of all blobs at z=0.40-1.46 have been derived by the SED fitting method. The SED fitting results of the blobs are carefully compared with those of the emitters that have the same emission-line fluxes. It is found at all redshifts that the blobs have obviously larger stellar masses than the emitters at the same redshift. With the Kolmogorov-Smirnov (KS) test, we can reject the null hypothesis that the Ha blobs and emitters at z=0.40 are from the same distribution at the 90%

confidence level. Similarly, we can reject the null hypothesis for being drawn from the same distributions at the 99% confidence level for [OII] blobs at z=1.19 a and at the 90% confidence level for [OII] blobs at z=1.46. In addition to the KS test, we perform the Anderson-Darling (AD) test, which is more sensitive than the KS test, to examine the histograms. The results from the AD test are consistent with those by the KS test. From both statistical tests, the blobs with spatially extended Ha or [OII] emission lines are among those of the most massive emitters at the redshift. It is indicated that large-scale outflows are more prominent in the massive star-forming galaxies.

4.4 Number density evolution of blobs

So far, I investigate the evolution of number densities separately for each type of blobs according to the emission lines used to select them. I cannot directly compare blobs selected across different emission lines. In order to make a fair comparison across all types of blobs, I convert the surface limit of each emission-line luminosity into the surface SFR (Σ SFR) limit and plot the number densities of all types of blobs selected down to the identical surface SFR limit.

Unfortunately, we only obtain the number densities of blobs at the highest redshifts (z=1.19 and z=1.46), while an upper limit is shown at z<1.0. The number densities of blobs at z=0.83 tend to decrease drastically toward lower redshifts. This decrease is even more rapid than the decline of cosmic star formation density, but it seems to be roughly comparable to the decline of ULIRGs. At z<0.83, the upper limits are not useful to interpret as the survey volume is probably too small to draw any conclusion. Larger and deeper survey is desirable to search for blobs with extended emission lines at low redshifts.

I develop the method to select the blobs with spatially extended emission lines in order to systematically study the large-scale outflow. If we naively consider all blobs as a galactic-scale outflow, we will be able to interpret the evolution of the blobs as that of the outflow events. Therefore, it is implied that the large-scale outflow events decrease significantly with redshifts at more rapid rate than the decline of the cosmic star formation density

Conclusion

Galaxies in the universe can be largely divided into two populations: young, starforming spiral galaxy, and old, passively evolving elliptical galaxy. It has been long known that a spiral galaxy stops forming new stars and eventually turns into the elliptical one at some point in the universe. However, the physical mechanism responsible for quenching the star formation process is still unclear. Gas outflow at large scale is considered one of the plausible scenarios. This project aims to study the evolution of the large-scale outflow at each epoch of the universe and ultimately to understand the quenching process that turns star-forming galaxies into the elliptical ones. To do so, I conduct the systematic survey of galaxies exhibiting large-scale outflow at redshifts of z=0.1-1.5 covering the past 9 billion years of the universe.

I started with creating the photometric catalogs of both stars and galaxies in the Subaru XMM Deep Survey (SXDS) field. According to the expansion of the universe, light from distant galaxies is shifted redward, which is so called "redshift." The galaxies with strong [OII]3727, [OIII]5007, or Ha6563 emission lines at different redshifts are then identified with the narrowband technique that uses the filter with a narrow wavelength width of about 100 A to detect the emission lines. Among 5843 galaxies at z=0.1-1.5, I select 77 galaxies at z=0.4-1.5 with spatially extended [OII], [OIII], or Ha emission lines, which I call [OII], [OIII], or Ha blobs, respectively. I develop a new selection method that is able to securely select galaxies with genuine extension of gas emission. The extended emission beyond the stellar component of the galaxy is thought to be hot metal-rich gas flowing out of the galaxy rather than pristine gas inflowing from the metal-poor intergalactic medium. The galactic-scale outflow is thought to be fueled by either stellar feedback from supernova or feedback from active galactic nuclei (AGN). I identify AGN activities in 8 blobs with X-ray and radio data, and find that the fraction of AGN contribution increases with increasing isophotal area of the extended emission. I further investigate the stellar populations of all blobs by spectral energy distribution fitting. I am able to confirm that the stellar-mass distributions of Ha and [OII] blobs are not drawn from those of the emitters at the >90% confidence level in that Ha and [OII] blobs are located at the massive end of the distributions. It is suggested that galacticscale outflows tend to be more prominent in more massive star-forming galaxies.

ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

ในงานวิจัยนี้ ถึงแม้เราสามารถหาได้ว่าที่แต่ละช่วงอายุของจักรวาลนั้น มีกาแล็กซี่ที่ ปลดปล่อยก๊าซออกเป็นบริเวณกว้างเท่าไร แล้วกาแล็กซี่เหล่านี้กำลังเปลี่ยนเป็นกาแล็กซี่ที่ไม่ สร้างดาวอีกแล้วหรือไม่ แต่เรายังไม่สามารถเปรียบเทียบหาวิวัฒนาการของกาแล็กซี่เหล่านี้ เทียบกันหลายๆ ช่วงอายุของจักรวาลได้ เนื่องจากการสำรวจของเรายังมีขนาดเล็กเกินไป หนทางในการทำวิจัยในอนาคต คือ การขยายการสำรวจออกไปให้ครอบคลุมพื้นที่มากขึ้น โดย ตัวผู้ทำวิจัยนี้ ได้ขอทุนพัฒนาศักยภาพอาจารย์รุ่นใหม่ของสกว.อีกรอบ เพื่อสานต่องานวิจัยนี้ให้ สมบูรณ์แบบมากขึ้น

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

- 1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ระบุชื่อผู้แต่ง ชื่อเรื่อง ชื่อวารสาร ปี เล่มที่ เลขที่ และหน้า) หรือผลงานตามที่คาดไว้ในสัญญาโครงการ
 - 1.1 **S. Yuma**, M. Ouchi, A. B. Drake, S. Fujimoto, T. Kojima, Y. Sugahara, "Systematic Survey for [OII], [OIII], and Ha Blobs at z=0.1-1.5: The Implication for Evoltuion of Galactic-scale Outflow," The Astrophysical Journal, 841, 93, 1-17, 2017 (Impact Factor 5.533)
 - 1.2 Y. Ono, M. Ouchi, ..., **S. Yuma**, et al., "Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV luminosity functions at z~4-7 derived with the half-million dropouts on the 100 deg² sky," Publications of the Astronomical Society of Japan, 70 (SP1), S10, 1-29, 2018 (Impact factor 1.972)
 - 1.3 T. Shibuya, M. Ouchi, ..., **S. Yuma**, et al., "SILVERRUSH. II. First catalogs and properties of ~2000 Lya emitters and blobs at z~6-7 identified over the 14-21 deg² sky," Publications of the Astronomical Society of Japan, 70 (SP1), S14, 1-20, 2018 (Impact factor 1.972)
- 2. การนำผลงานวิจัยไปใช้ประโยชน์
 - 2.1 เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สร้างนักวิจัยใหม่)
 - 2.1.1 กาแล็กซี่ที่ค้นพบในงานวิจัยครั้งนี้ สามารถใช้เป็นตัวอย่างเพื่อศึกษาต่อ ยอดลงไปในรายละเอียดของตัวกาแล็กซี่แต่ละกาแล็กซี่ได้ ซึ่งทำให้เรา มีความเข้าใจในกระบวนการเกิดการปลดปล่อยก๊าซของกาแล็กซี่ได้ มากขึ้น
 - 2.1.2 มีนักศึกษาระดับปริญญาตรีของมหาวิทยาลัยมหิดลได้เข้ามาร่วมทำ วิจัยในหัวข้อนี้ ตรงนี้นับเป็นการเพิ่มประสบการณ์ในการทำวิจัยและ เตรียมความพร้อมให้กับนักศึกษาเพื่อจะนำไปใช้ในการศึกษาต่อขั้นสูง ต่อไป
- 3. อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุมวิชาการ หนังสือ การจดสิทธิบัตร)
 - 3.1 **S. Yuma**, "Systematic Survey for [OII], [OIII], and Ha Blobs at z=0.1-1.5: The Implication for Evoltuion of Galactic-scale Outflow," Tokyo Spring Cosmic Lyman-Alpha Workshop (Sakura-CLAW), March 26-30, 2018, Tokyo, Japan (poster)
 - 3.2 **S. Yuma**, A. B. Drake, C. Simpson, M. Ouchi, "Evolution of large-scale outflow over the past 9 billion years of the Universe," Siam Physics Congress, June 8-10, 2016, Ubon Ratchathani, Thailand (oral)