

เอกสารแนบท้ายเลข 2**Abstract**

Project Code : MRG 5980219

Project Title : Novel Zn/MnO<sub>2</sub> battery with continuous geopolymers matrix

Investigator : Dr.Kaewta Jetsrisuparb

Faculty of Engineering, Khonkaen University

E-mail Address : kaewta@kku.ac.th

Project Period : May 2, 2016 – May 1, 2018

Continuous worldwide economic development and population growth have steeply increased the demand for energy storage devices. For this purpose, batteries are frequently used, which require high stability, high power, high energy density and low cost. The state-of-the-art Li-ion battery has achieved a durability of several thousands of hours and delivers both high power and high energy density; nevertheless, scarcity and safety issues of lithium cannot be ignored. This drives the need for alternative energy storage systems. In the present study, zinc anode with geopolymers binder was prepared and its potential application as anode materials for Zn/MnO<sub>2</sub> battery and alkaline water electrolysis has been investigated. Zinc has received considerable attention as anode material for battery applications due to its attractive cost, safety and availability. The use of geopolymers as electrode binder has been motivated by the ease of preparation, low cost, and design flexibility. In addition, geopolymers matrix contains a pore solution that may serve as electrolyte, facilitating ion transfer. The mixed ionic/electronic property of the geopolymers possesses potential as battery materials. Cyclic voltammetry (CV) has been carried out to characterize the electrochemical behavior of the electrodes composed of zinc powder, fly ash geopolymers and graphite or multiwalled carbon nanotubes (MWCNT). The prepared electrodes containing geopolymers binder suffer from its high resistance due to the formation of insulation layer of ZnO as well as the insulation property of geopolymers. The lack of high conductivity makes the prepared electrode not suitable as battery materials yet the prepared electrode containing MWCNT may be attractive as anode for alkaline water electrolysis for hydrogen production. The FE-SEM images indicated that the composite electrodes containing MWCNT were better dispersed than those containing graphite. The surface morphology, homogeneity and chemical

compositions lead to the change of the electrocatalyst activity towards oxygen evolution reaction (OER).

**Keywords :** Geopolymer, carbon nanotubes, alkaline water electrolysis, Zn/MnO<sub>2</sub> battery

### บทคัดย่อ

รหัสโครงการ : MRG 5980219

ชื่อโครงการ : Zn/MnO<sub>2</sub> แบตเตอรี่ที่ทำโดยจีโอโพลิเมอร์

ชื่อนักวิจัย : ดร.แก้วตา เจตครีสภพ

หน่วยงาน คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

E-mail Address : kaewta@kku.ac.th

ระยะเวลาโครงการ : 2 พฤษภาคม พ.ศ. 2559 ถึงวันที่ 1 พฤษภาคม พ.ศ. 2561

การพัฒนาทางเศรษฐกิจและการเพิ่มขึ้นของประชากรทำให้ความต้องการพลังงานมีมากขึ้น เครื่องมือที่ใช้ในการเก็บกักพลังงานที่มักถูกนำมาใช้ได้แก่ แบตเตอรี่ แบตเตอรี่คือ อุปกรณ์ที่ใช้จัดเก็บพลังงาน ซึ่งแบตเตอรี่ที่นิยมใช้กันมากในปัจจุบันคือ แบตเตอรี่ชั้นิด ลิเทียม-ไอออน เนื่องจากค่าพลังงานต่อน้ำหนักแบตเตอรี่สูง สามารถใช้ได้นานเป็นพันชั่วโมง และความสามารถในการรีชาร์จเพื่อนำกลับมาใช้ใหม่ได้ แต่อย่างไรก็ตาม แบตเตอรี่ชั้นิด ลิเทียม-ไอออน ก็ยังมีปัญหาในเรื่องประสิทธิภาพของแบตเตอรี่ที่มีอัตราการจ่ายกระแสนั้นยังไม่สูง รวมถึงปัญหาเรื่องความปลดภัยจากตัวลิเทียมและปริมาณลิเทียมซึ่งมีจำกัด จึงมีความจำเป็นต้องหาทางเลือกอื่นเพื่อใช้เก็บกักพลังงาน ในงานวิจัยนี้ได้พัฒนาขั้วสังกะสีแอนโอดที่มีจีโอโพลิเมอร์เป็นวัสดุเชื่อมประสานขึ้น และศึกษาความเป็นไปได้ในการนำมาใช้เป็นขั้วใน แบตเตอรี่สังกะสี/แมงกานีสไดออกไซด์ (Zn/MnO<sub>2</sub> battery) และเป็นขั้วที่ใช้ในการผลิตไฮโดรเจนจากการบวนการแยกน้ำด้วยไฟฟ้า (alkaline water electrolysis) สังกะสีไดรับความสนใจเป็นวัสดุแอนโอดในแบตเตอรี่เนื่องจากค่าถูก ความปลดภัย และปริมาณที่มีค่อนข้างมาก ส่วนการนำจีโอโพลิเมอร์มาใช้เป็นวัสดุเชื่อมประสานนั้นเนื่องจากสามารถขึ้นรูปได้ง่ายและราคาไม่แพง โครงสร้างของจีโอโพลิเมอร์ประกอบด้วยรูพรุนซึ่งมีสารละลายบรรจุไฮอนอยู่ จึงทำให้สามารถใช้เป็นอิเล็กโทรไลต์และช่วยการส่งผ่านไฮอนได้ คุณสมบัติการนำไฮอนและการนำไปใช้ไฟฟ้าของจีโอโพลิเมอร์จึงนับว่าจะมีความเป็นไปได้เพื่อใช้เป็นวัสดุใน แบตเตอรี่ในการวิจัยได้น้ำ cyclic voltammetry (CV) มาใช้เพื่อวิเคราะห์คุณสมบัติทางไฟฟ้า เคมีของอิเล็กโทรดที่ประกอบด้วยผงสังกะสี เถ้าโลย กราไฟต์หรือท่อคาร์บอนนาโน โดยอิเล็กโทรดที่สังเคราะห์ขึ้นมา มีความต้านทานการนำไปไฟฟ้าสูง ซึ่งอาจจะเกิดจากการเกิดชั้น