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Abstract

Project Code : MRG5980238

Project Title : Surrogate assisted meta-heuristics for engineering optimisation
Investigator : Assist. Dr. Nantiwat Pholdee

E-mail Address : nantiwat@kku.ac.th

Project Period : 2 Years

Abstract:

In this work, development of MHs for real world engineering optimisation is
conducted based on using surrogated assisted MHs, using parameter adaption and
using hybridization concepts. Firstly, performance enhancement of a teaching-learning
based optimizer (TLBO) using an opposition-based approach, binary crossover, and the
probability of operating the learning phase is proposed for strip flatness optimization
during a coiling process. The results reveal that the proposed method gives a better
optimum solution compared to the present state-of-the-art methods. Next, a self-
adaptive sine cosine algorithm is proposed. The proposed algorithm is used to tackle
the test problems for structural damage detection. The results reveal that the new
algorithm outperforms a number of established meta-heuristics. In addition, new meta-
heuristic called estimation of distribution algorithm using correlation between binary
elements (EDACE) is proposed. The performance assessment is conducted by
comparing the new algorithm with existing binary-code MHs. The comparative results
show that the new algorithm is competitive with other established binary-code meta-
heuristics. Finally, the integration of an inverse problem process using surrogate model
into meta-heuristics (MHs) for performance enhancement in solving structural health
monitoring optimisation problems is proposed. The surrogate model is integrated into
the MH algorithm for generating an approximate solution rather than approximating
the function value as with traditional surrogate-assisted optimisation. The results
obtained from using various MHs and the proposed algorithms indicate that the new

algorithm is the best for all test problems.

Keywords : Meta-heuristic algorithm, Surrogate model, Engineering Optimisation, Self

adaptive meta-heuristic
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NOMENCLATURE

[K] = structural stiffness matrix

[M] = structural mass matrix
A = " mode eigenvalue
j 8

¢j:jth mode eigenvector or mode shape.
Ngor = Size of the mass and stiffness matrices.
[m.]= element mass matrices

[k.] = element stiffness matrices.

n, = number of elements

p; = percentage of damage in the /" element.
Nmoge = NUMber of lowest vibration modes

F = scaling factor

Froin = maximum scaling factor

Frnax= minimum scaling factor

x,; = i randomly selected individual

Xoig = current solution (parent)

X, = NEW candidate solution

rand = uniform random number ranged from 0 to 1
rand(0,1)= random number, either 0 or 1

CR = crossover rate

D= number of design variables

¢, = interpolation coefficients

viii



(p = RBF kernel function
= natural frequencies of the damaged structure (Target vector)

o damage

Xdamage = solution vector containing n, element damage percentages



Chapter |

Executive Summary

1.1 Rationale of the study

Nowadays in the economic-competitive world, optimisation has become increasingly
popular for real applications as it is a powerful mathematical tool for solving a wide range of
engineering design types. Once an optimisation problem is posed, one of the most important
elements in the optimisation process is an optimisation method or an optimiser used to find the
optimum solution. Optimisers can be categorised as the methods with and without using function
derivatives. The former is traditionally called mathematical programming or gradient-based
optimisers whereas the latter has various subcategories. One of them is a meta-heuristic (MH).
The term meta-heuristics can cover nature-inspired optimisers, swarm intelligent algorithms, and
evolutionary algorithms. Most of them are based on using a set of design solutions, often called
a population, for searching an optimum. The main operator usually consists of the reproduction
and selection stages. The advantages of such an optimiser are simplicity to use, global
optimisation capability, and flexibility to apply as it is derivative-free. However, it still has a slow
convergence rate and search consistency. These issues have made researchers and engineers
around the globe investigate on how to improve the search performance of MHs, particularly for
real engineering design. In this work, development of MHs for real world engineering optimsiation
is conducted based on using surrogated assisted MHs, using parameter adaption and using

hybridization concept.

1.2 Literature review
1.2.1 Meta-Heuristics

Meta-Heuristics (MHs), also known as evolutionary algorithms are optimisation methods
which are mostly developed according to inspiration of physical law or natural phenomena such
as genetic evolution, food finding of animal or insect, etc. A genetic algorithm (GA) [1] is probably
the best known MH while other popular methods are differential evolution (DE) [2] and particle
swarm optimisation (PSO) [3]. Among MH algorithms, they can be categorised as the methods

using real, binary, or integer codes. The mix of those types of design variables and some other



types can also be made. This makes MHs considerably appealing for use with real world
applications particularly for those design problems that function derivatives are not available or
impossible to calculate. Most MHs are based on continuous design variables or real codes. For
single objective optimisation, there have been numerous real-code MHs being developed. At the
early stage, methods like evolutionary programming [4, 5] and evolution strategies [6] were
proposed. Then, DE and PSO were introduced. Up to recently, the have been probably over a
hundred new real-code MHs in the literature. Some recent algorithms include, for example, a
sine-cosine algorithm [7], a grey wolf optimiser [8], teaching-learning based optimisation [9] , a
Jaya algorithm [10] etc. Meanwhile, powerful existing algorithms such as PSO and DE have been
upgraded by integrating into them some types of self-adaptive schemes e.g. adaptive differential
evolution with optional external archive (JADE) [11], Success-History Based Parameter Adaptation
for Differential Evolution (SHADE) [12], SHADE Using Linear Population Size Reduction (LSHADE)
[13] and adaptive PSO [14-16]. MHs are even more popular when they can be used to find a
Pareto front of a multiobjective optimisation problem within one optimisation run. Such a type
of algorithm is usually called multiobjective evolutionary algorithms (MOEAs) where some of the
best known algorithms are non-dominated sorting genetic algorithm (NSGA-I, II, Ill) [17-19],
multiobjective particle swarm optimisation [20], strength Pareto evolutionary algorithm [21],
multiobjective grey wolf optimisation [22] , multi-objective teaching-learning-based optimization
[23], multiobjective evolutionary algorithm based on decomposition [24], multiobjective ant
colony optimisation [25], multiobjective differential evolution [26] etc. One of the most
challenging issues in MHs is to improve their ability for tackling many-objective optimisation (a
problem with more than three objectives). Some recently proposed algorithms are knee point-
driven evolutionary algorithm [27], an improved two-archive algorithm [28], preference-inspired

co-evolutionary algorithms [29] etc.
1.2.2 Surrogate assisted MHs

Surrogate models (also known as metamodels, or response surface models) are widely
used in many kinds of applications in engineering design optimisation. The surrogate model is the
approximation of an objective function by using a function with much less time-consuming
compared to the actual function evaluation. By using such a model, only a few actual function

evaluations are required for construction of the meta-model. The optimization process can be



carried out by using the approximate model which is adequately accurate not time-consuming.
The commonly used surrogate model are such as polynomial response surface (PRS) [30], radial
basic function (RBF) [31], Kriging (KG) [32], neural network (NN) [33], and support vector regression
(SVR) [34], etc.

Recently, a surrogate model based on optimum tuning parameters has been proposed as
an improved version of the traditionally used surrogate models. The idea of this proposed is to
use some metaheuristics to find optimum tuning parameters of the surrogate model to improve

their accuracy. The most successful investigations are reported in references [30, 35-47].

1.3 Objectives

1.2.1  To improve MH search performance based on improvement of a reproduction
process for an application of practical engineering optimisation.

1.2.3  To proposed a novel and efficient MH for an application of practical engineering
optimisation.

1.2.3  To improve MH search performance based on using a surrogate model for an

application of practical engineering optimisation.

1.4 Scope of research

1.4.1  MHs will be coded by the MATLAB program.

1.4.2 Self-adaptive and/or hybridization concepts are used to enhance the search
performance of MHs.

1.4.3 A surrogate model employed in this study is a radial-basis function.

1.4.4  An optimum Latin Hypercube sampling technique is used for generating sampling
points

1.4.5 Both real code and binary code MHs are used in this study

1.5 Chapter outline
Chapter 2, performance enhancement of a teaching-learning based optimizer (TLBO) for
strip flatness optimization during a coiling process is proposed. The method is termed improved

teaching-learning based optimization (ITLBO). The new algorithm is achieved by modifying the



teaching phase of the original TLBO. The design problem is set to find spool geometry and coiling
tension in order to minimize flatness defects during the coiling process. Having implemented the
new optimizer with flatness optimization for strip coiling, the results reveal that the proposed
method gives a better optimum solution compared to the present state-of-the-art methods.

Chapter 3, a sine cosine algorithm is extended to be self-adaptive and its main
reproduction operators are integrated with the mutation operator of differential evolution. The
new algorithm is called adaptive sine cosine algorithm integrated with differential evolution (ASCA-
DE) and used to tackle the test problems for structural damage detection. The results reveal that
the new algorithm outperforms a number of established meta-heuristics.

Chapter 4, a new meta-heuristic called estimation of distribution algorithm using
correlation between binary elements (EDACE) is proposed. The method searches for optima using
a binary string to represent a design solution. A matrix for correlation between binary elements
of a design solution is used to represent a binary population. Optimisation search is achieved by
iteratively updating such a matrix. The performance assessment is conducted by comparing the
new algorithm with existing binary-code meta-heuristics including a genetic algorithm, a univariate
marginal distribution algorithm, population-based incremental learning, binary particle swarm
optimisation, and binary simulated annealing by using the test problems of the CEC2015
competition and one real world application which is an optimal flight control problem. The
comparative results show that the new algorithm is competitive with other established binary-
code meta-heuristics.

Chapter 5 proposes the integration of an inverse problem process using radial basis
functions (RBFs) into meta-heuristics (MHs) for performance enhancement in solving structural
health monitoring optimisation problems. A differential evolution (DE) algorithm is chosen as the
MH for this study. In this chapter, RBF is integrated into the DE algorithm for generating an
approximate solution rather than approximating the function value as with traditional surrogate-
assisted optimisation. Four structural damage detection test problems of three trusses are used
to examine the search performance of the proposed algorithms. The results obtained from using
various MHs and the proposed algorithms indicate that the new algorithm is the best for all test
problems. DE search performance for structural damage detection can be considerably improved

by integrating RBF into its procedure.



Chapter Il
An Improved Teaching-Learning Based optimization for Optimization of Flatness of a Strip

during a Coiling Process

21 Introduction

In this chapter, optimization of flatness of the strips has been enhanced by an improved
teaching-learning based algorithm (ITLBO). This method is compared to several well established
EAs, such as simulated annealing (SA) [48], differential evolution (DE) [2], artificial bee colony
optimization (ABC) [49], real code ant colony optimization (ACOR) [50], original teaching-learning
based optimization (TLBO) [9], league championship algorithm (LCA) [51], charged system search
(ChSS) [52], Opposition-based Differential Evolution Algorithm (OPDE) [53] and Enhanced teaching-
learning based optimization with differential evolution (ETLBO-DE) [54] to determine the spool
geometry and coiling tension where the objective is to minimize the axial inhomogeneity of the
stress to improve the flatness of the strip. For function evaluations, the analytical elastic model

proposed by Park et al. [55] similar to the one suggested by Yanagi et al. [56] was employed.

2.2 Formulation of the Optimization Design Problem

It is known that wavy edges occur during the strip coiling process, when the circumferential
stress at the middle zone of the strip is highly compressed, while two edges are under tension or
slight compression. Also, if the middle strip zone is under high tension while the two edges are
compressed or slightly stretched, center buckle can happen. Figures 2.1(a) and (b) display the
circumferential stress (o, ) distribution along the z direction within the thin strip, which
respectively caused the wavy edge and center buckle.

Generally, it is impossible to obtain a flat strip after finishing a rolling process. The strip
always has a crown shape. When the strips are being coiled, tension loads need to be applied,
the middle zone (z = 0) of the strip at the inner coil will be considerably compressed in
comparison with the two edges because of the coiling tension and the strip crown. In such a
situation, the center buckle defect at the inner coil will not appear but the wavy edge defect can
possibly occur. As such, the wavy edge defect at the inner coil is the major problem during the

coiling process.



Figure 2.2 depicts the circumferential stress (o, ) distribution in the z direction at the radius
() of the coil (computed by the Love’s elastic solution proposed by Park et al. [9]) contributing
to wavy edge defect formation during the strip coiling process. It is possible to reduce the wavy
edge defect by decreasing the axial inhomogeneity of the stress distribution and the maximum
compressive stress at the compressive zone.
In this paper, optimization using the ITLBO and other well-known and newly developed EAs will
be used to find the optimum solution for the processing parameters including coiling tension (

o7 ) and spool geometry, as illustrated in Fig. 2.3.

~~ Strip crown ~~ Strip crown

— AT T AT
gs(:) "3-.9(:)
T < > e e >
T Spool T — Spool
(a) the wavy edge (b) center buckle

Figure 2.1 Circumferential stress distributions for (a) the wavy edge and (b) center buckle,

respectively

i
Q
=1

o
=}

-50

-100

mferential stress (MPa)
o

Volume to minimize Case of wavy

edge defect

z (mm) o 0 r (mm)

Figure 2.2 Circumferential stress distribution (o, ) in the coil determined by Love’s elastic

solution

To decrease the axial inhomogeneity of the stress distribution and the maximum

compressive stress, minimization of the volume of the circumferential stress and maximum



compressive stress (shown in Fig. 2.2) is defined as an objective function. In Fig. 2.2, the volume
can only be computed for the coil, where compressive stresses were higher than 20 MPa, in order
to minimize the zone that is likely to have the wavy edge defect. The objective function of the

optimization problem can then be written as:

Minimize f(ab,nb,aT’i)zinLM (2.1)
Vo  max(ogp)
Subject to
Oﬁab 34,
Ofﬂb S4,
25<07; <50MPa;  i=1...,Npy,

GT,i _UT,ifl < ZMPa,

where o4 and V are respectively the compressive circumferential stress higher than 20 MPa (refer
to Fig. 2.2) and the approximate volume of the circumferential stress. g and V, are the
respective values for the original design of the process. The ot is the coiling tension at coil
number /. The coiling tension is normally set to be constant for all coils. The variable ny, is the
maximum number of coils, which has been assigned to be 220 in this paper. n,and «; in Eq.
(2.2) are spool crown exponent and the spool crown height, which were used for defining the

spool geometry, as described in Fig. 2.3:

SNe——— N



where b, (z = 330 mm) and b(z) are the initial value of the outer radius of the spool and the
outer radius of the spool along the z direction, respectively. z,. = 525 mm is the width of the
spool. The inner radius of the spool (a) in Fig. 2.3 has been assigned to be 300 mm. The total
number of design variables, therefore, is 222 (220 for coiling tensions and 2 for the spool

geometry).

2.3 Improved teaching-learning based optimization

From the previous section, the optimization problem can be considered being large-scale.
It has been found [53, 54], that TLBO is suitable for this type of design problem. The teaching-
learning based optimization (TLBO) algorithm is an evolutionary algorithm, or an optimizer without
using function derivatives, proposed by Rao et al. [9]. The concept of TLBO searching mechanism
is based on mimicking a teacher on the output of learners in a classroom. Basically, the learners
can improve their intellectual and knowledge by two stages i.e. learning directly from the teacher
and learning among themselves. During the teacher stage, a teacher may teach the learners,
however, only some learners can acquire all things presented by the teacher. Those who can
accept what the teacher taught will improve their knowledge. For the second stage, which is
called the learning phase, the learners can improve their knowledge during discussion with other
learners. Based on the different levels of the learners’ knowledge, the better learners may transfer
knowledge to the inferior learners.

From the view point of optimization, the algorithm starts with a randomly created initial
population, which is a group of design solutions. Learners are identical to design solutions whereas
the best one is considered a teacher. The objective function is analogous to the knowledge which
needs to be improved towards the optimum solution. Having identified a teacher and other
learners for the current iteration, the population will be updated by two stages including “Teacher
Phase” and “Learner Phase”. In the “Teacher Phase”, an individual (x;) will be updated based on

the best individual (Xieacher) @and the mean values of all populations (Xyean) as follows:

Xnew,i = X0Id,i + r{Xteacher - (TF *Xinean )} (3)



Where T¢ is a teaching factor, which can be either 1 or 2 and re& [0,1] is a uniform random
number.

For the “Learner Phase”, the members in the current population will be modified by
exchanging information between themselves. Two individuals x; and x; will be chosen at random,

where i= j. The update of the solutions can then be calculated as:

oo = {Xold,i + rEXi —ng if f(x;)< f(xj) .

%o + X =X if f(xj)<f(xi)

At both teacher and learner phases, the new solution (X,e,) Will replace its parent if it has
better knowledge or produces better objective function value, otherwise, it will be rejected. The
two phases are sequentially operated until the termination criterion is fulfilled.

For the improved teaching-learning based optimization (ITLBO), an opposition-based
approach, binary crossover, and the probability of operating the learning phase are added to the
original TLBO to improve the balance of search exploration and exploitation. Four random
numbers including, rand;, rand,, rands, and rand,, have been used for performing opposition-
based approach, binary crossover, and the learning phase. The main search procedure starts by
generating an initial population, updating the population at the teaching phase and learning phase
similarly to the original TLBO. However, at the teaching phase, the updating can be done by the

following equation;

d
Xnew,i = Xold,i + (_1) renc r{Xteacher - (TF *Xmean )} (5)

where rand, is a random value with either 0 or 1. Then, the binary crossover is applied if a uniform
random number having an interval of 0 and 1 (rand,) is lower than the crossover probability (P,).
For a new individual xﬁew =[Xnew,1, -+ Xnew,p] and an old individual xE,d =[Xolg1, - Xold,p), the binary

crossover step can be expressed as follow;,

X - X0|d,j if I‘and3 <CR1 J :1,...,D
new. J Xteacher,j |f CR:LS I’and3 < CR2 j = 1,..., D
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where the rands is a uniform random number generated from 0 to 1. The CR; and CR, are the
predefined crossover rates, while D is the number of design variables, respectively. Thereafter,
the learning phase is conducted if a uniform random number generated from 0 to 1 (rand,) is
lower than the probability value (L), otherwise, the learning phase will be skipped. The search
process will be repeated until the termination criterion is satisfied. The computational steps of

the proposed algorithm are shown in Algorithm 2.1.

Algorithm 2.1 An improved TLBO

Input: Maximum iteration number maxiter), population size (np), Crossover
probability Crossover rate (CR1 and CRy), learning phase probability (Ly.
Output: Xpest, Ihest
Initialization
1l.Generate an initial population randomly.
2.Evaluate objective function values
Main algorithm
3.Fori-=1 tomaxiter
3.1 Identify the best solution Xteacher)
(Teacher Phase)
For j=1 to np
3.2 Update the population using equation(5)
If rand, < Pr
3.21 Applied binary crossover using equation (6)
End
3.2.1Evaluate the objective function value fXnew,3)
322 If fRnew, i) <fXoig,3)

Replace =Xo14,5 bY ZKnew, s
End
End

If randy < Lp
(Learner Phase)
For j=1 to np
3.3 Update the population using equation4)
3.3.1 Evaluate the objective function value
£ (Xnew, §)
322 If fRnew, i) <f(Xoig,3)
Replace Xo14,7 bY Znew,j
End
End
End
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24 Numerical Experiments

In order to examine the search performance of the proposed ITLBO, several EAs have
been used to solve the optimum design problem of the strip flatness as described in the previous
section. The EAs used in this study are as follows [57] :

DE: The DE/best/2/bin strategy was used. DE scaling factor was random from 0.25 to 0.7
in each calculation and crossover probability was 0.7.

SA: An annealing temperature was reduced exponentially by 10 times from the value of
10 to 0.001 in the optimization searching process. On each loop 2n children were created by
means of mutation to be compared with their parent. Here, n is the number of design variables.

ABC: The number of food sources was set to be 3n,. A trial counter to discard a food
source was 100.

ACOR: The parameters used for computing the weighting factor and the standard deviation
in the algorithm were set to be ¢ =1.0and g =0.2, respectively.

TLBO: Parameter settings are not required.

LCA: The default parameter settings provided by the authors [51] were used.

ChSS: The number of solutions in the charge memory was 0.2n,,. Here, n, is the population
size. The charged moving considering rate and the parameter PAR were set to be 0.75 and 0.5,
respectively.

OPDE: The DE/best/2/bin strategy was used .DE scaling factor was random from 0.25 to
0.5 in each calculation and crossover probability used was 0.7.

ETLBO-DE: Used the DE parameter setting and Latin hypercube sampling (LHS) technique
to generate an initial population.

ITLBO (Algorithm 2.2): The P, CR;, CR, and L, were set to be 0.5, 0.33, 0.66 and 0.75,
respectively.

Each optimizer was employed to solve the problem for 5 optimization runs. Both the
maximum number of iterations and population size were set to be 100. For the optimizers using
different population sizes, such as simulated annealing, their search processes were stopped with
the total number of function evaluations as 100x100. The optimal results of the various
optimizers from using this limited number of function evaluations were compared. The best

optimizer was used to find the optimal processing parameters of the strip coiling process.
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2.5 Results and Discussion

After applying each optimization algorithm to solve the problem for 5 runs, the results are
given in Table 2.1. The mean values (Mean) are used to measure the convergence rate while the
standard deviation (STD) determines search consistency. The lower the mean objective function
value the better, and the lower the standard deviation the more consistent. In the table, max
and min stand for the maximum and minimum values of the objective function, respectively.
For the measure of convergence speed based on the mean objective value, the best method is
ITLBO while the second best and the third best performers are ETLBO-DE and OPDE, respectively.
The worst results came from ABC. For the measure of search consistency based on STD, the best
was also [TLBO while the worst was ABC, which was similar to the measure of the search
convergence. The second best and the third best for consistency were ETLBO-DE and ACOR,
respectively. The minimum objective function value was obtained by the ITLBO.

Based on the results obtained, it was clearly indicated that the proposed ITLBO by adding
opposition based method, binary crossover, and learning phase probability can improve the
search performance of the original TLBO for solving the optimization design problem of the strip
coiling process.

The optimal spool crown exponent and height obtained are 1.0822 and 2.3645,
respectively. The optimal distribution of coiling tensions as a function of coil numbers is shown
in Fig. 2.4. The results reveal that the coiling tensions start with the highest value initially and
then decrease when the number of coils increases. After a few series of coiling, the tension levels
become almost constant, converging to the lower bound at the end of the process. Fig. 2.5 shows
the plot of the circumferential stress distributions along the z and r directions of the original and
optimum design solutions in that order. The comparison of the maximum compressive stresses
and the standard deviation of stresses at the inner strip between the original and optimal designs
is given in Table 2.2. The results show that the optimal processing parameters obtained by the
proposed [TLBO algorithm can reduce the maximum compressive stress and the axial
inhomogeneity of the stress distribution at the inner strip, which might cause undesirable wavy

edge defects during the strip coiling process.



Table 2.1. Objective function values calculated

Evolutionary Algorithms Mean STD Max. Min.

DE 0.9700 0.0275 1.0096 0.9354
ABC 1.7637 0.0787 1.8800 1.6751
ACOR 1.0621 0.0070 1.0705 1.0546
ChsS 1.4026 0.0289 1.4448 1.3678
LCA 1.7116 0.0408 1.7580 1.6473
SA 1.5451 0.0645 1.6323 1.4841
TLBO 0.9915 0.0132 1.0066 0.9766
OPDE 0.9539 0.0179 0.9715 0.9297
ETLBO-DE 0.8850 0.0047 0.8897 0.8784
ITLBO 0.8740 0.0025 0.8783 0.8720
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Figure 2.4 Coiling tension levels as a function of number of coils
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Figure 2.5 Comparison of circumferential stresses along the z and r directions for the original

design and optimal design, respectively
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Table 2.2 Maximum compressive stress and the standard deviation of stresses at the inner coil

Original design | Optimal design

Maximum compressive stress (MPa) | 111.546 68.0270

Standard deviation of stresses 48.375 29.3703

2.6 Conclusions

The new population-based optimization algorithm obtained by improving the original
TLBO for solving the flatness optimization of the strip coiling process has been proposed. The
search performance of the method was compared to various established evolutionary algorithms.
The numerical results show that the new optimizer ITLBO is the best performer for both
convergence rate and consistency. With this, the new parameters including the spool geometry
and the coiling tension distribution have been obtained and can be used in the real strip coiling
process. Further studies will be made to enhance the mathematical model of the strip coiling

process. A self-adaptive version of ITLBO will be investigated for search performance

enhancement.
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Chapter Il
Adaptive Sine Cosine Algorithm Integrated with Differential Evolution for Structural

Damage Detection

3.1 Introduction

This chapter presents and extension of the sine cosine algorithm. An adaptive strategy is
embedded into the new version while the mutation operator of differential evolution is integrated
into the algorithm in order to further improve its performance. The new optimiser is then termed
an adaptive sine cosine algorithm integrated with differential evolution (ASCA-DE). The optimiser
is then implemented on several test problems for structural damage detection. Numerical results

show that the proposed MH is superior to a number of established MHs found in the literature.

3.2 Formulation of a Damage Detection Optimization problem.

In this work, vibration based damage detection based on using natural frequencies is used
for damage localization of truss structures. The main concept of using structural natural
frequencies for damage detection of a truss structure is based on using a finite element model
and the measured natural frequencies. When the natural frequencies and mode shapes are
measured (usually the lowest n.ge Natural frequencies), the finite element model is updated
until the computed natural frequencies fit well with the measured ones. For the undamaged
structure, natural frequencies can be calculated from a simple linear undamped free vibration

finite element model which can be expressed as;
[K]{¢j }— a)?[M]{¢j }=0 (3.1)

where [K] is a structural stiffness matrix which can be expressed as the summation of element

stiffness matrices [kel,

[K]-3lk.] 52
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where i is the /" element of the structure while n. is the total number of elements. The matrix
[M] is a structural mass matrix computed in similar fashion to the stiffness matrix. The variables
¢; and wj are the /™ mode shape and its corresponding natural frequency, respectively. For the
damaged structure, the stiffness matrix of the damaged element is assumed to be modified. The
stiffness matrix of the damaged structure [Ky] can be written as a percentage of damage in the

elements as follows:

[Kol- 220 P, 33
i=1

where p; is the percentage of damage on the i element. The natural frequency of the damaged
structure can be computed by solving eq. (3.1) by replacing [K] with [Kg].

The percentage of damage in the structural element (p) can be found by solving an
optimisation problem to minimise the root mean square error (RMSE) between natural frequencies
measured from the damaged structure and natural frequencies computed by using the finite

element model. The problem can be expressed as follow:

Nmode
_Z (wj ,damage ~ @}, computed )2
Min : f (x) =122 (3.4)

Nmode

where ®j gamage aNd ®j computed are the structural natural frequency of mode j obtained from a
damaged structure and that from solving (3.1) — (3.3). The design variables are those damage
percentages of structural elements (x = {py, ..., Prete}’) respectively. In this work, six vibration

modes are used for calculation.

3.3 Test problems with trusses
Four truss damage detection optimisation problems from two truss structures are used in
this study. These are the test problems used in our previous studies [58]. Detail of the test

problems are shown as follow:

3.3.1 Twenty-five-bar truss
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The structure is shown in Fig. 3.1. The cross sections of all bar elements are set to
be 6.4165 mm?. Table 3.1 shown the material properties and simulated case study for this
example. The data of natural frequencies of the undamaged and damaged 25-bar truss structures

are shown in Table 3.2.

254 m

254 m

Figure 3.1 Twenty-five bar truss

Table 3.1 Material properties and simulated case study for 25-bar truss.

Material density 7,850 kg/m?

Modulus of elasticity 200 GPa

Case I: 35 %damage at element number 7

Simulated case study Case II: 35 %damage at element number 7 and 40 %damage at

element number 9.

Table 3.2 Natural frequencies (Hz) of damaged and undamaged of 25 bar structure.

35 %damage at element number 7
35 %damage at element

Mode | Undamaged and 40 %damage at element
number 7
number 9
1 69.7818 69.1393 68.5203
2 72.8217 72.2006 71.3167
3 95.8756 95.3372 94.5625
4 120.1437 119.8852 119.6514
5 121.5017 121.4774 121.4253
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6 125.0132

125.0130 125.0129

332 Seventy-two-bar truss

The structure is shown in Fig. 3.2. Four non-structural masses of 2270 kg are

attached to the top nodes. The cross sections of all bar elements are set to be 0.0025 m?. Table

3.3 shown the material properties and simulated case study for this example. The data of natural

frequencies of the undamaged and damaged 72-bar truss structure are shown in Table 3.3.

4x1.524 m

Figure 3.2 Seventy-two bar truss

Table 3.3 Material properties and simulated case study for 72-bar truss.

Material density

2,770 kg/m?

Modulus of elasticity

6.98x10' Pa

Simulated case study

Case I: 15 %damage at element number 55 (15% damage in
element number 56, 57, or 58 results in the same set of natural
frequencies)

Case Il: 10 %damage at element number 4 and 15 %damage at
element number 58 (90, 180, and 270 degrees rotation along the

z axis lead to the same set of natural frequencies).
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Table 3.4 Natural frequencies (Hz) of damaged and undamaged of 72 bar structure.

15 %damage at 15 %damage at element number 58 and 10 %
Mode | Undamasged element damage at element
number 55 number 4
1 6.0455 5.9553 5.9530
2 6.0455 6.0455 6.0455
3 10.4764 10.4764 10.4764
a4 18.2297 18.1448 18.0921
5 25.4939 25.4903 25.2437
6 25.4939 25.4939 25.4939

3.4 Adaptive Sine Cosine algorithm hybridized with differential evolution (ASCA-DE)
The Sine Cosine Algorithm (SCA) is a population based optimisation method proposed by
Mirjalili, 2016 [7]. The algorithm is simple and efficient for various optimisation test problems as
reported in [7]. The search procedure of SCA is similar to other MH which contains three main
steps; population initialisation, population updating and population selection. For the SCA,
updating population can be done based on a sine and cosine function. Given a current population
having NP members X={x;, X,,..., xue}', an element of a solution vector for the next generation

can be calculated as follows:

TS 6 SIN()| 3 Xpest k — Xola s i T4 <05,
k= .
" Xota k + 1. COS(1)|F3Xoest k — Xota | Otherwise

where Xpestx is the k™ matrix element of the current best solution. The variables r,, rs, and r, are
random parameters in the ranges of [0, 2TT, [0, 2] and [0, 1], respectively. The variable r; is an

iterative adaption parameter,

max
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where @ is a constant parameter while T is an iteration number. T, is maximum number of
iterations.

The search process of SCA start with generating an initial population at random, and then
calculating their objective function values where the best solution is found. Then, the new
population for the next generation is generated using eq. (3.5) and the objective function values
of its members are calculated. The current best will be compared with the best solution of the
newly generated population and the better one is saved to the next generation. The process is
repeated until a termination criterion is met. The computational steps of SCA are shown in

Algorithm 3.1

Algorithm 3.1 Sine Cosine Algorithm

Input: population size (N,), number of generations (7,,,,), number of design variable (D)

MM: Xpests f best

Main algorithm

1: Initialise a population and set as the current population.
2: Find the best solution (Xpes)
3: For T=1 to Tax

4. Calculate parameter r; using eq.(3.6)

5 For (=1 to N,

6 Fork=1toD

T Generate the parameter r,, r; and r4

8 Update the k" element of the (" population (x) using eq.(3.5)

9 End For

10: End For

11:  Calculate objective function values of the newly generated population and find the

best ones (Xbest,new)

12: Reptace Xpest by Xbest,new hC_]L(Xbest,new)<f(xbes‘[)

13: End




21

For the proposed adaptive sine cosine algorithm with integration of DE mutation, the DE
mutation operator as proposed in Bureerat and Pholdee (2015) [59] is integrated into the updating

operation. The mutation equation is detailed as follow;,

Xnew = Xbest + rand(—l,+1)F(x,r’1 +Xp o —Xp 3 —xr,4) (3.7)

where rand(-1, 1) gives either -1 or 1 with equal probability. F is a scaling factor while x,;-x.4 are
four solutions randomly selected from the population.

At ASCA-DE updating operation, if a generated uniform random number in the interval
[0,1] is lower than a probability value (rand < Ppg), the population will be updated using the SCA
updating operation based on Eq. (3.5), otherwise, the population will be updated by DE mutation
as detailed in Eq. (3.7).

The term of self-adaption of the proposed algorithm is accomplished in such way that the
parameter r,, r; and F are regenerated for each calculation based on the information from the
previous iteration. For each calculation, the r, and r; are generated based on normally distributed
random numbers with mean values, r,,, and rs,, respectively and standard deviation values, STD

= 0.1 for both r, and rs. The values of r,,, and rs,, are iteratively adapted based on the following

equations:

Lol T+1)= 0.9r,,(T)+0.1mean(good, ), (3.8)
and,

Fa(T+1)= 0.9r5.,,(T)+0.1mean(good,s..), (3.9)

where mean(good,,,,) and mean(good,s.,) are the mean values of all values of r, and r; used in
current iteration that lead to successful updates. The successful update means the created
offspring is better than its parent from the previous iteration. In addition, for each calculation, the
scaling factor F is generated by Cauchy distribution randomisation with the mean value F,, and

STD value of 0.1 [12]. The F,is iteratively adapted using the Lehmer mean [12] defined as follows:

sum(good?)
F(T+1)=09F, (T)+0.1——F— (3.10)

sum(goodg)
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where goodk is a tray of all F used in the current iteration with successful updates.

The parameter Py is also regenerated in the similar fashion to r, and r; before updating a
population. For an individual solution, the Py is generated by normal distribution randomising
with the mean value of Pye,, and standard deviation of 0.1. Py, is iteratively adapted based on

the following equation:

Poen(T+1) = 0.9 Pper (T+0.1mean(goodppe), (3.11)

where goodppe means all Ppe values used in the current iteration with successful updates.

The search process of ASCA-DE start with initilaising a population, rom, r3m, Fm and Pogm.
The good, sy, §00d,3m, g00dr and goodepe trays are empty initially. After having calculated objective
function values, the current best solution will be obtained. To update a population, firstly, P
and a random number in [0,1] are generated. If the generated random number is lower than Pp,
a scaling factor (F) is generated based on F,, and a new solution is created using eq. (3.7),
otherwise, a new solution is generated based on eq. (3.5). For each calculation of eq. (3.5), r, and
ry are generated based on r,,, and 3. If @ newly generated solution is better than its parent, the
new solution will be selected for the next generation while saving all used parameters Py, 1y, I3
and F into the goodppe, 900d,5m, 900d,3,,, and goodk trays, respectively. Then, update the ryy, r3m,
F,, and Ppgm Using eq. (3.8) - (3.11). The search process is repeated until a termination criterion is

reached. The computational steps of ASCA-DE are shown in Algorithm 3.2

Algorithm 3.2 ASCA-DE

Input: population size (N,), number of generations (7,,,,), number of design variable (D)

MM: Xpest, fbest

Main algorithm

1: Initialise a population, rym, rm, Fm and Ppgm.
2: Find the best solution (Xpest)
3: For T=1 10 T pax

4. Calculate parameter r; using eq.(3.6)
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10:
11:
12:
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Empty good,,n, g00d,3,, g00dr and goodppe
For (=1 to N,
Generate Py by normal distribution random with mean values Ppg, and STD =0.1
IF rand< Ppe
Generate F by Cauchy distribution random with mean value F,, and STD = 0.1
Updated a population using eq. (3.7)
Else
Fork =1toD

Generate the parameter r, and r; by normal distribution random with mean

values rym, rm, and STD =0.1

13:
14:
14:
16:
17:
18:
19:
20:

Random generate r4 in rank [0, 1]
Update the k™ element of the (" population (x) using eq.(3.5)
End For
End IF
Calculate objective function values of the newly generated population
IF fXnew) < X ota)
Replace Xioig BY X new

Add all generated r,, rs, F, and Py, into the good,,,, go00d s, good: and goodppe

tray, respectively.

21: End IF

22: End For

23: Find the best solution (Xyes)

24: Update rom, Fsm, Fm, and Ppey Using eq. (3.8) - (3.11)
24: End

3.5 Numerical Experiment

The performance investigation of the proposed ASCA-DE for structural damage detection

is carried out by employing the algorithm to solve the test problems in the previous section.

ASCA-DE along with a number of MHs in the literature implemented to solve the test problems
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include (Note that the details of variables can be found in the original sources of each method)
[58]:

Differential evolution (DE): a DE/best/2/bin strategy was used. A scaling factor, and
probability of choosing elements of mutant vectors (CR) are 0.5 and 0.8 respectively.

Artificial bee colony algorithm (ABC): The number of food sources for employed bees is

set to be np/2. A trial counter to discard a food source is 100.

Real-code ant colony optimisation (ACOR): The parameter settings are g = 0.2, and fz 1.

Charged system search (ChSS): The number of solutions in the charge memory is 0.2xnp.
The charged moving considering rate and the parameter PAR are set to be 0.75 and 0.5
respectively.

League championship algorithm (LCA): The probability of success P. and the decreasing
rate to decrease P, are set to be 0.9999 and 0.9995, respectively.

Simulated annealing (SA): Starting and ending temperatures are 10 and 0.001 respectively.
For each loop, Nymeqe candidates are created by mutating on the current best solution while other
Nmoge Candidates are created from mutating the current parent. The best of those 2n,,,04e SOlUtions
are set as an offspring to be compared with the parent.

Particle swarm optimisation (PSO): The starting inertia weight, ending inertia weight,
cognitive learning factor, and social learning factor are assigned as 0.5, 0.01, 0.5 and 0.5
respectively.

Evolution strategies (ES): The algorithm uses a binary tournament selection operator and
a simple mutation without the effect of rotation angles.

Teaching-learning-based optimisation (TLBO): Parameter settings are not required.

Adaptive differential evolution (JADE): The parameters are self-adapted during an
optimisation process.

Evolution strategy with covariance matrix adaptation (CMAES): The parameters are self-
adapted during an optimisation process.

Sine Cosine Algorithm (SCA) (Algorithm 3.1): The constant a parameter is set to be 2.

Adaptive Sine Cosine algorithm with integrating DE mutation (ASCDE) (Algorithm 3.2): The

parameter a is set to be 2 while initial 1o, r3m, Frn and Ppg, are set to be 0.5.
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Each optimiser is used to tackle each truss damage detection test problem for 30
optimisation runs. The number of iterations (generations) is 300 for all case studies while the
population size is set to be 30 and 50 for 25-bar and 72-bar trusses respectively. All methods will
be terminated with two criteria: the maximum numbers of functions evaluatio as 30x300 and
50x300 for the 25-bar and 72-bar trusses respectively, and the objective function value being less
than or equal to 1x107. The six lowest natural frequencies (o4 = 6) are used to compute the
objective function value. This number of selected frequencies is reasonable since it is practically

easier to measure fewer lowest natural frequencies with sufficient accuracy.

3.6 Results and discussions

After performing 30 optimisation runs of all MHs on solving the four truss damage
detection optimisation problems, the results obtained from the various MHs are given in Tables
5-8. The mean of the objective function is used to indicate the search convergence of the
algorithms in cases that the objective function threshold (1x107) is not met during searching.
Otherwise, the mean number of FEs is used as an indicator. The number of successful runs out
of 30 runs is used to measure the search consistency. The algorithm that is terminated by the
objective function threshold is obviously superior and any run being stopped with this criterion is

considered a successful run.

3.6.1 Twenty-five-bar truss
Table 3.5 shown the results of the 25-bar truss with 35% damage at element 7. The
best performer based on the mean objective function values is ASCA-DE while the second best
and the third best are DE and JADE respectively. When considering the number of successful runs,
seven optimisers including DE, TLBO, JADE, SCA and ASCA-DE can detect the damage of the
structure. The most efficient optimiser is ASCA-DE that can detect the damages of the structure

for 29 times out of 30 runs with the average of 2835 function evaluations.



Table 3.5 Results for 25 bar truss with 35 %damasge at element number 7

No. of successful runs
Optimisers | Mean objective function values Mean of FEs
from 30 runs

DE 0.0017 19 6019
ABC 0.0135 0 9000
ACOR 0.0089 0 9000
ChSS 0.1385 0 9000
LCA 0.9036 0 9000
SA 0.0089 0 9000
TLBO 0.0077 6 7772
CMAES 0.0033 0 9000
ES 0.0308 0 9000
PSO 8.3830 0 9000
JADE 0.0026 2 8953
SCA 0.0270 24 3262
ASCA-DE 0.0009 29 2835

Results of the 25 bar truss with 35% damage at element 7 and 40%
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damage at the

element number 9 are reported in Table 3.6. The best performer based on mean objective

function values is ASCA-DE while the second best and the third best are JADE and DE respectably.

When examining the number of successful runs, only two optimisers, DE and ASCA-DE can

consistently detect the damage of the structure for 27 and 26 runs respectively while the average

number of function evaluations to obtain the results are 5220 and 5511 respectively.

Table 3.6 Results for 25 bar truss with 35 %damage at element number 7 and 40 %damage at

element number 9

No. of successful runs

Optimisers | Mean objective function values Mean of FEs
from 30 runs
DE 0.0096 27 5220
ABC 0.0326 0 9000




ACOR 0.0125 0 9000
ChSS 0.1590 0 9000
LCA 0.8080 0 9000
SA 0.0269 0 9000
TLBO 0.0405 1 8917
CMAES 0.0115 0 9000
ES 0.0356 0 9000
PSO 8.6012 0 9000
JADE 0.0042 6 8875
SCA 0.0930 0 9000
ASCA-DE 0.0032 26 5511

3.6.2 Seventy-two-bar truss
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Table 3.7 shows comparison results of the 72-bar truss with 15% damage at element

5. The best performer based on mean objective function values is ASCA-DE while the second best

and the third best are ES and ACOR. When examining the number of successful runs, the most

efficient method is ASCA-DE which can detect the damage of the structure for 30 times while the

average numbers of function evaluations for the convergence results is only 1715.

Table 3.7 Results for 72 bar truss with 15 %damage at element number 55

No. of successful runs
Optimisers | Mean objective function Values Mean of FEs
from 30 runs
DE 0.0087 14 12887
ABC 0.2184 0 15000
ACOR 0.0014 6 14831
ChsS 0.1727 0 15000
LCA 1.1499 0 15000
SA 0.0097 0 15000
TLBO 0.0035 27 5781
CMAES 0.0053 0 15000




ES 0.0010 29 9335
PSO 1.9146 0 15000
JADE 0.0019 1 15000
SCA 0.0070 23 4793
ASCA-DE 0.0008 30 1715
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Results of the72 bar truss with 15% damage at element number 58 and 10% damage

at element number 4 are given in Table 3.8. The best performer based on the mean of objective

function values is ES while the second best and the third best are JADE and ASCA-DE respectively.

The minimum objective function value is obtained by SCA. When considering the number of

successful runs, only ASCA-DE can consistently detect the damage of the structure for 22 times

from totally 30 optimisation runs while the average number of function evaluations for the

convergence results is 9235. Although ES and JADE given better mean objective function values,

they fail to search for the damage location. ASCA-DE is said to be the most efficient optimizer for

this case.

Table 3.8 Results for 72 bar truss with 15 %damage at element number 58 and 10 %damage at

element number 4

Optimisers | Mean objective function values Mo- of successful runs Mean of FEs
from 30 runs

DE 0.0127 7 13963
ABC 0.1591 0 15000
ACOR 0.0058 0 15000
ChsS 0.1348 0 15000
LCA 1.1049 0 15000
SA 0.0129 0 15000
TLBO 0.0045 7 13503
CMAES 0.0050 0 15000
ES 0.0023 2 14940
PSO 1.7726 0 15000
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JADE 0.0031 0 15000
SCA 0.0260 2 14502
ASCA-DE 0.0035 21 9235

Overall, it was found that integrating DE mutation into and applying adaptive parameters
to SCA lead to performance enhancement of the original SCA. The proposed ASCA-DE is the best
performer on solving truss damage detection optimisation problem. It is considered the most

reliable method for this study.

3.7 Conclusions

Performance enhancement of a meta-heuristics called a sine cosine algorithm is proposed
by integrating into it a mutation strategy of DE. Self-adaptive optimisation parameters are
employed to improve the search performance of the new algorithm. The proposed optimiser is
implemented on solving a number of truss damage detection inverse problems. The results reveal
that the new meta-heuristic is the best and most reliable method. Our future work is to investigate

the new MH for solving other practical engineering design problems.



Chapter IV
Estimation of distribution algorithm using correlation between binary elements — a new

binary-code meta-heuristic

4.1 Introduction

This chapter presents a development of a binary-code meta-heuristic. The method is
called estimation of distribution algorithm using correlation between binary elements (EDACE).
Performance assessment is made by comparing the proposed optimiser with GA, UMDA, BPSO,
BSA, and PBIL by using the CEC2015 test problems. Also, the real world optimal flight control is
used for the assessment. The comparative results are obtained and discussed. It is shown that

EDACE is among the top performers.

4.2 Proposed method

The simplest but efficient estimation of distribution algorithm is probably population-
based incremental learning (PBIL). Another MH that uses a similar concept is UMDA. Unlike GA
which uses a matrix containing the whole binary solutions during the search, PBIL uses the so-
called probability vector to represent a binary population. During an optimisation process, the
probability vector is updated iteratively until approaching an optimum. In EDACE, a matrix called

a correlation between binary elements (CBE) matrix is used to represent a binary population. The

matrix can be denoted as P; € [0,1] where the value of the element P; indicates the correlation
between element i and element j of a binary design solution. The higher value of P; means the
higher probability that binary elements /i and j will have the same value. The algorithm is

developed to deal with a box-constrained optimisation problem:

Min fIx); X, < X < X (4.1)

where fis an objective function and x is a vector containing design variables (a design vector). x;
and x;, are the lower and upper bounds of x respectively. Assuming that a design vector can be
represented by a row vector of binary bits size mx1, the CBE matrix thus has the size of mxm. It

should be noted that the details of converting a binary string to be a design vector can be found



31

in [60]. In generating a binary string from the CBE matrix, a reference binary solution (RBS) is
needed. It can be a randomly generated solution or the best solution found so far depending on
a user preference. Then, a row of the matrix is randomly selected (say the r-th row). The r-th

element of a generated binary solution is set to be the r-th element of the reference binary

solution. The rest of the created binary elements are based on the value of P; jZr. The procedure
for creating a binary solution sized mx1 from the mxm CBE matrix is detailed in Algorithm 4.1

where b is a binary design solution, bggr is the reference binary solution, np is a population size

and rand€ [0, 1] is a uniform random number. The algorithm spends n, loops for creating np
binary solutions. The process for generating a binary solution from the CBE matrix is in steps 3-12.
For one binary solution, only one randomly selected row of CBE (say row r) is used (step 4). Then,
the r-th element of a generated binary solution is set equal to the r-th element of the reference
binary solution, bge. The rest of the elements of the generated binary solution are created in
such a way that their values depend on corresponding elements on the r-th row of CBE. From
the computation steps 5-11, the value of P; determines the probability of a; to be the same as
a,.. The higher value of P; means the higher correlation between elements r and j and

consequently the higher probability that a; will be set equal to a,.

Algorithm 4.1 Generation of a binary population from a CBE matrix

|npUthRE/:, P
Qutput: B = {b} for i =1, .., np

Main procedure
1: Set B = {}.
2:Fori=1tonP
3: Set a = {} a vector used to contain elements of a generated binary string.
Randomly select a position (r-th row) of P.
Set a, = bger, % Set the r-th element of a as the r-th element of bgg.
Forj={1,2,..,m}-{r}
If rand < Py

a; = a, % ag; and a, values are equal, which are either “0” or “1”.

DS e A

Else
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10: ag=1-a,%Ifa =1,a =0 or vice versa.
11: End
12: End

13: SetB=B U a.
14:End

The CBE matrix is a square symmetric matrix with equal size to the length of a binary
solution whose all diagonal elements are equal to one. For an iteration, the matrix will be
updated according to the so far best solution (by.). The learning rate (Lg) with be used to control
the changes in updating P; as with PBIL. Once P; is updated, the value of P; is set to be P; which

means the process requires m(m-1)/2 updates since P; is always set to be 1. The updated P

denoted by Pf-j can be calculated from
Pi,' = (1 - LR)Pij + LR(l - |bbest,i - bbest,jD (4.2)

where Lgis the leaming rate randomly generated in the interval [Lg,, Lgl. Dpestj and Dpeqj are the
i-th and j-th elements of by respectively. From the updating equation, if the /-th and j-th
elements are similar, it means they are correlated, consequently, the value of P; (and P;) is
increased. If they are dissimilar or uncorrelated, P; is then decreased. Nevertheless, the value of

P; must be limited to the predefined interval
j=Py=1 (4.3)

where P, and Py, are the predefined lower and upper limits of P;. Equation (4.3) is used to maintain
diversity in optimisation search. In the original PBIL, a mutation operator is used with the same
purpose. Therefore, the procedure of EDACE starts with an initial matrix for correlation between
binary elements where P; = 1 and P; = 0.5. This implies that, when generating a binary solution,
its elements have equal probability to be 1 or 0 where its r-th element can be 1 or 0, created at

random. The procedure for general purpose of EDACE is given in Algorithm 4.2. The decision on
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selecting by for generating a binary solution and by, for updating the CBE matrix is dependent
on a preference of a user. This means other versions of EDACE can be developed in the future.

An initial binary population is randomly created. The binary solutions are then decoded
to be real design variables where function evaluations are performed and bger and by, are found.
Then, new binary solutions are generated using Algorithm 4.1 while the greedy selection (steps 6-
8) is activated with bger and by being determined. The CBE matrix is updated by using by as
detailed in Equations (4.2) — (4.3). The search process is repeated until termination criterion is
reached. The generation of a binary design solution of EDACE is, to some extent, similar to those
used in binary PSO [61] and binary quantum-inspired gravitational search algorithm (BQIGSA) [62]
in the sense that the binary solution is controlled by the probability of being ‘1’ or ‘0’. However,
in EDACE, a generated solution relies not only on such probability but also the reference binary
solution bger. Apart from that, the update of CBE tend to be similar to the concept employed in
PBIL with a learning rate and this is totally different from binary PSO and BQIGSA.

Algorithm 4.2 Procedure for EDACE

Input: number of generation (n;,,), population size (np), binary length (m)
Output: brest, foest
Initialisation:
0.1: Assign P; = 0.5 and P; = 1, sized mxm.
0.2: Randomly generate n, binary solutions b’ and decode them to be X.
0.3: Calculate objective function values f = fun(x) where fun is an objective function evaluation.
0.4: Find frest, baer, Dpest
Main iterations
1: For jiter =1 10 Ny,
Update P using Equation (4.2)

Generate b, from P using Algorithm 1, and decode them to be X,

Calculate objective function values fre, = fun(X o).
|f fnew <ﬁ

2
3
4. Fori=1tonp
5
6
7 = frew 0= Bl X= Xy
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8: End

9: End

10:  Update foest, brer, Dpest
11: End

In selecting bger and by, if both solutions are the same which is by, it could lead to a
premature convergence. If both are set to be a solution randomly selected solution from the
current binary population, the diversification increases but the convergence rate will be slower.
Therefore, the balance between intensification and diversification must be made. In this work,
the so far best binary solution is set to be bge to maintain intensification. For updating the CBE

matrix, we use the new updating scheme as
Pi,' = (1 - LR)Pij + LR(l - |bbest1,i - bbestz,jl) (4.9)

The solutions byes; and by, are two types of best solutions. Firstly, np best solutions are selected
from {b’} U {b.,.} (see Algorithm 4.2 for both solution sets), sorted according to their functions,

and then saved to a set Best sol. Four mX1 vectors are created as: b; the so far best solution,
b, a solution whose elements are averaged from the elements of the first n,.: (default = 10) best
solutions found so far, bs a solution whose elements are averaged from the elements of the
members of Best sol, and by a solution whose elements are averaged from the elements of the
current binary population. by.s is randomly chosen from the aforementioned solutions (b, b,,
bs, and b,) with equal probability while by, is randomly chosen from the members of Best sol.
With this idea, the balance between exploration and exploitation is maintained throughout the

search process. Algorithm 4.3 shows the new CBE updating strategy.

Algorithm 4.3 Updating scheme for CBE

Input:LRL, LR,U’ P, bi, bREF: BQST_SOI, Npest

!

Output: P

Main procedure

Create by, by, bs, by




Fori=1tom

1: Assign P = rand.

2: If PRG [O, 025), set bbestl,/ = bl,/’

3:If PRG [025, 05), set bbestl,/ = b27/

a. If PRE [05, 075), set bbesﬂ,/ =

5: Otherwise, set bpestr; = ba,

b3,/

6: Random selected a vector by, from Best sol.

Forj=i+1tom

7: Generate Lp.

8: Update P; using Equation (4.4).

9. Limit P; to the interval [P, Pyl.

End
End
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4.3 Experimental set up

To investigate the search performance of the proposed algorithm, fifteen learning-based

test problems from CEC 2015 and one flight dynamic control optimisation problem are used. The

former is used for testing the performance of EDACE for general types of box-constrained

optimisation while the latter is the real-world application.

4.3.1

CEC 2015 learning-based test problems

The CEC2015 learning-based test problems are box-constrained single objective

benchmark functions proposed in [63]. The problems consist of 2 Unimodal Functions, 3 Simple

Multimodal Functions, 3 Hybrid Functions and 7 Composition Functions. The summary of CEC2015

learning-based test problems is shown in Table 4.1. It should be noted that the details and the

codes for the test problems can be downloaded from the website of CEC 2015 competition.

Table 4.1 Summary of CEC2015 learning-based functions

No. Functions Sfrnin
Unimodal 1 Rotated  High  Conditioned  Elliptic 100
Functions Function
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2 Rotated Cigar Function 200
Simple Multimodal 3 Shifted and Rotated Ackley’s Function 300
Functions 4 Shifted and Rotated Rastrigin’s Function 400
5 Shifted and Rotated Schwefel’s Function 500
Hybrid Functions 6 Hybrid Function 1 (N=3) 600
7 Hybrid Function 2 (N=4) 700
8 Hybrid Function 3(N=5) 800
Composition 9 Composition Function 1 (N=3) 900
Functions 10 Composition Function 2 (N=3) 1000
11 Composition Function 3 (N=5) 1100
12 Composition Function 4 (N=5) 1200
13 Composition Function 5 (N=5) 1300
14 Composition Function 6 (N=7) 1400
15 Composition Function 7 (N=10) 1500

4.3.2  Flight dynamic control optimisation problem

Flight dynamic control system design is a classical important application for real
engineering problems. The motion of an aircraft can be described using the body axes which is
herein the stability axes consisting of: roll axis (x), pitch axis (y) and yaw axis (z) as shown in Figure
4.1. The motion of the aircraft is described by the Newton’s 2" law or equations of motion for
both translational and rotational motions. The dynamical model is nonlinear but can be linearised
by applying aerodynamic derivatives. Due to aircraft symmetry with respect to the xz plane, the
linearised dynamical model can be decoupled into two groups as longitudinal motion and the
lateral/directional motion. For more details of deriving the equations of motion, see [64]. In this
work, only the lateral/directional motion control is considered. A state equation representing the

dynamic motion of an aircraft is expressed as [64-67]:

x=Ax+Bu (4.5)

where x={6, r, p, ¢}T
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B = Sideslip, a velocity in y direction
r=yaw rate, rate of change of rotation about the x axis

p= roll rate, rate of change of rotation about the z axis

¢ = bank angle, rotation about the x axis
A = kinetic energy matrix

B = Coriolis matrix

5&
u= s = control vector

r

50 = aileron deflection

5; = rudder deflection.
The control vector u can be expressed as:
u=Cu,+Kx (4.6)
where ug is a pilot’s control input vector while C and K are the gain matrices expressed as [67]
10
C= ,
[ks J
ke ki Kk
K| e 1 K 0
k; ky ks O
where parameters k;-k; are control gain coefficients which need to be found.
From Equations (4.5) - (4.6), the state equation for lateral/directional motion of an aircraft
can be expressed as:

%=(A+BK)x+BCu, 4.7)

Design optimisation of the control system of an aircraft is found to have many objectives

as there are several criteria need to be satisfied such as control stability, accuracy, sensitivity,
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control effort, etc, while the control gains coefficients are set to be design variables for an
optimisation problem. In this work, the optimal flight control of an aircraft focuses on only the
stability aspect. The objective function is posed to minimise spiral root subjected to stability

performance constraints. The optimisation problem can then be written as:

Min: f(X) = A (4.8)
Subjected to:

A <-0.01

Jg <-3.75

&5 205

wy 21

where A, 4z, &p and @y are spiral root, roll damping, damping ratio of dutch-roll complex pair,
and dutch-roll frequency, respectively. These parameters can be calculated based on the
eigenvalues associated with the matrix A+BK. The design variables are control gain coefficients in
the matrix K (x = {ky, ko, ks kq ks, k7}7). The kinetic energy matrix (A) and the Coriolis matrix (B) are

defined as;

~0.2842 -09879 0.1547 0.0204
10.8574 —05504 -0.2896 0
T|-199.8942 04840 -16025 0 |
0 0.1566 1 0

0 0.0524

| 04198 -12.7393

|50.5756  21.6753
0 0

More details about this aircraft dynamic model can be found in the references [64-67]. To

handle the constraints, the penalty function which was presented in [59] is used.
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Pitch Axis

Roll Axis

Yaw Axis

Figure 4.1 Stability axes of an aircraft

The proposed EDACE and several well established binary-code meta-heuristics are used
to solve the fifteen CEC2015 learning-based test problems and the flight dynamic control test
problem. The meta-heuristic optimisers are [68]:

Genetic Algorithm (GA): used binary codes with crossover and mutation rates are 1 and
0.1 respectively.

Binary Simulated Annealing (BSA): used binary codes with exponentially decreasing
temperature. The starting and ending temperature are set to be 10 and 0.001, respectively. The
cooling step is set as 10.

Population Based Incremental Learning (PBIL): used binary codes with the learning rate,
mutation shift, and mutation rate as 0.5, 0.7, and 0.2 respectively.

Binary based Particle Swarm Optimisation (BPSO): used binary codes with V-shaped transfer
function while the transfer function used is the V-shaped version 4 (V4). It is noted that this version
is said to be the most efficient version based on the results obtained in [61].

Univariate Marginal Distribution Algorithm (UMDA); used binary codes. The first 20 best

binary solutions is used to update the probability matrix.
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Estimation of Distribution Algorithm with Correlation of binary Elements (EDACE) (Algorithm
4.2): used binary codes with P, = 0.1, P, = 0.9, Lz, = 0.4, Lgy = 0.6, and Npest = 10.

Each algorithm is used to solve the problems for 30 optimisation runs. The population
sizes are set to be 100 and 20 while number of generation is set to be 100 and 500 for the
CEC2015 learning-based test problems and the flight dynamic control test problem respectively.
For an algorithm using different population size and number of generations such as BSA, it will be
terminated at the same number function evaluations, which is 10,000 for all test problems. The

binary length is set to be 5 for each design variable for all optimisers.

4.4 Optimum Results
4.4.1 CEC2015

After applying the proposed EDACE and several well-established binary MHs for
solving the CEC2015 learning-based benchmark functions, the results are shown in Tables 4.2-4.4.
Note that, apart from the algorithms used in this study, the results of solving CEC2015 test suit
obtained from efficient binary artificial bee colony algorithm based on genetic operator (GBABC),
binary quantum-inspired gravitational search algorithm (BQIGSA) and self-adaptive binary variant
of a differential evolution algorithm (SabDE) as reported in [69] are also included in the
comparison.  From Table 4.2, the mean (Mean) and standard deviation (STD) values of the
objective functions are used to measure the search convergence and consistency of the
algorithms. The lower Mean is the better convergence while the lower STD is the better
consistency. The value of Mean is more important, thus, for method A with lower Mean but higher
STD than method B, the method A is considered to be superior.

For the measure of search convergence based on the mean objective function
values, the best performer for the unimodal test functions, f1 and 2, is EDACE while the second
best is BPSO. For the simple multimodal functions, the best performer for f4 and f5 is SabDE while
the best performer for the f3 is BPSO. The second best for the 3, f4 and f5 are SabDE, BEDACE
and UMDE, respectively. For the hybrid functions, the best performer for the function f6, f7, and
f8, are SabDE, EDACE, and BPSO, respectively, while the second best for f6, f7 is BPSO and the
second best for f8 is EDACE. For the final group of CEC2015 test problems, composition functions,
the best performer for the f11, f12 and f14 is SabDE while the best performer for the f10 and f15
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are BPSO and EDACE, respectively. For f9, the best performers are UMDA, BPSO, GA, PBIL, and
EDACE, which obtain the same mean values while, for f13, the best performers are UMDA, BPSO,
GA, PBIL, BSA, and EDACE, which obtained the same mean values. It should be noted that the
results from [53] were obtained from using the total number of function evaluations as 1,000,000
with the binary length of 50 for each design variable whereas this work uses 10,000 function
evaluations with the binary length of 5 for each design variable. This indirect comparison with
GBABC, BQIGSA, and SabDE can only be used to show that the proposed EDACE also has good
performance and cannot be used to claim which method is superior.

For the measure of search consistency based on the STD values, the most consistent
method for unimodal functions, f1 and 2, are BPSO and EDACE while the second most consistent
methods are EDACE and BPSO, respectively. For the simple multimodal functions, the best for f3
and f5 is SabDE while the best for fd is the proposed EDACE. EDACE is the best for the hybrid
function of f7 while BPSO is the best for the hybrid functions f6 and f8. For the composition
functions, EDACE is the best for the problems f9 and f12 while BPSO is the best for f10. For the
composition functions, f11, f14 and f15, the best is SabDE while the best for 13 is BSA.

The value Min in Table 4.2 is the objective function value of the best run from a
particular method. Note that only the UMDA, BPSO, GA, PBIL, BSA and EDACE were compared. For
the unimodal function, the minimum objective function values of f1 and f2 were obtained by
BPSO and EDACE, respectively. For the simple multimodal functions, the minimum objective
function values for f3 and f5 are obtained from BPSO and EDACE, respectively, while for the f4,
the minimum is obtained from UMDA, BSA and EDACE. The EDACE obtained minimum objective
function values for all test functions in the hybrid function group. However, for the hybrid function
f8, three algorithms including BPSO, GA and EDACE obtained the minimum values. For the
composition functions, EDACE obtained the minimum function values for all test functions.
However, for the functions f9 and f13, all algorithms obtained the same minimum values while
for the f11, BPSO and EDACE obtained the same minimum function values. Similarly, for f12,
UMDA, BPSO, BSA and EDACE obtained the same minimum values.



Table 4.2 Objective values obtained

CEC2015

MHs

UMDA

BPSO

GA

PBIL

BSA

EDACE

*GBABC

*BQIGSA

*SabDE

Unimodal Functions

f1

Mean

7.415E+06

1.807E+06

5.508E+06

1.586E+07

4.365E+07

1.692E+06

2.7129E+07

8.419E+07

3.093E+08

STD

5.648E+06

1.224E+06

3.510E+06

1.226E+07

4.391E+07

2.297E+06

2.26 [E+07

7.354E+07

1.168E+08

Min.

5.203E+05

1.914E+05

1.016E+06

2.688E+05

1.325E+06

2.454E+05

f2

Mean

1.728E+08

1.278E+08

2.415E+08

1.443E+08

1.018E+09

7.802E+07

2.864E+09

7.834E+09

2.541E+09

STD

1.287E+08

1.236E+08

1.880E+08

1.371E+08

1.680E+09

3.046E+07

2.374E+09

6.527E+09

5.008E+09

Min

4.359E+07

3.525E+07

6.713E+07

4.834E+07

1.133E+08

3.277TE+07

Simple Multimodal

Functions

f3

Mean

3.203E+02

3.197E+02

3.203E+02

3.202E+02

3.202E+02

3.201E+02

3.202E+02

3.202E+02

3.200E+02

STD

8.505E-02

1.900E+00

9.050E-02

7.945E-02

6.006E-02

3.300E-02

2.641E+02

2.641E+02

2.044E-02

Min

3.201E+02

3.107E+02

3.201E+02

3.201E+02

3.201E+02

3.200E+02

fa

Mean

4.213E+02

4.220E+02

4.286E+02

4.278E+02

4.226E+02

4.182E+02

4.358E+02

4.389E+02

4.116E+02

STD

4.647E+00

4.915E+00

8.553E+00

9.507E+00

7.150E+00

4.173E+00

3.599E+02

3.621E+02

7.606E+00

Min

4.105E+02

4.124E+02

4.138E+02

4.123E+02

4.105E+02

4.105E+02

f5

Mean

1.010E+03

1.066E+03

1.339E+03

1.353E+03

1.275E+03

1.014E+03

1.108E+03

1.542E+03

9.330E+02

STD

1.300E+02

1.352E+02

1.981E+02

2.279E+02

1.975E+02

1.500E+02

9.736E+02

1.275E+03

9.464E+01
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Min

7.791E+02

8.526E+02

1.049E+03

8.120E+02

9.628E+02

6.907E+02

Hybrid Functions

f6

Mean

1.951E+05

7.345E+04

2.288E+05

4.894E+05

6.403E+06

1.133E+05

7.442E+06

5.582E+05

4.625E+04

STD

1.120E+05

3.958E+04

1.813E+05

3.224E405

8.635E+06

8.936E+04

1.321E+07

6.055E+05

4.076E+04

Min

3.661E+04

3.661E+04

3.702E+04

8.124E+04

1.320E+05

3.659E+04

f7

Mean

7.047E+02

7.032E+02

7.044E+02

7.046E+02

7.118E+02

7.030E+02

7.589E+02

7.392E+02

7.752E+02

STD

1.054E+00

6.183E-01

1.036E+00

1.113E+00

8.660E+00

5.927E-01

4.668E+02

4.324E+02

4.155E+03

Min

7.027E+02

7.024E+02

7.027E+02

7.024E+02

7.025E+02

7.021E+02

f8

Mean

9.309E+04

1.511E+04

5.503E+04

4.808E+05

2.305E+06

2.7127E+04

3.949E+07

2.948E+06

2.395E+07

STD

1.120E+05

6.918E+03

5.630E+04

5.295E+05

2.400E+06

2.635E+04

2.442E+08

2.469E+06

5.432E+07

Min

1.497E+04

1.287E+04

1.287E+04

1.312E+04

1.589E+04

1.287E+04

Composition Functions

f9

Mean

1.001E+03

1.001E+03

1.001E+03

1.001E+03

1.003E+03

1.001E+03

1.017E+03

1.048E+03

1.177E+03

STD

2.090E-01

2.231E-01

9.437E-01

4.017E-01

4.284E+00

1.700E-01

8.397E+02

8.643E+02

4.102E+01

Min

1.000E+03

1.000E+03

1.000E+03

1.001E+03

1.000E+03

1.000E+03

f10

Mean

1.285E+04

3.930E+03

1.367E+04

4.235E+04

5.317E+05

7.819E+03

9.909E+05

4.426E+04

2.416E+07

STD

8.308E+03

2.140E+03

1.291E+04

3.728E+04

6.444E4+05

4.897E+03

3.659E+06

4.477E+04

8.862E+07

Min

3.199E+03

1.733E+03

1.738E+03

2.275E+03

1.805E+03

1.731E+03
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f11

Mean

1.510E+03

1.232E+03

1.360E+03

1.396E+03

1.427E+03

1.240E+03

1.159E+03

1.172E+03

1.114E+03

STD

8.727E+01

1.410E+02

1.129E+02

5.002E+01

4.384E+01

1.436E+02

9.557E+02

9.669E+02

1.131E+01

Min

1.401E+03

1.109E+03

1.118E+03

1.132E+03

1.402E+03

1.109E+03

f12

Mean

1.304E+03

1.305E+03

1.306E+03

1.308E+03

1.308E+03

1.305E+03

1.264E+03

1.255E+03

1.224E+03

STD

9.674E-01

1.125E+00

1.259E+00

2.595E+00

4.486E+00

1.115E+00

1.044E+03

1.035E+03

1.302E+00

Min

1.303E+03

1.303E+03

1.304E+03

1.304E+03

1.303E+03

1.303E+03

f13

Mean

1.300E+03

1.300E+03

1.300E+03

1.300E+03

1.300E+03

1.300E+03

1.446E+03

1.452E+03

2.815E+09

STD

8.140E-04

1.039E-03

1.248E-03

9.095E-04

2.313E-13

7.944E-04

1.193E+03

1.197E+03

4.158E+09

Min

1.300E+03

1.300E+03

1.300E+03

1.300E+03

1.300E+03

1.300E+03

f1d

Mean

9.364E+03

5.623E+03

7.023E+03

7.355E+03

8.736E+03

6.167E+03

2.162E+03

3.356E+03

1.727E+03

STD

2.120E+03

2.144E+03

1.856E+03

2.732E+03

3.603E+03

2.199E+03

2.091E+03

2.869E+03

4.411E+02

Min

4.817E+03

2.816E+03

4.425E+03

2.818E+03

4.453E+03

2.401E+03

f15

Mean

1.623E+03

1.616E+03

1.621E+03

1.618E+03

1.639E+03

1.614E+03

2.012E+03

1.530E+03

1.700E+03

STD

3.445E+00

3.132E+00

5.108E+00

4.295E+00

3.614E+01

3.945E+00

1.659E+03

1.262E+03

2.177E-05

Min

1.618E+03

1.609E+03

1.612E+03

1.610E+03

1.610E+03

1.607E+03

* Results reported in [69] with 1,000,000 function evaluations and 50 binary length for each design variable

44
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Table 4.3 shows the summary of ranking based on the mean objective function values
from 30 optimisation runs. It was found that the proposed EDACE is mostly ranked in top three
best from solving fifteen CEC2015 learning-based test problems. After summing up the ranking

score, it is found that EDACE and BPSO are equal best performer while the third best is UMDA.

Table 4.3 Ranking of all optimisers based on the Mean values

UMDA | BPSO | GA PBIL | BSA | EDACE | GBABC | BQIGSA | SabDE
f1 4 2 3 5 7 1 6 8 9
f2 4 2 5 3 6 1 8 9 7
f3 9 1 8 7 4 3 5 5 2
fa 3 4 7 6 5 2 8 9 1
f5 2 4 7 8 6 3 5 9 1
f6 4 2 5 6 8 3 9 7 1
f7 5 2 3 4 6 1 8 7 9
f8 4 1 3 5 6 2 9 7 8
f9 3 2 5 4 6 1 7 8 9
f10 3 1 4 5 7 2 8 6 9
f11 9 4 6 7 8 5 2 3 1
f12 4 6 7 9 8 5 3 2 1
f13 3 2 6 5 1 4 7 8 9
f14 9 4 6 7 8 5 2 3 1
f15 6 3 5 4 7 2 9 1 8
Sum of ranking 72 40 80 85 93 40 96 92 76

In order to further investigate the performance comparison of the binary-code MHs,
the statistical t-test is employed. Table 4.4 shows a 9x9 comparison matrix of the 9 optimisers. If
method 7 is significantly better than method j based on the t-test at 5% significant level, the
column i and row j of the matrix is set to be 1, otherwise, it is set to be 0. When summing up
along the columns, the highest score indicates the best optimiser based on this type of

comparison. In the table, it means EDACE is the best. Table 4.5 shows the ranking of the 9
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optimisers when solving all CEC2015 learning-based test problems based on the t-test. After
summing up the ranking numbers of all test problems, it is found that EDACE is the overall best
optimiser while BPSO and UMDA are the second and the third best respectively.

Figure 4.2-4.5 show the search history of the top three optimisers EDACE, BPSO and
UMDA on solving all CEC2015 learning-based test problems where the vertical axis is the average
objective function from 30 runs of each method. For all test functions, it was found that EDACE
and UMDA converged to the optimal values at higher speed while BPSO seems to converge slowly
and consistently. However, for all functions, BPSO finally moves to the minimum or near minimum
function values at the end of the runs. EDACE shows fast convergence from the beginning and
obtained the minimum or near minimum values for all test functions except for f3. This indicates
the ability of search exploitation and search exploration of the proposed EDACE since the CEC2015

test functions were assigned to test both aspects of MHs.

Table 4.4 Comparison based on the statistical t-test of the test problem

UMDA | BPSO | GA | PBIL | BSA | EDACE | GBABC | BQIGSA | SabDE
UMDA 0 1 1 0 0 1 0 0 0
BPSO 0 0 0 0 0 1 0 0 0
GA 0 1 0 0 0 1 0 0 0
PBIL 1 1 1 0 0 1 0 0 0
BSA 1 1 1 1 0 1 1 0 0
EDACE 0 0 0 0 0 0 0 0 0
GBABC 1 1 1 1 0 1 0 0 0
BQIGSA 1 1 1 1 1 1 1 0 0
SabDE 1 1 1 1 1 1 1 1 0
Sum 5 7 6 q 2 8 3 1 0
Ranking 4 2 3 5 7 1 6 8 9
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Table 4.5 Ranking of the all optimisers for all CEC2015 learning based test problem based on

statistical t-test

UMDA | BPSO GA PBIL BSA EDACE GBABC | BQIGSA | SabDE
f1 4 2 3 5 7 1 6 8 9
f2 4 2 5 3 6 1 8 9 7
f3 5 2 5 5 4 2 5 5 1
fa 3 4 6 6 4 2 8 8 1
f5 2 4 7 8 6 2 5 9 1
f6 4 2 5 6 8 3 9 7 1
7 3 1 3 3 6 1 8 7 8
f8 4 1 3 5 6 2 9 7 8
9 3 1 4 4 6 1 7 8 9
f10 3 1 4 5 7 2 8 6 9
f11 9 4 6 7 8 5 2 2 1
f12 4 5 7 8 8 5 2 2 1
f13 1 1 1 1 1 1 7 7 9
f14 9 a4 6 7 8 5 2 3 1
f15 6 3 5 4 7 2 9 1 8
Sum 64 37 70 77 92 35 95 89 74
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Table 4.6 shown performance of EDACE on solving unimodal function, f1, when the
binary lengths for each design variable are 5, 10, 25, and 50 for 10 optimisation runs. It was found
that, when the number of binary bit increases, the computational time increase and the resulting
mean objective function values decrease for the binary lengths less than 25. However, for the
binary length of 50, the mean objective function value increases meaning EDACE performance

deteriorates. Without considering computational time, the best number of binary length is 25.

Table 4.6 shown performance of EDACE for various number of binary bits

No. of binary bits 5 10 25 50
Mean function values 2.314E+6 1.101 E+6 1.079 E+6 1.143 E+6
Average computational time (Sec.) 9.371 10.748 18.634 52.773
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4.4.2  Flight dynamic control system design

After applying the six binary-code MHs to solve the real engineering application of
flisht dynamic and control system for 30 optimisation runs, the comparison results are shown as
box-plots of the objective and constraint violation values (Figure 4.6). The upper and lower
horizontal lines of each box represent the maximum and minimum of objective function values
respectively while the internal line shows the median of objective function values. From this
fisure, based on median values of objective function, it is found that the best performer is EDACE
while the second best and the third best are BPSO and UMDA respectively. The most consistent
having the smallest gap between the maximum and minimum for all of optimisation runs is UMDA.
However, the worst function value found be EDACE is almost as good as the best found by UMDA.
Thus, the proposed EDACE is superior. Based on the figure, it was found that GA failed to solve
the problem as it cannot obtain a feasible optimum point. The minimum objective function value
is obtained from using the proposed EDACE.

Figure 4.7 shows the best run search history of all optimisers (Selection based on the
minimum objective function values of feasible solutions). From the figure, UMDA and PBIL seem
to be the fastest convergent methods initially. However, after the process goes on for about 4,000
function evaluations, the proposed EDACE converged to the minimum objective function value
with a faster rate than the others. It has better exploration rate as the best function value is still
decreased at the late iteration numbers. BPSO, on the other hand, seems to be slower than
UMDA, PBIL and BSA in the beginning. It however can converge to the better results after around

8,000 function evaluations.
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4.5 Conclusions and Discussion

In this work, a new concept of a binary-code optimiser is proposed. Fifteen CEC2015
learning based test problems and a real engineering design problem of flight dynamic and control
system are used to investigated the search performance of the proposed algorithm. Several well-
establish binary-code MHs are used in comparison. The results obtained show that the proposed
EDACE is the best performer on solving the 15 CEC2015 learning-based test problems and real
engineering design problem of flight dynamic and control. Further improvement of EDACE by
means of self-adaptation will be investigated in the future. The choice for bgs needs further
studies. The use of EDACE for hyper-heuristic development is also possible. The extension to
multiobjective optimisation and many-objective optimisation is also under investigation. Appling
EDACE for the more complex problems such as large scale problems, mixed-variable problems,
and reliability optimisation is for future work. The fight control optimisation problem, one of our
recent research focuses, has more than three objective functions to be optimised, thus, it should
be formulated as many-objective optimisation. This along with aircraft path planning dynamic
optimisation still needs considerably more investigation while EDACE will be one of optimisers to

be used for solving such design problems.



Chapter V
Inverse problem based differential evolution for efficient structural health monitoring of

trusses

5.1 Introduction

This chapter presents a new efficient MH for structural damage detection as a hybridisation
of a radial basis function (RBF) interpolation and differential evolution (DE). In this work, the RBF
is integrated into the main procedures of DE for approximating design solutions rather than
objective functions as with traditional surrogate-assisted optimisation. Four structural damage
detection and localisation test problems from two truss structures are used for performance
assessment of a number of MHs and the proposed algorithm. The results obtained from the
various algorithms will be statistically compared in terms of both convergence rate and

consistency.

5.2 Natural-frequency-based damage detection and localisation

In this study, structural damage detection using changes in structural natural frequencies
is considered. The detection strategy can be used for damage detection of truss elements due to
corrosion, crack and yielding of members due to fatigue. This approach is based on implementing
modal testing incorporated with a finite element model. Initially, the natural frequencies (usually
the lowest noqe Natural frequencies) of the structure in a normal condition will be used as the
baseline. In practice, the natural frequencies and mode shapes will be measured and the finite
element model will be updated so that both measured and computed modal parameters are
equivalent. The finite element model used herein is a simple linear undamped free vibration

which can be expressed as:

[K]{¢j }—ij [M]{¢j}=0 (5.1)

The structural natural frequencies can be computed as

0 =fAj , J71,23, Ny (5.2)
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The mass and stiffness matrices can be obtained from assembling all element mass and stiffness

matrices, which can be expressed as:

M= [m.]
and

K]=3lke]. 5.9

In cases that damage in the structural element occurs, the structural natural frequencies
of the structure will be different from those of the baseline structure. To localise the damage, it
is assumed that the values of the structural stiffness matrix are altered, which can be written in
terms of element structural damage percentage. As a result, the altered structural stiffness matrix

of the damaged structure is of the form

[Kol= 2200 P 5.0
i=1

The optimisation problem is then formulated by assigning all the values of element
damage percentages as a design solution x = {py, ..., Pre}’. The objective function is to minimise

the root mean square error:

Nmode
_Z (wj,damage — @j computed )2
Min : f (x) = 1| (5.5

Nmode

where @ gamage 1S the structural natural frequency of mode j obtained from measuring a damaged
structure. Nyege is the number of lowest vibration modes used for the damage detection.
@j computed 1S the structural natural frequency of mode j obtained from solving (5.1) using [K,]
instead of [K]. The optimum solution having the objective function value close to zero gives
accurate damage localisation. The values of the element damage percentage indicate where the

damage takes place.
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5.3 Test problems with trusses

To study performance assessment of a number of MHs on tackling damage detection
optimisation, two truss structures are employed in this work. For the sake of simple investigation,
truss damage is simulated whereas the natural frequencies of structures are computed from finite
element analysis rather than measuring real structure modal data. Only truss element damages
are taken into consideration. It should be noted that free vibration is simulated for all cases
without considering gravity loads. The trusses are detailed as follows.

5.3.1 Twenty-five-bar truss
The structure having 25 bars is depicted in Fig. 5.1 [70]. All bar element cross-
sectional areas are set to be 6.4165 mm?. Material density and Young modulus are given as 7,850
kg/m? and 200 GPa, respectively. Two damage case studies are assumed as Case I: 35% damage
on element 7 (Note that 35% damage on elements 6, 8 or 9 will result in the same set of natural
frequencies), and Case II: 35% and 40% damage at elements 7 and 9 (Note that 35% damage in
element 6 and 40% damage in element 8 will result in the same set of natural frequencies for
this case). The pin supports are applied to node numbers 7, 8, 9 and 10. The data of natural

frequencies of the damaged and undamasged 25-bar truss are given in Table 5.1.

Table 5.1 Natural frequencies (Hz) of damaged and undamaged 25 bar structure.

35% damage
Undamasged at element
Undamaged calculated by Undamaged | 35% damage number 7
Mode reported in commercial calculated in | at element and 40%
[6]* software (Ansys this study* number 7 damage at
academic version)* element
number 9
1 70.9924 69.782 69.7818 69.1393 68.5203
2 74.0851 72.822 72.8217 72.2006 71.3167
3 97.5390 95.876 95.8756 95.3372 94.5625
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4 122.2281 120.14 120.1437 119.8852 119.6514
5 121.9300 121.50 121.5017 121.4774 121.4253
6 - 125.01 125.0132 125.0130 125.0129

* The natural frequencies are slightly different which could be due to the numerical algorithm

used and truncation errors.

2.54m

2.54m

Figure 5.1 Twenty-five bar truss

532 Seventy-two-bar truss

The 72-bar truss structure is displayed in Fig. 5.2 [71] where four non-structural
masses of 2270 kg are attached to the top nodes. The values of all bar element cross-sectional
areas are set to be 0.0025 m? Material density and modulus of elasticity are 2,770 kg/m> and
6.98x10'° Pa, respectively. Two cases of damage are generated as Case I: 15% damage at element
number 55 (Note that 15% damage in elements 56, 57, or 58 will result in the same set of natural
frequencies as that of element 55), and Case II: 10% damage at element number 4 and 15%
damage at element number 58 (90, 180, and 270 degrees rotation along the z axis will lead to
the same set of natural frequencies). The pin supports are applied to nodes number 17, 18, 19
and 20. The values of natural frequencies of the damaged and undamased 72-bar truss are given

in Table 5.2.




Table 5.2 Natural frequencies (Hz) of damaged and undamaged 72 bar structure.
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15% damage
Undamaged at element
Undamaged
Undamasge calculated by 15% damage | number 58
calculated
Mode d reported commercial A at element and 10%
in this
in [11]* software (Ansys number 55 damage at
study*
academic version)* element
number 4
1 6.0434 5.4977 6.0455 5.9553 5.9530
2 6.0441 5.4977 6.0455 6.0455 6.0455
3 10.4627 9.5181 10.4764 10.4764 10.4764
il 18.2275 16.594 18.2297 18.1448 18.0921
5 25.4466 23.213 25.4939 25.4903 25.2437
6 25.4510 23.213 25.4939 25.4939 25.4939

* The natural frequencies are slightly different which could be due to the numerical algorithm

used and truncation errors.

Figure 5.2 Seventy-two bar truss

4x1.524 m
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5.4 Hybrid radial basis function and differential evolution for truss damage detection
The purpose of using MHs for truss damage detection is to solve the optimisation problem
with the objective function (5.5) subject to bound constraints of x. The advantages of using MHs
are their simplicity in use, capability of global search, derivative-free feature, and robustness. Using
meta-heuristics implies that a user has less worry about mode switching during an optimisation
run while this phenomenon may occur in cases of using a gradient-based optimiser. The detection
approach can be used for real-time monitoring provided that an employed MH is adequately

powerful.

5.4.1 Differential evolution

Differential evolution is a population based method which was first proposed by
Storn and Price in 1997 [2]. The method contains two main steps for searching an optimum,
including mutation and crossover where the acronym DE/x/y/z is used to specify different
mutation and crossover strategies. The variable x is used to specify a vector for mutation which
can be best (the best individual) or rand (random individual) while y and z specify the number of
vector pairs used in mutation and the choice of a crossover scheme, respectively. For example,
as used in this work, DE/best/2/bin means that the best individual and two different vector pairs
are used in the mutation step while the binomial crossover is employed. The mutation operation

can be expressed as follows:
Uj = Xpest + (_1)rand(—1,0) I:(Xr,l X2 Xr3— Xr,4)' (5.6)

In this work, F is a uniform random number in the range of [F.,, Fmad. For the i-th mutant
individual uiT= Xnew,1, - Xnew,p] and its corresponding parent xE,d =[Xog1, - Xolgp), the binary
crossover can be operated leading to a new candidate solution X, as

uj; rand <CR ‘
Xnew,j = J:1’2’3’~-~;D- (57)

Xoid,j; Otherwise
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The selection operator is carried out by comparing X,.,, and its parent x,4 where the better will
survive to the next generation.

The DE computational steps are shown in Algorithm 5.1. Initially, a set of the population
is generated by means of randomisation and their objective function values are evaluated. After
obtaining the best individual, the offspring are generated by mutation (eq. 5.6) and then crossover
(eq. 5.7). Then, the next generation is selected and the search process will be repeated until a

termination criterion is reached.

Algorithm 5.1 DE search procedure

Input: population size, number of generations, algorithm parameters.

M: Xbest:f best
Main algorithm

1:Initialise a population, calculate their objective function values and set as the current
population.

2: Find the best individual

3: Generate a new population from the current population using DE mutation (eq.6) and DE
crossover (eq.7).

4: Evaluate objective function values of the members of the new population.

5: Select the next generation from the newly generated and current populations.

6: Set the selected population from step 5 as the next generation.

7: If a termination condition is not met, go to step 2. Otherwise, stop the algorithm.

5.4.2 Inverse problem-based differential evolution
This subsection details the proposed differential evolution based on using an
inverse problem concept. In optimisation, the radial basis function is traditionally used for
approximating an objective function value for problems with expensive function evaluation [47,
72]. Nevertheless, in this work RBF is conversely implemented. It will be used to approximate a
design solution x that is expected corresponding to the target damage conditions. Given that the
vector of target natural frequencies (®gamage) CONtaINS Nipmoge lOwest natural frequencies of the

damaged structure, the idea is to find a solution vector Xyomee CONtaining n, element damage
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percentages by means of interpolation. During MH search, if we have a set of N design solutions
{X1, X5, . . ., Xy} which corresponds to a set of N vectors of natural frequencies {®,®,,...,0y },
these data will be used for RBF training. In contrast to surrogate-assisted optimisation, the natural
frequency vector will be set as independent variables whereas the design vector x will be set as
dependent variables. The /" element of Xdamage that is expected to give the target vector of natural

frequencies of the damaged truss is expressed as:
N
Xdamage,i = kzlck(”(”mk _mdamage“) (5.8)
where ¢ is the interpolation coefficients to be determined, and 0 is a RBF kernel function.

Hmk _mdamageH is the distance between @y and MWygmqee- FOr X;, interpolation coefficients ¢, can

be found from solving the system of linear equations

N
S ool —of)=x(e) ; fori=1,..,n,and (=1, ., N (5.9)
k=1

where x{@) is the /™ element of the (" solution vector in the training set {x, X,, . . ., Xy}

Equation (5.9) can be written in a matrix form as

Ac=Db (5.10)

where A, = @X||@y - @|)). It is required to compute n, sets of the interpolation coefficients
according to n, elements of x. In practice, the matrix A is generated and inverted once, and will
be used to calculate n, sets of the coefficients.

Having determined the sets of interpolation coefficients ¢, for all n, elements of x by using
(5.9), the elements of Xyumaee Can be found from using Equation (5.8). The search procedure for
hybridised RBF and DE which will be termed inverse problem-based differential evolution (IPB-
DE) according to its computation nature can be carried out in such a way that, after the
reproduction step 3 in Algorithm 5.1, the next generation is selected in step 5. The worst solution

in the next generation is then replaced by Xygmaee. The procedure of the hybrid algorithm IPB-DE
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is detailed in Algorithm 5.2 while the flowchart for the IPB-DE algorithm is shown in Fig. 5.3. The
process starts by creating an initial population by using the Latin hypercube sampling (LHS)
technique instead of the Monte Carlo technique. Those solutions in the initial population are
then saved to the RBF database for training RBF. Offspring are then created by means of
reproduction of DE. The candidate solution Xygmeee is Created using Equations (5.8-5.9). Having
performed a selection operation, the worst solution in the next generation is replaced by Xjgmage-
The best solution from the offspring and Xgameee are then added to the RBF database which will
be used as training points during the optimisation search. As the process continues, the RBF
database is improved and expected to give more accurate results. The procedure is repeated

until fulfilling the termination criteria.

Algorithm 5.2 IPB-DE

Input: population size (ny), number of generations (ny), algorithm parameters, the natural

frequencies measured from the damaged structure (@ gamage )

MM: Xpests f best
Main algorithm

1: Generate an initial set of design variables x using LHS, calculate the natural frequencies ()
and objective function values (f), set x and f as the current population and save x and ® in the
RBF database.

2: Find the best solution.

3: Generate offspring from the current population using the DE mutation and binomial crossover
operators (reproduction) and then perform function evaluations.

4: Select design solutions from the offspring and the current population.

5: Generate Xyomage USINg the training points from the RBF database using Equations (9) and then
(8).

6: Calculate the natural frequencies (@ ) and objective function value (f) of Xgomae-

7: Update the RBF database by adding to it the data of the best solution from the offspring and
Xdamage-

8: Replace the worst solution in the next generation with Xggmage-

9: If a termination condition is not met, go to step 2. Otherwise, stop the algorithm.




Initialisation
population, parameters
RBF database, iter =0

Create offspring using DE
mutation and crossover

€ ———

Select next generation using
DE selection
x(iter+1), f(iter+1)
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Create Xdamage USiNg Equations
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Replace the worst in
x(iter+1) with Xdamage and
update RBF database

no, iter=iter+1

Terminated?

yes

Stop, optimum results

Figure 5.3 Flow chart of IPB-DE

5.5 Numerical Experiment
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To verify the search performance of the proposed IPB-DE, several MHs are compared

based on solving the aforementioned truss damage detection problems. The employed methods

are said to be established while some of them are regarded as the currently best optimisers of

this type. Given that np is a population size, MHs and their optimisation parameter settings used

in this work are detailed in table 5.3 (it should be noted that details of notations can be found in

the corresponding references for each method) [58, 73

Table 5.3 MH Parameters settings

MH

Parameter settings

(WOA) [74]

Whale optimization algorithm

- The parameter b = 1

- Other parameters are iteratively adapted.

Sine Cosine algorithm (SCA) [7]

- The constant parameter a = 2.
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Moth-flame optimisation algorithm

(MFO) [75]

- The constant parameter b = 1

- Other parameters are iteratively adapted.

Differential evolution (DE) [2]

- Using DE/best/2/bin strategy
- Scaling factor (F) =0.8,
- probability of choosing elements of mutant vectors

(CR) =05

Artificial bee colony algorithm

(ABC) [49]

- The number of food sources for employed bees =
np/z.

- A trial counter to discard a food source =100.

Real-code ant colony optimisation

(ACOR) [50]

- The parameter, g = 0.2

- The parameter, 5: 1

Charged system search (ChSS) [52]

- The number of solutions in the charge memory =
O.2an
- The charged moving considering rate = 0.75 - the

parameter PAR = 0.5

League championship algorithm

(LCA) [51]

-The probability of success P. = 0.9999

-The decreasing rate to decrease P, = 0.9995

Simulated annealing (SA) [48]

- Starting temperature = 10

- Ending temperature = 0.001

For each loop, n,neqe Candidates are created by mutating

on the current best solution while other n,,o0e

candidates are created from mutating the current

parent. The best of those 2n,,,4 solutions are set as an

offspring to be compared with the parent.

Particle swarm optimisation (PSO)

(3]

- The starting inertia weight = 0.5
- The ending inertia weight = 0.01
- The cognitive learning factor = 0.5

- The social learning factor = 0.5
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Evolution strategies (ES) [4] The algorithm uses a binary tournament selection
operator and a simple mutation without the effect of

rotation angles.

Teaching-learning-based Parameter settings are not required.

optimisation (TLBO) [9]

Adaptive differential evolution The parameters are self-adapted during an optimisation

(JADE) [11] process.

Evolution strategy with covariance | The parameters are self-adapted during an optimisation

matrix adaptation (CMAES) [76] process.

IPB-DE Use the DE parameter setting.

Each optimisation algorithm is employed to solve each test problem for 30 independent
runs. The number of iterations (generations) is 300 for all case studies while the population size
is set to be 30 and 50 for 25-bar and 72-bar trusses respectively. For the optimisers using different
population sizes from the aforementioned values, their search processes are terminated with the
total number of functions evaluations (FEs) equal to 30x300 and 50x300 for 25-bar and 72-bar
trusses respectively. Another termination criterion is when one of the design solutions in the
current population has an objective function value less than or equal to 1x107. It should be
noted that the numbers of FEs used in this study can be considered insufficient for some MH
optimisers. However, these values are used to find out really powerful algorithms. For all test
problems, six lowest natural frequencies (n,,,qe = 6) are used to compute the objective function
values. This number of selected frequencies is reasonable since, in practice, it is easier to

accurately measure fewer lowest natural frequencies.

5.6 Results and discussion

Initially, the effect of RBF kernels on the performance of the proposed algorithm was
investigated. The last test problem, 72 bar truss with 15% damage at element number 58 and
10% damage at element number 4 which is said to be the most complicated problem, was used.

Table 5.4 shows the results obtained from using a variety of RBF kernel functions. The mean
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values of the objective function are used to indicate the search convergence of the algorithms in
cases that the objective function threshold (1x107) is not met during an optimisation run.
Otherwise, the mean number of FEs is used as an indicator. The algorithm that is terminated by
the objective function threshold is clearly the superior method and any optimisation run being
stopped with this criterion is considered a successful run. The number of successful runs from 30
optimisation runs denoted as “No. of successful runs from 30” is the total number that the
algorithm can meet the target objective function value (1x107). It is used to measure the
algorithm reliability. From Table 5.4, the best performer is the Gaussian kernel, while the second
best and the third best are the Polynomial kernel and the Inverse quadratic kernel, respectively.

Thus, the Gaussian kernel is used in this study.

Table 5.4 Comparison of various RBF kernels for solving 72 bar truss Case |l

Mean objective | No. of successful runs
DE with RBF kernel Mean of FEs
function Values from 30 runs
Gaussian 0.0011 25 6856
Multiquadric 0.0104 5 13993
Inverse quadratic 0.0032 14 12221
Linear 0.0117 8 13819
Polynomial order 2 0.0039 15 10807

Comparison of various ranges [Fn, Fmaxd Of @ scaling factor and CR values using DE with
the best RBF kernel for solving the 72 bar truss with 15% damage at element number 58 and
10% damage at element number 4 is shown in Table 5.5. It is found that for all implemented
intervals of [Frin, Fmax, the performance increases when the value of CR increases. The highest
DE performance is obtained when the range [Fin, Fmax and CR are set to be [0.2, 0.8] and 0.8,

respectively.
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Table 5.5 Comparison of various ranges of F and CR values for solving 72 bar truss Case |l

DE with Gaussian RBF kernel | Mean objective | No. of successful runs
Mean of FEs

[Frminy Froax) CR function value from 30 runs

[-1.5,1.5] 0.3 0.0027 1 15000
[-1.5,1.5] 0.5 0.0013 16 12983
[-1.5,1.5] 0.8 0.0011 24 7648
[0.2,0.8] 0.3 0.0025 0 15000
[0.2,0.8] 0.5 0.0011 21 12344
[0.2,0.8] 0.8 0.0011 25 6856
[-2,-2] 0.3 0.0042 0 15000
[-2,-2] 0.5 0.0014 9 14496
[-2,-2] 0.8 0.0014 21 9940

The results obtained from the various MHs from solving the six test problems are given in

Tables 5.6-5.9.

5.6.1  Twenty-five-bar truss

For the 25-bar truss with 35% damage at element 7, the results are given in Table
5.6. The best performer based on the mean objective function values is IPB-DE while the second
and third best are DE and JADE respectively. When considering the number of successful runs,
seven optimisers including WOA, MFO, SCA, DE, TLBO, JADE and IPB-DE can detect the damage in
the structures. The most efficient optimisers are SCA and IPB-DE that can detect the damages of
the structure for 24 and 25 times out of 30 runs within the average of 3262 and 4486 function
evaluations respectively.

For the 25 bar truss with 35% damage at element 7 and 40% damage at the
element number 9, the results are reported in Table 5.7. The best performer based on mean
values is IPB-DE while the second and third best are JADE and DE respectively. When examining
the number of successful runs, only IPB-DE can detect the damage in the structure for all 30 runs.

For this case, IPB-DE is said to be the most efficient optimiser, which obtained the minimum
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objective function mean value and successfully detected the damage in the structure for all

optimisation runs with the average number of function evaluations being 3735.

Table 5.6 Results for 25 bar truss Case |

Mean objective No. of successful runs
Optimiser Mean of FEs
function value from 30 runs
WOA 0.0357 8 6993
MFO 0.0279 3 8686
SCA 0.0270 24 3262
DE 0.0017 19 6019
ABC 0.0135 0 9000
ACOR 0.0089 0 9000
ChSS 0.1385 0 9000
LCA 0.9036 0 9000
SA 0.0089 0 9000
TLBO 0.0077 6 7772
CMAES 0.0033 0 9000
ES 0.0308 0 9000
PSO 8.3830 0 9000
JADE 0.0026 2 8953
IPB-DE 0.0012 25 4486
Table 5.7 Results for 25 bar truss Case |l
Mean objective | No. of successful runs
Optimiser Mean of FEs
function value from 30 runs
WOA 0.1301 0 9000
MFO 0.0336 1 8876
SCA 0.0930 0 9000
DE 0.0096 27 5220
ABC 0.0326 0 9000
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ACOR 0.0125 0 9000
ChSS 0.1590 0 9000
LCA 0.8080 0 9000
SA 0.0269 0 9000
TLBO 0.0405 1 8917
CMAES 0.0115 0 9000
ES 0.0356 0 9000
PSO 8.6012 0 9000
JADE 0.0042 6 8875
IPB-DE 0.0010 30 3757

5.6.2 Seventy-two-bar truss

For the 72-bar truss with 15% damage at element 5, the results are reported in
Table 5.8. The best performer based on the mean objective function values is IPB-DE, while the
second and the third best are ES and ACOR. When looking at the number of successful runs (f
reaching 1x107 or lower), the most efficient method is IPB-DE which can detect the damage of
the structure 30 times from implementing it in 30 optimisation runs, while the average number
of function evaluations for convergent results is only 3155.

For the 72 bar truss with 15% damage at element number 58 and 10% damasge at
element number 4, the results are given in Table 5.9. The best performer based on the mean of
objective function values is IPB-DE, while the second and third best are ES and JADE respectively.
When considering the number of successful runs, the most efficient is IPB-DE, which can detect
the damage of the structure 25 times from a total of 30 optimisation runs, while the average

number of function evaluations for the convergence results is 6856.

Table 5.8 Results for 72 bar truss Case |

Mean objective | No. of successful runs
Optimiser Mean of FEs
function value from 30 runs

WOA 0.0082 22 4832

MFO 0.0270 2 14783




SCA 0.0070 23 4793
DE 0.0087 14 12887
ABC 0.2184 0 15000
ACOR 0.0014 6 14831
ChsS 0.1727 0 15000
LCA 1.1499 0 15000
SA 0.0097 0 15000
TLBO 0.0035 27 5781
CMAES 0.0053 0 15000
ES 0.0010 29 9335
PSO 1.9146 0 15000
JADE 0.0019 1 15000
IPB-DE 0.0009 30 3155
Table 5.9 Results for 72 bar truss Case |l
Mean objective | No. of successful runs
Optimiser Mean of FEs
function value from 30 runs
WOA 0.0189 0 15000
MFO 0.0137 1 14935
SCA 0.0260 2 14502
DE 0.0127 7 13963
ABC 0.1591 0 15000
ACOR 0.0058 0 15000
ChsS 0.1348 0 15000
LCA 1.1049 0 15000
SA 0.0129 0 15000
TLBO 0.0045 7 13503
CMAES 0.0050 0 15000
ES 0.0023 2 14940
PSO 1.7726 0 15000

69
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JADE 0.0031 0 15000

IPB-DE 0.0011 25 6856

Overall, it is clearly indicated from the results that integrating RBF into the DE can improve
the search performance of the optimiser in solving structural damage detection of truss structures
in terms of both search convergence and consistency. Based on the most crucial indicators, the
average number of successful runs and the average number of function evaluations, IPB-DE is
unanimously the most powerful method.

Figure 5.4-5.7 shows the search history of the top five best algorithms (sorted based on
number of successful runs from 30 runs). For the 25 bar truss with 35% damage at element
number 7, the proposed IPB-DE and WOA show a similar convergence curve while WOA is slightly
faster than IPB-DE after 200 function evaluations. Similarly, for the case of the 72 bar truss with
15% damasge at element number 55, the proposed IPB-DE and WOA show the best convergence
curves at the beginning while WOA is faster than IPB-DE. The WOA can converge to the goal before
500 function evaluations for this case. For the 25 bar truss with 35% damage at element number
7 and 40% damage at element number 9, and the 72 bar truss with 15% damage at element
number 58 and 10% damage at element number 4, the IPB-DE gives the best convergence curves

since the beginning.
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Tables 5.10-5.11 show a comparison of the damage locations of the simulated problems
and the results obtained from the best run of IPB-DE. It was found that IPB-DE can correctly detect
the damage locations for Case | of the twenty-five bar truss while for Case Il of the twenty-five
bar truss, the structure is simulated to have 35% and 40% damage at element 7 and element 9
respectively, while the result obtained from IPB-DE gives 34.39 and 39.83% damage at element 6
and element 8. For this case, it can be said that the results are accurate, as both groups can
obtain the same set of natural frequencies as mentioned in Section 5.3. Similarly, for Case | of

the seventy-two bar truss, the structure is simulated to have 15% damage at element number 55

while 15% damage at element 56, 57, or 58 gives the same values of Mygmaee. Therefore, it can
be concluded that the results are accurate for this case. For Case Il of the seventy-two bar truss,
IPB-DE found damage in many elements, while the resulting natural frequencies are similar to the
values of Mygmage- This implies that using only natural frequencies as an objective function can
possibly fail to identify the damage locations for the cases of symmetric structures. The proposed
algorithm is obviously effective and efficient but more reliable objective functions for damage

localisation such as the use of both natural frequencies and mode shapes should be invented.

Table 5.10 Comparison of the simulated solution and the best results obtained by IPB-DE for 25

bar truss
Case | Case |l
% damage at element Damage Damage
no. Simulated damage (%)| found by |Simulated damage (%)| found by
IPB-DE (%) IPB-DE (%)
1 0.00 0.06 0.00 0.00
2 0.00 0.83 0.00 0.74
3 0.00 0.00 0.00 0.02
a4 0.00 0.00 0.00 0.35
5 0.00 0.05 0.00 0.02
6 0.00 0.44 0.00 *34.39
7 35.00 34.16 35.00 0.58
8 0.00 0.45 0.00 *39.83
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9 0.00 0.00 40.00 0.00
10 0.00 0.00 0.00 0.00
11 0.00 0.02 0.00 0.00
12 0.00 0.10 0.00 0.00
13 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00
15 0.00 0.01 0.00 0.00
16 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00
20 0.00 0.01 0.00 0.00
21 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00
w, 69.1393 69.139 68.5203 68.52002
w, 72.2006 72.200 71.3167 71.31654
w; 95.3372 95.337 94.5625 94.56267
Wy 119.8852 119.886 119.6514 119.6496
ws 121.4774 121.477 121.4253 121.4256
Wy 125.0130 125.011 125.0129 125.0121

* 35% damage in elements 6 and 40% damage in elements 8 will result in the same set of

natural frequencies for the Case Il as mentioned in Section 5.3
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Table 5.11 Comparison of the simulated solution and the best results obtained by IPB-DE for 72

bar truss

% Case | Case ll
damage

at Simulated Damage found by | Simulated damage | Damage found by IPB-
element | damage (%) IPB-DE (%) (%) DE (%)

no.
1,26,51| 0, O, 0 0, 0, 0.39 0, 0, 0 0, 0, 0,
2,217,521 0, O, 0 0, 0, 0.36 0, 0, 0 |[**9.88, 0, 0.76,
3,28,53| 0, 0O, 0 0, 0, 0.03 | O, 0, 0 0, 0.04, 0.51,
4,29,54 | 0, O, 0 0, 0.01, 0.90 [10.00, 0, 0 0.01, 0.05, 0.06,
5,30,55| 0, 0, 15.00| O, 0.01, 0.02 0, 0, 0 0.01, 0, 0,
6,31,56 | 0, O, 0 |006 0O 036 | O, 0, 0 | 0.04, 0.16, *9.08,
7,32,57 | 0, O, 0 0.03, 0.06, 0 0, 0, 15.00| 0.02, 0.45, 0,
8,33,58 | 0, O, 0 0, 0, *14.51| O, 0, 0 0, 0.73, *6.58,
9,34,59 | 0, 0O, 0 |0.01, 001, 0.04 | O, 0, 0 | 0.03, 002, 0.02
10, 35, 60| 0, O, 0 0, 191, 0.01 ]| O 0, 0 | 0.01, 0, 0,
11,36,61| 0, O, 0 |0.03, 0.87, 0 0, 0, 0 0, 0.69, 0,
12,37,62| 0, O, 0 |0.01, 001, 0.07 | O, 0, 0 | 0.04, 0, 0,
13, 38,63 0, O, 0 |0.01, 000, 0.01]| O 0, 0 | 0.03, 0, 0,
14,39,64| 0, O, 0 0, 0.2 0 0, 0, 0 | 0.13, 0, 0,
15,40, 65| 0, O, 0 |002 003 005] 0 0, 0 0, 0.06, 0.02,
16,41, 66| 0, O, 0 0.14, 0.01, 0.00 0, 0, 0 0.21, 0, 0,
17,42, 67| 0, O, 0 0.73, 0.00, 0.17 0, 0, 0 3.04, 0.02, 0.09,
18,43,68| 0, O, 0 0.27, 0, 0 0, 0, 0 0.55, 0.05, 1.79,
19,44,69| 0, O, 0 0, 001, 0 0, 0, 0 0, 0.06, 0.12,
20,45, 70| 0, O, 0 0, 0, 0.62 | O, 0, 0 0, 0, 0,
21,46, 71| 0, O, 0 0, 0.01, 0.04 0, 0, 0 0, 0, 0.46,
22,47,72| 0, O, 0 0, 0, 0.01 | O, 0, 0 | 0.01, 0.02, 0,

23,48 0, O 0.03, 0.01 0, 0, 0.03, 0.01,
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24,49 0, O 0.06, 0.54 0, 0, 0.05, 0.07,

25,50 0, O 0, 0.38 0, 0, 0.05, 0.15,
w, 5.9553 59562 5.9530 5.9534
w, 6.0455 6.0451 6.0455 6.0451
w; 10.4764 10.4757 10.4764 10.4755
W, 18.1448 18.1443 18.0921 18.0904
ws 25.4903 25.4892 25.2437 25.2436
Wy 25.4939 25.4929 25.4939 2549271

*15% damage in elements 55, 56, 57 or 58 will result in the same set of natural frequencies.

** 10% damage in elements 1, 2, 3 or 4 will result in the same set of natural frequencies.

5.7 Conclusions

Hybridisation of RBF into DE leading to IPB-DE is presented for truss structural damage
detection problems. Four structural damage detection test problems from three different truss
structures are used to examine the search performance of the proposed approach. Several well
established MHs and the proposed algorithms are then employed to solve the test problems.
Numerical results reveal that the proposed hybrid algorithms of DE with RBF are the top
performers for all test problems. Integrating RBF into the DE obviously improves DE performance.
The proposed idea has the potential to be further applied to other inverse problems such as
robot inverse kinematic analysis. Further improvement for meta-heuristic based structural health
monitoring should be the purpose of a more reliable objective function rather than solely using
the set of lowest natural frequencies. Detection of joint damage is another issue that will be

focused on in future work.



Chapter VI

Conclusions and Future work

In this work, development of MHs for practical engineering optimisation is successfully
conducted based on using surrogated assisted MHs, using parameter adaption and using a
hybridization concept. Firstly, performance enhancement of a teaching-learning based optimizer
(TLBO) for strip flatness optimization during a coiling process is proposed. The method is termed
improved teaching-learning based optimization (ITLBO). The new algorithm is achieved by
modifying the teaching phase of the original TLBO. The design problem is set to find a spool
geometry and coiling tension in order to minimize flatness defects during the coiling process.
Having implemented the new optimizer with flatness optimization for strip coiling, the results
reveal that the proposed method gives a better optimum solution compared to the present state-
of-the-art methods. Next, a sine cosine algorithm is extended to be self-adaptive and its main
reproduction operators are integrated with the mutation operator of differential evolution. The
new algorithm is called adaptive sine cosine algorithm integrated with differential evolution (ASCA-
DE) and used to tackle the test problems for structural damage detection. The results reveal that
the new algorithm outperforms a number of established meta-heuristics. In addition, a new meta-
heuristic called estimation of distribution algorithm using correlation between binary elements
(EDACE) is proposed. The method searches for optima using a binary string to represent a design
solution. A matrix for correlation between binary elements of a design solution is used to
represent a binary population. Optimisation search is achieved by iteratively updating such a
matrix. The performance assessment is conducted by comparing the new algorithm with existing
binary-code meta-heuristics including a genetic algorithm, a univariate marginal distribution
algorithm, population-based incremental learning, binary particle swarm optimisation, and binary
simulated annealing by using the test problems of the CEC2015 competition and one real world
application, which is an optimal flight control problem. The comparative results show that the
new algorithm is competitive with other established binary-code meta-heuristics. Finally, this
work proposes the integration of an inverse problem process using radial basis functions (RBFs)
into meta-heuristics (MHs) for performance enhancement in solving structural health monitoring

optimisation problems. A differential evolution (DE) algorithm is chosen as the MH for this study.
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In this chapter, RBF is integrated into the DE algorithm for generating an approximate solution
rather than approximating a function value as with traditional surrogate-assisted optimisation. Four
structural damage detection test problems of three trusses are used to examine the search
performance of the proposed algorithms. The results obtained from using various MHs and the
proposed algorithms indicate that the new algorithm is the best for all test problems. DE search
performance for structural damage detection can be considerably improved by integrating RBF
into its procedure.

Base on this study, performance of MHs can be improve for various engineering
applications based on using surrogated assisted MHs, using parameter adaption and using a
hybridisation concept. The MH proposed in this work can be extended to other engineering
optimisation problems such as robot inverse kinematic problem, robot and aircraft trajectory

planning, flight dynamic and control etc., while the performance can be still more improve.
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1. Introduction

Structural damage detection is a technique used to identify the
presence of structural damage, localising it,and assessing the sever-
ity [1]. Structural damage takes place due to several reasons such as
defects in structures, cracks and corrosion in structural elements,
and incomplete construction of the structures. Such mistakes can
cause the structures to have a shortened service life and other
undesirable accidents. As a result, engineers have had to develop
techniques to predict and prevent it. Visual inspection of damage
is one straightforward technique usually employed, however, its
main disadvantage is the inability to detect internal defects and
cracks. Moreover, it is difficult to check throughout a large struc-
ture and find damage locations. Therefore, a more sophisticated
means should be used to detect damage locations using only one
measurement.

One of the most popular damage detection techniques is the use
of changes in structural modal data. The idea is that the modal data
of a healthy structure is measured and used as the baseline. Once
it has been found that the modal data alters from its normal val-
ues, it means structural damage may have taken place. Over several
decades, researchers have investigated vibration-based damage

* Corresponding author.
E-mail address: nantiwat@kku.ac.th (N. Pholdee).

https://doi.org/10.1016/j.as0c.2018.02.046
1568-4946/© 2018 Elsevier B.V. All rights reserved.

detection of mechanical systems and structures [2-7]. The use of
fuzzy logic systems [8], neural networks [4,7], and other types of
soft computing has been proposed. Recently, meta-heuristics have
been implemented for perform structural health monitoring based
on vibration measurement. The problem of damage detection is
treated as an optimisation inverse problem [6,9-12]. The advantage
of this strategy is that it is easy to use, can be used to check through-
out a large structure, and can locate damage positions within one
measurement of modal testing. Although many researchers have
demonstrated using a number of MHs for solving the optimisa-
tion problems [6,10,11,13-15], it has been found that they failed
to assess the performance of MHs properly. The algorithm search
convergence and usability was reported but the search consistency
has never been examined. For practicality, an algorithm without
the guarantee of search consistency will be always questioned,
whether it can be used in reality or not. In this regards, develop-
ing MHs for optimising an inverse problem of damage detection to
improve search convergence simultaneously with search consis-
tency is an interesting topic.

Over the last few decades, development of MHs with an empha-
sis on improving the convergence rate and consistency can be
accomplished in several ways, such as introducing new search
concept MHs [16-18], using a hybridisation concept [19], using
parameter adaption [20,21], or using surrogate assisted MHs [22].
The implementation of a surrogate assisted MH is usually required
when the optimisation problem has computationally expensive
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Nomenclature

K] Structural stiffness matrix

[M] Structural mass matrix

Aj jth mode eigenvalue

b; jth mode eigenvector or mode shape.

Ngof Size of the mass and stiffness matrices.

[me] Element mass matrices

[Kel Element stiffness matrices.

Ne Number of elements

Di Percentage of damage in the ith element.

Nmode Number of lowest vibration modes

F Scaling factor

Finin Maximum scaling factor

Fmax Minimum scaling factor

Xr.i ith randomly selected individual

Xold Current solution (parent)

Xnew New candidate solution

rand Uniform random number ranged from O to 1

rand(0,1) Random number, either 0 or 1

CR Crossover rate

D Number of design variables

Ck Interpolation coefficients

© RBF kernel function

®Wgamage Natural frequencies of the damaged structure (Tar-
get vector)

Xgamage SOlution vector containing n, element damage per-
centages

function evaluations. The simple strategy of surrogate assisted
optimisation is carried out in such a way that the design of the
experiment uses a technique such as Latin hypercube sampling to
generate a set of training points. With those training points, actual
function evaluations are performed. A surrogate model, a form of
function that requires significantly less computation time, is then
constructed based on the training points and their function val-
ues. Thereafter, optimisation can be performed based on using the
surrogate model instead of actual function evaluations. This can
greatly reduce optimisation running time. Although a surrogate
model can be used to improve MHs search convergence (by reduc-
ing the number of real expensive function evaluations) and also
search consistency, it is yet to find that such a model is applied to
an inverse problem for structural damage detection.

Therefore, this paper presents a new, efficient MH for structural
damage detection as a hybridisation of a radial basis function (RBF)
interpolation and differential evolution (DE). In this work, the RBF
is integrated into the main procedures of DE for approximating
design solutions rather than objective functions as with traditional
surrogate-assisted optimisation. Four structural damage detection
and localisation test problems from two truss structures are used
for performance assessment of a number of MHs and the proposed
algorithm. The results obtained from the various algorithms will
be statistically compared in terms of both convergence rate and
consistency.

2. Natural-frequency-based damage detection and
localisation

In this study, structural damage detection using changes in
structural natural frequencies is considered. The detection strategy
can be used for damage detection of truss elements due to corro-
sion, crack and yielding of members due to fatigue. This approach
is based on implementing modal testing incorporated with a finite
element model. Initially, the natural frequencies (usually the low-

est nyoqe Natural frequencies) of the structure in a normal condition
will be used as the baseline. In practice, the natural frequencies and
mode shapes will be measured and the finite element model will be
updated so that both measured and computed modal parameters
are equivalent. The finite element model used herein is a simple
linear undamped free vibration which can be expressed as:

[K]{¢;} -2 [M]{¢;} =0 (1)
The structural natural frequencies can be computed as
wj=/A J=1,2,3, ..., ngo (2)

The mass and stiffness matrices can be obtained from assem-
bling all element mass and stiffness matrices, which can be
expressed as:

ne

[M] = " [me]

i=1

and
(K1=)[ke]. (3)
i=1

In cases that damage in the structural element occurs, the struc-
tural natural frequencies of the structure will be different from
those of the baseline structure. To localise the damage, it is assumed
that the values of the structural stiffness matrix are altered, which
can be written in terms of element structural damage percentage.
As a result, the altered structural stiffness matrix of the damaged
structure is of the form

[Ky] = Z% [ke]. (4)

i=1

The optimisation problem is then formulated by assigning all
the values of element damage percentages as a design solution
X={p1, ..., Pne}'. The objective function is to minimise the root
mean square error:

Mmode

2
g (wj,damage - wj,computed)

j=1

Min : f(x) = (5)

Nmode

where wj gqmage 1S the structural natural frequency of mode j
obtained from measuring a damaged structure. 1,04, is the number
oflowest vibration modes used for the damage detection. @; computed
is the structural natural frequency of mode j obtained from solv-
ing (1) using [K;] instead of [K]. The optimum solution having
the objective function value close to zero gives accurate damage
localisation. The values of the element damage percentage indicate
where the damage takes place.

3. Test problems with trusses

To study performance assessment of a number of MHs on
tackling damage detection optimisation, two truss structures are
employed in this work. For the sake of simple investigation, truss
damage is simulated whereas the natural frequencies of structures
are computed from finite element analysis rather than measuring
real structure modal data. Only truss element damages are taken
into consideration. It should be noted that free vibration is simu-
lated for all cases without considering gravity loads. The trusses are
detailed as follows.
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Table 1

Natural frequencies (Hz) of damaged and undamaged 25 bar structure.
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Fig. 1. Twenty-five bar truss.

Mode Undamaged

reported in [6]?

Undamaged calculated by
commercial software
(Ansys academic version)?

Undamaged calculated
in this study?

35% damage at element
number 7

35% damage at element
number 7 and 40% damage
at element number 9

1 70.9924 69.782 69.7818
2 74.0851 72.822 72.8217
3 97.5390 95.876 95.8756
4 122.2281 120.14 120.1437
5 121.9300 121.50 121.5017
6 - 125.01 125.0132

69.1393
72.2006
95.3372
119.8852
121.4774
125.0130

68.5203
71.3167
94.5625
119.6514
121.4253
125.0129

2 The natural frequencies are slightly different which could be due to the numerical algorithm used and truncation errors.

Table 2
Natural frequencies (Hz) of damaged and undamaged 72 bar structure.

Mode Undamaged Undamaged calculated by Undamaged calculated 15% damage at element 15% damage at element
reported in [11]? commercial software in this study? number 55 number 58 and 10% damage at
(Ansys academic version)? element number 4

1 6.0434 5.4977 6.0455 5.9553 5.9530

2 6.0441 5.4977 6.0455 6.0455 6.0455

3 10.4627 9.5181 10.4764 10.4764 10.4764

4 18.2275 16.594 18.2297 18.1448 18.0921

5 25.4466 23.213 25.4939 25.4903 25.2437

6 25.4510 23.213 25.4939 25.4939 25.4939

2 The natural frequencies are slightly different which could be due to the numerical algorithm used and truncation errors.

3.1. Twenty-five-bar truss

The structure having 25bar is depicted in Fig. 1 [6]. All bar
element cross-sectional areas are set to be 6.4165 mm?2. Material
density and Young modulus are given as 7850 kg/m> and 200 GPa,
respectively. Two damage case studies are assumed as Case I: 35%
damage on element 7 (Note that 35% damage on elements 6, 8 or
9 will result in the same set of natural frequencies), and Case II:
35% and 40% damage at elements 7 and 9 (Note that 35% damage in
element 6 and 40% damage in element 8 will result in the same set
of natural frequencies for this case). The pin supports are applied
to node numbers 7, 8, 9 and 10. The data of natural frequencies of
the damaged and undamaged 25-bar truss are given in Table 1.

3.2. Seventy-two-bar truss

The 72-bar truss structure is displayed in Fig. 2 [11] where
four non-structural masses of 2270kg are attached to the top
nodes. The values of all bar element cross-sectional areas are set
to be 0.0025m?2. Material density and modulus of elasticity are

2770kg/m? and 6.98 x 1010 Pa, respectively. Two cases of damage
are generated as Case I: 15% damage at element number 55 (Note
that 15% damage in elements 56, 57, or 58 will result in the same
set of natural frequencies as that of element 55), and Case II: 10%
damage at element number 4 and 15% damage at element number
58(90, 180, and 270 ° rotation along the z axis will lead to the same
set of natural frequencies). The pin supports are applied to nodes
number 17, 18, 19 and 20. The values of natural frequencies of the
damaged and undamaged 72-bar truss are given in Table 2.

4. Hybrid radial basis function and differential evolution
for truss damage detection

The purpose of using MHs for truss damage detection is to solve
the optimisation problem with the objective function (5) subject
to bound constraints of X. The advantages of using MHs are their
simplicity in use, capability of global search, derivative-free fea-
ture, and robustness. Using meta-heuristics implies that a user has
less worry about mode switching during an optimisation run while
this phenomenon may occur in cases of using a gradient-based opti-
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4x1.524 m

Fig. 2. Seventy-two bar truss.

miser. The detection approach can be used for real-time monitoring
provided that an employed MH is adequately powerful.

4.1. Differential evolution

Differential evolution is a population based method which was
first proposed by Storn and Price in 1997 [23]. The method contains
two main steps for searching an optimum, including mutation and
crossover where the acronym DE/x/y/z is used to specify different
mutation and crossover strategies. The variable x is used to specify
avector for mutation which can be best (the best individual) or rand
(random individual) while y and z specify the number of vector pairs
used in mutation and the choice of a crossover scheme, respectively.

corresponding parent xgld = [Xo1d,15 ---» Xo1d, 0], the binary crossover
can be operated leading to a new candidate solution Xpew as

llj;
Xnew.j =9 i
old.j ;

The selection operator is carried out by comparing Xpew and its
parent X,;; where the better will survive to the next generation.

The DE computational steps are shown in Algorithm 1. Initially,
a set of the population is generated by means of randomisation
and their objective function values are evaluated. After obtaining
the best individual, the offspring are generated by mutation (eq.6)
and then crossover (eq.7). Then, the next generation is selected and
the search process will be repeated until a termination criterion is
reached.

Algorithm 1 DE search procedure.

rand < CR

i=1,2,3,...,D. 7
otherwise J 7)

Input: population size, number of generations, algorithm parameters.

Output: Xpest, foest

Main algorithm

1::Initialise a population, calculate their objective function values and set as the current population.

2: Find the best individual

3: Generate a new population from the current population using DE mutation (eq.6) and DE
crossover (eq.7).

4: Evaluate objective function values of the members of the new population.

5: Select the next generation from the newly generated and current populations.

6: Set the selected population from step 5 as the next generation.
7:1If a termination condition is not met, go to step 2. Otherwise, stop the algorithm.

For example, as used in this work, DE/best/2/bin means that the
best individual and two different vector pairs are used in the muta-
tion step while the binomial crossover is employed. The mutation
operation can be expressed as follows:

d(-1,
Ui = Xpest + (_1)ran -1 O)F (xr,l tXr2 —Xr3 —xr,4) . (6)

In this work, Fis a uniform random number in the range of [Fyip,
Fmax . For the i-th mutant individual ul.T = [Xnew,1, ---» Xnew,p] and its

4.2. Inverse problem-based differential evolution

This subsection details the proposed differential evolution based
on using an inverse problem concept. In optimisation, the radial
basis function is traditionally used for approximating an objective
function value for problems with expensive function evaluation
[22,24]. Nevertheless, in this work RBF is conversely implemented.
It will be used to approximate a design solution X that is expected
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Table 3
MH Parameters settings.
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MH

Parameter settings

Whale optimization algorithm (WOA) [16]

Sine Cosine algorithm (SCA) [17]

Moth-flame optimisation algorithm (MFO) [18]

Differential evolution (DE) [23]

Artificial bee colony algorithm (ABC) [25]

Real-code ant colony optimisation (ACOR) [26]

— The parameter b=1
Other parameters are iteratively adapted.

- The constant parameter a=2.

- The constant parameter b=1
- Other parameters are iteratively adapted.

- Using DE/best/2/bin strategy
- Scaling factor (F)=0.8,
- probability of choosing elements of mutant vectors (CR)=0.5

- The number of food sources for employed bees =np/2.
- A trial counter to discard a food source = 100.

- The parameter, g=0.2
- The parameter, £=1

Charged system search (ChSS) [27]

- The number of solutions in the charge memory=0.2 x np

- The charged moving considering rate=0.75 — the parameter PAR=0.5

League championship algorithm (LCA) [28] - The probability of success P. =0.9999
— The decreasing rate to decrease P, =0.9995

Simulated annealing (SA) [29] - Starting temperature=10
- Ending temperature =0.001

For each loop, n.qe candidates are created by mutating on the current best solution while other
Nmode Candidates are created from mutating the current parent. The best of those 21,4, solutions
are set as an offspring to be compared with the parent.

Particle swarm optimisation (PSO) [30]

- The starting inertia weight=0.5

- The ending inertia weight=0.01
- The cognitive learning factor=0.5
- The social learning factor=0.5

Evolution strategies (ES) [31]

The algorithm uses a binary tournament selection operator and a simple mutation without the

effect of rotation angles.

Teaching-learning-based optimisation (TLBO) [32]

Adaptive differential evolution (JADE) [20]

Evolution strategy with covariance matrix
adaptation (CMAES) [21]

Parameter settings are not required.
The parameters are self-adapted during an optimisation process.
The parameters are self-adapted during an optimisation process.

IPB-DE Use the DE parameter setting.

corresponding to the target damage conditions. Given that the vec-
tor of target natural frequencies (®ggmage) CONtAINS Npyq. lowest
natural frequencies of the damaged structure, the idea is to find
a solution vector Xggmage CONtaining n. element damage percent-
ages by means of interpolation. During MH search, if we have a
set of N design solutions {X1, X3,..., Xy } which corresponds to a set
of N vectors of natural frequencies {1, w,, ..., wy}, these data
will be used for RBF training. In contrast to surrogate-assisted opti-
misation, the natural frequency vector will be set as independent
variables whereas the design vector x will be set as dependent vari-
ables. The ith element of Xdamage that is expected to give the target
vector of natural frequencies of the damaged truss is expressed as:

N

Xdamage,i = g Ck® (”wk - wdamage”) (8)
k=1

where ¢, is the interpolation coefficients to be determined, and
@ is a RBF kernel function. ||@y — ®gqmagelis the distance between
0y and ®ggpage- For x;, interpolation coefficients ¢, can be found
from solving the system of linear equations

N
chgo(nwk —o)=x%i(w); fori=1,...,n. and I=1,...,N(9)
k=1

where x;(w;) is the ith element of the I solution vector in the
training set {X1, Xa,..., Xy }. EQ. (9) can be written in a matrix form
as

Ac=b (10)

where Ay = ¢(||wy — w)|).Itisrequired to compute n. sets of the
interpolation coefficients according to n. elements of x. In practice,
the matrix A is generated and inverted once, and will be used to
calculate n, sets of the coefficients.

Having determined the sets of interpolation coefficients ¢, for all
n. elements of X by using (9), the elements of X 4mqge can be found
from using Eq. (8). The search procedure for hybridised RBF and DE
which will be termed inverse problem-based differential evolution
(IPB-DE) according to its computation nature can be carried out in
such a way that, after the reproduction step 3 in Algorithm 1, the
next generation is selected in step 5. The worst solution in the next
generation is then replaced by X qmqge- The procedure of the hybrid
algorithm IPB-DE is detailed in Algorithm 2 while the flowchart for
the IPB-DE algorithm is shown in Fig. 3. The process starts by cre-
ating an initial population by using the Latin hypercube sampling
(LHS) technique instead of the Monte Carlo technique. Those solu-
tions in the initial population are then saved to the RBF database for
training RBF. Offspring are then created by means of reproduction of
DE. The candidate solution X jqmgge is created using Equations (8-9).
Having performed a selection operation, the worst solution in the
next generation is replaced by Xgqmage- The best solution from the
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Initialisation
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Select next generation using
DE selection

population, parameters
RBF database, iter =0

A

Create offspring using DE
mutation and crossover
x(iter), f(iter)

¢ —

A 4

Create Xdamage using Equations

®-0©

A 4

x(iter+1), f(iter+1)

\ 4

Replace the worst in
x(iter+1) with Xdamage and
update RBF database

Terminated?

no, iter=iter+1
yes

Stop, optimum results

Fig. 3. Flow chart of IPB-DE.

offspring and X gqmqge are then added to the RBF database which will
be used as training points during the optimisation search. As the
process continues, the RBF database is improved and expected to
give more accurate results. The procedure is repeated until fulfilling
the termination criteria.

Algorithm 2 IPB-DE

ations) is 300 for all case studies while the population size is set to
be 30and 50 for 25-bar and 72-bar trusses respectively. For the opti-
misers using different population sizes from the aforementioned
values, their search processes are terminated with the total number

frequencies measured from the damaged structure (@)

Output: Xbest, fl‘)esl
Main algorithm

RBF database.
2: Find the best solution.

operators (reproduction) and then perform function evaluations.
4: Select design solutions from the offspring and the current population.

).

Xdamage-
8: Replace the worst solution in the next generation with Xdumage.

Input: population size (np), number of generations (nier), algorithm parameters, the natural

1: Generate an initial set of design variables x using LHS, calculate the natural frequencies ()
and objective function values (f), set x and f as the current population and save x and @ in the

3: Generate offspring from the current population using the DE mutation and binomial crossover

5: Generate Xdamage using the training points from the RBF database using Equations (9) and then

6: Calculate the natural frequencies (® ) and objective function value (f) of Xdamage.
7: Update the RBF database by adding to it the data of the best solution from the offspring and

9:If a termination condition is not met, go to step 2. Otherwise, stop the algorithm.

Numerical experiment

To verify the search performance of the proposed IPB-DE, sev-
eral MHs are compared based on solving the aforementioned truss
damage detection problems. The employed methods are said to be
established while some of them are regarded as the currently best
optimisers of this type. Given that np is a population size, MHs and
their optimisation parameter settings used in this work are detailed
in Table 3 (it should be noted that details of notations can be found
in the corresponding references for each method) [9]:

Each optimisation algorithm is employed to solve each test
problem for 30 independent runs. The number of iterations (gener-

of functions evaluations (FEs) equal to 30 x 300 and 50 x 300 for 25-
bar and 72-bar trusses respectively. Another termination criterion
is when one of the design solutions in the current population has
an objective function value less than or equal to 1 x 10-3. It should
be noted that the numbers of FEs used in this study can be consid-
ered insufficient for some MH optimisers. However, these values
are used to find out really powerful algorithms. For all test prob-
lems, six lowest natural frequencies (1,40 = 6) are used to compute
the objective function values. This number of selected frequencies
is reasonable since, in practice, it is easier to accurately measure
fewer lowest natural frequencies.
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Table 4
Comparison of various RBF kernels for solving 72 bar truss Case II.

Table 6

Results for 25 bar truss Case I.

DE with RBF kernel =~ Mean objective No. of successful Mean of FEs Optimiser Mean objective No. of successful ~Mean of FEs
function Values runs from 30 runs function value runs from 30 runs
Gaussian 0.0011 25 6856 WOA 0.0357 8 6993
Multiquadric 0.0104 5 13993 MFO 0.0279 3 8686
Inverse quadratic 0.0032 14 12221 SCA 0.0270 24 3262
Linear 0.0117 8 13819 DE 0.0017 19 6019
Polynomial order2  0.0039 15 10807 ABC 0.0135 0 9000
ACOR 0.0089 0 9000
ChSS 0.1385 0 9000
6. Results and discussion LCA 0.9036 0 9000
SA 0.0089 0 9000
. TLBO 0.0077 6 7772
Initially, the effect of RBF kernels on the performance of the CMAES 0.0033 0 9000
proposed algorithm was investigated. The last test problem, 72 bar ES 0.0308 0 9000
truss with 15% damage at element number 58 and 10% damage at PSO 8.3830 0 9000
element number 4 which is said to be the most complicated prob- JADE 0.0026 2 8953
. . IPB-DE 0.0012 25 4486
lem, was used. Table 4 shows the results obtained from using a
variety of RBF kernel functions. The mean values of the objective Table 7

function are used to indicate the search convergence of the algo-
rithms in cases that the objective function threshold (1 x 1073) is
not met during an optimisation run. Otherwise, the mean num-
ber of FEs is used as an indicator. The algorithm that is terminated
by the objective function threshold is clearly the superior method
and any optimisation run being stopped with this criterion is con-
sidered a successful run. The number of successful runs from 30
optimisation runs denoted as “No. of successful runs from 30” is
the total number that the algorithm can meet the target objective
function value (1 x 10-3). It is used to measure the algorithm reli-
ability. From Table 4, the best performer is the Gaussian kernel,
while the second best and the third best are the Polynomial kernel
and the Inverse quadratic kernel, respectively. Thus, the Gaussian
kernel is used in this study.

Comparison of various ranges [Fpin» Fmax ] of a scaling factor and
CR values using DE with the best RBF kernel for solving the 72 bar
truss with 15% damage at element number 58 and 10% damage at
element number 4 is shown in Table 5. It is found that for all imple-
mented intervals of [Fn, Fmax], the performance increases when

Results for 25 bar truss Case II.

Optimiser Mean objective No. of successful ~Mean of FEs
function value runs from 30 runs
WOA 0.1301 0 9000
MFO 0.0336 1 8876
SCA 0.0930 0 9000
DE 0.0096 27 5220
ABC 0.0326 0 9000
ACOR 0.0125 0 9000
ChSS 0.1590 0 9000
LCA 0.8080 0 9000
SA 0.0269 0 9000
TLBO 0.0405 1 8917
CMAES 0.0115 0 9000
ES 0.0356 0 9000
PSO 8.6012 0 9000
JADE 0.0042 6 8875
IPB-DE 0.0010 30 3757
Table 8

Results for 72 bar truss Case I.

the value of CR increases. The highest DE performance is obtained Optimiser Mean objective  No. of successful ~ Mean of FEs
when the range [Fy,, Fmax] and CR are set to be [0.2, 0.8] and 0.8, function value runs from 30 runs
respectively. WOA 0.0082 22 4832
The results obtained from the various MHs from solving the six MFO 0.0270 2 14783
test problems are given in Tables 6-9. SCA 0.0070 23 4793
DE 0.0087 14 12887
ABC 0.2184 0 15000
6.1. Twenty-five-bar truss ACOR 0.0014 6 14831
Chss 0.1727 0 15000
For the 25-bar truss with 35% damage at element 7, the results LCA 11499 0 15000
are given in Table 6. The best performer based on the mean objec- ?L\B o 8'8822 27 ;gg(l)o
tive function values is IPB-DE while th? seFond and third best are CMAES 0.0053 0 15000
DE and JADE respectively. When considering the number of suc- ES 0.0010 29 9335
cessful runs, seven optimisers including WOA, MFO, SCA, DE, TLBO, PSO 1.9146 0 15000
JADE and IPB-DE can detect the damage in the structures. The most {QBDE)E g'ggég ;0 ;?(5)(5)0
efficient optimisers are SCA and IPB-DE that can detect the dam- .
Table 5
Comparison of various ranges of F and CR values for solving 72 bar truss Case II.
DE with Gaussian RBF kernel Mean objective No. of successful runs Mean of FEs
function value from 30 runs
[Fminv Fmax] CR
[-1.5,1.5] 0.3 0.0027 1 15000
[-1.5,1.5] 0.5 0.0013 16 12983
[-1.5,1.5] 0.8 0.0011 24 7648
[0.2,0.8] 0.3 0.0025 0 15000
[0.2,0.8] 0.5 0.0011 21 12344
[0.2,0.8] 0.8 0.0011 25 6856
[-2,-2] 03 0.0042 0 15000
[-2,-2] 0.5 0.0014 9 14496
[-2,-2] 0.8 0.0014 21 9940
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Table 9

Results for 72 bar truss Case II.
Optimiser Mean objective No. of successful Mean of FEs

function value runs from 30 runs

WOA 0.0189 0 15000
MFO 0.0137 1 14935
SCA 0.0260 2 14502
DE 0.0127 7 13963
ABC 0.1591 0 15000
ACOR 0.0058 0 15000
ChSS 0.1348 0 15000
LCA 1.1049 0 15000
SA 0.0129 0 15000
TLBO 0.0045 7 13503
CMAES 0.0050 0 15000
ES 0.0023 2 14940
PSO 1.7726 0 15000
JADE 0.0031 0 15000
IPB-DE 0.0011 25 6856

ages of the structure for 24 and 25 times out of 30 runs within the
average of 3262 and 4486 function evaluations respectively.

For the 25 bar truss with 35% damage at element 7 and 40% dam-
age at the element number 9, the results are reported in Table 7.

The best performer based on mean values is IPB-DE while the sec-
ond and third best are JADE and DE respectively. When examining
the number of successful runs, only IPB-DE can detect the damage
in the structure for all 30 runs. For this case, IPB-DE is said to be
the most efficient optimiser, which obtained the minimum objec-
tive function mean value and successfully detected the damage in
the structure for all optimisation runs with the average number of
function evaluations being 3735.

6.2. Seventy-two-bar truss

For the 72-bar truss with 15% damage at element 5, the results
are reported in Table 8. The best performer based on the mean
objective function values is IPB-DE, while the second and the third
best are ES and ACOR. When looking at the number of success-
ful runs (freaching 1 x 10~3 or lower), the most efficient method is
IPB-DE which can detect the damage of the structure 30 times from
implementing it in 30 optimisation runs, while the average number
of function evaluations for convergent results is only 3155.

For the 72 bar truss with 15% damage at element number 58 and
10% damage at element number 4, the results are given in Table 9.
The best performer based on the mean of objective function values
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is IPB-DE, while the second and third best are ES and JADE respec-
tively. When considering the number of successful runs, the most
efficient is IPB-DE, which can detect the damage of the structure
25 times from a total of 30 optimisation runs, while the average
number of function evaluations for the convergence results is 6856.

Overall, it is clearly indicated from the results that integrating
RBF into the DE can improve the search performance of the opti-
miser in solving structural damage detection of truss structures in
terms of both search convergence and consistency. Based on the
most crucial indicators, the average number of successful runs and
the average number of function evaluations, IPB-DE is unanimously
the most powerful method.

Figs. 4-7 shows the search history of the top five best algorithms
(sorted based on number of successful runs from 30 runs). For the
25 bar truss with 35% damage at element number 7, the proposed
IPB-DE and WOA show a similar convergence curve while WOA is
slightly faster than IPB-DE after 200 function evaluations. Similarly,
for the case of the 72 bar truss with 15% damage at element num-
ber 55, the proposed IPB-DE and WOA show the best convergence
curves at the beginning while WOA is faster than IPB-DE. The WOA
can converge to the goal before 500 function evaluations for this
case. For the 25 bar truss with 35% damage at element number 7

and 40% damage at element number 9, and the 72 bar truss with
15% damage at element number 58 and 10% damage at element
number 4, the IPB-DE gives the best convergence curves since the
beginning.

Tables 10-11 show a comparison of the damage locations of the
simulated problems and the results obtained from the best run of
IPB-DE. It was found that IPB-DE can correctly detect the damage
locations for Case I of the twenty-five bar truss while for Case II of
the twenty-five bar truss, the structure is simulated to have 35%
and 40% damage at element 7 and element 9 respectively, while
the result obtained from IPB-DE gives 34.39 and 39.83% damage
at element 6 and element 8. For this case, it can be said that the
results are accurate, as both groups can obtain the same set of nat-
ural frequencies as mentioned in Section 3. Similarly, for Case I of
the seventy-two bar truss, the structure is simulated to have 15%
damage at element number 55 while 15% damage at element 56,
57, or 58 gives the same values of ®Wgyqmqge- Therefore, it can be
concluded that the results are accurate for this case. For Case II
of the seventy-two bar truss, IPB-DE found damage in many ele-
ments, while the resulting natural frequencies are similar to the
values of ®jgmqge- This implies that using only natural frequencies
as an objective function can possibly fail to identify the damage
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Comparison of the simulated solution and the best results obtained by IPB-DE for 25 bar truss.
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% damage at element no.

Casel

Case Il

Simulated damage (%)

Damage found by IPB-DE (%)

Simulated damage (%)

Damage found by IPB-DE (%)

CONO A WN =

0.00
0.00
0.00
0.00
0.00
0.00
35.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
69.1393
72.2006
95.3372
119.8852
121.4774
125.0130

0.06
0.83
0.00
0.00
0.05
0.44
34.16
0.45
0.00
0.00
0.02
0.10
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
69.139
72.200
95.337
119.886
121.477
125.011

0.00
0.00
0.00
0.00
0.00
0.00
35.00
0.00
40.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
68.5203
71.3167
94.5625
119.6514
121.4253
125.0129

0.00

0.74

0.02

0.35

0.02
434.39
0.58
439.83
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
68.52002
71.31654
94.56267
119.6496
121.4256
125.0121

2 35% damage in elements 6 and 40% damage in elements 8 will result in the same set of natural frequencies for the Case Il as mentioned in Section 3.

Table 11

Comparison of the simulated solution and the best results obtained by IPB-DE for 72 bar truss.

% damage at element no.

1, 26,51
2,27,52
3,28,53
4,29, 54
5,30, 55
6,31, 56
7,32,57
8,33,58
9,34, 59
10, 35, 60
11, 36, 61
12,37,62
13, 38,63
14, 39, 64
15, 40, 65
16, 41, 66
17,42, 67
18,43, 68
19, 44, 69
20,45,70
21,46,71
22,47,72
23,48
24,49
25,50

Casel

Case Il

Simulated damage (%)

Damage found by IPB-DE (%)

Simulated damage (%)

Damage found by IPB-DE (%)

0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 15.00
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0, 0
0, 0

0, 0

0, 0

5.9553

6.0455

10.4764

18.1448

25.4903

25.4939

0, 0, 0.39
0, 0, 0.36
o, 0, 0.03
0, 0.01, 0.90
0, 0.01, 0.02
0.06, 0, 0.36
0.03, 0.06, 0

0, 0, 414.51
0.01, 0.01, 0.04
0, 1.91, 0.01
0.03, 0.87, 0
0.01, 0.01, 0.07
0.01, 0.00, 0.01
0, 0.02, 0
0.02, 0.03, 0.05
0.14, 0.01, 0.00
0.73, 0.00, 0.17
0.27, 0, 0

0, 0.01, 0

0, 0, 0.62
0, 0.01, 0.04
0, 0, 0.01
0.03, 0.01

0.06, 0.54

0, 0.38

5.9562

6.0451

10.4757

18.1443

25.4892

25.4929

o
o

-
o
=)
S]

e
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0,
5.9530

6.0455

10.4764
18.0921
25.2437
25.4939

o
=}
S

0, 0, 0,
b9.88, 0, 0.76,
0, 0.04, 051,
0.01, 0.05, 0.06,
0.01, 0, 0,
0.04, 0.16, 29,08,
0.02, 0.45, 0,

0, 0.73, 26.58,
0.03, 0.02, 0.02,
0.01, 0, 0,

0, 0.69, 0,
0.04, 0, 0,
0.03, 0, 0,
0.13, 0, 0,

0, 0.06, 0.02,
0.21, 0, 0,
3.04, 0.02, 0.09,
0.55, 0.05, 1.79,
0, 0.06, 0.12,
0, 0, 0,

0, 0, 0.46,
0.01, 0.02, 0,
0.03, 0.01,

0.05, 0.07,

0.05, 0.15,

5.9534

6.0451

10.4755

18.0904

25.2436

25.4927

2 15% damage in elements 55, 56, 57 or 58 will result in the same set of natural frequencies.
b 10% damage in elements 1, 2, 3 or 4 will result in the same set of natural frequencies.
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locations for the cases of symmetric structures. The proposed algo-
rithm is obviously effective and efficient but more reliable objective
functions for damage localisation such as the use of both natural
frequencies and mode shapes should be invented.

7. Conclusions

Hybridisation of RBF into DE leading to IPB-DE is presented for
truss structural damage detection problems. Four structural dam-
age detection test problems from two different truss structures are
used to examine the search performance of the proposed approach.
Several well established MHs and the proposed algorithms are then
employed to solve the test problems. Numerical results reveal that
the proposed hybrid algorithms of DE with RBF are the top per-
formers for all test problems. Integrating RBF into the DE obviously
improves DE performance. The proposed idea has the potential to
be further applied to other inverse problems such as robot inverse
kinematic analysis. Further improvement for meta-heuristic based
structural health monitoring should be the purpose of a more reli-
able objective function rather than solely using the set of lowest
natural frequencies. Detection of joint damage is another issue that
will be focused on in future work.
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A new metaheuristic called estimation of distribution algorithm using correlation between binary elements (EDACE) is proposed.
The method searches for optima using a binary string to represent a design solution. A matrix for correlation between binary
elements of a design solution is used to represent a binary population. Optimisation search is achieved by iteratively updating such
a matrix. The performance assessment is conducted by comparing the new algorithm with existing binary-code metaheuristics
including a genetic algorithm, a univariate marginal distribution algorithm, population-based incremental learning, binary particle
swarm optimisation, and binary simulated annealing by using the test problems of CEC2015 competition and one real-world
application which is an optimal flight control problem. The comparative results show that the new algorithm is competitive with

other established binary-code metaheuristics.

1. Introduction

Nowadays in the economic-competitive world, optimisation
has become increasingly popular for real applications as itis a
powerful mathematical tool for solving a wide range of engi-
neering design types. Once an optimisation problem is posed,
one of the most important elements in the optimisation
process is an optimisation method or an optimiser used to
find the optimum solution. Optimisers can be categorised as
the methods with and without using function derivatives. The
former are traditionally called mathematical programming
or gradient-based optimisers whereas the latter have various
subcategories. One of them is a metaheuristic (MH). The
term metaheuristics can cover nature-inspired optimisers [1-
10], swarm intelligent algorithms [11-20], and evolutionary
algorithms [21-24]. Most of them are based on using a set of
design solutions, often called a population, for searching an
optimum. The main operator usually consists of the repro-
duction and selection stages. The advantages of such an opti-
miser are simplicity to use, global optimisation capability, and
flexibility to apply as it is derivative-free. However, it still has
a slow convergence rate and search consistency. These issues

have made researchers and engineers around the globe
investigate how to improve the search performance of MHs.
A genetic algorithm (GA) [21] is probably the best known
MH while other popular methods are differential evolution
(DE) [22] and particle swarm optimisation (PSO) [17]. Among
MH algorithms, they can be categorised as the methods using
real, binary, or integer codes. The mix of those types of design
variables and some other types can also be made. This makes
MHs considerably appealing for use with real-world appli-
cations particularly for those design problems that function
derivatives are not available or impossible to calculate. Most
MHs are based on continuous design variables or real codes.
For single objective optimisation, there have been numerous
real-code MHs being developed. At the early stage, methods
like evolutionary programming [25] and evolution strategies
[26] were proposed. Then, DE and PSO were introduced.
Until recently, there have been probably over a hundred
new real-code MHs in the literature. Some recent algorithms
include, for example, a sine-cosine algorithm [27], a grey
wolf optimiser [20], teaching-learning-based optimisation
[2], and Jaya algorithm [28]. Meanwhile, powerful existing
algorithms such as PSO and DE have been upgraded by
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integrating into them some types of self-adaptive schemes, for
example, adaptive differential evolution with optional exter-
nal archive (JADE) [29], Success-History Based Parameter
Adaptation for Differential Evolution (SHADE) [30], SHADE
Using Linear Population Size Reduction (LSHADE) [31], and
adaptive PSO [32-34]. MHs are even more popular when
they can be used to find a Pareto front of a multiobjective
optimisation problem within one optimisation run. Such a
type of algorithm is usually called multiobjective evolution-
ary algorithms (MOEAs) where some of the best known algo-
rithms are nondominated sorting genetic algorithm (NSGA-
I, NSGA-II, and NSGA-III) [35-37], multiobjective particle
swarm optimisation [38], strength Pareto evolutionary algo-
rithm [39], multiobjective grey wolf optimisation [40], mul-
tiobjective teaching-learning-based optimisation [41], mul-
tiobjective evolutionary algorithm based on decomposition
[42], multiobjective ant colony optimisation [43], multiob-
jective differential evolution [44], and so forth. One of the
most challenging issues in MHs is to improve their ability
for tackling many-objective optimisation (a problem with
more than three objectives). Some recently proposed algo-
rithms are knee point-driven evolutionary algorithm [45],
an improved two-archive algorithm [46], preference-inspired
coevolutionary algorithms [47], and so forth.

In practice, GA a metaheuristic using binary strings is
arguably the most used method as it is included in engineer-
ing software such as MATLAB. Apart from GA, other MHs
using a binary string representing a design solution include
a univariate marginal distribution algorithm (UMDA) [48],
population-based incremental learning (PBIL) [24], binary
particle swarm optimisation (BPSO) [49], binary simulated
annealing (BSA) [50], binary artificial bee colony algorithm
based on genetic operator (GBABC) [51], binary quantum-
inspired gravitational search algorithm (BQIGSA) [52], and
self-adaptive binary variant of a differential evolution algo-
rithm (SabDE) [53]. With the popularity of GA, a binary-
code MH has been rarely developed and proposed while its
real-code counterparts have over a hundred different search
concepts reported in the literature. That means there are
possible more than a thousand real-code MH algorithms
being published. It should be noted that real-code MHs can be
modified to solve binary-code optimisation by means of
binarisation [54].

This paper is therefore devoted to the further develop-
ment of a binary-code metaheuristic. The method is called
estimation of distribution algorithm using correlation be-
tween binary elements (EDACE). Performance assessment is
made by comparing the proposed optimiser with GA,
UMDA, BPSO, BSA, and PBIL by using the CEC2015 test
problems. Also, the real-world optimal flight control is used
for the assessment. The comparative results are obtained and
discussed. It is shown that EDACE is among the top per-
formers.

2. Proposed Method

The simplest but efficient estimation of distribution algorithm
is probably population-based incremental learning (PBIL).
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Another MH that uses a similar concept is UMDA. Unlike
GA which uses a matrix containing the whole binary solu-
tions during the search, PBIL uses the so-called probability
vector to represent a binary population. During an optimi-
sation process, the probability vector is updated iteratively
until approaching an optimum. In EDACE, a matrix called a
correlation between binary elements (CBE) matrix is used to
represent a binary population. The matrix can be denoted as
P; € [0, 1], where the value of the element P; indicates the
correlation between element i and element j of a binary
design solution. The higher value of P; means the higher
probability that binary elements i and j will have the same
value. The algorithm is developed to deal with a box-con-
strained optimisation problem:

min  f (x);

X; <X <Xy, )

where f is an objective function and x is a vector containing
design variables (a design vector). x; and x;; are the lower
and upper bounds of x, respectively. Assuming that a design
vector can be represented by a row vector of binary bits size
m x 1, the CBE matrix thus has the size of m x m. It should
be noted that the details of converting a binary string to be
a design vector can be found in [55]. In generating a binary
string from the CBE matrix, a reference binary solution (RBS)
is needed. It can be a randomly generated solution or the
best solution found so far depending on a user preference.
Then, a row of the matrix is randomly selected (say the rth
row). The rth element of a generated binary solution is set
to be the rth element of the reference binary solution. The
rest of the created binary elements are based on the value of
P,j; j # r. The procedure for creating a binary solution sized
m x 1 from the m x m CBE matrix is detailed in Algorithm 1
where b is a binary design solution, bggp is the reference
binary solution, np, is a population size, and rand € [0, 1] is
a uniform random number. The algorithm spends 7, loops
for creating np binary solutions. The process for generating
a binary solution from the CBE matrix is in steps (3)-(12).
For one binary solution, only one randomly selected row of
CBE (say row r) is used (step (4)). Then, the rth element of
a generated binary solution is set equal to the rth element of
the reference binary solution, bggp. The rest of the elements
of the generated binary solution are created in such a way that
their values depend on corresponding elements on the rth
row of CBE. From the computation steps (5)-(11), the value
of P,; determines the probability of a; to be the same as a,.
The higher value of P,; means the higher correlation between
elements r and j and consequently the higher probability that
a; will be set equal to a,.

The CBE matrix is a square symmetric matrix with equal
size to the length of a binary solution whose all diagonal
elements are equal to one. For an iteration, the matrix will
be updated according to the so far best solution (by,). The
learning rate (L) with be used to control the changes in
updating P;; as with PBIL. Once P;; is updated, the value of P;;
is set to be P;; which means the process requires m(m — 1)/2
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Input: bygp, P

Output: B = {bi} fori=1,...,np
Main procedure

(1) SetB={}.

(2) Fori=1tonP

(6) For j={1,2,...,m} - {r}

(3) Seta = {} a vector used to contain elements of a generated binary string.
(4) Randomly select a position (rth row) of P.
(5) Set a, = bggy,- % Set the rth element of a as the rth element of bgy.

(7) Ifrand < P;

(8) a; = a, % a; and a, values are equal, which are either “0” or “”.
9) Else

(10) a; = 1-a, %1Ifa, = l,aj = 0 or vice versa.

(11) End

(12) End

(13)  SetB=BUa.

(14) End

ALGORITHM 1: Generation of a binary population from a CBE matrix.

updates since P; is always set to be 1. The updated P;; denoted
by Pl'] can be calculated from

0107+ a1 - ft]).

where L is the learning rate randomly generated in the inter-
val [Lg 1> Lryl- Byesti and By j are the ith and jth elements
of by respectively. From the updating equation, if the ith
and jth elements are similar, it means they are correlated;
consequently, the value of P; (and P;;) is increased. If they are
dissimilar or uncorrelated, P; is then decreased. Nevertheless,
the value of P; must be limited to the predefined interval

0<P <P;<P;<1, (3)

where P; and P are the predefined lower and upper limits of
P;;. Equation (3) is used to maintain diversity in optimisation
search. In the original PBIL, a mutation operator is used
with the same purpose. Therefore, the procedure of EDACE
starts with an initial matrix for correlation between binary
elements where P; = 1 and P; = 0.5. This implies that when-
generating a binary solution, its elements have equal proba-
bility to be 1 or 0 where its rth element can be 1 or 0, created
at random. The procedure for general purpose of EDACE
is given in Algorithm 2. The decision on selecting by for
generating a binary solution and by for updating the CBE
matrix is dependent on a preference of a user. This means
other versions of EDACE can be developed in the future.

An initial binary population is randomly created. The
binary solutions are then decoded to be real design variables
where function evaluations are performed and by and by .
are found. Then, new binary solutions are generated using
Algorithm 1 while the greedy selection (steps (6)-(8)) is acti-
vated with bpgp and by, being determined. The CBE matrix
is updated by using by as detailed in (2)-(3). The search

process is repeated until termination criterion is reached. The
generation of a binary design solution of EDACE is, to some
extent, similar to those used in binary PSO [49] and binary
quantum-inspired gravitational search algorithm (BQIGSA)
[52] in the sense that the binary solution is controlled by
the probability of being “1” or “0”. However, in EDACE, a
generated solution relies not only on such probability but also
on the reference binary solution bygp. Apart from that, the
update of CBE tends to be similar to the concept employed
in PBIL with a learning rate and this is totally different from
binary PSO and BQIGSA.

In selecting bypr and by, if both solutions are the same
which is by, it could lead to a premature convergence. If
both are set to be a solution randomly selected solution from
the current binary population, the diversification increases
but the convergence rate will be slower. Therefore, the balance
between intensification and diversification must be made. In
this work, the so far best binary solution is set to be bygp
to maintain intensification. For updating the CBE matrix, we
use the new updating scheme as

Py = (1= L) Py + Ly (1= By = ) - (@)

The solutions by, and by, are two types of best solutions.
Firstly, np best solutions are selected from {b'lu {b;ew} (see
Algorithm 2 for both solution sets), sorted according to their
functions, and then saved to a set Best_sol. Four m x 1 vectors
are created as b, the so far best solution, b, a solution whose
elements are averaged from the elements of the first my
(default = 10) best solutions found so far, b, a solution whose
elements are averaged from the elements of the members
of Best_sol, and b, a solution whose elements are averaged
from the elements of the current binary population. by is
randomly chosen from the aforementioned solutions (b,, b,,
b;, and b,) with equal probability while by, is randomly
chosen from the members of Best_sol. With this idea, the
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Input: number of generation (.,
Output: bbest’ fbest

Initialisation:

(0.1) Assign P;; = 0.5 and P; = 1, sized m x m.

(04) Find fbest’ bREF’ bbest
Main iterations
(1) Foriter = 1 to my,,

(2) Update P using Equation (2)

), population size (1), binary length (1)

(0.2) Randomly generate 71, binary solutions b’ and decode them to be x.
(0.3) Calculate objective function values f* = fun(x') where fun is an objective function evaluation.

(3) Generate b, from P using Algorithm 1, and decode them to be x. __ .
(4) Fori=1tonp

(5) Calculate objective function values fr’;ew = fun(x;ew).

©) If fiey < f

(7) f1 = friew’ bi = bf’lew’ Xi = Xiiew

(8) End

9) End

(10) Update fieq brep> Dpest

(11) End

ALGORITHM 2: Procedure for EDACE.

Input: Ly, Ly, P, b, brgp, Best_sol, nyq,
Output: P'
Main procedure
Create b;, b,, b;, b,
Fori=1tom
(1) Assign Py = rand.
(2) If Py € [0,0.25), set by ; = by
(3) If Py € [0.25,0.5), set by, ;
(4) If Py € [0.5,0.75), set Byogrs
(5) Otherwise, set b, ; = by;
(6) Random selected a vector by, from Best_sol.
Forj=i+1tom
(7) Generate L.
(8) Update P;; using Equation (4).
(9) Limit P;to the interval [P, P;].
End
End

ki
by,
b3,1

ArcorrtHM 3: Updating scheme for CBE.

balance between exploration and exploitation is maintained
throughout the search process. Algorithm 3 shows the new
CBE updating strategy.

3. Experimental Set-Up

To investigate the search performance of the proposed algo-
rithm, fifteen learning-based test problems from CEC2015
and one flight dynamic control optimisation problem are
used. The former are used for testing the performance of

EDACE for general types of box-constrained optimisation
while the latter is the real-world application.

3.1. CEC2015 Learning-Based Test Problems. The CEC2015
learning-based test problems are box-constrained single
objective benchmark functions proposed in [56]. The prob-
lems consist of 2 Unimodal Functions, 3 Simple Multimodal
Functions, 3 Hybrid Functions, and 7 Composition Func-
tions. The summary of CEC2015 learning-based test problems
is shown in Table 1. It should be noted that the details and
the codes for the test problems can be downloaded from the
website of CEC2015 competition.

3.2. Flight Dynamic Control Optimisation Problem. Flight
dynamic control system design is a classical important
application for real engineering problems. The motion of an
aircraft can be described using the body axes which is herein
the stability axes consisting of roll axis (x), pitch axis (y),
and yaw axis (z) as shown in Figure 1. The motion of the
aircraft is described by Newtons 2nd law or equations of
motion for both translational and rotational motions. The
dynamical model is nonlinear but can be linearised by apply-
ing aerodynamic derivatives. Due to aircraft symmetry with
respect to the xz plane, the linearised dynamical model can
be decoupled into two groups as longitudinal motion and the
lateral/directional motion. For more details of deriving the
equations of motion, see [57]. In this work, only the lateral/
directional motion control is considered. A state equation
representing the dynamic motion of an aircraft is expressed
as follows [57-60]:

X = Ax + Bu, (5)
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TABLE 1: Summary of CEC2015 learning-based functions.
Number Functions Ffnin
Unimodal functions 1 Rotated high conditioned elliptic function 100
2 Rotated Cigar function 200
3 Shifted and rotated Ackley’s function 300
Simple multimodal functions 4 Shifted and rotated Rastrigin’s function 400
5 Shifted and rotated Schwefel’s function 500
6 Hybrid function 1 (N = 3) 600
Hybrid functions 7 Hybrid function 2 (N = 4) 700
8 Hybrid function 3 (N = 5) 800
9 Composition function 1 (N = 3) 900
10 Composition function 2 (N = 3) 1000
11 Composition function 3 (N = 5) 1100
Composition functions . .
12 Composition function 4 (N = 5) 1200
13 Composition function 5 (N = 5) 1300
14 Composition function 6 (N = 7) 1400
15 Composition function 7 (N = 10) 1500

where x = {8, 1, p, ¢}, B is the sideslip, a velocity in y direc-
tion, r is the yaw rate, rate of change of rotation about the
x-axis, p is the roll rate, rate of change of rotation about the
z-axis, ¢ is the bank angle, rotation about the x-axis, A is the
g‘: } is the
control vector, §,, is the aileron deflection, and &, is the rudder
deflection.
The control vector u can be expressed as

kinetic energy matrix, B is Coriolis matrix, u = {

u = Cu,, +Kx, (6)

where u,, is a pilots control input vector while C and K are
the gain matrices expressed as follows [59]:

o
Cc= ,
ks 1
[k6 k, k, 0]
|k, ks Kk, 0]

where parameters k, -k, are control gain coefficients which
need to be found.

From (5)-(6), the state equation for lateral/directional
motion of an aircraft can be expressed as

% = (A+BK)x + BCu,. (8)

Design optimisation of the control system of an aircraft is
found to have many objectives as there are several criteria that
need to be satisfied such as control stability, accuracy, sensi-
tivity, and control effort, while the control gains coefficients
are set to be design variables for an optimisation problem.
In this work, the optimal flight control of an aircraft focuses
on only the stability aspect. The objective function is posed

Pitch axis

Roll axis

Yaw axis

FIGURE 1: Stability axes of an aircraft.

to minimise spiral root subjected to stability performance
constraints. The optimisation problem can then be written as

min:  f(x) = A,
Subjected to: A, < -0.01
Ag £ -3.75 9)
£, >05
wy; > 1,

where A, Ag, &p, and w, are spiral root, roll damping,
damping ratio of Dutch-roll complex pair, and Dutch-roll
frequency, respectively. These parameters can be calculated
based on the eigenvalues associated with the matrix A + BK.
The design variables are control gain coefficients in the matrix



K (x = {ky, ky, k3, ky, kg, k7}T). The kinetic energy matrix (A)
and the Coriolis matrix (B) are defined as

[ —0.2842 -0.9879 0.1547 0.0204
10.8574 -0.5504 -0.2896 0
A= -199.8942 -0.4840 -1.6025 0
L 0 0.1566 1 0
(10)
[0 0.0524
0.4198 -12.7393
b= 50.5756 21.6753
L O 0

More details about this aircraft dynamic model can be
found in [58-60]. To handle the constraints, the penalty
function which was presented in [61] is used.

The proposed EDACE and several well-established
binary-code metaheuristics are used to solve the fifteen
CEC2015 learning-based test problems and the flight dyna-
mic control test problem. The metaheuristic optimisers are as
follows:

Genetic algorithm (GA) [21] used binary codes with
crossover and mutation rates are 1 and 0.1, respec-
tively.

Binary simulated annealing (BSA) [50] used binary
codes with exponentially decreasing temperature. The
starting and ending temperature are set to be 10 and
0.001, respectively. The cooling step is set as 10.

Population-based incremental learning (PBIL) [24]
used binary codes with the learning rate, mutation
shift, and mutation rate as 0.5, 0.7, and 0.2, respec-
tively.

Binary particle swarm optimisation (BPSO) [49] used
binary codes with V-shaped transfer function while
the transfer function used is the V-shaped version 4
(V4) as reported in [49]. It is noted that this version
is said to be the most efficient version based on the
results obtained in [49].

Univariate marginal distribution algorithm (UMDA)
[48] used binary codes. The first 20 best binary
solutions are used to update the probability matrix.

Estimation of distribution algorithm with correlation
of binary elements (EDACE) (Algorithm 2) used
binary codes with P, = 0.1, B; = 0.9, Lp; = 0.4,
Lpy = 0.6, and my, . = 10.

Each algorithm is used to solve the problems for 30
optimisation runs. The population sizes are set to be 100
and 20 while number of generation is set to be 100 and 500
for the CEC2015 learning-based test problems and the flight
dynamic control test problem, respectively. For an algorithm
using different population size and number of generations
such as BSA, it will be terminated at the same number
function evaluations, which is 10,000 for all test problems.
The binary length is set to be 5 for each design variable for
all optimisers.

Mathematical Problems in Engineering

4. Optimum Results

4.1. CEC2015. After applying the proposed EDACE and
several well-established binary MHs for solving the CEC2015
learning-based benchmark functions, the results are shown
in Tables 2-4. Note that, apart from the algorithms used in
this study, the results of solving CEC2015 test suit obtained
from efficient binary artificial bee colony algorithm based
on genetic operator (GBABC), binary quantum-inspired
gravitational search algorithm (BQIGSA), and self-adaptive
binary variant of a differential evolution algorithm (SabDE)
as reported in [53] are also included in the comparison. From
Table 2, the mean (Mean) and standard deviation (STD)
values of the objective functions are used to measure the
search convergence and consistency of the algorithms. The
lower Mean is the better convergence while the lower STD is
the better consistency. The value of Mean is more important;
thus, for method A with lower Mean but higher STD than
method B, method A is considered to be superior.

For the measure of search convergence based on the
mean objective function values, the best performer for the
unimodal test functions, f1 and f2, is EDACE while the sec-
ond best is BPSO. For the simple multimodal functions, the
best performer for f4 and f5 is SabDE while the best
performer for f3 is BPSO. The second best performers for
f3, f4, and f5 are SabDE, BEDACE, and UMDE, respec-
tively. For the hybrid functions, the best performers for the
functions f6, f7, and f8, are SabDE, EDACE, and BPSO,
respectively, while the second best performer for f6 and f7
is BPSO and the second best for 8 is EDACE. For the final
group of CEC2015 test problems, composition functions, the
best performer for the f11, f12, and f14 is SabDE while the
best performers for the £10 and f15 are BPSO and EDACE,
respectively. For f9, the best performers are UMDA, BPSO,
GA, PBIL, and EDACE, which obtain the same mean values
while, for f13, the best performers are UMDA, BPSO, GA,
PBIL, BSA, and EDACE, which obtained the same mean
values. It should be noted that the results from [53] were
obtained from using the total number of function evaluations
as 1,000,000 with the binary length of 50 for each design vari-
able whereas this work uses 10,000 function evaluations with
the binary length of 5 for each design variable. This indirect
comparison with GBABC, BQIGSA, and SabDE can only be
used to show that the proposed EDACE also has good perfor-
mance and cannot be used to claim which method is supe-
rior.

For the measure of search consistency based on the STD
values, the most consistent methods for unimodal functions,
f1 and f2, are BPSO and EDACE while the second most
consistent methods are EDACE and BPSO, respectively. For
the simple multimodal functions, the best for f3 and f5 is
SabDE while the best for f4 is the proposed EDACE. EDACE
is the best for the hybrid function of f7 while BPSO is the
best for the hybrid functions f6 and f8. For the composition
functions, EDACE is the best for the problems f9 and
f12 while BPSO is the best for f10. For the composition
functions, f11, f14,and f15, the best is SabDE while the best
for f13is BSA.
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TaBLE 3: Ranking of all optimisers based on the Mean values.

UMDA BPSO GA PBIL

BSA EDACE GBABC BQIGSA SabDE

f1 4
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
fl14
f15

AN O W RO W W R U R D WO
[CSIENT N NS e N SR NS B N R N R N N L )
U N O N O b U1 W W Ul NN 0 Ul W
BN U0 N G ke e N0 NN W

—
@)

8

O

N0 = 00 00 N NN N o N Ul NN
N U R U1 U N =N = W W N W
O DN WD oo N o o o Ul o Ul o
= W 00N W 0NN NN o o Ul o
R = O = = O O 0 O = = = N

~
\S]
'y
(=]
x©
(=]
o]
(%))

Sum of ranking

©
3y
S
o
)
>N
)
V)
~
o)

TaBLE 4: Comparison based on the statistical ¢-test of the test problem.
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The value Min in Table 2 is the objective function value
of the best run from a particular method. Note that only
the UMDA, BPSO, GA, PBIL, BSA, and EDACE were com-
pared. For the unimodal function, the minimum objective
function values of f1 and f2 were obtained by BPSO and
EDACE, respectively. For the simple multimodal functions,
the minimum objective function values for f3 and f5 are
obtained from BPSO and EDACE, respectively, while for f4,
the minimum is obtained from UMDA, BSA, and EDACE.
The EDACE obtained minimum objective function values for
all test functions in the hybrid function group. However, for
the hybrid function f8, three algorithms including BPSO,
GA, and EDACE obtained the minimum values. For the com-
position functions, EDACE obtained the minimum function
values for all test functions. However, for the functions f9 and
f13, all algorithms obtained the same minimum values while

for the 11, BPSO and EDACE obtained the same minimum
function values. Similarly, for 12, UMDA, BPSO, BSA, and
EDACE obtained the same minimum values.

Table 3 shows the summary of ranking based on the mean
objective function values from 30 optimisation runs. It was
found that the proposed EDACE is mostly ranked in top
three best from solving fifteen CEC2015 learning-based test
problems. After summing up the ranking score, it is found
that EDACE and BPSO are equal best performer while the
third best is UMDA.

In order to further investigate the performance compari-
son of the binary-code MHs, the statistical ¢-test is employed.
Table 4 shows a 9 x 9 comparison matrix of the 9 optimisers.
If method i is significantly better than method j based on the
t-test at 5% significant level, the column i and row j of the
matrix are set to be 1; otherwise, they are set to be 0. When



Mathematical Problems in Engineering 9
X1408 f1 x10” f2
r 18 r
35¢ 16 1
3l 14
12
2 a5t E
f; [
§ , .é 10 p
‘g I o
2 z 8
o L5t 8 6k
0 e T e e e e iy
0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations x10*
<<<<<< UMDA ... UMDA
— BPSO — BPSO
--- BEDACE --- BEDACE
FIGURE 2: Search history of the top three best optimisers based on the ¢-test for the unimodal function.
TaBLE 5: Ranking of all optimisers for all CEC2015 learning-based test problem based on statistical ¢-test.
UMDA BPSO GA PBIL BSA EDACE GBABC BQIGSA SabDE
f1 4 2 3 5 7 1 6 8 9
f2 4 2 5 3 6 1 8 9 7
f3 5 2 5 5 4 2 5 5 1
f4 3 4 6 6 4 2 8 8 1
f5 2 4 7 8 6 2 5 9 1
f6 4 2 5 6 8 3 9 7 1
17 3 1 3 3 6 1 8 7 8
f8 4 1 3 5 6 2 9 7 8
f9 3 1 4 4 6 1 7 8 9
f10 3 1 4 5 7 2 8 6 9
f11 9 4 6 7 8 5 2 2 1
f12 4 5 7 8 8 5 2 2 1
f13 1 1 1 1 1 1 7 7 9
fl14 9 4 6 7 8 5 2 3 1
f15 6 3 5 4 7 2 9 1 8
Sum 64 37 70 77 92 35 95 89 74

summing up along the columns, the highest score indicates
the best optimiser based on this type of comparison. In the
table, it means EDACE is the best. Table 5 shows the ranking
of the 9 optimisers when solving all CEC2015 learning-based
test problems based on the t-test. After summing up the
ranking numbers of all test problems, it is found that EDACE
is the overall best optimiser while BPSO and UMDA are the
second and the third best, respectively.

Figures 2-5 show the search history of the top three opti-
misers EDACE, BPSO, and UMDA on solving all CEC2015
learning-based test problems where the vertical axis is the
average objective function from 30 runs of each method.
For all test functions, it was found that EDACE and UMDA
converged to the optimal values at higher speed while BPSO
seems to converge slowly and consistently. However, for all
functions, BPSO finally moves to the minimum or near
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FIGURE 3: Search history of the top three best optimisers based on the ¢-test for the simple multimodal functions.
TABLE 6: The table shows performance of EDACE for various number of binary bits.
Number of binary bits 5 10 25 50
Mean function values 2314E +6 1.101E+6 1.079E + 6 1.143E+6
Average computational time (Sec.) 9.371 10.748 18.634 52.773

minimum function values at the end of the runs. EDACE
shows fast convergence from the beginning and obtained
the minimum or near minimum values for all test functions
except for f3. This indicates the ability of search exploitation
and search exploration of the proposed EDACE since the
CEC2015 test functions were assigned to test both aspects of
MHs.

Table 6 shows performance of EDACE on solving uni-
modal function, f1, when the binary lengths for each design
variable are 5, 10, 25, and 50 for 10 optimisation runs. It
was found that when the number of binary bits increases,
the computational time increases and the resulting mean
objective function values decrease for the binary lengths less

than 25. However, for the binary length of 50, the mean objec-
tive function value increases meaning EDACE performance
deteriorates. Without considering computational time, the
best number of binary length is 25.

4.2. Flight Dynamic Control System Design. After applying
the six binary-code MHs to solve the real engineering
application of flight dynamic and control system for 30
optimisation runs, the comparison results are shown as
box-plots of the objective and constraint violation values
(Figure 6). The upper and lower horizontal lines of each box
represent the maximum and minimum of objective function
values, respectively, while the internal line shows the median
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FIGURE 4: Search history of the top three best optimisers based on the ¢-test for the hybrid functions.

of objective function values. From this figure, based on
median values of objective function, it is found that the best
performer is EDACE while the second best and the third
best are BPSO and UMDA, respectively. The most consistent
method having the smallest gap between the maximum and
minimum for all of optimisation runs is UMDA. However,
the worst function value found by EDACE is almost as good
as the best found by UMDA. Thus, the proposed EDACE is
superior. Based on the figure, it was found that GA failed
to solve the problem as it cannot obtain a feasible optimum
point. The minimum objective function value is obtained
from using the proposed EDACE.

Figure 7 shows the best run search history of all optimis-
ers (selection based on the minimum objective function val-
ues of feasible solutions). From the figure, UMDA and PBIL
seem to be the fastest convergent methods initially. However,
after the process goes on for about 4,000 function evaluations,
the proposed EDACE converged to the minimum objective
function value with a faster rate than the others. It has better

exploration rate as the best function value is still decreased at
the late iteration numbers. BPSO, on the other hand, seems
to be slower than UMDA, PBIL, and BSA in the beginning. It
however can converge to the better results after around 8,000
function evaluations.

5. Conclusions and Discussion

In this work, a new concept of a binary-code optimiser is
proposed. Fifteen CEC2015 learning-based test problems and
a real engineering design problem of flight dynamic and
control system are used to investigate the search performance
of the proposed algorithm. Several well-established binary-
code MHs are used in comparison. The results obtained show
that the proposed EDACE is the best performer on solving the
15 CEC2015 learning-based test problems and real engineer-
ing design problem of flight dynamic and control. Further
improvement of EDACE by means of self-adaptation will be
investigated in the future. The choice for by needs further
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FIGURE 5: Search history of the top three best optimisers based on the ¢-test for the composition functions.

studies. The use of EDACE for hyperheuristic development  with aircraft path planning dynamic optimisation still needs
is also possible. The extension to multiobjective optimisation ~ considerably more investigation while EDACE will be one of
and many-objective optimisation is also under investigation. ~ optimisers to be used for solving such design problems.
Appling EDACE for the more complex problems such as

large scale problems, mixed-variable problems, and reliability

optimisation is for future work. The fight control optimisation Conflicts of Interest

problem, one of our recent research focuses, has more than

three objective functions to be optimised; thus, it should The authors declare that there are no conflicts of interest
be formulated as many-objective optimisation. This along  regarding the publication of this article.
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Abstract. Performance enhancement of a teaching-learning basedz optimizer
(TLBO) for strip flatness optimization during a coiling process is proposed. The
method is termed improved teaching-learning based optimization (ITLBO). The
new algorithm is achieved by modifying the teaching phase of the original
TLBO. The design problem is set to find spool geometry and coiling tension in
order to minimize flatness defects during the coiling process. Having imple-
mented the new optimizer with flatness optimization for strip coiling, the results
reveal that the proposed method gives a better optimum solution compared to
the present state-of-the-art methods.

Keywords: Evolutionary algorithm - Flatness defect - Optimization -+ Strip
coiling - Teaching-learning based optimization

1 Introduction

There are several processing stages during the manufacturing of a coil strip, e.g. roughing,
rolling, cooling, and coiling. Based on the previous investigation by Jung and Im [1, 2],
the final strip shape had non-uniform thickness profiles consisting of N, U, M, and W
shapes. Generally, it is difficult to predict the final shape of the strip due to various related
processing parameters in production facilities. The strip crown, while being coiled, may
include imperfections that were initiated during the rolling process resulting in flatness
imperfection taking place on the coil strip [3, 4].

As a result, the strip is normally welded, cut, and recoiled in the recoiling line so as
to satisfy customer strip flatness requirements. However, although adding the recoiling
line to the process, flatness problems sometimes cannot be avoided especially for the
high-strength coil strip. In order to understand the flatness defect formation mechanism

© Springer International Publishing AG 2016
C. Sombattheera et al. (Eds.): MIWAI 2016, LNAI 10053, pp. 12-23, 2016.
DOI: 10.1007/978-3-319-49397-8_2
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during the coiling process, Sims and Place [S] proposed a stress model of the coil
assuming that the coil was an axial-symmetry hollow cylinder. Miller and Thornton [6]
and Sarban [7] introduced a finite element method and a semi-analytical model to
calculate the three-dimensional stress distribution within the coil. Nevertheless, in those
models, they did not consider the physical clearance between each coiled wrap due to
the strip crown as a cause of the axial inhomogeneity. Yanagi et al. [8] proposed an
analytical model by wrapping the thick cylinder (the coil) with the thin-walled cylin-
ders (the new coiling strips) to deal with inhomogeneous deformation of the cold-rolled
thin-strip in the axial direction caused by the clearance and the strip crown. Moreover,
Park et al. [9] studied the effect of processing parameters including a strip crown, a
spool geometry, and coiling tension on the stress distribution on the strip during the
coiling process where the analytical elastic model was used. In this study, it was found
that enhancement of strip flatness of the cold-rolled thin-strip could be accomplished by
suppressing the strip crown and lowering the coiling tension intensity compared to the
measured circumferential strain distribution.

To alleviate the undesirable formation of flatness defects, manufacturing the strip
coil without the strip crown is suggested as the best solution for fulfilling the strip
flatness requirement. Nevertheless, suppressing the strip crown during the rolling
process, as illustrated in Fig. 1, is somewhat difficult or even impossible to carry out
due to many processing parameters involved. Therefore, use of optimization to find the
optimum solution for a spool geometry and coiling tension was conducted [10, 11] in
order to improve the strip flatness during the strip coiling process.

Optimization is a special kind of mathematical problem assigned to search for a
design solution optimizing a predefined objective or merit indicator within a given
feasible region. A numerical optimizer is usually employed to find such a solution. It
can be categorized as an optimization method either with and without using function
derivatives. The former is based on hard computing while the latter is based on a
stochastic process and soft computing. The most popular non-gradient optimizer is an
evolutionary algorithm (EAs) or later known as a meta-heuristic (MH). It has been
implemented on a wide range of engineering applications and has shown several
advantages [12-21]. For metal strip manufacturing, optimization by means of
meta-heuristics has been used most commonly in the rolling process so as to control the
flatness problem, whereas their use in the strip coiling process has been rarely reported
[22-27].

In this study, optimization of flatness of the strips has been enhanced by an
improved teaching-learning based algorithm (ITLBO). This method is compared to
several well established EAs, such as simulated annealing (SA) [16], differential
evolution (DE) [28], artificial bee colony optimization (ABC) [29], real code ant colony
optimization (ACOR) [30], original teaching-learning based optimization (TLBO) [31],
league championship algorithm (LCA) [32], charged system search (ChSS) [33],
Opposition-based Differential Evolution Algorithm (OPDE) [10] and Enhanced
teaching-learning based optimization with differential evolution (ETLBO-DE) [11] to
determine the spool geometry and coiling tension where the objective is to minimize
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the axial inhomogeneity of the stress to improve the flatness of the strip. For function
evaluations, the analytical elastic model proposed by Park et al. [9] similar to the one
suggested by Yanagi et al. [8] was employed.

2 Formulation of the Optimization Design Problem

It is known that wavy edges occur during the strip coiling process, when the cir-
cumferential stress at the middle zone of the strip is highly compressed, while two
edges are under tension or slight compression. Also, if the middle strip zone is under
high tension while the two edges are compressed or slightly stretched, center buckle
can happen [8, 9]. Figures 1(a) and (b) display the circumferential stress () distri-
bution along the z direction within the thin strip, which respectively caused the wavy
edge and center buckle.

Generally, it is impossible to obtain a flat strip after finishing a rolling process. The
strip always has a crown shape. When the strips are being coiled, tension loads need to
be applied, the middle zone (z = 0) of the strip at the inner coil will be considerably
compressed in comparison with the two edges because of the coiling tension and the
strip crown. In such a situation, the center buckle defect at the inner coil will not appear
but the wavy edge defect can possibly occur. As such, the wavy edge defect at the inner
coil is the major problem during the coiling process. Figure 2 depicts the circumfer-
ential stress (gg) distribution in the z direction at the radius (r) of the coil (computed by
the Love’s elastic solution proposed by Park et al. [9]) contributing to wavy edge defect
formation during the strip coiling process. It is possible to reduce the wavy edge defect
by decreasing the axial inhomogeneity of the stress distribution and the maximum
compressive stress at the compressive zone [10].

In this paper, optimization using the ITLBO and other well-known and newly
developed EAs will be used to find the optimum solution for the processing parameters
including coiling tension (o) and spool geometry, as illustrated in Fig. 3.

- ~ Strip crown .~ Strip crown

A
Te(2)
‘s 0
T Spool 17— Spool
(a) the wavy edge (b) center buckle

Fig. 1. Circumferential stress distributions for (a) the wavy edge and (b) center buckle,
respectively [8, 9]
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Fig. 2. Circumferential stress distribution (gy) in the coil determined by Love’s elastic solution [9]

To decrease the axial inhomogeneity of the stress distribution and the maximum
compressive stress, minimization of the volume of the circumferential stress and
maximum compressive stress (shown in Fig. 2) is defined as an objective function. In
Fig. 2, the volume can only be computed for the coil, where compressive stresses were
higher than 20 MPa, in order to minimize the zone that is likely to have the wavy edge
defect. The objective function of the optimization problem can then be written as:

L VvV max(ag.)
Minimize o )=+ —- 1
f( barllno—TJ) Vo + max(aeco) ( )
minimize
0 S Up § 4,
0 S ’71; S 47
25 <or; <50 MPa; i=1,.. nmax

’GT,i —or,-1| <2 MPa,

where gg. and V are respectively the compressive circumferential stress higher than
20 MPa (refer to Fig. 2) and the approximate volume of the circumferential stress. ag.
and V, are the respective values for the original design of the process. The o7 is the
coiling tension at coil number i. The coiling tension is normally set to be constant for
all coils [34]. The variable ny, is the maximum number of coils, which has been
assigned to be 220 in this paper. 1, and o, in Eq. (2) are spool crown exponent and the

spool crown height, which were used for defining the spool geometry, as described in
Fig. 3:
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Fig. 3. Spool Geometry used in the present investigation

b(z) = by — o (L'> " 2)

<Zmax

where by (z = 330 mm) and b(z) are the initial value of the outer radius of the spool and
the outer radius of the spool along the z direction, respectively. zm.x = 525 mm is the
width of the spool. The inner radius of the spool (a) in Fig. 3 has been assigned to be
300 mm. The total number of design variables, therefore, is 222 (220 for coiling
tensions and 2 for the spool geometry).

3 Improved Teaching-Learning Based Optimization

From the previous section, the optimization problem can be considered being
large-scale. It has been found [10, 11], that TLBO is suitable for this type of design
problem. The teaching-learning based optimization (TLBO) algorithm is an evolu-
tionary algorithm, or an optimizer without using function derivatives, proposed by Rao
et al. [31]. The concept of TLBO searching mechanism is based on mimicking a
teacher on the output of learners in a classroom. Basically, the learners can improve
their intellectual and knowledge by two stages i.e. learning directly from the teacher
and learning among themselves. During the teacher stage, a teacher may teach the
learners, however, only some learners can acquire all things presented by the teacher.
Those who can accept what the teacher taught will improve their knowledge. For the
second stage, which is called the learning phase, the learners can improve their
knowledge during discussion with other learners. Based on the different levels of the
learners’ knowledge, the better learners may transfer knowledge to the inferior learners.

From the view point of optimization, the algorithm starts with a randomly created
initial population, which is a group of design solutions. Learners are identical to design
solutions whereas the best one is considered a teacher. The objective function is
analogous to the knowledge which needs to be improved towards the optimum solu-
tion. Having identified a teacher and other learners for the current iteration, the pop-
ulation will be updated by two stages including “Teacher Phase” and “Learner Phase”.
In the “Teacher Phase”, an individual (x;) will be updated based on the best individual
(Xteacher) and the mean values of all populations (Xpean) as follows:

Xnew,i = Xold.,i + r{xteacher - (TF . Xmean)} (3)
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Where Tk is a teaching factor, which can be either 1 or 2 and r € [0,1] is a uniform
random number.

For the “Learner Phase”, the members in the current population will be modified by
exchanging information between themselves. Two individuals x; and x; will be chosen
at random, where i # j. The update of the solutions can then be calculated as:

) Xow,i (X —X; if f(xi) <f(X‘)
Xaew,i = {Xold,i +FEXJ' - ijg if f(x)<f (X]t) )

At both teacher and learner phases, the new solution (X,,..,) Will replace its parent if
it has better knowledge or produces better objective function value, otherwise, it will be
rejected. The two phases are sequentially operated until the termination criterion is
fulfilled.

For the improved teaching-learning based optimization (ITLBO), an opposition-
based approach, binary crossover, and the probability of operating the learning phase
are added to the original TLBO to improve the balance of search exploration and
exploitation. Four random numbers including, rand,, rand,, rands, and rand,, have
been used for performing opposition-based approach, binary crossover, and the
learning phase. The main search procedure starts by generating an initial population,
updating the population at the teaching phase and learning phase similarly to the
original TLBO. However, at the teaching phase, the updating can be done by the
following equation;

Xnew,i = Xold,i T (_l)mndlr{xteacher - (TF . Xmean)} (5>

where rand, is a random value with either O or 1. Then, the binary crossover is applied
if a uniform random number having an interval of 0 and 1 (rand,) is lower than the

crossover probability (P,). For a new individual xfew = [Xnew.1> --+» Xnew,p] and an old
individual X7}, = [Xo1q.1, ---» Xola.p), the binary crossover step can be expressed as

follow;

X . Xold j ifrand3<CR1 ]Z 1, . D (6)
newd Xteacher j if CRy <rand;<CR, j=1,...,D

where the rands is a uniform random number generated from O to 1. The CR; and CR,
are the predefined crossover rates, while D is the number of design variables,
respectively. Thereafter, the learning phase is conducted if a uniform random number
generated from O to 1 (randy) is lower than the probability value (L), otherwise, the
learning phase will be skipped. The search process will be repeated until the termi-
nation criterion is satisfied. The computational steps of the proposed algorithm are
shown in Algorithm 1.
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Algorithm 1 An improved TLBO

Input: Maximum iteration number (maxiter), population
size (np), Crossover probability Crossover rate (CRy and
CR»), learning phase probability (Lp).
Output: Xpest, ILpest
Initialization
l.Generate an initial population randomly.
2.Evaluate objective function values
Main algorithm
3.Fori=1 tomaxiter
3.1 Identify the best solution Xteacher)
(Teacher Phase)
For j=1 to np
3.2 Update the population using equation(5)
If rand, < Py
3.2.1 Applied binary crossover using equa-
tion (6)
End
3.2.1Evaluate the objective function value f
(Xnew, §)
322 If fRnew, i) <fXorg,3)

Replace Xo14,5 bY Znew,s
End
End

If rands < ILp

(Learner Phase)

For j=1 to np

3.3 Update the population using equation4)
3.3.1 Evaluate the objective function value
£ (Xnew, 5)
322 If fRnew,i) <f(Xo1d,5)

Replace Xo14,9 by Xnew,;

End

End

End
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4 Numerical Experiments

In order to examine the search performance of the proposed ITLBO, several EAs have
been used to solve the optimum design problem of the strip flatness as described in the
previous section. The EAs used in this study are as follows:

— DE [28]: The DE/best/2/bin strategy was used. DE scaling factor was random from
0.25 to 0.7 in each calculation and crossover probability was 0.7.

— SA [16]: An annealing temperature was reduced exponentially by 10 times from the
value of 10 to 0.001 in the optimization searching process. On each loop 2n children
were created by means of mutation to be compared with their parent. Here, n is the
number of design variables.

— ABC [29]: The number of food sources was set to be 3n,,. A trial counter to discard
a food source was 100.

— ACOR [30]: The parameters used for computing the weighting factor and the
standard deviation in the algorithm were set to be £ = 1.0 and g = 0.2, respectively.

— TLBO [31]: Parameter settings are not required.

— LCA [32]: The default parameter settings provided by the authors were used.

— ChSS [33]: The number of solutions in the charge memory was 0.2n,,. Here, nj, is
the population size. The charged moving considering rate and the parameter PAR
were set to be 0.75 and 0.5, respectively.

— OPDE [10]: The DE/best/2/bin strategy was used. DE scaling factor was random
from 0.25 to 0.5 in each calculation and crossover probability used was 0.7.

— ETLBO-DE [11]: Used the DE parameter setting and Latin hypercube sampling
(LHS) technique to generate an initial population.

— ITLBO (Algorithm 1): The P, CR,, CR, and L, were set to be 0.5, 0.33, 0.66 and
0.75, respectively.

Each optimizer was employed to solve the problem for 5 optimization runs. Both
the maximum number of iterations and population size were set to be 100. For the
optimizers using different population sizes, such as simulated annealing, their search
processes were stopped with the total number of function evaluations as 100 x 100.
The optimal results of the various optimizers from using this limited number of
function evaluations were compared. The best optimizer was used to find the optimal
processing parameters of the strip coiling process.

5 Results and Discussion

After applying each optimization algorithm to solve the problem for 5 runs, the results
are given in Table 1. The mean values (Mean) are used to measure the convergence
rate while the standard deviation (STD) determines search consistency. The lower the
mean objective function value the better, and the lower the standard deviation the more
consistent. In the table, max and min stand for the maximum and minimum values of
the objective function, respectively.
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For the measure of convergence speed based on the mean objective value, the best
method is ITLBO while the second best and the third best performers are ETLBO-DE
and OPDE, respectively. The worst results came from ABC. For the measure of search
consistency based on STD, the best was also ITLBO while the worst was ABC, which
was similar to the measure of the search convergence. The second best and the third
best for consistency were ETLBO-DE and ACOR, respectively. The minimum
objective function value was obtained by the ITLBO.

Based on the results obtained, it was clearly indicated that the proposed ITLBO by
adding opposition based method, binary crossover, and learning phase probability can
improve the search performance of the original TLBO for solving the optimization
design problem of the strip coiling process.

The optimal spool crown exponent and height obtained are 1.0822 and 2.3645,
respectively. The optimal distribution of coiling tensions as a function of coil numbers
is shown in Fig. 4. The results reveal that the coiling tensions start with the highest
value initially and then decrease when the number of coils increases. After a few series
of coiling, the tension levels become almost constant, converging to the lower bound at
the end of the process. Figure 5 shows the plot of the circumferential stress distribu-
tions along the z and r directions of the original and optimum design solutions in that
order. The comparison of the maximum compressive stresses and the standard devia-
tion of stresses at the inner strip between the original and optimal designs is given in
Table 2. The results show that the optimal processing parameters obtained by the
proposed ITLBO algorithm can reduce the maximum compressive stress and the axial
inhomogeneity of the stress distribution at the inner strip, which might cause unde-
sirable wavy edge defects during the strip coiling process.

Table 1. Objective function values calculated

Evolutionary algorithms | Mean |STD |Max. |Min.

DE 0.9700 | 0.0275 | 1.0096 | 0.9354
ABC 1.7637 | 0.0787 | 1.8800 | 1.6751
ACOR 1.0621 | 0.0070 | 1.0705 | 1.0546
ChSS 1.4026 | 0.0289 | 1.4448 | 1.3678
LCA 1.7116 | 0.0408 | 1.7580 | 1.6473
SA 1.5451|0.0645 | 1.6323 | 1.4841
TLBO 0.9915|0.0132 | 1.0066 | 0.9766
OPDE 0.953910.0179 | 0.9715 | 0.9297
ETLBO-DE 0.8850 | 0.0047 | 0.8897 | 0.8784
ITLBO 0.8740 | 0.0025 | 0.8783 | 0.8720
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Fig. 5. Comparison of circumferential stresses along the z and r directions for the original
design and optimal design, respectively

Table 2. Maximum compressive stress and the standard deviation of stresses at the inner coil

Original design | Optimal design
Maximum compressive stress [MPa] | 111.546 68.0270
Standard deviation of stresses 48.375 29.3703

6 Conclusions

The new population-based optimization algorithm obtained by improving the original
TLBO for solving the flatness optimization of the strip coiling process has been pro-
posed. The search performance of the method was compared to various established
evolutionary algorithms. The numerical results show that the new optimizer ITLBO is
the best performer for both convergence rate and consistency. With this, the new
parameters including the spool geometry and the coiling tension distribution have been
obtained and can be used in the real strip coiling process. Further studies will be made
to enhance the mathematical model of the strip coiling process. A self-adaptive version
of ITLBO will be investigated for search performance enhancement.
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Abstract. A sine cosine algorithm is one promising meta-heuristic recently
proposed. In this work, the algorithm is extended to be self-adaptive and its main
reproduction operators are integrated with the mutation operator of differential
evolution. The new algorithm is called adaptive sine cosine algorithm integrated
with differential evolution (ASCA-DE) and used to tackle the test problems for
structural damage detection. The results reveal that the new algorithm outper-
forms a number of established meta-heuristics.

Keywords: Sine cosine algorithm - Differential evolution - Structural damage
detection - Optimization - Meta-heuristics

1 Introduction

Structural health monitoring is an essential topic in the structural engineering field due to
the requirement of reliability and safety use of the structure thought its life time. The key
point of structural health monitoring is to identify the presence of structural damage,
localising the damage and predicting its severity without destroying the structure or
using nondestructive testing [1-3]. One of the most popular nondestructive techniques
to identify damage location is to use static and/or dynamic testing data such as changing
on strain data, structural deflection [4, 5], or modal data such as natural frequencies and
mode shapes [1, 4-8].

Numerous work on damage detection based on changing of modal data has been
reported worldwide [1, 4-16]. The main idea of this technique is to measure the
modal data of an undamaged structure and use it as the baseline. When the modal data
has changed, structural damage is supposed to occur. Identifying damage location
can be achieved by applying a soft computing technique such as fuzzy logic systems
[17, 18] and neural networks systems [17, 19-21]. For the latter, a large number of
modal data of the damage and undamaged structures must be provided and used for
training the system. Although much work has claimed that the technique works well,
the requirement of a large number of training data and analysis time is an inevitable
obstacle.

© Springer International Publishing AG 2017
O. Gervasi et al. (Eds.): ICCSA 2017, Part I, LNCS 10404, pp. 71-86, 2017.
DOI: 10.1007/978-3-319-62392-4_6
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Recently, the damage detection is traded as an optimization inverse problem. The
main idea is to update mechanical properties of a mathematical model such as a finite
element model until the modal data such as natural frequency of the model agree well
with the testing data while the optimum parameters of the mechanical properties can be
obtained by means of optimization [7, 9—14]. Over the last few decades, much research
has successfully applied meta-heuristics (MHs) for this kind of problem, for example,
genetic algorithm (GA) [9], differential evolution algorithm (DE) [16], ant colony
optimization (ACO) [10], charged system search (ChSS) [11], etc. [7, 9-14, 16].
Although successful results have been reported, it is found that most of them choose to
present only the best runs of the algorithms. This is not a proper way to investigate the
use of MHs for real world applications. The methods must be run to solve a particular
design problem many times and use the mean values of objective function as a per-
formance indicator. Over a decade, over a thousand of MHs have been introduced based
on a wide variety of search concepts and mechanisms. The algorithms can be regarded
as a search method or an optimizer. The methods are simple to understand/use/code due
to it being a soft computing technique. They can be used as an alternative to classical
gradient-based optimization methods particularly for optimization problems in which
sufficiently accurate function derivatives are not affordable. Moreover, they can be used
for multiobjective or many-objective optimization more effectively than using the
gradient-based optimizers since they can explore a Pareto optimal front within one
optimization run. A genetic algorithm is arguable the best known and most used MH.
Then, there can be differential evolution, particle swarm optimization and so on.
Recently, there have been numerous MHs being published each year some of the new
algorithms are a grey wolf optimizer [22], moth-fame optimization [23], the whale
optimization algorithm [24] and a sine cosine algorithm [25]. Those algorithms are
remained to be investigated when applying to practical design problem.

Therefore, this paper presents and extension of the sine cosine algorithm. An
adaptive strategy is embedded into the new version while the mutation operator of
differential evolution is integrated into the algorithm in order to further improve its
performance. The new optimizer is then termed an adaptive sine cosine algorithm
integrated with differential evolution (ASCA-DE). The optimizer is then implemented
on several test problems for structural damage detection. Numerical results show that
the proposed MH is superior to a number of established MHs found in the literature.

2 Formulation of a Damage Detection Optimization Problem

In this work, vibration based damage detection based on using natural frequencies is
used for damage localization of truss structures. The main concept of using structural
natural frequencies for damage detection of a truss structure is based on using a finite
element model and the measured natural frequencies. When the natural frequencies and
mode shapes are measured (usually the lowest n,.4. natural frequencies), the finite
element model is updated until the computed natural frequencies fit well with the
measured ones. For the undamaged structure, natural frequencies can be calculated from
a simple linear undamped free vibration finite element model which can be expressed as;
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K[{¢;} — o’ M}{¢;} =0 (1)

where [K] is a structural stiffness matrix which can be expressed as the summation of
element stiffness matrices [K.],

K=Y [k @

where i is the i™ element of the structure while n. 1s the total number of elements. The
matrix [M] is a structural mass matrix computed in similar fashion to the stiffness
matrix. The variables ¢; and w; are the 7™ mode shape and its corresponding natural
frequency, respectively. For the damaged structure, the stiffness matrix of the damaged
element is assumed to be modified. The stiffness matrix of the damaged structure [Ky]
can be written as a percentage of damage in the elements as follows:

K =Y o o)
i=1

where p; is the percentage of damage on the i element. The natural frequency of the
damaged structure can be computed by solving Eq. (1) by replacing [K] with [Ky].

The percentage of damage in the structural element (p;) can be found by solving an
optimization problem to minimise the root mean square error (RMSE) between natural
frequencies measured from the damaged structure and natural frequencies computed by
using the finite element model. The problem can be expressed as follow:

Nmode

2
Wj damage — a)j,computed)
j=1

Min: f(x) = (4)

Nyode

where W; gumage aNd Oj compurea are the structural natural frequency of mode j obtained
from a damaged structure and that from solving (1) — (3). The design variables are
those damage percentages of structural elements (X = {py, ..., Prele} ') Tespectively. In
this work, six vibration modes are used for calculation.

3 Test Problems with Trusses

Four truss damage detection optimization problems from two truss structures are used
in this study. These are the test problems used in our previous studies [14]. Detail of the
test problems are shown as follow:
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3.1 Twenty-Five-Bar Truss

The structure is shown in Fig. 1 [10, 14]. The cross sections of all bar elements are set
to be 6.4165 mm?. Table 1 shown the material properties and simulated case study for
this example. The data of natural frequencies of the undamaged and damaged 25-bar
truss structures are shown in Table 2.

254m

254m

Fig. 1. Twenty-five bar truss

Table 1. Material properties and simulated case study for 25-bar truss.

Material density 7,850 kg/m’
Modulus of elasticity | 200 GPa
Simulated case study | Case I: 35% damage at element number 7

Case II: 35% damage at element number 7 and 40%
damage at element number 9

Table 2. Natural frequencies (Hz) of damaged and undamaged of 25 bar structure.

Mode | Undamaged | 35% damage at | 35% damage at element
element number 7 | number 7 and 40% damage
at element number 9

1 69.7818 69.1393 68.5203
2 72.8217 72.2006 71.3167
3 95.8756 95.3372 94.5625
4 120.1437 119.8852 119.6514
5 121.5017 121.4774 121.4253
6 125.0132 125.0130 125.0129
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3.2 Seventy-Two-Bar Truss

The structure is shown in Fig. 2 [7, 14]. Four non-structural masses of 2270 kg are
attached to the top nodes. The cross sections of all bar elements are set to be
0.0025 m?. Table 3 shown the material properties and simulated case study for this
example. The data of natural frequencies of the undamaged and damaged 72-bar truss
structure are shown in Table 4.

; ~

«7

'}

b
VA

D

4x1.524 m

)

I

)
1

'

Fig. 2. Seventy-two bar truss

Table 3. Material properties and simulated case study for 72-bar truss.

Material density

2,770 kg/m®

Modulus of
elasticity

6.98 x 10'° Pa

Simulated case
study

Case I: 15% damage at element number 55 (15% damage in element
number 56, 57, or 58 results in the same set of natural frequencies)

Case II: 10% damage at element number 4 and 15% damage at element
number 58 (90, 180, and 270° rotation along the z axis lead to the same set
of natural frequencies)

75
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Table 4. Natural frequencies (Hz) of damaged and undamaged of 72 bar structure.

Mode | Undamaged | 15% damage at 15% damage at element
element number 55 | number 58 and 10%
damage at element number 4
1 6.0455 5.9553 5.9530
2 6.0455 6.0455 6.0455
3 10.4764 10.4764 10.4764
4 18.2297 18.1448 18.0921
5 25.4939 25.4903 25.2437
6 25.4939 25.4939 25.4939

4 Adaptive Sine Cosine Algorithm Hybridized
with Differential Evolution (ASCA-dE)

The Sine Cosine Algorithm (SCA) is a population based optimization method proposed
by Mirjalili [25]. The algorithm is simple and efficient for various optimization test
problems as reported in [25]. The search procedure of SCA is similar to other MH which
contains three main steps; population initialisation, population updating and population
selection. For the SCA, updating population can be done based on a sine and cosine
function. Given a current population having NP members X = {x;, X,,..., xnp) ', an
element of a solution vector for the next generation can be calculated as follows:

X _ ) Xoldk + ry sin(ry) ‘rSXbest,k — xold7k|7 if ry<0.5, (5)
newk Xold k + 11 €os(r2) |F3xbesz,k — Xold k |, otherwise

where Xpegek 1S the k"™ matrix element of the current best solution. The variables 7, 13,
and r4 are random parameters in the ranges of [0, 2], [0, 2] and [0, 1], respectively.
The variable r; is an iterative adaption parameter,

a
r1:a—Tm (6)

where a is a constant parameter while 7 is an iteration number. T},,, 1S maximum
number of iterations.

The search process of SCA start with generating an initial population at random,
and then calculating their objective function values where the best solution is found.
Then, the new population for the next generation is generated using Eq. (5) and the
objective function values of its members are calculated. The current best will be
compared with the best solution of the newly generated population and the better one is
saved to the next generation. The process is repeated until a termination criterion is
met. The computational steps of SCA are shown in Algorithm 1.
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Algorithm 1 Sine Cosine Algorithm
Input: population size (Np), number of generations (Tmax),
number of design variable (D)

Output: Xpest, fpest
Main algorithm

1: Initialise a population and set as the current popula-
tion.

2: Find the best solution (xpest)

3: For T=1 to Tnax

4. Calculate parameter r; using eq. (6)

5: For I=1 to N,

6: For k = 1 to D

7 Generate the parameter r;, r3; and rs

8 Update the kt element of the 1th popula-
tion (x1) using eqg. (5)

9: End For

10: End For

11: Calculate objective function values of the newly
generated population and find the best ones (Xpest,new)

12: Replace ZXpest DY XHpest,new 1T [ (Xpest,new) < I (Xpest)

13: End

For the proposed adaptive sine cosine algorithm with integration of DE mutation,
the DE mutation operator as proposed in Pholdee and Bureerat [26] is integrated into
the updating operation. The mutation equation is detailed as follow;

Xpew = Xpesr +rand(—1, + 1)F(X,,1 +X,0 — Xp3 — Xr.,4) (7)

where rand(—1, 1) gives either —1 or 1 with equal probability. F is a scaling factor
while x,,;—X, 4 are four solutions randomly selected from the population.

At ASCA-DE updating operation, if a generated uniform random number in the
interval [0,1] is lower than a probability value (rand < Ppg), the population will be
updated using the SCA updating operation based on Eq. (5), otherwise, the population
will be updated by DE mutation as detailed in Eq. (7).

The term of self-adaption of the proposed algorithm is accomplished in such way
that the parameter r,, 3 and F are regenerated for each calculation based on the
information from the previous iteration. For each calculation, the r, and r; are gen-
erated based on normally distributed random numbers with mean values, r,,, and r3,,
respectively and standard deviation values, STD = 0.1 for both r, and r3. The values of
r»m and rsp, are iteratively adapted based on the following equations:
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Fom(T + 1) = 0.972,(T) + 0.1mean(good, o, ), (8)

and,
ram(T + 1) = 0.9r3,,(T) + 0.1mean(good,3,,), 9)

where mean(good,»,) and mean(good,,,) are the mean values of all values of r, and r3
used in current iteration that lead to successful updates. The successful update means
the created offspring is better than its parent from the previous iteration. In addition, for
each calculation, the scaling factor F is generated by Cauchy distribution randomisation
with the mean value F,,, and STD value of 0.1 [27]. The F,, is iteratively adapted using
the Lehmer mean [27] defined as follows:

sum(good?)

Fu(T+1) =0.9F,,(T) +0.1 (10)

sum(goodr)

where goody is a tray of all F used in the current iteration with successful updates.

The parameter Ppg is also regenerated in the similar fashion to r, and r; before
updating a population. For an individual solution, the Ppg is generated by normal
distribution randomising with the mean value of Ppg,, and standard deviation of 0.1.
Ppem 1s iteratively adapted based on the following equation:

PDEm(T+ 1) = O9PDEm(T) -+ O.lmean(goodpDE), (11)

where goodppg means all Ppg values used in the current iteration with successful
updates.

The search process of ASCA-DE start with initilaising a population, 75, 3m, F,
and Ppgn,. The good,sy,, goodsm, goody and goodppg trays are empty initially. After
having calculated objective function values, the current best solution will be obtained.
To update a population, firstly, Ppg and a random number in [0, 1] are generated. If the
generated random number is lower than Ppg, a scaling factor (F) is generated based on
F., and a new solution is created using Eq. (7), otherwise, a new solution is generated
based on Eq. (5). For each calculation of Eq. (5), r, and r3 are generated based on r,,,
and r3,,. If a newly generated solution is better than its parent, the new solution will be
selected for the next generation while saving all used parameters Ppg, 15, 13 and F into
the goodppg, goodsy, good sy, and goodg trays, respectively. Then, update the 7y,
3m» Frn and Ppggy, using Egs. (8)—(11). The search process is repeated until a termi-
nation criterion is reached. The computational steps of ASCA-DE are shown in
Algorithm 2.
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Algorithm 2 ASCA-DE
Input: population size (Ny), number of generations (Tmax),
number of design variable (D)

Output: Xpest, foest
Main algorithm

1: Initialise a population , ZIon, ZI3m, Fm and Pogn.

2: Find the best solution (Xpest)

3: For T=1 to Tmax

4 Calculate parameter r; using eq. (6)

5: Empty goodron, goodrim, goodr and goodeps

5: For 1=1 to Np

6: Generate Ppg by normal distribution random with
mean values Ppgn and STD =0.1

7 IF rand< Ppg

8: Generate F by Cauchy distribution random
with mean value F, and STD = 0.1

9: Updated a population using eqg. (7)

10: Else

11: For k = 1 to D

12: Generate the parameter r, and r3 by

normal distribution random with mean values ro,, I3m, and
STD =0.1

13: Random generate rs in rank [0, 1]

14: Update the kth element of the It popu-
lation (x1) using eq. (5)

14: End For

16: End IF

17: Calculate objective function wvalues of the
newly generated population

18: IF f(xl,new) < f(xl,old)

19: Replace =Xi,01da bY Xi1,new

20: Add all generated r», r3, F, and Ppg, into

the goodron, go00drsm, goodr and goodepe tray, respectively.
21: End IF

22 End For
23: Find the best solution (Xpest)
24: Update rom, Iam, Fn, and Ppen using eqg. (8)-(11)

24 : End
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S Numerical Experiment

The performance investigation of the proposed ASCA-DE for structural damage
detection is carried out by employing the algorithm to solve the test problems in the
previous section. ASCA-DE along with a number of MHs in the literature implemented
to solve the test problems include (Note that the details of variables can be found in the
original sources of each method) [14]:

— Differential evolution (DE) [28]: a DE/best/2/bin strategy was used. A scaling
factor, and probability of choosing elements of mutant vectors (CR) are 0.5 and 0.8
respectively.

— Artificial bee colony algorithm (ABC) [29]: The number of food sources for
employed bees is set to be np/2. A trial counter to discard a food source is 100.

— Real-code ant colony optimization (ACOR) [30]: The parameter settings are
qg=0.2,and ¢ = 1.

— Charged system search (ChSS) [31]: The number of solutions in the charge memory
is 0.2 x np. The charged moving considering rate and the parameter PAR are set to
be 0.75 and 0.5 respectively.

— League championship algorithm (LCA) [32]: The probability of success P, and the
decreasing rate to decrease P, are set to be 0.9999 and 0.9995, respectively.

— Simulated annealing (SA) [33]: Starting and ending temperatures are 10 and 0.001
respectively. For each loop, n,,,4. candidates are created by mutating on the current
best solution while other n,,,,. candidates are created from mutating the current
parent. The best of those 2n,,,4 solutions are set as an offspring to be compared
with the parent.

— Particle swarm optimization (PSO) [34]: The starting inertia weight, ending inertia
weight, cognitive learning factor, and social learning factor are assigned as 0.5,
0.01, 0.5 and 0.5 respectively.

— Evolution strategies (ES) [35]: The algorithm uses a binary tournament selection
operator and a simple mutation without the effect of rotation angles.

— Teaching-learning-based optimization (TLBO) [36]: Parameter settings are not
required.

— Adaptive differential evolution (JADE) [27]: The parameters are self-adapted during
an optimization process.

— Evolution strategy with covariance matrix adaptation (CMAES) [37]: The param-
eters are self-adapted during an optimization process.

— Sine Cosine Algorithm (SCA) (Algorithm 1) [25]: The constant a parameter is set to
be 2.

— Adaptive Sine Cosine algorithm with integrating DE mutation (ASCDE) (Algo-
rithm 2): The parameter a is set to be 2 while initial 75, 731, F,, and Ppg,, are set to
be 0.5.

Each optimizer is used to tackle each truss damage detection test problem for 30
optimization runs. The number of iterations (generations) is 300 for all case studies
while the population size is set to be 30 and 50 for 25-bar and 72-bar trusses
respectively. All methods will be terminated with two criteria: the maximum numbers
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of functions evaluatio as 20 x 300, 30 x 300 and 50 x 300 for the 25-bar and 72-bar
trusses respectively, and the objective function value being less than or equal to
1 x 107>, The six lowest natural frequencies (n,,,4. = 6) are used to compute the
objective function value. This number of selected frequencies is reasonable since it is
practically easier to measure fewer lowest natural frequencies with sufficient accuracy.

6 Results and Discussions

After performing 30 optimization runs of all MHs on solving the four truss damage
detection optimization problems, the results obtained from the various MHs are given in
Tables 5, 6, 7 and 8. The mean of the objective function are used to indicate the search
convergence of the algorithms in cases that the objective function threshold (1 x 107°)
is not met during searching. Otherwise, the mean number of FEs is used as an indicator.
The number of successful runs out of 30 runs is used to measure the search consistency.
The algorithm that is terminated by the objective function threshold is obviously
superior and any run being stopped with this criterion is considered a successful run.

Table 5. Results for 25 bar truss with 35% damage at element number 7

Optimizers | Mean objective | No. of successful | Mean of FEs
function values | runs from 30 runs
DE 0.0017 19 6019
ABC 0.0135 0 9000
ACOR 0.0089 0 9000
ChSS 0.1385 0 9000
LCA 0.9036 0 9000
SA 0.0089 0 9000
TLBO 0.0077 6 7772
CMAES | 0.0033 0 9000
ES 0.0308 0 9000
PSO 8.3830 0 9000
JADE 0.0026 2 8953
SCA 0.0270 24 3262
ASCA-DE | 0.0009 29 2835

6.1 Twenty-Five-Bar Truss

Table 5 shown the results of the 25-bar truss with 35% damage at element 7. The best
performer based on the mean objective function values is ASCA-DE while the second
best and the third best are DE and JADE respectively. When considering the number of
successful runs, seven optimizers including DE, TLBO, JADE, SCA and ASCA-DE
can detect the damage of the structure. The most efficient optimizer is ASCA-DE that
can detect the damages of the structure for 29 times out of 30 runs with the average of
2835 function evaluations.
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Table 6. Results for 25 bar truss with 35% damage at element number 7 and 40% damage at
element number 9

Optimizers | Mean objective | No. of successful | Mean of FEs
function values | runs from 30 runs
DE 0.0096 27 5220
ABC 0.0326 0 9000
ACOR 0.0125 0 9000
ChSS 0.1590 0 9000
LCA 0.8080 0 9000
SA 0.0269 0 9000
TLBO 0.0405 1 8917
CMAES |0.0115 0 9000
ES 0.0356 0 9000
PSO 8.6012 0 9000
JADE 0.0042 6 8875
SCA 0.0930 0 9000
ASCA-DE | 0.0032 26 5511

Table 7. Results for 72 bar truss with 15% damage at element number 55

Optimizers | Mean objective | No. of successful | Mean of FEs
function values | runs from 30 runs
DE 0.0087 14 12887
ABC 0.2184 0 15000
ACOR 0.0014 6 14831
ChSS 0.1727 0 15000
LCA 1.1499 0 15000
SA 0.0097 0 15000
TLBO 0.0035 27 5781
CMAES |0.0053 0 15000
ES 0.0010 29 9335
PSO 1.9146 0 15000
JADE 0.0019 1 15000
SCA 0.0070 23 4793
ASCA-DE | 0.0008 30 1715

Results of the 25 bar truss with 35% damage at element 7 and 40% damage at the
element number 9 are reported in Table 6. The best performer based on mean objective
function values is ASCA-DE while the second best and the third best are JADE and DE
respectably. When examining the number of successful runs, only two optimizers, DE
and ASCA-DE can consistently detect the damage of the structure for 27 and 26 runs
respectively while the average number of function evaluations to obtain the results are
5220 and 5511 respectively.
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Table 8. Results for 72 bar truss with 15% damage at element number 58 and 10% damage at
element number 4

Optimizers | Mean objective | No. of successful | Mean of FEs
function values | runs from 30 runs
DE 0.0127 7 13963
ABC 0.1591 0 15000
ACOR 0.0058 0 15000
ChSS 0.1348 0 15000
LCA 1.1049 0 15000
SA 0.0129 0 15000
TLBO 0.0045 7 13503
CMAES | 0.0050 0 15000
ES 0.0023 2 14940
PSO 1.7726 0 15000
JADE 0.0031 0 15000
SCA 0.0260 2 14502
ASCA-DE | 0.0035 21 9235

6.2 Seventy-Two-Bar Truss

Table 7 shows comparison results of the 72-bar truss with 15% damage at element 5.
The best performer based on mean objective function values is ASCA-DE while the
second best and the third best are ES and ACOR. When examining the number of
successful runs, the most efficient method is ASCA-DE which can detect the damage of
the structure for 30 times while the average numbers of function evaluations for the
convergence results is only 1715.

Results of the 72 bar truss with 15% damage at element number 58 and 10%
damage at element number 4 are given in Table 8. The best performer based on the
mean of objective function values is ES while the second best and the third best are
JADE and ASCA-DE respectively. The minimum objective function value is obtained
by SCA. When considering the number of successful runs, only ASCA-DE can con-
sistently detect the damage of the structure for 22 times from totally 30 optimization
runs while the average number of function evaluations for the convergence results is
9235. Although ES and JADE given better mean objective function values, they fail to
search for the damage location. ASCA-DE is said to be the most efficient optimizer for
this case.

Overall, it was found that integrating DE mutation into and applying adaptive
parameters to SCA lead to performance enhancement of the original SCA. The pro-
posed ASCA-DE is the best performer on solving truss damage detection optimization
problem. It is considered the most reliable method for this study.
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Conclusions

Performance enhancement of a meta-heuristics called a sine cosine algorithm is pro-
posed by integrating into it a mutation strategy of DE. Self-adaptive optimization
parameters are employed to improve the search performance of the new algorithm. The
proposed optimizer is implemented on solving a number of truss damage detection
inverse problems. The results reveal that the new meta-heuristic is the best and most
reliable method. Our future work is to investigate the new MH for solving other
practical engineering design problems.
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