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งานวิจัยนี้น าเสนอการเพ่ิมประสิทธิภาพให้กับวิธีหาค่าเหมาะที่สุดแบบเมต้าฮิวริสติกโดยใช้
แบบจ าลองเซอโรเกทช่วย ใช้แนวคิดของตัวแปรปรับตัวได้และใช้แนวคิดแบบผสม ส าหรับปัญหาทาง
วิสกรรม งานวิจัยนี้จะเริ่มจากน าเสนอการเพ่ิมประสิทธิภาพให้กับเมต้าฮิวริสติกที่มีชื่อว่า teaching-
learning based optimizer (TLBO) โ ดย ใช้  opposition-based approach, binary crossover 
และ probability of operating the learning phase ส าหรับปัญหาการหาค่าเหมาะสมสุดของ
กระบวนการม้วนเก็บแผ่นเหล็ก  เมื่อท าการหาค่าเหมาะที่สุดส าหรับปัญหาการออกแบบที่ก าหนด
พบว่าวิธีการใหม่ที่น าเสนอนี้มีประสิทธิภาพสูงกว่าวิธีเมต้าฮิวริวติกที่มีใช้อยู่ในปัจจุบัน ต่อจากนั้น
งานวิจัยนี้น าเสนอการใช้ตัวแปรแบบปรับตัวได้ร่วมกับการท า mutation ของวิธี differential 
evolution (DE) เพ่ือเพ่ิมประสิทธิภาพในการหาค าตอบให้กับวิธี sine cosine algorithm โดยวิธีที่
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estimation of distribution algorithm using correlation between binary elements (EDACE) 
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ที่น าเสนอมาใหม่นี้มีประสิทธิภาพสูงที่สุด 
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Abstract  
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Abstract: 
 In this work, development of MHs for real world engineering optimisation is 
conducted based on using surrogated assisted MHs, using parameter adaption and 
using hybridization concepts. Firstly, performance enhancement of a teaching-learning 
based optimizer (TLBO) using an opposition-based approach, binary crossover, and the 
probability of operating the learning phase is proposed for strip flatness optimization 
during a coiling process. The results reveal that the proposed method gives a better 
optimum solution compared to the present state-of-the-art methods. Next, a self-
adaptive sine cosine algorithm is proposed. The proposed algorithm is used to tackle 
the test problems for structural damage detection. The results reveal that the new 
algorithm outperforms a number of established meta-heuristics. In addition, new meta-
heuristic called estimation of distribution algorithm using correlation between binary 
elements (EDACE) is proposed. The performance assessment is conducted by 
comparing the new algorithm with existing binary-code MHs.  The comparative results 
show that the new algorithm is competitive with other established binary-code meta-
heuristics. Finally, the integration of an inverse problem process using surrogate model 
into meta-heuristics (MHs) for performance enhancement in solving structural health 
monitoring optimisation problems is proposed. The surrogate model is integrated into 
the MH algorithm for generating an approximate solution rather than approximating 
the function value as with traditional surrogate-assisted optimisation. The results 
obtained from using various MHs and the proposed algorithms indicate that the new 
algorithm is the best for all test problems.  
 
Keywords : Meta-heuristic algorithm, Surrogate model, Engineering Optimisation, Self 
adaptive meta-heuristic 
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Chapter I 
Executive Summary 

 
1.1 Rationale of the study 

Nowadays in the economic-competitive world, optimisation has become increasingly 
popular for real applications as it is a powerful mathematical tool for solving a wide range of 
engineering design types. Once an optimisation problem is posed, one of the most important 
elements in the optimisation process is an optimisation method or an optimiser used to find the 
optimum solution. Optimisers can be categorised as the methods with and without using function 
derivatives. The former is traditionally called mathematical programming or gradient-based 
optimisers whereas the latter has various subcategories. One of them is a meta-heuristic (MH). 
The term meta-heuristics can cover nature-inspired optimisers, swarm intelligent algorithms, and 
evolutionary algorithms. Most of them are based on using a set of design solutions, often called 
a population, for searching an optimum. The main operator usually consists of the reproduction 
and selection stages. The advantages of such an optimiser are simplicity to use, global 
optimisation capability, and flexibility to apply as it is derivative-free. However, it still has a slow 
convergence rate and search consistency. These issues have made researchers and engineers 
around the globe investigate on how to improve the search performance of MHs, particularly for 
real engineering design. In this work, development of MHs for real world engineering optimsiation 
is conducted based on using surrogated assisted MHs, using parameter adaption and using 
hybridization concept.  
 
1.2 Literature review 

 1.2.1 Meta-Heuristics 

Meta-Heuristics (MHs), also known as evolutionary algorithms are optimisation methods 
which are mostly developed according to inspiration of physical law or natural phenomena such 
as genetic evolution, food finding of animal or insect, etc. A genetic algorithm (GA) [1] is probably 
the best known MH while other popular methods are differential evolution (DE) [2] and particle 
swarm optimisation (PSO) [3]. Among MH algorithms, they can be categorised as the methods 
using real, binary, or integer codes. The mix of those types of design variables and some other 
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types can also be made. This makes MHs considerably appealing for use with real world 
applications particularly for those design problems that function derivatives are not available or 
impossible to calculate. Most MHs are based on continuous design variables or real codes. For 
single objective optimisation, there have been numerous real-code MHs being developed. At the 
early stage, methods like evolutionary programming [4, 5] and evolution strategies [6] were 
proposed. Then, DE and PSO were introduced. Up to recently, the have been probably over a 
hundred new real-code MHs in the literature. Some recent algorithms include, for example, a 
sine-cosine algorithm [7], a grey wolf optimiser [8], teaching-learning based optimisation [9] , a 
Jaya algorithm [10] etc. Meanwhile, powerful existing algorithms such as PSO and DE have been 
upgraded by integrating into them some types of self-adaptive schemes e.g. adaptive differential 
evolution with optional external archive (JADE) [11], Success-History Based Parameter Adaptation 
for Differential Evolution (SHADE) [12], SHADE Using Linear Population Size Reduction (LSHADE) 
[13] and adaptive PSO [14-16].  MHs are even more popular when they can be used to find a 
Pareto front of a multiobjective optimisation problem within one optimisation run. Such a type 
of algorithm is usually called multiobjective evolutionary algorithms (MOEAs) where some of the 
best known algorithms are non-dominated sorting genetic algorithm (NSGA-I, II, III) [17-19], 
multiobjective particle swarm optimisation [20], strength Pareto evolutionary algorithm [21], 
multiobjective grey wolf optimisation [22] , multi-objective teaching-learning-based optimization 
[23], multiobjective evolutionary algorithm based on decomposition [24], multiobjective ant 
colony optimisation [25], multiobjective differential evolution [26] etc.  One of the most 
challenging issues in MHs is to improve their ability for tackling many-objective optimisation (a 
problem with more than three objectives). Some recently proposed algorithms are knee point-
driven evolutionary algorithm [27], an improved two-archive algorithm [28], preference-inspired 
co-evolutionary algorithms [29] etc. 

1.2.2 Surrogate assisted MHs   

 Surrogate models (also known as metamodels, or response surface models) are widely 
used in many kinds of applications in engineering design optimisation. The surrogate model is the 
approximation of an objective function by using a function with much less time-consuming 
compared to the actual function evaluation. By using such a model, only a few actual function 
evaluations are required for construction of the meta-model. The optimization process can be 
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carried out by using the approximate model which is adequately accurate not time-consuming. 
The commonly used surrogate model are such as polynomial response surface (PRS) [30], radial 
basic function (RBF) [31], Kriging (KG) [32], neural network (NN) [33], and support vector regression 
(SVR) [34], etc.  

Recently, a surrogate model based on optimum tuning parameters has been proposed as 
an improved version of the traditionally used surrogate models. The idea of this proposed is to 
use some metaheuristics to find optimum tuning parameters of the surrogate model to improve 
their accuracy. The most successful investigations are reported in references [30, 35-47]. 
 
1.3  Objectives 

 1.2.1 To improve MH search performance based on improvement of a reproduction 
process for an application of practical engineering optimisation.  

1.2.3 To proposed a novel and efficient MH for an application of practical engineering 
optimisation.   

1.2.3 To improve MH search performance based on using a surrogate model for an 
application of practical engineering optimisation.   

 
1.4 Scope of research  
 1.4.1  MHs will be coded by the MATLAB program.  
 1.4.2  Self-adaptive and/or hybridization concepts are used to enhance the search 
performance of MHs. 
 1.4.3 A surrogate model employed in this study is a radial-basis function.  
 1.4.4  An optimum Latin Hypercube sampling technique is used for generating sampling 
points  
 1.4.5 Both real code and binary code MHs are used in this study  
 
1.5 Chapter outline 
 Chapter 2, performance enhancement of a teaching-learning based optimizer (TLBO) for 
strip flatness optimization during a coiling process is proposed. The method is termed improved 
teaching-learning based optimization (ITLBO). The new algorithm is achieved by modifying the 
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teaching phase of the original TLBO. The design problem is set to find spool geometry and coiling 
tension in order to minimize flatness defects during the coiling process. Having implemented the 
new optimizer with flatness optimization for strip coiling, the results reveal that the proposed 
method gives a better optimum solution compared to the present state-of-the-art methods. 
 Chapter 3, a sine cosine algorithm is extended to be self-adaptive and its main 
reproduction operators are integrated with the mutation operator of differential evolution. The 
new algorithm is called adaptive sine cosine algorithm integrated with differential evolution (ASCA-
DE) and used to tackle the test problems for structural damage detection. The results reveal that 
the new algorithm outperforms a number of established meta-heuristics. 
  Chapter 4, a new meta-heuristic called estimation of distribution algorithm using 
correlation between binary elements (EDACE) is proposed. The method searches for optima using 
a binary string to represent a design solution. A matrix for correlation between binary elements 
of a design solution is used to represent a binary population. Optimisation search is achieved by 
iteratively updating such a matrix. The performance assessment is conducted by comparing the 
new algorithm with existing binary-code meta-heuristics including a genetic algorithm, a univariate 
marginal distribution algorithm, population-based incremental learning, binary particle swarm 
optimisation, and binary simulated annealing by using the test problems of the CEC2015 
competition and one real world application which is an optimal flight control problem. The 
comparative results show that the new algorithm is competitive with other established binary-
code meta-heuristics. 
 Chapter 5 proposes the integration of an inverse problem process using radial basis 
functions (RBFs) into meta-heuristics (MHs) for performance enhancement in solving structural 
health monitoring optimisation problems. A differential evolution (DE) algorithm is chosen as the 
MH for this study. In this chapter, RBF is integrated into the DE algorithm for generating an 
approximate solution rather than approximating the function value as with traditional surrogate-
assisted optimisation. Four structural damage detection test problems of three trusses are used 
to examine the search performance of the proposed algorithms. The results obtained from using 
various MHs and the proposed algorithms indicate that the new algorithm is the best for all test 
problems. DE search performance for structural damage detection can be considerably improved 
by integrating RBF into its procedure.
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Chapter II 
An Improved Teaching-Learning Based optimization for Optimization of Flatness of a Strip 

during a Coiling Process 
 
2.1 Introduction 
 In this chapter, optimization of flatness of the strips has been enhanced by an improved 
teaching-learning based algorithm (ITLBO). This method is  compared to several well established 
EAs, such as simulated annealing (SA) [48], differential evolution (DE) [2], artificial bee colony 
optimization (ABC) [49], real code ant colony optimization (ACOR) [50], original teaching-learning 
based optimization (TLBO) [9], league championship algorithm (LCA) [51], charged system search 
(ChSS) [52], Opposition-based Differential Evolution Algorithm (OPDE) [53] and Enhanced teaching-
learning based optimization with differential evolution (ETLBO-DE) [54]  to determine the spool 
geometry and coiling tension where the objective is to minimize the axial inhomogeneity of the 
stress to improve the flatness of the strip. For function evaluations, the analytical elastic model 
proposed by Park et al. [55] similar to the one suggested by Yanagi et al. [56] was employed. 
 
2.2 Formulation of the Optimization Design Problem  
 It is known that wavy edges occur during the strip coiling process, when the circumferential 
stress at the middle zone of the strip is highly compressed, while two edges are under tension or 
slight compression. Also, if the middle strip zone is under high tension while the two edges are 
compressed or slightly stretched, center buckle can happen. Figures 2.1(a) and (b) display the 
circumferential stress (  ) distribution along the z direction within the thin strip, which 
respectively caused the wavy edge and center buckle. 
 Generally, it is impossible to obtain a flat strip after finishing a rolling process. The strip 
always has a crown shape. When the strips are being coiled, tension loads need to be applied, 
the middle zone (z = 0) of the strip at the inner coil will be considerably compressed in 
comparison with the two edges because of the coiling tension and the strip crown. In such a 
situation, the center buckle defect at the inner coil will not appear but the wavy edge defect can 
possibly occur. As such, the wavy edge defect at the inner coil is the major problem during the 
coiling process. 
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 Figure 2.2 depicts the circumferential stress (  ) distribution in the z direction at the radius 
(r) of the coil (computed by the Love’s elastic solution proposed by Park et al. [9]) contributing 
to wavy edge defect formation during the strip coiling process. It is possible to reduce the wavy 
edge defect  by decreasing the axial inhomogeneity of the stress distribution and the maximum 
compressive stress at the compressive zone. 
In this paper,  optimization using the ITLBO and other well-known and newly developed EAs will 
be used to find the optimum solution for the processing parameters including coiling tension (

T ) and spool geometry, as illustrated in Fig. 2.3. 
 

 
(a) the wavy edge                                       (b) center buckle 

Figure 2.1 Circumferential stress distributions for (a) the wavy edge and (b) center buckle, 
respectively  

 

 
Figure 2.2  Circumferential stress distribution (  ) in the coil determined by Love’s elastic 

solution  
 
 To decrease the axial inhomogeneity of the stress distribution and the maximum 
compressive stress, minimization of the volume of the circumferential stress and maximum 
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compressive stress (shown in Fig. 2.2) is defined as an objective function. In Fig. 2.2, the volume 
can only be computed for the coil, where compressive stresses were higher than 20 MPa, in order 
to minimize the zone that is likely to have the wavy edge defect. The objective function of the 
optimization problem can then be written as:  
 

Minimize             
 00

,
max

max
,,

c

c
iTbb

V

V
f








                  (2.1) 

Subject to            

   ,40  b  
   ,40  b  
   ,,,1MPa;5025 max, niiT   
   MPa,21,,  iTiT   
 
where c  and V are respectively the compressive circumferential stress higher than 20 MPa (refer 
to Fig. 2.2) and the approximate volume of the circumferential stress. 0c  and V0 are the 
respective values for the original design of the process. The iT ,  is the coiling tension at coil 
number i. The coiling tension is normally set to be constant for all coils. The variable maxn  is the 
maximum number of coils, which has been  assigned to be 220 in this paper. b and b  in Eq. 
(2.2) are spool crown exponent and the spool crown height, which were used for defining the 
spool geometry, as described in Fig. 2.3: 
 

 
Figure 2.3 Spool Geometry used in the present investigation 
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where b0 (z = 330 mm) and b(z) are the initial value of the outer radius of the spool and the 
outer radius of the spool along the z direction, respectively. zmax = 525 mm is the width of the 
spool. The inner radius of the spool (a) in Fig. 2.3 has been assigned to be 300 mm. The total 
number of design variables, therefore, is 222 (220 for coiling tensions and 2 for the spool 
geometry). 
 
2.3 Improved teaching-learning based optimization 
 From the previous section, the optimization problem can be considered being large-scale. 
It has been found [53, 54], that TLBO is suitable for this type of design problem. The teaching-
learning based optimization (TLBO) algorithm is an evolutionary algorithm, or an optimizer without 
using function derivatives, proposed by Rao et al. [9]. The concept of TLBO searching mechanism 
is based on mimicking a teacher on the output of learners in a classroom. Basically, the learners 
can improve their intellectual and knowledge by two stages i.e. learning directly from the teacher 
and learning among themselves. During the teacher stage, a teacher may teach the learners, 
however, only some learners can acquire all things presented by the teacher. Those who can 
accept what the teacher taught will improve their knowledge. For the second stage, which is 
called the learning phase, the learners can improve their knowledge during discussion with other 
learners. Based on the different levels of the learners’ knowledge, the better learners may transfer 
knowledge to the inferior learners.   
 From the view point of optimization, the algorithm starts with a randomly created initial 
population, which is a group of design solutions. Learners are identical to design solutions whereas 
the best one is considered a teacher. The objective function is analogous to the knowledge which 
needs to be improved towards the optimum solution. Having identified a teacher and other 
learners for the current iteration, the population will be updated by two stages including “Teacher 
Phase” and “Learner Phase”. In the “Teacher Phase”, an individual (xi) will be updated based on 
the best individual (xteacher) and the mean values of all populations (xmean) as follows: 
 
   meanteacherold,,new xxxx  Fii Tr                      (3) 
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Where TF is a teaching factor, which can be either 1 or 2 and  r [0,1] is a uniform random 
number. 
 For the “Learner Phase”, the members in the current population will be modified by 
exchanging information between themselves. Two individuals xi and xj will be chosen at random, 
where ji  . The update of the solutions can then be calculated as: 
 

 
     
     









ijiji

jijii
i ffifr

ffifr

xxxxx

xxxxx
x

old,

old,
,new                            (4) 

 
 At both teacher and learner phases, the new solution (xnew) will replace its parent if it has 
better knowledge or produces better objective function value, otherwise, it will be rejected. The 
two phases are sequentially operated until the termination criterion is fulfilled. 
 For the improved teaching-learning based optimization (ITLBO), an opposition-based 
approach, binary crossover, and the probability of operating the learning phase are added to the 
original TLBO to improve the balance of search exploration and exploitation. Four random 
numbers including, rand1, rand2, rand3, and rand4, have been used for performing opposition-
based approach, binary crossover, and the learning phase. The main search procedure starts by 
generating an initial population, updating the population at the teaching phase and learning phase 
similarly to the original TLBO. However, at the teaching phase, the updating can be done by the 
following equation; 
 

      meanteacherold,,new
1)1( xxxx  F

rand
ii Tr               (5) 

 
where rand1 is a random value with either 0 or 1. Then, the binary crossover is applied if a uniform 
random number having an interval of 0 and 1 (rand2) is lower than the crossover probability (Pr). 
For a new individual T

newx =[xnew,1, ..., xnew,D] and an old individual T
oldx =[xold,1, …, xold,D], the binary 

crossover step can be expressed as follow; 
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
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DjCRrandCRifx

DjCRrandifx
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jold
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13,
,               (6) 
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where the rand3 is a uniform random number generated from 0 to 1. The CR1 and CR2 are the 
predefined crossover rates, while D is the number of design variables, respectively. Thereafter, 
the learning phase is conducted if a uniform random number generated from 0 to 1 (rand4) is 
lower than the probability value (Lp), otherwise, the learning phase will be skipped.  The search 
process will be repeated until the termination criterion is satisfied. The computational steps of 
the proposed algorithm are shown in Algorithm 2.1. 
 
Algorithm 2.1 An improved TLBO

 
 
 

Input: Maximum iteration number (maxiter), population size (nP), Crossover 
probability Crossover rate (CR1 and CR2), learning phase probability (Lp). 
Output: xbest, fbest 
Initialization 

1. Generate an initial population randomly. 
2. Evaluate objective function values 
Main algorithm  

3. For i  =1 to maxiter 
  3.1 Identify the best solution (xteacher) 

              (Teacher Phase) 
   For j=1 to np 
   3.2 Update the population using equation (5) 
     If rand2 < Pr 

3.2.1 Applied binary crossover using equation (6) 
     End 

3.2.1 Evaluate the objective function value f (xnew,j)   
     3.2.2 If f (xnew,j) <f (xold,j) 
             Replace xold,j by xnew,j 

             End 

   End 

    

   If rand4 < Lp 
    (Learner Phase) 
   For j=1 to np 
   3.3 Update the population using equation (4) 
     3.3.1 Evaluate the objective function value      

  f (xnew,j)   
     3.2.2 If f (xnew,j) <f (xold,j) 
             Replace xold,j by xnew,j 

             End 

   End 

End 
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2.4 Numerical Experiments 
 In order to examine the search performance of the proposed ITLBO, several EAs have 
been used to solve the optimum design problem of the strip flatness as described in the previous 
section. The EAs used in this study are as follows [57] : 
 DE: The DE/best/2/bin strategy was used. DE scaling factor was random from 0.25 to 0.7 
in each calculation and crossover probability was 0.7. 
 SA:  An annealing temperature was reduced exponentially by 10 times from the value of 
10 to 0.001 in the optimization searching process. On each loop 2n children were created by 
means of mutation to be compared with their parent. Here, n is the number of design variables. 
 ABC: The number of food sources was set to be 3np. A trial counter to discard a food 
source was 100. 
 ACOR: The parameters used for computing the weighting factor and the standard deviation 
in the algorithm were set to be     =1.0 and q  =0.2, respectively. 
 TLBO: Parameter settings are not required. 
 LCA: The default parameter settings provided by the authors [51] were used. 
 ChSS: The number of solutions in the charge memory was 0.2np. Here, np is the population 
size. The charged moving considering rate and the parameter PAR were set to be 0.75 and 0.5, 
respectively. 
 OPDE: The DE/best/2/bin strategy was used .DE scaling factor was random from 0.25 to 
0.5 in each calculation and crossover probability used was 0.7. 
 ETLBO-DE: Used the DE parameter setting and Latin hypercube sampling (LHS) technique 
to generate an initial population. 
 ITLBO (Algorithm 2.2): The Pr, CR1, CR2 and Lp were set to be 0.5, 0.33, 0.66 and 0.75, 
respectively. 
 Each optimizer was employed to solve the problem for 5 optimization runs. Both the 
maximum number of iterations and population size were set to be 100. For the optimizers using 
different population sizes, such as simulated annealing, their search processes were stopped with 
the total number of function evaluations as 100×100. The optimal results of the various 
optimizers from using this limited number of function evaluations were compared. The best 
optimizer was used to find the optimal processing parameters of the strip coiling process.  
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2.5 Results and Discussion 
 After applying each optimization algorithm to solve the problem for 5 runs, the results are 
given in Table 2.1. The mean values (Mean) are used to measure the convergence rate while the 
standard deviation (STD) determines search consistency. The lower the mean objective function 
value the better, and the lower the standard deviation the more consistent. In the table, max 
and min stand for the maximum and minimum values of the objective function, respectively. 
For the measure of convergence speed based on the mean objective value, the best method is 
ITLBO while the second best and the third best performers are ETLBO-DE and OPDE, respectively. 
The worst results came from ABC. For the measure of search consistency based on STD, the best 
was also ITLBO while the worst was ABC, which was similar to the measure of the search 
convergence. The second best and the third best for consistency were ETLBO-DE and ACOR, 
respectively. The minimum objective function value was obtained by the ITLBO.  
 Based on the results obtained, it was clearly indicated that the proposed ITLBO by adding 
opposition based method, binary crossover, and learning phase probability can improve the 
search performance of the original TLBO for solving the optimization design problem of the strip 
coiling process. 
 The optimal spool crown exponent and height obtained are 1.0822 and 2.3645, 
respectively. The optimal distribution of coiling tensions as a function of coil numbers is shown 
in Fig. 2.4. The results reveal that the coiling tensions start with the highest value initially and 
then decrease when the number of coils increases. After a few series of coiling, the tension levels 
become almost constant, converging to the lower bound at the end of the process. Fig. 2.5 shows 
the plot of the circumferential stress distributions along the z and r directions of the original and 
optimum design solutions in that order. The comparison of the maximum compressive stresses 
and the standard deviation of stresses at the inner strip between the original and optimal designs 
is given in Table 2.2. The results show that the optimal processing parameters obtained by the 
proposed ITLBO algorithm can reduce the maximum compressive stress and the axial 
inhomogeneity of the stress distribution at the inner strip, which might cause undesirable wavy 
edge defects during the strip coiling process. 
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Table 2.1.  Objective function values calculated 
Evolutionary Algorithms Mean STD Max. Min. 

DE 0.9700 0.0275 1.0096 0.9354 
ABC 1.7637 0.0787 1.8800 1.6751 

ACOR 1.0621 0.0070 1.0705 1.0546 
ChSS 1.4026 0.0289 1.4448 1.3678 
LCA 1.7116 0.0408 1.7580 1.6473 
SA 1.5451 0.0645 1.6323 1.4841 

TLBO 0.9915 0.0132 1.0066 0.9766 
OPDE 0.9539 0.0179 0.9715 0.9297 

ETLBO-DE 0.8850 0.0047 0.8897 0.8784 
ITLBO 0.8740 0.0025 0.8783 0.8720 

 

 
Figure 2.4 Coiling tension levels as a function of number of coils 

 

 
(a) Original design                (b) Optimal design 

Figure 2.5 Comparison of circumferential stresses along the z and r directions for the original 
design and optimal design, respectively 
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Table 2.2 Maximum compressive stress and the standard deviation of stresses at the inner coil 

 Original design Optimal design 
Maximum compressive stress (MPa) 111.546 68.0270 
Standard deviation of stresses  48.375 29.3703 

 
2.6 Conclusions 
 The new population-based optimization algorithm obtained by improving the original 
TLBO for solving the flatness optimization of the strip coiling process has been proposed. The 
search performance of the method was compared to various established evolutionary algorithms. 
The numerical results show that the new optimizer ITLBO is the best performer for both 
convergence rate and consistency. With this, the new parameters including the spool geometry 
and the coiling tension distribution have been obtained and can be used in the real strip coiling 
process. Further studies will be made to enhance the mathematical model of the strip coiling 
process. A self-adaptive version of ITLBO will be investigated for search performance 
enhancement.    
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Chapter III 
Adaptive Sine Cosine Algorithm Integrated with Differential Evolution for Structural 

Damage Detection 
 

3.1 Introduction 
 This chapter presents and extension of the sine cosine algorithm. An adaptive strategy is 
embedded into the new version while the mutation operator of differential evolution is integrated 
into the algorithm in order to further improve its performance. The new optimiser is then termed 
an adaptive sine cosine algorithm integrated with differential evolution (ASCA-DE). The optimiser 
is then implemented on several test problems for structural damage detection. Numerical results 
show that the proposed MH is superior to a number of established MHs found in the literature.  
 
3.2 Formulation of a Damage Detection Optimization problem. 
 In this work, vibration based damage detection based on using natural frequencies is used 
for damage localization of truss structures. The main concept of using structural natural 
frequencies for damage detection of a truss structure is based on using a finite element model 
and the measured natural frequencies. When the natural frequencies and mode shapes are 
measured (usually the lowest nmode natural frequencies), the finite element model is updated 
until the computed natural frequencies fit well with the measured ones. For the undamaged 
structure, natural frequencies can be calculated from a simple linear undamped free vibration 
finite element model which can be expressed as; 
 
       02  jj j

 MK              (3.1) 

 
where [K] is a structural stiffness matrix which can be expressed as the summation of element 
stiffness matrices [ke],  
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where i is the ith element of the structure while ne is the total number of elements. The matrix 
[M] is a structural mass matrix computed in similar fashion to the stiffness matrix. The variables 

j  and j  are the jth mode shape and its corresponding natural frequency, respectively. For the 
damaged structure, the stiffness matrix of the damaged element is assumed to be modified. The 
stiffness matrix of the damaged structure [Kd] can be written as a percentage of damage in the 
elements as follows: 
 

    
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kK               (3.3) 

 
where pi is the percentage of damage on the ith element. The natural frequency of the damaged 
structure can be computed by solving eq. (3.1) by replacing [K] with [Kd].   
 The percentage of damage in the structural element (pi) can be found by solving an 
optimisation problem to minimise the root mean square error (RMSE) between natural frequencies 
measured from the damaged structure and natural frequencies computed by using the finite 
element model.  The problem can be expressed as follow: 
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where damagej,  and computedj,  are the structural natural frequency of mode j obtained from a 
damaged structure and that from solving (3.1) – (3.3). The design variables are those damage 
percentages of structural elements (x = {p1, …, pnele}T) respectively. In this work, six vibration 
modes are used for calculation.  
 
3.3 Test problems with trusses 
 Four truss damage detection optimisation problems from two truss structures are used in 
this study. These are the test problems used in our previous studies [58]. Detail of the test 
problems are shown as follow: 
 
  3.3.1 Twenty-five-bar truss 
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   The structure is shown in Fig. 3.1. The cross sections of all bar elements are set to 
be 6.4165 mm2. Table 3.1 shown the material properties and simulated case study for this 
example. The data of natural frequencies of the undamaged and damaged 25-bar truss structures 
are shown in Table 3.2.  

 
Figure 3.1 Twenty-five bar truss 

 
Table 3.1 Material properties and simulated case study for 25-bar truss. 
Material density 7,850 kg/m3 
Modulus of elasticity 200 GPa 

Simulated case study 
Case I: 35 %damage at element number 7 
Case II: 35 %damage at element number 7 and 40 %damage at 
element number 9. 

 
Table 3.2 Natural frequencies (Hz) of damaged and undamaged of 25 bar structure. 

Mode Undamaged 
35 %damage at element 

number 7 

35 %damage at element number 7 
and 40 %damage at element 

number 9 
1 69.7818 69.1393 68.5203 
2 72.8217 72.2006 71.3167 
3 95.8756 95.3372 94.5625 
4 120.1437 119.8852 119.6514 
5 121.5017 121.4774 121.4253 
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6 125.0132 125.0130 125.0129 
 
  3.3.2 Seventy-two-bar truss 
   The structure is shown in Fig. 3.2. Four non-structural masses of 2270 kg are 
attached to the top nodes. The cross sections of all bar elements are set to be 0.0025 m2.  Table 
3.3 shown the material properties and simulated case study for this example. The data of natural 
frequencies of the undamaged and damaged 72-bar truss structure are shown in Table 3.3. 
 

 
Figure 3.2 Seventy-two bar truss 

 
Table 3.3 Material properties and simulated case study for 72-bar truss. 
Material density 2,770 kg/m3 
Modulus of elasticity 6.98×1010 Pa 

Simulated case study 

Case I: 15 %damage at element number 55 (15% damage in 
element number 56, 57, or 58 results in the same set of natural 
frequencies) 
Case II: 10 %damage at element number 4 and 15 %damage at 
element number 58 (90, 180, and 270 degrees rotation along the 
z axis lead to the same set of natural frequencies). 
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Table 3.4 Natural frequencies (Hz) of damaged and undamaged of 72 bar structure. 

Mode Undamaged 
15 %damage at 

element 
number 55 

15 %damage at element number 58 and 10 %
damage at element 

number 4 
1 6.0455 5.9553 5.9530 
2 6.0455 6.0455 6.0455 
3 10.4764 10.4764 10.4764 
4 18.2297 18.1448 18.0921 
5 25.4939 25.4903 25.2437 
6 25.4939 25.4939 25.4939 

 
3.4 Adaptive Sine Cosine algorithm hybridized with differential evolution (ASCA-DE) 
 The Sine Cosine Algorithm (SCA) is a population based optimisation method proposed by 
Mirjalili, 2016 [7]. The algorithm is simple and efficient for various optimisation test problems as 
reported in [7]. The search procedure of SCA is similar to other MH which contains three main 
steps; population initialisation, population updating and population selection. For the SCA, 
updating population can be done based on a sine and cosine function. Given a current population 
having NP members X={x1, x2,…, xNP}T, an element of a solution vector for the next generation 
can be calculated as follows: 
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where xbest,k is the kth matrix element of the current best solution. The variables r2, r3, and r4 are 

random parameters in the ranges of [0, 2π], [0, 2] and [0, 1], respectively. The variable r1 is an 
iterative adaption parameter, 
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where a is a constant parameter while T is an iteration number. Tmax is maximum number of 
iterations.   
 The search process of SCA start with generating an initial population at random, and then 
calculating their objective function values where the best solution is found. Then, the new 
population for the next generation is generated using eq. (3.5) and the objective function values 
of its members are calculated. The current best will be compared with the best solution of the 
newly generated population and the better one is saved to the next generation. The process is 
repeated until a termination criterion is met. The computational steps of SCA are shown in 
Algorithm 3.1 
 
Algorithm 3.1 Sine Cosine Algorithm 

Input: population size (Np), number of generations (Tmax), number of design variable (D) 
Output: xbest, fbest 
Main algorithm  
1: Initialise a population and set as the current population.  
2: Find the best solution (xbest) 
3: For T=1 to Tmax 
4:  Calculate parameter r1 using eq.(3.6)  
5:  For l=1 to Np 

6:   For k = 1 to D 
7:   Generate the parameter r2, r3 and r4 

8:   Update the kth element of the lth population (xl) using eq.(3.5) 
9:  End For 
10:     End For 
11:     Calculate objective function values of the newly generated population and find the 
best ones (xbest,new) 
12:     Replace xbest by xbest,new if f(xbest,new)< f(xbest) 
13: End 
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 For the proposed adaptive sine cosine algorithm with integration of DE mutation, the DE 
mutation operator as proposed in Bureerat and Pholdee (2015) [59] is integrated into the updating 
operation. The mutation equation is detailed as follow; 
 
  4,3,2,1,)1,1( rrrrbestnew Frand xxxxxx            (3.7) 
 
where rand(-1, 1) gives either -1 or 1 with equal probability. F is a scaling factor while xr,1–xr,4 are 
four solutions randomly selected from the population. 
 At ASCA-DE updating operation, if a generated uniform random number in the interval 
[0,1] is lower than a probability value (rand < PDE), the population will be updated using the SCA 
updating operation based on Eq. (3.5), otherwise, the population will be updated by DE mutation 
as detailed in Eq. (3.7).  
 The term of self-adaption of the proposed algorithm is accomplished in such way that the 
parameter r2, r3 and F are regenerated for each calculation based on the information from the 
previous iteration. For each calculation, the r2 and r3 are generated based on normally distributed 
random numbers with mean values, r2m and r3m respectively and standard deviation values, STD 
= 0.1 for both r2 and r3. The values of r2m and r3m are iteratively adapted based on the following 
equations: 
 
 r2m(T+1)= 0.9r2m(T)+0.1mean(goodr2m),           (3.8) 
and,  
 r3m(T+1)= 0.9r3m(T)+0.1mean(goodr3m),                 (3.9) 
 
where mean(goodr2m) and mean(goodr3m) are the mean values of all values of r2 and r3 used in 
current iteration that lead to successful updates. The successful update means the created 
offspring is better than its parent from the previous iteration. In addition, for each calculation, the 
scaling factor F is generated by Cauchy distribution randomisation with the mean value Fm and 
STD value of 0.1 [12]. The Fm is iteratively adapted using the Lehmer mean [12] defined as follows: 
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where goodF is a tray of all F used in the current iteration with successful updates.  
 The parameter PDE is also regenerated in the similar fashion to r2 and r3 before updating a 
population. For an individual solution, the PDE is generated by normal distribution randomising 
with the mean value of PDEm and standard deviation of 0.1. PDEm is iteratively adapted based on 
the following equation: 
 
 PDEm(T+1) = 0.9 PDEm (T)+0.1mean(goodPDE),                   (3.11) 
 
where goodPDE means all PDE values used in the current iteration with successful updates. 
 The search process of ASCA-DE start with initilaising a population, r2m, r3m, Fm and PDEm. 
The goodr2m, goodr3m, goodF and goodPDE trays are empty initially. After having calculated objective 
function values, the current best solution will be obtained. To update a population, firstly, PDE 
and a random number in [0,1] are generated. If the generated random number is lower than PDE, 
a scaling factor (F) is generated based on Fm and a new solution is created using eq. (3.7), 
otherwise, a new solution is generated based on eq. (3.5). For each calculation of eq. (3.5),  r2 and 
r3 are generated based on r2m and r3m. If a newly generated solution is better than its parent, the 
new solution will be selected for the next generation while saving all used parameters PDE, r2, r3 
and F into the goodPDE, goodr2m, goodr3m, and goodF trays, respectively. Then, update the r2m, r3m, 
Fm and PDEm using eq. (3.8) - (3.11). The search process is repeated until a termination criterion is 
reached. The computational steps of ASCA-DE are shown in Algorithm 3.2 
 
Algorithm 3.2 ASCA-DE 

Input: population size (Np), number of generations (Tmax), number of design variable (D) 
Output: xbest, fbest 
Main algorithm  
1: Initialise a population, r2m, r3m, Fm and PDEm.  
2: Find the best solution (xbest) 
3: For T=1 to Tmax 
4: Calculate parameter r1 using eq.(3.6)  
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5: Empty goodr2m, goodr3m, goodF and goodPDE 
5: For l=1 to Np 
6:  Generate PDE by normal distribution random with mean values PDEm and STD =0.1 
7:    IF rand< PDE 
8:   Generate F by Cauchy distribution random with mean value Fm and STD = 0.1 
9:   Updated a population using eq. (3.7) 
10:     Else 
11:   For k = 1 to D 
12:           Generate the parameter r2 and r3 by normal distribution random with mean 
values r2m, r3m, and STD =0.1 
13:       Random generate r4 in rank [0, 1] 
14:        Update the kth element of the lth population (xl) using eq.(3.5) 
14:        End For 
16:      End IF 
17:      Calculate objective function values of the newly generated population 
18:       IF f(xl,new) < f(xl,old) 
19:   Replace xl,old by xl,new 
20:   Add all generated r2, r3, F, and PDE, into the goodr2m, goodr3m, goodF and goodPDE 

tray, respectively. 
21:       End IF 
22: End For 
23:  Find the best solution (xbest) 
24:  Update r2m, r3m, Fm, and PDEm using eq. (3.8) - (3.11) 
24: End 

 
3.5 Numerical Experiment 
 The performance investigation of the proposed ASCA-DE for structural damage detection 
is carried out by employing the algorithm to solve the test problems in the previous section. 
ASCA-DE along with a number of MHs in the literature implemented to solve the test problems 
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include (Note that the details of variables can be found in the original sources of each method) 
[58]: 
 Differential evolution (DE): a DE/best/2/bin strategy was used. A scaling factor, and 
probability of choosing elements of mutant vectors (CR) are 0.5 and 0.8 respectively. 
 Artificial bee colony algorithm (ABC): The number of food sources for employed bees is 
set to be nP/2. A trial counter to discard a food source is 100.   

 Real-code ant colony optimisation (ACOR): The parameter settings are q = 0.2, and  = 1.  
 Charged system search (ChSS): The number of solutions in the charge memory is 0.2×nP. 
The charged moving considering rate and the parameter PAR are set to be 0.75 and 0.5 
respectively. 
 League championship algorithm (LCA): The probability of success Pc and the decreasing 
rate to decrease Pc are set to be 0.9999 and 0.9995, respectively.  
 Simulated annealing (SA): Starting and ending temperatures are 10 and 0.001 respectively. 
For each loop, nmode candidates are created by mutating on the current best solution while other 
nmode candidates are created from mutating the current parent. The best of those 2nmode solutions 
are set as an offspring to be compared with the parent.   
 Particle swarm optimisation (PSO): The starting inertia weight, ending inertia weight, 
cognitive learning factor, and social learning factor are assigned as 0.5, 0.01, 0.5 and 0.5 
respectively. 
 Evolution strategies (ES): The algorithm uses a binary tournament selection operator and 
a simple mutation without the effect of rotation angles. 
 Teaching-learning-based optimisation (TLBO):  Parameter settings are not required. 
 Adaptive differential evolution (JADE): The parameters are self-adapted during an 
optimisation process. 
 Evolution strategy with covariance matrix adaptation (CMAES): The parameters are self-
adapted during an optimisation process. 
 Sine Cosine Algorithm (SCA) (Algorithm 3.1): The constant a parameter is set to be 2. 
 Adaptive Sine Cosine algorithm with integrating DE mutation (ASCDE) (Algorithm 3.2): The 
parameter a is set to be 2 while initial r2m, r3m, Fm and PDEm are set to be 0.5. 
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 Each optimiser is used to tackle each truss damage detection test problem for 30 
optimisation runs. The number of iterations (generations) is 300 for all case studies while the 
population size is set to be 30 and 50 for 25-bar and 72-bar trusses respectively. All methods will 
be terminated with two criteria: the maximum numbers of functions evaluatio as 30×300 and 
50×300 for the 25-bar and 72-bar trusses respectively, and the objective function value being less 
than or equal to 1×10-3. The six lowest natural frequencies (nmode = 6) are used to compute the 
objective function value. This number of selected frequencies is reasonable since it is practically 
easier to measure fewer lowest natural frequencies with sufficient accuracy. 
 
3.6 Results and discussions 
 After performing 30 optimisation runs of all MHs on solving the four truss damage 
detection optimisation problems, the results obtained from the various MHs are given in Tables 
5-8. The mean of the objective function is used to indicate the search convergence of the 
algorithms in cases that the objective function threshold (1×10-3) is not met during searching. 
Otherwise, the mean number of FEs is used as an indicator. The number of successful runs out 
of 30 runs is used to measure the search consistency. The algorithm that is terminated by the 
objective function threshold is obviously superior and any run being stopped with this criterion is 
considered a successful run.     
  
  3.6.1 Twenty-five-bar truss 
  Table 3.5 shown the results of the 25-bar truss with 35% damage at element 7. The 
best performer based on the mean objective function values is ASCA-DE while the second best 
and the third best are DE and JADE respectively. When considering the number of successful runs, 
seven optimisers including DE, TLBO, JADE, SCA and ASCA-DE can detect the damage of the 
structure.  The most efficient optimiser is ASCA-DE that can detect the damages of the structure 
for 29 times out of 30 runs with the average of 2835 function evaluations. 
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Table 3.5 Results for 25 bar truss with 35 %damage at element number 7 

Optimisers Mean objective function values 
No. of successful runs 

from 30 runs 
Mean of FEs 

DE 0.0017 19 6019 
ABC 0.0135 0 9000 

ACOR 0.0089 0 9000 
ChSS 0.1385 0 9000 
LCA 0.9036 0 9000 
SA 0.0089 0 9000 

TLBO 0.0077 6 7772 
CMAES 0.0033 0 9000 

ES 0.0308 0 9000 
PSO 8.3830 0 9000 
JADE 0.0026 2 8953 
SCA 0.0270 24 3262 

ASCA-DE 0.0009 29 2835 
 
 Results of the 25 bar truss with 35% damage at element 7 and 40%  damage at the 
element number 9 are reported in Table 3.6.  The best performer based on mean objective 
function values is ASCA-DE while the second best and the third best are JADE and DE respectably. 
When examining the number of successful runs, only two optimisers, DE and ASCA-DE can 
consistently detect the damage of the structure for 27 and 26 runs respectively while the average 
number of function evaluations to obtain the results are 5220 and 5511 respectively. 
 
Table 3.6 Results for 25 bar truss with 35 %damage at element number 7 and 40 %damage at 
element number 9 

Optimisers Mean objective function values 
No. of successful runs 

from 30 runs 
Mean of FEs 

DE 0.0096 27 5220 
ABC 0.0326 0 9000 
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ACOR 0.0125 0 9000 
ChSS 0.1590 0 9000 
LCA 0.8080 0 9000 
SA 0.0269 0 9000 

TLBO 0.0405 1 8917 
CMAES 0.0115 0 9000 

ES 0.0356 0 9000 
PSO 8.6012 0 9000 
JADE 0.0042 6 8875 
SCA 0.0930 0 9000 

ASCA-DE 0.0032 26 5511 
 
 3.6.2 Seventy-two-bar truss 
  Table 3.7 shows comparison results of the 72-bar truss with 15% damage at element 
5. The best performer based on mean objective function values is ASCA-DE while the second best 
and the third best are ES and ACOR. When examining the number of successful runs, the most 
efficient method is ASCA-DE which can detect the damage of the structure for 30 times while the 
average numbers of function evaluations for the convergence results is only 1715. 
 
Table 3.7 Results for 72 bar truss with 15 %damage at element number 55 

Optimisers Mean objective function Values 
No. of successful runs 

from 30 runs 
Mean of FEs 

DE 0.0087 14 12887 
ABC 0.2184 0 15000 

ACOR 0.0014 6 14831 
ChSS 0.1727 0 15000 
LCA 1.1499 0 15000 
SA 0.0097 0 15000 

TLBO 0.0035 27 5781 
CMAES 0.0053 0 15000 
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ES 0.0010 29 9335 
PSO 1.9146 0 15000 
JADE 0.0019 1 15000 
SCA 0.0070 23 4793 

ASCA-DE 0.0008 30 1715 
 
  Results of the72 bar truss with 15% damage at element number 58 and 10% damage 
at element number 4 are given in Table 3.8. The best performer based on the mean of objective 
function values is ES while the second best and the third best are JADE and ASCA-DE respectively. 
The minimum objective function value is obtained by SCA. When considering the number of 
successful runs, only ASCA-DE can consistently detect the damage of the structure for 22 times 
from totally 30 optimisation runs while the average number of function evaluations for the 
convergence results is 9235. Although ES and JADE given better mean objective function values, 
they fail to search for the damage location. ASCA-DE is said to be the most efficient optimizer for 
this case.  
 
Table 3.8 Results for 72 bar truss with 15 %damage at element number 58 and 10 %damage at 
element number 4 

Optimisers Mean objective function values 
No. of successful runs 

from 30 runs 
Mean of FEs 

DE 0.0127 7 13963 
ABC 0.1591 0 15000 

ACOR 0.0058 0 15000 
ChSS 0.1348 0 15000 
LCA 1.1049 0 15000 
SA 0.0129 0 15000 

TLBO 0.0045 7 13503 
CMAES 0.0050 0 15000 

ES 0.0023 2 14940 
PSO 1.7726 0 15000 
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JADE 0.0031 0 15000 
SCA 0.0260 2 14502 

ASCA-DE 0.0035 21 9235 
 
 Overall, it was found that integrating DE mutation into and applying adaptive parameters 
to SCA lead to performance enhancement of the original SCA. The proposed ASCA-DE is the best 
performer on solving truss damage detection optimisation problem. It is considered the most 
reliable method for this study. 
 
3.7 Conclusions 
 Performance enhancement of a meta-heuristics called a sine cosine algorithm is proposed 
by integrating into it a mutation strategy of DE. Self-adaptive optimisation parameters are 
employed to improve the search performance of the new algorithm. The proposed optimiser is 
implemented on solving a number of truss damage detection inverse problems. The results reveal 
that the new meta-heuristic is the best and most reliable method. Our future work is to investigate 
the new MH for solving other practical engineering design problems. 



Chapter IV 
Estimation of distribution algorithm using correlation between binary elements – a new 

binary-code meta-heuristic 
 

4.1  Introduction 
 This chapter presents a development of a binary-code meta-heuristic. The method is 
called estimation of distribution algorithm using correlation between binary elements (EDACE). 
Performance assessment is made by comparing the proposed optimiser with GA, UMDA, BPSO, 
BSA, and PBIL by using the CEC2015 test problems. Also, the real world optimal flight control is 
used for the assessment. The comparative results are obtained and discussed. It is shown that 
EDACE is among the top performers.    
 
4.2  Proposed method 
 The simplest but efficient estimation of distribution algorithm is probably population-
based incremental learning (PBIL). Another MH that uses a similar concept is UMDA. Unlike GA 
which uses a matrix containing the whole binary solutions during the search, PBIL uses the so-
called probability vector to represent a binary population. During an optimisation process, the 
probability vector is updated iteratively until approaching an optimum. In EDACE, a matrix called 
a correlation between binary elements (CBE) matrix is used to represent a binary population. The 

matrix can be denoted as Pij  [0,1] where the value of the element Pij indicates the correlation 
between element i and element j of a binary design solution. The higher value of Pij means the 
higher probability that binary elements i and j will have the same value. The algorithm is 
developed to deal with a box-constrained optimisation problem: 
 
 Min f(x); xL≤ x ≤ xU                 (4.1) 
 
where f is an objective function and x is a vector containing design variables (a design vector). xL 
and xU are the lower and upper bounds of x respectively. Assuming that a design vector can be 
represented by a row vector of binary bits size m×1, the CBE matrix thus has the size of m×m. It 
should be noted that the details of converting a binary string to be a design vector can be found 
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in [60]. In generating a binary string from the CBE matrix, a reference binary solution (RBS) is 
needed. It can be a randomly generated solution or the best solution found so far depending on 
a user preference. Then, a row of the matrix is randomly selected (say the r-th row). The r-th 
element of a generated binary solution is set to be the r-th element of the reference binary 

solution. The rest of the created binary elements are based on the value of Prj; jr. The procedure 
for creating a binary solution sized m×1 from the m×m CBE matrix is detailed in Algorithm 4.1 
where b is a binary design solution, bREF is the reference binary solution, nP is a population size 

and rand [0, 1] is a uniform random number. The algorithm spends nP loops for creating nP 
binary solutions. The process for generating a binary solution from the CBE matrix is in steps 3-12. 
For one binary solution, only one randomly selected row of CBE (say row r) is used (step 4). Then, 
the r-th element of a generated binary solution is set equal to the r-th element of the reference 
binary solution, bREF. The rest of the elements of the generated binary solution are created in 
such a way that their values depend on corresponding elements on the r-th row of CBE. From 
the computation steps 5-11, the value of Prj determines the probability of aj to be the same as 
ar. The higher value of Prj means the higher correlation between elements r and j and 
consequently the higher probability that aj will be set equal to ar.  
    
Algorithm 4.1 Generation of a binary population from a CBE matrix 

Input:bREF, P 
Output: B = {bi} for i =1, .., nP 
Main procedure 
1: Set B = {}. 
2: For i = 1 to nP 
3: Set a = {} a vector used to contain elements of a generated binary string. 
4: Randomly select a position (r-th row) of P. 
5: Set ar = bREF, r.% Set the r-th element of a as the r-th element of bREF.  
6:  For j = {1, 2, ..., m} – {r} 
7:  If rand < Prj 
8:   aj = ar % aj and ar values are equal, which are either “0” or “1”. 
9:  Else 
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10:   aj = 1 - ar % If ar = 1, aj = 0 or vice versa.  
11:  End 
12: End 

13: Set B = B  a. 
14:End  

 
 The CBE matrix is a square symmetric matrix with equal size to the length of a binary 
solution whose all diagonal elements are equal to one. For an iteration, the matrix will be 
updated according to the so far best solution (bbest). The learning rate (LR) with be used to control 
the changes in updating Pij as with PBIL. Once Pij is updated, the value of Pji is set to be Pij which 
means the process requires m(m-1)/2 updates since Pii is always set to be 1. The updated Pij 

denoted by Pij can be calculated from 
 
 𝑃𝑖𝑗

′ = (1 − 𝐿𝑅)𝑃𝑖𝑗 + 𝐿𝑅(1 − |𝑏𝑏𝑒𝑠𝑡,𝑖 − 𝑏𝑏𝑒𝑠𝑡,𝑗|)        (4.2) 
 
where LR is the learning rate randomly generated in the interval [LR,L, LR,U]. bbest,i and bbest,j are the 
i-th and j-th elements of bbest respectively. From the updating equation, if the i-th and j-th 
elements are similar, it means they are correlated, consequently, the value of Pij (and Pji) is 
increased. If they are dissimilar or uncorrelated, Pij is then decreased. Nevertheless, the value of 
Pij must be limited to the predefined interval  
 
 0 ≤ 𝑃𝐿 ≤ 𝑃𝑖𝑗 ≤ 𝑃𝑈 ≤ 1.                (4.3) 
 
where PL and PU are the predefined lower and upper limits of Pij. Equation (4.3) is used to maintain 
diversity in optimisation search. In the original PBIL, a mutation operator is used with the same 
purpose. Therefore, the procedure of EDACE starts with an initial matrix for correlation between 
binary elements where Pii = 1 and Pij = 0.5. This implies that, when generating a binary solution, 
its elements have equal probability to be 1 or 0 where its r-th element can be 1 or 0, created at 
random. The procedure for general purpose of EDACE is given in Algorithm 4.2. The decision on 
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selecting bREF for generating a binary solution and bbest for updating the CBE matrix is dependent 
on a preference of a user. This means other versions of EDACE can be developed in the future.    
 An initial binary population is randomly created. The binary solutions are then decoded 
to be real design variables where function evaluations are performed and bREF and bbest are found. 
Then, new binary solutions are generated using Algorithm 4.1 while the greedy selection (steps 6-
8) is activated with bREF and bbest being determined. The CBE matrix is updated by using bbest as 
detailed in Equations (4.2) – (4.3). The search process is repeated until termination criterion is 
reached. The generation of a binary design solution of EDACE is, to some extent, similar to those 
used in binary PSO [61] and binary quantum-inspired gravitational search algorithm (BQIGSA) [62] 
in the sense that the binary solution is controlled by the probability of being ‘1’ or ‘0’. However, 
in EDACE, a generated solution relies not only on such probability but also the reference binary 
solution bREF. Apart from that, the update of CBE tend to be similar to the concept employed in 
PBIL with a learning rate and this is totally different from binary PSO and BQIGSA. 
 
Algorithm 4.2 Procedure for EDACE 

Input: number of generation (niter), population size (nP), binary length (m) 
Output: bbest, fbest 
Initialisation: 
0.1: Assign Pij = 0.5 and Pii = 1, sized m×m. 
0.2: Randomly generate nP binary solutions bi and decode them to be xi. 
0.3: Calculate objective function values fi = fun(xi) where fun is an objective function evaluation. 
0.4: Find fbest, bREF, bbest 
Main iterations 
1: For iter =1 to niter 
2:  Update P using Equation (4.2) 
3:  Generate bi

new from P using Algorithm 1, and decode them to be xi
new. 

4: For i =1 to nP 
5:  Calculate objective function values finew = fun(xi

new). 
6: If  finew < fi 
7:  fi= finew, bi= bi

new, xi= xi
new 
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8: End 
9: End 
10: Update fbest, bREF, bbest 
11: End 

   
 In selecting bREF and bbest, if both solutions are the same which is bbest, it could lead to a 
premature convergence. If both are set to be a solution randomly selected solution from the 
current binary population, the diversification increases but the convergence rate will be slower. 
Therefore, the balance between intensification and diversification must be made. In this work, 
the so far best binary solution is set to be bREF to maintain intensification. For updating the CBE 
matrix, we use the new updating scheme as 
 
 𝑃𝑖𝑗

′ = (1 − 𝐿𝑅)𝑃𝑖𝑗 + 𝐿𝑅(1 − |𝑏𝑏𝑒𝑠𝑡1,𝑖 − 𝑏𝑏𝑒𝑠𝑡2,𝑗|)         (4.4) 
 
The solutions bbest1 and bbest2 are two types of best solutions. Firstly, nP best solutions are selected 

from {bi}  {bi
new} (see Algorithm 4.2 for both solution sets), sorted according to their functions, 

and then saved to a set Best_sol. Four m1 vectors are created as: b1 the so far best solution, 
b2 a solution whose elements are averaged from the elements of the first nbest (default = 10) best 
solutions found so far, b3 a solution whose elements are averaged from the elements of the 
members of Best_sol, and b4 a solution whose elements are averaged from the elements of the 
current binary population. bbest1 is randomly chosen from the aforementioned solutions (b1, b2, 
b3, and b4) with equal probability while bbest2 is randomly chosen from the members of Best_sol. 
With this idea, the balance between exploration and exploitation is maintained throughout the 
search process. Algorithm 4.3 shows the new CBE updating strategy.  
 
Algorithm 4.3 Updating scheme for CBE 

Input:LR,L, LR,U, P, bi, bREF, Best_sol, nbest 

Output:  P 
Main procedure 
Create b1, b2, b3, b4 
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For i = 1 to m 
1: Assign PR = rand.  

2: If PR [0, 0.25), set bbest1,i = b1,i 

3: If PR [0.25, 0.5), set bbest1,i = b2,i 

4: If PR [0.5, 0.75), set bbest1,i = b3,i 
5: Otherwise, set bbest1,i = b4,i 
6: Random selected a vector bbest2 from Best_sol. 
For j= i +1 to m 
7: Generate LR.  
 8: Update Pij using Equation (4.4). 
9. Limit Pij to the interval [PL, PU].  
End 
End 

 
4.3 Experimental set up 
 To investigate the search performance of the proposed algorithm, fifteen learning-based 
test problems from CEC 2015 and one flight dynamic control optimisation problem are used. The 
former is used for testing the performance of EDACE for general types of box-constrained 
optimisation while the latter is the real-world application.  
 4.3.1 CEC 2015 learning-based test problems 
   The CEC2015 learning-based test problems are box-constrained single objective 
benchmark functions proposed in [63]. The problems consist of 2 Unimodal Functions, 3 Simple 
Multimodal Functions, 3 Hybrid Functions and 7 Composition Functions. The summary of CEC2015 
learning-based test problems is shown in Table 4.1. It should be noted that the details and the 
codes for the test problems can be downloaded from the website of CEC 2015 competition. 
 
Table 4.1 Summary of CEC2015 learning-based functions 

 No. Functions fmin 
Unimodal 

Functions 
1 Rotated High Conditioned Elliptic 

Function 
100 
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2 Rotated Cigar Function 200 
Simple Multimodal 

Functions 
3 Shifted and Rotated Ackley’s Function 300 
4 Shifted and Rotated Rastrigin’s Function 400 
5 Shifted and Rotated Schwefel’s Function 500 

Hybrid Functions 6 Hybrid Function 1 (N=3) 600 
7 Hybrid Function 2 (N=4) 700 
8 Hybrid Function 3(N=5) 800 

Composition 
Functions 

9 Composition Function 1 (N=3) 900 
10 Composition Function 2 (N=3) 1000 
11 Composition Function 3 (N=5) 1100 
12 Composition Function 4 (N=5) 1200 
13 Composition Function 5 (N=5) 1300 
14 Composition Function 6 (N=7) 1400 
15 Composition Function 7 (N=10) 1500 

 
 4.3.2 Flight dynamic control optimisation problem 
   Flight dynamic control system design is a classical important application for real 
engineering problems. The motion of an aircraft can be described using the body axes which is 
herein the stability axes consisting of: roll axis (x), pitch axis (y) and yaw axis (z) as shown in Figure 
4.1. The motion of the aircraft is described by the Newton’s 2nd law or equations of motion for 
both translational and rotational motions. The dynamical model is nonlinear but can be linearised 
by applying aerodynamic derivatives. Due to aircraft symmetry with respect to the xz plane, the 
linearised dynamical model can be decoupled into two groups as longitudinal motion and the 
lateral/directional motion. For more details of deriving the equations of motion, see [64]. In this 
work, only the lateral/directional motion control is considered. A state equation representing the 
dynamic motion of an aircraft is expressed as [64-67]: 
 
 BuAxx                (4.5) 
 

where x={β, r, p, }T 
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 β = Sideslip, a velocity in y direction 
r= yaw rate, rate of change of rotation about the x axis 

 p= roll rate, rate of change of rotation about the z axis 

  = bank angle, rotation about the x axis 
 A = kinetic energy matrix 
 B = Coriolis matrix 
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 r = rudder deflection.  
 
 The control vector u can be expressed as: 
 
  KxCuu  p              (4.6) 
  
where up is a pilot’s control input vector while C and K are the gain matrices expressed as [67] 
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where parameters k1-k7 are control gain coefficients which need to be found. 
 From Equations (4.5) - (4.6), the state equation for lateral/directional motion of an aircraft 
can be expressed as: 
 
 pBCuxBKAx  )(                   (4.7) 
 
 Design optimisation of the control system of an aircraft is found to have many objectives 
as there are several criteria need to be satisfied such as control stability, accuracy, sensitivity, 
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control effort, etc, while the control gains coefficients are set to be design variables for an 
optimisation problem. In this work, the optimal flight control of an aircraft focuses on only the 
stability aspect. The objective function is posed to minimise spiral root subjected to stability 
performance constraints. The optimisation problem can then be written as: 
 
 Min: sf )(x               (4.8) 
 Subjected to: 
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where DRs  ,,  and d are spiral root, roll damping, damping ratio of dutch-roll complex pair, 
and dutch-roll frequency, respectively. These parameters can be calculated based on the 
eigenvalues associated with the matrix A+BK. The design variables are control gain coefficients in 
the matrix K (x = {k1, k2, k3, k4, k6, k7}T). The kinetic energy matrix (A) and the Coriolis matrix (B) are 
defined as; 
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 More details about this aircraft dynamic model can be found in the references [64-67]. To 
handle the constraints, the penalty function which was presented in [59] is used. 
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Figure 4.1 Stability axes of an aircraft 
 
 The proposed EDACE and several well established binary-code meta-heuristics are used 
to solve the fifteen CEC2015 learning-based test problems and the flight dynamic control test 
problem. The meta-heuristic optimisers are [68]: 
 Genetic Algorithm (GA): used binary codes with crossover and mutation rates are 1 and 
0.1 respectively. 
 Binary Simulated Annealing (BSA): used binary codes with exponentially decreasing 
temperature. The starting and ending temperature are set to be 10 and 0.001, respectively. The 
cooling step is set as 10.  
 Population Based Incremental Learning (PBIL): used binary codes with the learning rate, 
mutation shift, and mutation rate as 0.5, 0.7, and 0.2 respectively. 
 Binary based Particle Swarm Optimisation (BPSO): used binary codes with V-shaped transfer 
function while the transfer function used is the V-shaped version 4 (V4). It is noted that this version 
is said to be the most efficient version based on the results obtained in [61]. 
 Univariate Marginal Distribution Algorithm (UMDA); used binary codes. The first 20 best 
binary solutions is used to update the probability matrix.   
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 Estimation of Distribution Algorithm with Correlation of binary Elements (EDACE) (Algorithm 
4.2): used binary codes with PL = 0.1, PU = 0.9, LR,L = 0.4, LR,U = 0.6, and nbest = 10. 
 Each algorithm is used to solve the problems for 30 optimisation runs. The population 
sizes are set to be 100 and 20 while number of generation is set to be 100 and 500 for the 
CEC2015 learning-based test problems and the flight dynamic control test problem respectively. 
For an algorithm using different population size and number of generations such as BSA, it will be 
terminated at the same number function evaluations, which is 10,000 for all test problems. The 
binary length is set to be 5 for each design variable for all optimisers.  
 
4.4  Optimum Results 
 4.4.1 CEC2015 
   After applying the proposed EDACE and several well-established binary MHs for 
solving the CEC2015 learning-based benchmark functions, the results are shown in Tables 4.2-4.4. 
Note that, apart from the algorithms used in this study, the results of solving CEC2015 test suit 
obtained from efficient binary artificial bee colony algorithm based on genetic operator (GBABC), 
binary quantum-inspired gravitational search algorithm (BQIGSA) and self-adaptive binary variant 
of a differential evolution algorithm (SabDE) as reported in [69] are also included in the 
comparison.   From Table 4.2, the mean (Mean) and standard deviation (STD) values of the 
objective functions are used to measure the search convergence and consistency of the 
algorithms. The lower Mean is the better convergence while the lower STD is the better 
consistency. The value of Mean is more important, thus, for method A with lower Mean but higher 
STD than method B, the method A is considered to be superior. 
   For the measure of search convergence based on the mean objective function 
values, the best performer for the unimodal test functions, f1 and f2, is EDACE while the second 
best is BPSO. For the simple multimodal functions, the best performer for f4 and f5 is SabDE while 
the best performer for the f3 is BPSO. The second best for the f3, f4 and f5 are SabDE, BEDACE 
and UMDE, respectively. For the hybrid functions, the best performer for the function f6, f7, and 
f8, are SabDE, EDACE, and BPSO, respectively, while the second best for f6, f7 is BPSO and the 
second best for f8 is EDACE. For the final group of CEC2015 test problems, composition functions, 
the best performer for the f11, f12 and f14 is SabDE while the best performer for the f10 and f15 
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are BPSO and EDACE, respectively. For f9, the best performers are UMDA, BPSO, GA, PBIL, and 
EDACE, which obtain the same mean values while, for f13, the best performers are UMDA, BPSO, 
GA, PBIL, BSA, and EDACE, which obtained the same mean values. It should be noted that the 
results from [53] were obtained from using the total number of function evaluations as 1,000,000 
with the binary length of 50 for each design variable whereas this work uses 10,000 function 
evaluations with the binary length of 5 for each design variable. This indirect comparison with 
GBABC, BQIGSA, and SabDE can only be used to show that the proposed EDACE also has good 
performance and cannot be used to claim which method is superior.    
  For the measure of search consistency based on the STD values, the most consistent 
method for unimodal functions, f1 and f2, are BPSO and EDACE while the second most consistent 
methods are EDACE and BPSO, respectively. For the simple multimodal functions, the best for f3 
and f5 is SabDE while the best for f4 is the proposed EDACE. EDACE is the best for the hybrid 
function of f7 while BPSO is the best for the hybrid functions f6 and f8. For the composition 
functions, EDACE is the best for the problems f9 and f12 while BPSO is the best for f10. For the 
composition functions, f11, f14 and f15, the best is SabDE while the best for f13 is BSA.   
  The value Min in Table 4.2 is the objective function value of the best run from a 
particular method. Note that only the UMDA, BPSO, GA, PBIL, BSA and EDACE were compared. For 
the unimodal function, the minimum objective function values of f1 and f2 were obtained by 
BPSO and EDACE, respectively. For the simple multimodal functions, the minimum objective 
function values for f3 and f5 are obtained from BPSO and EDACE, respectively, while for the f4, 
the minimum is obtained from UMDA, BSA and EDACE. The EDACE obtained minimum objective 
function values for all test functions in the hybrid function group. However, for the hybrid function 
f8, three algorithms including BPSO, GA and EDACE obtained the minimum values. For the 
composition functions, EDACE obtained the minimum function values for all test functions. 
However, for the functions f9 and f13, all algorithms obtained the same minimum values while 
for the f11, BPSO and EDACE obtained the same minimum function values. Similarly, for f12, 
UMDA, BPSO, BSA and EDACE obtained the same minimum values.  
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Table 4.2 Objective values obtained 

CEC2015 MHs UMDA BPSO GA PBIL BSA EDACE *GBABC *BQIGSA *SabDE 

Unimodal Functions 

f1 Mean 7.415E+06 1.807E+06 5.508E+06 1.586E+07 4.365E+07 1.692E+06 2.729E+07 8.419E+07 3.093E+08 
 STD 5.648E+06 1.224E+06 3.510E+06 1.226E+07 4.391E+07 2.297E+06 2.267E+07 7.354E+07 1.168E+08 
 Min. 5.203E+05 1.914E+05 1.016E+06 2.688E+05 1.325E+06 2.454E+05    
           

f2 Mean 1.728E+08 1.278E+08 2.415E+08 1.443E+08 1.018E+09 7.802E+07 2.864E+09 7.834E+09 2.541E+09 
 STD 1.287E+08 1.236E+08 1.880E+08 1.371E+08 1.680E+09 3.046E+07 2.374E+09 6.527E+09 5.008E+09 
 Min 4.359E+07 3.525E+07 6.713E+07 4.834E+07 1.133E+08 3.277E+07    
           

Simple Multimodal 
Functions 

f3 Mean 3.203E+02 3.197E+02 3.203E+02 3.202E+02 3.202E+02 3.201E+02 3.202E+02 3.202E+02 3.200E+02 
 STD 8.505E-02 1.900E+00 9.050E-02 7.945E-02 6.006E-02 3.300E-02 2.641E+02 2.641E+02 2.044E-02 
 Min 3.201E+02 3.107E+02 3.201E+02 3.201E+02 3.201E+02 3.200E+02    
           

f4 Mean 4.213E+02 4.220E+02 4.286E+02 4.278E+02 4.226E+02 4.182E+02 4.358E+02 4.389E+02 4.116E+02 
 STD 4.647E+00 4.915E+00 8.553E+00 9.507E+00 7.150E+00 4.173E+00 3.599E+02 3.621E+02 7.606E+00 
 Min 4.105E+02 4.124E+02 4.138E+02 4.123E+02 4.105E+02 4.105E+02    
           

f5 Mean 1.010E+03 1.066E+03 1.339E+03 1.353E+03 1.275E+03 1.014E+03 1.108E+03 1.542E+03 9.330E+02 
 STD 1.300E+02 1.352E+02 1.981E+02 2.279E+02 1.975E+02 1.500E+02 9.736E+02 1.275E+03 9.464E+01 
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 Min 7.791E+02 8.526E+02 1.049E+03 8.120E+02 9.628E+02 6.907E+02    
           

Hybrid Functions 

f6 Mean 1.951E+05 7.345E+04 2.288E+05 4.894E+05 6.403E+06 1.133E+05 7.442E+06 5.582E+05 4.625E+04 
 STD 1.120E+05 3.958E+04 1.813E+05 3.224E+05 8.635E+06 8.936E+04 1.321E+07 6.055E+05 4.076E+04 
 Min 3.661E+04 3.661E+04 3.702E+04 8.124E+04 1.320E+05 3.659E+04    
           

f7 Mean 7.047E+02 7.032E+02 7.044E+02 7.046E+02 7.118E+02 7.030E+02 7.589E+02 7.392E+02 7.752E+02 
 STD 1.054E+00 6.183E-01 1.036E+00 1.113E+00 8.660E+00 5.927E-01 4.668E+02 4.324E+02 4.155E+03 
 Min 7.027E+02 7.024E+02 7.027E+02 7.024E+02 7.025E+02 7.021E+02    
           

f8 Mean 9.309E+04 1.511E+04 5.503E+04 4.808E+05 2.305E+06 2.727E+04 3.949E+07 2.948E+06 2.395E+07 
 STD 1.120E+05 6.918E+03 5.630E+04 5.295E+05 2.400E+06 2.635E+04 2.442E+08 2.469E+06 5.432E+07 
 Min 1.497E+04 1.287E+04 1.287E+04 1.312E+04 1.589E+04 1.287E+04    
           

Composition Functions 

f9 Mean 1.001E+03 1.001E+03 1.001E+03 1.001E+03 1.003E+03 1.001E+03 1.017E+03 1.048E+03 1.177E+03 
 STD 2.090E-01 2.231E-01 9.437E-01 4.017E-01 4.284E+00 1.700E-01 8.397E+02 8.643E+02 4.102E+01 
 Min 1.000E+03 1.000E+03 1.000E+03 1.001E+03 1.000E+03 1.000E+03    
           

f10 Mean 1.285E+04 3.930E+03 1.367E+04 4.235E+04 5.317E+05 7.819E+03 9.909E+05 4.426E+04 2.416E+07 
 STD 8.308E+03 2.140E+03 1.291E+04 3.728E+04 6.444E+05 4.897E+03 3.659E+06 4.477E+04 8.862E+07 
 Min 3.199E+03 1.733E+03 1.738E+03 2.275E+03 1.805E+03 1.731E+03    
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f11 Mean 1.510E+03 1.232E+03 1.360E+03 1.396E+03 1.427E+03 1.240E+03 1.159E+03 1.172E+03 1.114E+03 

 STD 8.727E+01 1.410E+02 1.129E+02 5.002E+01 4.384E+01 1.436E+02 9.557E+02 9.669E+02 1.131E+01 
 Min 1.401E+03 1.109E+03 1.118E+03 1.132E+03 1.402E+03 1.109E+03    
           

f12 Mean 1.304E+03 1.305E+03 1.306E+03 1.308E+03 1.308E+03 1.305E+03 1.264E+03 1.255E+03 1.224E+03 
 STD 9.674E-01 1.125E+00 1.259E+00 2.595E+00 4.486E+00 1.115E+00 1.044E+03 1.035E+03 1.302E+00 
 Min 1.303E+03 1.303E+03 1.304E+03 1.304E+03 1.303E+03 1.303E+03    
           

f13 Mean 1.300E+03 1.300E+03 1.300E+03 1.300E+03 1.300E+03 1.300E+03 1.446E+03 1.452E+03 2.815E+09 
 STD 8.140E-04 1.039E-03 1.248E-03 9.095E-04 2.313E-13 7.944E-04 1.193E+03 1.197E+03 4.158E+09 
 Min 1.300E+03 1.300E+03 1.300E+03 1.300E+03 1.300E+03 1.300E+03    
           

f14 Mean 9.364E+03 5.623E+03 7.023E+03 7.355E+03 8.736E+03 6.167E+03 2.162E+03 3.356E+03 1.727E+03 
 STD 2.120E+03 2.144E+03 1.856E+03 2.732E+03 3.603E+03 2.199E+03 2.091E+03 2.869E+03 4.411E+02 
 Min 4.817E+03 2.816E+03 4.425E+03 2.818E+03 4.453E+03 2.401E+03    
           

f15 Mean 1.623E+03 1.616E+03 1.621E+03 1.618E+03 1.639E+03 1.614E+03 2.012E+03 1.530E+03 1.700E+03 
 STD 3.445E+00 3.132E+00 5.108E+00 4.295E+00 3.614E+01 3.945E+00 1.659E+03 1.262E+03 2.177E−05 
 Min 1.618E+03 1.609E+03 1.612E+03 1.610E+03 1.610E+03 1.607E+03 - - - 

* Results reported in [69] with 1,000,000 function evaluations and 50 binary length for each design variable
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 Table 4.3 shows the summary of ranking based on the mean objective function values 
from 30 optimisation runs. It was found that the proposed EDACE is mostly ranked in top three 
best from solving fifteen CEC2015 learning-based test problems. After summing up the ranking 
score, it is found that EDACE and BPSO are equal best performer while the third best is UMDA. 
 
Table 4.3 Ranking of all optimisers based on the Mean values 

 UMDA BPSO GA PBIL BSA EDACE GBABC BQIGSA SabDE 
f1 4 2 3 5 7 1 6 8 9 
f2 4 2 5 3 6 1 8 9 7 
f3 9 1 8 7 4 3 5 5 2 
f4 3 4 7 6 5 2 8 9 1 
f5 2 4 7 8 6 3 5 9 1 
f6 4 2 5 6 8 3 9 7 1 
f7 5 2 3 4 6 1 8 7 9 
f8 4 1 3 5 6 2 9 7 8 
f9 3 2 5 4 6 1 7 8 9 
f10 3 1 4 5 7 2 8 6 9 
f11 9 4 6 7 8 5 2 3 1 
f12 4 6 7 9 8 5 3 2 1 
f13 3 2 6 5 1 4 7 8 9 
f14 9 4 6 7 8 5 2 3 1 
f15 6 3 5 4 7 2 9 1 8 

Sum of ranking 72 40 80 85 93 40 96 92 76 
  
  In order to further investigate the performance comparison of the binary-code MHs, 
the statistical t-test is employed. Table 4.4 shows a 9×9 comparison matrix of the 9 optimisers. If 
method i is significantly better than method j based on the t-test at 5% significant level, the 
column i and row j of the matrix is set to be 1, otherwise, it is set to be 0. When summing up 
along the columns, the highest score indicates the best optimiser based on this type of 
comparison. In the table, it means EDACE is the best. Table 4.5 shows the ranking of the 9 
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optimisers when solving all CEC2015 learning-based test problems based on the t-test. After 
summing up the ranking numbers of all test problems, it is found that EDACE is the overall best 
optimiser while BPSO and UMDA are the second and the third best respectively. 
  Figure 4.2-4.5 show the search history of the top three optimisers EDACE, BPSO and 
UMDA on solving all CEC2015 learning-based test problems where the vertical axis is the average 
objective function from 30 runs of each method. For all test functions, it was found that EDACE 
and UMDA converged to the optimal values at higher speed while BPSO seems to converge slowly 
and consistently. However, for all functions, BPSO finally moves to the minimum or near minimum 
function values at the end of the runs. EDACE shows fast convergence from the beginning and 
obtained the minimum or near minimum values for all test functions except for f3. This indicates 
the ability of search exploitation and search exploration of the proposed EDACE since the CEC2015 
test functions were assigned to test both aspects of MHs. 
 
Table 4.4 Comparison based on the statistical t-test of the test problem 

 UMDA BPSO GA PBIL BSA EDACE GBABC BQIGSA SabDE 
UMDA 0 1 1 0 0 1 0 0 0 
BPSO 0 0 0 0 0 1 0 0 0 
GA 0 1 0 0 0 1 0 0 0 
PBIL 1 1 1 0 0 1 0 0 0 
BSA 1 1 1 1 0 1 1 0 0 

EDACE 0 0 0 0 0 0 0 0 0 
GBABC 1 1 1 1 0 1 0 0 0 
BQIGSA 1 1 1 1 1 1 1 0 0 
SabDE 1 1 1 1 1 1 1 1 0 
Sum 5 7 6 4 2 8 3 1 0 

Ranking 4 2 3 5 7 1 6 8 9 
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Table 4.5 Ranking of the all optimisers for all CEC2015 learning based test problem based on 
statistical t-test 

 UMDA BPSO GA PBIL BSA EDACE GBABC BQIGSA SabDE 
f1 4 2 3 5 7 1 6 8 9 
f2 4 2 5 3 6 1 8 9 7 
f3 5 2 5 5 4 2 5 5 1 
f4 3 4 6 6 4 2 8 8 1 
f5 2 4 7 8 6 2 5 9 1 
f6 4 2 5 6 8 3 9 7 1 
f7 3 1 3 3 6 1 8 7 8 
f8 4 1 3 5 6 2 9 7 8 
f9 3 1 4 4 6 1 7 8 9 
f10 3 1 4 5 7 2 8 6 9 
f11 9 4 6 7 8 5 2 2 1 
f12 4 5 7 8 8 5 2 2 1 
f13 1 1 1 1 1 1 7 7 9 
f14 9 4 6 7 8 5 2 3 1 
f15 6 3 5 4 7 2 9 1 8 
Sum 64 37 70 77 92 35 95 89 74 

 

 
Figure 4.2 Search history of the top three best optimisers based on the t-test for the unimodal 

function 
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Figure 4.3 Search history of the top three best optimisers based on the t-test for the simple 

multimodal functions 

 
Figure 4.4 Search history of the top three best optimisers based on the t-test for the hybrid 

functions 
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Figure 4.5 Search history of the top three best optimisers based on the t-test for the 

composition functions 
 
  Table 4.6 shown performance of EDACE on solving unimodal function, f1, when the 
binary lengths for each design variable are 5, 10, 25, and 50 for 10 optimisation runs. It was found 
that, when the number of binary bit increases, the computational time increase and the resulting 
mean objective function values decrease for the binary lengths less than 25. However, for the 
binary length of 50, the mean objective function value increases meaning EDACE performance 
deteriorates. Without considering computational time, the best number of binary length is 25.   
 
Table 4.6 shown performance of EDACE for various number of binary bits 

No. of binary bits 5 10 25 50 
Mean function values 2.314E+6 1.101 E+6 1.079 E+6 1.143 E+6 
Average computational time (Sec.) 9.371 10.748 18.634 52.773 
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 4.4.2 Flight dynamic control system design 
   After applying the six binary-code MHs to solve the real engineering application of 
flight dynamic and control system for 30 optimisation runs, the comparison results are shown as 
box-plots of the objective and constraint violation values (Figure 4.6). The upper and lower 
horizontal lines of each box represent the maximum and minimum of objective function values 
respectively while the internal line shows the median of objective function values. From this 
figure, based on median values of objective function, it is found that the best performer is EDACE 
while the second best and the third best are BPSO and UMDA respectively. The most consistent 
having the smallest gap between the maximum and minimum for all of optimisation runs is UMDA. 
However, the worst function value found be EDACE is almost as good as the best found by UMDA. 
Thus, the proposed EDACE is superior. Based on the figure, it was found that GA failed to solve 
the problem as it cannot obtain a feasible optimum point. The minimum objective function value 
is obtained from using the proposed EDACE. 
 Figure 4.7 shows the best run search history of all optimisers (Selection based on the 
minimum objective function values of feasible solutions). From the figure, UMDA and PBIL seem 
to be the fastest convergent methods initially. However, after the process goes on for about 4,000 
function evaluations, the proposed EDACE converged to the minimum objective function value 
with a faster rate than the others. It has better exploration rate as the best function value is still 
decreased at the late iteration numbers. BPSO, on the other hand, seems to be slower than 
UMDA, PBIL and BSA in the beginning. It however can converge to the better results after around 
8,000 function evaluations. 
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Figure 4.6 Box-plot of objective function values from 30 optimisation runs 

 

 
Figure 4.7 Search history of the best run of all optimisers 
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4.5  Conclusions and Discussion 
 In this work, a new concept of a binary-code optimiser is proposed. Fifteen CEC2015 
learning based test problems and a real engineering design problem of flight dynamic and control 
system are used to investigated the search performance of the proposed algorithm. Several well-
establish binary-code MHs are used in comparison. The results obtained show that the proposed 
EDACE is the best performer on solving the 15 CEC2015 learning-based test problems and real 
engineering design problem of flight dynamic and control. Further improvement of EDACE by 
means of self-adaptation will be investigated in the future. The choice for bREF needs further 
studies. The use of EDACE for hyper-heuristic development is also possible. The extension to 
multiobjective optimisation and many-objective optimisation is also under investigation. Appling 
EDACE for the more complex problems such as large scale problems, mixed-variable problems, 
and reliability optimisation is for future work. The fight control optimisation problem, one of our 
recent research focuses, has more than three objective functions to be optimised, thus, it should 
be formulated as many-objective optimisation. This along with aircraft path planning dynamic 
optimisation still needs considerably more investigation while EDACE will be one of optimisers to 
be used for solving such design problems. 



Chapter V 
Inverse problem based differential evolution for efficient structural health monitoring of 

trusses 
 

5.1 Introduction 
 This chapter presents a new efficient MH for structural damage detection as a hybridisation 
of a radial basis function (RBF) interpolation and differential evolution (DE). In this work, the RBF 
is integrated into the main procedures of DE for approximating design solutions rather than 
objective functions as with traditional surrogate-assisted optimisation. Four structural damage 
detection and localisation test problems from two truss structures are used for performance 
assessment of a number of MHs and the proposed algorithm. The results obtained from the 
various algorithms will be statistically compared in terms of both convergence rate and 
consistency. 
 
5.2 Natural-frequency-based damage detection and localisation 
 In this study, structural damage detection using changes in structural natural frequencies 
is considered. The detection strategy can be used for damage detection of truss elements due to 
corrosion, crack and yielding of members due to fatigue. This approach is based on implementing 
modal testing incorporated with a finite element model.  Initially, the natural frequencies (usually 
the lowest nmode natural frequencies) of the structure in a normal condition will be used as the 
baseline. In practice, the natural frequencies and mode shapes will be measured and the finite 
element model will be updated so that both measured and computed modal parameters are 
equivalent. The finite element model used herein is a simple linear undamped free vibration 
which can be expressed as: 
 
         0 jjj  MK              (5.1) 
 
The structural natural frequencies can be computed as  
 
 jj   ,  j=1,2,3,…, ndof            (5.2) 
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The mass and stiffness matrices can be obtained from assembling all element mass and stiffness 
matrices, which can be expressed as:   
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 In cases that damage in the structural element occurs, the structural natural frequencies 
of the structure will be different from those of the baseline structure. To localise the damage, it 
is assumed that the values of the structural stiffness matrix are altered, which can be written in 
terms of element structural damage percentage. As a result, the altered structural stiffness matrix 
of the damaged structure is of the form 
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 The optimisation problem is then formulated by assigning all the values of element 
damage percentages as a design solution x = {p1, …, pne}T. The objective function is to minimise 
the root mean square error: 
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where damagej,  is the structural natural frequency of mode j obtained from measuring a damaged 
structure. nmode is the number of lowest vibration modes used for the damage detection. 

computedj,  is the structural natural frequency of mode j obtained from solving (5.1) using [Kd] 
instead of [K]. The optimum solution having the objective function value close to zero gives 
accurate damage localisation. The values of the element damage percentage indicate where the 
damage takes place.  
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5.3 Test problems with trusses 
 To study performance assessment of a number of MHs on tackling damage detection 
optimisation, two truss structures are employed in this work. For the sake of simple investigation, 
truss damage is simulated whereas the natural frequencies of structures are computed from finite 
element analysis rather than measuring real structure modal data. Only truss element damages 
are taken into consideration. It should be noted that free vibration is simulated for all cases 
without considering gravity loads. The trusses are detailed as follows. 
 
 5.3.1  Twenty-five-bar truss 
   The structure having 25 bars is depicted in Fig. 5.1 [70]. All bar element cross-
sectional areas are set to be 6.4165 mm2.  Material density and Young modulus are given as 7,850 
kg/m3 and 200 GPa, respectively. Two damage case studies are assumed as Case I: 35% damage 
on element 7 (Note that 35% damage on elements 6, 8 or 9 will result in the same set of natural 
frequencies), and Case II: 35% and 40% damage at elements 7 and 9 (Note that 35% damage in 
element 6 and 40% damage in element 8 will result in the same set of natural frequencies for 
this case). The pin supports are applied to node numbers 7, 8, 9 and 10. The data of natural 
frequencies of the damaged and undamaged 25-bar truss are given in Table 5.1. 
 
Table 5.1 Natural frequencies (Hz) of damaged and undamaged 25 bar structure. 

Mode 
Undamaged 
reported in 

[6]* 

Undamaged 
calculated by 
commercial 

software (Ansys 
academic version)* 

Undamaged 
calculated in 
this study* 

35% damage 
at element 
number 7 

35% damage 
at element 
number 7 
and 40% 

damage at 
element 
number 9 

1 70.9924 69.782 69.7818 69.1393 68.5203 
2 74.0851 72.822 72.8217 72.2006 71.3167 
3 97.5390 95.876 95.8756 95.3372 94.5625 
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4 122.2281 120.14 120.1437 119.8852 119.6514 
5 121.9300 121.50 121.5017 121.4774 121.4253 
6 - 125.01 125.0132 125.0130 125.0129 

* The natural frequencies are slightly different which could be due to the numerical algorithm 
used and truncation errors. 

 
Figure 5.1 Twenty-five bar truss 

 
 5.3.2 Seventy-two-bar truss 
   The 72-bar truss structure is displayed in Fig. 5.2 [71] where four non-structural 
masses of 2270 kg are attached to the top nodes.  The values of all bar element cross-sectional 
areas are set to be 0.0025 m2. Material density and modulus of elasticity are 2,770 kg/m3 and 
6.98×1010 Pa, respectively. Two cases of damage are generated as Case I: 15% damage at element 
number 55 (Note that 15% damage in elements 56, 57, or 58 will result in the same set of natural 
frequencies as that of element 55), and Case II: 10% damage at element number 4 and 15% 
damage at element number 58 (90, 180, and 270 degrees rotation along the z axis will lead to 
the same set of natural frequencies). The pin supports are applied to nodes number 17, 18, 19 
and 20.  The values of natural frequencies of the damaged and undamaged 72-bar truss are given 
in Table 5.2.  
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Table 5.2 Natural frequencies (Hz) of damaged and undamaged 72 bar structure. 

Mode 
Undamage
d reported 

in [11]* 

Undamaged 
calculated by 
commercial 

software (Ansys 
academic version)* 

Undamaged 
calculated 

in this 
study* 

15% damage 
at element 
number 55 

15% damage 
at element 
number 58 
and 10% 

damage at 
element 
number 4 

1 6.0434 5.4977 6.0455 5.9553 5.9530 
2 6.0441 5.4977 6.0455 6.0455 6.0455 
3 10.4627 9.5181 10.4764 10.4764 10.4764 
4 18.2275 16.594 18.2297 18.1448 18.0921 
5 25.4466 23.213 25.4939 25.4903 25.2437 
6 25.4510 23.213 25.4939 25.4939 25.4939 

* The natural frequencies are slightly different which could be due to the numerical algorithm 
used and truncation errors. 
 

 
Figure 5.2 Seventy-two bar truss 
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5.4 Hybrid radial basis function and differential evolution for truss damage detection 
 The purpose of using MHs for truss damage detection is to solve the optimisation problem 
with the objective function (5.5) subject to bound constraints of x. The advantages of using MHs 
are their simplicity in use, capability of global search, derivative-free feature, and robustness. Using 
meta-heuristics implies that a user has less worry about mode switching during an optimisation 
run while this phenomenon may occur in cases of using a gradient-based optimiser. The detection 
approach can be used for real-time monitoring provided that an employed MH is adequately 
powerful.  
 
 5.4.1 Differential evolution 
   Differential evolution is a population based method which was first proposed by 
Storn and Price in 1997 [2]. The method contains two main steps for searching an optimum, 
including mutation and crossover where the acronym DE/x/y/z is used to specify different 
mutation and crossover strategies. The variable x is used to specify a vector for mutation which 
can be best (the best individual) or rand (random individual) while y and z specify the number of 
vector pairs used in mutation and the choice of a crossover scheme, respectively. For example, 
as used in this work, DE/best/2/bin means that the best individual and two different vector pairs 
are used in the mutation step while the binomial crossover is employed. The mutation operation 
can be expressed as follows: 
 
  4,3,2,1,

)0,1(
best )1( rrrr

rand
i F xxxxxu   .            (5.6) 

 
In this work, F is a uniform random number in the range of [Fmin, Fmax]. For the i-th mutant 
individual T

iu = [xnew,1, ..., xnew,D] and its corresponding parent T
oldx =[xold,1, …, xold,D], the binary 

crossover can be operated leading to a new candidate solution xnew as 
 

 


 


otherwisex

CRrandu
x

jold

j
jnew ;

;

,
,  j=1,2,3,…,D.          (5.7) 
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The selection operator is carried out by comparing xnew and its parent xold where the better will 
survive to the next generation. 
 The DE computational steps are shown in Algorithm 5.1. Initially, a set of the population 
is generated by means of randomisation and their objective function values are evaluated. After 
obtaining the best individual, the offspring are generated by mutation (eq. 5.6) and then crossover 
(eq. 5.7). Then, the next generation is selected and the search process will be repeated until a 
termination criterion is reached.   
 
Algorithm 5.1 DE search procedure  

Input: population size, number of generations, algorithm parameters. 
Output: xbest, fbest 
Main algorithm  
1::Initialise a population, calculate their objective function values and set as the current 
population.  
2: Find the best individual 
3: Generate a new population from the current population using DE mutation (eq.6) and DE 
crossover (eq.7).   
4: Evaluate objective function values of the members of the new population. 
5: Select the next generation from the newly generated and current populations. 
6: Set the selected population from step 5 as the next generation. 
7: If a termination condition is not met, go to step 2. Otherwise, stop the algorithm. 

 
 5.4.2 Inverse problem-based differential evolution 
   This subsection details the proposed differential evolution based on using an 
inverse problem concept. In optimisation, the radial basis function is traditionally used for 
approximating an objective function value for problems with expensive function evaluation [47, 
72]. Nevertheless, in this work RBF is conversely implemented. It will be used to approximate a 
design solution x that is expected corresponding to the target damage conditions. Given that the 
vector of target natural frequencies ( damageω ) contains nmode lowest natural frequencies of the 
damaged structure, the idea is to find a solution vector xdamage containing ne element damage 
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percentages by means of interpolation. During MH search, if we have a set of N design solutions 
{x1, x2, . . ., xN} which corresponds to a set of N vectors of natural frequencies { Nωωω ,,, 21  }, 
these data will be used for RBF training. In contrast to surrogate-assisted optimisation, the natural 
frequency vector will be set as independent variables whereas the design vector x will be set as 
dependent variables. The ith element of xdamage that is expected to give the target vector of natural 
frequencies of the damaged truss is expressed as:   
 

   



N

k
damagekkidamage cx

1
, ωω                   (5.8)  

 

where ck is the interpolation coefficients to be determined, and φ is a RBF kernel function. 

damagek ωω  is the distance between k and damage. For xi, interpolation coefficients ck can 
be found from solving the system of linear equations 
 

     



N

k
lilkk xc

1

ωωω  ;  for i = 1 , . . ., ne, and l = 1, …, N             (5.9) 

 

where xi(l) is the ith element of the lth solution vector in the training set {x1, x2, . . ., xN}. 
Equation (5.9) can be written in a matrix form as 
 
  Ac = b            (5.10) 
 

where Ak,l = (||k - l||). It is required to compute ne sets of the interpolation coefficients 
according to ne elements of x. In practice, the matrix A is generated and inverted once, and will 
be used to calculate ne sets of the coefficients.    
 Having determined the sets of interpolation coefficients ck for all ne elements of x by using 
(5.9), the elements of xdamage can be found from using Equation (5.8). The search procedure for 
hybridised RBF and DE which will be termed inverse problem-based differential evolution (IPB-
DE) according to its computation nature can be carried out in such a way that, after the 
reproduction step 3 in Algorithm 5.1, the next generation is selected in step 5. The worst solution 
in the next generation is then replaced by xdamage. The procedure of the hybrid algorithm IPB-DE 
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is detailed in Algorithm 5.2 while the flowchart for the IPB-DE algorithm is shown in Fig. 5.3. The 
process starts by creating an initial population by using the Latin hypercube sampling (LHS) 
technique instead of the Monte Carlo technique. Those solutions in the initial population are 
then saved to the RBF database for training RBF. Offspring are then created by means of 
reproduction of DE. The candidate solution xdamage is created using Equations (5.8-5.9). Having 
performed a selection operation, the worst solution in the next generation is replaced by xdamage. 
The best solution from the offspring and xdamage are then added to the RBF database which will 
be used as training points during the optimisation search. As the process continues, the RBF 
database is improved and expected to give more accurate results. The procedure is repeated 
until fulfilling the termination criteria. 
 
Algorithm 5.2 IPB-DE 

Input: population size (np), number of generations (niter), algorithm parameters, the natural 
frequencies measured from the damaged structure ( damageω ) 
Output: xbest, fbest 
Main algorithm  
1: Generate an initial set of design variables x using LHS, calculate the natural frequencies (ω ) 
and objective function values (f), set x and f as the current population and save x and ω  in the 
RBF database. 
2: Find the best solution. 
3: Generate offspring from the current population using the DE mutation and binomial crossover 
operators (reproduction) and then perform function evaluations. 
4: Select design solutions from the offspring and the current population. 
5: Generate xdamage using the training points from the RBF database using Equations (9) and then 
(8). 
6: Calculate the natural frequencies (ω ) and objective function value (f) of xdamage. 
7: Update the RBF database by adding to it the data of the best solution from the offspring and 
xdamage.   
8: Replace the worst solution in the next generation with xdamage. 
9: If a termination condition is not met, go to step 2. Otherwise, stop the algorithm. 
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Figure 5.3 Flow chart of IPB-DE 

 
5.5 Numerical Experiment 
 To verify the search performance of the proposed IPB-DE, several MHs are compared 
based on solving the aforementioned truss damage detection problems. The employed methods 
are said to be established while some of them are regarded as the currently best optimisers of 
this type. Given that nP is a population size, MHs and their optimisation parameter settings used 
in this work are detailed in table 5.3 (it should be noted that details of notations can be found in 
the corresponding references for each method) [58, 73]: 
 
 Table 5.3 MH Parameters settings 

MH Parameter settings 
Whale optimization algorithm 
(WOA) [74] 

- The parameter b = 1  
- Other parameters are iteratively adapted. 

Sine Cosine algorithm (SCA) [7] - The constant parameter a = 2. 

Stop, optimum results 

  

Initialisation 

population, parameters 

RBF database, iter = 0 

  

Create offspring using DE 

mutation and crossover 

x(iter), f(iter) 

Terminated? 
Create xdamage using Equations 

(8) – (9) 

Select next generation using 

DE selection 

x(iter+1), f(iter+1) 

 

Replace the worst in 

x(iter+1) with xdamage and 

update RBF database 

  

no, iter=iter+1 
yes 
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Moth-flame optimisation algorithm 
(MFO) [75] 

- The constant parameter b = 1  
- Other parameters are iteratively adapted. 

Differential evolution (DE) [2] - Using DE/best/2/bin strategy  
- Scaling factor (F) =0.8,  
- probability of choosing elements of mutant vectors 
(CR) = 0.5  

Artificial bee colony algorithm 
(ABC) [49] 

- The number of food sources for employed bees = 
nP/2.  
- A trial counter to discard a food source =100.   

Real-code ant colony optimisation 
(ACOR) [50] 

- The parameter, q = 0.2 

- The parameter,  = 1 
Charged system search (ChSS) [52] - The number of solutions in the charge memory = 

0.2×nP  
- The charged moving considering rate = 0.75 - the 
parameter PAR = 0.5  

League championship algorithm 
(LCA) [51] 

-The probability of success Pc = 0.9999  
-The decreasing rate to decrease Pc = 0.9995 

Simulated annealing (SA) [48] 
 

- Starting temperature = 10  
- Ending temperature = 0.001  
For each loop, nmode candidates are created by mutating 
on the current best solution while other nmode 
candidates are created from mutating the current 
parent. The best of those 2nmode solutions are set as an 
offspring to be compared with the parent.   

Particle swarm optimisation (PSO) 
[3] 
 

- The starting inertia weight = 0.5 
- The ending inertia weight = 0.01 
- The cognitive learning factor = 0.5 
- The social learning factor = 0.5 
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Evolution strategies (ES) [4] 
 

The algorithm uses a binary tournament selection 
operator and a simple mutation without the effect of 
rotation angles. 

Teaching-learning-based 
optimisation (TLBO) [9] 

Parameter settings are not required. 

Adaptive differential evolution 
(JADE) [11] 
 

The parameters are self-adapted during an optimisation 
process. 

Evolution strategy with covariance 
matrix adaptation (CMAES) [76] 

The parameters are self-adapted during an optimisation 
process. 

IPB-DE Use the DE parameter setting. 
 
 Each optimisation algorithm is employed to solve each test problem for 30 independent 
runs. The number of iterations (generations) is 300 for all case studies while the population size 
is set to be 30 and 50 for 25-bar and 72-bar trusses respectively. For the optimisers using different 
population sizes from the aforementioned values, their search processes are terminated with the 
total number of functions evaluations (FEs) equal to 30×300 and 50×300 for 25-bar and 72-bar 
trusses respectively. Another termination criterion is when one of the design solutions in the 
current population has an objective function value less than or equal to 1×10-3. It should be 
noted that the numbers of FEs used in this study can be considered insufficient for some MH 
optimisers. However, these values are used to find out really powerful algorithms. For all test 
problems, six lowest natural frequencies (nmode = 6) are used to compute the objective function 
values. This number of selected frequencies is reasonable since, in practice, it is easier to 
accurately measure fewer lowest natural frequencies.  
 
5.6 Results and discussion 
 Initially, the effect of RBF kernels on the performance of the proposed algorithm was 
investigated. The last test problem, 72 bar truss with 15% damage at element number 58 and 
10% damage at element number 4 which is said to be the most complicated problem, was used. 
Table 5.4 shows the results obtained from using a variety of RBF kernel functions. The mean 
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values of the objective function are used to indicate the search convergence of the algorithms in 
cases that the objective function threshold (1×10-3) is not met during an optimisation run. 
Otherwise, the mean number of FEs is used as an indicator. The algorithm that is terminated by 
the objective function threshold is clearly the superior method and any optimisation run being 
stopped with this criterion is considered a successful run. The number of successful runs from 30 
optimisation runs denoted as “No. of successful runs from 30” is the total number that the 
algorithm can meet the target objective function value (1×10-3). It is used to measure the 
algorithm reliability. From Table 5.4, the best performer is the Gaussian kernel, while the second 
best and the third best are the Polynomial kernel and the Inverse quadratic kernel, respectively. 
Thus, the Gaussian kernel is used in this study. 
 
Table 5.4 Comparison of various RBF kernels for solving 72 bar truss Case II 

DE with RBF kernel 
Mean  objective 
function Values 

No. of successful runs 
from 30 runs 

Mean of FEs 

Gaussian 0.0011 25 6856 
Multiquadric 0.0104 5 13993 

Inverse quadratic 0.0032 14 12221 
Linear 0.0117 8 13819 

Polynomial order 2 0.0039 15 10807 
 
 Comparison of various ranges [Fmin, Fmax] of a scaling factor and CR values using DE with 
the best RBF kernel for solving the 72 bar truss with 15% damage at element number 58 and 
10% damage at element number 4 is shown in Table 5.5. It is found that for all implemented 
intervals of [Fmin, Fmax], the performance increases when the value of CR increases. The highest 
DE performance is obtained when the range [Fmin, Fmax] and CR are set to be [0.2, 0.8] and 0.8, 
respectively.  
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Table 5.5 Comparison of various ranges of F and CR values for solving 72 bar truss Case II 
DE with Gaussian RBF kernel Mean  objective 

function value 
No. of successful runs 

from 30 runs 
Mean of FEs 

[Fmin, Fmax] CR 
[-1.5,1.5] 0.3 0.0027 1 15000 
[-1.5,1.5] 0.5 0.0013 16 12983 
[-1.5,1.5] 0.8 0.0011 24 7648 
[0.2,0.8] 0.3 0.0025 0 15000 
[0.2,0.8] 0.5 0.0011 21 12344 
[0.2,0.8] 0.8 0.0011 25 6856 
[-2,-2] 0.3 0.0042 0 15000 
[-2,-2] 0.5 0.0014 9 14496 
[-2,-2] 0.8 0.0014 21 9940 

 
The results obtained from the various MHs from solving the six test problems are given in 
Tables 5.6-5.9.  
 
 5.6.1  Twenty-five-bar truss 
   For the 25-bar truss with 35% damage at element 7, the results are given in Table 
5.6. The best performer based on the mean objective function values is IPB-DE while the second 
and third best are DE and JADE respectively. When considering the number of successful runs, 
seven optimisers including WOA, MFO, SCA, DE, TLBO, JADE and IPB-DE can detect the damage in 
the structures.  The most efficient optimisers are SCA and IPB-DE that can detect the damages of 
the structure for 24 and 25 times out of 30 runs within the average of 3262 and 4486 function 
evaluations respectively. 
   For the 25 bar truss with 35% damage at element 7 and 40% damage at the 
element number 9, the results are reported in Table 5.7.  The best performer based on mean 
values is IPB-DE while the second and third best are JADE and DE respectively. When examining 
the number of successful runs, only IPB-DE can detect the damage in the structure for all 30 runs. 
For this case, IPB-DE is said to be the most efficient optimiser, which obtained the minimum 
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objective function mean value and successfully detected the damage in the structure for all 
optimisation runs with the average number of function evaluations being 3735. 
 
Table 5.6 Results for 25 bar truss Case I 

Optimiser 
Mean objective 
function value 

No. of successful runs 
from 30 runs 

Mean of FEs 

WOA 0.0357 8 6993 
MFO 0.0279 3 8686 
SCA 0.0270 24 3262 
DE 0.0017 19 6019 
ABC 0.0135 0 9000 

ACOR 0.0089 0 9000 
ChSS 0.1385 0 9000 
LCA 0.9036 0 9000 
SA 0.0089 0 9000 

TLBO 0.0077 6 7772 
CMAES 0.0033 0 9000 

ES 0.0308 0 9000 
PSO 8.3830 0 9000 
JADE 0.0026 2 8953 

IPB-DE 0.0012 25 4486 
 
Table 5.7 Results for 25 bar truss Case II 

Optimiser 
Mean objective 
function value 

No. of successful runs 
from 30 runs 

Mean of FEs 

WOA 0.1301 0 9000 
MFO 0.0336 1 8876 
SCA 0.0930 0 9000 
DE 0.0096 27 5220 
ABC 0.0326 0 9000 
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ACOR 0.0125 0 9000 
ChSS 0.1590 0 9000 
LCA 0.8080 0 9000 
SA 0.0269 0 9000 

TLBO 0.0405 1 8917 
CMAES 0.0115 0 9000 

ES 0.0356 0 9000 
PSO 8.6012 0 9000 
JADE 0.0042 6 8875 

IPB-DE 0.0010 30 3757 
 
 5.6.2 Seventy-two-bar truss 
   For the 72-bar truss with 15% damage at element 5, the results are reported in 
Table 5.8. The best performer based on the mean objective function values is IPB-DE, while the 
second and the third best are ES and ACOR. When looking at the number of successful runs (f 
reaching 1×10-3 or lower), the most efficient method is IPB-DE which can detect the damage of 
the structure 30 times from implementing it in 30 optimisation runs, while the average number 
of function evaluations for convergent results is only 3155. 
   For the 72 bar truss with 15% damage at element number 58 and 10% damage at 
element number 4, the results are given in Table 5.9. The best performer based on the mean of 
objective function values is IPB-DE, while the second and third best are ES and JADE respectively. 
When considering the number of successful runs, the most efficient is IPB-DE, which can detect 
the damage of the structure 25 times from a total of 30 optimisation runs, while the average 
number of function evaluations for the convergence results is 6856. 
 
Table 5.8 Results for 72 bar truss Case I 

Optimiser 
Mean  objective 
function value 

No. of successful runs 
from 30 runs 

Mean of FEs 

WOA 0.0082 22 4832 
MFO 0.0270 2 14783 
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SCA 0.0070 23 4793 
DE 0.0087 14 12887 
ABC 0.2184 0 15000 

ACOR 0.0014 6 14831 
ChSS 0.1727 0 15000 
LCA 1.1499 0 15000 
SA 0.0097 0 15000 

TLBO 0.0035 27 5781 
CMAES 0.0053 0 15000 

ES 0.0010 29 9335 
PSO 1.9146 0 15000 
JADE 0.0019 1 15000 

IPB-DE 0.0009 30 3155 
 
Table 5.9 Results for 72 bar truss Case II 

Optimiser 
Mean objective 
function value 

No. of successful runs 
from 30 runs 

Mean of FEs 

WOA 0.0189 0 15000 
MFO 0.0137 1 14935 
SCA 0.0260 2 14502 
DE 0.0127 7 13963 
ABC 0.1591 0 15000 

ACOR 0.0058 0 15000 
ChSS 0.1348 0 15000 
LCA 1.1049 0 15000 
SA 0.0129 0 15000 

TLBO 0.0045 7 13503 
CMAES 0.0050 0 15000 

ES 0.0023 2 14940 
PSO 1.7726 0 15000 
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JADE 0.0031 0 15000 
IPB-DE 0.0011 25 6856 

 
 Overall, it is clearly indicated from the results that integrating RBF into the DE can improve 
the search performance of the optimiser in solving structural damage detection of truss structures 
in terms of both search convergence and consistency. Based on the most crucial indicators, the 
average number of successful runs and the average number of function evaluations, IPB-DE is 
unanimously the most powerful method.   
 Figure 5.4-5.7 shows the search history of the top five best algorithms (sorted based on 
number of successful runs from 30 runs).  For the 25 bar truss with 35% damage at element 
number 7, the proposed IPB-DE and WOA show a similar convergence curve while WOA is slightly 
faster than IPB-DE after 200 function evaluations. Similarly, for the case of the 72 bar truss with 
15% damage at element number 55, the proposed IPB-DE and WOA show the best convergence 
curves at the beginning while WOA is faster than IPB-DE. The WOA can converge to the goal before 
500 function evaluations for this case. For the 25 bar truss with 35% damage at element number 
7 and 40% damage at element number 9, and the 72 bar truss with 15% damage at element 
number 58 and 10% damage at element number 4, the IPB-DE gives the best convergence curves 
since the beginning.  
 

 
(a)        (b) 

Figure 5.4 Search history for the case 25 bar Case I, (a) original, (b) zoom in 
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(a)        (b) 

Figure 55. Search history for the case 25 bar truss Case II, (a) original, (b) zoom in 
 

 
(a)        (b) 

Figure 5.6 Search history for the case, 72 bar truss Case I, (a) original, (b) zoom in 
 

 
(a)        (b) 

Figure 5.7 Search history for the case, 72 bar truss Case II, (a) original, (b) zoom in 
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 Tables 5.10-5.11 show a comparison of the damage locations of the simulated problems 
and the results obtained from the best run of IPB-DE. It was found that IPB-DE can correctly detect 
the damage locations for Case I of the twenty-five bar truss while for Case II of the twenty-five 
bar truss, the structure is simulated to have 35% and 40% damage at element 7 and element 9 
respectively, while the result obtained from IPB-DE gives 34.39 and 39.83% damage at element 6 
and element 8. For this case, it can be said that the results are accurate, as both groups can 
obtain the same set of natural frequencies as mentioned in Section 5.3. Similarly, for Case I of 
the seventy-two bar truss, the structure is simulated to have 15% damage at element number 55 

while 15% damage at element 56, 57, or 58 gives the same values of damage. Therefore, it can 
be concluded that the results are accurate for this case. For Case II of the seventy-two bar truss, 
IPB-DE found damage in many elements, while the resulting natural frequencies are similar to the 

values of damage. This implies that using only natural frequencies as an objective function can 
possibly fail to identify the damage locations for the cases of symmetric structures. The proposed 
algorithm is obviously effective and efficient but more reliable objective functions for damage 
localisation such as the use of both natural frequencies and mode shapes should be invented.       
 
Table 5.10 Comparison of the simulated solution and the best results obtained by IPB-DE for 25 
bar truss 

% damage at element 
no. 

Case I Case II 

Simulated damage (%) 
Damage 
found by 
IPB-DE (%) 

Simulated damage (%) 
Damage 
found by 
IPB-DE (%) 

1 0.00 0.06 0.00 0.00 
2 0.00 0.83 0.00 0.74 
3 0.00 0.00 0.00 0.02 
4 0.00 0.00 0.00 0.35 
5 0.00 0.05 0.00 0.02 
6 0.00 0.44 0.00 *34.39 
7 35.00 34.16 35.00 0.58 
8 0.00 0.45 0.00 *39.83 
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9 0.00 0.00 40.00 0.00 
10 0.00 0.00 0.00 0.00 
11 0.00 0.02 0.00 0.00 
12 0.00 0.10 0.00 0.00 
13 0.00 0.00 0.00 0.00 
14 0.00 0.00 0.00 0.00 
15 0.00 0.01 0.00 0.00 
16 0.00 0.00 0.00 0.00 
17 0.00 0.00 0.00 0.00 
18 0.00 0.00 0.00 0.00 
19 0.00 0.00 0.00 0.00 
20 0.00 0.01 0.00 0.00 
21 0.00 0.00 0.00 0.00 
22 0.00 0.00 0.00 0.00 
23 0.00 0.00 0.00 0.00 
24 0.00 0.00 0.00 0.00 
25 0.00 0.00 0.00 0.00 

ω1 69.1393 69.139 68.5203 68.52002 

ω2 72.2006 72.200 71.3167 71.31654 

ω3 95.3372 95.337 94.5625 94.56267 

ω4 119.8852 119.886 119.6514 119.6496 

ω5 121.4774 121.477 121.4253 121.4256 

ω6 125.0130 125.011 125.0129 125.0121 

* 35% damage in elements 6 and 40% damage in elements 8 will result in the same set of 
natural frequencies for the Case II as mentioned in Section 5.3  
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Table 5.11 Comparison of the simulated solution and the best results obtained by IPB-DE for 72 
bar truss 

% 
damage 

at 
element 

no. 

Case I Case II 

Simulated 
damage (%) 

Damage found by 
IPB-DE (%) 

Simulated damage 
(%) 

Damage found by IPB-
DE (%) 

1, 26, 51 0, 0, 0 0, 0, 0.39 0, 0, 0 0, 0, 0, 
2, 27, 52 0, 0, 0 0, 0, 0.36 0, 0, 0 **9.88, 0, 0.76, 
3, 28, 53 0, 0, 0 0, 0, 0.03 0, 0, 0 0, 0.04, 0.51, 
4, 29, 54 0, 0, 0 0, 0.01, 0.90 10.00, 0, 0 0.01, 0.05, 0.06, 
5, 30, 55 0, 0, 15.00 0, 0.01, 0.02 0, 0, 0 0.01, 0, 0, 
6, 31, 56 0, 0, 0 0.06, 0, 0.36 0, 0, 0 0.04, 0.16, *9.08, 
7, 32, 57 0, 0, 0 0.03, 0.06, 0 0, 0, 15.00 0.02, 0.45, 0, 
8, 33, 58 0, 0, 0 0, 0, *14.51 0, 0, 0 0, 0.73, *6.58, 
9, 34, 59 0, 0, 0 0.01, 0.01, 0.04 0, 0, 0 0.03, 0.02, 0.02, 
10, 35, 60 0, 0, 0 0, 1.91, 0.01 0, 0, 0 0.01, 0, 0, 
11, 36, 61 0, 0, 0 0.03, 0.87, 0 0, 0, 0 0, 0.69, 0, 
12, 37, 62 0, 0, 0 0.01, 0.01, 0.07 0, 0, 0 0.04, 0, 0, 
13, 38, 63 0, 0, 0 0.01, 0.00, 0.01 0, 0, 0 0.03, 0, 0, 
14, 39, 64 0, 0, 0 0, 0.02, 0 0, 0, 0 0.13, 0, 0, 
15, 40, 65 0, 0, 0 0.02, 0.03, 0.05 0, 0, 0 0, 0.06, 0.02, 
16, 41, 66 0, 0, 0 0.14, 0.01, 0.00 0, 0, 0 0.21, 0, 0, 
17, 42, 67 0, 0, 0 0.73, 0.00, 0.17 0, 0, 0 3.04, 0.02, 0.09, 
18, 43, 68 0, 0, 0 0.27, 0, 0 0, 0, 0 0.55, 0.05, 1.79, 
19, 44, 69 0, 0, 0 0, 0.01, 0 0, 0, 0 0, 0.06, 0.12, 
20, 45, 70 0, 0, 0 0, 0, 0.62 0, 0, 0 0, 0, 0, 
21, 46, 71 0, 0, 0 0, 0.01, 0.04 0, 0, 0 0, 0, 0.46, 
22, 47, 72 0, 0, 0 0, 0, 0.01 0, 0, 0 0.01, 0.02, 0, 

23, 48 0, 0  0.03, 0.01  0, 0,  0.03, 0.01,  
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24, 49 0, 0  0.06, 0.54  0, 0,  0.05, 0.07,  
25, 50 0, 0  0, 0.38  0, 0,  0.05, 0.15,  

ω1 5.9553 5.9562 5.9530 5.9534 

ω2 6.0455 6.0451 6.0455 6.0451 

ω3 10.4764 10.4757 10.4764 10.4755 

ω4 18.1448 18.1443 18.0921 18.0904 

ω5 25.4903 25.4892 25.2437 25.2436 

ω6 25.4939 25.4929 25.4939 25.4927 

* 15% damage in elements 55, 56, 57 or 58 will result in the same set of natural frequencies. 
** 10% damage in elements 1, 2, 3 or 4 will result in the same set of natural frequencies. 
 
5.7 Conclusions 
 Hybridisation of RBF into DE leading to IPB-DE is presented for truss structural damage 
detection problems. Four structural damage detection test problems from three different truss 
structures are used to examine the search performance of the proposed approach. Several well 
established MHs and the proposed algorithms are then employed to solve the test problems. 
Numerical results reveal that the proposed hybrid algorithms of DE with RBF are the top 
performers for all test problems. Integrating RBF into the DE obviously improves DE performance. 
The proposed idea has the potential to be further applied to other inverse problems such as 
robot inverse kinematic analysis. Further improvement for meta-heuristic based structural health 
monitoring should be the purpose of a more reliable objective function rather than solely using 
the set of lowest natural frequencies. Detection of joint damage is another issue that will be 
focused on in future work. 



Chapter VI 
Conclusions and Future work 

 
 In this work, development of MHs for practical engineering optimisation is successfully 
conducted based on using surrogated assisted MHs, using parameter adaption and using a 
hybridization concept. Firstly, performance enhancement of a teaching-learning based optimizer 
(TLBO) for strip flatness optimization during a coiling process is proposed. The method is termed 
improved teaching-learning based optimization (ITLBO). The new algorithm is achieved by 
modifying the teaching phase of the original TLBO. The design problem is set to find a spool 
geometry and coiling tension in order to minimize flatness defects during the coiling process. 
Having implemented the new optimizer with flatness optimization for strip coiling, the results 
reveal that the proposed method gives a better optimum solution compared to the present state-
of-the-art methods. Next, a sine cosine algorithm is extended to be self-adaptive and its main 
reproduction operators are integrated with the mutation operator of differential evolution. The 
new algorithm is called adaptive sine cosine algorithm integrated with differential evolution (ASCA-
DE) and used to tackle the test problems for structural damage detection. The results reveal that 
the new algorithm outperforms a number of established meta-heuristics. In addition, a new meta-
heuristic called estimation of distribution algorithm using correlation between binary elements 
(EDACE) is proposed. The method searches for optima using a binary string to represent a design 
solution. A matrix for correlation between binary elements of a design solution is used to 
represent a binary population. Optimisation search is achieved by iteratively updating such a 
matrix. The performance assessment is conducted by comparing the new algorithm with existing 
binary-code meta-heuristics including a genetic algorithm, a univariate marginal distribution 
algorithm, population-based incremental learning, binary particle swarm optimisation, and binary 
simulated annealing by using the test problems of the CEC2015 competition and one real world 
application, which is an optimal flight control problem. The comparative results show that the 
new algorithm is competitive with other established binary-code meta-heuristics. Finally, this 
work proposes the integration of an inverse problem process using radial basis functions (RBFs) 
into meta-heuristics (MHs) for performance enhancement in solving structural health monitoring 
optimisation problems. A differential evolution (DE) algorithm is chosen as the MH for this study. 
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In this chapter, RBF is integrated into the DE algorithm for generating an approximate solution 
rather than approximating a function value as with traditional surrogate-assisted optimisation. Four 
structural damage detection test problems of three trusses are used to examine the search 
performance of the proposed algorithms. The results obtained from using various MHs and the 
proposed algorithms indicate that the new algorithm is the best for all test problems. DE search 
performance for structural damage detection can be considerably improved by integrating RBF 
into its procedure. 
 Base on this study, performance of MHs can be improve for various engineering 
applications based on using surrogated assisted MHs, using parameter adaption and using a 
hybridisation concept. The MH proposed in this work can be extended to other engineering 
optimisation problems such as robot inverse kinematic problem, robot and aircraft trajectory 
planning, flight dynamic and control etc., while the performance can be still more improve.      
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amage detection

. Introduction

Structural damage detection is a technique used to identify the
resence of structural damage, localising it, and assessing the sever-

ty [1]. Structural damage takes place due to several reasons such as
efects in structures, cracks and corrosion in structural elements,
nd incomplete construction of the structures. Such mistakes can
ause the structures to have a shortened service life and other
ndesirable accidents. As a result, engineers have had to develop
echniques to predict and prevent it. Visual inspection of damage
s one straightforward technique usually employed, however, its

ain disadvantage is the inability to detect internal defects and
racks. Moreover, it is difficult to check throughout a large struc-
ure and find damage locations. Therefore, a more sophisticated

eans should be used to detect damage locations using only one
easurement.
One of the most popular damage detection techniques is the use

f changes in structural modal data. The idea is that the modal data
f a healthy structure is measured and used as the baseline. Once

t has been found that the modal data alters from its normal val-
es, it means structural damage may  have taken place. Over several
ecades, researchers have investigated vibration-based damage

∗ Corresponding author.
E-mail address: nantiwat@kku.ac.th (N. Pholdee).

ttps://doi.org/10.1016/j.asoc.2018.02.046
568-4946/© 2018 Elsevier B.V. All rights reserved.
detection of mechanical systems and structures [2–7]. The use of
fuzzy logic systems [8], neural networks [4,7], and other types of
soft computing has been proposed. Recently, meta-heuristics have
been implemented for perform structural health monitoring based
on vibration measurement. The problem of damage detection is
treated as an optimisation inverse problem [6,9–12]. The advantage
of this strategy is that it is easy to use, can be used to check through-
out a large structure, and can locate damage positions within one
measurement of modal testing. Although many researchers have
demonstrated using a number of MHs  for solving the optimisa-
tion problems [6,10,11,13–15], it has been found that they failed
to assess the performance of MHs  properly. The algorithm search
convergence and usability was reported but the search consistency
has never been examined. For practicality, an algorithm without
the guarantee of search consistency will be always questioned,
whether it can be used in reality or not. In this regards, develop-
ing MHs  for optimising an inverse problem of damage detection to
improve search convergence simultaneously with search consis-
tency is an interesting topic.

Over the last few decades, development of MHs with an empha-
sis on improving the convergence rate and consistency can be
accomplished in several ways, such as introducing new search
concept MHs  [16–18], using a hybridisation concept [19], using

parameter adaption [20,21], or using surrogate assisted MHs  [22].
The implementation of a surrogate assisted MH is usually required
when the optimisation problem has computationally expensive
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Nomenclature

[K] Structural stiffness matrix
[M] Structural mass matrix
�j jth mode eigenvalue
�j jth mode eigenvector or mode shape.
ndof Size of the mass and stiffness matrices.
[me] Element mass matrices
[ke] Element stiffness matrices.
ne Number of elements
pi Percentage of damage in the ith element.
nmode Number of lowest vibration modes
F Scaling factor
Fmin Maximum scaling factor
Fmax Minimum scaling factor
xr,i ith randomly selected individual
xold Current solution (parent)
xnew New candidate solution
rand Uniform random number ranged from 0 to 1
rand(0,1) Random number, either 0 or 1
CR Crossover rate
D Number of design variables
ck Interpolation coefficients
ϕ RBF kernel function
�damage Natural frequencies of the damaged structure (Tar-
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xdamage Solution vector containing ne element damage per-
centages

unction evaluations. The simple strategy of surrogate assisted
ptimisation is carried out in such a way that the design of the
xperiment uses a technique such as Latin hypercube sampling to
enerate a set of training points. With those training points, actual
unction evaluations are performed. A surrogate model, a form of
unction that requires significantly less computation time, is then
onstructed based on the training points and their function val-
es. Thereafter, optimisation can be performed based on using the
urrogate model instead of actual function evaluations. This can
reatly reduce optimisation running time. Although a surrogate
odel can be used to improve MHs  search convergence (by reduc-

ng the number of real expensive function evaluations) and also
earch consistency, it is yet to find that such a model is applied to
n inverse problem for structural damage detection.

Therefore, this paper presents a new, efficient MH  for structural
amage detection as a hybridisation of a radial basis function (RBF)

nterpolation and differential evolution (DE). In this work, the RBF
s integrated into the main procedures of DE for approximating
esign solutions rather than objective functions as with traditional
urrogate-assisted optimisation. Four structural damage detection
nd localisation test problems from two truss structures are used
or performance assessment of a number of MHs  and the proposed
lgorithm. The results obtained from the various algorithms will
e statistically compared in terms of both convergence rate and
onsistency.

. Natural-frequency-based damage detection and
ocalisation

In this study, structural damage detection using changes in
tructural natural frequencies is considered. The detection strategy

an be used for damage detection of truss elements due to corro-
ion, crack and yielding of members due to fatigue. This approach
s based on implementing modal testing incorporated with a finite
lement model. Initially, the natural frequencies (usually the low-
omputing 66 (2018) 462–472 463

est nmode natural frequencies) of the structure in a normal condition
will be used as the baseline. In practice, the natural frequencies and
mode shapes will be measured and the finite element model will be
updated so that both measured and computed modal parameters
are equivalent. The finite element model used herein is a simple
linear undamped free vibration which can be expressed as:

[K]
{

�j

}
− �j [M]

{
�j

}
= 0 (1)

The structural natural frequencies can be computed as

ωj =
√

�j , j = 1, 2, 3, ..., ndof (2)

The mass and stiffness matrices can be obtained from assem-
bling all element mass and stiffness matrices, which can be
expressed as:

[M] =
ne∑

i=1

[me]

and

[K] =
ne∑

i=1

[ke] . (3)

In cases that damage in the structural element occurs, the struc-
tural natural frequencies of the structure will be different from
those of the baseline structure. To localise the damage, it is assumed
that the values of the structural stiffness matrix are altered, which
can be written in terms of element structural damage percentage.
As a result, the altered structural stiffness matrix of the damaged
structure is of the form

[Kd] =
ne∑

i=1

100 − pi

100
[ke] . (4)

The optimisation problem is then formulated by assigning all
the values of element damage percentages as a design solution
x = {p1, . . .,  pne}T . The objective function is to minimise the root
mean square error:

Min  : f (x) =

√√√√√√
nmode∑
j=1

(
ωj,damage − ωj,computed

)2

nmode
(5)

where ωj,damage is the structural natural frequency of mode j
obtained from measuring a damaged structure. nmode is the number
of lowest vibration modes used for the damage detection. ωj,computed

is the structural natural frequency of mode j obtained from solv-
ing (1) using [Kd] instead of [K]. The optimum solution having
the objective function value close to zero gives accurate damage
localisation. The values of the element damage percentage indicate
where the damage takes place.

3. Test problems with trusses

To study performance assessment of a number of MHs  on
tackling damage detection optimisation, two truss structures are
employed in this work. For the sake of simple investigation, truss
damage is simulated whereas the natural frequencies of structures
are computed from finite element analysis rather than measuring

real structure modal data. Only truss element damages are taken
into consideration. It should be noted that free vibration is simu-
lated for all cases without considering gravity loads. The trusses are
detailed as follows.
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Fig. 1. Twenty-five bar truss.

Table 1
Natural frequencies (Hz) of damaged and undamaged 25 bar structure.

Mode Undamaged
reported in [6]a

Undamaged calculated by
commercial software
(Ansys academic version)a

Undamaged calculated
in this studya

35% damage at element
number 7

35% damage at element
number 7 and 40% damage
at element number 9

1 70.9924 69.782 69.7818 69.1393 68.5203
2  74.0851 72.822 72.8217 72.2006 71.3167
3  97.5390 95.876 95.8756 95.3372 94.5625
4  122.2281 120.14 120.1437 119.8852 119.6514
5  121.9300 121.50 121.5017 121.4774 121.4253
6  – 125.01 125.0132 125.0130 125.0129

a The natural frequencies are slightly different which could be due to the numerical algorithm used and truncation errors.

Table 2
Natural frequencies (Hz) of damaged and undamaged 72 bar structure.

Mode Undamaged
reported in [11]a

Undamaged calculated by
commercial software
(Ansys academic version)a

Undamaged calculated
in this studya

15% damage at element
number 55

15% damage at element
number 58 and 10% damage at
element number 4

1 6.0434 5.4977 6.0455 5.9553 5.9530
2  6.0441 5.4977 6.0455 6.0455 6.0455
3  10.4627 9.5181 10.4764 10.4764 10.4764
4  18.2275 16.594 18.2297 18.1448 18.0921
5  25.4466 23.213 25.4939 25.4903 25.2437
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6  25.4510 23.213 25.493

a The natural frequencies are slightly different which could be due to the numeri

.1. Twenty-five-bar truss

The structure having 25 bar is depicted in Fig. 1 [6]. All bar
lement cross-sectional areas are set to be 6.4165 mm2. Material
ensity and Young modulus are given as 7850 kg/m3 and 200 GPa,
espectively. Two damage case studies are assumed as Case I: 35%
amage on element 7 (Note that 35% damage on elements 6, 8 or

 will result in the same set of natural frequencies), and Case II:
5% and 40% damage at elements 7 and 9 (Note that 35% damage in
lement 6 and 40% damage in element 8 will result in the same set
f natural frequencies for this case). The pin supports are applied
o node numbers 7, 8, 9 and 10. The data of natural frequencies of
he damaged and undamaged 25-bar truss are given in Table 1.

.2. Seventy-two-bar truss
The 72-bar truss structure is displayed in Fig. 2 [11] where
our non-structural masses of 2270 kg are attached to the top
odes. The values of all bar element cross-sectional areas are set
o be 0.0025 m2. Material density and modulus of elasticity are
25.4939 25.4939

orithm used and truncation errors.

2770 kg/m3 and 6.98 × 1010 Pa, respectively. Two cases of damage
are generated as Case I: 15% damage at element number 55 (Note
that 15% damage in elements 56, 57, or 58 will result in the same
set of natural frequencies as that of element 55), and Case II: 10%
damage at element number 4 and 15% damage at element number
58 (90, 180, and 270 ◦ rotation along the z axis will lead to the same
set of natural frequencies). The pin supports are applied to nodes
number 17, 18, 19 and 20. The values of natural frequencies of the
damaged and undamaged 72-bar truss are given in Table 2.

4. Hybrid radial basis function and differential evolution
for truss damage detection

The purpose of using MHs  for truss damage detection is to solve
the optimisation problem with the objective function (5) subject
to bound constraints of x. The advantages of using MHs  are their

simplicity in use, capability of global search, derivative-free fea-
ture, and robustness. Using meta-heuristics implies that a user has
less worry about mode switching during an optimisation run while
this phenomenon may  occur in cases of using a gradient-based opti-
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Fig. 2. Seven

iser. The detection approach can be used for real-time monitoring
rovided that an employed MH is adequately powerful.

.1. Differential evolution

Differential evolution is a population based method which was
rst proposed by Storn and Price in 1997 [23]. The method contains
wo main steps for searching an optimum, including mutation and
rossover where the acronym DE/x/y/z is used to specify different
utation and crossover strategies. The variable x is used to specify

 vector for mutation which can be best (the best individual) or rand
random individual) while y and z specify the number of vector pairs
sed in mutation and the choice of a crossover scheme, respectively.

or example, as used in this work, DE/best/2/bin means that the
est individual and two different vector pairs are used in the muta-
ion step while the binomial crossover is employed. The mutation
peration can be expressed as follows:
i = xbest + (−1)rand(−1,0)F
(

xr,1 + xr,2 − xr,3 − xr,4
)

. (6)

In this work, F is a uniform random number in the range of [Fmin,
max]. For the i-th mutant individual uT

i
= [xnew,1, ..., xnew,D] and its
o bar truss.

corresponding parent xT
old = [xold,1, ..., xold,D], the binary crossover

can be operated leading to a new candidate solution xnew as

xnew,j =
{

uj ; rand < CR

xold,j ; otherwise
j = 1, 2, 3, ..., D. (7)

The selection operator is carried out by comparing xnew and its
parent xold where the better will survive to the next generation.

The DE computational steps are shown in Algorithm 1. Initially,
a set of the population is generated by means of randomisation
and their objective function values are evaluated. After obtaining
the best individual, the offspring are generated by mutation (eq.6)
and then crossover (eq.7). Then, the next generation is selected and
the search process will be repeated until a termination criterion is
reached.

Algorithm 1 DE search procedure.

4.2. Inverse problem-based differential evolution

This subsection details the proposed differential evolution based
on using an inverse problem concept. In optimisation, the radial

basis function is traditionally used for approximating an objective
function value for problems with expensive function evaluation
[22,24]. Nevertheless, in this work RBF is conversely implemented.
It will be used to approximate a design solution x that is expected
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Table 3
MH Parameters settings.

MH Parameter settings

Whale optimization algorithm (WOA) [16] – The parameter b = 1
–  Other parameters are iteratively adapted.

Sine Cosine algorithm (SCA) [17] – The constant parameter a = 2.

Moth-flame optimisation algorithm (MFO) [18] – The constant parameter b = 1
– Other parameters are iteratively adapted.

Differential evolution (DE) [23] – Using DE/best/2/bin strategy
– Scaling factor (F) = 0.8,
– probability of choosing elements of mutant vectors (CR) = 0.5

Artificial bee colony algorithm (ABC) [25] – The number of food sources for employed bees = nP /2.
–  A trial counter to discard a food source = 100.

Real-code ant colony optimisation (ACOR) [26] – The parameter, q = 0.2
– The parameter, � = 1

Charged system search (ChSS) [27] – The number of solutions in the charge memory = 0.2 × nP

– The charged moving considering rate = 0.75 − the parameter PAR = 0.5

League championship algorithm (LCA) [28] – The probability of success Pc = 0.9999
–  The decreasing rate to decrease Pc = 0.9995

Simulated annealing (SA) [29] – Starting temperature = 10
– Ending temperature = 0.001

For each loop, nmode candidates are created by mutating on the current best solution while other
nmode candidates are created from mutating the current parent. The best of those 2nmode solutions
are  set as an offspring to be compared with the parent.

Particle swarm optimisation (PSO) [30] – The starting inertia weight = 0.5
–  The ending inertia weight = 0.01
– The cognitive learning factor = 0.5
– The social learning factor = 0.5

Evolution strategies (ES) [31] The algorithm uses a binary tournament selection operator and a simple mutation without the
effect of rotation angles.

Teaching-learning-based optimisation (TLBO) [32] Parameter settings are not required.
Adaptive differential evolution (JADE) [20] The parameters are self-adapted during an optimisation process.

ters ar
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Evolution strategy with covariance matrix
adaptation (CMAES) [21]

The parame

IPB-DE  Use the DE p

orresponding to the target damage conditions. Given that the vec-
or of target natural frequencies (�damage) contains nmode lowest
atural frequencies of the damaged structure, the idea is to find

 solution vector xdamage containing ne element damage percent-
ges by means of interpolation. During MH search, if we  have a
et of N design solutions {x1, x2,..., xN} which corresponds to a set
f N vectors of natural frequencies {�1, �2, . . .,  �N}, these data
ill be used for RBF training. In contrast to surrogate-assisted opti-
isation, the natural frequency vector will be set as independent

ariables whereas the design vector x will be set as dependent vari-
bles. The ith element of xdamage that is expected to give the target
ector of natural frequencies of the damaged truss is expressed as:

damage,i =
N∑

k=1

ckϕ
(
‖ωk − ωdamage‖

)
(8)

where ck is the interpolation coefficients to be determined, and
 is a RBF kernel function. ‖ωk − ωdamage‖is the distance between
k and �damage. For xi, interpolation coefficients ck can be found

rom solving the system of linear equations
N∑
k=1

ckϕ (‖ωk − ωl‖) = xi (ωl) ; for i = 1, ..., ne and l = 1, ..., N (9)
e self-adapted during an optimisation process.

eter setting.

where xi(�l) is the ith element of the lth solution vector in the
training set {x1, x2,..., xN}. Eq. (9) can be written in a matrix form
as

Ac  = b (10)

where Ak ,l = ϕ(||�k − �l||). It is required to compute ne sets of the
interpolation coefficients according to ne elements of x. In practice,
the matrix A is generated and inverted once, and will be used to
calculate ne sets of the coefficients.

Having determined the sets of interpolation coefficients ck for all
ne elements of x by using (9), the elements of xdamage can be found
from using Eq. (8). The search procedure for hybridised RBF and DE
which will be termed inverse problem-based differential evolution
(IPB-DE) according to its computation nature can be carried out in
such a way  that, after the reproduction step 3 in Algorithm 1, the
next generation is selected in step 5. The worst solution in the next
generation is then replaced by xdamage. The procedure of the hybrid
algorithm IPB-DE is detailed in Algorithm 2 while the flowchart for
the IPB-DE algorithm is shown in Fig. 3. The process starts by cre-
ating an initial population by using the Latin hypercube sampling
(LHS) technique instead of the Monte Carlo technique. Those solu-
tions in the initial population are then saved to the RBF database for

training RBF. Offspring are then created by means of reproduction of
DE. The candidate solution xdamage is created using Equations (8–9).
Having performed a selection operation, the worst solution in the
next generation is replaced by xdamage. The best solution from the
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ffspring and xdamage are then added to the RBF database which will
e used as training points during the optimisation search. As the
rocess continues, the RBF database is improved and expected to
ive more accurate results. The procedure is repeated until fulfilling
he termination criteria.

Algorithm 2 IPB-DE

. Numerical experiment

To verify the search performance of the proposed IPB-DE, sev-
ral MHs  are compared based on solving the aforementioned truss
amage detection problems. The employed methods are said to be
stablished while some of them are regarded as the currently best
ptimisers of this type. Given that nP is a population size, MHs  and
heir optimisation parameter settings used in this work are detailed

n Table 3 (it should be noted that details of notations can be found
n the corresponding references for each method) [9]:

Each optimisation algorithm is employed to solve each test
roblem for 30 independent runs. The number of iterations (gener-
 of IPB-DE.

ations) is 300 for all case studies while the population size is set to
be 30 and 50 for 25-bar and 72-bar trusses respectively. For the opti-
misers using different population sizes from the aforementioned
values, their search processes are terminated with the total number

of functions evaluations (FEs) equal to 30 × 300 and 50 × 300 for 25-
bar and 72-bar trusses respectively. Another termination criterion
is when one of the design solutions in the current population has
an objective function value less than or equal to 1 × 10−3. It should
be noted that the numbers of FEs used in this study can be consid-
ered insufficient for some MH  optimisers. However, these values
are used to find out really powerful algorithms. For all test prob-

lems, six lowest natural frequencies (nmode = 6) are used to compute
the objective function values. This number of selected frequencies
is reasonable since, in practice, it is easier to accurately measure
fewer lowest natural frequencies.



468 S. Bureerat, N. Pholdee / Applied Soft Computing 66 (2018) 462–472

Table 4
Comparison of various RBF kernels for solving 72 bar truss Case II.

DE with RBF kernel Mean objective
function Values

No. of successful
runs from 30 runs

Mean of FEs

Gaussian 0.0011 25 6856
Multiquadric 0.0104 5 13993
Inverse quadratic 0.0032 14 12221
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Table 6
Results for 25 bar truss Case I.

Optimiser Mean objective
function value

No. of successful
runs from 30 runs

Mean of FEs

WOA  0.0357 8 6993
MFO 0.0279 3 8686
SCA 0.0270 24 3262
DE  0.0017 19 6019
ABC 0.0135 0 9000
ACOR 0.0089 0 9000
ChSS 0.1385 0 9000
LCA  0.9036 0 9000
SA  0.0089 0 9000
TLBO 0.0077 6 7772
CMAES 0.0033 0 9000
ES  0.0308 0 9000
PSO 8.3830 0 9000
JADE 0.0026 2 8953
IPB-DE 0.0012 25 4486

Table 7
Results for 25 bar truss Case II.

Optimiser Mean objective
function value

No. of successful
runs from 30 runs

Mean of FEs

WOA  0.1301 0 9000
MFO 0.0336 1 8876
SCA 0.0930 0 9000
DE  0.0096 27 5220
ABC 0.0326 0 9000
ACOR 0.0125 0 9000
ChSS 0.1590 0 9000
LCA  0.8080 0 9000
SA  0.0269 0 9000
TLBO 0.0405 1 8917
CMAES 0.0115 0 9000
ES  0.0356 0 9000
PSO 8.6012 0 9000
JADE 0.0042 6 8875
IPB-DE 0.0010 30 3757

Table 8
Results for 72 bar truss Case I.

Optimiser Mean objective
function value

No. of successful
runs from 30 runs

Mean of FEs

WOA  0.0082 22 4832
MFO 0.0270 2 14783
SCA 0.0070 23 4793
DE  0.0087 14 12887
ABC 0.2184 0 15000
ACOR 0.0014 6 14831
ChSS 0.1727 0 15000
LCA  1.1499 0 15000
SA  0.0097 0 15000
TLBO 0.0035 27 5781
CMAES 0.0053 0 15000

T
C

Linear 0.0117 8 13819
Polynomial order 2 0.0039 15 10807

. Results and discussion

Initially, the effect of RBF kernels on the performance of the
roposed algorithm was investigated. The last test problem, 72 bar
russ with 15% damage at element number 58 and 10% damage at
lement number 4 which is said to be the most complicated prob-
em, was used. Table 4 shows the results obtained from using a
ariety of RBF kernel functions. The mean values of the objective
unction are used to indicate the search convergence of the algo-
ithms in cases that the objective function threshold (1 × 10−3) is
ot met  during an optimisation run. Otherwise, the mean num-
er of FEs is used as an indicator. The algorithm that is terminated
y the objective function threshold is clearly the superior method
nd any optimisation run being stopped with this criterion is con-
idered a successful run. The number of successful runs from 30
ptimisation runs denoted as “No. of successful runs from 30” is
he total number that the algorithm can meet the target objective
unction value (1 × 10−3). It is used to measure the algorithm reli-
bility. From Table 4, the best performer is the Gaussian kernel,
hile the second best and the third best are the Polynomial kernel

nd the Inverse quadratic kernel, respectively. Thus, the Gaussian
ernel is used in this study.

Comparison of various ranges [Fmin, Fmax] of a scaling factor and
R values using DE with the best RBF kernel for solving the 72 bar
russ with 15% damage at element number 58 and 10% damage at
lement number 4 is shown in Table 5. It is found that for all imple-
ented intervals of [Fmin, Fmax], the performance increases when

he value of CR increases. The highest DE performance is obtained
hen the range [Fmin, Fmax] and CR are set to be [0.2, 0.8] and 0.8,

espectively.
The results obtained from the various MHs  from solving the six

est problems are given in Tables 6–9.

.1. Twenty-five-bar truss

For the 25-bar truss with 35% damage at element 7, the results
re given in Table 6. The best performer based on the mean objec-
ive function values is IPB-DE while the second and third best are

E and JADE respectively. When considering the number of suc-
essful runs, seven optimisers including WOA, MFO, SCA, DE, TLBO,
ADE and IPB-DE can detect the damage in the structures. The most
fficient optimisers are SCA and IPB-DE that can detect the dam-

ES  0.0010 29 9335
PSO 1.9146 0 15000
JADE 0.0019 1 15000
IPB-DE 0.0009 30 3155

able 5
omparison of various ranges of F and CR values for solving 72 bar truss Case II.

DE with Gaussian RBF kernel Mean objective
function value

No. of successful runs
from 30 runs

Mean of FEs

[Fmin, Fmax] CR

[−1.5,1.5] 0.3 0.0027 1 15000
[−1.5,1.5] 0.5 0.0013 16 12983
[−1.5,1.5] 0.8 0.0011 24 7648
[0.2,0.8] 0.3 0.0025 0 15000
[0.2,0.8] 0.5 0.0011 21 12344
[0.2,0.8] 0.8 0.0011 25 6856
[−2,−2]  0.3 0.0042 0 15000
[−2,−2]  0.5 0.0014 9 14496
[−2,−2]  0.8 0.0014 21 9940
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Fig. 4. Search history for the case 25 bar Case I, (a) original, (b) zoom in.

Fig. 5. Search history for the case 25 bar tr

Table 9
Results for 72 bar truss Case II.

Optimiser Mean objective
function value

No. of successful
runs from 30 runs

Mean of FEs

WOA  0.0189 0 15000
MFO  0.0137 1 14935
SCA 0.0260 2 14502
DE  0.0127 7 13963
ABC 0.1591 0 15000
ACOR 0.0058 0 15000
ChSS 0.1348 0 15000
LCA 1.1049 0 15000
SA  0.0129 0 15000
TLBO 0.0045 7 13503
CMAES 0.0050 0 15000
ES  0.0023 2 14940

a
a

a

PSO 1.7726 0 15000
JADE 0.0031 0 15000
IPB-DE 0.0011 25 6856
ges of the structure for 24 and 25 times out of 30 runs within the
verage of 3262 and 4486 function evaluations respectively.

For the 25 bar truss with 35% damage at element 7 and 40% dam-
ge at the element number 9, the results are reported in Table 7.
uss Case II, (a) original, (b) zoom in.

The best performer based on mean values is IPB-DE while the sec-
ond and third best are JADE and DE respectively. When examining
the number of successful runs, only IPB-DE can detect the damage
in the structure for all 30 runs. For this case, IPB-DE is said to be
the most efficient optimiser, which obtained the minimum objec-
tive function mean value and successfully detected the damage in
the structure for all optimisation runs with the average number of
function evaluations being 3735.

6.2. Seventy-two-bar truss

For the 72-bar truss with 15% damage at element 5, the results
are reported in Table 8. The best performer based on the mean
objective function values is IPB-DE, while the second and the third
best are ES and ACOR. When looking at the number of success-
ful runs (f reaching 1 × 10−3 or lower), the most efficient method is
IPB-DE which can detect the damage of the structure 30 times from
implementing it in 30 optimisation runs, while the average number

of function evaluations for convergent results is only 3155.

For the 72 bar truss with 15% damage at element number 58 and
10% damage at element number 4, the results are given in Table 9.
The best performer based on the mean of objective function values
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Fig. 6. Search history for the case, 72 bar truss Case I, (a) original, (b) zoom in.
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Fig. 7. Search history for the case, 72

s IPB-DE, while the second and third best are ES and JADE respec-
ively. When considering the number of successful runs, the most
fficient is IPB-DE, which can detect the damage of the structure
5 times from a total of 30 optimisation runs, while the average
umber of function evaluations for the convergence results is 6856.

Overall, it is clearly indicated from the results that integrating
BF into the DE can improve the search performance of the opti-
iser in solving structural damage detection of truss structures in

erms of both search convergence and consistency. Based on the
ost crucial indicators, the average number of successful runs and

he average number of function evaluations, IPB-DE is unanimously
he most powerful method.

Figs. 4–7 shows the search history of the top five best algorithms
sorted based on number of successful runs from 30 runs). For the
5 bar truss with 35% damage at element number 7, the proposed

PB-DE and WOA  show a similar convergence curve while WOA  is
lightly faster than IPB-DE after 200 function evaluations. Similarly,
or the case of the 72 bar truss with 15% damage at element num-

er 55, the proposed IPB-DE and WOA  show the best convergence
urves at the beginning while WOA  is faster than IPB-DE. The WOA
an converge to the goal before 500 function evaluations for this
ase. For the 25 bar truss with 35% damage at element number 7
russ Case II, (a) original, (b) zoom in.

and 40% damage at element number 9, and the 72 bar truss with
15% damage at element number 58 and 10% damage at element
number 4, the IPB-DE gives the best convergence curves since the
beginning.

Tables 10–11 show a comparison of the damage locations of the
simulated problems and the results obtained from the best run of
IPB-DE. It was found that IPB-DE can correctly detect the damage
locations for Case I of the twenty-five bar truss while for Case II of
the twenty-five bar truss, the structure is simulated to have 35%
and 40% damage at element 7 and element 9 respectively, while
the result obtained from IPB-DE gives 34.39 and 39.83% damage
at element 6 and element 8. For this case, it can be said that the
results are accurate, as both groups can obtain the same set of nat-
ural frequencies as mentioned in Section 3. Similarly, for Case I of
the seventy-two bar truss, the structure is simulated to have 15%
damage at element number 55 while 15% damage at element 56,
57, or 58 gives the same values of �damage. Therefore, it can be
concluded that the results are accurate for this case. For Case II

of the seventy-two bar truss, IPB-DE found damage in many ele-
ments, while the resulting natural frequencies are similar to the
values of �damage. This implies that using only natural frequencies
as an objective function can possibly fail to identify the damage



S. Bureerat, N. Pholdee / Applied Soft Computing 66 (2018) 462–472 471

Table  10
Comparison of the simulated solution and the best results obtained by IPB-DE for 25 bar truss.

% damage at element no. Case I Case II

Simulated damage (%) Damage found by IPB-DE (%) Simulated damage (%) Damage found by IPB-DE (%)

1 0.00 0.06 0.00 0.00
2  0.00 0.83 0.00 0.74
3  0.00 0.00 0.00 0.02
4  0.00 0.00 0.00 0.35
5  0.00 0.05 0.00 0.02
6  0.00 0.44 0.00 a34.39
7  35.00 34.16 35.00 0.58
8  0.00 0.45 0.00 a39.83
9  0.00 0.00 40.00 0.00
10  0.00 0.00 0.00 0.00
11  0.00 0.02 0.00 0.00
12  0.00 0.10 0.00 0.00
13  0.00 0.00 0.00 0.00
14  0.00 0.00 0.00 0.00
15  0.00 0.01 0.00 0.00
16  0.00 0.00 0.00 0.00
17  0.00 0.00 0.00 0.00
18  0.00 0.00 0.00 0.00
19  0.00 0.00 0.00 0.00
20  0.00 0.01 0.00 0.00
21  0.00 0.00 0.00 0.00
22  0.00 0.00 0.00 0.00
23  0.00 0.00 0.00 0.00
24  0.00 0.00 0.00 0.00
25  0.00 0.00 0.00 0.00
�1 69.1393 69.139 68.5203 68.52002
�2 72.2006 72.200 71.3167 71.31654
�3 95.3372 95.337 94.5625 94.56267
�4 119.8852 119.886 119.6514 119.6496
�5 121.4774 121.477 121.4253 121.4256
�6 125.0130 125.011 125.0129 125.0121

a 35% damage in elements 6 and 40% damage in elements 8 will result in the same set of natural frequencies for the Case II as mentioned in Section 3.

Table 11
Comparison of the simulated solution and the best results obtained by IPB-DE for 72 bar truss.

% damage at element no. Case I Case II

Simulated damage (%) Damage found by IPB-DE (%) Simulated damage (%) Damage found by IPB-DE (%)

1, 26, 51 0, 0, 0 0, 0, 0.39 0, 0, 0 0, 0, 0,
2,  27, 52 0, 0, 0 0, 0, 0.36 0, 0, 0 b9.88, 0, 0.76,
3,  28, 53 0, 0, 0 0, 0, 0.03 0, 0, 0 0, 0.04, 0.51,
4,  29, 54 0, 0, 0 0, 0.01, 0.90 10.00, 0, 0 0.01, 0.05, 0.06,
5,  30, 55 0, 0, 15.00 0, 0.01, 0.02 0, 0, 0 0.01, 0, 0,
6,  31, 56 0, 0, 0 0.06, 0, 0.36 0, 0, 0 0.04, 0.16, a9.08,
7,  32, 57 0, 0, 0 0.03, 0.06, 0 0, 0, 15.00 0.02, 0.45, 0,
8,  33, 58 0, 0, 0 0, 0, a14.51 0, 0, 0 0, 0.73, a6.58,
9,  34, 59 0, 0, 0 0.01, 0.01, 0.04 0, 0, 0 0.03, 0.02, 0.02,
10,  35, 60 0, 0, 0 0, 1.91, 0.01 0, 0, 0 0.01, 0, 0,
11,  36, 61 0, 0, 0 0.03, 0.87, 0 0, 0, 0 0, 0.69, 0,
12,  37, 62 0, 0, 0 0.01, 0.01, 0.07 0, 0, 0 0.04, 0, 0,
13,  38, 63 0, 0, 0 0.01, 0.00, 0.01 0, 0, 0 0.03, 0, 0,
14,  39, 64 0, 0, 0 0, 0.02, 0 0, 0, 0 0.13, 0, 0,
15,  40, 65 0, 0, 0 0.02, 0.03, 0.05 0, 0, 0 0, 0.06, 0.02,
16,  41, 66 0, 0, 0 0.14, 0.01, 0.00 0, 0, 0 0.21, 0, 0,
17,  42, 67 0, 0, 0 0.73, 0.00, 0.17 0, 0, 0 3.04, 0.02, 0.09,
18,  43, 68 0, 0, 0 0.27, 0, 0 0, 0, 0 0.55, 0.05, 1.79,
19,  44, 69 0, 0, 0 0, 0.01, 0 0, 0, 0 0, 0.06, 0.12,
20,  45, 70 0, 0, 0 0, 0, 0.62 0, 0, 0 0, 0, 0,
21,  46, 71 0, 0, 0 0, 0.01, 0.04 0, 0, 0 0, 0, 0.46,
22,  47, 72 0, 0, 0 0, 0, 0.01 0, 0, 0 0.01, 0.02, 0,
23,  48 0, 0 0.03, 0.01 0, 0, 0.03, 0.01,
24,  49 0, 0 0.06, 0.54 0, 0, 0.05, 0.07,
25,  50 0, 0 0, 0.38 0, 0, 0.05, 0.15,
�1 5.9553 5.9562 5.9530 5.9534
�2 6.0455 6.0451 6.0455 6.0451
�3 10.4764 10.4757 10.4764 10.4755
�4 18.1448 18.1443 18.0921 18.0904
�5 25.4903 25.4892 25.2437 25.2436
�6 25.4939 25.4929 25.4939 25.4927

a 15% damage in elements 55, 56, 57 or 58 will result in the same set of natural frequencies.
b 10% damage in elements 1, 2, 3 or 4 will result in the same set of natural frequencies.
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ocations for the cases of symmetric structures. The proposed algo-
ithm is obviously effective and efficient but more reliable objective
unctions for damage localisation such as the use of both natural
requencies and mode shapes should be invented.

. Conclusions

Hybridisation of RBF into DE leading to IPB-DE is presented for
russ structural damage detection problems. Four structural dam-
ge detection test problems from two different truss structures are
sed to examine the search performance of the proposed approach.
everal well established MHs  and the proposed algorithms are then
mployed to solve the test problems. Numerical results reveal that
he proposed hybrid algorithms of DE with RBF are the top per-
ormers for all test problems. Integrating RBF into the DE obviously
mproves DE performance. The proposed idea has the potential to
e further applied to other inverse problems such as robot inverse
inematic analysis. Further improvement for meta-heuristic based
tructural health monitoring should be the purpose of a more reli-
ble objective function rather than solely using the set of lowest
atural frequencies. Detection of joint damage is another issue that
ill be focused on in future work.

cknowledgement

The authors are grateful for the support from the Thailand
esearch Fund (TRF), Grant no. MRG5980238.

eferences

[1] J.-J. Sinou, A review of damage detection and health monitoring of mechanical
systems from changes in the measurement of linear and non-linear
vibrations, in: C.S. Robert (Ed.), Mechanical Vibrations: Measurement, Effects
and Control, Nova Science Publishers, Inc., 2009, 2018, pp. 643–702.

[2] A. Ghods, H.-H. Lee, Probabilistic frequency-domain discrete wavelet
transform for better detection of bearing faults in induction motors,
Neurocomputing 188 (2016) 206–216.

[3] Z.D. Zheng, Z.R. Lu, W.H. Chen, J.K. Liu, Structural damage identification based
on power spectral density sensitivity analysis of dynamic responses, Comput.
Struct. 146 (2015) 176–184.

[4] M.  Rajendra, K. Shankar, Improved complex-valued radial basis function
(ICRBF) neural networks on multiple crack identification, Appl. Soft Comput.
28 (2015) 285–300.

[5] A. Labib, D. Kennedy, C.A. Featherston, Crack localisation in frames using
natural frequency degradations, Comput. Struct. 157 (2015) 51–59.

[6] A. Majumdar, D.K. Maiti, D. Maity, Damage assessment of truss structures
from changes in natural frequencies using ant colony optimization, Appl.
Math. Comput. 218 (2012) 9759–9772.
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A new metaheuristic called estimation of distribution algorithm using correlation between binary elements (EDACE) is proposed.
The method searches for optima using a binary string to represent a design solution. A matrix for correlation between binary
elements of a design solution is used to represent a binary population. Optimisation search is achieved by iteratively updating such
a matrix. The performance assessment is conducted by comparing the new algorithm with existing binary-code metaheuristics
including a genetic algorithm, a univariatemarginal distribution algorithm, population-based incremental learning, binary particle
swarm optimisation, and binary simulated annealing by using the test problems of CEC2015 competition and one real-world
application which is an optimal flight control problem. The comparative results show that the new algorithm is competitive with
other established binary-code metaheuristics.

1. Introduction

Nowadays in the economic-competitive world, optimisation
has become increasingly popular for real applications as it is a
powerful mathematical tool for solving a wide range of engi-
neering design types. Once an optimisation problem is posed,
one of the most important elements in the optimisation
process is an optimisation method or an optimiser used to
find the optimum solution. Optimisers can be categorised as
themethodswith andwithout using function derivatives.The
former are traditionally called mathematical programming
or gradient-based optimisers whereas the latter have various
subcategories. One of them is a metaheuristic (MH). The
termmetaheuristics can cover nature-inspired optimisers [1–
10], swarm intelligent algorithms [11–20], and evolutionary
algorithms [21–24]. Most of them are based on using a set of
design solutions, often called a population, for searching an
optimum. The main operator usually consists of the repro-
duction and selection stages. The advantages of such an opti-
miser are simplicity to use, global optimisation capability, and
flexibility to apply as it is derivative-free. However, it still has
a slow convergence rate and search consistency. These issues

have made researchers and engineers around the globe
investigate how to improve the search performance of MHs.

A genetic algorithm (GA) [21] is probably the best known
MH while other popular methods are differential evolution
(DE) [22]andparticle swarmoptimisation (PSO) [17]. Among
MH algorithms, they can be categorised as themethods using
real, binary, or integer codes.Themix of those types of design
variables and some other types can also be made. This makes
MHs considerably appealing for use with real-world appli-
cations particularly for those design problems that function
derivatives are not available or impossible to calculate. Most
MHs are based on continuous design variables or real codes.
For single objective optimisation, there have been numerous
real-code MHs being developed. At the early stage, methods
like evolutionary programming [25] and evolution strategies
[26] were proposed. Then, DE and PSO were introduced.
Until recently, there have been probably over a hundred
new real-code MHs in the literature. Some recent algorithms
include, for example, a sine-cosine algorithm [27], a grey
wolf optimiser [20], teaching-learning-based optimisation
[2], and Jaya algorithm [28]. Meanwhile, powerful existing
algorithms such as PSO and DE have been upgraded by
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integrating into them some types of self-adaptive schemes, for
example, adaptive differential evolution with optional exter-
nal archive (JADE) [29], Success-History Based Parameter
Adaptation for Differential Evolution (SHADE) [30], SHADE
Using Linear Population Size Reduction (LSHADE) [31], and
adaptive PSO [32–34]. MHs are even more popular when
they can be used to find a Pareto front of a multiobjective
optimisation problem within one optimisation run. Such a
type of algorithm is usually called multiobjective evolution-
ary algorithms (MOEAs) where some of the best known algo-
rithms are nondominated sorting genetic algorithm (NSGA-
I, NSGA-II, and NSGA-III) [35–37], multiobjective particle
swarm optimisation [38], strength Pareto evolutionary algo-
rithm [39], multiobjective grey wolf optimisation [40], mul-
tiobjective teaching-learning-based optimisation [41], mul-
tiobjective evolutionary algorithm based on decomposition
[42], multiobjective ant colony optimisation [43], multiob-
jective differential evolution [44], and so forth. One of the
most challenging issues in MHs is to improve their ability
for tackling many-objective optimisation (a problem with
more than three objectives). Some recently proposed algo-
rithms are knee point-driven evolutionary algorithm [45],
an improved two-archive algorithm [46], preference-inspired
coevolutionary algorithms [47], and so forth.

In practice, GA a metaheuristic using binary strings is
arguably the most used method as it is included in engineer-
ing software such as MATLAB. Apart from GA, other MHs
using a binary string representing a design solution include
a univariate marginal distribution algorithm (UMDA) [48],
population-based incremental learning (PBIL) [24], binary
particle swarm optimisation (BPSO) [49], binary simulated
annealing (BSA) [50], binary artificial bee colony algorithm
based on genetic operator (GBABC) [51], binary quantum-
inspired gravitational search algorithm (BQIGSA) [52], and
self-adaptive binary variant of a differential evolution algo-
rithm (SabDE) [53]. With the popularity of GA, a binary-
code MH has been rarely developed and proposed while its
real-code counterparts have over a hundred different search
concepts reported in the literature. That means there are
possible more than a thousand real-code MH algorithms
being published. It should be noted that real-codeMHs can be
modified to solve binary-code optimisation by means of
binarisation [54].

This paper is therefore devoted to the further develop-
ment of a binary-code metaheuristic. The method is called
estimation of distribution algorithm using correlation be-
tween binary elements (EDACE). Performance assessment is
made by comparing the proposed optimiser with GA,
UMDA, BPSO, BSA, and PBIL by using the CEC2015 test
problems. Also, the real-world optimal flight control is used
for the assessment. The comparative results are obtained and
discussed. It is shown that EDACE is among the top per-
formers.

2. Proposed Method

Thesimplest but efficient estimation of distribution algorithm
is probably population-based incremental learning (PBIL).

Another MH that uses a similar concept is UMDA. Unlike
GA which uses a matrix containing the whole binary solu-
tions during the search, PBIL uses the so-called probability
vector to represent a binary population. During an optimi-
sation process, the probability vector is updated iteratively
until approaching an optimum. In EDACE, a matrix called a
correlation between binary elements (CBE) matrix is used to
represent a binary population. The matrix can be denoted as𝑃𝑖𝑗 ∈ [0, 1], where the value of the element 𝑃𝑖𝑗 indicates the
correlation between element 𝑖 and element 𝑗 of a binary
design solution. The higher value of 𝑃𝑖𝑗 means the higher
probability that binary elements 𝑖 and 𝑗 will have the same
value. The algorithm is developed to deal with a box-con-
strained optimisation problem:

min 𝑓 (x) ; x𝐿 ≤ x ≤ x𝑈, (1)

where 𝑓 is an objective function and x is a vector containing
design variables (a design vector). x𝐿 and x𝑈 are the lower
and upper bounds of x, respectively. Assuming that a design
vector can be represented by a row vector of binary bits size𝑚 × 1, the CBE matrix thus has the size of 𝑚 × 𝑚. It should
be noted that the details of converting a binary string to be
a design vector can be found in [55]. In generating a binary
string from theCBEmatrix, a reference binary solution (RBS)
is needed. It can be a randomly generated solution or the
best solution found so far depending on a user preference.
Then, a row of the matrix is randomly selected (say the 𝑟th
row). The 𝑟th element of a generated binary solution is set
to be the 𝑟th element of the reference binary solution. The
rest of the created binary elements are based on the value of𝑃𝑟𝑗; 𝑗 ̸= 𝑟. The procedure for creating a binary solution sized𝑚 × 1 from the𝑚 × 𝑚 CBE matrix is detailed in Algorithm 1
where b is a binary design solution, bREF is the reference
binary solution, 𝑛𝑃 is a population size, and rand ∈ [0, 1] is
a uniform random number. The algorithm spends 𝑛𝑃 loops
for creating 𝑛𝑃 binary solutions. The process for generating
a binary solution from the CBE matrix is in steps (3)–(12).
For one binary solution, only one randomly selected row of
CBE (say row 𝑟) is used (step (4)). Then, the 𝑟th element of
a generated binary solution is set equal to the 𝑟th element of
the reference binary solution, bREF. The rest of the elements
of the generated binary solution are created in such a way that
their values depend on corresponding elements on the 𝑟th
row of CBE. From the computation steps (5)–(11), the value
of 𝑃𝑟𝑗 determines the probability of 𝑎𝑗 to be the same as 𝑎𝑟.
The higher value of 𝑃𝑟𝑗 means the higher correlation between
elements 𝑟 and 𝑗 and consequently the higher probability that𝑎𝑗 will be set equal to 𝑎𝑟.

The CBE matrix is a square symmetric matrix with equal
size to the length of a binary solution whose all diagonal
elements are equal to one. For an iteration, the matrix will
be updated according to the so far best solution (bbest). The
learning rate (𝐿𝑅) with be used to control the changes in
updating𝑃𝑖𝑗 as with PBIL. Once𝑃𝑖𝑗 is updated, the value of𝑃𝑗𝑖
is set to be 𝑃𝑖𝑗 which means the process requires 𝑚(𝑚 − 1)/2
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Input: bREF, P
Output: B = {b𝑖} for 𝑖 = 1, . . . , 𝑛𝑃
Main procedure(1) Set B = { }.(2) For 𝑖 = 1 to 𝑛𝑃(3) Set a = { } a vector used to contain elements of a generated binary string.(4) Randomly select a position (𝑟th row) of P.(5) Set 𝑎𝑟 = 𝑏REF,𝑟. % Set the 𝑟th element of a as the 𝑟th element of bREF.(6) For 𝑗 = {1, 2, . . . , 𝑚} − {𝑟}(7) If rand < 𝑃𝑟𝑗(8) 𝑎𝑗 = 𝑎𝑟 % 𝑎𝑗 and 𝑎𝑟 values are equal, which are either “0” or “1”.(9) Else(10) 𝑎𝑗 = 1 − 𝑎𝑟 % If 𝑎𝑟 = 1, 𝑎𝑗 = 0 or vice versa.(11) End(12) End(13) Set B = B ∪ a.(14) End

Algorithm 1: Generation of a binary population from a CBE matrix.

updates since 𝑃𝑖𝑖 is always set to be 1.The updated 𝑃𝑖𝑗 denoted
by 𝑃󸀠𝑖𝑗 can be calculated from

𝑃󸀠𝑖𝑗 = (1 − 𝐿𝑅) 𝑃𝑖𝑗 + 𝐿𝑅 (1 − 󵄨󵄨󵄨󵄨󵄨𝑏best,𝑖 − 𝑏best,𝑗󵄨󵄨󵄨󵄨󵄨) , (2)

where 𝐿𝑅 is the learning rate randomly generated in the inter-
val [𝐿𝑅,𝐿, 𝐿𝑅,𝑈]. 𝑏best,𝑖 and 𝑏best,𝑗 are the 𝑖th and 𝑗th elements
of bbest, respectively. From the updating equation, if the 𝑖th
and 𝑗th elements are similar, it means they are correlated;
consequently, the value of𝑃𝑖𝑗 (and𝑃𝑗𝑖) is increased. If they are
dissimilar or uncorrelated,𝑃𝑖𝑗 is then decreased.Nevertheless,
the value of 𝑃𝑖𝑗 must be limited to the predefined interval

0 ≤ 𝑃𝐿 ≤ 𝑃𝑖𝑗 ≤ 𝑃𝑈 ≤ 1, (3)

where 𝑃𝐿 and 𝑃𝑈 are the predefined lower and upper limits of𝑃𝑖𝑗. Equation (3) is used to maintain diversity in optimisation
search. In the original PBIL, a mutation operator is used
with the same purpose. Therefore, the procedure of EDACE
starts with an initial matrix for correlation between binary
elements where 𝑃𝑖𝑖 = 1 and 𝑃𝑖𝑗 = 0.5. This implies that when-
generating a binary solution, its elements have equal proba-
bility to be 1 or 0 where its 𝑟th element can be 1 or 0, created
at random. The procedure for general purpose of EDACE
is given in Algorithm 2. The decision on selecting bREF for
generating a binary solution and bbest for updating the CBE
matrix is dependent on a preference of a user. This means
other versions of EDACE can be developed in the future.

An initial binary population is randomly created. The
binary solutions are then decoded to be real design variables
where function evaluations are performed and bREF and bbest
are found. Then, new binary solutions are generated using
Algorithm 1 while the greedy selection (steps (6)–(8)) is acti-
vated with bREF and bbest being determined. The CBE matrix
is updated by using bbest as detailed in (2)-(3). The search

process is repeated until termination criterion is reached.The
generation of a binary design solution of EDACE is, to some
extent, similar to those used in binary PSO [49] and binary
quantum-inspired gravitational search algorithm (BQIGSA)
[52] in the sense that the binary solution is controlled by
the probability of being “1” or “0”. However, in EDACE, a
generated solution relies not only on such probability but also
on the reference binary solution bREF. Apart from that, the
update of CBE tends to be similar to the concept employed
in PBIL with a learning rate and this is totally different from
binary PSO and BQIGSA.

In selecting bREF and bbest, if both solutions are the same
which is bbest, it could lead to a premature convergence. If
both are set to be a solution randomly selected solution from
the current binary population, the diversification increases
but the convergence rate will be slower.Therefore, the balance
between intensification and diversification must be made. In
this work, the so far best binary solution is set to be bREF
to maintain intensification. For updating the CBE matrix, we
use the new updating scheme as

𝑃󸀠𝑖𝑗 = (1 − 𝐿𝑅) 𝑃𝑖𝑗 + 𝐿𝑅 (1 − 󵄨󵄨󵄨󵄨󵄨𝑏best1,𝑖 − 𝑏best2,𝑗󵄨󵄨󵄨󵄨󵄨) . (4)

The solutions bbest1 and bbest2 are two types of best solutions.
Firstly, 𝑛𝑃 best solutions are selected from {b𝑖} ∪ {b𝑖new} (see
Algorithm 2 for both solution sets), sorted according to their
functions, and then saved to a set Best sol. Four𝑚×1 vectors
are created as b1 the so far best solution, b2 a solution whose
elements are averaged from the elements of the first 𝑛best
(default = 10) best solutions found so far, b3 a solution whose
elements are averaged from the elements of the members
of Best sol, and b4 a solution whose elements are averaged
from the elements of the current binary population. bbest1 is
randomly chosen from the aforementioned solutions (b1, b2,
b3, and b4) with equal probability while bbest2 is randomly
chosen from the members of Best sol. With this idea, the
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Input: number of generation (𝑛iter), population size (𝑛𝑃), binary length (𝑚)
Output: bbest, 𝑓best
Initialisation:
(0.1) Assign 𝑃𝑖𝑗 = 0.5 and 𝑃𝑖𝑖 = 1, sized𝑚 × 𝑚.
(0.2) Randomly generate 𝑛𝑃 binary solutions b𝑖 and decode them to be x𝑖.
(0.3) Calculate objective function values 𝑓𝑖 = fun(x𝑖) where fun is an objective function evaluation.
(0.4) Find 𝑓best, bREF, bbest
Main iterations(1) For iter = 1 to 𝑛iter(2) Update P using Equation (2)(3) Generate b𝑖new from P using Algorithm 1, and decode them to be x𝑖new.(4) For 𝑖 = 1 to 𝑛𝑃(5) Calculate objective function values 𝑓𝑖new = fun(x𝑖new).(6) If 𝑓𝑖new < 𝑓𝑖(7) 𝑓𝑖 = 𝑓𝑖new, b𝑖 = b𝑖new, x

𝑖 = x𝑖new(8) End(9) End(10) Update 𝑓best, bREF, bbest(11) End
Algorithm 2: Procedure for EDACE.

Input: 𝐿𝑅,𝐿, 𝐿𝑅,𝑈, P, b𝑖, bREF, Best sol, 𝑛best
Output: P󸀠
Main procedure
Create b1, b2, b3, b4
For 𝑖 = 1 to𝑚(1) Assign 𝑃𝑅 = rand.(2) If 𝑃𝑅 ∈ [0, 0.25), set 𝑏best1,𝑖 = 𝑏1,𝑖(3) If 𝑃𝑅 ∈ [0.25, 0.5), set 𝑏best1,𝑖 = 𝑏2,𝑖(4) If 𝑃𝑅 ∈ [0.5, 0.75), set 𝑏best1,𝑖 = 𝑏3,𝑖(5) Otherwise, set 𝑏best1,𝑖 = 𝑏4,𝑖(6) Random selected a vector bbest2 from Best sol.

For 𝑗 = 𝑖 + 1 to𝑚(7) Generate 𝐿𝑅.(8) Update 𝑃𝑖𝑗 using Equation (4).(9) Limit 𝑃𝑖𝑗 to the interval [𝑃𝐿, 𝑃𝑈].
End

End

Algorithm 3: Updating scheme for CBE.

balance between exploration and exploitation is maintained
throughout the search process. Algorithm 3 shows the new
CBE updating strategy.

3. Experimental Set-Up

To investigate the search performance of the proposed algo-
rithm, fifteen learning-based test problems from CEC2015
and one flight dynamic control optimisation problem are
used. The former are used for testing the performance of

EDACE for general types of box-constrained optimisation
while the latter is the real-world application.

3.1. CEC2015 Learning-Based Test Problems. The CEC2015
learning-based test problems are box-constrained single
objective benchmark functions proposed in [56]. The prob-
lems consist of 2 Unimodal Functions, 3 Simple Multimodal
Functions, 3 Hybrid Functions, and 7 Composition Func-
tions.The summary ofCEC2015 learning-based test problems
is shown in Table 1. It should be noted that the details and
the codes for the test problems can be downloaded from the
website of CEC2015 competition.

3.2. Flight Dynamic Control Optimisation Problem. Flight
dynamic control system design is a classical important
application for real engineering problems. The motion of an
aircraft can be described using the body axes which is herein
the stability axes consisting of roll axis (𝑥), pitch axis (𝑦),
and yaw axis (𝑧) as shown in Figure 1. The motion of the
aircraft is described by Newton’s 2nd law or equations of
motion for both translational and rotational motions. The
dynamical model is nonlinear but can be linearised by apply-
ing aerodynamic derivatives. Due to aircraft symmetry with
respect to the 𝑥𝑧 plane, the linearised dynamical model can
be decoupled into two groups as longitudinal motion and the
lateral/directional motion. For more details of deriving the
equations of motion, see [57]. In this work, only the lateral/
directional motion control is considered. A state equation
representing the dynamic motion of an aircraft is expressed
as follows [57–60]:

ẋ = Ax + Bu, (5)
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Table 1: Summary of CEC2015 learning-based functions.

Number Functions 𝑓min

Unimodal functions 1 Rotated high conditioned elliptic function 100
2 Rotated Cigar function 200

Simple multimodal functions
3 Shifted and rotated Ackley’s function 300
4 Shifted and rotated Rastrigin’s function 400
5 Shifted and rotated Schwefel’s function 500

Hybrid functions
6 Hybrid function 1 (𝑁 = 3) 600
7 Hybrid function 2 (𝑁 = 4) 700
8 Hybrid function 3 (𝑁 = 5) 800

Composition functions

9 Composition function 1 (𝑁 = 3) 900
10 Composition function 2 (𝑁 = 3) 1000
11 Composition function 3 (𝑁 = 5) 1100
12 Composition function 4 (𝑁 = 5) 1200
13 Composition function 5 (𝑁 = 5) 1300
14 Composition function 6 (𝑁 = 7) 1400
15 Composition function 7 (𝑁 = 10) 1500

where x = {𝛽, 𝑟, 𝑝, 𝜙}𝑇, 𝛽 is the sideslip, a velocity in 𝑦 direc-
tion, 𝑟 is the yaw rate, rate of change of rotation about the𝑥-axis, 𝑝 is the roll rate, rate of change of rotation about the𝑧-axis, 𝜙 is the bank angle, rotation about the 𝑥-axis, A is the
kinetic energy matrix, B is Coriolis matrix, u = { 𝛿𝑎𝛿

𝑟

} is the
control vector, 𝛿𝑎 is the aileron deflection, and 𝛿𝑟 is the rudder
deflection.

The control vector u can be expressed as

u = Cu𝑝 + Kx, (6)

where u𝑝 is a pilot’s control input vector while C and K are
the gain matrices expressed as follows [59]:

C = [ 1 0
𝑘5 1] ,

K = [𝑘6 𝑘1 𝑘2 0𝑘7 𝑘3 𝑘4 0] ,
(7)

where parameters 𝑘1–𝑘7 are control gain coefficients which
need to be found.

From (5)-(6), the state equation for lateral/directional
motion of an aircraft can be expressed as

ẋ = (A + BK) x + BCu𝑝. (8)

Design optimisation of the control system of an aircraft is
found to havemany objectives as there are several criteria that
need to be satisfied such as control stability, accuracy, sensi-
tivity, and control effort, while the control gains coefficients
are set to be design variables for an optimisation problem.
In this work, the optimal flight control of an aircraft focuses
on only the stability aspect. The objective function is posed

Yaw axis

Pitch axis

Roll axis

CG

Figure 1: Stability axes of an aircraft.

to minimise spiral root subjected to stability performance
constraints. The optimisation problem can then be written as

min: 𝑓 (x) = 𝜆𝑠
Subjected to: 𝜆𝑠 ≤ −0.01

𝜆𝑅 ≤ −3.75
𝜉𝐷 ≥ 0.5
𝜔𝑑 ≥ 1,

(9)

where 𝜆𝑠, 𝜆𝑅, 𝜉𝐷, and 𝜔𝑑 are spiral root, roll damping,
damping ratio of Dutch-roll complex pair, and Dutch-roll
frequency, respectively. These parameters can be calculated
based on the eigenvalues associated with the matrix A + BK.
The design variables are control gain coefficients in thematrix
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K (x = {𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘6, 𝑘7}𝑇). The kinetic energy matrix (A)
and the Coriolis matrix (B) are defined as

A =
[[[[[
[

−0.2842 −0.9879 0.1547 0.0204
10.8574 −0.5504 −0.2896 0
−199.8942 −0.4840 −1.6025 0

0 0.1566 1 0

]]]]]
]
,

B =
[[[[[
[

0 0.0524
0.4198 −12.7393
50.5756 21.6753

0 0

]]]]]
]
.

(10)

More details about this aircraft dynamic model can be
found in [58–60]. To handle the constraints, the penalty
function which was presented in [61] is used.

The proposed EDACE and several well-established
binary-code metaheuristics are used to solve the fifteen
CEC2015 learning-based test problems and the flight dyna-
mic control test problem.Themetaheuristic optimisers are as
follows:

Genetic algorithm (GA) [21] used binary codes with
crossover and mutation rates are 1 and 0.1, respec-
tively.
Binary simulated annealing (BSA) [50] used binary
codeswith exponentially decreasing temperature.The
starting and ending temperature are set to be 10 and
0.001, respectively. The cooling step is set as 10.
Population-based incremental learning (PBIL) [24]
used binary codes with the learning rate, mutation
shift, and mutation rate as 0.5, 0.7, and 0.2, respec-
tively.
Binary particle swarm optimisation (BPSO) [49] used
binary codes with V-shaped transfer function while
the transfer function used is the V-shaped version 4
(V4) as reported in [49]. It is noted that this version
is said to be the most efficient version based on the
results obtained in [49].
Univariate marginal distribution algorithm (UMDA)
[48] used binary codes. The first 20 best binary
solutions are used to update the probability matrix.
Estimation of distribution algorithm with correlation
of binary elements (EDACE) (Algorithm 2) used
binary codes with 𝑃𝐿 = 0.1, 𝑃𝑈 = 0.9, 𝐿𝑅,𝐿 = 0.4,𝐿𝑅,𝑈 = 0.6, and 𝑛best = 10.

Each algorithm is used to solve the problems for 30
optimisation runs. The population sizes are set to be 100
and 20 while number of generation is set to be 100 and 500
for the CEC2015 learning-based test problems and the flight
dynamic control test problem, respectively. For an algorithm
using different population size and number of generations
such as BSA, it will be terminated at the same number
function evaluations, which is 10,000 for all test problems.
The binary length is set to be 5 for each design variable for
all optimisers.

4. Optimum Results

4.1. CEC2015. After applying the proposed EDACE and
several well-established binary MHs for solving the CEC2015
learning-based benchmark functions, the results are shown
in Tables 2–4. Note that, apart from the algorithms used in
this study, the results of solving CEC2015 test suit obtained
from efficient binary artificial bee colony algorithm based
on genetic operator (GBABC), binary quantum-inspired
gravitational search algorithm (BQIGSA), and self-adaptive
binary variant of a differential evolution algorithm (SabDE)
as reported in [53] are also included in the comparison. From
Table 2, the mean (Mean) and standard deviation (STD)
values of the objective functions are used to measure the
search convergence and consistency of the algorithms. The
lower Mean is the better convergence while the lower STD is
the better consistency. The value of Mean is more important;
thus, for method A with lower Mean but higher STD than
method B, method A is considered to be superior.

For the measure of search convergence based on the
mean objective function values, the best performer for the
unimodal test functions, 𝑓1 and 𝑓2, is EDACE while the sec-
ond best is BPSO. For the simple multimodal functions, the
best performer for 𝑓4 and 𝑓5 is SabDE while the best
performer for 𝑓3 is BPSO. The second best performers for𝑓3, 𝑓4, and 𝑓5 are SabDE, BEDACE, and UMDE, respec-
tively. For the hybrid functions, the best performers for the
functions 𝑓6, 𝑓7, and 𝑓8, are SabDE, EDACE, and BPSO,
respectively, while the second best performer for 𝑓6 and 𝑓7
is BPSO and the second best for 𝑓8 is EDACE. For the final
group of CEC2015 test problems, composition functions, the
best performer for the 𝑓11, 𝑓12, and 𝑓14 is SabDE while the
best performers for the 𝑓10 and 𝑓15 are BPSO and EDACE,
respectively. For 𝑓9, the best performers are UMDA, BPSO,
GA, PBIL, and EDACE, which obtain the same mean values
while, for 𝑓13, the best performers are UMDA, BPSO, GA,
PBIL, BSA, and EDACE, which obtained the same mean
values. It should be noted that the results from [53] were
obtained from using the total number of function evaluations
as 1,000,000 with the binary length of 50 for each design vari-
able whereas this work uses 10,000 function evaluations with
the binary length of 5 for each design variable. This indirect
comparison with GBABC, BQIGSA, and SabDE can only be
used to show that the proposed EDACE also has good perfor-
mance and cannot be used to claim which method is supe-
rior.

For the measure of search consistency based on the STD
values, the most consistent methods for unimodal functions,𝑓1 and 𝑓2, are BPSO and EDACE while the second most
consistent methods are EDACE and BPSO, respectively. For
the simple multimodal functions, the best for 𝑓3 and 𝑓5 is
SabDEwhile the best for𝑓4 is the proposed EDACE. EDACE
is the best for the hybrid function of 𝑓7 while BPSO is the
best for the hybrid functions 𝑓6 and 𝑓8. For the composition
functions, EDACE is the best for the problems 𝑓9 and𝑓12 while BPSO is the best for 𝑓10. For the composition
functions,𝑓11,𝑓14, and𝑓15, the best is SabDEwhile the best
for 𝑓13 is BSA.
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Table 3: Ranking of all optimisers based on the Mean values.

UMDA BPSO GA PBIL BSA EDACE GBABC BQIGSA SabDE
𝑓1 4 2 3 5 7 1 6 8 9
𝑓2 4 2 5 3 6 1 8 9 7
𝑓3 9 1 8 7 4 3 5 5 2
𝑓4 3 4 7 6 5 2 8 9 1
𝑓5 2 4 7 8 6 3 5 9 1
𝑓6 4 2 5 6 8 3 9 7 1
𝑓7 5 2 3 4 6 1 8 7 9
𝑓8 4 1 3 5 6 2 9 7 8
𝑓9 3 2 5 4 6 1 7 8 9
𝑓10 3 1 4 5 7 2 8 6 9
𝑓11 9 4 6 7 8 5 2 3 1
𝑓12 4 6 7 9 8 5 3 2 1
𝑓13 3 2 6 5 1 4 7 8 9
𝑓14 9 4 6 7 8 5 2 3 1
𝑓15 6 3 5 4 7 2 9 1 8
Sum of ranking 72 40 80 85 93 40 96 92 76

Table 4: Comparison based on the statistical 𝑡-test of the test problem.

UMDA BPSO GA PBIL BSA EDACE GBABC BQIGSA SabDE
UMDA 0 1 1 0 0 1 0 0 0
BPSO 0 0 0 0 0 1 0 0 0
GA 0 1 0 0 0 1 0 0 0
PBIL 1 1 1 0 0 1 0 0 0
BSA 1 1 1 1 0 1 1 0 0
EDACE 0 0 0 0 0 0 0 0 0
GBABC 1 1 1 1 0 1 0 0 0
BQIGSA 1 1 1 1 1 1 1 0 0
SabDE 1 1 1 1 1 1 1 1 0
Sum 5 7 6 4 2 8 3 1 0
Ranking 4 2 3 5 7 1 6 8 9

The value Min in Table 2 is the objective function value
of the best run from a particular method. Note that only
the UMDA, BPSO, GA, PBIL, BSA, and EDACE were com-
pared. For the unimodal function, the minimum objective
function values of 𝑓1 and 𝑓2 were obtained by BPSO and
EDACE, respectively. For the simple multimodal functions,
the minimum objective function values for 𝑓3 and 𝑓5 are
obtained from BPSO and EDACE, respectively, while for 𝑓4,
the minimum is obtained from UMDA, BSA, and EDACE.
The EDACE obtainedminimumobjective function values for
all test functions in the hybrid function group. However, for
the hybrid function 𝑓8, three algorithms including BPSO,
GA, and EDACE obtained theminimumvalues. For the com-
position functions, EDACE obtained the minimum function
values for all test functions.However, for the functions𝑓9 and𝑓13, all algorithms obtained the sameminimum values while

for the 𝑓11, BPSO and EDACE obtained the same minimum
function values. Similarly, for 𝑓12, UMDA, BPSO, BSA, and
EDACE obtained the same minimum values.

Table 3 shows the summary of ranking based on themean
objective function values from 30 optimisation runs. It was
found that the proposed EDACE is mostly ranked in top
three best from solving fifteen CEC2015 learning-based test
problems. After summing up the ranking score, it is found
that EDACE and BPSO are equal best performer while the
third best is UMDA.

In order to further investigate the performance compari-
son of the binary-codeMHs, the statistical 𝑡-test is employed.
Table 4 shows a 9 × 9 comparison matrix of the 9 optimisers.
If method 𝑖 is significantly better than method 𝑗 based on the𝑡-test at 5% significant level, the column 𝑖 and row 𝑗 of the
matrix are set to be 1; otherwise, they are set to be 0. When
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Figure 2: Search history of the top three best optimisers based on the 𝑡-test for the unimodal function.

Table 5: Ranking of all optimisers for all CEC2015 learning-based test problem based on statistical 𝑡-test.
UMDA BPSO GA PBIL BSA EDACE GBABC BQIGSA SabDE

𝑓1 4 2 3 5 7 1 6 8 9
𝑓2 4 2 5 3 6 1 8 9 7
𝑓3 5 2 5 5 4 2 5 5 1
𝑓4 3 4 6 6 4 2 8 8 1
𝑓5 2 4 7 8 6 2 5 9 1
𝑓6 4 2 5 6 8 3 9 7 1
𝑓7 3 1 3 3 6 1 8 7 8
𝑓8 4 1 3 5 6 2 9 7 8
𝑓9 3 1 4 4 6 1 7 8 9
𝑓10 3 1 4 5 7 2 8 6 9
𝑓11 9 4 6 7 8 5 2 2 1
𝑓12 4 5 7 8 8 5 2 2 1
𝑓13 1 1 1 1 1 1 7 7 9
𝑓14 9 4 6 7 8 5 2 3 1
𝑓15 6 3 5 4 7 2 9 1 8
Sum 64 37 70 77 92 35 95 89 74

summing up along the columns, the highest score indicates
the best optimiser based on this type of comparison. In the
table, it means EDACE is the best. Table 5 shows the ranking
of the 9 optimisers when solving all CEC2015 learning-based
test problems based on the 𝑡-test. After summing up the
ranking numbers of all test problems, it is found that EDACE
is the overall best optimiser while BPSO and UMDA are the
second and the third best, respectively.

Figures 2–5 show the search history of the top three opti-
misers EDACE, BPSO, and UMDA on solving all CEC2015
learning-based test problems where the vertical axis is the
average objective function from 30 runs of each method.
For all test functions, it was found that EDACE and UMDA
converged to the optimal values at higher speed while BPSO
seems to converge slowly and consistently. However, for all
functions, BPSO finally moves to the minimum or near
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Figure 3: Search history of the top three best optimisers based on the 𝑡-test for the simple multimodal functions.

Table 6: The table shows performance of EDACE for various number of binary bits.

Number of binary bits 5 10 25 50
Mean function values 2.314𝐸 + 6 1.101𝐸 + 6 1.079𝐸 + 6 1.143𝐸 + 6
Average computational time (Sec.) 9.371 10.748 18.634 52.773

minimum function values at the end of the runs. EDACE
shows fast convergence from the beginning and obtained
the minimum or near minimum values for all test functions
except for 𝑓3. This indicates the ability of search exploitation
and search exploration of the proposed EDACE since the
CEC2015 test functions were assigned to test both aspects of
MHs.

Table 6 shows performance of EDACE on solving uni-
modal function, 𝑓1, when the binary lengths for each design
variable are 5, 10, 25, and 50 for 10 optimisation runs. It
was found that when the number of binary bits increases,
the computational time increases and the resulting mean
objective function values decrease for the binary lengths less

than 25. However, for the binary length of 50, themean objec-
tive function value increases meaning EDACE performance
deteriorates. Without considering computational time, the
best number of binary length is 25.

4.2. Flight Dynamic Control System Design. After applying
the six binary-code MHs to solve the real engineering
application of flight dynamic and control system for 30
optimisation runs, the comparison results are shown as
box-plots of the objective and constraint violation values
(Figure 6). The upper and lower horizontal lines of each box
represent the maximum and minimum of objective function
values, respectively, while the internal line shows the median
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Figure 4: Search history of the top three best optimisers based on the 𝑡-test for the hybrid functions.

of objective function values. From this figure, based on
median values of objective function, it is found that the best
performer is EDACE while the second best and the third
best are BPSO and UMDA, respectively. The most consistent
method having the smallest gap between the maximum and
minimum for all of optimisation runs is UMDA. However,
the worst function value found by EDACE is almost as good
as the best found by UMDA. Thus, the proposed EDACE is
superior. Based on the figure, it was found that GA failed
to solve the problem as it cannot obtain a feasible optimum
point. The minimum objective function value is obtained
from using the proposed EDACE.

Figure 7 shows the best run search history of all optimis-
ers (selection based on the minimum objective function val-
ues of feasible solutions). From the figure, UMDA and PBIL
seem to be the fastest convergent methods initially. However,
after the process goes on for about 4,000 function evaluations,
the proposed EDACE converged to the minimum objective
function value with a faster rate than the others. It has better

exploration rate as the best function value is still decreased at
the late iteration numbers. BPSO, on the other hand, seems
to be slower than UMDA, PBIL, and BSA in the beginning. It
however can converge to the better results after around 8,000
function evaluations.

5. Conclusions and Discussion

In this work, a new concept of a binary-code optimiser is
proposed. Fifteen CEC2015 learning-based test problems and
a real engineering design problem of flight dynamic and
control system are used to investigate the search performance
of the proposed algorithm. Several well-established binary-
codeMHs are used in comparison.The results obtained show
that the proposedEDACE is the best performer on solving the
15 CEC2015 learning-based test problems and real engineer-
ing design problem of flight dynamic and control. Further
improvement of EDACE by means of self-adaptation will be
investigated in the future. The choice for bREF needs further
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Figure 5: Search history of the top three best optimisers based on the 𝑡-test for the composition functions.

studies. The use of EDACE for hyperheuristic development
is also possible. The extension to multiobjective optimisation
and many-objective optimisation is also under investigation.
Appling EDACE for the more complex problems such as
large scale problems,mixed-variable problems, and reliability
optimisation is for futurework.Thefight control optimisation
problem, one of our recent research focuses, has more than
three objective functions to be optimised; thus, it should
be formulated as many-objective optimisation. This along

with aircraft path planning dynamic optimisation still needs
considerably more investigation while EDACE will be one of
optimisers to be used for solving such design problems.
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Abstract. Performance enhancement of a teaching-learning basedz optimizer
(TLBO) for strip flatness optimization during a coiling process is proposed. The
method is termed improved teaching-learning based optimization (ITLBO). The
new algorithm is achieved by modifying the teaching phase of the original
TLBO. The design problem is set to find spool geometry and coiling tension in
order to minimize flatness defects during the coiling process. Having imple-
mented the new optimizer with flatness optimization for strip coiling, the results
reveal that the proposed method gives a better optimum solution compared to
the present state-of-the-art methods.

Keywords: Evolutionary algorithm � Flatness defect � Optimization � Strip
coiling � Teaching-learning based optimization

1 Introduction

There are several processing stages during themanufacturing of a coil strip, e.g. roughing,
rolling, cooling, and coiling. Based on the previous investigation by Jung and Im [1, 2],
the final strip shape had non-uniform thickness profiles consisting of \ , [ , M, and W
shapes. Generally, it is difficult to predict the final shape of the strip due to various related
processing parameters in production facilities. The strip crown, while being coiled, may
include imperfections that were initiated during the rolling process resulting in flatness
imperfection taking place on the coil strip [3, 4].

As a result, the strip is normally welded, cut, and recoiled in the recoiling line so as
to satisfy customer strip flatness requirements. However, although adding the recoiling
line to the process, flatness problems sometimes cannot be avoided especially for the
high-strength coil strip. In order to understand the flatness defect formation mechanism
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during the coiling process, Sims and Place [5] proposed a stress model of the coil
assuming that the coil was an axial-symmetry hollow cylinder. Miller and Thornton [6]
and Sarban [7] introduced a finite element method and a semi-analytical model to
calculate the three-dimensional stress distribution within the coil. Nevertheless, in those
models, they did not consider the physical clearance between each coiled wrap due to
the strip crown as a cause of the axial inhomogeneity. Yanagi et al. [8] proposed an
analytical model by wrapping the thick cylinder (the coil) with the thin-walled cylin-
ders (the new coiling strips) to deal with inhomogeneous deformation of the cold-rolled
thin-strip in the axial direction caused by the clearance and the strip crown. Moreover,
Park et al. [9] studied the effect of processing parameters including a strip crown, a
spool geometry, and coiling tension on the stress distribution on the strip during the
coiling process where the analytical elastic model was used. In this study, it was found
that enhancement of strip flatness of the cold-rolled thin-strip could be accomplished by
suppressing the strip crown and lowering the coiling tension intensity compared to the
measured circumferential strain distribution.

To alleviate the undesirable formation of flatness defects, manufacturing the strip
coil without the strip crown is suggested as the best solution for fulfilling the strip
flatness requirement. Nevertheless, suppressing the strip crown during the rolling
process, as illustrated in Fig. 1, is somewhat difficult or even impossible to carry out
due to many processing parameters involved. Therefore, use of optimization to find the
optimum solution for a spool geometry and coiling tension was conducted [10, 11] in
order to improve the strip flatness during the strip coiling process.

Optimization is a special kind of mathematical problem assigned to search for a
design solution optimizing a predefined objective or merit indicator within a given
feasible region. A numerical optimizer is usually employed to find such a solution. It
can be categorized as an optimization method either with and without using function
derivatives. The former is based on hard computing while the latter is based on a
stochastic process and soft computing. The most popular non-gradient optimizer is an
evolutionary algorithm (EAs) or later known as a meta-heuristic (MH). It has been
implemented on a wide range of engineering applications and has shown several
advantages [12–21]. For metal strip manufacturing, optimization by means of
meta-heuristics has been used most commonly in the rolling process so as to control the
flatness problem, whereas their use in the strip coiling process has been rarely reported
[22–27].

In this study, optimization of flatness of the strips has been enhanced by an
improved teaching-learning based algorithm (ITLBO). This method is compared to
several well established EAs, such as simulated annealing (SA) [16], differential
evolution (DE) [28], artificial bee colony optimization (ABC) [29], real code ant colony
optimization (ACOR) [30], original teaching-learning based optimization (TLBO) [31],
league championship algorithm (LCA) [32], charged system search (ChSS) [33],
Opposition-based Differential Evolution Algorithm (OPDE) [10] and Enhanced
teaching-learning based optimization with differential evolution (ETLBO-DE) [11] to
determine the spool geometry and coiling tension where the objective is to minimize
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the axial inhomogeneity of the stress to improve the flatness of the strip. For function
evaluations, the analytical elastic model proposed by Park et al. [9] similar to the one
suggested by Yanagi et al. [8] was employed.

2 Formulation of the Optimization Design Problem

It is known that wavy edges occur during the strip coiling process, when the cir-
cumferential stress at the middle zone of the strip is highly compressed, while two
edges are under tension or slight compression. Also, if the middle strip zone is under
high tension while the two edges are compressed or slightly stretched, center buckle
can happen [8, 9]. Figures 1(a) and (b) display the circumferential stress (rh) distri-
bution along the z direction within the thin strip, which respectively caused the wavy
edge and center buckle.

Generally, it is impossible to obtain a flat strip after finishing a rolling process. The
strip always has a crown shape. When the strips are being coiled, tension loads need to
be applied, the middle zone (z = 0) of the strip at the inner coil will be considerably
compressed in comparison with the two edges because of the coiling tension and the
strip crown. In such a situation, the center buckle defect at the inner coil will not appear
but the wavy edge defect can possibly occur. As such, the wavy edge defect at the inner
coil is the major problem during the coiling process. Figure 2 depicts the circumfer-
ential stress (rh) distribution in the z direction at the radius (r) of the coil (computed by
the Love’s elastic solution proposed by Park et al. [9]) contributing to wavy edge defect
formation during the strip coiling process. It is possible to reduce the wavy edge defect
by decreasing the axial inhomogeneity of the stress distribution and the maximum
compressive stress at the compressive zone [10].

In this paper, optimization using the ITLBO and other well-known and newly
developed EAs will be used to find the optimum solution for the processing parameters
including coiling tension (rT ) and spool geometry, as illustrated in Fig. 3.

(a) the wavy edge (b) center buckle 

Fig. 1. Circumferential stress distributions for (a) the wavy edge and (b) center buckle,
respectively [8, 9]
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To decrease the axial inhomogeneity of the stress distribution and the maximum
compressive stress, minimization of the volume of the circumferential stress and
maximum compressive stress (shown in Fig. 2) is defined as an objective function. In
Fig. 2, the volume can only be computed for the coil, where compressive stresses were
higher than 20 MPa, in order to minimize the zone that is likely to have the wavy edge
defect. The objective function of the optimization problem can then be written as:

Minimize f ab; gb; rT ;i
� � ¼ V

V0
þ max rhcð Þ

max rhc0ð Þ ð1Þ

minimize

0� ab � 4;

0� gb � 4;

25� rT ;i � 50 MPa; i ¼ 1; . . .nmax

rT ;i � rT ;i�1
�� ��� 2 MPa,

where rhc and V are respectively the compressive circumferential stress higher than
20 MPa (refer to Fig. 2) and the approximate volume of the circumferential stress. rhc0
and V0 are the respective values for the original design of the process. The rT ;i is the
coiling tension at coil number i. The coiling tension is normally set to be constant for
all coils [34]. The variable nmax is the maximum number of coils, which has been
assigned to be 220 in this paper. gb and ab in Eq. (2) are spool crown exponent and the
spool crown height, which were used for defining the spool geometry, as described in
Fig. 3:
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Fig. 2. Circumferential stress distribution (rh) in the coil determined by Love’s elastic solution [9]
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b zð Þ ¼ b0 � ab
zj j

zmax

� �gb

ð2Þ

where b0 (z = 330 mm) and b(z) are the initial value of the outer radius of the spool and
the outer radius of the spool along the z direction, respectively. zmax = 525 mm is the
width of the spool. The inner radius of the spool (a) in Fig. 3 has been assigned to be
300 mm. The total number of design variables, therefore, is 222 (220 for coiling
tensions and 2 for the spool geometry).

3 Improved Teaching-Learning Based Optimization

From the previous section, the optimization problem can be considered being
large-scale. It has been found [10, 11], that TLBO is suitable for this type of design
problem. The teaching-learning based optimization (TLBO) algorithm is an evolu-
tionary algorithm, or an optimizer without using function derivatives, proposed by Rao
et al. [31]. The concept of TLBO searching mechanism is based on mimicking a
teacher on the output of learners in a classroom. Basically, the learners can improve
their intellectual and knowledge by two stages i.e. learning directly from the teacher
and learning among themselves. During the teacher stage, a teacher may teach the
learners, however, only some learners can acquire all things presented by the teacher.
Those who can accept what the teacher taught will improve their knowledge. For the
second stage, which is called the learning phase, the learners can improve their
knowledge during discussion with other learners. Based on the different levels of the
learners’ knowledge, the better learners may transfer knowledge to the inferior learners.

From the view point of optimization, the algorithm starts with a randomly created
initial population, which is a group of design solutions. Learners are identical to design
solutions whereas the best one is considered a teacher. The objective function is
analogous to the knowledge which needs to be improved towards the optimum solu-
tion. Having identified a teacher and other learners for the current iteration, the pop-
ulation will be updated by two stages including “Teacher Phase” and “Learner Phase”.
In the “Teacher Phase”, an individual (xi) will be updated based on the best individual
(xteacher) and the mean values of all populations (xmean) as follows:

xnew;i ¼ xold;i þ r xteacher � TF � xmeanð Þf g ð3Þ

Fig. 3. Spool Geometry used in the present investigation
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Where TF is a teaching factor, which can be either 1 or 2 and r 2 [0,1] is a uniform
random number.

For the “Learner Phase”, the members in the current population will be modified by
exchanging information between themselves. Two individuals xi and xj will be chosen
at random, where i 6¼ j. The update of the solutions can then be calculated as:

xnew;i ¼ xold;i þ r xi � xj
� �

if f xið Þ\f xj
� �

xold;i þ r xj � xi
� �

if f xj
� �

\f xið Þ
�

ð4Þ

At both teacher and learner phases, the new solution (xnew) will replace its parent if
it has better knowledge or produces better objective function value, otherwise, it will be
rejected. The two phases are sequentially operated until the termination criterion is
fulfilled.

For the improved teaching-learning based optimization (ITLBO), an opposition-
based approach, binary crossover, and the probability of operating the learning phase
are added to the original TLBO to improve the balance of search exploration and
exploitation. Four random numbers including, rand1, rand2, rand3, and rand4, have
been used for performing opposition-based approach, binary crossover, and the
learning phase. The main search procedure starts by generating an initial population,
updating the population at the teaching phase and learning phase similarly to the
original TLBO. However, at the teaching phase, the updating can be done by the
following equation;

xnew;i ¼ xold;i þð�1Þrand1r xteacher � TF � xmeanð Þf g ð5Þ

where rand1 is a random value with either 0 or 1. Then, the binary crossover is applied
if a uniform random number having an interval of 0 and 1 (rand2) is lower than the
crossover probability (Pr). For a new individual xTnew = [xnew,1, …, xnew,D] and an old
individual xTold = [xold,1, …, xold,D], the binary crossover step can be expressed as
follow;

xnew;j
xold;j if rand3\CR1 j ¼ 1; . . .; D

xteacher;j if CR1 � rand3\CR2 j ¼ 1; . . .; D

�
ð6Þ

where the rand3 is a uniform random number generated from 0 to 1. The CR1 and CR2

are the predefined crossover rates, while D is the number of design variables,
respectively. Thereafter, the learning phase is conducted if a uniform random number
generated from 0 to 1 (rand4) is lower than the probability value (Lp), otherwise, the
learning phase will be skipped. The search process will be repeated until the termi-
nation criterion is satisfied. The computational steps of the proposed algorithm are
shown in Algorithm 1.
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Algorithm 1 An improved TLBO
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4 Numerical Experiments

In order to examine the search performance of the proposed ITLBO, several EAs have
been used to solve the optimum design problem of the strip flatness as described in the
previous section. The EAs used in this study are as follows:

– DE [28]: The DE/best/2/bin strategy was used. DE scaling factor was random from
0.25 to 0.7 in each calculation and crossover probability was 0.7.

– SA [16]: An annealing temperature was reduced exponentially by 10 times from the
value of 10 to 0.001 in the optimization searching process. On each loop 2n children
were created by means of mutation to be compared with their parent. Here, n is the
number of design variables.

– ABC [29]: The number of food sources was set to be 3np. A trial counter to discard
a food source was 100.

– ACOR [30]: The parameters used for computing the weighting factor and the
standard deviation in the algorithm were set to be n = 1.0 and q = 0.2, respectively.

– TLBO [31]: Parameter settings are not required.
– LCA [32]: The default parameter settings provided by the authors were used.
– ChSS [33]: The number of solutions in the charge memory was 0.2np. Here, np is

the population size. The charged moving considering rate and the parameter PAR
were set to be 0.75 and 0.5, respectively.

– OPDE [10]: The DE/best/2/bin strategy was used. DE scaling factor was random
from 0.25 to 0.5 in each calculation and crossover probability used was 0.7.

– ETLBO-DE [11]: Used the DE parameter setting and Latin hypercube sampling
(LHS) technique to generate an initial population.

– ITLBO (Algorithm 1): The Pr, CR1, CR2 and Lp were set to be 0.5, 0.33, 0.66 and
0.75, respectively.

Each optimizer was employed to solve the problem for 5 optimization runs. Both
the maximum number of iterations and population size were set to be 100. For the
optimizers using different population sizes, such as simulated annealing, their search
processes were stopped with the total number of function evaluations as 100 � 100.
The optimal results of the various optimizers from using this limited number of
function evaluations were compared. The best optimizer was used to find the optimal
processing parameters of the strip coiling process.

5 Results and Discussion

After applying each optimization algorithm to solve the problem for 5 runs, the results
are given in Table 1. The mean values (Mean) are used to measure the convergence
rate while the standard deviation (STD) determines search consistency. The lower the
mean objective function value the better, and the lower the standard deviation the more
consistent. In the table, max and min stand for the maximum and minimum values of
the objective function, respectively.
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For the measure of convergence speed based on the mean objective value, the best
method is ITLBO while the second best and the third best performers are ETLBO-DE
and OPDE, respectively. The worst results came from ABC. For the measure of search
consistency based on STD, the best was also ITLBO while the worst was ABC, which
was similar to the measure of the search convergence. The second best and the third
best for consistency were ETLBO-DE and ACOR, respectively. The minimum
objective function value was obtained by the ITLBO.

Based on the results obtained, it was clearly indicated that the proposed ITLBO by
adding opposition based method, binary crossover, and learning phase probability can
improve the search performance of the original TLBO for solving the optimization
design problem of the strip coiling process.

The optimal spool crown exponent and height obtained are 1.0822 and 2.3645,
respectively. The optimal distribution of coiling tensions as a function of coil numbers
is shown in Fig. 4. The results reveal that the coiling tensions start with the highest
value initially and then decrease when the number of coils increases. After a few series
of coiling, the tension levels become almost constant, converging to the lower bound at
the end of the process. Figure 5 shows the plot of the circumferential stress distribu-
tions along the z and r directions of the original and optimum design solutions in that
order. The comparison of the maximum compressive stresses and the standard devia-
tion of stresses at the inner strip between the original and optimal designs is given in
Table 2. The results show that the optimal processing parameters obtained by the
proposed ITLBO algorithm can reduce the maximum compressive stress and the axial
inhomogeneity of the stress distribution at the inner strip, which might cause unde-
sirable wavy edge defects during the strip coiling process.

Table 1. Objective function values calculated

Evolutionary algorithms Mean STD Max. Min.

DE 0.9700 0.0275 1.0096 0.9354
ABC 1.7637 0.0787 1.8800 1.6751
ACOR 1.0621 0.0070 1.0705 1.0546
ChSS 1.4026 0.0289 1.4448 1.3678
LCA 1.7116 0.0408 1.7580 1.6473
SA 1.5451 0.0645 1.6323 1.4841
TLBO 0.9915 0.0132 1.0066 0.9766
OPDE 0.9539 0.0179 0.9715 0.9297
ETLBO-DE 0.8850 0.0047 0.8897 0.8784
ITLBO 0.8740 0.0025 0.8783 0.8720
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6 Conclusions

The new population-based optimization algorithm obtained by improving the original
TLBO for solving the flatness optimization of the strip coiling process has been pro-
posed. The search performance of the method was compared to various established
evolutionary algorithms. The numerical results show that the new optimizer ITLBO is
the best performer for both convergence rate and consistency. With this, the new
parameters including the spool geometry and the coiling tension distribution have been
obtained and can be used in the real strip coiling process. Further studies will be made
to enhance the mathematical model of the strip coiling process. A self-adaptive version
of ITLBO will be investigated for search performance enhancement.

Fig. 4. Coiling tension levels as a function of number of coils

(a) Original design                (b) Optimal design 

Fig. 5. Comparison of circumferential stresses along the z and r directions for the original
design and optimal design, respectively

Table 2. Maximum compressive stress and the standard deviation of stresses at the inner coil

Original design Optimal design

Maximum compressive stress [MPa] 111.546 68.0270
Standard deviation of stresses 48.375 29.3703
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