

Final Report

 Project Title: Surrogate assisted meta-heuristics for engineering optimisation

 By Asst.Prof.Dr. Nantiwat Pholdee

 April 2018

 Contract No. MRG5980238

 Final Report

 Project Title: Surrogate assisted meta-heuristics for engineering optimisation

Researcher Institute
 1. Asst.Prof.Dr. Nantiwat Pholdee Khon Kaen University
 2. Prof.Dr.Sujin Bureerat Khon Kaen University

 This project granted by the Thailand Research Fund

บทคัดย่อ

รหัสโครงการ: MRG5980238
ชื่อโครงการ: การเพ่ิมประสิทธิภาพในการหาค าตอบของวิธิเมตาฮิวริสติกโดยใช้แบบจ าลองเซอโรเกท

ช่วยส าหรับการหาค่าเหมาะที่สุดทางวิศวกรรม
ชื่อนักวิจัย และสถาบัน ผศ.ดร.ณัญธิวัฒน์ พลดี มหาวิทยาลัยขอนแก่น
อีเมล:์ nantiwat@kku.ac.th
ระยะเวลาโครงการ: 2 ปี
บทคัดย่อ:

งานวิจัยนี้น าเสนอการเพ่ิมประสิทธิภาพให้กับวิธีหาค่าเหมาะที่สุดแบบเมต้าฮิวริสติกโดยใช้
แบบจ าลองเซอโรเกทช่วย ใช้แนวคิดของตัวแปรปรับตัวได้และใช้แนวคิดแบบผสม ส าหรับปัญหาทาง
วิสกรรม งานวิจัยนี้จะเริ่มจากน าเสนอการเพ่ิมประสิทธิภาพให้กับเมต้าฮิวริสติกที่มีชื่อว่า teaching-
learning based optimizer (TLBO) โ ดย ใช้ opposition-based approach, binary crossover
และ probability of operating the learning phase ส าหรับปัญหาการหาค่าเหมาะสมสุดของ
กระบวนการม้วนเก็บแผ่นเหล็ก เมื่อท าการหาค่าเหมาะที่สุดส าหรับปัญหาการออกแบบที่ก าหนด
พบว่าวิธีการใหม่ที่น าเสนอนี้มีประสิทธิภาพสูงกว่าวิธีเมต้าฮิวริวติกที่มีใช้อยู่ในปัจจุบัน ต่อจากนั้น
งานวิจัยนี้น าเสนอการใช้ตัวแปรแบบปรับตัวได้ร่วมกับการท า mutation ของวิธี differential
evolution (DE) เพ่ือเพ่ิมประสิทธิภาพในการหาค าตอบให้กับวิธี sine cosine algorithm โดยวิธีที่
น าเสนอจะถูกน ามาใช้เพ่ือหาค าตอบส าหรับปัญหาในการหาต าแหน่งการเสียหายของโครงถัก ผลที่ได้
พบว่าเมต้าฮิวริสติกที่ได้น าเสนอขึ้นมามีประสิทธิภาพสูงกว่าเมต้าฮิวริสติกหลายๆตัวที่มีใช้อยู่ใน
ปัจจุบัน หลังจากนั้นงานวิจัยนี้ได้น าเสนอวิธีเมต้าฮิวริสติกแบบไบนารี่รูปแบบใหม่ เรียกว่า วิธี
estimation of distribution algorithm using correlation between binary elements (EDACE)
ซึ่งทดสอบประสิทธิภาพโดยใช้ฟังก์ชันทดสอบ CEC2015 ผลการทดสอบพบว่าเมต้าฮิวริสติกที่
น าเสนอใหม่นี้มีประสิทธิภาพสูงที่สุดเมื่อเทียบกับวิธีอ่ืนๆที่มีใช้อยู่ ในปัจจุบัน นอกเหนือจากนี้ใน
งานวิจัยนี้ยังได้น าเสนอการใช้แบบจ าลองเซอโรเกทร่วมกับเมต้าฮิวริสติกส าหรับปัญหาที่เป็น Inverse
problem ของการหาต าแหน่งการเสียหายของโครงสร้าง ซึ่งแบบจ าลองเซอโรเกทจะถูกน ามาใช้ใน
การประมาณค่าตัวแปรออกแบบ(ค าตอบ)แทนการประมาณค่าฟังก์ชันก์เป้าหมายตามที่ใช้กันปกติ
ผลการทดสอบพบว่าจากการเปรียบเทียบประสิทธิภาพในการหาค าตอบกับเมต้าฮิวริสติกหลายวิธี วิธี
ที่น าเสนอมาใหม่นี้มีประสิทธิภาพสูงที่สุด

ค าหลัก : เมตาฮิวริสติก แบบจ าลองเซอโรเกท การหาค่าเหมาะที่สุดในงานวิศวกรรม เมตาฮิวริสติก
แบบตัวแปรปรับตัวได้

Abstract

Project Code : MRG5980238
Project Title : Surrogate assisted meta-heuristics for engineering optimisation
Investigator : Assist. Dr. Nantiwat Pholdee
E-mail Address : nantiwat@kku.ac.th
Project Period : 2 Years
Abstract:
 In this work, development of MHs for real world engineering optimisation is
conducted based on using surrogated assisted MHs, using parameter adaption and
using hybridization concepts. Firstly, performance enhancement of a teaching-learning
based optimizer (TLBO) using an opposition-based approach, binary crossover, and the
probability of operating the learning phase is proposed for strip flatness optimization
during a coiling process. The results reveal that the proposed method gives a better
optimum solution compared to the present state-of-the-art methods. Next, a self-
adaptive sine cosine algorithm is proposed. The proposed algorithm is used to tackle
the test problems for structural damage detection. The results reveal that the new
algorithm outperforms a number of established meta-heuristics. In addition, new meta-
heuristic called estimation of distribution algorithm using correlation between binary
elements (EDACE) is proposed. The performance assessment is conducted by
comparing the new algorithm with existing binary-code MHs. The comparative results
show that the new algorithm is competitive with other established binary-code meta-
heuristics. Finally, the integration of an inverse problem process using surrogate model
into meta-heuristics (MHs) for performance enhancement in solving structural health
monitoring optimisation problems is proposed. The surrogate model is integrated into
the MH algorithm for generating an approximate solution rather than approximating
the function value as with traditional surrogate-assisted optimisation. The results
obtained from using various MHs and the proposed algorithms indicate that the new
algorithm is the best for all test problems.

Keywords : Meta-heuristic algorithm, Surrogate model, Engineering Optimisation, Self
adaptive meta-heuristic

iii

TABLE OF CONTENTS

Page
ABSTRACT (IN THAI) i
ABSTRACT (IN ENGLISH) ii
LIST OF TABLES v
LIST OF FIGURES vii
NOMENCLATURE viii
CHAPTER I EXECUTIVE SUMMARY 1

1.1 Rationale of the Study 1
1.2 Literature review 1
1.3 Objectives 3
1.4 Scope of research 3
1.5 Chapter outline 3

CHAPTER II AN IMPROVED TEACHING-LEARNING BASED OPTIMIZATION 5
 FOR OPTIMIZATION OF FLATNESS OF A STRIP DURING
 A COILING PROCESS

2.1 Introduction 5
2.2 Formulation of the Optimization Design Problem 5
2.3 Improved teaching-learning based optimization 8
2.4 Numerical Experiments 11
2.5 Results and Discussion 12
2.6 Conclusions 14

CHAPTER III ADAPTIVE SINE COSINE ALGORITHM INTEGRATED WITH 15
DIFFERENTIAL EVOLUTION FOR STRUCTURAL DAMAGE
DETECTION

3.1 Introduction 15
3.2 Formulation of a Damage Detection Optimization problem. 15

 3.3 Test problems with trusses 16
3.4 Adaptive Sine Cosine algorithm hybridized with differential 19
 evolution (ASCA-DE)
3.5 Numerical Experiment 23

iv

TABLE OF CONTENTS (Cont.)

Page
3.6 Results and discussions 25
3.7 Conclusions 29

CHAPTER IV ESTIMATION OF DISTRIBUTION ALGORITHM USING 30
 CORRELATION BETWEEN BINARY ELEMENTS –
 A NEW BINARY-CODE META-HEURISTIC

4.1 Introduction 30
4.2 Proposed method 30
4.3 Experimental set up 35
4.4 Optimum Results 40
4.5 Conclusions and Discussion 52

CHAPTER V INVERSE PROBLEM BASED DIFFERENTIAL EVOLUTION 53
 FOR EFFICIENT STRUCTURAL HEALTH MONITORING OF TRUSSES

5.1 Introduction 53

5.2 Natural-frequency-based damage detection and localisation 53

5.3 Test problems with trusses 55

5.4 Hybrid radial basis function and differential evolution for truss 58

 damage detection

5.5 Numerical Experiment 62

5.6 Results and discussion 64

5.7 Conclusions 75

 CHAPTER VI CONCLUSIONS AND FUTURE WORKS 76
REFERENCES 78
APPENDIX A LIST OF PUBLICATIONS 86

v

LIST OF TABLES

 Page
Table 2.1. Objective function values calculated 13
Table 2.2 Maximum compressive stress and the standard deviation of 14

stresses at the inner coil
Table 3.1 Material properties and simulated case study for 25-bar truss. 17
Table 3.2 Natural frequencies (Hz) of damaged and undamaged of 25 bar 16

structure.
Table 3.3 Material properties and simulated case study for 72-bar truss. 18
Table 3.4 Natural frequencies (Hz) of damaged and undamaged of 72 bar 19

structure.
Table 3.5 Results for 25 bar truss with 35 %damage at element number 7 26
Table 3.6 Results for 25 bar truss with 35 %damage at element number 26
 7 and 40 %damage at element number 9
Table 3.7 Results for 72 bar truss with 15 %damage at element number 55 27
Table 3.8 Results for 72 bar truss with 15 %damage at element number 28
 58 and 10 %damage at element number 4
Table 4.1 Summary of CEC2015 learning-based functions 35
Table 4.2 Objective values obtained 42
Table 4.3 Ranking of all optimisers based on the Mean values 45
Table 4.4 Comparison based on the statistical t-test of the test problem 46
Table 4.5 Ranking of the all optimisers for all CEC2015 learning 47
 based test problem based on statistical t-test
Table 4.6 shown performance of EDACE for various number of binary bits 49
Table 5.1 Natural frequencies (Hz) of damaged and undamaged 25 bar 55
 structure.
Table 5.2 Natural frequencies (Hz) of damaged and undamaged 72 bar 57
 structure.
Table 5.3 MH Parameters settings 62
Table 5.4 Comparison of various RBF kernels for solving 72 bar truss Case II 65
Table 5.5 Comparison of various ranges of F and CR values for solving 72 66
 bar truss Case II

ix

LIST OF TABLES (Cont.)

 Page
Table 5.6 Results for 25 bar truss Case I 67
Table 5.7 Results for 25 bar truss Case II 67
Table 5.8 Results for 72 bar truss Case I 68
Table 5.9 Results for 72 bar truss Case II 69
Table 5.10 Comparison of the simulated solution and the best results 72
 obtained by IPB-DE for 25 bar truss
Table 5.11 Comparison of the simulated solution and the best results 74
 obtained by IPB-DE for 72 bar truss

vii

 LIST OF FIGURES
 Page

Figure 2.1 Circumferential stress distributions for (a) the wavy edge and 6
 (b) center buckle, respectively
Figure 2.2 Circumferential stress distribution () in the coil determined 6

by Love’s elastic solution
Figure 2.3 Spool Geometry used in the present investigation 7
Figure 2.4 Coiling tension levels as a function of number of coils 13
Figure 2.5 Comparison of circumferential stresses along the z and r 13
 directions for the original design and optimal design, respectively
Figure 3.1 Twenty-five bar truss 17
Figure 3.2 Seventy-two bar truss 18
Figure 4.1 Stability axes of an aircraft 39
Figure 4.2 Search history of the top three best optimisers based on the 47

 t-test for the unimodal
Figure 4.3 Search history of the top three best optimisers based on the 48

t-test for the simple multimodal functions
Figure 4.4 Search history of the top three best optimisers based on the 48

t-test for the hybrid functions
Figure 4.5 Search history of the top three best optimisers based on the 49
 t-test for the composition functions
Figure 4.6 Box-plot of objective function values from 30 optimisation runs 51
Figure 4.7 Search history of the best run of all optimisers 51
Figure 5.1 Twenty-five bar truss 56
Figure 5.2 Seventy-two bar truss 57
Figure 5.3 Flow chart of IPB-DE 62
Figure 5.4 Search history for the case 25 bar Case I, (a) original, (b) zoom in 70
Figure 55. Search history for the case 25 bar truss Case II, (a) original, 71

 (b) zoom in
Figure 5.6 Search history for the case, 72 bar truss Case I, (a) original, 71

(b) zoom in
Figure 5.7 Search history for the case, 72 bar truss Case II, (a) original, 71

(b) zoom in

viii

NOMENCLATURE

[K] = structural stiffness matrix

[M] = structural mass matrix

j = jth mode eigenvalue

j = jth mode eigenvector or mode shape.

ndof = size of the mass and stiffness matrices.

[me]= element mass matrices

[ke] = element stiffness matrices.

ne = number of elements

pi = percentage of damage in the ith element.

nmode = number of lowest vibration modes

F = scaling factor

Fmin = maximum scaling factor

Fmax= minimum scaling factor

xr,i = ith randomly selected individual

xold = current solution (parent)

xnew = new candidate solution

rand = uniform random number ranged from 0 to 1

rand(0,1)= random number, either 0 or 1

CR = crossover rate

D= number of design variables

ck = interpolation coefficients

ix

φ = RBF kernel function

damageω = natural frequencies of the damaged structure (Target vector)

xdamage = solution vector containing ne element damage percentages

Chapter I
Executive Summary

1.1 Rationale of the study

Nowadays in the economic-competitive world, optimisation has become increasingly
popular for real applications as it is a powerful mathematical tool for solving a wide range of
engineering design types. Once an optimisation problem is posed, one of the most important
elements in the optimisation process is an optimisation method or an optimiser used to find the
optimum solution. Optimisers can be categorised as the methods with and without using function
derivatives. The former is traditionally called mathematical programming or gradient-based
optimisers whereas the latter has various subcategories. One of them is a meta-heuristic (MH).
The term meta-heuristics can cover nature-inspired optimisers, swarm intelligent algorithms, and
evolutionary algorithms. Most of them are based on using a set of design solutions, often called
a population, for searching an optimum. The main operator usually consists of the reproduction
and selection stages. The advantages of such an optimiser are simplicity to use, global
optimisation capability, and flexibility to apply as it is derivative-free. However, it still has a slow
convergence rate and search consistency. These issues have made researchers and engineers
around the globe investigate on how to improve the search performance of MHs, particularly for
real engineering design. In this work, development of MHs for real world engineering optimsiation
is conducted based on using surrogated assisted MHs, using parameter adaption and using
hybridization concept.

1.2 Literature review

 1.2.1 Meta-Heuristics

Meta-Heuristics (MHs), also known as evolutionary algorithms are optimisation methods
which are mostly developed according to inspiration of physical law or natural phenomena such
as genetic evolution, food finding of animal or insect, etc. A genetic algorithm (GA) [1] is probably
the best known MH while other popular methods are differential evolution (DE) [2] and particle
swarm optimisation (PSO) [3]. Among MH algorithms, they can be categorised as the methods
using real, binary, or integer codes. The mix of those types of design variables and some other

2

types can also be made. This makes MHs considerably appealing for use with real world
applications particularly for those design problems that function derivatives are not available or
impossible to calculate. Most MHs are based on continuous design variables or real codes. For
single objective optimisation, there have been numerous real-code MHs being developed. At the
early stage, methods like evolutionary programming [4, 5] and evolution strategies [6] were
proposed. Then, DE and PSO were introduced. Up to recently, the have been probably over a
hundred new real-code MHs in the literature. Some recent algorithms include, for example, a
sine-cosine algorithm [7], a grey wolf optimiser [8], teaching-learning based optimisation [9] , a
Jaya algorithm [10] etc. Meanwhile, powerful existing algorithms such as PSO and DE have been
upgraded by integrating into them some types of self-adaptive schemes e.g. adaptive differential
evolution with optional external archive (JADE) [11], Success-History Based Parameter Adaptation
for Differential Evolution (SHADE) [12], SHADE Using Linear Population Size Reduction (LSHADE)
[13] and adaptive PSO [14-16]. MHs are even more popular when they can be used to find a
Pareto front of a multiobjective optimisation problem within one optimisation run. Such a type
of algorithm is usually called multiobjective evolutionary algorithms (MOEAs) where some of the
best known algorithms are non-dominated sorting genetic algorithm (NSGA-I, II, III) [17-19],
multiobjective particle swarm optimisation [20], strength Pareto evolutionary algorithm [21],
multiobjective grey wolf optimisation [22] , multi-objective teaching-learning-based optimization
[23], multiobjective evolutionary algorithm based on decomposition [24], multiobjective ant
colony optimisation [25], multiobjective differential evolution [26] etc. One of the most
challenging issues in MHs is to improve their ability for tackling many-objective optimisation (a
problem with more than three objectives). Some recently proposed algorithms are knee point-
driven evolutionary algorithm [27], an improved two-archive algorithm [28], preference-inspired
co-evolutionary algorithms [29] etc.

1.2.2 Surrogate assisted MHs

 Surrogate models (also known as metamodels, or response surface models) are widely
used in many kinds of applications in engineering design optimisation. The surrogate model is the
approximation of an objective function by using a function with much less time-consuming
compared to the actual function evaluation. By using such a model, only a few actual function
evaluations are required for construction of the meta-model. The optimization process can be

3

carried out by using the approximate model which is adequately accurate not time-consuming.
The commonly used surrogate model are such as polynomial response surface (PRS) [30], radial
basic function (RBF) [31], Kriging (KG) [32], neural network (NN) [33], and support vector regression
(SVR) [34], etc.

Recently, a surrogate model based on optimum tuning parameters has been proposed as
an improved version of the traditionally used surrogate models. The idea of this proposed is to
use some metaheuristics to find optimum tuning parameters of the surrogate model to improve
their accuracy. The most successful investigations are reported in references [30, 35-47].

1.3 Objectives

 1.2.1 To improve MH search performance based on improvement of a reproduction
process for an application of practical engineering optimisation.

1.2.3 To proposed a novel and efficient MH for an application of practical engineering
optimisation.

1.2.3 To improve MH search performance based on using a surrogate model for an
application of practical engineering optimisation.

1.4 Scope of research
 1.4.1 MHs will be coded by the MATLAB program.
 1.4.2 Self-adaptive and/or hybridization concepts are used to enhance the search
performance of MHs.
 1.4.3 A surrogate model employed in this study is a radial-basis function.
 1.4.4 An optimum Latin Hypercube sampling technique is used for generating sampling
points
 1.4.5 Both real code and binary code MHs are used in this study

1.5 Chapter outline
 Chapter 2, performance enhancement of a teaching-learning based optimizer (TLBO) for
strip flatness optimization during a coiling process is proposed. The method is termed improved
teaching-learning based optimization (ITLBO). The new algorithm is achieved by modifying the

4

teaching phase of the original TLBO. The design problem is set to find spool geometry and coiling
tension in order to minimize flatness defects during the coiling process. Having implemented the
new optimizer with flatness optimization for strip coiling, the results reveal that the proposed
method gives a better optimum solution compared to the present state-of-the-art methods.
 Chapter 3, a sine cosine algorithm is extended to be self-adaptive and its main
reproduction operators are integrated with the mutation operator of differential evolution. The
new algorithm is called adaptive sine cosine algorithm integrated with differential evolution (ASCA-
DE) and used to tackle the test problems for structural damage detection. The results reveal that
the new algorithm outperforms a number of established meta-heuristics.
 Chapter 4, a new meta-heuristic called estimation of distribution algorithm using
correlation between binary elements (EDACE) is proposed. The method searches for optima using
a binary string to represent a design solution. A matrix for correlation between binary elements
of a design solution is used to represent a binary population. Optimisation search is achieved by
iteratively updating such a matrix. The performance assessment is conducted by comparing the
new algorithm with existing binary-code meta-heuristics including a genetic algorithm, a univariate
marginal distribution algorithm, population-based incremental learning, binary particle swarm
optimisation, and binary simulated annealing by using the test problems of the CEC2015
competition and one real world application which is an optimal flight control problem. The
comparative results show that the new algorithm is competitive with other established binary-
code meta-heuristics.
 Chapter 5 proposes the integration of an inverse problem process using radial basis
functions (RBFs) into meta-heuristics (MHs) for performance enhancement in solving structural
health monitoring optimisation problems. A differential evolution (DE) algorithm is chosen as the
MH for this study. In this chapter, RBF is integrated into the DE algorithm for generating an
approximate solution rather than approximating the function value as with traditional surrogate-
assisted optimisation. Four structural damage detection test problems of three trusses are used
to examine the search performance of the proposed algorithms. The results obtained from using
various MHs and the proposed algorithms indicate that the new algorithm is the best for all test
problems. DE search performance for structural damage detection can be considerably improved
by integrating RBF into its procedure.

5

Chapter II
An Improved Teaching-Learning Based optimization for Optimization of Flatness of a Strip

during a Coiling Process

2.1 Introduction
 In this chapter, optimization of flatness of the strips has been enhanced by an improved
teaching-learning based algorithm (ITLBO). This method is compared to several well established
EAs, such as simulated annealing (SA) [48], differential evolution (DE) [2], artificial bee colony
optimization (ABC) [49], real code ant colony optimization (ACOR) [50], original teaching-learning
based optimization (TLBO) [9], league championship algorithm (LCA) [51], charged system search
(ChSS) [52], Opposition-based Differential Evolution Algorithm (OPDE) [53] and Enhanced teaching-
learning based optimization with differential evolution (ETLBO-DE) [54] to determine the spool
geometry and coiling tension where the objective is to minimize the axial inhomogeneity of the
stress to improve the flatness of the strip. For function evaluations, the analytical elastic model
proposed by Park et al. [55] similar to the one suggested by Yanagi et al. [56] was employed.

2.2 Formulation of the Optimization Design Problem
 It is known that wavy edges occur during the strip coiling process, when the circumferential
stress at the middle zone of the strip is highly compressed, while two edges are under tension or
slight compression. Also, if the middle strip zone is under high tension while the two edges are
compressed or slightly stretched, center buckle can happen. Figures 2.1(a) and (b) display the
circumferential stress () distribution along the z direction within the thin strip, which
respectively caused the wavy edge and center buckle.
 Generally, it is impossible to obtain a flat strip after finishing a rolling process. The strip
always has a crown shape. When the strips are being coiled, tension loads need to be applied,
the middle zone (z = 0) of the strip at the inner coil will be considerably compressed in
comparison with the two edges because of the coiling tension and the strip crown. In such a
situation, the center buckle defect at the inner coil will not appear but the wavy edge defect can
possibly occur. As such, the wavy edge defect at the inner coil is the major problem during the
coiling process.

6

 Figure 2.2 depicts the circumferential stress () distribution in the z direction at the radius
(r) of the coil (computed by the Love’s elastic solution proposed by Park et al. [9]) contributing
to wavy edge defect formation during the strip coiling process. It is possible to reduce the wavy
edge defect by decreasing the axial inhomogeneity of the stress distribution and the maximum
compressive stress at the compressive zone.
In this paper, optimization using the ITLBO and other well-known and newly developed EAs will
be used to find the optimum solution for the processing parameters including coiling tension (

T) and spool geometry, as illustrated in Fig. 2.3.

(a) the wavy edge (b) center buckle

Figure 2.1 Circumferential stress distributions for (a) the wavy edge and (b) center buckle,
respectively

Figure 2.2 Circumferential stress distribution () in the coil determined by Love’s elastic

solution

 To decrease the axial inhomogeneity of the stress distribution and the maximum
compressive stress, minimization of the volume of the circumferential stress and maximum

200

400

600

800

1000

0

200

400

600
-150

-100

-50

0

50

100

r (mm)z (mm)

C
ir
c
u

m
fe

re
n

ti
a

l
s
tr

e
s
s
 (

M
P

a
)

Case of wavy
edge defect

Volume to minimize

7

compressive stress (shown in Fig. 2.2) is defined as an objective function. In Fig. 2.2, the volume
can only be computed for the coil, where compressive stresses were higher than 20 MPa, in order
to minimize the zone that is likely to have the wavy edge defect. The objective function of the
optimization problem can then be written as:

Minimize    
 00

,
max

max
,,

c

c
iTbb

V

V
f








  (2.1)

Subject to

 ,40  b
 ,40  b
 ,,,1MPa;5025 max, niiT 
 MPa,21,,  iTiT 

where c and V are respectively the compressive circumferential stress higher than 20 MPa (refer
to Fig. 2.2) and the approximate volume of the circumferential stress. 0c and V0 are the
respective values for the original design of the process. The iT , is the coiling tension at coil
number i. The coiling tension is normally set to be constant for all coils. The variable maxn is the
maximum number of coils, which has been assigned to be 220 in this paper. b and b in Eq.
(2.2) are spool crown exponent and the spool crown height, which were used for defining the
spool geometry, as described in Fig. 2.3:

Figure 2.3 Spool Geometry used in the present investigation

  
b

z

z
bzb b



 














max
0 (2.2)

8

where b0 (z = 330 mm) and b(z) are the initial value of the outer radius of the spool and the
outer radius of the spool along the z direction, respectively. zmax = 525 mm is the width of the
spool. The inner radius of the spool (a) in Fig. 2.3 has been assigned to be 300 mm. The total
number of design variables, therefore, is 222 (220 for coiling tensions and 2 for the spool
geometry).

2.3 Improved teaching-learning based optimization
 From the previous section, the optimization problem can be considered being large-scale.
It has been found [53, 54], that TLBO is suitable for this type of design problem. The teaching-
learning based optimization (TLBO) algorithm is an evolutionary algorithm, or an optimizer without
using function derivatives, proposed by Rao et al. [9]. The concept of TLBO searching mechanism
is based on mimicking a teacher on the output of learners in a classroom. Basically, the learners
can improve their intellectual and knowledge by two stages i.e. learning directly from the teacher
and learning among themselves. During the teacher stage, a teacher may teach the learners,
however, only some learners can acquire all things presented by the teacher. Those who can
accept what the teacher taught will improve their knowledge. For the second stage, which is
called the learning phase, the learners can improve their knowledge during discussion with other
learners. Based on the different levels of the learners’ knowledge, the better learners may transfer
knowledge to the inferior learners.
 From the view point of optimization, the algorithm starts with a randomly created initial
population, which is a group of design solutions. Learners are identical to design solutions whereas
the best one is considered a teacher. The objective function is analogous to the knowledge which
needs to be improved towards the optimum solution. Having identified a teacher and other
learners for the current iteration, the population will be updated by two stages including “Teacher
Phase” and “Learner Phase”. In the “Teacher Phase”, an individual (xi) will be updated based on
the best individual (xteacher) and the mean values of all populations (xmean) as follows:

   meanteacherold,,new xxxx  Fii Tr (3)

9

Where TF is a teaching factor, which can be either 1 or 2 and r [0,1] is a uniform random
number.
 For the “Learner Phase”, the members in the current population will be modified by
exchanging information between themselves. Two individuals xi and xj will be chosen at random,
where ji  . The update of the solutions can then be calculated as:

     
     









ijiji

jijii
i ffifr

ffifr

xxxxx

xxxxx
x

old,

old,
,new (4)

 At both teacher and learner phases, the new solution (xnew) will replace its parent if it has
better knowledge or produces better objective function value, otherwise, it will be rejected. The
two phases are sequentially operated until the termination criterion is fulfilled.
 For the improved teaching-learning based optimization (ITLBO), an opposition-based
approach, binary crossover, and the probability of operating the learning phase are added to the
original TLBO to improve the balance of search exploration and exploitation. Four random
numbers including, rand1, rand2, rand3, and rand4, have been used for performing opposition-
based approach, binary crossover, and the learning phase. The main search procedure starts by
generating an initial population, updating the population at the teaching phase and learning phase
similarly to the original TLBO. However, at the teaching phase, the updating can be done by the
following equation;

   meanteacherold,,new
1)1(xxxx  F

rand
ii Tr (5)

where rand1 is a random value with either 0 or 1. Then, the binary crossover is applied if a uniform
random number having an interval of 0 and 1 (rand2) is lower than the crossover probability (Pr).
For a new individual T

newx =[xnew,1, ..., xnew,D] and an old individual T
oldx =[xold,1, …, xold,D], the binary

crossover step can be expressed as follow;









DjCRrandCRifx

DjCRrandifx
x

jteacher

jold
jnew ,...,1

,...,1

231,

13,
, (6)

10

where the rand3 is a uniform random number generated from 0 to 1. The CR1 and CR2 are the
predefined crossover rates, while D is the number of design variables, respectively. Thereafter,
the learning phase is conducted if a uniform random number generated from 0 to 1 (rand4) is
lower than the probability value (Lp), otherwise, the learning phase will be skipped. The search
process will be repeated until the termination criterion is satisfied. The computational steps of
the proposed algorithm are shown in Algorithm 2.1.

Algorithm 2.1 An improved TLBO

Input: Maximum iteration number (maxiter), population size (nP), Crossover
probability Crossover rate (CR1 and CR2), learning phase probability (Lp).
Output: xbest, fbest
Initialization

1. Generate an initial population randomly.
2. Evaluate objective function values
Main algorithm

3. For i =1 to maxiter
 3.1 Identify the best solution (xteacher)

 (Teacher Phase)
 For j=1 to np
 3.2 Update the population using equation (5)
 If rand2 < Pr

3.2.1 Applied binary crossover using equation (6)
 End

3.2.1 Evaluate the objective function value f (xnew,j)
 3.2.2 If f (xnew,j) <f (xold,j)
 Replace xold,j by xnew,j

 End

 End

 If rand4 < Lp
 (Learner Phase)
 For j=1 to np
 3.3 Update the population using equation (4)
 3.3.1 Evaluate the objective function value

 f (xnew,j)
 3.2.2 If f (xnew,j) <f (xold,j)
 Replace xold,j by xnew,j

 End

 End

End

11

2.4 Numerical Experiments
 In order to examine the search performance of the proposed ITLBO, several EAs have
been used to solve the optimum design problem of the strip flatness as described in the previous
section. The EAs used in this study are as follows [57] :
 DE: The DE/best/2/bin strategy was used. DE scaling factor was random from 0.25 to 0.7
in each calculation and crossover probability was 0.7.
 SA: An annealing temperature was reduced exponentially by 10 times from the value of
10 to 0.001 in the optimization searching process. On each loop 2n children were created by
means of mutation to be compared with their parent. Here, n is the number of design variables.
 ABC: The number of food sources was set to be 3np. A trial counter to discard a food
source was 100.
 ACOR: The parameters used for computing the weighting factor and the standard deviation
in the algorithm were set to be  =1.0 and q =0.2, respectively.
 TLBO: Parameter settings are not required.
 LCA: The default parameter settings provided by the authors [51] were used.
 ChSS: The number of solutions in the charge memory was 0.2np. Here, np is the population
size. The charged moving considering rate and the parameter PAR were set to be 0.75 and 0.5,
respectively.
 OPDE: The DE/best/2/bin strategy was used .DE scaling factor was random from 0.25 to
0.5 in each calculation and crossover probability used was 0.7.
 ETLBO-DE: Used the DE parameter setting and Latin hypercube sampling (LHS) technique
to generate an initial population.
 ITLBO (Algorithm 2.2): The Pr, CR1, CR2 and Lp were set to be 0.5, 0.33, 0.66 and 0.75,
respectively.
 Each optimizer was employed to solve the problem for 5 optimization runs. Both the
maximum number of iterations and population size were set to be 100. For the optimizers using
different population sizes, such as simulated annealing, their search processes were stopped with
the total number of function evaluations as 100×100. The optimal results of the various
optimizers from using this limited number of function evaluations were compared. The best
optimizer was used to find the optimal processing parameters of the strip coiling process.

12

2.5 Results and Discussion
 After applying each optimization algorithm to solve the problem for 5 runs, the results are
given in Table 2.1. The mean values (Mean) are used to measure the convergence rate while the
standard deviation (STD) determines search consistency. The lower the mean objective function
value the better, and the lower the standard deviation the more consistent. In the table, max
and min stand for the maximum and minimum values of the objective function, respectively.
For the measure of convergence speed based on the mean objective value, the best method is
ITLBO while the second best and the third best performers are ETLBO-DE and OPDE, respectively.
The worst results came from ABC. For the measure of search consistency based on STD, the best
was also ITLBO while the worst was ABC, which was similar to the measure of the search
convergence. The second best and the third best for consistency were ETLBO-DE and ACOR,
respectively. The minimum objective function value was obtained by the ITLBO.
 Based on the results obtained, it was clearly indicated that the proposed ITLBO by adding
opposition based method, binary crossover, and learning phase probability can improve the
search performance of the original TLBO for solving the optimization design problem of the strip
coiling process.
 The optimal spool crown exponent and height obtained are 1.0822 and 2.3645,
respectively. The optimal distribution of coiling tensions as a function of coil numbers is shown
in Fig. 2.4. The results reveal that the coiling tensions start with the highest value initially and
then decrease when the number of coils increases. After a few series of coiling, the tension levels
become almost constant, converging to the lower bound at the end of the process. Fig. 2.5 shows
the plot of the circumferential stress distributions along the z and r directions of the original and
optimum design solutions in that order. The comparison of the maximum compressive stresses
and the standard deviation of stresses at the inner strip between the original and optimal designs
is given in Table 2.2. The results show that the optimal processing parameters obtained by the
proposed ITLBO algorithm can reduce the maximum compressive stress and the axial
inhomogeneity of the stress distribution at the inner strip, which might cause undesirable wavy
edge defects during the strip coiling process.

13

Table 2.1. Objective function values calculated
Evolutionary Algorithms Mean STD Max. Min.

DE 0.9700 0.0275 1.0096 0.9354
ABC 1.7637 0.0787 1.8800 1.6751

ACOR 1.0621 0.0070 1.0705 1.0546
ChSS 1.4026 0.0289 1.4448 1.3678
LCA 1.7116 0.0408 1.7580 1.6473
SA 1.5451 0.0645 1.6323 1.4841

TLBO 0.9915 0.0132 1.0066 0.9766
OPDE 0.9539 0.0179 0.9715 0.9297

ETLBO-DE 0.8850 0.0047 0.8897 0.8784
ITLBO 0.8740 0.0025 0.8783 0.8720

Figure 2.4 Coiling tension levels as a function of number of coils

(a) Original design (b) Optimal design

Figure 2.5 Comparison of circumferential stresses along the z and r directions for the original
design and optimal design, respectively

14

Table 2.2 Maximum compressive stress and the standard deviation of stresses at the inner coil

 Original design Optimal design
Maximum compressive stress (MPa) 111.546 68.0270
Standard deviation of stresses 48.375 29.3703

2.6 Conclusions
 The new population-based optimization algorithm obtained by improving the original
TLBO for solving the flatness optimization of the strip coiling process has been proposed. The
search performance of the method was compared to various established evolutionary algorithms.
The numerical results show that the new optimizer ITLBO is the best performer for both
convergence rate and consistency. With this, the new parameters including the spool geometry
and the coiling tension distribution have been obtained and can be used in the real strip coiling
process. Further studies will be made to enhance the mathematical model of the strip coiling
process. A self-adaptive version of ITLBO will be investigated for search performance
enhancement.

15

Chapter III
Adaptive Sine Cosine Algorithm Integrated with Differential Evolution for Structural

Damage Detection

3.1 Introduction
 This chapter presents and extension of the sine cosine algorithm. An adaptive strategy is
embedded into the new version while the mutation operator of differential evolution is integrated
into the algorithm in order to further improve its performance. The new optimiser is then termed
an adaptive sine cosine algorithm integrated with differential evolution (ASCA-DE). The optimiser
is then implemented on several test problems for structural damage detection. Numerical results
show that the proposed MH is superior to a number of established MHs found in the literature.

3.2 Formulation of a Damage Detection Optimization problem.
 In this work, vibration based damage detection based on using natural frequencies is used
for damage localization of truss structures. The main concept of using structural natural
frequencies for damage detection of a truss structure is based on using a finite element model
and the measured natural frequencies. When the natural frequencies and mode shapes are
measured (usually the lowest nmode natural frequencies), the finite element model is updated
until the computed natural frequencies fit well with the measured ones. For the undamaged
structure, natural frequencies can be calculated from a simple linear undamped free vibration
finite element model which can be expressed as;

       02  jj j

 MK (3.1)

where [K] is a structural stiffness matrix which can be expressed as the summation of element
stiffness matrices [ke],

    



en

i
e

1

kK (3.2)

16

where i is the ith element of the structure while ne is the total number of elements. The matrix
[M] is a structural mass matrix computed in similar fashion to the stiffness matrix. The variables

j and j are the jth mode shape and its corresponding natural frequency, respectively. For the
damaged structure, the stiffness matrix of the damaged element is assumed to be modified. The
stiffness matrix of the damaged structure [Kd] can be written as a percentage of damage in the
elements as follows:

    





en

i
e

i
d

p

1 100

100
kK (3.3)

where pi is the percentage of damage on the ith element. The natural frequency of the damaged
structure can be computed by solving eq. (3.1) by replacing [K] with [Kd].
 The percentage of damage in the structural element (pi) can be found by solving an
optimisation problem to minimise the root mean square error (RMSE) between natural frequencies
measured from the damaged structure and natural frequencies computed by using the finite
element model. The problem can be expressed as follow:

 

mode

n

j
computedjdamagej

n
f

mode







1

2
,,

)(:Min



x (3.4)

where damagej, and computedj, are the structural natural frequency of mode j obtained from a
damaged structure and that from solving (3.1) – (3.3). The design variables are those damage
percentages of structural elements (x = {p1, …, pnele}T) respectively. In this work, six vibration
modes are used for calculation.

3.3 Test problems with trusses
 Four truss damage detection optimisation problems from two truss structures are used in
this study. These are the test problems used in our previous studies [58]. Detail of the test
problems are shown as follow:

 3.3.1 Twenty-five-bar truss

17

 The structure is shown in Fig. 3.1. The cross sections of all bar elements are set to
be 6.4165 mm2. Table 3.1 shown the material properties and simulated case study for this
example. The data of natural frequencies of the undamaged and damaged 25-bar truss structures
are shown in Table 3.2.

Figure 3.1 Twenty-five bar truss

Table 3.1 Material properties and simulated case study for 25-bar truss.
Material density 7,850 kg/m3
Modulus of elasticity 200 GPa

Simulated case study
Case I: 35 %damage at element number 7
Case II: 35 %damage at element number 7 and 40 %damage at
element number 9.

Table 3.2 Natural frequencies (Hz) of damaged and undamaged of 25 bar structure.

Mode Undamaged
35 %damage at element

number 7

35 %damage at element number 7
and 40 %damage at element

number 9
1 69.7818 69.1393 68.5203
2 72.8217 72.2006 71.3167
3 95.8756 95.3372 94.5625
4 120.1437 119.8852 119.6514
5 121.5017 121.4774 121.4253

18

6 125.0132 125.0130 125.0129

 3.3.2 Seventy-two-bar truss
 The structure is shown in Fig. 3.2. Four non-structural masses of 2270 kg are
attached to the top nodes. The cross sections of all bar elements are set to be 0.0025 m2. Table
3.3 shown the material properties and simulated case study for this example. The data of natural
frequencies of the undamaged and damaged 72-bar truss structure are shown in Table 3.3.

Figure 3.2 Seventy-two bar truss

Table 3.3 Material properties and simulated case study for 72-bar truss.
Material density 2,770 kg/m3
Modulus of elasticity 6.98×1010 Pa

Simulated case study

Case I: 15 %damage at element number 55 (15% damage in
element number 56, 57, or 58 results in the same set of natural
frequencies)
Case II: 10 %damage at element number 4 and 15 %damage at
element number 58 (90, 180, and 270 degrees rotation along the
z axis lead to the same set of natural frequencies).

19

Table 3.4 Natural frequencies (Hz) of damaged and undamaged of 72 bar structure.

Mode Undamaged
15 %damage at

element
number 55

15 %damage at element number 58 and 10 %
damage at element

number 4
1 6.0455 5.9553 5.9530
2 6.0455 6.0455 6.0455
3 10.4764 10.4764 10.4764
4 18.2297 18.1448 18.0921
5 25.4939 25.4903 25.2437
6 25.4939 25.4939 25.4939

3.4 Adaptive Sine Cosine algorithm hybridized with differential evolution (ASCA-DE)
 The Sine Cosine Algorithm (SCA) is a population based optimisation method proposed by
Mirjalili, 2016 [7]. The algorithm is simple and efficient for various optimisation test problems as
reported in [7]. The search procedure of SCA is similar to other MH which contains three main
steps; population initialisation, population updating and population selection. For the SCA,
updating population can be done based on a sine and cosine function. Given a current population
having NP members X={x1, x2,…, xNP}T, an element of a solution vector for the next generation
can be calculated as follows:












otherwisexxrrrx

rifxxrrrx
x

koldkbestkold

koldkbestkold
knew

,)cos(

,5.0,)sin(

,,321,

4,,321,
, (3.5)

where xbest,k is the kth matrix element of the current best solution. The variables r2, r3, and r4 are

random parameters in the ranges of [0, 2π], [0, 2] and [0, 1], respectively. The variable r1 is an
iterative adaption parameter,

max

1
T

a
Tar  (3.6)

20

where a is a constant parameter while T is an iteration number. Tmax is maximum number of
iterations.
 The search process of SCA start with generating an initial population at random, and then
calculating their objective function values where the best solution is found. Then, the new
population for the next generation is generated using eq. (3.5) and the objective function values
of its members are calculated. The current best will be compared with the best solution of the
newly generated population and the better one is saved to the next generation. The process is
repeated until a termination criterion is met. The computational steps of SCA are shown in
Algorithm 3.1

Algorithm 3.1 Sine Cosine Algorithm

Input: population size (Np), number of generations (Tmax), number of design variable (D)
Output: xbest, fbest
Main algorithm
1: Initialise a population and set as the current population.
2: Find the best solution (xbest)
3: For T=1 to Tmax
4: Calculate parameter r1 using eq.(3.6)
5: For l=1 to Np

6: For k = 1 to D
7: Generate the parameter r2, r3 and r4

8: Update the kth element of the lth population (xl) using eq.(3.5)
9: End For
10: End For
11: Calculate objective function values of the newly generated population and find the
best ones (xbest,new)
12: Replace xbest by xbest,new if f(xbest,new)< f(xbest)
13: End

21

 For the proposed adaptive sine cosine algorithm with integration of DE mutation, the DE
mutation operator as proposed in Bureerat and Pholdee (2015) [59] is integrated into the updating
operation. The mutation equation is detailed as follow;

  4,3,2,1,)1,1(rrrrbestnew Frand xxxxxx  (3.7)

where rand(-1, 1) gives either -1 or 1 with equal probability. F is a scaling factor while xr,1–xr,4 are
four solutions randomly selected from the population.
 At ASCA-DE updating operation, if a generated uniform random number in the interval
[0,1] is lower than a probability value (rand < PDE), the population will be updated using the SCA
updating operation based on Eq. (3.5), otherwise, the population will be updated by DE mutation
as detailed in Eq. (3.7).
 The term of self-adaption of the proposed algorithm is accomplished in such way that the
parameter r2, r3 and F are regenerated for each calculation based on the information from the
previous iteration. For each calculation, the r2 and r3 are generated based on normally distributed
random numbers with mean values, r2m and r3m respectively and standard deviation values, STD
= 0.1 for both r2 and r3. The values of r2m and r3m are iteratively adapted based on the following
equations:

 r2m(T+1)= 0.9r2m(T)+0.1mean(goodr2m), (3.8)
and,
 r3m(T+1)= 0.9r3m(T)+0.1mean(goodr3m), (3.9)

where mean(goodr2m) and mean(goodr3m) are the mean values of all values of r2 and r3 used in
current iteration that lead to successful updates. The successful update means the created
offspring is better than its parent from the previous iteration. In addition, for each calculation, the
scaling factor F is generated by Cauchy distribution randomisation with the mean value Fm and
STD value of 0.1 [12]. The Fm is iteratively adapted using the Lehmer mean [12] defined as follows:

)(

)(
1.0)(9.0)1(

2

F
mm

goodsum

goodsum
TFTF F (3.10)

22

where goodF is a tray of all F used in the current iteration with successful updates.
 The parameter PDE is also regenerated in the similar fashion to r2 and r3 before updating a
population. For an individual solution, the PDE is generated by normal distribution randomising
with the mean value of PDEm and standard deviation of 0.1. PDEm is iteratively adapted based on
the following equation:

 PDEm(T+1) = 0.9 PDEm (T)+0.1mean(goodPDE), (3.11)

where goodPDE means all PDE values used in the current iteration with successful updates.
 The search process of ASCA-DE start with initilaising a population, r2m, r3m, Fm and PDEm.
The goodr2m, goodr3m, goodF and goodPDE trays are empty initially. After having calculated objective
function values, the current best solution will be obtained. To update a population, firstly, PDE
and a random number in [0,1] are generated. If the generated random number is lower than PDE,
a scaling factor (F) is generated based on Fm and a new solution is created using eq. (3.7),
otherwise, a new solution is generated based on eq. (3.5). For each calculation of eq. (3.5), r2 and
r3 are generated based on r2m and r3m. If a newly generated solution is better than its parent, the
new solution will be selected for the next generation while saving all used parameters PDE, r2, r3
and F into the goodPDE, goodr2m, goodr3m, and goodF trays, respectively. Then, update the r2m, r3m,
Fm and PDEm using eq. (3.8) - (3.11). The search process is repeated until a termination criterion is
reached. The computational steps of ASCA-DE are shown in Algorithm 3.2

Algorithm 3.2 ASCA-DE

Input: population size (Np), number of generations (Tmax), number of design variable (D)
Output: xbest, fbest
Main algorithm
1: Initialise a population, r2m, r3m, Fm and PDEm.
2: Find the best solution (xbest)
3: For T=1 to Tmax
4: Calculate parameter r1 using eq.(3.6)

23

5: Empty goodr2m, goodr3m, goodF and goodPDE
5: For l=1 to Np
6: Generate PDE by normal distribution random with mean values PDEm and STD =0.1
7: IF rand< PDE
8: Generate F by Cauchy distribution random with mean value Fm and STD = 0.1
9: Updated a population using eq. (3.7)
10: Else
11: For k = 1 to D
12: Generate the parameter r2 and r3 by normal distribution random with mean
values r2m, r3m, and STD =0.1
13: Random generate r4 in rank [0, 1]
14: Update the kth element of the lth population (xl) using eq.(3.5)
14: End For
16: End IF
17: Calculate objective function values of the newly generated population
18: IF f(xl,new) < f(xl,old)
19: Replace xl,old by xl,new
20: Add all generated r2, r3, F, and PDE, into the goodr2m, goodr3m, goodF and goodPDE

tray, respectively.
21: End IF
22: End For
23: Find the best solution (xbest)
24: Update r2m, r3m, Fm, and PDEm using eq. (3.8) - (3.11)
24: End

3.5 Numerical Experiment
 The performance investigation of the proposed ASCA-DE for structural damage detection
is carried out by employing the algorithm to solve the test problems in the previous section.
ASCA-DE along with a number of MHs in the literature implemented to solve the test problems

24

include (Note that the details of variables can be found in the original sources of each method)
[58]:
 Differential evolution (DE): a DE/best/2/bin strategy was used. A scaling factor, and
probability of choosing elements of mutant vectors (CR) are 0.5 and 0.8 respectively.
 Artificial bee colony algorithm (ABC): The number of food sources for employed bees is
set to be nP/2. A trial counter to discard a food source is 100.

 Real-code ant colony optimisation (ACOR): The parameter settings are q = 0.2, and  = 1.
 Charged system search (ChSS): The number of solutions in the charge memory is 0.2×nP.
The charged moving considering rate and the parameter PAR are set to be 0.75 and 0.5
respectively.
 League championship algorithm (LCA): The probability of success Pc and the decreasing
rate to decrease Pc are set to be 0.9999 and 0.9995, respectively.
 Simulated annealing (SA): Starting and ending temperatures are 10 and 0.001 respectively.
For each loop, nmode candidates are created by mutating on the current best solution while other
nmode candidates are created from mutating the current parent. The best of those 2nmode solutions
are set as an offspring to be compared with the parent.
 Particle swarm optimisation (PSO): The starting inertia weight, ending inertia weight,
cognitive learning factor, and social learning factor are assigned as 0.5, 0.01, 0.5 and 0.5
respectively.
 Evolution strategies (ES): The algorithm uses a binary tournament selection operator and
a simple mutation without the effect of rotation angles.
 Teaching-learning-based optimisation (TLBO): Parameter settings are not required.
 Adaptive differential evolution (JADE): The parameters are self-adapted during an
optimisation process.
 Evolution strategy with covariance matrix adaptation (CMAES): The parameters are self-
adapted during an optimisation process.
 Sine Cosine Algorithm (SCA) (Algorithm 3.1): The constant a parameter is set to be 2.
 Adaptive Sine Cosine algorithm with integrating DE mutation (ASCDE) (Algorithm 3.2): The
parameter a is set to be 2 while initial r2m, r3m, Fm and PDEm are set to be 0.5.

25

 Each optimiser is used to tackle each truss damage detection test problem for 30
optimisation runs. The number of iterations (generations) is 300 for all case studies while the
population size is set to be 30 and 50 for 25-bar and 72-bar trusses respectively. All methods will
be terminated with two criteria: the maximum numbers of functions evaluatio as 30×300 and
50×300 for the 25-bar and 72-bar trusses respectively, and the objective function value being less
than or equal to 1×10-3. The six lowest natural frequencies (nmode = 6) are used to compute the
objective function value. This number of selected frequencies is reasonable since it is practically
easier to measure fewer lowest natural frequencies with sufficient accuracy.

3.6 Results and discussions
 After performing 30 optimisation runs of all MHs on solving the four truss damage
detection optimisation problems, the results obtained from the various MHs are given in Tables
5-8. The mean of the objective function is used to indicate the search convergence of the
algorithms in cases that the objective function threshold (1×10-3) is not met during searching.
Otherwise, the mean number of FEs is used as an indicator. The number of successful runs out
of 30 runs is used to measure the search consistency. The algorithm that is terminated by the
objective function threshold is obviously superior and any run being stopped with this criterion is
considered a successful run.

 3.6.1 Twenty-five-bar truss
 Table 3.5 shown the results of the 25-bar truss with 35% damage at element 7. The
best performer based on the mean objective function values is ASCA-DE while the second best
and the third best are DE and JADE respectively. When considering the number of successful runs,
seven optimisers including DE, TLBO, JADE, SCA and ASCA-DE can detect the damage of the
structure. The most efficient optimiser is ASCA-DE that can detect the damages of the structure
for 29 times out of 30 runs with the average of 2835 function evaluations.

26

Table 3.5 Results for 25 bar truss with 35 %damage at element number 7

Optimisers Mean objective function values
No. of successful runs

from 30 runs
Mean of FEs

DE 0.0017 19 6019
ABC 0.0135 0 9000

ACOR 0.0089 0 9000
ChSS 0.1385 0 9000
LCA 0.9036 0 9000
SA 0.0089 0 9000

TLBO 0.0077 6 7772
CMAES 0.0033 0 9000

ES 0.0308 0 9000
PSO 8.3830 0 9000
JADE 0.0026 2 8953
SCA 0.0270 24 3262

ASCA-DE 0.0009 29 2835

 Results of the 25 bar truss with 35% damage at element 7 and 40% damage at the
element number 9 are reported in Table 3.6. The best performer based on mean objective
function values is ASCA-DE while the second best and the third best are JADE and DE respectably.
When examining the number of successful runs, only two optimisers, DE and ASCA-DE can
consistently detect the damage of the structure for 27 and 26 runs respectively while the average
number of function evaluations to obtain the results are 5220 and 5511 respectively.

Table 3.6 Results for 25 bar truss with 35 %damage at element number 7 and 40 %damage at
element number 9

Optimisers Mean objective function values
No. of successful runs

from 30 runs
Mean of FEs

DE 0.0096 27 5220
ABC 0.0326 0 9000

27

ACOR 0.0125 0 9000
ChSS 0.1590 0 9000
LCA 0.8080 0 9000
SA 0.0269 0 9000

TLBO 0.0405 1 8917
CMAES 0.0115 0 9000

ES 0.0356 0 9000
PSO 8.6012 0 9000
JADE 0.0042 6 8875
SCA 0.0930 0 9000

ASCA-DE 0.0032 26 5511

 3.6.2 Seventy-two-bar truss
 Table 3.7 shows comparison results of the 72-bar truss with 15% damage at element
5. The best performer based on mean objective function values is ASCA-DE while the second best
and the third best are ES and ACOR. When examining the number of successful runs, the most
efficient method is ASCA-DE which can detect the damage of the structure for 30 times while the
average numbers of function evaluations for the convergence results is only 1715.

Table 3.7 Results for 72 bar truss with 15 %damage at element number 55

Optimisers Mean objective function Values
No. of successful runs

from 30 runs
Mean of FEs

DE 0.0087 14 12887
ABC 0.2184 0 15000

ACOR 0.0014 6 14831
ChSS 0.1727 0 15000
LCA 1.1499 0 15000
SA 0.0097 0 15000

TLBO 0.0035 27 5781
CMAES 0.0053 0 15000

28

ES 0.0010 29 9335
PSO 1.9146 0 15000
JADE 0.0019 1 15000
SCA 0.0070 23 4793

ASCA-DE 0.0008 30 1715

 Results of the72 bar truss with 15% damage at element number 58 and 10% damage
at element number 4 are given in Table 3.8. The best performer based on the mean of objective
function values is ES while the second best and the third best are JADE and ASCA-DE respectively.
The minimum objective function value is obtained by SCA. When considering the number of
successful runs, only ASCA-DE can consistently detect the damage of the structure for 22 times
from totally 30 optimisation runs while the average number of function evaluations for the
convergence results is 9235. Although ES and JADE given better mean objective function values,
they fail to search for the damage location. ASCA-DE is said to be the most efficient optimizer for
this case.

Table 3.8 Results for 72 bar truss with 15 %damage at element number 58 and 10 %damage at
element number 4

Optimisers Mean objective function values
No. of successful runs

from 30 runs
Mean of FEs

DE 0.0127 7 13963
ABC 0.1591 0 15000

ACOR 0.0058 0 15000
ChSS 0.1348 0 15000
LCA 1.1049 0 15000
SA 0.0129 0 15000

TLBO 0.0045 7 13503
CMAES 0.0050 0 15000

ES 0.0023 2 14940
PSO 1.7726 0 15000

29

JADE 0.0031 0 15000
SCA 0.0260 2 14502

ASCA-DE 0.0035 21 9235

 Overall, it was found that integrating DE mutation into and applying adaptive parameters
to SCA lead to performance enhancement of the original SCA. The proposed ASCA-DE is the best
performer on solving truss damage detection optimisation problem. It is considered the most
reliable method for this study.

3.7 Conclusions
 Performance enhancement of a meta-heuristics called a sine cosine algorithm is proposed
by integrating into it a mutation strategy of DE. Self-adaptive optimisation parameters are
employed to improve the search performance of the new algorithm. The proposed optimiser is
implemented on solving a number of truss damage detection inverse problems. The results reveal
that the new meta-heuristic is the best and most reliable method. Our future work is to investigate
the new MH for solving other practical engineering design problems.

Chapter IV
Estimation of distribution algorithm using correlation between binary elements – a new

binary-code meta-heuristic

4.1 Introduction
 This chapter presents a development of a binary-code meta-heuristic. The method is
called estimation of distribution algorithm using correlation between binary elements (EDACE).
Performance assessment is made by comparing the proposed optimiser with GA, UMDA, BPSO,
BSA, and PBIL by using the CEC2015 test problems. Also, the real world optimal flight control is
used for the assessment. The comparative results are obtained and discussed. It is shown that
EDACE is among the top performers.

4.2 Proposed method
 The simplest but efficient estimation of distribution algorithm is probably population-
based incremental learning (PBIL). Another MH that uses a similar concept is UMDA. Unlike GA
which uses a matrix containing the whole binary solutions during the search, PBIL uses the so-
called probability vector to represent a binary population. During an optimisation process, the
probability vector is updated iteratively until approaching an optimum. In EDACE, a matrix called
a correlation between binary elements (CBE) matrix is used to represent a binary population. The

matrix can be denoted as Pij  [0,1] where the value of the element Pij indicates the correlation
between element i and element j of a binary design solution. The higher value of Pij means the
higher probability that binary elements i and j will have the same value. The algorithm is
developed to deal with a box-constrained optimisation problem:

 Min f(x); xL≤ x ≤ xU (4.1)

where f is an objective function and x is a vector containing design variables (a design vector). xL
and xU are the lower and upper bounds of x respectively. Assuming that a design vector can be
represented by a row vector of binary bits size m×1, the CBE matrix thus has the size of m×m. It
should be noted that the details of converting a binary string to be a design vector can be found

31

in [60]. In generating a binary string from the CBE matrix, a reference binary solution (RBS) is
needed. It can be a randomly generated solution or the best solution found so far depending on
a user preference. Then, a row of the matrix is randomly selected (say the r-th row). The r-th
element of a generated binary solution is set to be the r-th element of the reference binary

solution. The rest of the created binary elements are based on the value of Prj; jr. The procedure
for creating a binary solution sized m×1 from the m×m CBE matrix is detailed in Algorithm 4.1
where b is a binary design solution, bREF is the reference binary solution, nP is a population size

and rand [0, 1] is a uniform random number. The algorithm spends nP loops for creating nP
binary solutions. The process for generating a binary solution from the CBE matrix is in steps 3-12.
For one binary solution, only one randomly selected row of CBE (say row r) is used (step 4). Then,
the r-th element of a generated binary solution is set equal to the r-th element of the reference
binary solution, bREF. The rest of the elements of the generated binary solution are created in
such a way that their values depend on corresponding elements on the r-th row of CBE. From
the computation steps 5-11, the value of Prj determines the probability of aj to be the same as
ar. The higher value of Prj means the higher correlation between elements r and j and
consequently the higher probability that aj will be set equal to ar.

Algorithm 4.1 Generation of a binary population from a CBE matrix

Input:bREF, P
Output: B = {bi} for i =1, .., nP
Main procedure
1: Set B = {}.
2: For i = 1 to nP
3: Set a = {} a vector used to contain elements of a generated binary string.
4: Randomly select a position (r-th row) of P.
5: Set ar = bREF, r.% Set the r-th element of a as the r-th element of bREF.
6: For j = {1, 2, ..., m} – {r}
7: If rand < Prj
8: aj = ar % aj and ar values are equal, which are either “0” or “1”.
9: Else

32

10: aj = 1 - ar % If ar = 1, aj = 0 or vice versa.
11: End
12: End

13: Set B = B  a.
14:End

 The CBE matrix is a square symmetric matrix with equal size to the length of a binary
solution whose all diagonal elements are equal to one. For an iteration, the matrix will be
updated according to the so far best solution (bbest). The learning rate (LR) with be used to control
the changes in updating Pij as with PBIL. Once Pij is updated, the value of Pji is set to be Pij which
means the process requires m(m-1)/2 updates since Pii is always set to be 1. The updated Pij

denoted by Pij can be calculated from

 𝑃𝑖𝑗

′ = (1 − 𝐿𝑅)𝑃𝑖𝑗 + 𝐿𝑅(1 − |𝑏𝑏𝑒𝑠𝑡,𝑖 − 𝑏𝑏𝑒𝑠𝑡,𝑗|) (4.2)

where LR is the learning rate randomly generated in the interval [LR,L, LR,U]. bbest,i and bbest,j are the
i-th and j-th elements of bbest respectively. From the updating equation, if the i-th and j-th
elements are similar, it means they are correlated, consequently, the value of Pij (and Pji) is
increased. If they are dissimilar or uncorrelated, Pij is then decreased. Nevertheless, the value of
Pij must be limited to the predefined interval

 0 ≤ 𝑃𝐿 ≤ 𝑃𝑖𝑗 ≤ 𝑃𝑈 ≤ 1. (4.3)

where PL and PU are the predefined lower and upper limits of Pij. Equation (4.3) is used to maintain
diversity in optimisation search. In the original PBIL, a mutation operator is used with the same
purpose. Therefore, the procedure of EDACE starts with an initial matrix for correlation between
binary elements where Pii = 1 and Pij = 0.5. This implies that, when generating a binary solution,
its elements have equal probability to be 1 or 0 where its r-th element can be 1 or 0, created at
random. The procedure for general purpose of EDACE is given in Algorithm 4.2. The decision on

33

selecting bREF for generating a binary solution and bbest for updating the CBE matrix is dependent
on a preference of a user. This means other versions of EDACE can be developed in the future.
 An initial binary population is randomly created. The binary solutions are then decoded
to be real design variables where function evaluations are performed and bREF and bbest are found.
Then, new binary solutions are generated using Algorithm 4.1 while the greedy selection (steps 6-
8) is activated with bREF and bbest being determined. The CBE matrix is updated by using bbest as
detailed in Equations (4.2) – (4.3). The search process is repeated until termination criterion is
reached. The generation of a binary design solution of EDACE is, to some extent, similar to those
used in binary PSO [61] and binary quantum-inspired gravitational search algorithm (BQIGSA) [62]
in the sense that the binary solution is controlled by the probability of being ‘1’ or ‘0’. However,
in EDACE, a generated solution relies not only on such probability but also the reference binary
solution bREF. Apart from that, the update of CBE tend to be similar to the concept employed in
PBIL with a learning rate and this is totally different from binary PSO and BQIGSA.

Algorithm 4.2 Procedure for EDACE

Input: number of generation (niter), population size (nP), binary length (m)
Output: bbest, fbest
Initialisation:
0.1: Assign Pij = 0.5 and Pii = 1, sized m×m.
0.2: Randomly generate nP binary solutions bi and decode them to be xi.
0.3: Calculate objective function values fi = fun(xi) where fun is an objective function evaluation.
0.4: Find fbest, bREF, bbest
Main iterations
1: For iter =1 to niter
2: Update P using Equation (4.2)
3: Generate bi

new from P using Algorithm 1, and decode them to be xi
new.

4: For i =1 to nP
5: Calculate objective function values finew = fun(xi

new).
6: If finew < fi
7: fi= finew, bi= bi

new, xi= xi
new

34

8: End
9: End
10: Update fbest, bREF, bbest
11: End

 In selecting bREF and bbest, if both solutions are the same which is bbest, it could lead to a
premature convergence. If both are set to be a solution randomly selected solution from the
current binary population, the diversification increases but the convergence rate will be slower.
Therefore, the balance between intensification and diversification must be made. In this work,
the so far best binary solution is set to be bREF to maintain intensification. For updating the CBE
matrix, we use the new updating scheme as

 𝑃𝑖𝑗

′ = (1 − 𝐿𝑅)𝑃𝑖𝑗 + 𝐿𝑅(1 − |𝑏𝑏𝑒𝑠𝑡1,𝑖 − 𝑏𝑏𝑒𝑠𝑡2,𝑗|) (4.4)

The solutions bbest1 and bbest2 are two types of best solutions. Firstly, nP best solutions are selected

from {bi}  {bi
new} (see Algorithm 4.2 for both solution sets), sorted according to their functions,

and then saved to a set Best_sol. Four m1 vectors are created as: b1 the so far best solution,
b2 a solution whose elements are averaged from the elements of the first nbest (default = 10) best
solutions found so far, b3 a solution whose elements are averaged from the elements of the
members of Best_sol, and b4 a solution whose elements are averaged from the elements of the
current binary population. bbest1 is randomly chosen from the aforementioned solutions (b1, b2,
b3, and b4) with equal probability while bbest2 is randomly chosen from the members of Best_sol.
With this idea, the balance between exploration and exploitation is maintained throughout the
search process. Algorithm 4.3 shows the new CBE updating strategy.

Algorithm 4.3 Updating scheme for CBE

Input:LR,L, LR,U, P, bi, bREF, Best_sol, nbest

Output: P
Main procedure
Create b1, b2, b3, b4

35

For i = 1 to m
1: Assign PR = rand.

2: If PR [0, 0.25), set bbest1,i = b1,i

3: If PR [0.25, 0.5), set bbest1,i = b2,i

4: If PR [0.5, 0.75), set bbest1,i = b3,i
5: Otherwise, set bbest1,i = b4,i
6: Random selected a vector bbest2 from Best_sol.
For j= i +1 to m
7: Generate LR.
 8: Update Pij using Equation (4.4).
9. Limit Pij to the interval [PL, PU].
End
End

4.3 Experimental set up
 To investigate the search performance of the proposed algorithm, fifteen learning-based
test problems from CEC 2015 and one flight dynamic control optimisation problem are used. The
former is used for testing the performance of EDACE for general types of box-constrained
optimisation while the latter is the real-world application.
 4.3.1 CEC 2015 learning-based test problems
 The CEC2015 learning-based test problems are box-constrained single objective
benchmark functions proposed in [63]. The problems consist of 2 Unimodal Functions, 3 Simple
Multimodal Functions, 3 Hybrid Functions and 7 Composition Functions. The summary of CEC2015
learning-based test problems is shown in Table 4.1. It should be noted that the details and the
codes for the test problems can be downloaded from the website of CEC 2015 competition.

Table 4.1 Summary of CEC2015 learning-based functions

 No. Functions fmin
Unimodal

Functions
1 Rotated High Conditioned Elliptic

Function
100

36

2 Rotated Cigar Function 200
Simple Multimodal

Functions
3 Shifted and Rotated Ackley’s Function 300
4 Shifted and Rotated Rastrigin’s Function 400
5 Shifted and Rotated Schwefel’s Function 500

Hybrid Functions 6 Hybrid Function 1 (N=3) 600
7 Hybrid Function 2 (N=4) 700
8 Hybrid Function 3(N=5) 800

Composition
Functions

9 Composition Function 1 (N=3) 900
10 Composition Function 2 (N=3) 1000
11 Composition Function 3 (N=5) 1100
12 Composition Function 4 (N=5) 1200
13 Composition Function 5 (N=5) 1300
14 Composition Function 6 (N=7) 1400
15 Composition Function 7 (N=10) 1500

 4.3.2 Flight dynamic control optimisation problem
 Flight dynamic control system design is a classical important application for real
engineering problems. The motion of an aircraft can be described using the body axes which is
herein the stability axes consisting of: roll axis (x), pitch axis (y) and yaw axis (z) as shown in Figure
4.1. The motion of the aircraft is described by the Newton’s 2nd law or equations of motion for
both translational and rotational motions. The dynamical model is nonlinear but can be linearised
by applying aerodynamic derivatives. Due to aircraft symmetry with respect to the xz plane, the
linearised dynamical model can be decoupled into two groups as longitudinal motion and the
lateral/directional motion. For more details of deriving the equations of motion, see [64]. In this
work, only the lateral/directional motion control is considered. A state equation representing the
dynamic motion of an aircraft is expressed as [64-67]:

 BuAxx  (4.5)

where x={β, r, p, }T

37

 β = Sideslip, a velocity in y direction
r= yaw rate, rate of change of rotation about the x axis

 p= roll rate, rate of change of rotation about the z axis

  = bank angle, rotation about the x axis
 A = kinetic energy matrix
 B = Coriolis matrix










r

a




u = control vector

 a = aileron deflection

 r = rudder deflection.

 The control vector u can be expressed as:

 KxCuu  p (4.6)

where up is a pilot’s control input vector while C and K are the gain matrices expressed as [67]





















0

0

,
1

01

437

216

5

kkk

kkk

k

K

C

where parameters k1-k7 are control gain coefficients which need to be found.
 From Equations (4.5) - (4.6), the state equation for lateral/directional motion of an aircraft
can be expressed as:

 pBCuxBKAx )( (4.7)

 Design optimisation of the control system of an aircraft is found to have many objectives
as there are several criteria need to be satisfied such as control stability, accuracy, sensitivity,

38

control effort, etc, while the control gains coefficients are set to be design variables for an
optimisation problem. In this work, the optimal flight control of an aircraft focuses on only the
stability aspect. The objective function is posed to minimise spiral root subjected to stability
performance constraints. The optimisation problem can then be written as:

 Min: sf )(x (4.8)
 Subjected to:

1

5.0

75.3

01.0









d

D

R

s









where DRs  ,, and d are spiral root, roll damping, damping ratio of dutch-roll complex pair,
and dutch-roll frequency, respectively. These parameters can be calculated based on the
eigenvalues associated with the matrix A+BK. The design variables are control gain coefficients in
the matrix K (x = {k1, k2, k3, k4, k6, k7}T). The kinetic energy matrix (A) and the Coriolis matrix (B) are
defined as;
















































00

6753.215756.50

7393.124198.0

0524.00

,

011566.00

06025.14840.08942.199

02896.05504.08574.10

0204.01547.09879.02842.0

B

A

 More details about this aircraft dynamic model can be found in the references [64-67]. To
handle the constraints, the penalty function which was presented in [59] is used.

39

Figure 4.1 Stability axes of an aircraft

 The proposed EDACE and several well established binary-code meta-heuristics are used
to solve the fifteen CEC2015 learning-based test problems and the flight dynamic control test
problem. The meta-heuristic optimisers are [68]:
 Genetic Algorithm (GA): used binary codes with crossover and mutation rates are 1 and
0.1 respectively.
 Binary Simulated Annealing (BSA): used binary codes with exponentially decreasing
temperature. The starting and ending temperature are set to be 10 and 0.001, respectively. The
cooling step is set as 10.
 Population Based Incremental Learning (PBIL): used binary codes with the learning rate,
mutation shift, and mutation rate as 0.5, 0.7, and 0.2 respectively.
 Binary based Particle Swarm Optimisation (BPSO): used binary codes with V-shaped transfer
function while the transfer function used is the V-shaped version 4 (V4). It is noted that this version
is said to be the most efficient version based on the results obtained in [61].
 Univariate Marginal Distribution Algorithm (UMDA); used binary codes. The first 20 best
binary solutions is used to update the probability matrix.

Yaw Axis

Pitch Axis

Roll Axis

CG

40

 Estimation of Distribution Algorithm with Correlation of binary Elements (EDACE) (Algorithm
4.2): used binary codes with PL = 0.1, PU = 0.9, LR,L = 0.4, LR,U = 0.6, and nbest = 10.
 Each algorithm is used to solve the problems for 30 optimisation runs. The population
sizes are set to be 100 and 20 while number of generation is set to be 100 and 500 for the
CEC2015 learning-based test problems and the flight dynamic control test problem respectively.
For an algorithm using different population size and number of generations such as BSA, it will be
terminated at the same number function evaluations, which is 10,000 for all test problems. The
binary length is set to be 5 for each design variable for all optimisers.

4.4 Optimum Results
 4.4.1 CEC2015
 After applying the proposed EDACE and several well-established binary MHs for
solving the CEC2015 learning-based benchmark functions, the results are shown in Tables 4.2-4.4.
Note that, apart from the algorithms used in this study, the results of solving CEC2015 test suit
obtained from efficient binary artificial bee colony algorithm based on genetic operator (GBABC),
binary quantum-inspired gravitational search algorithm (BQIGSA) and self-adaptive binary variant
of a differential evolution algorithm (SabDE) as reported in [69] are also included in the
comparison. From Table 4.2, the mean (Mean) and standard deviation (STD) values of the
objective functions are used to measure the search convergence and consistency of the
algorithms. The lower Mean is the better convergence while the lower STD is the better
consistency. The value of Mean is more important, thus, for method A with lower Mean but higher
STD than method B, the method A is considered to be superior.
 For the measure of search convergence based on the mean objective function
values, the best performer for the unimodal test functions, f1 and f2, is EDACE while the second
best is BPSO. For the simple multimodal functions, the best performer for f4 and f5 is SabDE while
the best performer for the f3 is BPSO. The second best for the f3, f4 and f5 are SabDE, BEDACE
and UMDE, respectively. For the hybrid functions, the best performer for the function f6, f7, and
f8, are SabDE, EDACE, and BPSO, respectively, while the second best for f6, f7 is BPSO and the
second best for f8 is EDACE. For the final group of CEC2015 test problems, composition functions,
the best performer for the f11, f12 and f14 is SabDE while the best performer for the f10 and f15

41

are BPSO and EDACE, respectively. For f9, the best performers are UMDA, BPSO, GA, PBIL, and
EDACE, which obtain the same mean values while, for f13, the best performers are UMDA, BPSO,
GA, PBIL, BSA, and EDACE, which obtained the same mean values. It should be noted that the
results from [53] were obtained from using the total number of function evaluations as 1,000,000
with the binary length of 50 for each design variable whereas this work uses 10,000 function
evaluations with the binary length of 5 for each design variable. This indirect comparison with
GBABC, BQIGSA, and SabDE can only be used to show that the proposed EDACE also has good
performance and cannot be used to claim which method is superior.
 For the measure of search consistency based on the STD values, the most consistent
method for unimodal functions, f1 and f2, are BPSO and EDACE while the second most consistent
methods are EDACE and BPSO, respectively. For the simple multimodal functions, the best for f3
and f5 is SabDE while the best for f4 is the proposed EDACE. EDACE is the best for the hybrid
function of f7 while BPSO is the best for the hybrid functions f6 and f8. For the composition
functions, EDACE is the best for the problems f9 and f12 while BPSO is the best for f10. For the
composition functions, f11, f14 and f15, the best is SabDE while the best for f13 is BSA.
 The value Min in Table 4.2 is the objective function value of the best run from a
particular method. Note that only the UMDA, BPSO, GA, PBIL, BSA and EDACE were compared. For
the unimodal function, the minimum objective function values of f1 and f2 were obtained by
BPSO and EDACE, respectively. For the simple multimodal functions, the minimum objective
function values for f3 and f5 are obtained from BPSO and EDACE, respectively, while for the f4,
the minimum is obtained from UMDA, BSA and EDACE. The EDACE obtained minimum objective
function values for all test functions in the hybrid function group. However, for the hybrid function
f8, three algorithms including BPSO, GA and EDACE obtained the minimum values. For the
composition functions, EDACE obtained the minimum function values for all test functions.
However, for the functions f9 and f13, all algorithms obtained the same minimum values while
for the f11, BPSO and EDACE obtained the same minimum function values. Similarly, for f12,
UMDA, BPSO, BSA and EDACE obtained the same minimum values.

42

Table 4.2 Objective values obtained

CEC2015 MHs UMDA BPSO GA PBIL BSA EDACE *GBABC *BQIGSA *SabDE

Unimodal Functions

f1 Mean 7.415E+06 1.807E+06 5.508E+06 1.586E+07 4.365E+07 1.692E+06 2.729E+07 8.419E+07 3.093E+08
 STD 5.648E+06 1.224E+06 3.510E+06 1.226E+07 4.391E+07 2.297E+06 2.267E+07 7.354E+07 1.168E+08
 Min. 5.203E+05 1.914E+05 1.016E+06 2.688E+05 1.325E+06 2.454E+05

f2 Mean 1.728E+08 1.278E+08 2.415E+08 1.443E+08 1.018E+09 7.802E+07 2.864E+09 7.834E+09 2.541E+09
 STD 1.287E+08 1.236E+08 1.880E+08 1.371E+08 1.680E+09 3.046E+07 2.374E+09 6.527E+09 5.008E+09
 Min 4.359E+07 3.525E+07 6.713E+07 4.834E+07 1.133E+08 3.277E+07

Simple Multimodal
Functions

f3 Mean 3.203E+02 3.197E+02 3.203E+02 3.202E+02 3.202E+02 3.201E+02 3.202E+02 3.202E+02 3.200E+02
 STD 8.505E-02 1.900E+00 9.050E-02 7.945E-02 6.006E-02 3.300E-02 2.641E+02 2.641E+02 2.044E-02
 Min 3.201E+02 3.107E+02 3.201E+02 3.201E+02 3.201E+02 3.200E+02

f4 Mean 4.213E+02 4.220E+02 4.286E+02 4.278E+02 4.226E+02 4.182E+02 4.358E+02 4.389E+02 4.116E+02
 STD 4.647E+00 4.915E+00 8.553E+00 9.507E+00 7.150E+00 4.173E+00 3.599E+02 3.621E+02 7.606E+00
 Min 4.105E+02 4.124E+02 4.138E+02 4.123E+02 4.105E+02 4.105E+02

f5 Mean 1.010E+03 1.066E+03 1.339E+03 1.353E+03 1.275E+03 1.014E+03 1.108E+03 1.542E+03 9.330E+02
 STD 1.300E+02 1.352E+02 1.981E+02 2.279E+02 1.975E+02 1.500E+02 9.736E+02 1.275E+03 9.464E+01

43

 Min 7.791E+02 8.526E+02 1.049E+03 8.120E+02 9.628E+02 6.907E+02

Hybrid Functions

f6 Mean 1.951E+05 7.345E+04 2.288E+05 4.894E+05 6.403E+06 1.133E+05 7.442E+06 5.582E+05 4.625E+04
 STD 1.120E+05 3.958E+04 1.813E+05 3.224E+05 8.635E+06 8.936E+04 1.321E+07 6.055E+05 4.076E+04
 Min 3.661E+04 3.661E+04 3.702E+04 8.124E+04 1.320E+05 3.659E+04

f7 Mean 7.047E+02 7.032E+02 7.044E+02 7.046E+02 7.118E+02 7.030E+02 7.589E+02 7.392E+02 7.752E+02
 STD 1.054E+00 6.183E-01 1.036E+00 1.113E+00 8.660E+00 5.927E-01 4.668E+02 4.324E+02 4.155E+03
 Min 7.027E+02 7.024E+02 7.027E+02 7.024E+02 7.025E+02 7.021E+02

f8 Mean 9.309E+04 1.511E+04 5.503E+04 4.808E+05 2.305E+06 2.727E+04 3.949E+07 2.948E+06 2.395E+07
 STD 1.120E+05 6.918E+03 5.630E+04 5.295E+05 2.400E+06 2.635E+04 2.442E+08 2.469E+06 5.432E+07
 Min 1.497E+04 1.287E+04 1.287E+04 1.312E+04 1.589E+04 1.287E+04

Composition Functions

f9 Mean 1.001E+03 1.001E+03 1.001E+03 1.001E+03 1.003E+03 1.001E+03 1.017E+03 1.048E+03 1.177E+03
 STD 2.090E-01 2.231E-01 9.437E-01 4.017E-01 4.284E+00 1.700E-01 8.397E+02 8.643E+02 4.102E+01
 Min 1.000E+03 1.000E+03 1.000E+03 1.001E+03 1.000E+03 1.000E+03

f10 Mean 1.285E+04 3.930E+03 1.367E+04 4.235E+04 5.317E+05 7.819E+03 9.909E+05 4.426E+04 2.416E+07
 STD 8.308E+03 2.140E+03 1.291E+04 3.728E+04 6.444E+05 4.897E+03 3.659E+06 4.477E+04 8.862E+07
 Min 3.199E+03 1.733E+03 1.738E+03 2.275E+03 1.805E+03 1.731E+03

44

f11 Mean 1.510E+03 1.232E+03 1.360E+03 1.396E+03 1.427E+03 1.240E+03 1.159E+03 1.172E+03 1.114E+03

 STD 8.727E+01 1.410E+02 1.129E+02 5.002E+01 4.384E+01 1.436E+02 9.557E+02 9.669E+02 1.131E+01
 Min 1.401E+03 1.109E+03 1.118E+03 1.132E+03 1.402E+03 1.109E+03

f12 Mean 1.304E+03 1.305E+03 1.306E+03 1.308E+03 1.308E+03 1.305E+03 1.264E+03 1.255E+03 1.224E+03
 STD 9.674E-01 1.125E+00 1.259E+00 2.595E+00 4.486E+00 1.115E+00 1.044E+03 1.035E+03 1.302E+00
 Min 1.303E+03 1.303E+03 1.304E+03 1.304E+03 1.303E+03 1.303E+03

f13 Mean 1.300E+03 1.300E+03 1.300E+03 1.300E+03 1.300E+03 1.300E+03 1.446E+03 1.452E+03 2.815E+09
 STD 8.140E-04 1.039E-03 1.248E-03 9.095E-04 2.313E-13 7.944E-04 1.193E+03 1.197E+03 4.158E+09
 Min 1.300E+03 1.300E+03 1.300E+03 1.300E+03 1.300E+03 1.300E+03

f14 Mean 9.364E+03 5.623E+03 7.023E+03 7.355E+03 8.736E+03 6.167E+03 2.162E+03 3.356E+03 1.727E+03
 STD 2.120E+03 2.144E+03 1.856E+03 2.732E+03 3.603E+03 2.199E+03 2.091E+03 2.869E+03 4.411E+02
 Min 4.817E+03 2.816E+03 4.425E+03 2.818E+03 4.453E+03 2.401E+03

f15 Mean 1.623E+03 1.616E+03 1.621E+03 1.618E+03 1.639E+03 1.614E+03 2.012E+03 1.530E+03 1.700E+03
 STD 3.445E+00 3.132E+00 5.108E+00 4.295E+00 3.614E+01 3.945E+00 1.659E+03 1.262E+03 2.177E−05
 Min 1.618E+03 1.609E+03 1.612E+03 1.610E+03 1.610E+03 1.607E+03 - - -

* Results reported in [69] with 1,000,000 function evaluations and 50 binary length for each design variable

45

 Table 4.3 shows the summary of ranking based on the mean objective function values
from 30 optimisation runs. It was found that the proposed EDACE is mostly ranked in top three
best from solving fifteen CEC2015 learning-based test problems. After summing up the ranking
score, it is found that EDACE and BPSO are equal best performer while the third best is UMDA.

Table 4.3 Ranking of all optimisers based on the Mean values

 UMDA BPSO GA PBIL BSA EDACE GBABC BQIGSA SabDE
f1 4 2 3 5 7 1 6 8 9
f2 4 2 5 3 6 1 8 9 7
f3 9 1 8 7 4 3 5 5 2
f4 3 4 7 6 5 2 8 9 1
f5 2 4 7 8 6 3 5 9 1
f6 4 2 5 6 8 3 9 7 1
f7 5 2 3 4 6 1 8 7 9
f8 4 1 3 5 6 2 9 7 8
f9 3 2 5 4 6 1 7 8 9
f10 3 1 4 5 7 2 8 6 9
f11 9 4 6 7 8 5 2 3 1
f12 4 6 7 9 8 5 3 2 1
f13 3 2 6 5 1 4 7 8 9
f14 9 4 6 7 8 5 2 3 1
f15 6 3 5 4 7 2 9 1 8

Sum of ranking 72 40 80 85 93 40 96 92 76

 In order to further investigate the performance comparison of the binary-code MHs,
the statistical t-test is employed. Table 4.4 shows a 9×9 comparison matrix of the 9 optimisers. If
method i is significantly better than method j based on the t-test at 5% significant level, the
column i and row j of the matrix is set to be 1, otherwise, it is set to be 0. When summing up
along the columns, the highest score indicates the best optimiser based on this type of
comparison. In the table, it means EDACE is the best. Table 4.5 shows the ranking of the 9

46

optimisers when solving all CEC2015 learning-based test problems based on the t-test. After
summing up the ranking numbers of all test problems, it is found that EDACE is the overall best
optimiser while BPSO and UMDA are the second and the third best respectively.
 Figure 4.2-4.5 show the search history of the top three optimisers EDACE, BPSO and
UMDA on solving all CEC2015 learning-based test problems where the vertical axis is the average
objective function from 30 runs of each method. For all test functions, it was found that EDACE
and UMDA converged to the optimal values at higher speed while BPSO seems to converge slowly
and consistently. However, for all functions, BPSO finally moves to the minimum or near minimum
function values at the end of the runs. EDACE shows fast convergence from the beginning and
obtained the minimum or near minimum values for all test functions except for f3. This indicates
the ability of search exploitation and search exploration of the proposed EDACE since the CEC2015
test functions were assigned to test both aspects of MHs.

Table 4.4 Comparison based on the statistical t-test of the test problem

 UMDA BPSO GA PBIL BSA EDACE GBABC BQIGSA SabDE
UMDA 0 1 1 0 0 1 0 0 0
BPSO 0 0 0 0 0 1 0 0 0
GA 0 1 0 0 0 1 0 0 0
PBIL 1 1 1 0 0 1 0 0 0
BSA 1 1 1 1 0 1 1 0 0

EDACE 0 0 0 0 0 0 0 0 0
GBABC 1 1 1 1 0 1 0 0 0
BQIGSA 1 1 1 1 1 1 1 0 0
SabDE 1 1 1 1 1 1 1 1 0
Sum 5 7 6 4 2 8 3 1 0

Ranking 4 2 3 5 7 1 6 8 9

47

Table 4.5 Ranking of the all optimisers for all CEC2015 learning based test problem based on
statistical t-test

 UMDA BPSO GA PBIL BSA EDACE GBABC BQIGSA SabDE
f1 4 2 3 5 7 1 6 8 9
f2 4 2 5 3 6 1 8 9 7
f3 5 2 5 5 4 2 5 5 1
f4 3 4 6 6 4 2 8 8 1
f5 2 4 7 8 6 2 5 9 1
f6 4 2 5 6 8 3 9 7 1
f7 3 1 3 3 6 1 8 7 8
f8 4 1 3 5 6 2 9 7 8
f9 3 1 4 4 6 1 7 8 9
f10 3 1 4 5 7 2 8 6 9
f11 9 4 6 7 8 5 2 2 1
f12 4 5 7 8 8 5 2 2 1
f13 1 1 1 1 1 1 7 7 9
f14 9 4 6 7 8 5 2 3 1
f15 6 3 5 4 7 2 9 1 8
Sum 64 37 70 77 92 35 95 89 74

Figure 4.2 Search history of the top three best optimisers based on the t-test for the unimodal

function

48

Figure 4.3 Search history of the top three best optimisers based on the t-test for the simple

multimodal functions

Figure 4.4 Search history of the top three best optimisers based on the t-test for the hybrid

functions

49

Figure 4.5 Search history of the top three best optimisers based on the t-test for the

composition functions

 Table 4.6 shown performance of EDACE on solving unimodal function, f1, when the
binary lengths for each design variable are 5, 10, 25, and 50 for 10 optimisation runs. It was found
that, when the number of binary bit increases, the computational time increase and the resulting
mean objective function values decrease for the binary lengths less than 25. However, for the
binary length of 50, the mean objective function value increases meaning EDACE performance
deteriorates. Without considering computational time, the best number of binary length is 25.

Table 4.6 shown performance of EDACE for various number of binary bits

No. of binary bits 5 10 25 50
Mean function values 2.314E+6 1.101 E+6 1.079 E+6 1.143 E+6
Average computational time (Sec.) 9.371 10.748 18.634 52.773

50

 4.4.2 Flight dynamic control system design
 After applying the six binary-code MHs to solve the real engineering application of
flight dynamic and control system for 30 optimisation runs, the comparison results are shown as
box-plots of the objective and constraint violation values (Figure 4.6). The upper and lower
horizontal lines of each box represent the maximum and minimum of objective function values
respectively while the internal line shows the median of objective function values. From this
figure, based on median values of objective function, it is found that the best performer is EDACE
while the second best and the third best are BPSO and UMDA respectively. The most consistent
having the smallest gap between the maximum and minimum for all of optimisation runs is UMDA.
However, the worst function value found be EDACE is almost as good as the best found by UMDA.
Thus, the proposed EDACE is superior. Based on the figure, it was found that GA failed to solve
the problem as it cannot obtain a feasible optimum point. The minimum objective function value
is obtained from using the proposed EDACE.
 Figure 4.7 shows the best run search history of all optimisers (Selection based on the
minimum objective function values of feasible solutions). From the figure, UMDA and PBIL seem
to be the fastest convergent methods initially. However, after the process goes on for about 4,000
function evaluations, the proposed EDACE converged to the minimum objective function value
with a faster rate than the others. It has better exploration rate as the best function value is still
decreased at the late iteration numbers. BPSO, on the other hand, seems to be slower than
UMDA, PBIL and BSA in the beginning. It however can converge to the better results after around
8,000 function evaluations.

51

Figure 4.6 Box-plot of objective function values from 30 optimisation runs

Figure 4.7 Search history of the best run of all optimisers

52

4.5 Conclusions and Discussion
 In this work, a new concept of a binary-code optimiser is proposed. Fifteen CEC2015
learning based test problems and a real engineering design problem of flight dynamic and control
system are used to investigated the search performance of the proposed algorithm. Several well-
establish binary-code MHs are used in comparison. The results obtained show that the proposed
EDACE is the best performer on solving the 15 CEC2015 learning-based test problems and real
engineering design problem of flight dynamic and control. Further improvement of EDACE by
means of self-adaptation will be investigated in the future. The choice for bREF needs further
studies. The use of EDACE for hyper-heuristic development is also possible. The extension to
multiobjective optimisation and many-objective optimisation is also under investigation. Appling
EDACE for the more complex problems such as large scale problems, mixed-variable problems,
and reliability optimisation is for future work. The fight control optimisation problem, one of our
recent research focuses, has more than three objective functions to be optimised, thus, it should
be formulated as many-objective optimisation. This along with aircraft path planning dynamic
optimisation still needs considerably more investigation while EDACE will be one of optimisers to
be used for solving such design problems.

Chapter V
Inverse problem based differential evolution for efficient structural health monitoring of

trusses

5.1 Introduction
 This chapter presents a new efficient MH for structural damage detection as a hybridisation
of a radial basis function (RBF) interpolation and differential evolution (DE). In this work, the RBF
is integrated into the main procedures of DE for approximating design solutions rather than
objective functions as with traditional surrogate-assisted optimisation. Four structural damage
detection and localisation test problems from two truss structures are used for performance
assessment of a number of MHs and the proposed algorithm. The results obtained from the
various algorithms will be statistically compared in terms of both convergence rate and
consistency.

5.2 Natural-frequency-based damage detection and localisation
 In this study, structural damage detection using changes in structural natural frequencies
is considered. The detection strategy can be used for damage detection of truss elements due to
corrosion, crack and yielding of members due to fatigue. This approach is based on implementing
modal testing incorporated with a finite element model. Initially, the natural frequencies (usually
the lowest nmode natural frequencies) of the structure in a normal condition will be used as the
baseline. In practice, the natural frequencies and mode shapes will be measured and the finite
element model will be updated so that both measured and computed modal parameters are
equivalent. The finite element model used herein is a simple linear undamped free vibration
which can be expressed as:

       0 jjj  MK (5.1)

The structural natural frequencies can be computed as

 jj   , j=1,2,3,…, ndof (5.2)

54

The mass and stiffness matrices can be obtained from assembling all element mass and stiffness
matrices, which can be expressed as:

    



en

i
e

1

mM

and

    



en

i
e

1

kK . (5.3)

 In cases that damage in the structural element occurs, the structural natural frequencies
of the structure will be different from those of the baseline structure. To localise the damage, it
is assumed that the values of the structural stiffness matrix are altered, which can be written in
terms of element structural damage percentage. As a result, the altered structural stiffness matrix
of the damaged structure is of the form

    





en

i
e

i
d

p

1 100

100
kK . (5.4)

 The optimisation problem is then formulated by assigning all the values of element
damage percentages as a design solution x = {p1, …, pne}T. The objective function is to minimise
the root mean square error:

 

mode

n

j
computedjdamagej

n
f

mode







1

2
,,

)(:Min



x (5.5)

where damagej, is the structural natural frequency of mode j obtained from measuring a damaged
structure. nmode is the number of lowest vibration modes used for the damage detection.

computedj, is the structural natural frequency of mode j obtained from solving (5.1) using [Kd]
instead of [K]. The optimum solution having the objective function value close to zero gives
accurate damage localisation. The values of the element damage percentage indicate where the
damage takes place.

55

5.3 Test problems with trusses
 To study performance assessment of a number of MHs on tackling damage detection
optimisation, two truss structures are employed in this work. For the sake of simple investigation,
truss damage is simulated whereas the natural frequencies of structures are computed from finite
element analysis rather than measuring real structure modal data. Only truss element damages
are taken into consideration. It should be noted that free vibration is simulated for all cases
without considering gravity loads. The trusses are detailed as follows.

 5.3.1 Twenty-five-bar truss
 The structure having 25 bars is depicted in Fig. 5.1 [70]. All bar element cross-
sectional areas are set to be 6.4165 mm2. Material density and Young modulus are given as 7,850
kg/m3 and 200 GPa, respectively. Two damage case studies are assumed as Case I: 35% damage
on element 7 (Note that 35% damage on elements 6, 8 or 9 will result in the same set of natural
frequencies), and Case II: 35% and 40% damage at elements 7 and 9 (Note that 35% damage in
element 6 and 40% damage in element 8 will result in the same set of natural frequencies for
this case). The pin supports are applied to node numbers 7, 8, 9 and 10. The data of natural
frequencies of the damaged and undamaged 25-bar truss are given in Table 5.1.

Table 5.1 Natural frequencies (Hz) of damaged and undamaged 25 bar structure.

Mode
Undamaged
reported in

[6]*

Undamaged
calculated by
commercial

software (Ansys
academic version)*

Undamaged
calculated in
this study*

35% damage
at element
number 7

35% damage
at element
number 7
and 40%

damage at
element
number 9

1 70.9924 69.782 69.7818 69.1393 68.5203
2 74.0851 72.822 72.8217 72.2006 71.3167
3 97.5390 95.876 95.8756 95.3372 94.5625

56

4 122.2281 120.14 120.1437 119.8852 119.6514
5 121.9300 121.50 121.5017 121.4774 121.4253
6 - 125.01 125.0132 125.0130 125.0129

* The natural frequencies are slightly different which could be due to the numerical algorithm
used and truncation errors.

Figure 5.1 Twenty-five bar truss

 5.3.2 Seventy-two-bar truss
 The 72-bar truss structure is displayed in Fig. 5.2 [71] where four non-structural
masses of 2270 kg are attached to the top nodes. The values of all bar element cross-sectional
areas are set to be 0.0025 m2. Material density and modulus of elasticity are 2,770 kg/m3 and
6.98×1010 Pa, respectively. Two cases of damage are generated as Case I: 15% damage at element
number 55 (Note that 15% damage in elements 56, 57, or 58 will result in the same set of natural
frequencies as that of element 55), and Case II: 10% damage at element number 4 and 15%
damage at element number 58 (90, 180, and 270 degrees rotation along the z axis will lead to
the same set of natural frequencies). The pin supports are applied to nodes number 17, 18, 19
and 20. The values of natural frequencies of the damaged and undamaged 72-bar truss are given
in Table 5.2.

57

Table 5.2 Natural frequencies (Hz) of damaged and undamaged 72 bar structure.

Mode
Undamage
d reported

in [11]*

Undamaged
calculated by
commercial

software (Ansys
academic version)*

Undamaged
calculated

in this
study*

15% damage
at element
number 55

15% damage
at element
number 58
and 10%

damage at
element
number 4

1 6.0434 5.4977 6.0455 5.9553 5.9530
2 6.0441 5.4977 6.0455 6.0455 6.0455
3 10.4627 9.5181 10.4764 10.4764 10.4764
4 18.2275 16.594 18.2297 18.1448 18.0921
5 25.4466 23.213 25.4939 25.4903 25.2437
6 25.4510 23.213 25.4939 25.4939 25.4939

* The natural frequencies are slightly different which could be due to the numerical algorithm
used and truncation errors.

Figure 5.2 Seventy-two bar truss

58

5.4 Hybrid radial basis function and differential evolution for truss damage detection
 The purpose of using MHs for truss damage detection is to solve the optimisation problem
with the objective function (5.5) subject to bound constraints of x. The advantages of using MHs
are their simplicity in use, capability of global search, derivative-free feature, and robustness. Using
meta-heuristics implies that a user has less worry about mode switching during an optimisation
run while this phenomenon may occur in cases of using a gradient-based optimiser. The detection
approach can be used for real-time monitoring provided that an employed MH is adequately
powerful.

 5.4.1 Differential evolution
 Differential evolution is a population based method which was first proposed by
Storn and Price in 1997 [2]. The method contains two main steps for searching an optimum,
including mutation and crossover where the acronym DE/x/y/z is used to specify different
mutation and crossover strategies. The variable x is used to specify a vector for mutation which
can be best (the best individual) or rand (random individual) while y and z specify the number of
vector pairs used in mutation and the choice of a crossover scheme, respectively. For example,
as used in this work, DE/best/2/bin means that the best individual and two different vector pairs
are used in the mutation step while the binomial crossover is employed. The mutation operation
can be expressed as follows:

  4,3,2,1,

)0,1(
best)1(rrrr

rand
i F xxxxxu   . (5.6)

In this work, F is a uniform random number in the range of [Fmin, Fmax]. For the i-th mutant
individual T

iu = [xnew,1, ..., xnew,D] and its corresponding parent T
oldx =[xold,1, …, xold,D], the binary

crossover can be operated leading to a new candidate solution xnew as



 


otherwisex

CRrandu
x

jold

j
jnew ;

;

,
, j=1,2,3,…,D. (5.7)

59

The selection operator is carried out by comparing xnew and its parent xold where the better will
survive to the next generation.
 The DE computational steps are shown in Algorithm 5.1. Initially, a set of the population
is generated by means of randomisation and their objective function values are evaluated. After
obtaining the best individual, the offspring are generated by mutation (eq. 5.6) and then crossover
(eq. 5.7). Then, the next generation is selected and the search process will be repeated until a
termination criterion is reached.

Algorithm 5.1 DE search procedure

Input: population size, number of generations, algorithm parameters.
Output: xbest, fbest
Main algorithm
1::Initialise a population, calculate their objective function values and set as the current
population.
2: Find the best individual
3: Generate a new population from the current population using DE mutation (eq.6) and DE
crossover (eq.7).
4: Evaluate objective function values of the members of the new population.
5: Select the next generation from the newly generated and current populations.
6: Set the selected population from step 5 as the next generation.
7: If a termination condition is not met, go to step 2. Otherwise, stop the algorithm.

 5.4.2 Inverse problem-based differential evolution
 This subsection details the proposed differential evolution based on using an
inverse problem concept. In optimisation, the radial basis function is traditionally used for
approximating an objective function value for problems with expensive function evaluation [47,
72]. Nevertheless, in this work RBF is conversely implemented. It will be used to approximate a
design solution x that is expected corresponding to the target damage conditions. Given that the
vector of target natural frequencies (damageω) contains nmode lowest natural frequencies of the
damaged structure, the idea is to find a solution vector xdamage containing ne element damage

60

percentages by means of interpolation. During MH search, if we have a set of N design solutions
{x1, x2, . . ., xN} which corresponds to a set of N vectors of natural frequencies { Nωωω ,,, 21  },
these data will be used for RBF training. In contrast to surrogate-assisted optimisation, the natural
frequency vector will be set as independent variables whereas the design vector x will be set as
dependent variables. The ith element of xdamage that is expected to give the target vector of natural
frequencies of the damaged truss is expressed as:

  



N

k
damagekkidamage cx

1
, ωω (5.8)

where ck is the interpolation coefficients to be determined, and φ is a RBF kernel function.

damagek ωω  is the distance between k and damage. For xi, interpolation coefficients ck can
be found from solving the system of linear equations

    



N

k
lilkk xc

1

ωωω ; for i = 1 , . . ., ne, and l = 1, …, N (5.9)

where xi(l) is the ith element of the lth solution vector in the training set {x1, x2, . . ., xN}.
Equation (5.9) can be written in a matrix form as

 Ac = b (5.10)

where Ak,l = (||k - l||). It is required to compute ne sets of the interpolation coefficients
according to ne elements of x. In practice, the matrix A is generated and inverted once, and will
be used to calculate ne sets of the coefficients.
 Having determined the sets of interpolation coefficients ck for all ne elements of x by using
(5.9), the elements of xdamage can be found from using Equation (5.8). The search procedure for
hybridised RBF and DE which will be termed inverse problem-based differential evolution (IPB-
DE) according to its computation nature can be carried out in such a way that, after the
reproduction step 3 in Algorithm 5.1, the next generation is selected in step 5. The worst solution
in the next generation is then replaced by xdamage. The procedure of the hybrid algorithm IPB-DE

61

is detailed in Algorithm 5.2 while the flowchart for the IPB-DE algorithm is shown in Fig. 5.3. The
process starts by creating an initial population by using the Latin hypercube sampling (LHS)
technique instead of the Monte Carlo technique. Those solutions in the initial population are
then saved to the RBF database for training RBF. Offspring are then created by means of
reproduction of DE. The candidate solution xdamage is created using Equations (5.8-5.9). Having
performed a selection operation, the worst solution in the next generation is replaced by xdamage.
The best solution from the offspring and xdamage are then added to the RBF database which will
be used as training points during the optimisation search. As the process continues, the RBF
database is improved and expected to give more accurate results. The procedure is repeated
until fulfilling the termination criteria.

Algorithm 5.2 IPB-DE

Input: population size (np), number of generations (niter), algorithm parameters, the natural
frequencies measured from the damaged structure (damageω)
Output: xbest, fbest
Main algorithm
1: Generate an initial set of design variables x using LHS, calculate the natural frequencies (ω)
and objective function values (f), set x and f as the current population and save x and ω in the
RBF database.
2: Find the best solution.
3: Generate offspring from the current population using the DE mutation and binomial crossover
operators (reproduction) and then perform function evaluations.
4: Select design solutions from the offspring and the current population.
5: Generate xdamage using the training points from the RBF database using Equations (9) and then
(8).
6: Calculate the natural frequencies (ω) and objective function value (f) of xdamage.
7: Update the RBF database by adding to it the data of the best solution from the offspring and
xdamage.
8: Replace the worst solution in the next generation with xdamage.
9: If a termination condition is not met, go to step 2. Otherwise, stop the algorithm.

62

Figure 5.3 Flow chart of IPB-DE

5.5 Numerical Experiment
 To verify the search performance of the proposed IPB-DE, several MHs are compared
based on solving the aforementioned truss damage detection problems. The employed methods
are said to be established while some of them are regarded as the currently best optimisers of
this type. Given that nP is a population size, MHs and their optimisation parameter settings used
in this work are detailed in table 5.3 (it should be noted that details of notations can be found in
the corresponding references for each method) [58, 73]:

 Table 5.3 MH Parameters settings

MH Parameter settings
Whale optimization algorithm
(WOA) [74]

- The parameter b = 1
- Other parameters are iteratively adapted.

Sine Cosine algorithm (SCA) [7] - The constant parameter a = 2.

Stop, optimum results

Initialisation

population, parameters

RBF database, iter = 0

Create offspring using DE

mutation and crossover

x(iter), f(iter)

Terminated?
Create xdamage using Equations

(8) – (9)

Select next generation using

DE selection

x(iter+1), f(iter+1)

Replace the worst in

x(iter+1) with xdamage and

update RBF database

no, iter=iter+1
yes

63

Moth-flame optimisation algorithm
(MFO) [75]

- The constant parameter b = 1
- Other parameters are iteratively adapted.

Differential evolution (DE) [2] - Using DE/best/2/bin strategy
- Scaling factor (F) =0.8,
- probability of choosing elements of mutant vectors
(CR) = 0.5

Artificial bee colony algorithm
(ABC) [49]

- The number of food sources for employed bees =
nP/2.
- A trial counter to discard a food source =100.

Real-code ant colony optimisation
(ACOR) [50]

- The parameter, q = 0.2

- The parameter,  = 1
Charged system search (ChSS) [52] - The number of solutions in the charge memory =

0.2×nP
- The charged moving considering rate = 0.75 - the
parameter PAR = 0.5

League championship algorithm
(LCA) [51]

-The probability of success Pc = 0.9999
-The decreasing rate to decrease Pc = 0.9995

Simulated annealing (SA) [48]

- Starting temperature = 10
- Ending temperature = 0.001
For each loop, nmode candidates are created by mutating
on the current best solution while other nmode
candidates are created from mutating the current
parent. The best of those 2nmode solutions are set as an
offspring to be compared with the parent.

Particle swarm optimisation (PSO)
[3]

- The starting inertia weight = 0.5
- The ending inertia weight = 0.01
- The cognitive learning factor = 0.5
- The social learning factor = 0.5

64

Evolution strategies (ES) [4]

The algorithm uses a binary tournament selection
operator and a simple mutation without the effect of
rotation angles.

Teaching-learning-based
optimisation (TLBO) [9]

Parameter settings are not required.

Adaptive differential evolution
(JADE) [11]

The parameters are self-adapted during an optimisation
process.

Evolution strategy with covariance
matrix adaptation (CMAES) [76]

The parameters are self-adapted during an optimisation
process.

IPB-DE Use the DE parameter setting.

 Each optimisation algorithm is employed to solve each test problem for 30 independent
runs. The number of iterations (generations) is 300 for all case studies while the population size
is set to be 30 and 50 for 25-bar and 72-bar trusses respectively. For the optimisers using different
population sizes from the aforementioned values, their search processes are terminated with the
total number of functions evaluations (FEs) equal to 30×300 and 50×300 for 25-bar and 72-bar
trusses respectively. Another termination criterion is when one of the design solutions in the
current population has an objective function value less than or equal to 1×10-3. It should be
noted that the numbers of FEs used in this study can be considered insufficient for some MH
optimisers. However, these values are used to find out really powerful algorithms. For all test
problems, six lowest natural frequencies (nmode = 6) are used to compute the objective function
values. This number of selected frequencies is reasonable since, in practice, it is easier to
accurately measure fewer lowest natural frequencies.

5.6 Results and discussion
 Initially, the effect of RBF kernels on the performance of the proposed algorithm was
investigated. The last test problem, 72 bar truss with 15% damage at element number 58 and
10% damage at element number 4 which is said to be the most complicated problem, was used.
Table 5.4 shows the results obtained from using a variety of RBF kernel functions. The mean

65

values of the objective function are used to indicate the search convergence of the algorithms in
cases that the objective function threshold (1×10-3) is not met during an optimisation run.
Otherwise, the mean number of FEs is used as an indicator. The algorithm that is terminated by
the objective function threshold is clearly the superior method and any optimisation run being
stopped with this criterion is considered a successful run. The number of successful runs from 30
optimisation runs denoted as “No. of successful runs from 30” is the total number that the
algorithm can meet the target objective function value (1×10-3). It is used to measure the
algorithm reliability. From Table 5.4, the best performer is the Gaussian kernel, while the second
best and the third best are the Polynomial kernel and the Inverse quadratic kernel, respectively.
Thus, the Gaussian kernel is used in this study.

Table 5.4 Comparison of various RBF kernels for solving 72 bar truss Case II

DE with RBF kernel
Mean objective
function Values

No. of successful runs
from 30 runs

Mean of FEs

Gaussian 0.0011 25 6856
Multiquadric 0.0104 5 13993

Inverse quadratic 0.0032 14 12221
Linear 0.0117 8 13819

Polynomial order 2 0.0039 15 10807

 Comparison of various ranges [Fmin, Fmax] of a scaling factor and CR values using DE with
the best RBF kernel for solving the 72 bar truss with 15% damage at element number 58 and
10% damage at element number 4 is shown in Table 5.5. It is found that for all implemented
intervals of [Fmin, Fmax], the performance increases when the value of CR increases. The highest
DE performance is obtained when the range [Fmin, Fmax] and CR are set to be [0.2, 0.8] and 0.8,
respectively.

66

Table 5.5 Comparison of various ranges of F and CR values for solving 72 bar truss Case II
DE with Gaussian RBF kernel Mean objective

function value
No. of successful runs

from 30 runs
Mean of FEs

[Fmin, Fmax] CR
[-1.5,1.5] 0.3 0.0027 1 15000
[-1.5,1.5] 0.5 0.0013 16 12983
[-1.5,1.5] 0.8 0.0011 24 7648
[0.2,0.8] 0.3 0.0025 0 15000
[0.2,0.8] 0.5 0.0011 21 12344
[0.2,0.8] 0.8 0.0011 25 6856
[-2,-2] 0.3 0.0042 0 15000
[-2,-2] 0.5 0.0014 9 14496
[-2,-2] 0.8 0.0014 21 9940

The results obtained from the various MHs from solving the six test problems are given in
Tables 5.6-5.9.

 5.6.1 Twenty-five-bar truss
 For the 25-bar truss with 35% damage at element 7, the results are given in Table
5.6. The best performer based on the mean objective function values is IPB-DE while the second
and third best are DE and JADE respectively. When considering the number of successful runs,
seven optimisers including WOA, MFO, SCA, DE, TLBO, JADE and IPB-DE can detect the damage in
the structures. The most efficient optimisers are SCA and IPB-DE that can detect the damages of
the structure for 24 and 25 times out of 30 runs within the average of 3262 and 4486 function
evaluations respectively.
 For the 25 bar truss with 35% damage at element 7 and 40% damage at the
element number 9, the results are reported in Table 5.7. The best performer based on mean
values is IPB-DE while the second and third best are JADE and DE respectively. When examining
the number of successful runs, only IPB-DE can detect the damage in the structure for all 30 runs.
For this case, IPB-DE is said to be the most efficient optimiser, which obtained the minimum

67

objective function mean value and successfully detected the damage in the structure for all
optimisation runs with the average number of function evaluations being 3735.

Table 5.6 Results for 25 bar truss Case I

Optimiser
Mean objective
function value

No. of successful runs
from 30 runs

Mean of FEs

WOA 0.0357 8 6993
MFO 0.0279 3 8686
SCA 0.0270 24 3262
DE 0.0017 19 6019
ABC 0.0135 0 9000

ACOR 0.0089 0 9000
ChSS 0.1385 0 9000
LCA 0.9036 0 9000
SA 0.0089 0 9000

TLBO 0.0077 6 7772
CMAES 0.0033 0 9000

ES 0.0308 0 9000
PSO 8.3830 0 9000
JADE 0.0026 2 8953

IPB-DE 0.0012 25 4486

Table 5.7 Results for 25 bar truss Case II

Optimiser
Mean objective
function value

No. of successful runs
from 30 runs

Mean of FEs

WOA 0.1301 0 9000
MFO 0.0336 1 8876
SCA 0.0930 0 9000
DE 0.0096 27 5220
ABC 0.0326 0 9000

68

ACOR 0.0125 0 9000
ChSS 0.1590 0 9000
LCA 0.8080 0 9000
SA 0.0269 0 9000

TLBO 0.0405 1 8917
CMAES 0.0115 0 9000

ES 0.0356 0 9000
PSO 8.6012 0 9000
JADE 0.0042 6 8875

IPB-DE 0.0010 30 3757

 5.6.2 Seventy-two-bar truss
 For the 72-bar truss with 15% damage at element 5, the results are reported in
Table 5.8. The best performer based on the mean objective function values is IPB-DE, while the
second and the third best are ES and ACOR. When looking at the number of successful runs (f
reaching 1×10-3 or lower), the most efficient method is IPB-DE which can detect the damage of
the structure 30 times from implementing it in 30 optimisation runs, while the average number
of function evaluations for convergent results is only 3155.
 For the 72 bar truss with 15% damage at element number 58 and 10% damage at
element number 4, the results are given in Table 5.9. The best performer based on the mean of
objective function values is IPB-DE, while the second and third best are ES and JADE respectively.
When considering the number of successful runs, the most efficient is IPB-DE, which can detect
the damage of the structure 25 times from a total of 30 optimisation runs, while the average
number of function evaluations for the convergence results is 6856.

Table 5.8 Results for 72 bar truss Case I

Optimiser
Mean objective
function value

No. of successful runs
from 30 runs

Mean of FEs

WOA 0.0082 22 4832
MFO 0.0270 2 14783

69

SCA 0.0070 23 4793
DE 0.0087 14 12887
ABC 0.2184 0 15000

ACOR 0.0014 6 14831
ChSS 0.1727 0 15000
LCA 1.1499 0 15000
SA 0.0097 0 15000

TLBO 0.0035 27 5781
CMAES 0.0053 0 15000

ES 0.0010 29 9335
PSO 1.9146 0 15000
JADE 0.0019 1 15000

IPB-DE 0.0009 30 3155

Table 5.9 Results for 72 bar truss Case II

Optimiser
Mean objective
function value

No. of successful runs
from 30 runs

Mean of FEs

WOA 0.0189 0 15000
MFO 0.0137 1 14935
SCA 0.0260 2 14502
DE 0.0127 7 13963
ABC 0.1591 0 15000

ACOR 0.0058 0 15000
ChSS 0.1348 0 15000
LCA 1.1049 0 15000
SA 0.0129 0 15000

TLBO 0.0045 7 13503
CMAES 0.0050 0 15000

ES 0.0023 2 14940
PSO 1.7726 0 15000

70

JADE 0.0031 0 15000
IPB-DE 0.0011 25 6856

 Overall, it is clearly indicated from the results that integrating RBF into the DE can improve
the search performance of the optimiser in solving structural damage detection of truss structures
in terms of both search convergence and consistency. Based on the most crucial indicators, the
average number of successful runs and the average number of function evaluations, IPB-DE is
unanimously the most powerful method.
 Figure 5.4-5.7 shows the search history of the top five best algorithms (sorted based on
number of successful runs from 30 runs). For the 25 bar truss with 35% damage at element
number 7, the proposed IPB-DE and WOA show a similar convergence curve while WOA is slightly
faster than IPB-DE after 200 function evaluations. Similarly, for the case of the 72 bar truss with
15% damage at element number 55, the proposed IPB-DE and WOA show the best convergence
curves at the beginning while WOA is faster than IPB-DE. The WOA can converge to the goal before
500 function evaluations for this case. For the 25 bar truss with 35% damage at element number
7 and 40% damage at element number 9, and the 72 bar truss with 15% damage at element
number 58 and 10% damage at element number 4, the IPB-DE gives the best convergence curves
since the beginning.

(a) (b)

Figure 5.4 Search history for the case 25 bar Case I, (a) original, (b) zoom in

71

(a) (b)

Figure 55. Search history for the case 25 bar truss Case II, (a) original, (b) zoom in

(a) (b)

Figure 5.6 Search history for the case, 72 bar truss Case I, (a) original, (b) zoom in

(a) (b)

Figure 5.7 Search history for the case, 72 bar truss Case II, (a) original, (b) zoom in

72

 Tables 5.10-5.11 show a comparison of the damage locations of the simulated problems
and the results obtained from the best run of IPB-DE. It was found that IPB-DE can correctly detect
the damage locations for Case I of the twenty-five bar truss while for Case II of the twenty-five
bar truss, the structure is simulated to have 35% and 40% damage at element 7 and element 9
respectively, while the result obtained from IPB-DE gives 34.39 and 39.83% damage at element 6
and element 8. For this case, it can be said that the results are accurate, as both groups can
obtain the same set of natural frequencies as mentioned in Section 5.3. Similarly, for Case I of
the seventy-two bar truss, the structure is simulated to have 15% damage at element number 55

while 15% damage at element 56, 57, or 58 gives the same values of damage. Therefore, it can
be concluded that the results are accurate for this case. For Case II of the seventy-two bar truss,
IPB-DE found damage in many elements, while the resulting natural frequencies are similar to the

values of damage. This implies that using only natural frequencies as an objective function can
possibly fail to identify the damage locations for the cases of symmetric structures. The proposed
algorithm is obviously effective and efficient but more reliable objective functions for damage
localisation such as the use of both natural frequencies and mode shapes should be invented.

Table 5.10 Comparison of the simulated solution and the best results obtained by IPB-DE for 25
bar truss

% damage at element
no.

Case I Case II

Simulated damage (%)
Damage
found by
IPB-DE (%)

Simulated damage (%)
Damage
found by
IPB-DE (%)

1 0.00 0.06 0.00 0.00
2 0.00 0.83 0.00 0.74
3 0.00 0.00 0.00 0.02
4 0.00 0.00 0.00 0.35
5 0.00 0.05 0.00 0.02
6 0.00 0.44 0.00 *34.39
7 35.00 34.16 35.00 0.58
8 0.00 0.45 0.00 *39.83

73

9 0.00 0.00 40.00 0.00
10 0.00 0.00 0.00 0.00
11 0.00 0.02 0.00 0.00
12 0.00 0.10 0.00 0.00
13 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00
15 0.00 0.01 0.00 0.00
16 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00
20 0.00 0.01 0.00 0.00
21 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00

ω1 69.1393 69.139 68.5203 68.52002

ω2 72.2006 72.200 71.3167 71.31654

ω3 95.3372 95.337 94.5625 94.56267

ω4 119.8852 119.886 119.6514 119.6496

ω5 121.4774 121.477 121.4253 121.4256

ω6 125.0130 125.011 125.0129 125.0121

* 35% damage in elements 6 and 40% damage in elements 8 will result in the same set of
natural frequencies for the Case II as mentioned in Section 5.3

74

Table 5.11 Comparison of the simulated solution and the best results obtained by IPB-DE for 72
bar truss

%
damage

at
element

no.

Case I Case II

Simulated
damage (%)

Damage found by
IPB-DE (%)

Simulated damage
(%)

Damage found by IPB-
DE (%)

1, 26, 51 0, 0, 0 0, 0, 0.39 0, 0, 0 0, 0, 0,
2, 27, 52 0, 0, 0 0, 0, 0.36 0, 0, 0 **9.88, 0, 0.76,
3, 28, 53 0, 0, 0 0, 0, 0.03 0, 0, 0 0, 0.04, 0.51,
4, 29, 54 0, 0, 0 0, 0.01, 0.90 10.00, 0, 0 0.01, 0.05, 0.06,
5, 30, 55 0, 0, 15.00 0, 0.01, 0.02 0, 0, 0 0.01, 0, 0,
6, 31, 56 0, 0, 0 0.06, 0, 0.36 0, 0, 0 0.04, 0.16, *9.08,
7, 32, 57 0, 0, 0 0.03, 0.06, 0 0, 0, 15.00 0.02, 0.45, 0,
8, 33, 58 0, 0, 0 0, 0, *14.51 0, 0, 0 0, 0.73, *6.58,
9, 34, 59 0, 0, 0 0.01, 0.01, 0.04 0, 0, 0 0.03, 0.02, 0.02,
10, 35, 60 0, 0, 0 0, 1.91, 0.01 0, 0, 0 0.01, 0, 0,
11, 36, 61 0, 0, 0 0.03, 0.87, 0 0, 0, 0 0, 0.69, 0,
12, 37, 62 0, 0, 0 0.01, 0.01, 0.07 0, 0, 0 0.04, 0, 0,
13, 38, 63 0, 0, 0 0.01, 0.00, 0.01 0, 0, 0 0.03, 0, 0,
14, 39, 64 0, 0, 0 0, 0.02, 0 0, 0, 0 0.13, 0, 0,
15, 40, 65 0, 0, 0 0.02, 0.03, 0.05 0, 0, 0 0, 0.06, 0.02,
16, 41, 66 0, 0, 0 0.14, 0.01, 0.00 0, 0, 0 0.21, 0, 0,
17, 42, 67 0, 0, 0 0.73, 0.00, 0.17 0, 0, 0 3.04, 0.02, 0.09,
18, 43, 68 0, 0, 0 0.27, 0, 0 0, 0, 0 0.55, 0.05, 1.79,
19, 44, 69 0, 0, 0 0, 0.01, 0 0, 0, 0 0, 0.06, 0.12,
20, 45, 70 0, 0, 0 0, 0, 0.62 0, 0, 0 0, 0, 0,
21, 46, 71 0, 0, 0 0, 0.01, 0.04 0, 0, 0 0, 0, 0.46,
22, 47, 72 0, 0, 0 0, 0, 0.01 0, 0, 0 0.01, 0.02, 0,

23, 48 0, 0 0.03, 0.01 0, 0, 0.03, 0.01,

75

24, 49 0, 0 0.06, 0.54 0, 0, 0.05, 0.07,
25, 50 0, 0 0, 0.38 0, 0, 0.05, 0.15,

ω1 5.9553 5.9562 5.9530 5.9534

ω2 6.0455 6.0451 6.0455 6.0451

ω3 10.4764 10.4757 10.4764 10.4755

ω4 18.1448 18.1443 18.0921 18.0904

ω5 25.4903 25.4892 25.2437 25.2436

ω6 25.4939 25.4929 25.4939 25.4927

* 15% damage in elements 55, 56, 57 or 58 will result in the same set of natural frequencies.
** 10% damage in elements 1, 2, 3 or 4 will result in the same set of natural frequencies.

5.7 Conclusions
 Hybridisation of RBF into DE leading to IPB-DE is presented for truss structural damage
detection problems. Four structural damage detection test problems from three different truss
structures are used to examine the search performance of the proposed approach. Several well
established MHs and the proposed algorithms are then employed to solve the test problems.
Numerical results reveal that the proposed hybrid algorithms of DE with RBF are the top
performers for all test problems. Integrating RBF into the DE obviously improves DE performance.
The proposed idea has the potential to be further applied to other inverse problems such as
robot inverse kinematic analysis. Further improvement for meta-heuristic based structural health
monitoring should be the purpose of a more reliable objective function rather than solely using
the set of lowest natural frequencies. Detection of joint damage is another issue that will be
focused on in future work.

Chapter VI
Conclusions and Future work

 In this work, development of MHs for practical engineering optimisation is successfully
conducted based on using surrogated assisted MHs, using parameter adaption and using a
hybridization concept. Firstly, performance enhancement of a teaching-learning based optimizer
(TLBO) for strip flatness optimization during a coiling process is proposed. The method is termed
improved teaching-learning based optimization (ITLBO). The new algorithm is achieved by
modifying the teaching phase of the original TLBO. The design problem is set to find a spool
geometry and coiling tension in order to minimize flatness defects during the coiling process.
Having implemented the new optimizer with flatness optimization for strip coiling, the results
reveal that the proposed method gives a better optimum solution compared to the present state-
of-the-art methods. Next, a sine cosine algorithm is extended to be self-adaptive and its main
reproduction operators are integrated with the mutation operator of differential evolution. The
new algorithm is called adaptive sine cosine algorithm integrated with differential evolution (ASCA-
DE) and used to tackle the test problems for structural damage detection. The results reveal that
the new algorithm outperforms a number of established meta-heuristics. In addition, a new meta-
heuristic called estimation of distribution algorithm using correlation between binary elements
(EDACE) is proposed. The method searches for optima using a binary string to represent a design
solution. A matrix for correlation between binary elements of a design solution is used to
represent a binary population. Optimisation search is achieved by iteratively updating such a
matrix. The performance assessment is conducted by comparing the new algorithm with existing
binary-code meta-heuristics including a genetic algorithm, a univariate marginal distribution
algorithm, population-based incremental learning, binary particle swarm optimisation, and binary
simulated annealing by using the test problems of the CEC2015 competition and one real world
application, which is an optimal flight control problem. The comparative results show that the
new algorithm is competitive with other established binary-code meta-heuristics. Finally, this
work proposes the integration of an inverse problem process using radial basis functions (RBFs)
into meta-heuristics (MHs) for performance enhancement in solving structural health monitoring
optimisation problems. A differential evolution (DE) algorithm is chosen as the MH for this study.

77

In this chapter, RBF is integrated into the DE algorithm for generating an approximate solution
rather than approximating a function value as with traditional surrogate-assisted optimisation. Four
structural damage detection test problems of three trusses are used to examine the search
performance of the proposed algorithms. The results obtained from using various MHs and the
proposed algorithms indicate that the new algorithm is the best for all test problems. DE search
performance for structural damage detection can be considerably improved by integrating RBF
into its procedure.
 Base on this study, performance of MHs can be improve for various engineering
applications based on using surrogated assisted MHs, using parameter adaption and using a
hybridisation concept. The MH proposed in this work can be extended to other engineering
optimisation problems such as robot inverse kinematic problem, robot and aircraft trajectory
planning, flight dynamic and control etc., while the performance can be still more improve.

78

Reference

[1] D. Goldberg, K. Deb, and B. Korb, "Messy genetic algorithms: Motivation, analysis, and first

results," Complex systems, pp. 493-530, 1989.
[2] R. Storn and K. Price, "Differential Evolution – A Simple and Efficient Heuristic for global

Optimization over Continuous Spaces," Journal of Global Optimization, vol. 11, pp. 341-
359, 1997/12/01 1997.

[3] G. Venter and J. Sobieszczanski-Sobieski, "Particle swarm optimization," AIAA Journal, vol.
41, pp. 1583-1589, 2003.

[4] T. Back, Evolutionary Algorithms in Theory and Practice. Oxford: Oxford University Press,
1996.

[5] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial intelligence through simulated
evolution. New York: John Wiley, 1966.

[6] H.-G. Beyer and H.-P. Schwefel, "Evolution strategies – A comprehensive introduction,"
Natural Computing, vol. 1, pp. 3-52, March 01 2002.

[7] S. Mirjalili, "SCA: A Sine Cosine Algorithm for solving optimization problems," Knowledge-
Based Systems, vol. 96, pp. 120-133, 2016.

[8] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey Wolf Optimizer," Advances in Engineering
Software, vol. 69, pp. 46-61, 2014.

[9] R. V. Rao, V. J. Savsani, and D. P. Vakharia, "Teaching–learning-based optimization: A
novel method for constrained mechanical design optimization problems," Computer-
Aided Design, vol. 43, pp. 303-315, 2011.

[10] R. Rao, "Jaya: A simple and new optimization algorithm for solving constrained and
unconstrained optimization problems," International Journal of Industrial Engineering
Computations, vol. 7, pp. 19-34, 2016.

[11] J. Zhang and A. C. Sanderson, "JADE: Adaptive Differential Evolution With Optional
External Archive," Evolutionary Computation, IEEE Transactions on, vol. 13, pp. 945-958,
2009.

79

[12] R. Tanabe and A. Fukunaga, "Evaluating the performance of SHADE on CEC 2013
benchmark problems," in Evolutionary Computation (CEC), 2013 IEEE Congress on, 2013,
pp. 1952-1959.

[13] R. Tanabe and A. S. Fukunaga, "Improving the search performance of SHADE using linear
population size reduction," in Evolutionary Computation (CEC), 2014 IEEE Congress on,
2014, pp. 1658-1665.

[14] M. P. Wachowiak, M. C. Timson, and D. J. DuVal, "Adaptive Particle Swarm Optimization
with Heterogeneous Multicore Parallelism and GPU Acceleration," IEEE Transactions on
Parallel and Distributed Systems, vol. PP, pp. 1-1, 2017.

[15] L. Zhang, Y. Tang, C. Hua, and X. Guan, "A new particle swarm optimization algorithm
with adaptive inertia weight based on Bayesian techniques," Applied Soft Computing, vol.
28, pp. 138-149, 2015/03/01/ 2015.

[16] X. Liang, W. Li, Y. Zhang, and M. Zhou, "An adaptive particle swarm optimization method
based on clustering," Soft Computing, vol. 19, pp. 431-448, February 01 2015.

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic
algorithm: NSGA-II," IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, vol. 6, pp.
182-197, 2002.

[18] N. Srinivas and K. Deb, "Muiltiobjective Optimization Using Nondominated Sorting in
Genetic Algorithms," Evolutionary Computation, vol. 2, pp. 221-248, 1994.

[19] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide, "High dimensional
search-based software engineering: finding tradeoffs among 15 objectives for automating
software refactoring using NSGA-III," in Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, 2014, pp. 1263-1270.

[20] C. A. C. Coello and M. S. Lechuga, "MOPSO: a proposal for multiple objective particle
swarm optimization," in Evolutionary Computation, 2002. CEC '02. Proceedings of the
2002 Congress on, 2002, pp. 1051-1056.

[21] E. Zitzler, M. Laumanns, and L. Thiele, "SPEA2: improving the strength Pareto
evolutionary algorithm for multiobjective optimization," presented at the Evolutionary
Methods for Design, Optomozation and Control,, Barcelona Spain, 2002.

80

[22] S. Mirjalili, S. Saremi, S. M. Mirjalili, and L. d. S. Coelho, "Multi-objective grey wolf
optimizer: A novel algorithm for multi-criterion optimization," Expert Systems with
Applications, vol. 47, pp. 106-119, 2016/04/01/ 2016.

[23] F. Zou, L. Wang, X. Hei, D. Chen, and B. Wang, "Multi-objective optimization using
teaching-learning-based optimization algorithm," Engineering Applications of Artificial
Intelligence, vol. 26, pp. 1291-1300, 2013/04/01/ 2013.

[24] Z. Qingfu and L. Hui, "MOEA/D: A Multiobjective Evolutionary Algorithm Based on
Decomposition," Evolutionary Computation, IEEE Transactions on, vol. 11, pp. 712-731,
2007.

[25] D. Angus and C. Woodward, "Multiple objective ant colony optimisation," Swarm
Intelligence, vol. 3, pp. 69-85, 2008.

[26] T. Robič and B. Filipič, "DEMO: Differential Evolution for Multiobjective Optimization," in
Evolutionary Multi-Criterion Optimization. vol. 3410, C. Coello Coello, A. Hernández
Aguirre, and E. Zitzler, Eds., ed: Springer Berlin Heidelberg, 2005, pp. 520-533.

[27] X. Zhang, Y. Tian, and Y. Jin, "A Knee Point-Driven Evolutionary Algorithm for Many-
Objective Optimization," IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, vol. 19,
pp. 761-776, 2015.

[28] H. Wang, L. Jiao, and X. Yao, "Two_Arch2: An improved two-archive algorithm for many-
objective optimization," IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, vol. 19,
pp. 524-541, 2015.

[29] R. Wang, R. C. Purshouse, and P. J. Fleming, "Preference-Inspired Coevolutionary
Algorithms for Many-Objective Optimization," IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION, vol. 17, pp. 474-494, 2013.

[30] N. Pholdee, H. M. Baek, S. Bureerat, and Y.-T. Im, "Process optimization of a non-circular
drawing sequence based on multi-surrogate assisted meta-heuristic algorithms," Journal
of Mechanical Science and Technology, vol. 29, pp. 3427-3436, 2015.

[31] H.-M. Gutmann, "A radial basis function method for global optimization," Journal of
Global Optimization, vol. 19, pp. 201-227, 2001.

[32] S. N. Lophaven, H. B. Nielsen, and J. Søndergaard, "DACE a MATLAB Kriging Toolbox,"
Technical University of Denmark, Kongens Lyngby, 2002.

81

[33] X. Xiang, Y. Fan, A. Fan, and W. Liu, "Cooling performance optimization of liquid alloys
GaIny in microchannel heat sinks based on back-propagation artificial neural network,"
Applied Thermal Engineering, vol. 127, pp. 1143-1151, 2017/12/25/ 2017.

[34] A. Rosales-Pérez, J. A. Gonzalez, C. A. Coello Coello, H. J. Escalante, and C. A. Reyes-
Garcia, "Surrogate-assisted multi-objective model selection for support vector machines,"
Neurocomputing, vol. 150, Part A, pp. 163-172, 2015.

[35] N. Pholdee, S. Bureerat, H. M. Baek, and Y.-T. Im, "Surrogate Assisted Teaching Learning
Based Optimisation for Process Design of a Non-circular Drawing Sequence," in
International Conference on Manufacture Engineering, Quality and Production System,
London UK, 2015.

[36] F. Lambiase, "Optimization of shape rolling sequences by integrated artificial intelligent
techniques," The International Journal of Advanced Manufacturing Technology, vol. 68,
pp. 443-452, 2013/09/01 2013.

[37] M. Costas, J. Díaz, L. Romera, and S. Hernández, "A multi-objective surrogate-based
optimization of the crashworthiness of a hybrid impact absorber," International Journal
of Mechanical Sciences, vol. 88, pp. 46-54, 2014.

[38] J. Wang, W. Shen, Z. Wang, M. Yao, and X. Zeng, "Multi-objective optimization of drive
gears for power split device using surrogate models," Journal of Mechanical Science and
Technology, vol. 28, pp. 2205-2214, 2014/06/01 2014.

[39] T. Braconnier, M. Ferrier, J. C. Jouhaud, M. Montagnac, and P. Sagaut, "Towards an
adaptive POD/SVD surrogate model for aeronautic design," Computers & Fluids, vol. 40,
pp. 195-209, 2011.

[40] C. Luo, S.-L. Zhang, C. Wang, and Z. Jiang, "A metamodel-assisted evolutionary algorithm
for expensive optimization," Journal of Computational and Applied Mathematics, vol.
236, pp. 759-764, 2011.

[41] T. Massé, L. Fourment, P. Montmitonnet, C. Bobadilla, and S. Foissey, "The optimal die
semi-angle concept in wire drawing, examined using automatic optimization techniques,"
International Journal of Material Forming, vol. 6, pp. 377-389, 2013/09/01 2013.

82

[42] L. Bo, Z. Qingfu, and G. G. E. Gielen, "A Gaussian Process Surrogate Model Assisted
Evolutionary Algorithm for Medium Scale Expensive Optimization Problems,"
Evolutionary Computation, IEEE Transactions on, vol. 18, pp. 180-192, 2014.

[43] S. Chakraborty and A. Sen, "Adaptive response surface based efficient Finite Element
Model Updating," Finite Elements in Analysis and Design, vol. 80, pp. 33-40, 2014.

[44] S. M. Elsayed, T. Ray, and R. A. Sarker, "A surrogate-assisted differential evolution
algorithm with dynamic parameters selection for solving expensive optimization
problems," in Evolutionary Computation (CEC), 2014 IEEE Congress on, 2014, pp. 1062-
1068.

[45] L. Tong, S. Chaoli, Z. Jianchao, X. Songdong, and J. Yaochu, "Similarity- and reliability-
assisted fitness estimation for particle swarm optimization of expensive problems," in
Evolutionary Computation (CEC), 2014 IEEE Congress on, 2014, pp. 640-646.

[46] S. Bureerat, K. Wansasueb, and N. Pholdee, "Optimum radii and heights of U-shaped
baffles in a square duct heat exchanger using surrogate-assisted optimization,"
Engineering and Applied Science Research, vol. 44, pp. 84-89, 2017.

[47] N. Pholdee, S. Bureerat, H. M. Baek, and Y.-T. Im, "Two-stage surrogate assisted
differential evolution for optimization of a non-circular drawing sequence," International
Journal of Precision Engineering and Manufacturing, vol. 18, pp. 567-573, 2017.

[48] S. Bureerat and J. Limtragool, "Structural topology optimisation using simulated
annealing with multiresolution design variables," Finite Elements in Analysis and Design,
vol. 44, pp. 738-747, 2008.

[49] D. Karaboga and B. Basturk, "A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm," Journal of Global Optimization, vol.
39, pp. 459-471, 2007/11/01 2007.

[50] K. Socha and M. Dorigo, "Ant colony optimization for continuous domains," European
Journal of Operational Research, vol. 185, pp. 1155-1173, 2008.

[51] A. Husseinzadeh Kashan, "An efficient algorithm for constrained global optimization and
application to mechanical engineering design: League championship algorithm (LCA),"
Computer-Aided Design, vol. 43, pp. 1769-1792, 2011.

83

[52] A. Kaveh and S. Talatahari, "A novel heuristic optimization method: charged system
search," Acta Mechanica, vol. 213, pp. 267-289, 2010.

[53] N. Pholdee, S. Bureerat, W.-W. Park, D.-K. Kim, Y.-T. Im, H.-C. Kwon, and M.-S. Chun,
"Optimization of flatness of strip during coiling process based on evolutionary
algorithms," International Journal of Precision Engineering and Manufacturing, vol. 16,
pp. 1493-1499, 2015.

[54] N. Pholdee, W.-W. Park, D.-K. Kim, Y.-T. Im, S. Bureerat, H.-C. Kwon, and M.-S. Chun,
"Efficient hybrid evolutionary algorithm for optimization of a strip coiling process,"
Engineering Optimization, vol. 47, pp. 521-532, 2015.

[55] W.-W. Park, D.-K. Kim, Y.-T. Im, H.-C. Kwon, and M.-S. Chun, "Effects of processing
parameters on elastic deformation of the coil during the thin-strip coiling process,"
Metals and Materials International, vol. 20, pp. 719-726, 2014.

[56] S. Yanagi, S. Hattori, and Y. Maeda, "Analysis model for deformation of coil of thin strip
under coiling process," Journal- Japan Society for Technology of Plasticity, vol. 39, pp.
51-55, 1998.

[57] S. Bureerat, N. Pholdee, W.-W. Park, and D.-K. Kim, "An Improved Teaching-Learning
Based Optimization for Optimization of Flatness of a Strip During a Coiling Process," in
International Workshop on Multi-disciplinary Trends in Artificial Intelligence, 2016, pp.
12-23.

[58] N. Pholdee and S. Bureerat, "Structural health monitoring through meta-heuristics –
comparative performance study," Advances in Computational Design, An International
Journal, vol. 1, pp. 315-327, 2016.

[59] S. Bureerat and N. Pholdee, "Optimal Truss Sizing Using an Adaptive Differential Evolution
Algorithm," Journal of Computing in Civil Engineering, p. 04015019, 2015.

[60] G. Lindfield and J. Penny, Numerical methods: using MATLAB: Academic Press, 2012.
[61] S. Mirjalili and A. Lewis, "S-shaped versus V-shaped transfer functions for binary particle

swarm optimization," Swarm and Evolutionary Computation, vol. 9, pp. 1-14, 2013.
[62] H. Nezamabadi-pour, "A quantum-inspired gravitational search algorithm for binary

encoded optimization problems," Engineering Applications of Artificial Intelligence, vol.
40, pp. 62-75, 2015/04/01/ 2015.

84

[63] J. Liang, B. Qu, P. Suganthan, and Q. Chen, "Problem definitions and evaluation criteria
for the CEC 2015 competition on learning-based real-parameter single objective
optimization," Technical Report201411A, Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological
University, Singapore, 2014.

[64] D. Tabak, A. Schy, D. Giesy, and K. Johnson, "Application of multiobjective optimization in
aircraft control systems design," Automatica, vol. 15, pp. 595-600, 1979.

[65] S. F. Adra, A. I. Hamody, I. Griffin, and P. J. Fleming, "A hybrid multi-objective evolutionary
algorithm using an inverse neural network for aircraft control system design," in
Evolutionary Computation, 2005. The 2005 IEEE Congress on, 2005, pp. 1-8.

[66] D. A. Caughey, "Introduction to aircraft stability and control course notes for M&AE 5070,"
Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, New
York, pp. 14853-7501, 2011.

[67] S. Rostami and F. Neri, "Covariance matrix adaptation pareto archived evolution strategy
with hypervolume-sorted adaptive grid algorithm," Integrated Computer-Aided
Engineering, vol. 23, pp. 313-329, 2016.

[68] N. Pholdee and S. Bureerat, "Estimation of Distribution Algorithm Using Correlation
between Binary Elements: A New Binary-Code Metaheuristic," Mathematical Problems in
Engineering, vol. 2017, 2017.

[69] A. Banitalebi, M. I. A. Aziz, and Z. A. Aziz, "A self-adaptive binary differential evolution
algorithm for large scale binary optimization problems," Information Sciences, vol. 367,
pp. 487-511, 2016/11/01/ 2016.

[70] A. Majumdar, D. K. Maiti, and D. Maity, "Damage assessment of truss structures from
changes in natural frequencies using ant colony optimization," Applied Mathematics and
Computation, vol. 218, pp. 9759-9772, 2012.

[71] A. Kaveh and A. Zolghadr, "An improved CSS for damage detection of truss structures
using changes in natural frequencies and mode shapes," Advances in Engineering
Software, vol. 80, pp. 93-100, 2015.

[72] K. Wansaseub, N. Pholdee, and S. Bureerat, "Optimal U-shaped baffle square-duct heat
exchanger through surrogate-assisted self-adaptive differential evolution with

85

neighbourhood search and weighted exploitation-exploration," Applied Thermal
Engineering, vol. 118, pp. 455-463, 2017/05/25/ 2017.

[73] S. Bureerat and N. Pholdee, "Inverse problem based differential evolution for efficient
structural health monitoring of trusses," Applied Soft Computing, vol. 66, pp. 462-472,
2018/05/01/ 2018.

[74] S. Mirjalili and A. Lewis, "The Whale Optimization Algorithm," Advances in Engineering
Software, vol. 95, pp. 51-67, 2016.

[75] S. Mirjalili, "Moth-flame optimization algorithm: A novel nature-inspired heuristic
paradigm," Knowledge-Based Systems, vol. 89, pp. 228-249, 2015.

[76] N. Hansen, S. D. Muller, and P. Koumoutsakos, "Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES)," Evol.
Comput., vol. 11, pp. 1-18, 2003.

APPENDIX A
LIST OF PUBLICATIONS

LIST OF PUBLICATIONS

[1] Bureerat, S., & Pholdee, N. (2018). Inverse problem based differential evolution for efficient
structural health monitoring of trusses. Applied Soft Computing, 66, 462-472 (IF =3.541,
Q1)

[2] Pholdee, N. and Bureerat, S., (2017) Estimation of Distribution Algorithm Using Correlation

between Binary Elements: A New Binary-Code Metaheuristic, Mathematical Problems in

Engineering, 2017, 6043109, 15 pages. doi:10.1155/2017/6043109, (IF = 0.802, Q3)

[3] Bureerat, S. and Pholdee, N., (2017) Adaptive Sine Cosine Algorithm Integrated with

Differential Evolution for Structural Damage Detection, Lecture Notes in Computer

Science, 10404, 71-86. (SNIP=0.552)

[4] Pholdee, N. and Bureerat, S., (2016) An Improved Teaching-Learning Based optimization for

Optimization of Flatness of a Strip during Coiling Process, Lecture Notes in Computer

Science, 10053, 12-23. (SNIP=0.552)

I
h

S
S
4

a

A
R
R
1
A
A

K
S
M
I
D
D

1

p
i
d
a
c
u
t
i
m
c
t
m
m

o
o
i
u
d

h
1

Applied Soft Computing 66 (2018) 462–472

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

nverse problem based differential evolution for efficient structural
ealth monitoring of trusses

ujin Bureerat, Nantiwat Pholdee ∗

ustainable and Infrastructure Research and Development Center, Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University,
0002, Thailand

 r t i c l e i n f o

rticle history:
eceived 29 December 2016
eceived in revised form
0 November 2017
ccepted 23 February 2018
vailable online 27 February 2018

a b s t r a c t

This paper proposes the integration of an inverse problem process using radial basis functions (RBFs) into
meta-heuristics (MHs) for performance enhancement in solving structural health monitoring optimisa-
tion problems. A differential evolution (DE) algorithm is chosen as the MH for this study. In this work, RBF
is integrated into the DE algorithm for generating an approximate solution rather than approximating
the function value as with traditional surrogate-assisted optimisation. Four structural damage detection
test problems of two trusses are used to examine the search performance of the proposed algorithms. The
eywords:
tructural health monitoring
eta-heuristics

nverse problem
ifferential evolution

results obtained from using various MHs and the proposed algorithms indicate that the new algorithm is
the best for all test problems. DE search performance for structural damage detection can be considerably
improved by integrating RBF into its procedure.

© 2018 Elsevier B.V. All rights reserved.
amage detection

. Introduction

Structural damage detection is a technique used to identify the
resence of structural damage, localising it, and assessing the sever-

ty [1]. Structural damage takes place due to several reasons such as
efects in structures, cracks and corrosion in structural elements,
nd incomplete construction of the structures. Such mistakes can
ause the structures to have a shortened service life and other
ndesirable accidents. As a result, engineers have had to develop
echniques to predict and prevent it. Visual inspection of damage
s one straightforward technique usually employed, however, its

ain disadvantage is the inability to detect internal defects and
racks. Moreover, it is difficult to check throughout a large struc-
ure and find damage locations. Therefore, a more sophisticated

eans should be used to detect damage locations using only one
easurement.
One of the most popular damage detection techniques is the use

f changes in structural modal data. The idea is that the modal data
f a healthy structure is measured and used as the baseline. Once

t has been found that the modal data alters from its normal val-
es, it means structural damage may have taken place. Over several
ecades, researchers have investigated vibration-based damage

∗ Corresponding author.
E-mail address: nantiwat@kku.ac.th (N. Pholdee).

ttps://doi.org/10.1016/j.asoc.2018.02.046
568-4946/© 2018 Elsevier B.V. All rights reserved.
detection of mechanical systems and structures [2–7]. The use of
fuzzy logic systems [8], neural networks [4,7], and other types of
soft computing has been proposed. Recently, meta-heuristics have
been implemented for perform structural health monitoring based
on vibration measurement. The problem of damage detection is
treated as an optimisation inverse problem [6,9–12]. The advantage
of this strategy is that it is easy to use, can be used to check through-
out a large structure, and can locate damage positions within one
measurement of modal testing. Although many researchers have
demonstrated using a number of MHs for solving the optimisa-
tion problems [6,10,11,13–15], it has been found that they failed
to assess the performance of MHs properly. The algorithm search
convergence and usability was reported but the search consistency
has never been examined. For practicality, an algorithm without
the guarantee of search consistency will be always questioned,
whether it can be used in reality or not. In this regards, develop-
ing MHs for optimising an inverse problem of damage detection to
improve search convergence simultaneously with search consis-
tency is an interesting topic.

Over the last few decades, development of MHs with an empha-
sis on improving the convergence rate and consistency can be
accomplished in several ways, such as introducing new search
concept MHs [16–18], using a hybridisation concept [19], using

parameter adaption [20,21], or using surrogate assisted MHs [22].
The implementation of a surrogate assisted MH is usually required
when the optimisation problem has computationally expensive

https://doi.org/10.1016/j.asoc.2018.02.046
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2018.02.046&domain=pdf
mailto:nantiwat@kku.ac.th
https://doi.org/10.1016/j.asoc.2018.02.046

S. Bureerat, N. Pholdee / Applied Soft C

Nomenclature

[K] Structural stiffness matrix
[M] Structural mass matrix
�j jth mode eigenvalue
�j jth mode eigenvector or mode shape.
ndof Size of the mass and stiffness matrices.
[me] Element mass matrices
[ke] Element stiffness matrices.
ne Number of elements
pi Percentage of damage in the ith element.
nmode Number of lowest vibration modes
F Scaling factor
Fmin Maximum scaling factor
Fmax Minimum scaling factor
xr,i ith randomly selected individual
xold Current solution (parent)
xnew New candidate solution
rand Uniform random number ranged from 0 to 1
rand(0,1) Random number, either 0 or 1
CR Crossover rate
D Number of design variables
ck Interpolation coefficients
ϕ RBF kernel function
�damage Natural frequencies of the damaged structure (Tar-

get vector)

f
o
e
g
f
f
c
u
s
g
m
i
s
a

d
i
i
d
s
a
f
a
b
c

2
l

s
c
s
i
e

xdamage Solution vector containing ne element damage per-
centages

unction evaluations. The simple strategy of surrogate assisted
ptimisation is carried out in such a way that the design of the
xperiment uses a technique such as Latin hypercube sampling to
enerate a set of training points. With those training points, actual
unction evaluations are performed. A surrogate model, a form of
unction that requires significantly less computation time, is then
onstructed based on the training points and their function val-
es. Thereafter, optimisation can be performed based on using the
urrogate model instead of actual function evaluations. This can
reatly reduce optimisation running time. Although a surrogate
odel can be used to improve MHs search convergence (by reduc-

ng the number of real expensive function evaluations) and also
earch consistency, it is yet to find that such a model is applied to
n inverse problem for structural damage detection.

Therefore, this paper presents a new, efficient MH for structural
amage detection as a hybridisation of a radial basis function (RBF)

nterpolation and differential evolution (DE). In this work, the RBF
s integrated into the main procedures of DE for approximating
esign solutions rather than objective functions as with traditional
urrogate-assisted optimisation. Four structural damage detection
nd localisation test problems from two truss structures are used
or performance assessment of a number of MHs and the proposed
lgorithm. The results obtained from the various algorithms will
e statistically compared in terms of both convergence rate and
onsistency.

. Natural-frequency-based damage detection and
ocalisation

In this study, structural damage detection using changes in
tructural natural frequencies is considered. The detection strategy

an be used for damage detection of truss elements due to corro-
ion, crack and yielding of members due to fatigue. This approach
s based on implementing modal testing incorporated with a finite
lement model. Initially, the natural frequencies (usually the low-
omputing 66 (2018) 462–472 463

est nmode natural frequencies) of the structure in a normal condition
will be used as the baseline. In practice, the natural frequencies and
mode shapes will be measured and the finite element model will be
updated so that both measured and computed modal parameters
are equivalent. The finite element model used herein is a simple
linear undamped free vibration which can be expressed as:

[K]
{

�j

}
− �j [M]

{
�j

}
= 0 (1)

The structural natural frequencies can be computed as

ωj =
√

�j , j = 1, 2, 3, ..., ndof (2)

The mass and stiffness matrices can be obtained from assem-
bling all element mass and stiffness matrices, which can be
expressed as:

[M] =
ne∑

i=1

[me]

and

[K] =
ne∑

i=1

[ke] . (3)

In cases that damage in the structural element occurs, the struc-
tural natural frequencies of the structure will be different from
those of the baseline structure. To localise the damage, it is assumed
that the values of the structural stiffness matrix are altered, which
can be written in terms of element structural damage percentage.
As a result, the altered structural stiffness matrix of the damaged
structure is of the form

[Kd] =
ne∑

i=1

100 − pi

100
[ke] . (4)

The optimisation problem is then formulated by assigning all
the values of element damage percentages as a design solution
x = {p1, . . ., pne}T . The objective function is to minimise the root
mean square error:

Min : f (x) =

√√√√√√
nmode∑
j=1

(
ωj,damage − ωj,computed

)2

nmode
(5)

where ωj,damage is the structural natural frequency of mode j
obtained from measuring a damaged structure. nmode is the number
of lowest vibration modes used for the damage detection. ωj,computed

is the structural natural frequency of mode j obtained from solv-
ing (1) using [Kd] instead of [K]. The optimum solution having
the objective function value close to zero gives accurate damage
localisation. The values of the element damage percentage indicate
where the damage takes place.

3. Test problems with trusses

To study performance assessment of a number of MHs on
tackling damage detection optimisation, two truss structures are
employed in this work. For the sake of simple investigation, truss
damage is simulated whereas the natural frequencies of structures
are computed from finite element analysis rather than measuring

real structure modal data. Only truss element damages are taken
into consideration. It should be noted that free vibration is simu-
lated for all cases without considering gravity loads. The trusses are
detailed as follows.

464 S. Bureerat, N. Pholdee / Applied Soft Computing 66 (2018) 462–472

Fig. 1. Twenty-five bar truss.

Table 1
Natural frequencies (Hz) of damaged and undamaged 25 bar structure.

Mode Undamaged
reported in [6]a

Undamaged calculated by
commercial software
(Ansys academic version)a

Undamaged calculated
in this studya

35% damage at element
number 7

35% damage at element
number 7 and 40% damage
at element number 9

1 70.9924 69.782 69.7818 69.1393 68.5203
2 74.0851 72.822 72.8217 72.2006 71.3167
3 97.5390 95.876 95.8756 95.3372 94.5625
4 122.2281 120.14 120.1437 119.8852 119.6514
5 121.9300 121.50 121.5017 121.4774 121.4253
6 – 125.01 125.0132 125.0130 125.0129

a The natural frequencies are slightly different which could be due to the numerical algorithm used and truncation errors.

Table 2
Natural frequencies (Hz) of damaged and undamaged 72 bar structure.

Mode Undamaged
reported in [11]a

Undamaged calculated by
commercial software
(Ansys academic version)a

Undamaged calculated
in this studya

15% damage at element
number 55

15% damage at element
number 58 and 10% damage at
element number 4

1 6.0434 5.4977 6.0455 5.9553 5.9530
2 6.0441 5.4977 6.0455 6.0455 6.0455
3 10.4627 9.5181 10.4764 10.4764 10.4764
4 18.2275 16.594 18.2297 18.1448 18.0921
5 25.4466 23.213 25.4939 25.4903 25.2437

9

cal alg

3

e
d
r
d
9
3
e
o
t
t

3

f
n
t

6 25.4510 23.213 25.493

a The natural frequencies are slightly different which could be due to the numeri

.1. Twenty-five-bar truss

The structure having 25 bar is depicted in Fig. 1 [6]. All bar
lement cross-sectional areas are set to be 6.4165 mm2. Material
ensity and Young modulus are given as 7850 kg/m3 and 200 GPa,
espectively. Two damage case studies are assumed as Case I: 35%
amage on element 7 (Note that 35% damage on elements 6, 8 or

 will result in the same set of natural frequencies), and Case II:
5% and 40% damage at elements 7 and 9 (Note that 35% damage in
lement 6 and 40% damage in element 8 will result in the same set
f natural frequencies for this case). The pin supports are applied
o node numbers 7, 8, 9 and 10. The data of natural frequencies of
he damaged and undamaged 25-bar truss are given in Table 1.

.2. Seventy-two-bar truss
The 72-bar truss structure is displayed in Fig. 2 [11] where
our non-structural masses of 2270 kg are attached to the top
odes. The values of all bar element cross-sectional areas are set
o be 0.0025 m2. Material density and modulus of elasticity are
25.4939 25.4939

orithm used and truncation errors.

2770 kg/m3 and 6.98 × 1010 Pa, respectively. Two cases of damage
are generated as Case I: 15% damage at element number 55 (Note
that 15% damage in elements 56, 57, or 58 will result in the same
set of natural frequencies as that of element 55), and Case II: 10%
damage at element number 4 and 15% damage at element number
58 (90, 180, and 270 ◦ rotation along the z axis will lead to the same
set of natural frequencies). The pin supports are applied to nodes
number 17, 18, 19 and 20. The values of natural frequencies of the
damaged and undamaged 72-bar truss are given in Table 2.

4. Hybrid radial basis function and differential evolution
for truss damage detection

The purpose of using MHs for truss damage detection is to solve
the optimisation problem with the objective function (5) subject
to bound constraints of x. The advantages of using MHs are their

simplicity in use, capability of global search, derivative-free fea-
ture, and robustness. Using meta-heuristics implies that a user has
less worry about mode switching during an optimisation run while
this phenomenon may occur in cases of using a gradient-based opti-

S. Bureerat, N. Pholdee / Applied Soft Computing 66 (2018) 462–472 465

ty-tw

m
p

4

fi
t
c
m
a
(
u

F
b
t
o

u

F

Fig. 2. Seven

iser. The detection approach can be used for real-time monitoring
rovided that an employed MH is adequately powerful.

.1. Differential evolution

Differential evolution is a population based method which was
rst proposed by Storn and Price in 1997 [23]. The method contains
wo main steps for searching an optimum, including mutation and
rossover where the acronym DE/x/y/z is used to specify different
utation and crossover strategies. The variable x is used to specify

 vector for mutation which can be best (the best individual) or rand
random individual) while y and z specify the number of vector pairs
sed in mutation and the choice of a crossover scheme, respectively.

or example, as used in this work, DE/best/2/bin means that the
est individual and two different vector pairs are used in the muta-
ion step while the binomial crossover is employed. The mutation
peration can be expressed as follows:
i = xbest + (−1)rand(−1,0)F
(

xr,1 + xr,2 − xr,3 − xr,4
)

. (6)

In this work, F is a uniform random number in the range of [Fmin,
max]. For the i-th mutant individual uT

i
= [xnew,1, ..., xnew,D] and its
o bar truss.

corresponding parent xT
old = [xold,1, ..., xold,D], the binary crossover

can be operated leading to a new candidate solution xnew as

xnew,j =
{

uj ; rand < CR

xold,j ; otherwise
j = 1, 2, 3, ..., D. (7)

The selection operator is carried out by comparing xnew and its
parent xold where the better will survive to the next generation.

The DE computational steps are shown in Algorithm 1. Initially,
a set of the population is generated by means of randomisation
and their objective function values are evaluated. After obtaining
the best individual, the offspring are generated by mutation (eq.6)
and then crossover (eq.7). Then, the next generation is selected and
the search process will be repeated until a termination criterion is
reached.

Algorithm 1 DE search procedure.

4.2. Inverse problem-based differential evolution

This subsection details the proposed differential evolution based
on using an inverse problem concept. In optimisation, the radial

basis function is traditionally used for approximating an objective
function value for problems with expensive function evaluation
[22,24]. Nevertheless, in this work RBF is conversely implemented.
It will be used to approximate a design solution x that is expected

466 S. Bureerat, N. Pholdee / Applied Soft Computing 66 (2018) 462–472

Table 3
MH Parameters settings.

MH Parameter settings

Whale optimization algorithm (WOA) [16] – The parameter b = 1
– Other parameters are iteratively adapted.

Sine Cosine algorithm (SCA) [17] – The constant parameter a = 2.

Moth-flame optimisation algorithm (MFO) [18] – The constant parameter b = 1
– Other parameters are iteratively adapted.

Differential evolution (DE) [23] – Using DE/best/2/bin strategy
– Scaling factor (F) = 0.8,
– probability of choosing elements of mutant vectors (CR) = 0.5

Artificial bee colony algorithm (ABC) [25] – The number of food sources for employed bees = nP /2.
– A trial counter to discard a food source = 100.

Real-code ant colony optimisation (ACOR) [26] – The parameter, q = 0.2
– The parameter, � = 1

Charged system search (ChSS) [27] – The number of solutions in the charge memory = 0.2 × nP

– The charged moving considering rate = 0.75 − the parameter PAR = 0.5

League championship algorithm (LCA) [28] – The probability of success Pc = 0.9999
– The decreasing rate to decrease Pc = 0.9995

Simulated annealing (SA) [29] – Starting temperature = 10
– Ending temperature = 0.001

For each loop, nmode candidates are created by mutating on the current best solution while other
nmode candidates are created from mutating the current parent. The best of those 2nmode solutions
are set as an offspring to be compared with the parent.

Particle swarm optimisation (PSO) [30] – The starting inertia weight = 0.5
– The ending inertia weight = 0.01
– The cognitive learning factor = 0.5
– The social learning factor = 0.5

Evolution strategies (ES) [31] The algorithm uses a binary tournament selection operator and a simple mutation without the
effect of rotation angles.

Teaching-learning-based optimisation (TLBO) [32] Parameter settings are not required.
Adaptive differential evolution (JADE) [20] The parameters are self-adapted during an optimisation process.

ters ar

aram

c
t
n
a
a
s
o
w
m
v
a
v

x

ϕ
�
f

Evolution strategy with covariance matrix
adaptation (CMAES) [21]

The parame

IPB-DE Use the DE p

orresponding to the target damage conditions. Given that the vec-
or of target natural frequencies (�damage) contains nmode lowest
atural frequencies of the damaged structure, the idea is to find

 solution vector xdamage containing ne element damage percent-
ges by means of interpolation. During MH search, if we have a
et of N design solutions {x1, x2,..., xN} which corresponds to a set
f N vectors of natural frequencies {�1, �2, . . ., �N}, these data
ill be used for RBF training. In contrast to surrogate-assisted opti-
isation, the natural frequency vector will be set as independent

ariables whereas the design vector x will be set as dependent vari-
bles. The ith element of xdamage that is expected to give the target
ector of natural frequencies of the damaged truss is expressed as:

damage,i =
N∑

k=1

ckϕ
(
‖ωk − ωdamage‖

)
(8)

where ck is the interpolation coefficients to be determined, and
 is a RBF kernel function. ‖ωk − ωdamage‖is the distance between
k and �damage. For xi, interpolation coefficients ck can be found

rom solving the system of linear equations
N∑
k=1

ckϕ (‖ωk − ωl‖) = xi (ωl) ; for i = 1, ..., ne and l = 1, ..., N (9)
e self-adapted during an optimisation process.

eter setting.

where xi(�l) is the ith element of the lth solution vector in the
training set {x1, x2,..., xN}. Eq. (9) can be written in a matrix form
as

Ac = b (10)

where Ak ,l = ϕ(||�k − �l||). It is required to compute ne sets of the
interpolation coefficients according to ne elements of x. In practice,
the matrix A is generated and inverted once, and will be used to
calculate ne sets of the coefficients.

Having determined the sets of interpolation coefficients ck for all
ne elements of x by using (9), the elements of xdamage can be found
from using Eq. (8). The search procedure for hybridised RBF and DE
which will be termed inverse problem-based differential evolution
(IPB-DE) according to its computation nature can be carried out in
such a way that, after the reproduction step 3 in Algorithm 1, the
next generation is selected in step 5. The worst solution in the next
generation is then replaced by xdamage. The procedure of the hybrid
algorithm IPB-DE is detailed in Algorithm 2 while the flowchart for
the IPB-DE algorithm is shown in Fig. 3. The process starts by cre-
ating an initial population by using the Latin hypercube sampling
(LHS) technique instead of the Monte Carlo technique. Those solu-
tions in the initial population are then saved to the RBF database for

training RBF. Offspring are then created by means of reproduction of
DE. The candidate solution xdamage is created using Equations (8–9).
Having performed a selection operation, the worst solution in the
next generation is replaced by xdamage. The best solution from the

S. Bureerat, N. Pholdee / Applied Soft Computing 66 (2018) 462–472 467

 chart

o
b
p
g
t

5

e
d
e
o
t
i
i

p

Fig. 3. Flow

ffspring and xdamage are then added to the RBF database which will
e used as training points during the optimisation search. As the
rocess continues, the RBF database is improved and expected to
ive more accurate results. The procedure is repeated until fulfilling
he termination criteria.

Algorithm 2 IPB-DE

. Numerical experiment

To verify the search performance of the proposed IPB-DE, sev-
ral MHs are compared based on solving the aforementioned truss
amage detection problems. The employed methods are said to be
stablished while some of them are regarded as the currently best
ptimisers of this type. Given that nP is a population size, MHs and
heir optimisation parameter settings used in this work are detailed

n Table 3 (it should be noted that details of notations can be found
n the corresponding references for each method) [9]:

Each optimisation algorithm is employed to solve each test
roblem for 30 independent runs. The number of iterations (gener-
 of IPB-DE.

ations) is 300 for all case studies while the population size is set to
be 30 and 50 for 25-bar and 72-bar trusses respectively. For the opti-
misers using different population sizes from the aforementioned
values, their search processes are terminated with the total number

of functions evaluations (FEs) equal to 30 × 300 and 50 × 300 for 25-
bar and 72-bar trusses respectively. Another termination criterion
is when one of the design solutions in the current population has
an objective function value less than or equal to 1 × 10−3. It should
be noted that the numbers of FEs used in this study can be consid-
ered insufficient for some MH optimisers. However, these values
are used to find out really powerful algorithms. For all test prob-

lems, six lowest natural frequencies (nmode = 6) are used to compute
the objective function values. This number of selected frequencies
is reasonable since, in practice, it is easier to accurately measure
fewer lowest natural frequencies.

468 S. Bureerat, N. Pholdee / Applied Soft Computing 66 (2018) 462–472

Table 4
Comparison of various RBF kernels for solving 72 bar truss Case II.

DE with RBF kernel Mean objective
function Values

No. of successful
runs from 30 runs

Mean of FEs

Gaussian 0.0011 25 6856
Multiquadric 0.0104 5 13993
Inverse quadratic 0.0032 14 12221

6

p
t
e
l
v
f
r
n
b
b
a
s
o
t
f
a
w
a
k

C
t
e
m
t
w
r

t

6

a
t
D
c
J
e

Table 6
Results for 25 bar truss Case I.

Optimiser Mean objective
function value

No. of successful
runs from 30 runs

Mean of FEs

WOA 0.0357 8 6993
MFO 0.0279 3 8686
SCA 0.0270 24 3262
DE 0.0017 19 6019
ABC 0.0135 0 9000
ACOR 0.0089 0 9000
ChSS 0.1385 0 9000
LCA 0.9036 0 9000
SA 0.0089 0 9000
TLBO 0.0077 6 7772
CMAES 0.0033 0 9000
ES 0.0308 0 9000
PSO 8.3830 0 9000
JADE 0.0026 2 8953
IPB-DE 0.0012 25 4486

Table 7
Results for 25 bar truss Case II.

Optimiser Mean objective
function value

No. of successful
runs from 30 runs

Mean of FEs

WOA 0.1301 0 9000
MFO 0.0336 1 8876
SCA 0.0930 0 9000
DE 0.0096 27 5220
ABC 0.0326 0 9000
ACOR 0.0125 0 9000
ChSS 0.1590 0 9000
LCA 0.8080 0 9000
SA 0.0269 0 9000
TLBO 0.0405 1 8917
CMAES 0.0115 0 9000
ES 0.0356 0 9000
PSO 8.6012 0 9000
JADE 0.0042 6 8875
IPB-DE 0.0010 30 3757

Table 8
Results for 72 bar truss Case I.

Optimiser Mean objective
function value

No. of successful
runs from 30 runs

Mean of FEs

WOA 0.0082 22 4832
MFO 0.0270 2 14783
SCA 0.0070 23 4793
DE 0.0087 14 12887
ABC 0.2184 0 15000
ACOR 0.0014 6 14831
ChSS 0.1727 0 15000
LCA 1.1499 0 15000
SA 0.0097 0 15000
TLBO 0.0035 27 5781
CMAES 0.0053 0 15000

T
C

Linear 0.0117 8 13819
Polynomial order 2 0.0039 15 10807

. Results and discussion

Initially, the effect of RBF kernels on the performance of the
roposed algorithm was investigated. The last test problem, 72 bar
russ with 15% damage at element number 58 and 10% damage at
lement number 4 which is said to be the most complicated prob-
em, was used. Table 4 shows the results obtained from using a
ariety of RBF kernel functions. The mean values of the objective
unction are used to indicate the search convergence of the algo-
ithms in cases that the objective function threshold (1 × 10−3) is
ot met during an optimisation run. Otherwise, the mean num-
er of FEs is used as an indicator. The algorithm that is terminated
y the objective function threshold is clearly the superior method
nd any optimisation run being stopped with this criterion is con-
idered a successful run. The number of successful runs from 30
ptimisation runs denoted as “No. of successful runs from 30” is
he total number that the algorithm can meet the target objective
unction value (1 × 10−3). It is used to measure the algorithm reli-
bility. From Table 4, the best performer is the Gaussian kernel,
hile the second best and the third best are the Polynomial kernel

nd the Inverse quadratic kernel, respectively. Thus, the Gaussian
ernel is used in this study.

Comparison of various ranges [Fmin, Fmax] of a scaling factor and
R values using DE with the best RBF kernel for solving the 72 bar
russ with 15% damage at element number 58 and 10% damage at
lement number 4 is shown in Table 5. It is found that for all imple-
ented intervals of [Fmin, Fmax], the performance increases when

he value of CR increases. The highest DE performance is obtained
hen the range [Fmin, Fmax] and CR are set to be [0.2, 0.8] and 0.8,

espectively.
The results obtained from the various MHs from solving the six

est problems are given in Tables 6–9.

.1. Twenty-five-bar truss

For the 25-bar truss with 35% damage at element 7, the results
re given in Table 6. The best performer based on the mean objec-
ive function values is IPB-DE while the second and third best are

E and JADE respectively. When considering the number of suc-
essful runs, seven optimisers including WOA, MFO, SCA, DE, TLBO,
ADE and IPB-DE can detect the damage in the structures. The most
fficient optimisers are SCA and IPB-DE that can detect the dam-

ES 0.0010 29 9335
PSO 1.9146 0 15000
JADE 0.0019 1 15000
IPB-DE 0.0009 30 3155

able 5
omparison of various ranges of F and CR values for solving 72 bar truss Case II.

DE with Gaussian RBF kernel Mean objective
function value

No. of successful runs
from 30 runs

Mean of FEs

[Fmin, Fmax] CR

[−1.5,1.5] 0.3 0.0027 1 15000
[−1.5,1.5] 0.5 0.0013 16 12983
[−1.5,1.5] 0.8 0.0011 24 7648
[0.2,0.8] 0.3 0.0025 0 15000
[0.2,0.8] 0.5 0.0011 21 12344
[0.2,0.8] 0.8 0.0011 25 6856
[−2,−2] 0.3 0.0042 0 15000
[−2,−2] 0.5 0.0014 9 14496
[−2,−2] 0.8 0.0014 21 9940

S. Bureerat, N. Pholdee / Applied Soft Computing 66 (2018) 462–472 469

Fig. 4. Search history for the case 25 bar Case I, (a) original, (b) zoom in.

Fig. 5. Search history for the case 25 bar tr

Table 9
Results for 72 bar truss Case II.

Optimiser Mean objective
function value

No. of successful
runs from 30 runs

Mean of FEs

WOA 0.0189 0 15000
MFO 0.0137 1 14935
SCA 0.0260 2 14502
DE 0.0127 7 13963
ABC 0.1591 0 15000
ACOR 0.0058 0 15000
ChSS 0.1348 0 15000
LCA 1.1049 0 15000
SA 0.0129 0 15000
TLBO 0.0045 7 13503
CMAES 0.0050 0 15000
ES 0.0023 2 14940

a
a

a

PSO 1.7726 0 15000
JADE 0.0031 0 15000
IPB-DE 0.0011 25 6856
ges of the structure for 24 and 25 times out of 30 runs within the
verage of 3262 and 4486 function evaluations respectively.

For the 25 bar truss with 35% damage at element 7 and 40% dam-
ge at the element number 9, the results are reported in Table 7.
uss Case II, (a) original, (b) zoom in.

The best performer based on mean values is IPB-DE while the sec-
ond and third best are JADE and DE respectively. When examining
the number of successful runs, only IPB-DE can detect the damage
in the structure for all 30 runs. For this case, IPB-DE is said to be
the most efficient optimiser, which obtained the minimum objec-
tive function mean value and successfully detected the damage in
the structure for all optimisation runs with the average number of
function evaluations being 3735.

6.2. Seventy-two-bar truss

For the 72-bar truss with 15% damage at element 5, the results
are reported in Table 8. The best performer based on the mean
objective function values is IPB-DE, while the second and the third
best are ES and ACOR. When looking at the number of success-
ful runs (f reaching 1 × 10−3 or lower), the most efficient method is
IPB-DE which can detect the damage of the structure 30 times from
implementing it in 30 optimisation runs, while the average number

of function evaluations for convergent results is only 3155.

For the 72 bar truss with 15% damage at element number 58 and
10% damage at element number 4, the results are given in Table 9.
The best performer based on the mean of objective function values

470 S. Bureerat, N. Pholdee / Applied Soft Computing 66 (2018) 462–472

Fig. 6. Search history for the case, 72 bar truss Case I, (a) original, (b) zoom in.

 bar t

i
t
e
2
n

R
m
t
m
t
t

(
2
I
s
f
b
c
c
c

Fig. 7. Search history for the case, 72

s IPB-DE, while the second and third best are ES and JADE respec-
ively. When considering the number of successful runs, the most
fficient is IPB-DE, which can detect the damage of the structure
5 times from a total of 30 optimisation runs, while the average
umber of function evaluations for the convergence results is 6856.

Overall, it is clearly indicated from the results that integrating
BF into the DE can improve the search performance of the opti-
iser in solving structural damage detection of truss structures in

erms of both search convergence and consistency. Based on the
ost crucial indicators, the average number of successful runs and

he average number of function evaluations, IPB-DE is unanimously
he most powerful method.

Figs. 4–7 shows the search history of the top five best algorithms
sorted based on number of successful runs from 30 runs). For the
5 bar truss with 35% damage at element number 7, the proposed

PB-DE and WOA show a similar convergence curve while WOA is
lightly faster than IPB-DE after 200 function evaluations. Similarly,
or the case of the 72 bar truss with 15% damage at element num-

er 55, the proposed IPB-DE and WOA show the best convergence
urves at the beginning while WOA is faster than IPB-DE. The WOA
an converge to the goal before 500 function evaluations for this
ase. For the 25 bar truss with 35% damage at element number 7
russ Case II, (a) original, (b) zoom in.

and 40% damage at element number 9, and the 72 bar truss with
15% damage at element number 58 and 10% damage at element
number 4, the IPB-DE gives the best convergence curves since the
beginning.

Tables 10–11 show a comparison of the damage locations of the
simulated problems and the results obtained from the best run of
IPB-DE. It was found that IPB-DE can correctly detect the damage
locations for Case I of the twenty-five bar truss while for Case II of
the twenty-five bar truss, the structure is simulated to have 35%
and 40% damage at element 7 and element 9 respectively, while
the result obtained from IPB-DE gives 34.39 and 39.83% damage
at element 6 and element 8. For this case, it can be said that the
results are accurate, as both groups can obtain the same set of nat-
ural frequencies as mentioned in Section 3. Similarly, for Case I of
the seventy-two bar truss, the structure is simulated to have 15%
damage at element number 55 while 15% damage at element 56,
57, or 58 gives the same values of �damage. Therefore, it can be
concluded that the results are accurate for this case. For Case II

of the seventy-two bar truss, IPB-DE found damage in many ele-
ments, while the resulting natural frequencies are similar to the
values of �damage. This implies that using only natural frequencies
as an objective function can possibly fail to identify the damage

S. Bureerat, N. Pholdee / Applied Soft Computing 66 (2018) 462–472 471

Table 10
Comparison of the simulated solution and the best results obtained by IPB-DE for 25 bar truss.

% damage at element no. Case I Case II

Simulated damage (%) Damage found by IPB-DE (%) Simulated damage (%) Damage found by IPB-DE (%)

1 0.00 0.06 0.00 0.00
2 0.00 0.83 0.00 0.74
3 0.00 0.00 0.00 0.02
4 0.00 0.00 0.00 0.35
5 0.00 0.05 0.00 0.02
6 0.00 0.44 0.00 a34.39
7 35.00 34.16 35.00 0.58
8 0.00 0.45 0.00 a39.83
9 0.00 0.00 40.00 0.00
10 0.00 0.00 0.00 0.00
11 0.00 0.02 0.00 0.00
12 0.00 0.10 0.00 0.00
13 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00
15 0.00 0.01 0.00 0.00
16 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00
20 0.00 0.01 0.00 0.00
21 0.00 0.00 0.00 0.00
22 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00
�1 69.1393 69.139 68.5203 68.52002
�2 72.2006 72.200 71.3167 71.31654
�3 95.3372 95.337 94.5625 94.56267
�4 119.8852 119.886 119.6514 119.6496
�5 121.4774 121.477 121.4253 121.4256
�6 125.0130 125.011 125.0129 125.0121

a 35% damage in elements 6 and 40% damage in elements 8 will result in the same set of natural frequencies for the Case II as mentioned in Section 3.

Table 11
Comparison of the simulated solution and the best results obtained by IPB-DE for 72 bar truss.

% damage at element no. Case I Case II

Simulated damage (%) Damage found by IPB-DE (%) Simulated damage (%) Damage found by IPB-DE (%)

1, 26, 51 0, 0, 0 0, 0, 0.39 0, 0, 0 0, 0, 0,
2, 27, 52 0, 0, 0 0, 0, 0.36 0, 0, 0 b9.88, 0, 0.76,
3, 28, 53 0, 0, 0 0, 0, 0.03 0, 0, 0 0, 0.04, 0.51,
4, 29, 54 0, 0, 0 0, 0.01, 0.90 10.00, 0, 0 0.01, 0.05, 0.06,
5, 30, 55 0, 0, 15.00 0, 0.01, 0.02 0, 0, 0 0.01, 0, 0,
6, 31, 56 0, 0, 0 0.06, 0, 0.36 0, 0, 0 0.04, 0.16, a9.08,
7, 32, 57 0, 0, 0 0.03, 0.06, 0 0, 0, 15.00 0.02, 0.45, 0,
8, 33, 58 0, 0, 0 0, 0, a14.51 0, 0, 0 0, 0.73, a6.58,
9, 34, 59 0, 0, 0 0.01, 0.01, 0.04 0, 0, 0 0.03, 0.02, 0.02,
10, 35, 60 0, 0, 0 0, 1.91, 0.01 0, 0, 0 0.01, 0, 0,
11, 36, 61 0, 0, 0 0.03, 0.87, 0 0, 0, 0 0, 0.69, 0,
12, 37, 62 0, 0, 0 0.01, 0.01, 0.07 0, 0, 0 0.04, 0, 0,
13, 38, 63 0, 0, 0 0.01, 0.00, 0.01 0, 0, 0 0.03, 0, 0,
14, 39, 64 0, 0, 0 0, 0.02, 0 0, 0, 0 0.13, 0, 0,
15, 40, 65 0, 0, 0 0.02, 0.03, 0.05 0, 0, 0 0, 0.06, 0.02,
16, 41, 66 0, 0, 0 0.14, 0.01, 0.00 0, 0, 0 0.21, 0, 0,
17, 42, 67 0, 0, 0 0.73, 0.00, 0.17 0, 0, 0 3.04, 0.02, 0.09,
18, 43, 68 0, 0, 0 0.27, 0, 0 0, 0, 0 0.55, 0.05, 1.79,
19, 44, 69 0, 0, 0 0, 0.01, 0 0, 0, 0 0, 0.06, 0.12,
20, 45, 70 0, 0, 0 0, 0, 0.62 0, 0, 0 0, 0, 0,
21, 46, 71 0, 0, 0 0, 0.01, 0.04 0, 0, 0 0, 0, 0.46,
22, 47, 72 0, 0, 0 0, 0, 0.01 0, 0, 0 0.01, 0.02, 0,
23, 48 0, 0 0.03, 0.01 0, 0, 0.03, 0.01,
24, 49 0, 0 0.06, 0.54 0, 0, 0.05, 0.07,
25, 50 0, 0 0, 0.38 0, 0, 0.05, 0.15,
�1 5.9553 5.9562 5.9530 5.9534
�2 6.0455 6.0451 6.0455 6.0451
�3 10.4764 10.4757 10.4764 10.4755
�4 18.1448 18.1443 18.0921 18.0904
�5 25.4903 25.4892 25.2437 25.2436
�6 25.4939 25.4929 25.4939 25.4927

a 15% damage in elements 55, 56, 57 or 58 will result in the same set of natural frequencies.
b 10% damage in elements 1, 2, 3 or 4 will result in the same set of natural frequencies.

4 Soft C

l
r
f
f

7

t
a
u
S
e
t
f
i
b
k
s
a
n
w

A

R

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[31] T. Back, Evolutionary Algorithms in Theory and Practice, Oxford University
Press, Oxford, 1996.

[32] R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching–learning-based optimization: a
72 S. Bureerat, N. Pholdee / Applied

ocations for the cases of symmetric structures. The proposed algo-
ithm is obviously effective and efficient but more reliable objective
unctions for damage localisation such as the use of both natural
requencies and mode shapes should be invented.

. Conclusions

Hybridisation of RBF into DE leading to IPB-DE is presented for
russ structural damage detection problems. Four structural dam-
ge detection test problems from two different truss structures are
sed to examine the search performance of the proposed approach.
everal well established MHs and the proposed algorithms are then
mployed to solve the test problems. Numerical results reveal that
he proposed hybrid algorithms of DE with RBF are the top per-
ormers for all test problems. Integrating RBF into the DE obviously
mproves DE performance. The proposed idea has the potential to
e further applied to other inverse problems such as robot inverse
inematic analysis. Further improvement for meta-heuristic based
tructural health monitoring should be the purpose of a more reli-
ble objective function rather than solely using the set of lowest
atural frequencies. Detection of joint damage is another issue that
ill be focused on in future work.

cknowledgement

The authors are grateful for the support from the Thailand
esearch Fund (TRF), Grant no. MRG5980238.

eferences

[1] J.-J. Sinou, A review of damage detection and health monitoring of mechanical
systems from changes in the measurement of linear and non-linear
vibrations, in: C.S. Robert (Ed.), Mechanical Vibrations: Measurement, Effects
and Control, Nova Science Publishers, Inc., 2009, 2018, pp. 643–702.

[2] A. Ghods, H.-H. Lee, Probabilistic frequency-domain discrete wavelet
transform for better detection of bearing faults in induction motors,
Neurocomputing 188 (2016) 206–216.

[3] Z.D. Zheng, Z.R. Lu, W.H. Chen, J.K. Liu, Structural damage identification based
on power spectral density sensitivity analysis of dynamic responses, Comput.
Struct. 146 (2015) 176–184.

[4] M. Rajendra, K. Shankar, Improved complex-valued radial basis function
(ICRBF) neural networks on multiple crack identification, Appl. Soft Comput.
28 (2015) 285–300.

[5] A. Labib, D. Kennedy, C.A. Featherston, Crack localisation in frames using
natural frequency degradations, Comput. Struct. 157 (2015) 51–59.

[6] A. Majumdar, D.K. Maiti, D. Maity, Damage assessment of truss structures
from changes in natural frequencies using ant colony optimization, Appl.
Math. Comput. 218 (2012) 9759–9772.

[7] Ł. Jedliński, J. Jonak, Early fault detection in gearboxes based on support
vector machines and multilayer perceptron with a continuous wavelet
transform, Appl. Soft Comput. 30 (2015) 636–641.
[8] M.A. de Oliveira, D.J. Inman, Performance analysis of simplified Fuzzy
ARTMAP and Probabilistic Neural Networks for identifying structural damage
growth, Appl. Soft Comput. 52 (2017) 53–63.

[9] N. Pholdee, S. Bureerat, Structural health monitoring through meta-heuristics
–comparative performance study, Adv. Comput. Des.: Int. J. 1 (2016) 315–327.
omputing 66 (2018) 462–472

10] Z.H. Ding, M. Huang, Z.R. Lu, Structural damage detection using artificial bee
colony algorithm with hybrid search strategy, Swarm Evol. Comput. 28 (2016)
1–13.

11] A. Kaveh, A. Zolghadr, An improved CSS for damage detection of truss
structures using changes in natural frequencies and mode shapes, Adv. Eng.
Software 80 (2015) 93–100.

12] M. Mehrjoo, N. Khaji, M. Ghafory-Ashtiany, Application of genetic algorithm
in crack detection of beam-like structures using a new cracked
Euler–Bernoulli beam element, Appl. Soft Comput. 13 (2013) 867–880.

13] A. Mortazavi, V. Toğan, Sizing and layout design of truss structures under
dynamic and static constraints with an integrated particle swarm
optimization algorithm, Appl. Soft Comput. 51 (2017) 239–252.

14] H. Zhao, M. Zhao, C. Zhu, Reliability-based optimization of geotechnical
engineering using the artificial bee colony algorithm, KSCE J. Civ. Eng. 20
(2016) 1728–1736.

15] A. Kaveh, B. Mirzaei, A. Jafarvand, An improved magnetic charged system
search for optimization of truss structures with continuous and discrete
variables, Appl. Soft Comput. 28 (2015) 400–410.

16] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw. 95
(2016) 51–67.

17] S. Mirjalili, SCA.;1;: a sine cosine algorithm for solving optimization problems,
Knowledge-Based Syst. 96 (2016) 120–133.

18] S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired
heuristic paradigm, Knowledge-Based Syst. 89 (2015) 228–249.

19] F. Sardari, M. Ebrahimi Moghaddam, A hybrid occlusion free object tracking
method using particle filter and modified galaxy based search meta-heuristic
algorithm, Appl. Soft Comput. 50 (2017) 280–299.

20] J. Zhang, A.C. Sanderson, JADE: adaptive differential evolution with optional
external archive, evolutionary computation, IEEE Trans. 13 (2009) 945–958.

21] N. Hansen, S.D. Muller, P. Koumoutsakos, Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation
(CMA-ES), Evol. Comput. 11 (2003) 1–18.

22] N. Pholdee, S. Bureerat, H.M. Baek, Y.-T. Im, Two-stage surrogate assisted
differential evolution for optimization of a non-circular drawing sequence,
Int. J. Precis. Eng. Manuf. 18 (2017) 567–573.

23] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces, J. Global Optim. 11 (1997)
341–359.

24] K. Wansaseub, N. Pholdee, S. Bureerat, Optimal U-shaped baffle square-duct
heat exchanger through surrogate-assisted self-adaptive differential
evolution with neighbourhood search and weighted exploitation-exploration,
Appl. Therm. Eng. 118 (2017) 455–463.

25] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm, J. Global Optim.
39 (2007) 459–471.

26] K. Socha, M. Dorigo, Ant colony optimization for continuous domains, Eur. J.
Oper. Res. 185 (2008) 1155–1173.

27] A. Kaveh, S. Talatahari, A novel heuristic optimization method: charged
system search, Acta Mech. 213 (2010) 267–289.

28] A. Husseinzadeh Kashan, An efficient algorithm for constrained global
optimization and application to mechanical engineering design: league
championship algorithm (LCA), Comput.-Aided Des. 43 (2011) 1769–1792.

29] S. Bureerat, J. Limtragool, Structural topology optimisation using simulated
annealing with multiresolution design variables, Finite Elem. Anal. Des. 44
(2008) 738–747.

30] G. Venter, J. Sobieszczanski-Sobieski, Particle swarm optimization, AIAA J. 41
(2003) 1583–1589.
novel method for constrained mechanical design optimization problems,
Comput.-Aided Des. 43 (2011) 303–315.

http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0005
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0010
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0015
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0020
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0025
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0030
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0035
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0040
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0045
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0050
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0055
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0060
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0065
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0070
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0075
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0080
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0085
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0090
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0095
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0100
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0105
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0110
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0115
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0120
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0125
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0130
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0135
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0140
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0145
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0150
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0155
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160
http://refhub.elsevier.com/S1568-4946(18)30105-4/sbref0160

Research Article
Estimation of Distribution Algorithm Using Correlation between
Binary Elements: A New Binary-Code Metaheuristic

Nantiwat Pholdee and Sujin Bureerat

Sustainable and Infrastructure Research and Development Center, Department of Mechanical Engineering,
Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

Correspondence should be addressed to Sujin Bureerat; sujbur@kku.ac.th

Received 29 April 2017; Revised 28 July 2017; Accepted 2 August 2017; Published 13 September 2017

Academic Editor: Benjamin Ivorra

Copyright © 2017 Nantiwat Pholdee and Sujin Bureerat. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A new metaheuristic called estimation of distribution algorithm using correlation between binary elements (EDACE) is proposed.
The method searches for optima using a binary string to represent a design solution. A matrix for correlation between binary
elements of a design solution is used to represent a binary population. Optimisation search is achieved by iteratively updating such
a matrix. The performance assessment is conducted by comparing the new algorithm with existing binary-code metaheuristics
including a genetic algorithm, a univariatemarginal distribution algorithm, population-based incremental learning, binary particle
swarm optimisation, and binary simulated annealing by using the test problems of CEC2015 competition and one real-world
application which is an optimal flight control problem. The comparative results show that the new algorithm is competitive with
other established binary-code metaheuristics.

1. Introduction

Nowadays in the economic-competitive world, optimisation
has become increasingly popular for real applications as it is a
powerful mathematical tool for solving a wide range of engi-
neering design types. Once an optimisation problem is posed,
one of the most important elements in the optimisation
process is an optimisation method or an optimiser used to
find the optimum solution. Optimisers can be categorised as
themethodswith andwithout using function derivatives.The
former are traditionally called mathematical programming
or gradient-based optimisers whereas the latter have various
subcategories. One of them is a metaheuristic (MH). The
termmetaheuristics can cover nature-inspired optimisers [1–
10], swarm intelligent algorithms [11–20], and evolutionary
algorithms [21–24]. Most of them are based on using a set of
design solutions, often called a population, for searching an
optimum. The main operator usually consists of the repro-
duction and selection stages. The advantages of such an opti-
miser are simplicity to use, global optimisation capability, and
flexibility to apply as it is derivative-free. However, it still has
a slow convergence rate and search consistency. These issues

have made researchers and engineers around the globe
investigate how to improve the search performance of MHs.

A genetic algorithm (GA) [21] is probably the best known
MH while other popular methods are differential evolution
(DE) [22]andparticle swarmoptimisation (PSO) [17]. Among
MH algorithms, they can be categorised as themethods using
real, binary, or integer codes.Themix of those types of design
variables and some other types can also be made. This makes
MHs considerably appealing for use with real-world appli-
cations particularly for those design problems that function
derivatives are not available or impossible to calculate. Most
MHs are based on continuous design variables or real codes.
For single objective optimisation, there have been numerous
real-code MHs being developed. At the early stage, methods
like evolutionary programming [25] and evolution strategies
[26] were proposed. Then, DE and PSO were introduced.
Until recently, there have been probably over a hundred
new real-code MHs in the literature. Some recent algorithms
include, for example, a sine-cosine algorithm [27], a grey
wolf optimiser [20], teaching-learning-based optimisation
[2], and Jaya algorithm [28]. Meanwhile, powerful existing
algorithms such as PSO and DE have been upgraded by

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 6043109, 15 pages
https://doi.org/10.1155/2017/6043109

https://doi.org/10.1155/2017/6043109

2 Mathematical Problems in Engineering

integrating into them some types of self-adaptive schemes, for
example, adaptive differential evolution with optional exter-
nal archive (JADE) [29], Success-History Based Parameter
Adaptation for Differential Evolution (SHADE) [30], SHADE
Using Linear Population Size Reduction (LSHADE) [31], and
adaptive PSO [32–34]. MHs are even more popular when
they can be used to find a Pareto front of a multiobjective
optimisation problem within one optimisation run. Such a
type of algorithm is usually called multiobjective evolution-
ary algorithms (MOEAs) where some of the best known algo-
rithms are nondominated sorting genetic algorithm (NSGA-
I, NSGA-II, and NSGA-III) [35–37], multiobjective particle
swarm optimisation [38], strength Pareto evolutionary algo-
rithm [39], multiobjective grey wolf optimisation [40], mul-
tiobjective teaching-learning-based optimisation [41], mul-
tiobjective evolutionary algorithm based on decomposition
[42], multiobjective ant colony optimisation [43], multiob-
jective differential evolution [44], and so forth. One of the
most challenging issues in MHs is to improve their ability
for tackling many-objective optimisation (a problem with
more than three objectives). Some recently proposed algo-
rithms are knee point-driven evolutionary algorithm [45],
an improved two-archive algorithm [46], preference-inspired
coevolutionary algorithms [47], and so forth.

In practice, GA a metaheuristic using binary strings is
arguably the most used method as it is included in engineer-
ing software such as MATLAB. Apart from GA, other MHs
using a binary string representing a design solution include
a univariate marginal distribution algorithm (UMDA) [48],
population-based incremental learning (PBIL) [24], binary
particle swarm optimisation (BPSO) [49], binary simulated
annealing (BSA) [50], binary artificial bee colony algorithm
based on genetic operator (GBABC) [51], binary quantum-
inspired gravitational search algorithm (BQIGSA) [52], and
self-adaptive binary variant of a differential evolution algo-
rithm (SabDE) [53]. With the popularity of GA, a binary-
code MH has been rarely developed and proposed while its
real-code counterparts have over a hundred different search
concepts reported in the literature. That means there are
possible more than a thousand real-code MH algorithms
being published. It should be noted that real-codeMHs can be
modified to solve binary-code optimisation by means of
binarisation [54].

This paper is therefore devoted to the further develop-
ment of a binary-code metaheuristic. The method is called
estimation of distribution algorithm using correlation be-
tween binary elements (EDACE). Performance assessment is
made by comparing the proposed optimiser with GA,
UMDA, BPSO, BSA, and PBIL by using the CEC2015 test
problems. Also, the real-world optimal flight control is used
for the assessment. The comparative results are obtained and
discussed. It is shown that EDACE is among the top per-
formers.

2. Proposed Method

Thesimplest but efficient estimation of distribution algorithm
is probably population-based incremental learning (PBIL).

Another MH that uses a similar concept is UMDA. Unlike
GA which uses a matrix containing the whole binary solu-
tions during the search, PBIL uses the so-called probability
vector to represent a binary population. During an optimi-
sation process, the probability vector is updated iteratively
until approaching an optimum. In EDACE, a matrix called a
correlation between binary elements (CBE) matrix is used to
represent a binary population. The matrix can be denoted as𝑃𝑖𝑗 ∈ [0, 1], where the value of the element 𝑃𝑖𝑗 indicates the
correlation between element 𝑖 and element 𝑗 of a binary
design solution. The higher value of 𝑃𝑖𝑗 means the higher
probability that binary elements 𝑖 and 𝑗 will have the same
value. The algorithm is developed to deal with a box-con-
strained optimisation problem:

min 𝑓 (x) ; x𝐿 ≤ x ≤ x𝑈, (1)

where 𝑓 is an objective function and x is a vector containing
design variables (a design vector). x𝐿 and x𝑈 are the lower
and upper bounds of x, respectively. Assuming that a design
vector can be represented by a row vector of binary bits size𝑚 × 1, the CBE matrix thus has the size of 𝑚 × 𝑚. It should
be noted that the details of converting a binary string to be
a design vector can be found in [55]. In generating a binary
string from theCBEmatrix, a reference binary solution (RBS)
is needed. It can be a randomly generated solution or the
best solution found so far depending on a user preference.
Then, a row of the matrix is randomly selected (say the 𝑟th
row). The 𝑟th element of a generated binary solution is set
to be the 𝑟th element of the reference binary solution. The
rest of the created binary elements are based on the value of𝑃𝑟𝑗; 𝑗 ̸= 𝑟. The procedure for creating a binary solution sized𝑚 × 1 from the𝑚 × 𝑚 CBE matrix is detailed in Algorithm 1
where b is a binary design solution, bREF is the reference
binary solution, 𝑛𝑃 is a population size, and rand ∈ [0, 1] is
a uniform random number. The algorithm spends 𝑛𝑃 loops
for creating 𝑛𝑃 binary solutions. The process for generating
a binary solution from the CBE matrix is in steps (3)–(12).
For one binary solution, only one randomly selected row of
CBE (say row 𝑟) is used (step (4)). Then, the 𝑟th element of
a generated binary solution is set equal to the 𝑟th element of
the reference binary solution, bREF. The rest of the elements
of the generated binary solution are created in such a way that
their values depend on corresponding elements on the 𝑟th
row of CBE. From the computation steps (5)–(11), the value
of 𝑃𝑟𝑗 determines the probability of 𝑎𝑗 to be the same as 𝑎𝑟.
The higher value of 𝑃𝑟𝑗 means the higher correlation between
elements 𝑟 and 𝑗 and consequently the higher probability that𝑎𝑗 will be set equal to 𝑎𝑟.

The CBE matrix is a square symmetric matrix with equal
size to the length of a binary solution whose all diagonal
elements are equal to one. For an iteration, the matrix will
be updated according to the so far best solution (bbest). The
learning rate (𝐿𝑅) with be used to control the changes in
updating𝑃𝑖𝑗 as with PBIL. Once𝑃𝑖𝑗 is updated, the value of𝑃𝑗𝑖
is set to be 𝑃𝑖𝑗 which means the process requires 𝑚(𝑚 − 1)/2

Mathematical Problems in Engineering 3

Input: bREF, P
Output: B = {b𝑖} for 𝑖 = 1, . . . , 𝑛𝑃
Main procedure(1) Set B = { }.(2) For 𝑖 = 1 to 𝑛𝑃(3) Set a = { } a vector used to contain elements of a generated binary string.(4) Randomly select a position (𝑟th row) of P.(5) Set 𝑎𝑟 = 𝑏REF,𝑟. % Set the 𝑟th element of a as the 𝑟th element of bREF.(6) For 𝑗 = {1, 2, . . . , 𝑚} − {𝑟}(7) If rand < 𝑃𝑟𝑗(8) 𝑎𝑗 = 𝑎𝑟 % 𝑎𝑗 and 𝑎𝑟 values are equal, which are either “0” or “1”.(9) Else(10) 𝑎𝑗 = 1 − 𝑎𝑟 % If 𝑎𝑟 = 1, 𝑎𝑗 = 0 or vice versa.(11) End(12) End(13) Set B = B ∪ a.(14) End

Algorithm 1: Generation of a binary population from a CBE matrix.

updates since 𝑃𝑖𝑖 is always set to be 1.The updated 𝑃𝑖𝑗 denoted
by 𝑃󸀠𝑖𝑗 can be calculated from

𝑃󸀠𝑖𝑗 = (1 − 𝐿𝑅) 𝑃𝑖𝑗 + 𝐿𝑅 (1 − 󵄨󵄨󵄨󵄨󵄨𝑏best,𝑖 − 𝑏best,𝑗󵄨󵄨󵄨󵄨󵄨) , (2)

where 𝐿𝑅 is the learning rate randomly generated in the inter-
val [𝐿𝑅,𝐿, 𝐿𝑅,𝑈]. 𝑏best,𝑖 and 𝑏best,𝑗 are the 𝑖th and 𝑗th elements
of bbest, respectively. From the updating equation, if the 𝑖th
and 𝑗th elements are similar, it means they are correlated;
consequently, the value of𝑃𝑖𝑗 (and𝑃𝑗𝑖) is increased. If they are
dissimilar or uncorrelated,𝑃𝑖𝑗 is then decreased.Nevertheless,
the value of 𝑃𝑖𝑗 must be limited to the predefined interval

0 ≤ 𝑃𝐿 ≤ 𝑃𝑖𝑗 ≤ 𝑃𝑈 ≤ 1, (3)

where 𝑃𝐿 and 𝑃𝑈 are the predefined lower and upper limits of𝑃𝑖𝑗. Equation (3) is used to maintain diversity in optimisation
search. In the original PBIL, a mutation operator is used
with the same purpose. Therefore, the procedure of EDACE
starts with an initial matrix for correlation between binary
elements where 𝑃𝑖𝑖 = 1 and 𝑃𝑖𝑗 = 0.5. This implies that when-
generating a binary solution, its elements have equal proba-
bility to be 1 or 0 where its 𝑟th element can be 1 or 0, created
at random. The procedure for general purpose of EDACE
is given in Algorithm 2. The decision on selecting bREF for
generating a binary solution and bbest for updating the CBE
matrix is dependent on a preference of a user. This means
other versions of EDACE can be developed in the future.

An initial binary population is randomly created. The
binary solutions are then decoded to be real design variables
where function evaluations are performed and bREF and bbest
are found. Then, new binary solutions are generated using
Algorithm 1 while the greedy selection (steps (6)–(8)) is acti-
vated with bREF and bbest being determined. The CBE matrix
is updated by using bbest as detailed in (2)-(3). The search

process is repeated until termination criterion is reached.The
generation of a binary design solution of EDACE is, to some
extent, similar to those used in binary PSO [49] and binary
quantum-inspired gravitational search algorithm (BQIGSA)
[52] in the sense that the binary solution is controlled by
the probability of being “1” or “0”. However, in EDACE, a
generated solution relies not only on such probability but also
on the reference binary solution bREF. Apart from that, the
update of CBE tends to be similar to the concept employed
in PBIL with a learning rate and this is totally different from
binary PSO and BQIGSA.

In selecting bREF and bbest, if both solutions are the same
which is bbest, it could lead to a premature convergence. If
both are set to be a solution randomly selected solution from
the current binary population, the diversification increases
but the convergence rate will be slower.Therefore, the balance
between intensification and diversification must be made. In
this work, the so far best binary solution is set to be bREF
to maintain intensification. For updating the CBE matrix, we
use the new updating scheme as

𝑃󸀠𝑖𝑗 = (1 − 𝐿𝑅) 𝑃𝑖𝑗 + 𝐿𝑅 (1 − 󵄨󵄨󵄨󵄨󵄨𝑏best1,𝑖 − 𝑏best2,𝑗󵄨󵄨󵄨󵄨󵄨) . (4)

The solutions bbest1 and bbest2 are two types of best solutions.
Firstly, 𝑛𝑃 best solutions are selected from {b𝑖} ∪ {b𝑖new} (see
Algorithm 2 for both solution sets), sorted according to their
functions, and then saved to a set Best sol. Four𝑚×1 vectors
are created as b1 the so far best solution, b2 a solution whose
elements are averaged from the elements of the first 𝑛best
(default = 10) best solutions found so far, b3 a solution whose
elements are averaged from the elements of the members
of Best sol, and b4 a solution whose elements are averaged
from the elements of the current binary population. bbest1 is
randomly chosen from the aforementioned solutions (b1, b2,
b3, and b4) with equal probability while bbest2 is randomly
chosen from the members of Best sol. With this idea, the

4 Mathematical Problems in Engineering

Input: number of generation (𝑛iter), population size (𝑛𝑃), binary length (𝑚)
Output: bbest, 𝑓best
Initialisation:
(0.1) Assign 𝑃𝑖𝑗 = 0.5 and 𝑃𝑖𝑖 = 1, sized𝑚 × 𝑚.
(0.2) Randomly generate 𝑛𝑃 binary solutions b𝑖 and decode them to be x𝑖.
(0.3) Calculate objective function values 𝑓𝑖 = fun(x𝑖) where fun is an objective function evaluation.
(0.4) Find 𝑓best, bREF, bbest
Main iterations(1) For iter = 1 to 𝑛iter(2) Update P using Equation (2)(3) Generate b𝑖new from P using Algorithm 1, and decode them to be x𝑖new.(4) For 𝑖 = 1 to 𝑛𝑃(5) Calculate objective function values 𝑓𝑖new = fun(x𝑖new).(6) If 𝑓𝑖new < 𝑓𝑖(7) 𝑓𝑖 = 𝑓𝑖new, b𝑖 = b𝑖new, x

𝑖 = x𝑖new(8) End(9) End(10) Update 𝑓best, bREF, bbest(11) End
Algorithm 2: Procedure for EDACE.

Input: 𝐿𝑅,𝐿, 𝐿𝑅,𝑈, P, b𝑖, bREF, Best sol, 𝑛best
Output: P󸀠
Main procedure
Create b1, b2, b3, b4
For 𝑖 = 1 to𝑚(1) Assign 𝑃𝑅 = rand.(2) If 𝑃𝑅 ∈ [0, 0.25), set 𝑏best1,𝑖 = 𝑏1,𝑖(3) If 𝑃𝑅 ∈ [0.25, 0.5), set 𝑏best1,𝑖 = 𝑏2,𝑖(4) If 𝑃𝑅 ∈ [0.5, 0.75), set 𝑏best1,𝑖 = 𝑏3,𝑖(5) Otherwise, set 𝑏best1,𝑖 = 𝑏4,𝑖(6) Random selected a vector bbest2 from Best sol.

For 𝑗 = 𝑖 + 1 to𝑚(7) Generate 𝐿𝑅.(8) Update 𝑃𝑖𝑗 using Equation (4).(9) Limit 𝑃𝑖𝑗 to the interval [𝑃𝐿, 𝑃𝑈].
End

End

Algorithm 3: Updating scheme for CBE.

balance between exploration and exploitation is maintained
throughout the search process. Algorithm 3 shows the new
CBE updating strategy.

3. Experimental Set-Up

To investigate the search performance of the proposed algo-
rithm, fifteen learning-based test problems from CEC2015
and one flight dynamic control optimisation problem are
used. The former are used for testing the performance of

EDACE for general types of box-constrained optimisation
while the latter is the real-world application.

3.1. CEC2015 Learning-Based Test Problems. The CEC2015
learning-based test problems are box-constrained single
objective benchmark functions proposed in [56]. The prob-
lems consist of 2 Unimodal Functions, 3 Simple Multimodal
Functions, 3 Hybrid Functions, and 7 Composition Func-
tions.The summary ofCEC2015 learning-based test problems
is shown in Table 1. It should be noted that the details and
the codes for the test problems can be downloaded from the
website of CEC2015 competition.

3.2. Flight Dynamic Control Optimisation Problem. Flight
dynamic control system design is a classical important
application for real engineering problems. The motion of an
aircraft can be described using the body axes which is herein
the stability axes consisting of roll axis (𝑥), pitch axis (𝑦),
and yaw axis (𝑧) as shown in Figure 1. The motion of the
aircraft is described by Newton’s 2nd law or equations of
motion for both translational and rotational motions. The
dynamical model is nonlinear but can be linearised by apply-
ing aerodynamic derivatives. Due to aircraft symmetry with
respect to the 𝑥𝑧 plane, the linearised dynamical model can
be decoupled into two groups as longitudinal motion and the
lateral/directional motion. For more details of deriving the
equations of motion, see [57]. In this work, only the lateral/
directional motion control is considered. A state equation
representing the dynamic motion of an aircraft is expressed
as follows [57–60]:

ẋ = Ax + Bu, (5)

Mathematical Problems in Engineering 5

Table 1: Summary of CEC2015 learning-based functions.

Number Functions 𝑓min

Unimodal functions 1 Rotated high conditioned elliptic function 100
2 Rotated Cigar function 200

Simple multimodal functions
3 Shifted and rotated Ackley’s function 300
4 Shifted and rotated Rastrigin’s function 400
5 Shifted and rotated Schwefel’s function 500

Hybrid functions
6 Hybrid function 1 (𝑁 = 3) 600
7 Hybrid function 2 (𝑁 = 4) 700
8 Hybrid function 3 (𝑁 = 5) 800

Composition functions

9 Composition function 1 (𝑁 = 3) 900
10 Composition function 2 (𝑁 = 3) 1000
11 Composition function 3 (𝑁 = 5) 1100
12 Composition function 4 (𝑁 = 5) 1200
13 Composition function 5 (𝑁 = 5) 1300
14 Composition function 6 (𝑁 = 7) 1400
15 Composition function 7 (𝑁 = 10) 1500

where x = {𝛽, 𝑟, 𝑝, 𝜙}𝑇, 𝛽 is the sideslip, a velocity in 𝑦 direc-
tion, 𝑟 is the yaw rate, rate of change of rotation about the𝑥-axis, 𝑝 is the roll rate, rate of change of rotation about the𝑧-axis, 𝜙 is the bank angle, rotation about the 𝑥-axis, A is the
kinetic energy matrix, B is Coriolis matrix, u = { 𝛿𝑎𝛿

𝑟

} is the
control vector, 𝛿𝑎 is the aileron deflection, and 𝛿𝑟 is the rudder
deflection.

The control vector u can be expressed as

u = Cu𝑝 + Kx, (6)

where u𝑝 is a pilot’s control input vector while C and K are
the gain matrices expressed as follows [59]:

C = [1 0
𝑘5 1] ,

K = [𝑘6 𝑘1 𝑘2 0𝑘7 𝑘3 𝑘4 0] ,
(7)

where parameters 𝑘1–𝑘7 are control gain coefficients which
need to be found.

From (5)-(6), the state equation for lateral/directional
motion of an aircraft can be expressed as

ẋ = (A + BK) x + BCu𝑝. (8)

Design optimisation of the control system of an aircraft is
found to havemany objectives as there are several criteria that
need to be satisfied such as control stability, accuracy, sensi-
tivity, and control effort, while the control gains coefficients
are set to be design variables for an optimisation problem.
In this work, the optimal flight control of an aircraft focuses
on only the stability aspect. The objective function is posed

Yaw axis

Pitch axis

Roll axis

CG

Figure 1: Stability axes of an aircraft.

to minimise spiral root subjected to stability performance
constraints. The optimisation problem can then be written as

min: 𝑓 (x) = 𝜆𝑠
Subjected to: 𝜆𝑠 ≤ −0.01

𝜆𝑅 ≤ −3.75
𝜉𝐷 ≥ 0.5
𝜔𝑑 ≥ 1,

(9)

where 𝜆𝑠, 𝜆𝑅, 𝜉𝐷, and 𝜔𝑑 are spiral root, roll damping,
damping ratio of Dutch-roll complex pair, and Dutch-roll
frequency, respectively. These parameters can be calculated
based on the eigenvalues associated with the matrix A + BK.
The design variables are control gain coefficients in thematrix

6 Mathematical Problems in Engineering

K (x = {𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘6, 𝑘7}𝑇). The kinetic energy matrix (A)
and the Coriolis matrix (B) are defined as

A =
[[[[[
[

−0.2842 −0.9879 0.1547 0.0204
10.8574 −0.5504 −0.2896 0
−199.8942 −0.4840 −1.6025 0

0 0.1566 1 0

]]]]]
]
,

B =
[[[[[
[

0 0.0524
0.4198 −12.7393
50.5756 21.6753

0 0

]]]]]
]
.

(10)

More details about this aircraft dynamic model can be
found in [58–60]. To handle the constraints, the penalty
function which was presented in [61] is used.

The proposed EDACE and several well-established
binary-code metaheuristics are used to solve the fifteen
CEC2015 learning-based test problems and the flight dyna-
mic control test problem.Themetaheuristic optimisers are as
follows:

Genetic algorithm (GA) [21] used binary codes with
crossover and mutation rates are 1 and 0.1, respec-
tively.
Binary simulated annealing (BSA) [50] used binary
codeswith exponentially decreasing temperature.The
starting and ending temperature are set to be 10 and
0.001, respectively. The cooling step is set as 10.
Population-based incremental learning (PBIL) [24]
used binary codes with the learning rate, mutation
shift, and mutation rate as 0.5, 0.7, and 0.2, respec-
tively.
Binary particle swarm optimisation (BPSO) [49] used
binary codes with V-shaped transfer function while
the transfer function used is the V-shaped version 4
(V4) as reported in [49]. It is noted that this version
is said to be the most efficient version based on the
results obtained in [49].
Univariate marginal distribution algorithm (UMDA)
[48] used binary codes. The first 20 best binary
solutions are used to update the probability matrix.
Estimation of distribution algorithm with correlation
of binary elements (EDACE) (Algorithm 2) used
binary codes with 𝑃𝐿 = 0.1, 𝑃𝑈 = 0.9, 𝐿𝑅,𝐿 = 0.4,𝐿𝑅,𝑈 = 0.6, and 𝑛best = 10.

Each algorithm is used to solve the problems for 30
optimisation runs. The population sizes are set to be 100
and 20 while number of generation is set to be 100 and 500
for the CEC2015 learning-based test problems and the flight
dynamic control test problem, respectively. For an algorithm
using different population size and number of generations
such as BSA, it will be terminated at the same number
function evaluations, which is 10,000 for all test problems.
The binary length is set to be 5 for each design variable for
all optimisers.

4. Optimum Results

4.1. CEC2015. After applying the proposed EDACE and
several well-established binary MHs for solving the CEC2015
learning-based benchmark functions, the results are shown
in Tables 2–4. Note that, apart from the algorithms used in
this study, the results of solving CEC2015 test suit obtained
from efficient binary artificial bee colony algorithm based
on genetic operator (GBABC), binary quantum-inspired
gravitational search algorithm (BQIGSA), and self-adaptive
binary variant of a differential evolution algorithm (SabDE)
as reported in [53] are also included in the comparison. From
Table 2, the mean (Mean) and standard deviation (STD)
values of the objective functions are used to measure the
search convergence and consistency of the algorithms. The
lower Mean is the better convergence while the lower STD is
the better consistency. The value of Mean is more important;
thus, for method A with lower Mean but higher STD than
method B, method A is considered to be superior.

For the measure of search convergence based on the
mean objective function values, the best performer for the
unimodal test functions, 𝑓1 and 𝑓2, is EDACE while the sec-
ond best is BPSO. For the simple multimodal functions, the
best performer for 𝑓4 and 𝑓5 is SabDE while the best
performer for 𝑓3 is BPSO. The second best performers for𝑓3, 𝑓4, and 𝑓5 are SabDE, BEDACE, and UMDE, respec-
tively. For the hybrid functions, the best performers for the
functions 𝑓6, 𝑓7, and 𝑓8, are SabDE, EDACE, and BPSO,
respectively, while the second best performer for 𝑓6 and 𝑓7
is BPSO and the second best for 𝑓8 is EDACE. For the final
group of CEC2015 test problems, composition functions, the
best performer for the 𝑓11, 𝑓12, and 𝑓14 is SabDE while the
best performers for the 𝑓10 and 𝑓15 are BPSO and EDACE,
respectively. For 𝑓9, the best performers are UMDA, BPSO,
GA, PBIL, and EDACE, which obtain the same mean values
while, for 𝑓13, the best performers are UMDA, BPSO, GA,
PBIL, BSA, and EDACE, which obtained the same mean
values. It should be noted that the results from [53] were
obtained from using the total number of function evaluations
as 1,000,000 with the binary length of 50 for each design vari-
able whereas this work uses 10,000 function evaluations with
the binary length of 5 for each design variable. This indirect
comparison with GBABC, BQIGSA, and SabDE can only be
used to show that the proposed EDACE also has good perfor-
mance and cannot be used to claim which method is supe-
rior.

For the measure of search consistency based on the STD
values, the most consistent methods for unimodal functions,𝑓1 and 𝑓2, are BPSO and EDACE while the second most
consistent methods are EDACE and BPSO, respectively. For
the simple multimodal functions, the best for 𝑓3 and 𝑓5 is
SabDEwhile the best for𝑓4 is the proposed EDACE. EDACE
is the best for the hybrid function of 𝑓7 while BPSO is the
best for the hybrid functions 𝑓6 and 𝑓8. For the composition
functions, EDACE is the best for the problems 𝑓9 and𝑓12 while BPSO is the best for 𝑓10. For the composition
functions,𝑓11,𝑓14, and𝑓15, the best is SabDEwhile the best
for 𝑓13 is BSA.

Mathematical Problems in Engineering 7
Ta

bl
e
2:
O
bj
ec
tiv

ev
al
ue
so

bt
ai
ne
d.

CE
C2

01
5

M
H
s

U
M
D
A

BP
SO

G
A

PB
IL

BS
A

ED
AC

E
∗
G
BA

BC
∗
BQ

IG
SA

∗
Sa
bD

E

U
ni
m
od

al
fu
nc
tio

ns

𝑓1
M
ea
n

7.41
5𝐸+

06
1.80

7𝐸+
06

5.50
8𝐸+

06
1.58

6𝐸+
07

4.36
5𝐸+

07
1.69

2E
+06

2.72
9𝐸+

07
8.41

9𝐸+
07

3.09
3𝐸+

08
ST

D
5.64

8𝐸+
06

1.22
4E

+06
3.51

0𝐸+
06

1.22
6𝐸+

07
4.39

1𝐸+
07

2.29
7𝐸+

06
2.26

7𝐸+
07

7.35
4𝐸+

07
1.16

8𝐸+
08

M
in
.

5.20
3𝐸+

05
1.91

4E
+05

1.01
6𝐸+

06
2.68

8𝐸+
05

1.32
5𝐸+

06
2.45

4𝐸+
05

𝑓2
M
ea
n

1.72
8𝐸+

08
1.27

8𝐸+
08

2.41
5𝐸+

08
1.44

3𝐸+
08

1.01
8𝐸+

09
7.80

2E
+07

2.86
4𝐸+

09
7.83

4𝐸+
09

2.54
1𝐸+

09
ST

D
1.28

7𝐸+
08

1.23
6𝐸+

08
1.88

0𝐸+
08

1.37
1𝐸+

08
1.68

0𝐸+
09

3.04
6E

+07
2.37

4𝐸+
09

6.52
7𝐸+

09
5.00

8𝐸+
09

M
in

4.35
9𝐸+

07
3.52

5𝐸+
07

6.71
3𝐸+

07
4.83

4𝐸+
07

1.13
3𝐸+

08
3.27

7E
+07

Si
m
pl
em

ul
tim

od
al
fu
nc
tio

ns

𝑓3
M
ea
n

3.20
3𝐸+

02
3.19

7E
+02

3.20
3𝐸+

02
3.20

2𝐸+
02

3.20
2𝐸+

02
3.20

1𝐸+
02

3.20
2𝐸+

02
3.20

2𝐸+
02

3.20
0𝐸+

02
ST

D
8.50

5𝐸−
02

1.90
0𝐸+

00
9.05

0𝐸−
02

7.94
5𝐸−

02
6.00

6𝐸−
02

3.30
0𝐸−

02
2.64

1𝐸+
02

2.64
1𝐸+

02
2.04

4E
−02

M
in

3.20
1𝐸+

02
3.10

7E
+02

3.20
1𝐸+

02
3.20

1𝐸+
02

3.20
1𝐸+

02
3.20

0𝐸+
02

𝑓4
M
ea
n

4.21
3𝐸+

02
4.22

0𝐸+
02

4.28
6𝐸+

02
4.27

8𝐸+
02

4.22
6𝐸+

02
4.18

2𝐸+
02

4.35
8𝐸+

02
4.38

9𝐸+
02

4.11
6E

+02
ST

D
4.64

7𝐸+
00

4.91
5𝐸+

00
8.55

3𝐸+
00

9.50
7𝐸+

00
7.15

0𝐸+
00

4.17
3E

+00
3.59

9𝐸+
02

3.62
1𝐸+

02
7.60

6𝐸+
00

M
in

4.10
5E

+02
4.12

4𝐸+
02

4.13
8𝐸+

02
4.12

3𝐸+
02

4.10
5E

+02
4.10

5E
+02

𝑓5
M
ea
n

1.01
0𝐸+

03
1.06

6𝐸+
03

1.33
9𝐸+

03
1.35

3𝐸+
03

1.27
5𝐸+

03
1.01

4𝐸+
03

1.10
8𝐸+

03
1.54

2𝐸+
03

9.33
0E

+02
ST

D
1.30

0𝐸+
02

1.35
2𝐸+

02
1.98

1𝐸+
02

2.27
9𝐸+

02
1.97

5𝐸+
02

1.50
0𝐸+

02
9.73

6𝐸+
02

1.27
5𝐸+

03
9.46

4E
+01

M
in

7.79
1𝐸+

02
8.52

6𝐸+
02

1.04
9𝐸+

03
8.12

0𝐸+
02

9.62
8𝐸+

02
6.90

7E
+02

H
yb
rid

fu
nc
tio

ns

𝑓6
M
ea
n

1.95
1𝐸+

05
7.34

5𝐸+
04

2.28
8𝐸+

05
4.89

4𝐸+
05

6.40
3𝐸+

06
1.13

3𝐸+
05

7.44
2𝐸+

06
5.58

2𝐸+
05

4.62
5E

+04
ST

D
1.12

0𝐸+
05

3.95
8E

+04
1.81

3𝐸+
05

3.22
4𝐸+

05
8.63

5𝐸+
06

8.93
6𝐸+

04
1.32

1𝐸+
07

6.05
5𝐸+

05
4.07

6𝐸+
04

M
in

3.66
1𝐸+

04
3.66

1𝐸+
04

3.70
2𝐸+

04
8.12

4𝐸+
04

1.32
0𝐸+

05
3.65

9E
+04

𝑓7
M
ea
n

7.04
7𝐸+

02
7.03

2𝐸+
02

7.04
4𝐸+

02
7.04

6𝐸+
02

7.11
8𝐸+

02
7.03

0E
+02

7.58
9𝐸+

02
7.39

2𝐸+
02

7.75
2𝐸+

02
ST

D
1.05

4𝐸+
00

6.18
3𝐸−

01
1.03

6𝐸+
00

1.11
3𝐸+

00
8.66

0𝐸+
00

5.92
7E

−01
4.66

8𝐸+
02

4.32
4𝐸+

02
4.15

5𝐸+
03

M
in

7.02
7𝐸+

02
7.02

4𝐸+
02

7.02
7𝐸+

02
7.02

4𝐸+
02

7.02
5𝐸+

02
7.02

1E
+02

𝑓8
M
ea
n

9.30
9𝐸+

04
1.51

1E
+04

5.50
3𝐸+

04
4.80

8𝐸+
05

2.30
5𝐸+

06
2.72

7𝐸+
04

3.94
9𝐸+

07
2.94

8𝐸+
06

2.39
5𝐸+

07
ST

D
1.12

0𝐸+
05

6.91
8E

+03
5.63

0𝐸+
04

5.29
5𝐸+

05
2.40

0𝐸+
06

2.63
5𝐸+

04
2.44

2𝐸+
08

2.46
9𝐸+

06
5.43

2𝐸+
07

M
in

1.49
7𝐸+

04
1.28

7E
+04

1.28
7E

+04
1.31

2𝐸+
04

1.58
9𝐸+

04
1.28

7E
+04

C
om

po
sit
io
n
fu
nc
tio

ns

𝑓9
M
ea
n

1.00
1E

+03
1.00

1E
+03

1.00
1E

+03
1.00

1E
+03

1.00
3𝐸+

03
1.00

1E
+03

1.01
7𝐸+

03
1.04

8𝐸+
03

1.17
7𝐸+

03
ST

D
2.09

0𝐸−
01

2.23
1𝐸−

01
9.43

7𝐸−
01

4.01
7𝐸−

01
4.28

4𝐸+
00

1.70
0E

−01
8.39

7𝐸+
02

8.64
3𝐸+

02
4.10

2𝐸+
01

M
in

1.00
0𝐸+

03
1.00

0𝐸+
03

1.00
0𝐸+

03
1.00

1𝐸+
03

1.00
0𝐸+

03
1.00

0𝐸+
03

𝑓10
M
ea
n

1.28
5𝐸+

04
3.93

0E
+03

1.36
7𝐸+

04
4.23

5𝐸+
04

5.31
7𝐸+

05
7.81

9𝐸+
03

9.90
9𝐸+

05
4.42

6𝐸+
04

2.41
6𝐸+

07
ST

D
8.30

8𝐸+
03

2.14
0E

+03
1.29

1𝐸+
04

3.72
8𝐸+

04
6.44

4𝐸+
05

4.89
7𝐸+

03
3.65

9𝐸+
06

4.47
7𝐸+

04
8.86

2𝐸+
07

M
in

3.19
9𝐸+

03
1.73

3𝐸+
03

1.73
8𝐸+

03
2.27

5𝐸+
03

1.80
5𝐸+

03
1.73

1E
+03

𝑓11
M
ea
n

1.51
0𝐸+

03
1.23

2𝐸+
03

1.36
0𝐸+

03
1.39

6𝐸+
03

1.42
7𝐸+

03
1.24

0𝐸+
03

1.15
9𝐸+

03
1.17

2𝐸+
03

1.11
4E

+03
ST

D
8.72

7𝐸+
01

1.41
0𝐸+

02
1.12

9𝐸+
02

5.00
2𝐸+

01
4.38

4𝐸+
01

1.43
6𝐸+

02
9.55

7𝐸+
02

9.66
9𝐸+

02
1.13

1E
+01

M
in

1.40
1𝐸+

03
1.10

9E
+03

1.11
8𝐸+

03
1.13

2𝐸+
03

1.40
2𝐸+

03
1.10

9E
+03

𝑓12
M
ea
n

1.30
4𝐸+

03
1.30

5𝐸+
03

1.30
6𝐸+

03
1.30

8𝐸+
03

1.30
8𝐸+

03
1.30

5𝐸+
03

1.26
4𝐸+

03
1.25

5𝐸+
03

1.22
4E

+03
ST

D
9.67

4𝐸−
01

1.12
5𝐸+

00
1.25

9𝐸+
00

2.59
5𝐸+

00
4.48

6𝐸+
00

1.11
5E

+00
1.04

4𝐸+
03

1.03
5𝐸+

03
1.30

2𝐸+
00

M
in

1.30
3E

+03
1.30

3E
+03

1.30
4𝐸+

03
1.30

4𝐸+
03

1.30
3E

+03
1.30

3E
+03

𝑓13
M
ea
n

1.30
0E

+03
1.30

0E
+03

1.30
0E

+03
1.30

0E
+03

1.30
0E

+03
1.30

0E
+03

1.44
6𝐸+

03
1.45

2𝐸+
03

2.81
5𝐸+

09
ST

D
8.14

0𝐸−
04

1.03
9𝐸−

03
1.24

8𝐸−
03

9.09
5𝐸−

04
2.31

3E
−13

7.94
4𝐸−

04
1.19

3𝐸+
03

1.19
7𝐸+

03
4.15

8𝐸+
09

M
in

1.30
0𝐸+

03
1.30

0𝐸+
03

1.30
0𝐸+

03
1.30

0𝐸+
03

1.30
0𝐸+

03
1.30

0𝐸+
03

𝑓14
M
ea
n

9.36
4𝐸+

03
5.62

3𝐸+
03

7.02
3𝐸+

03
7.35

5𝐸+
03

8.73
6𝐸+

03
6.16

7𝐸+
03

2.16
2𝐸+

03
3.35

6𝐸+
03

1.72
7E

+03
ST

D
2.12

0𝐸+
03

2.14
4𝐸+

03
1.85

6𝐸+
03

2.73
2𝐸+

03
3.60

3𝐸+
03

2.19
9𝐸+

03
2.09

1𝐸+
03

2.86
9𝐸+

03
4.41

1E
+02

M
in

4.81
7𝐸+

03
2.81

6𝐸+
03

4.42
5𝐸+

03
2.81

8𝐸+
03

4.45
3𝐸+

03
2.40

1E
+03

𝑓15
M
ea
n

1.62
3𝐸+

03
1.61

6𝐸+
03

1.62
1𝐸+

03
1.61

8𝐸+
03

1.63
9𝐸+

03
1.61

4E
+03

2.01
2𝐸+

03
1.53

0𝐸+
03

1.70
0𝐸+

03
ST

D
3.44

5𝐸+
00

3.13
2𝐸+

00
5.10

8𝐸+
00

4.29
5𝐸+

00
3.61

4𝐸+
01

3.94
5𝐸+

00
1.65

9𝐸+
03

1.26
2𝐸+

03
2.17

7E
−05

M
in

1.61
8𝐸+

03
1.60

9𝐸+
03

1.61
2𝐸+

03
1.61

0𝐸+
03

1.61
0𝐸+

03
1.60

7E
+03

—
—

—
∗
Re

su
lts

re
po

rt
ed

in
[5
3]

w
ith

1,0
00
,0
00

fu
nc
tio

n
ev
al
ua
tio

ns
an
d
50

bi
na
ry

le
ng

th
sf
or

ea
ch

de
sig

n
va
ria

bl
e.

8 Mathematical Problems in Engineering

Table 3: Ranking of all optimisers based on the Mean values.

UMDA BPSO GA PBIL BSA EDACE GBABC BQIGSA SabDE
𝑓1 4 2 3 5 7 1 6 8 9
𝑓2 4 2 5 3 6 1 8 9 7
𝑓3 9 1 8 7 4 3 5 5 2
𝑓4 3 4 7 6 5 2 8 9 1
𝑓5 2 4 7 8 6 3 5 9 1
𝑓6 4 2 5 6 8 3 9 7 1
𝑓7 5 2 3 4 6 1 8 7 9
𝑓8 4 1 3 5 6 2 9 7 8
𝑓9 3 2 5 4 6 1 7 8 9
𝑓10 3 1 4 5 7 2 8 6 9
𝑓11 9 4 6 7 8 5 2 3 1
𝑓12 4 6 7 9 8 5 3 2 1
𝑓13 3 2 6 5 1 4 7 8 9
𝑓14 9 4 6 7 8 5 2 3 1
𝑓15 6 3 5 4 7 2 9 1 8
Sum of ranking 72 40 80 85 93 40 96 92 76

Table 4: Comparison based on the statistical 𝑡-test of the test problem.

UMDA BPSO GA PBIL BSA EDACE GBABC BQIGSA SabDE
UMDA 0 1 1 0 0 1 0 0 0
BPSO 0 0 0 0 0 1 0 0 0
GA 0 1 0 0 0 1 0 0 0
PBIL 1 1 1 0 0 1 0 0 0
BSA 1 1 1 1 0 1 1 0 0
EDACE 0 0 0 0 0 0 0 0 0
GBABC 1 1 1 1 0 1 0 0 0
BQIGSA 1 1 1 1 1 1 1 0 0
SabDE 1 1 1 1 1 1 1 1 0
Sum 5 7 6 4 2 8 3 1 0
Ranking 4 2 3 5 7 1 6 8 9

The value Min in Table 2 is the objective function value
of the best run from a particular method. Note that only
the UMDA, BPSO, GA, PBIL, BSA, and EDACE were com-
pared. For the unimodal function, the minimum objective
function values of 𝑓1 and 𝑓2 were obtained by BPSO and
EDACE, respectively. For the simple multimodal functions,
the minimum objective function values for 𝑓3 and 𝑓5 are
obtained from BPSO and EDACE, respectively, while for 𝑓4,
the minimum is obtained from UMDA, BSA, and EDACE.
The EDACE obtainedminimumobjective function values for
all test functions in the hybrid function group. However, for
the hybrid function 𝑓8, three algorithms including BPSO,
GA, and EDACE obtained theminimumvalues. For the com-
position functions, EDACE obtained the minimum function
values for all test functions.However, for the functions𝑓9 and𝑓13, all algorithms obtained the sameminimum values while

for the 𝑓11, BPSO and EDACE obtained the same minimum
function values. Similarly, for 𝑓12, UMDA, BPSO, BSA, and
EDACE obtained the same minimum values.

Table 3 shows the summary of ranking based on themean
objective function values from 30 optimisation runs. It was
found that the proposed EDACE is mostly ranked in top
three best from solving fifteen CEC2015 learning-based test
problems. After summing up the ranking score, it is found
that EDACE and BPSO are equal best performer while the
third best is UMDA.

In order to further investigate the performance compari-
son of the binary-codeMHs, the statistical 𝑡-test is employed.
Table 4 shows a 9 × 9 comparison matrix of the 9 optimisers.
If method 𝑖 is significantly better than method 𝑗 based on the𝑡-test at 5% significant level, the column 𝑖 and row 𝑗 of the
matrix are set to be 1; otherwise, they are set to be 0. When

Mathematical Problems in Engineering 9

0 1 2 3 4 5 6 7 8 9 10
Number of ffunction evaluations

0

0.5

1

1.5

2

2.5

3

3.5

4

O
bj

. f
un

ct
io

n
va

lu
e

f1

UMDA
BPSO
BEDACE

UMDA
BPSO
BEDACE

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

0

2

4

6

8

10

12

14

16

18

O
bj

. f
un

ct
io

n
va

lu
e

f2×10
8

×10
9

×10
4

×10
4

Figure 2: Search history of the top three best optimisers based on the 𝑡-test for the unimodal function.

Table 5: Ranking of all optimisers for all CEC2015 learning-based test problem based on statistical 𝑡-test.
UMDA BPSO GA PBIL BSA EDACE GBABC BQIGSA SabDE

𝑓1 4 2 3 5 7 1 6 8 9
𝑓2 4 2 5 3 6 1 8 9 7
𝑓3 5 2 5 5 4 2 5 5 1
𝑓4 3 4 6 6 4 2 8 8 1
𝑓5 2 4 7 8 6 2 5 9 1
𝑓6 4 2 5 6 8 3 9 7 1
𝑓7 3 1 3 3 6 1 8 7 8
𝑓8 4 1 3 5 6 2 9 7 8
𝑓9 3 1 4 4 6 1 7 8 9
𝑓10 3 1 4 5 7 2 8 6 9
𝑓11 9 4 6 7 8 5 2 2 1
𝑓12 4 5 7 8 8 5 2 2 1
𝑓13 1 1 1 1 1 1 7 7 9
𝑓14 9 4 6 7 8 5 2 3 1
𝑓15 6 3 5 4 7 2 9 1 8
Sum 64 37 70 77 92 35 95 89 74

summing up along the columns, the highest score indicates
the best optimiser based on this type of comparison. In the
table, it means EDACE is the best. Table 5 shows the ranking
of the 9 optimisers when solving all CEC2015 learning-based
test problems based on the 𝑡-test. After summing up the
ranking numbers of all test problems, it is found that EDACE
is the overall best optimiser while BPSO and UMDA are the
second and the third best, respectively.

Figures 2–5 show the search history of the top three opti-
misers EDACE, BPSO, and UMDA on solving all CEC2015
learning-based test problems where the vertical axis is the
average objective function from 30 runs of each method.
For all test functions, it was found that EDACE and UMDA
converged to the optimal values at higher speed while BPSO
seems to converge slowly and consistently. However, for all
functions, BPSO finally moves to the minimum or near

10 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

319.6

319.8

320

320.2

320.4

320.6

320.8

321

O
bj

. f
un

ct
io

n
va

lu
e

f3

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

400

420

440

460

480

500

520

540

O
bj

. f
un

ct
io

n
va

lu
e

f4

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

1000

1500

2000

2500

3000

3500

O
bj

. f
un

ct
io

n
va

lu
e

f5

×10
4

×10
4

×10
4

UMDA
BPSO
BEDACE

UMDA
BPSO
BEDACE

UMDA
BPSO
BEDACE

Figure 3: Search history of the top three best optimisers based on the 𝑡-test for the simple multimodal functions.

Table 6: The table shows performance of EDACE for various number of binary bits.

Number of binary bits 5 10 25 50
Mean function values 2.314𝐸 + 6 1.101𝐸 + 6 1.079𝐸 + 6 1.143𝐸 + 6
Average computational time (Sec.) 9.371 10.748 18.634 52.773

minimum function values at the end of the runs. EDACE
shows fast convergence from the beginning and obtained
the minimum or near minimum values for all test functions
except for 𝑓3. This indicates the ability of search exploitation
and search exploration of the proposed EDACE since the
CEC2015 test functions were assigned to test both aspects of
MHs.

Table 6 shows performance of EDACE on solving uni-
modal function, 𝑓1, when the binary lengths for each design
variable are 5, 10, 25, and 50 for 10 optimisation runs. It
was found that when the number of binary bits increases,
the computational time increases and the resulting mean
objective function values decrease for the binary lengths less

than 25. However, for the binary length of 50, themean objec-
tive function value increases meaning EDACE performance
deteriorates. Without considering computational time, the
best number of binary length is 25.

4.2. Flight Dynamic Control System Design. After applying
the six binary-code MHs to solve the real engineering
application of flight dynamic and control system for 30
optimisation runs, the comparison results are shown as
box-plots of the objective and constraint violation values
(Figure 6). The upper and lower horizontal lines of each box
represent the maximum and minimum of objective function
values, respectively, while the internal line shows the median

Mathematical Problems in Engineering 11

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

0

0.5

1

1.5

2

2.5

3

O
bj

. f
un

ct
io

n
va

lu
e

f6

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

700

710

720

730

740

750

760

770

O
bj

. f
un

ct
io

n
va

lu
e

f7

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

O
bj

. f
un

ct
io

n
va

lu
e

f8

UMDA
BPSO
BEDACE

UMDA
BPSO
BEDACE

UMDA
BPSO
BEDACE

×10
4

×10
4×10

4

×10
6

×10
7

Figure 4: Search history of the top three best optimisers based on the 𝑡-test for the hybrid functions.

of objective function values. From this figure, based on
median values of objective function, it is found that the best
performer is EDACE while the second best and the third
best are BPSO and UMDA, respectively. The most consistent
method having the smallest gap between the maximum and
minimum for all of optimisation runs is UMDA. However,
the worst function value found by EDACE is almost as good
as the best found by UMDA. Thus, the proposed EDACE is
superior. Based on the figure, it was found that GA failed
to solve the problem as it cannot obtain a feasible optimum
point. The minimum objective function value is obtained
from using the proposed EDACE.

Figure 7 shows the best run search history of all optimis-
ers (selection based on the minimum objective function val-
ues of feasible solutions). From the figure, UMDA and PBIL
seem to be the fastest convergent methods initially. However,
after the process goes on for about 4,000 function evaluations,
the proposed EDACE converged to the minimum objective
function value with a faster rate than the others. It has better

exploration rate as the best function value is still decreased at
the late iteration numbers. BPSO, on the other hand, seems
to be slower than UMDA, PBIL, and BSA in the beginning. It
however can converge to the better results after around 8,000
function evaluations.

5. Conclusions and Discussion

In this work, a new concept of a binary-code optimiser is
proposed. Fifteen CEC2015 learning-based test problems and
a real engineering design problem of flight dynamic and
control system are used to investigate the search performance
of the proposed algorithm. Several well-established binary-
codeMHs are used in comparison.The results obtained show
that the proposedEDACE is the best performer on solving the
15 CEC2015 learning-based test problems and real engineer-
ing design problem of flight dynamic and control. Further
improvement of EDACE by means of self-adaptation will be
investigated in the future. The choice for bREF needs further

12 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

1000

1050

1100

O
bj

. f
un

ct
io

n
va

lu
e f9

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

0

2

4

6

O
bj

. f
un

ct
io

n
va

lu
e f10

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

1200

1400

1600

1800

O
bj

. f
un

ct
io

n
va

lu
e f11

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

1300

1350

1400

O
bj

. f
un

ct
io

n
va

lu
e f12

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

1300

1320

1340

1360

O
bj

. f
un

ct
io

n
va

lu
e f13

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

0

1

2

3

O
bj

. f
un

ct
io

n
va

lu
e f14

0 1 2 3 4 5 6 7 8 9 10
Number of function evaluations

0

5000

10000

O
bj

. f
un

ct
io

n
va

lu
e f15

UMDA
BPSO
BEDACE

UMDA
BPSO
BEDACE

UMDA
BPSO
BEDACE

UMDA
BPSO
BEDACE

UMDA
BPSO
BEDACE

UMDA
BPSO
BEDACE

UMDA
BPSO
BEDACE

×10
4

×10
4

×10
4

×10
4

×10
4

×10
4

×10
4

×10
4

×10
6

Figure 5: Search history of the top three best optimisers based on the 𝑡-test for the composition functions.

studies. The use of EDACE for hyperheuristic development
is also possible. The extension to multiobjective optimisation
and many-objective optimisation is also under investigation.
Appling EDACE for the more complex problems such as
large scale problems,mixed-variable problems, and reliability
optimisation is for futurework.Thefight control optimisation
problem, one of our recent research focuses, has more than
three objective functions to be optimised; thus, it should
be formulated as many-objective optimisation. This along

with aircraft path planning dynamic optimisation still needs
considerably more investigation while EDACE will be one of
optimisers to be used for solving such design problems.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Mathematical Problems in Engineering 13

BPSO GA PBIL BSA UMDA EDACE
Algorithms

−0.3

−0.2

−0.1

fu
nc

tio
n

va
lu

es
O

bj
ec

tiv
e

BPSO GA PBIL BSA UMDA EDACE
Algorithms

0

200

400

co
ns

tr
ai

nt
s v

al
ue

s
M

ax
im

um

Figure 6: Box-plot of objective function values from 30 optimisation runs.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of function evaluations

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

O
bj

ec
tiv

e f
un

ct
io

n
va

lu
es

BPSO
GA
PBIL

BSA
UMDA
EDACE

Figure 7: Search history of the best run of all optimisers.

Acknowledgments

The authors are grateful for the support from the Thailand
Research Fund (TRF), Grant no. MRG5980238.

References

[1] S. Mirjalili, “Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm,” Knowledge-Based Systems,
vol. 89, pp. 228–249, 2015.

[2] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching-learning-
based optimization: a novelmethod for constrainedmechanical
design optimization problems,”Computer-AidedDesign, vol. 43,
no. 3, pp. 303–315, 2011.

[3] Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” in
Advances in Swarm Intelligence, Y. Tan, Y. Shi, and K. Tan, Eds.,
vol. 6145, pp. 355–364, Springer, Berlin Heidelberg, Germany,
2010.

[4] A. Kaveh and S. Talatahari, “A novel heuristic optimization
method: charged system search,” Acta Mechanica, vol. 213, no.
3-4, pp. 267–289, 2010.

[5] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: a
gravitational search algorithm,” Information Sciences, vol. 179,
no. 13, pp. 2232–2248, 2009.

[6] M. Fesanghary, “Harmony search applications in mechanical,
chemical and electrical engineering,” in Music-Inspired Har-
mony Search Algorithm, Z. Geem, Ed., vol. 191, pp. 71–86,
Springer Publishing Company, Berlin, Heidelberg, Germany,
2009.

[7] X. Wu, Y. Zhou, and Y. Lu, “Elite opposition-based water wave
optimization algorithm for global optimization,” Mathematical
Problems in Engineering, vol. 2017, Article ID 3498363, 25 pages,
2017.

[8] C. Wang, Y. Wang, K. Wang, Y. Dong, and Y. Yang, “An
improved hybrid algorithm based on biogeography/complex
and Metropolis for many-objective optimization,” Mathemat-
ical Problems in Engineering, vol. 2017, Article ID 2462891, 14
pages, 2017.

14 Mathematical Problems in Engineering

[9] W. Lei, H.Manier, M.-A.Manier, and X.Wang, “A hybrid quan-
tum evolutionary algorithm with improved decoding scheme
for a robotic flow shop scheduling problem,” Mathematical
Problems in Engineering, vol. 2017, Article ID 3064724, 13 pages,
2017.

[10] C.-R. Hwang, “Simulated annealing: theory and applications,”
Acta Applicandae Mathematicae, vol. 12, pp. 108–111, 1988.

[11] C. Qu, S. Zhao, Y. Fu, andW. He, “Chicken swarm optimization
based on elite opposition-based learning,” Mathematical Prob-
lems in Engineering, vol. 2017, Article ID 2734362, 20 pages, 2017.

[12] N. Dong, X. Fang, and A.-g. Wu, “A novel chaotic particle
swarm optimization algorithm for parking space guidance,”
Mathematical Problems in Engineering, vol. 2016, Article ID
5126808, 14 pages, 2016.

[13] X.-S. Yang and A. H. Gandomi, “Bat algorithm: a novel
approach for global engineering optimization,” Engineering
Computations, vol. 29, no. 5, pp. 464–483, 2012.

[14] X.-S. Yang and S. Deb, “Engineering optimisation by Cuckoo
search,” International Journal of Mathematical Modelling and
Numerical Optimisation, vol. 1, no. 4, pp. 330–343, 2010.

[15] K. Socha and M. Dorigo, “Ant colony optimization for contin-
uous domains,” European Journal of Operational Research, vol.
185, no. 3, pp. 1155–1173, 2008.

[16] D. Karaboga and B. Basturk, “A powerful and efficient algo-
rithm for numerical function optimization: artificial bee colony
(ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3,
pp. 459–471, 2007.

[17] G. Venter and J. Sobieszczanski-Sobieski, “Particle swarm opti-
mization,” AIAA Journal, vol. 41, no. 8, pp. 1583–1589, 2003.

[18] V. Muthiah-Nakarajan and M. M. Noel, “Galactic swarm opti-
mization: a new global optimization metaheuristic inspired by
galactic motion,” Applied Soft Computing Journal, vol. 38, pp.
771–787, 2016.

[19] S. Mirjalili and A. Lewis, “The whale optimization algorithm,”
Advances in Engineering Software, vol. 95, pp. 51–67, 2016.

[20] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in Engineering Software, vol. 69, pp. 46–61, 2014.

[21] D. E. Goldberg and J. H. Holland, “Genetic algorithms and
machine learning,”Machine Learning, vol. 3, no. 2-3, pp. 95–99,
1998.

[22] R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[23] T. Bäck, Evolutionary Algorithms inTheory and Practice, Oxford
University Press, New York, NY, USA, 1996.

[24] S. Baluja, Population-Based Incremental Learning: A Method
for Integrating Genetic Search Based Function Optimization and
Competitive Learning, Carnagie Mellon University, Pittsburgh,
PA, USA, 1994.

[25] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence
through Simulated Evolution, John Wiley, New York, NY, USA,
1966.

[26] H. Beyer andH. Schwefel, “Evolution strategies—a comprehen-
sive introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52,
2002.

[27] S. Mirjalili, “SCA: a sine cosine algorithm for solving optimiza-
tion problems,” Knowledge-Based Systems, vol. 96, pp. 120–133,
2016.

[28] R. V. Rao, “Jaya: a simple and new optimization algorithm for
solving constrained and unconstrained optimization problems,”
International Journal of Industrial Engineering Computations,
vol. 7, no. 1, pp. 19–34, 2016.

[29] J. Q. Zhang and A. C. Sanderson, “JADE: adaptive differential
evolution with optional external archive,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.

[30] R. Tanabe and A. Fukunaga, “Evaluating the performance of
SHADE on CEC 2013 benchmark problems,” in Proceedings of
the 2013 IEEE Congress on Evolutionary Computation (CEC ’13),
pp. 1952–1959, June 2013.

[31] R. Tanabe and A. S. Fukunaga, “Improving the search per-
formance of shade using linear population size reduction,” in
Proceedings of the IEEE Congress on Evolutionary Computation
(CEC ’14), pp. 1658–1665, IEEE, July 2014.

[32] M. P. Wachowiak, M. C. Timson, and D. J. DuVal, “Adaptive
particle swarm optimization with heterogeneousmulticore par-
allelism and GPU acceleration,” IEEE Transactions on Parallel
and Distributed Systems, 2017.

[33] L. Zhang, Y. Tang, C. Hua, and X. Guan, “A new particle swarm
optimization algorithm with adaptive inertia weight based on
Bayesian techniques,” Applied Soft Computing Journal, vol. 28,
pp. 138–149, 2015.

[34] X. Liang, W. Li, Y. Zhang, and M. C. Zhou, “An adaptive
particle swarm optimization method based on clustering,” Soft
Computing, vol. 19, no. 2, pp. 431–448, 2015.

[35] N. Srinivas and K. Deb, “Multiobjective function optimization
using nondominated sorting genetic algorithms,” Evolutionary
Computation, vol. 2, pp. 221–248, 1994.

[36] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–
197, 2002.

[37] W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó.
Cinnéide, “High dimensional search-based software engineer-
ing: Finding tradeoffs among 15 objectives for automating
software refactoring using NSGA-III,” in Proceedings of the 16th
Genetic and Evolutionary Computation Conference (GECCO
’14), pp. 1263–1270, July 2014.

[38] C. A. Coello Coello andM. S. Lechuga, “MOPSO: a proposal for
multiple objective particle swarm optimization,” in Proceedings
of the Congress on Evolutionary Computation (CEC ’02), pp.
1051–1056, May 2002.

[39] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the
strength Pareto evolutionary algorithm for multiobjective opti-
mization, presented at the Evolutionary Methods for Design,
Optomozation and Control,” Evolutionary Methods for Design,
Optomozation and Control, Barcelona Spain, 2002.

[40] K. Nuaekaew, P. Artrit, N. Pholdee, and S. Bureerat, “Optimal
reactive power dispatch problem using a two-archive multi-
objective grey wolf optimizer,” Expert Systems with Applications,
vol. 87, pp. 79–89, 2017.

[41] F. Zou, L.Wang, X. Hei, D. Chen, and B.Wang, “Multi-objective
optimization using teaching-learning-based optimization algo-
rithm,” Engineering Applications of Artificial Intelligence, vol. 26,
no. 4, pp. 1291–1300, 2013.

[42] Q. Zhang and H. Li, “MOEA/D: a multiobjective evolutionary
algorithm based on decomposition,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2007.

[43] D. Angus and C. Woodward, “Multiple objective ant colony
optimisation,” Swarm Intelligence, vol. 3, no. 1, pp. 69–85, 2009.

[44] B. V. Babu and M. M. L. Jehan, “Differential evolution for
multi-objective optimization,” in Proceedings of the Congress on
Evolutionary Computation (CEC ’03), pp. 2696–2703, Canberra,
Australia, December 2003.

[45] X. Zhang, Y. Tian, and Y. Jin, “A knee point driven evolutionary
algorithm for many-objective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 19, no. 6, pp. 761–776, 2015.

Mathematical Problems in Engineering 15

[46] H. Wang, L. Jiao, and X. Yao, “Two Arch2: an improved two-
archive algorithm for many-objective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 19, no. 4, pp.
524–541, 2015.

[47] R. Wang, R. C. Purshouse, and P. J. Fleming, “Preference-
inspired coevolutionary algorithms for many-objective opti-
mization,” IEEE Transactions on Evolutionary Computation, vol.
17, no. 4, pp. 474–494, 2013.

[48] H. Mühlenbein, “The equation for response to selection and its
use for prediction,” Evolutionary Computation, vol. 5, no. 3, pp.
303–346, 1997.

[49] S. Mirjalili and A. Lewis, “S-shaped versus V-shaped transfer
functions for binary particle swarm optimization,” Swarm and
Evolutionary Computation, vol. 9, pp. 1–14, 2013.

[50] S. Bureerat and J. Limtragool, “Structural topology optimisation
using simulated annealing with multiresolution design vari-
ables,” Finite Elements in Analysis and Design, vol. 44, no. 12-13,
pp. 738–747, 2008.

[51] C.Ozturk, E.Hancer, andD.Karaboga, “A novel binary artificial
bee colony algorithm based on genetic operators,” Information
Sciences, vol. 297, pp. 154–170, 2015.

[52] H.Nezamabadi-Pour, “A quantum-inspired gravitational search
algorithm for binary encoded optimization problems,” Engi-
neering Applications of Artificial Intelligence, vol. 40, pp. 62–75,
2015.

[53] A. Banitalebi, M. I. A. Aziz, and Z. A. Aziz, “A self-adaptive
binary differential evolution algorithm for large scale binary
optimization problems,” Information Sciences, vol. 367-368, pp.
487–511, 2016.

[54] B. Crawford, R. Soto, G. Astorga, J. Garcia, C. Castro, and F.
Paredes, “Putting continuous metaheuristics to work in binary
search spaces,” Complexity, vol. 2017, Article ID 8404231, 19
pages, 2017.

[55] G. Lindfield and J. Penny, Numerical Methods: Using MATLAB,
Academic Press, 2012.

[56] J. Liang, B. Qu, P. Suganthan, andQ. Chen, “Problemdefinitions
and evaluation criteria for the CEC 2015 competition on
learning-based real-parameter single objective optimization,”
Tech. Rep., Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou China and Technical Report, Nanyang
Technological University, Singapore, 2014.

[57] D. A. Caughey, Introduction to Aircraft Stability and Control
Course Notes for M&AE 5070, Sibley School of Mechanical &
Aerospace Engineering, Cornell University, Ithaca, New York,
NY, USA, 2011.

[58] S. Rostami and F. Neri, “Covariance matrix adaptation pareto
archived evolution strategy with hypervolume-sorted adaptive
grid algorithm,” Integrated Computer-Aided Engineering, vol. 23,
no. 4, pp. 313–329, 2016.

[59] S. F. Adra, A. I. Hamody, I. Griffin, and P. J. Fleming, “A hybrid
multi-objective evolutionary algorithm using an inverse Neural
Network for aircraft control systemdesign,” inProceedings of the
2005 IEEE Congress on Evolutionary Computation (IEEE CEC
’05), pp. 1–8, September 2005.

[60] D. Tabak, A. A. Schy, D. P. Giesy, and K. G. Johnson, “Applica-
tion of multiobjective optimization in aircraft control systems
design,” Automatica, vol. 15, no. 5, pp. 595–600, 1979.

[61] S. Bureerat and N. Pholdee, “Optimal truss sizing using an
adaptive differential evolution algorithm,” Journal of Computing
in Civil Engineering, vol. 30, no. 2, p. 04015019, 2015.

Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

An Improved Teaching-Learning Based
Optimization for Optimization of Flatness

of a Strip During a Coiling Process

Sujin Bureerat1, Nantiwat Pholdee1(&), Won-Woong Park2,
and Dong-Kyu Kim3

1 Department of Mechanical Engineering, Faculty of Engineering,
Sustainable and Infrastructure Research and Development Centre,

Khon Kaen University, 123 Moo 16, Mittraphap Road, Tambon Muang,
Khon Kaen, Thailand

nantiwat@kku.ac.th
2 National Research Laboratory for Computer Aided Materials Processing,

Department of Mechanical Engineering, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon, South Korea

3 Neutron Science Division, Korea Atomic Energy Research Institute,
111 Daeduk-daero 989 beon-gil, Yuseong-gu, Daejeon, South Korea

Abstract. Performance enhancement of a teaching-learning basedz optimizer
(TLBO) for strip flatness optimization during a coiling process is proposed. The
method is termed improved teaching-learning based optimization (ITLBO). The
new algorithm is achieved by modifying the teaching phase of the original
TLBO. The design problem is set to find spool geometry and coiling tension in
order to minimize flatness defects during the coiling process. Having imple-
mented the new optimizer with flatness optimization for strip coiling, the results
reveal that the proposed method gives a better optimum solution compared to
the present state-of-the-art methods.

Keywords: Evolutionary algorithm � Flatness defect � Optimization � Strip
coiling � Teaching-learning based optimization

1 Introduction

There are several processing stages during themanufacturing of a coil strip, e.g. roughing,
rolling, cooling, and coiling. Based on the previous investigation by Jung and Im [1, 2],
the final strip shape had non-uniform thickness profiles consisting of \ , [, M, and W
shapes. Generally, it is difficult to predict the final shape of the strip due to various related
processing parameters in production facilities. The strip crown, while being coiled, may
include imperfections that were initiated during the rolling process resulting in flatness
imperfection taking place on the coil strip [3, 4].

As a result, the strip is normally welded, cut, and recoiled in the recoiling line so as
to satisfy customer strip flatness requirements. However, although adding the recoiling
line to the process, flatness problems sometimes cannot be avoided especially for the
high-strength coil strip. In order to understand the flatness defect formation mechanism

© Springer International Publishing AG 2016
C. Sombattheera et al. (Eds.): MIWAI 2016, LNAI 10053, pp. 12–23, 2016.
DOI: 10.1007/978-3-319-49397-8_2

during the coiling process, Sims and Place [5] proposed a stress model of the coil
assuming that the coil was an axial-symmetry hollow cylinder. Miller and Thornton [6]
and Sarban [7] introduced a finite element method and a semi-analytical model to
calculate the three-dimensional stress distribution within the coil. Nevertheless, in those
models, they did not consider the physical clearance between each coiled wrap due to
the strip crown as a cause of the axial inhomogeneity. Yanagi et al. [8] proposed an
analytical model by wrapping the thick cylinder (the coil) with the thin-walled cylin-
ders (the new coiling strips) to deal with inhomogeneous deformation of the cold-rolled
thin-strip in the axial direction caused by the clearance and the strip crown. Moreover,
Park et al. [9] studied the effect of processing parameters including a strip crown, a
spool geometry, and coiling tension on the stress distribution on the strip during the
coiling process where the analytical elastic model was used. In this study, it was found
that enhancement of strip flatness of the cold-rolled thin-strip could be accomplished by
suppressing the strip crown and lowering the coiling tension intensity compared to the
measured circumferential strain distribution.

To alleviate the undesirable formation of flatness defects, manufacturing the strip
coil without the strip crown is suggested as the best solution for fulfilling the strip
flatness requirement. Nevertheless, suppressing the strip crown during the rolling
process, as illustrated in Fig. 1, is somewhat difficult or even impossible to carry out
due to many processing parameters involved. Therefore, use of optimization to find the
optimum solution for a spool geometry and coiling tension was conducted [10, 11] in
order to improve the strip flatness during the strip coiling process.

Optimization is a special kind of mathematical problem assigned to search for a
design solution optimizing a predefined objective or merit indicator within a given
feasible region. A numerical optimizer is usually employed to find such a solution. It
can be categorized as an optimization method either with and without using function
derivatives. The former is based on hard computing while the latter is based on a
stochastic process and soft computing. The most popular non-gradient optimizer is an
evolutionary algorithm (EAs) or later known as a meta-heuristic (MH). It has been
implemented on a wide range of engineering applications and has shown several
advantages [12–21]. For metal strip manufacturing, optimization by means of
meta-heuristics has been used most commonly in the rolling process so as to control the
flatness problem, whereas their use in the strip coiling process has been rarely reported
[22–27].

In this study, optimization of flatness of the strips has been enhanced by an
improved teaching-learning based algorithm (ITLBO). This method is compared to
several well established EAs, such as simulated annealing (SA) [16], differential
evolution (DE) [28], artificial bee colony optimization (ABC) [29], real code ant colony
optimization (ACOR) [30], original teaching-learning based optimization (TLBO) [31],
league championship algorithm (LCA) [32], charged system search (ChSS) [33],
Opposition-based Differential Evolution Algorithm (OPDE) [10] and Enhanced
teaching-learning based optimization with differential evolution (ETLBO-DE) [11] to
determine the spool geometry and coiling tension where the objective is to minimize

An Improved Teaching-Learning Based Optimization 13

the axial inhomogeneity of the stress to improve the flatness of the strip. For function
evaluations, the analytical elastic model proposed by Park et al. [9] similar to the one
suggested by Yanagi et al. [8] was employed.

2 Formulation of the Optimization Design Problem

It is known that wavy edges occur during the strip coiling process, when the cir-
cumferential stress at the middle zone of the strip is highly compressed, while two
edges are under tension or slight compression. Also, if the middle strip zone is under
high tension while the two edges are compressed or slightly stretched, center buckle
can happen [8, 9]. Figures 1(a) and (b) display the circumferential stress (rh) distri-
bution along the z direction within the thin strip, which respectively caused the wavy
edge and center buckle.

Generally, it is impossible to obtain a flat strip after finishing a rolling process. The
strip always has a crown shape. When the strips are being coiled, tension loads need to
be applied, the middle zone (z = 0) of the strip at the inner coil will be considerably
compressed in comparison with the two edges because of the coiling tension and the
strip crown. In such a situation, the center buckle defect at the inner coil will not appear
but the wavy edge defect can possibly occur. As such, the wavy edge defect at the inner
coil is the major problem during the coiling process. Figure 2 depicts the circumfer-
ential stress (rh) distribution in the z direction at the radius (r) of the coil (computed by
the Love’s elastic solution proposed by Park et al. [9]) contributing to wavy edge defect
formation during the strip coiling process. It is possible to reduce the wavy edge defect
by decreasing the axial inhomogeneity of the stress distribution and the maximum
compressive stress at the compressive zone [10].

In this paper, optimization using the ITLBO and other well-known and newly
developed EAs will be used to find the optimum solution for the processing parameters
including coiling tension (rT) and spool geometry, as illustrated in Fig. 3.

(a) the wavy edge (b) center buckle

Fig. 1. Circumferential stress distributions for (a) the wavy edge and (b) center buckle,
respectively [8, 9]

14 S. Bureerat et al.

To decrease the axial inhomogeneity of the stress distribution and the maximum
compressive stress, minimization of the volume of the circumferential stress and
maximum compressive stress (shown in Fig. 2) is defined as an objective function. In
Fig. 2, the volume can only be computed for the coil, where compressive stresses were
higher than 20 MPa, in order to minimize the zone that is likely to have the wavy edge
defect. The objective function of the optimization problem can then be written as:

Minimize f ab; gb; rT ;i
� � ¼ V

V0
þ max rhcð Þ

max rhc0ð Þ ð1Þ

minimize

0� ab � 4;

0� gb � 4;

25� rT ;i � 50 MPa; i ¼ 1; . . .nmax

rT ;i � rT ;i�1
�� ��� 2 MPa,

where rhc and V are respectively the compressive circumferential stress higher than
20 MPa (refer to Fig. 2) and the approximate volume of the circumferential stress. rhc0
and V0 are the respective values for the original design of the process. The rT ;i is the
coiling tension at coil number i. The coiling tension is normally set to be constant for
all coils [34]. The variable nmax is the maximum number of coils, which has been
assigned to be 220 in this paper. gb and ab in Eq. (2) are spool crown exponent and the
spool crown height, which were used for defining the spool geometry, as described in
Fig. 3:

200

400

600

800

1000

0

200

400

600
-150

-100

-50

0

50

100

r (mm)z (mm)

C
ir
c
u

m
fe

re
n

ti
a

l
s
tr

e
s
s
 (

M
P

a
)

Case of wavy
edge defect

Volume to minimize

Fig. 2. Circumferential stress distribution (rh) in the coil determined by Love’s elastic solution [9]

An Improved Teaching-Learning Based Optimization 15

b zð Þ ¼ b0 � ab
zj j

zmax

� �gb

ð2Þ

where b0 (z = 330 mm) and b(z) are the initial value of the outer radius of the spool and
the outer radius of the spool along the z direction, respectively. zmax = 525 mm is the
width of the spool. The inner radius of the spool (a) in Fig. 3 has been assigned to be
300 mm. The total number of design variables, therefore, is 222 (220 for coiling
tensions and 2 for the spool geometry).

3 Improved Teaching-Learning Based Optimization

From the previous section, the optimization problem can be considered being
large-scale. It has been found [10, 11], that TLBO is suitable for this type of design
problem. The teaching-learning based optimization (TLBO) algorithm is an evolu-
tionary algorithm, or an optimizer without using function derivatives, proposed by Rao
et al. [31]. The concept of TLBO searching mechanism is based on mimicking a
teacher on the output of learners in a classroom. Basically, the learners can improve
their intellectual and knowledge by two stages i.e. learning directly from the teacher
and learning among themselves. During the teacher stage, a teacher may teach the
learners, however, only some learners can acquire all things presented by the teacher.
Those who can accept what the teacher taught will improve their knowledge. For the
second stage, which is called the learning phase, the learners can improve their
knowledge during discussion with other learners. Based on the different levels of the
learners’ knowledge, the better learners may transfer knowledge to the inferior learners.

From the view point of optimization, the algorithm starts with a randomly created
initial population, which is a group of design solutions. Learners are identical to design
solutions whereas the best one is considered a teacher. The objective function is
analogous to the knowledge which needs to be improved towards the optimum solu-
tion. Having identified a teacher and other learners for the current iteration, the pop-
ulation will be updated by two stages including “Teacher Phase” and “Learner Phase”.
In the “Teacher Phase”, an individual (xi) will be updated based on the best individual
(xteacher) and the mean values of all populations (xmean) as follows:

xnew;i ¼ xold;i þ r xteacher � TF � xmeanð Þf g ð3Þ

Fig. 3. Spool Geometry used in the present investigation

16 S. Bureerat et al.

Where TF is a teaching factor, which can be either 1 or 2 and r 2 [0,1] is a uniform
random number.

For the “Learner Phase”, the members in the current population will be modified by
exchanging information between themselves. Two individuals xi and xj will be chosen
at random, where i 6¼ j. The update of the solutions can then be calculated as:

xnew;i ¼ xold;i þ r xi � xj
� �

if f xið Þ\f xj
� �

xold;i þ r xj � xi
� �

if f xj
� �

\f xið Þ
�

ð4Þ

At both teacher and learner phases, the new solution (xnew) will replace its parent if
it has better knowledge or produces better objective function value, otherwise, it will be
rejected. The two phases are sequentially operated until the termination criterion is
fulfilled.

For the improved teaching-learning based optimization (ITLBO), an opposition-
based approach, binary crossover, and the probability of operating the learning phase
are added to the original TLBO to improve the balance of search exploration and
exploitation. Four random numbers including, rand1, rand2, rand3, and rand4, have
been used for performing opposition-based approach, binary crossover, and the
learning phase. The main search procedure starts by generating an initial population,
updating the population at the teaching phase and learning phase similarly to the
original TLBO. However, at the teaching phase, the updating can be done by the
following equation;

xnew;i ¼ xold;i þð�1Þrand1r xteacher � TF � xmeanð Þf g ð5Þ

where rand1 is a random value with either 0 or 1. Then, the binary crossover is applied
if a uniform random number having an interval of 0 and 1 (rand2) is lower than the
crossover probability (Pr). For a new individual xTnew = [xnew,1, …, xnew,D] and an old
individual xTold = [xold,1, …, xold,D], the binary crossover step can be expressed as
follow;

xnew;j
xold;j if rand3\CR1 j ¼ 1; . . .; D

xteacher;j if CR1 � rand3\CR2 j ¼ 1; . . .; D

�
ð6Þ

where the rand3 is a uniform random number generated from 0 to 1. The CR1 and CR2

are the predefined crossover rates, while D is the number of design variables,
respectively. Thereafter, the learning phase is conducted if a uniform random number
generated from 0 to 1 (rand4) is lower than the probability value (Lp), otherwise, the
learning phase will be skipped. The search process will be repeated until the termi-
nation criterion is satisfied. The computational steps of the proposed algorithm are
shown in Algorithm 1.

An Improved Teaching-Learning Based Optimization 17

Algorithm 1 An improved TLBO

18 S. Bureerat et al.

4 Numerical Experiments

In order to examine the search performance of the proposed ITLBO, several EAs have
been used to solve the optimum design problem of the strip flatness as described in the
previous section. The EAs used in this study are as follows:

– DE [28]: The DE/best/2/bin strategy was used. DE scaling factor was random from
0.25 to 0.7 in each calculation and crossover probability was 0.7.

– SA [16]: An annealing temperature was reduced exponentially by 10 times from the
value of 10 to 0.001 in the optimization searching process. On each loop 2n children
were created by means of mutation to be compared with their parent. Here, n is the
number of design variables.

– ABC [29]: The number of food sources was set to be 3np. A trial counter to discard
a food source was 100.

– ACOR [30]: The parameters used for computing the weighting factor and the
standard deviation in the algorithm were set to be n = 1.0 and q = 0.2, respectively.

– TLBO [31]: Parameter settings are not required.
– LCA [32]: The default parameter settings provided by the authors were used.
– ChSS [33]: The number of solutions in the charge memory was 0.2np. Here, np is

the population size. The charged moving considering rate and the parameter PAR
were set to be 0.75 and 0.5, respectively.

– OPDE [10]: The DE/best/2/bin strategy was used. DE scaling factor was random
from 0.25 to 0.5 in each calculation and crossover probability used was 0.7.

– ETLBO-DE [11]: Used the DE parameter setting and Latin hypercube sampling
(LHS) technique to generate an initial population.

– ITLBO (Algorithm 1): The Pr, CR1, CR2 and Lp were set to be 0.5, 0.33, 0.66 and
0.75, respectively.

Each optimizer was employed to solve the problem for 5 optimization runs. Both
the maximum number of iterations and population size were set to be 100. For the
optimizers using different population sizes, such as simulated annealing, their search
processes were stopped with the total number of function evaluations as 100 � 100.
The optimal results of the various optimizers from using this limited number of
function evaluations were compared. The best optimizer was used to find the optimal
processing parameters of the strip coiling process.

5 Results and Discussion

After applying each optimization algorithm to solve the problem for 5 runs, the results
are given in Table 1. The mean values (Mean) are used to measure the convergence
rate while the standard deviation (STD) determines search consistency. The lower the
mean objective function value the better, and the lower the standard deviation the more
consistent. In the table, max and min stand for the maximum and minimum values of
the objective function, respectively.

An Improved Teaching-Learning Based Optimization 19

For the measure of convergence speed based on the mean objective value, the best
method is ITLBO while the second best and the third best performers are ETLBO-DE
and OPDE, respectively. The worst results came from ABC. For the measure of search
consistency based on STD, the best was also ITLBO while the worst was ABC, which
was similar to the measure of the search convergence. The second best and the third
best for consistency were ETLBO-DE and ACOR, respectively. The minimum
objective function value was obtained by the ITLBO.

Based on the results obtained, it was clearly indicated that the proposed ITLBO by
adding opposition based method, binary crossover, and learning phase probability can
improve the search performance of the original TLBO for solving the optimization
design problem of the strip coiling process.

The optimal spool crown exponent and height obtained are 1.0822 and 2.3645,
respectively. The optimal distribution of coiling tensions as a function of coil numbers
is shown in Fig. 4. The results reveal that the coiling tensions start with the highest
value initially and then decrease when the number of coils increases. After a few series
of coiling, the tension levels become almost constant, converging to the lower bound at
the end of the process. Figure 5 shows the plot of the circumferential stress distribu-
tions along the z and r directions of the original and optimum design solutions in that
order. The comparison of the maximum compressive stresses and the standard devia-
tion of stresses at the inner strip between the original and optimal designs is given in
Table 2. The results show that the optimal processing parameters obtained by the
proposed ITLBO algorithm can reduce the maximum compressive stress and the axial
inhomogeneity of the stress distribution at the inner strip, which might cause unde-
sirable wavy edge defects during the strip coiling process.

Table 1. Objective function values calculated

Evolutionary algorithms Mean STD Max. Min.

DE 0.9700 0.0275 1.0096 0.9354
ABC 1.7637 0.0787 1.8800 1.6751
ACOR 1.0621 0.0070 1.0705 1.0546
ChSS 1.4026 0.0289 1.4448 1.3678
LCA 1.7116 0.0408 1.7580 1.6473
SA 1.5451 0.0645 1.6323 1.4841
TLBO 0.9915 0.0132 1.0066 0.9766
OPDE 0.9539 0.0179 0.9715 0.9297
ETLBO-DE 0.8850 0.0047 0.8897 0.8784
ITLBO 0.8740 0.0025 0.8783 0.8720

20 S. Bureerat et al.

6 Conclusions

The new population-based optimization algorithm obtained by improving the original
TLBO for solving the flatness optimization of the strip coiling process has been pro-
posed. The search performance of the method was compared to various established
evolutionary algorithms. The numerical results show that the new optimizer ITLBO is
the best performer for both convergence rate and consistency. With this, the new
parameters including the spool geometry and the coiling tension distribution have been
obtained and can be used in the real strip coiling process. Further studies will be made
to enhance the mathematical model of the strip coiling process. A self-adaptive version
of ITLBO will be investigated for search performance enhancement.

Fig. 4. Coiling tension levels as a function of number of coils

(a) Original design (b) Optimal design

Fig. 5. Comparison of circumferential stresses along the z and r directions for the original
design and optimal design, respectively

Table 2. Maximum compressive stress and the standard deviation of stresses at the inner coil

Original design Optimal design

Maximum compressive stress [MPa] 111.546 68.0270
Standard deviation of stresses 48.375 29.3703

An Improved Teaching-Learning Based Optimization 21

Acknowledgements. The authors gratefully acknowledge the financial support from Thailand
Research Fund (TRF). The research grant from the POSCO was also appreciated.

References

1. Jung, J.Y., Im, Y.T.: Simulation of fuzzy shape control for cold-rolled strip with randomly
irregular strip shape. J. Mater. Process. Tech. 63, 248–253 (1997)

2. Jung, J.Y., Im, Y.T.: Fuzzy control algorithm for prediction of tension variations in hot
rolling. J. Mater. Process. Tech. 96, 163–172 (1999)

3. Kawanami, T., Asamura, T., Matsumoto, H.: Development of high-precision shape and
crown control technology for strip rolling. J. Mater. Process. Tech. 22, 257–275 (1990)

4. Kwon, H.C., Han, I.S., Chun, M.S.: Examination of thermal behavior of hot rolled coil based
on the finite element modeling and thermal measurement. In: 10th International Conference
on Technology of Plasticity, pp. 37–40 (2011)

5. Sims, R.B., Place, J.A.: The stresses in the reels of cold reduction mills. Br. J. Appl. Phys. 4,
213–216 (1953)

6. Miller, D.B., Thornton, M.: Prediction of changes in flatness during coiling. In: 5th
International Rolling Conference, pp. 73–78 (1990)

7. Sarban, A.A.: An elasto-plastic analysis for the prediction of changes in flatness during
coiling. In: 2nd International Conference on Modelling of Metal Rolling Processes, pp. 92–
100 (1996)

8. Yanagi, S., Hattori, S., Maeda, Y.: Analysis model for deformation of coil of thin strip under
coiling process. J. JSTP. 39, 51–55 (1998)

9. Park, W.W., Kim, D.K., Kwon, H.C., Chun, M.S., Im, Y.T.: The effect of processing
parameters on elastic deformation of the coil during the thin-strip coiling process. Metals
Mater. Inter. 20, 719–726 (2014)

10. Pholdee, N., Bureerat, S., Park, W.-W., Kim, D.-K., Im, Y.-T., Kwon, H.-C., Chun, M.-S.:
Optimization of flatness of strip during coiling process based on evolutionary algorithms. Int.
J. Precis. Eng. Manuf. 16(7), 1493–1499 (2015)

11. Pholdee, N., Park, W.-W., Kim, D.-K., Im, Y.-T., Bureerat, S., Kwon, H.-C., Chun, M.-S.:
Efficient hybrid evolutionary algorithm for optimization of a strip coiling process. Eng. Opt.
47(4), 521–532 (2015)

12. Pholdee, N., Bureerat, S.: Passive vibration control of an automotive component using
evolutionary optimization. J. Res. Appl. Mech. Eng. 1, 19–22 (2010)

13. Pholdee, N., Bureerat, S.: Surrogate-assisted evolutionary optimizers for multiobjective
design of a torque arm structure. Appl. Mech. Mater. 101–102, 324–328 (2012)

14. Pholdee, N., Bureerat, S.: Performance enhancement of multiobjective evolutionary
optimizers for truss design using an approximate gradient. Comput. Struct. 106–107, 115–
124 (2012)

15. Pholdee, N., Bureerat, S.: Hybridisation of real-code population-based incremental learning
and differential evolution for multiobjective design of trusses. Inform. Sci. 223, 136–152
(2013)

16. Bureerat, S., Limtragool, J.: Structural topology optimisation using simulated annealing with
multiresolution design variables. Finite Elem. Anal. Des. 44, 738–747 (2008)

17. Srisoporn, S., Bureerat, S.: Geometrical design of plate-fin heat sinks using hybridization of
MOEA and RSM. IEEE Trans. Compon. Packag. Technol. 31, 351–360 (2008)

18. Yildiz, A.R.: A novel particle swarm optimization approach for product design and
manufacturing. Int. J. Adv. Manuf. Tech. 40, 617–628 (2009)

22 S. Bureerat et al.

19. Goldstein, M.: DEEPSAM: a hybrid evolutionary algorithm for the prediction of biomolecules
structure. In: Blesa, M.J., Blum, C., Cangelosi, A., Cutello, V., Di Nuovo, A., Pavone, M.,
Talbi, E.-G. (eds.) HM 2016. LNCS, vol. 9668, pp. 218–221. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-39636-1_16

20. Kumar, S., Dubey, A.K., Pandey, A.K.: Computer-aided genetic algorithm based
multi-objective optimization of laser trepan drilling. Int. J. Precis. Eng. Manuf. 14, 1119–
1125 (2013)

21. Oladimeji, M.O., Turkey, M., Dudley, S.: A heuristic crossover enhanced evolutionary
algorithm for clustering wireless sensor network. In: Squillero, G., Burelli, P. (eds.)
EvoApplications 2016. LNCS, vol. 9597, pp. 251–266. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-31204-0_17

22. Park, H.S., Nguyen, T.T.: Optimization of roll forming process with evolutionary algorithm
for green product. Int. J. Precis. Eng. Manuf. 14, 2127–2135 (2013)

23. Kandananond, K.: The optimization of a lathing process based on neural network and
factorial design method. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds.)
IEA/AIE 2016. LNCS (LNAI), vol. 9799, pp. 609–619. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-42007-3_53

24. Hetmaniok, E., Słota, D., Zielonka, A.: Solution of the inverse continuous casting problem
with the aid of modified harmony search algorithm. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 402–411.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-55224-3_38

25. Tiwari, A., Oduguwa, V., Roy, R.: Rolling system design using evolutionary sequential
process optimization. IEEE Trans. Evol. Comput. 12, 196–202 (2008)

26. Chakraborti, N., Siva Kumar, B., Satish Babu, V., Moitra, S., Mukhopadhyay, A.:
Optimizing surface profiles during hot rolling: a genetic algorithms based multi-objective
optimization. Comp. Mater. Sci. 37, 159–165 (2006)

27. Zhang, J., Wang, Y.: Defection recognition of cold rolling strip steel based on ACO
algorithm with quantum action. In: Pan, Z., Cheok, A.D., Müller, W., Chang, M., Zhang, M.
(eds.). LNCS, vol. 7145, pp. 263–271Springer, Heidelberg (2012). doi:10.1007/978-3-642-
29050-3_26

28. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global
optimisation over continuous spaces. J. Global Optim. 11, 341–359 (1997)

29. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function
optimisation: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

30. Socha, K., Dorigo, M.: Ant colony optimisation for continuous domains. Eur. J. Oper. Res.
185, 1155–1173 (2008)

31. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimisation: a novel
method for constrained mechanical design optimisation problems. Comput. Aided Design.
43, 303–315 (2011)

32. Kashan, A.H.: An efficient algorithm for constrained global optimisation and application to
mechanical engineering design: league championship algorithm (LCA). Comput. Aided
Design. 43, 1769–1792 (2011)

33. Kaveh, A., Talatahari, S.: A novel heuristic optimisation method: charged system search.
Acta Mech. 213, 267–289 (2010)

34. Choi, Y.J., Lee, M.C.: A downcoiler simulator for high performance coiling in hot strip mill
lines. Int. J. Precis. Eng. Manuf. 10, 53–61 (2009)

An Improved Teaching-Learning Based Optimization 23

http://dx.doi.org/10.1007/978-3-319-39636-1_16
http://dx.doi.org/10.1007/978-3-319-31204-0_17
http://dx.doi.org/10.1007/978-3-319-31204-0_17
http://dx.doi.org/10.1007/978-3-319-42007-3_53
http://dx.doi.org/10.1007/978-3-319-42007-3_53
http://dx.doi.org/10.1007/978-3-642-55224-3_38
http://dx.doi.org/10.1007/978-3-642-29050-3_26
http://dx.doi.org/10.1007/978-3-642-29050-3_26

http://www.springer.com/978-3-319-49396-1

	1
	2
	3
	4
	manuscript1
	Inverse problem based differential evolution for efficient structural health monitoring of trusses
	1 Introduction
	2 Natural-frequency-based damage detection and localisation
	3 Test problems with trusses
	3.1 Twenty-five-bar truss
	3.2 Seventy-two-bar truss

	4 Hybrid radial basis function and differential evolution for truss damage detection
	4.1 Differential evolution
	4.2 Inverse problem-based differential evolution

	5 Numerical experiment
	6 Results and discussion
	6.1 Twenty-five-bar truss
	6.2 Seventy-two-bar truss

	7 Conclusions
	Acknowledgement
	References

	manuscript2
	manuscript3
	An Improved Teaching-Learning Based Optimization for Optimization of Flatness of a Strip During a Coiling Process
	Abstract
	1 Introduction
	2 Formulation of the Optimization Design Problem
	3 Improved Teaching-Learning Based Optimization
	4 Numerical Experiments
	5 Results and Discussion
	6 Conclusions
	Acknowledgements
	References

	manuscript4

