Abstract

Project Code: MRG5980148

Project Title: The Synthesis of ε -Caprolactone from 1,6-Hexanediol Oxidation Using Air-Stable Ruthenium Complexes as a Catalyst and Molecular Oxygen as a Hydrogen Acceptor

Investigator: KITTISAK CHOOJUN

E-mail Address: kittisak.choojun@gmail.com

Project Period: 2 years

Abstract:

The $(p\text{-cymene})\text{RuCl}_2(L)$ and $(p\text{-cymene})\text{RuCl}_2(L')$ where L =phosphine ligands including PPh₃, PCy₃, P(OPh)₃, PO(Ph)₂(OC₂H₅), dppm, and L' = pyridine ligands including 4-diMepy, 4-Mepy, py, 4^{-t} Bupy, 2,4-Cl₂py, and 4-CF₃py, were prepared and used as a catalyst for 1,6-hexanediol (1,6-HD) oxidation to ε -caprolactone (ε -CL). The x-ray crystallography of (pcymene)RuCl₂(4-^tBupy) complex shows the distorted pseudo-tetrahedral structure where the Ru-N bond and angles are quite similar to those pyridine derivatives. The centroid(p-cymene)-Ru-Cl angle (pocket site) of (pcymene)RuCl₂(L') complexes is larger than those of (p-cymene)RuCl₂(L) complexes (127-129, 123-126 Å, respectively). The activity of 1,6-HD oxidation using (p-cymene)RuCl₂(L) as a catalysts increases from 0.0125, $4.37, 7.25, 14.7, \text{ to } 192 \text{ (x } 10^{-3} \text{ s}^{-1}) \text{ for } PCy_3, P(OPh)_3, PO(Ph_2)(OC_2H_5), PPh_3,$ and dppm, respectively, despite the decrease in steric hindrance of phosphine ligands. Furthermore, the linear correlation between 1,6-HD conversion and pocket site (centroid(p-cymene)-Ru-Cl angle) of (p-cymene)RuCl₂(L) complexes suggests that the reaction proceeds via the interchange associative mechanism. In sharp contrast, for (p-cymene)RuCl₂(L') complexes, the similar k_{app} (~10 x 10⁻³ s⁻¹) was obtained despite the difference in steric hindrance of pyridine derivative ligands. This leads to the suggestion of interchange dissociative mechanism. Despite the different Ru complexes, ϵ -CL selectivity only depends on the 1,6-HD conversion. The presence of bases significantly enhanced the reaction activity; however, deactivation of Ru complexes was observed due to a side reaction with metyl *iso*-butyl carbinol (MIBC) produced during the reaction. In addition, the stronger the base the lower the conversion ($K_2CO_3 < KOH < KO'Bu$) as it promotes the side reaction as relatively faster rate.

Keywords: Oppenaur oxidation, Ruthenium complexes, Caprolactone