

รายงานวิจัยฉบับสมบูรณ์

โครงการการตรวจสอบและเตรียมความพร้อมโรงพยาบาลใน พื้นที่เสี่ยงภัยแผ่นดินไหว: บทเรียนจากแผ่นดินไหวแม่ลาว

โดย...ธีรพันธ์ อรธรรมรัตน์

มหาวิทยาลัยมหิดล

พฤษภาคม 2561 สัญญาเลขที่ MRG5980243 รายงานวิจัยฉบับสมบูรณ์ โครงการการตรวจสอบและเตรียมความพร้อมโรงพยาบาลใน พื้นที่เสี่ยงภัยแผ่นดินใหว: บทเรียนจากแผ่นดินใหวแม่ลาว

รีรพันธ์ อรธรรมรัตน์ มหาวิทยาลัยมหิดล

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Abstract (บทคัดย่อ)

Project Code: MRG5980243

(รหัสโครงการ)

Project Title: Developing and identifying seismic vulnerability evaluation guideline

for healthcare systems: a lesson learned from Mae Lao earthquake

(ชื่อโครงการ): โครงการการตรวจสอบและเตรียมความพร้อมโรงพยาบาลในพื้นที่เสี่ยง

ภัยแผ่นดินไหว: บทเรียนจากแผ่นดินไหวแม่ลาว

Investigator: Teraphan Ornthammarath Mahidol University

(ชื่อหักวิจัย): ธีรพันธ์ อรธรรมรัตน์ มหาวิทยาลัยมหิดล

E-mail Address : teraphan.orn@mahidol.ac.th

Project Period : 2 Year (ระยะเวลาโครงการ): 2 ปี

In 2014, a moderate earthquake occurred in Chiang Rai. This event took place within a populated area leading to high numbers of damaged buildings and infrastructures in epicentral area. It is proved for the first time in modern Thai history that destructive earthquakes not only occurred in neighbor countries but also seismogenic sources inside the country could capable of generating destructive earthquakes. Based on local authorities, more than 10,000 damaged buildings were needed to be assessed. One causality and numbers of injured people were reported. All hospitals in epicentral region need to be evacuated and forced to operate in a field hospital with a wide tent-like shelter for more than a month. Though being a seismic country, earthquake-resistant standards have not been effectively applied and guidelines have not been published and practiced for healthcare facilities in Northern Thailand. The possibility of hospital buildings not being functional during a large seismic event is very high. Examples of non-structural vulnerability assessment were shown from site specific surveys at Mae Lao hospital and information was gathered from local health authorities. A systematic structural and non-structural vulnerability assessment of healthcare facilities in Thailand

and mitigation strategy would need to be developed. The preliminary findings show that there is necessity to develop such a methodology arose because of the non-applicability of similar methodologies used in other developed countries.

การเกิดแผ่นดินใหวเป็นภัยพิบัติที่เกิดจากธรรมชาติที่ไม่สามารถล่วงรู้และคาดการณ์ล่วงหน้าได้ ซึ่งการเกิดแผ่นดินใหวในแต่ละครั้งสามารถสร้างความเสียหายให้กับอาคารบ้านเรือนหรือสิ่ง ปลูกสร้างต่าง ๆได้ขึ้นอยู่กับในแต่ละครั้งที่เกิดแผ่นดินใหวเกิดแรงสั่นสะเทือนมากน้อยเพียงใด บางครั้งความเสียหายที่เกิดขึ้นเราสามารถรับรู้ได้เพียงแค่แรงสั่นสะเทือนเท่านั้นซึ่งส่งผลเพียง มนุษย์รู้สึกว่าพื้นดินสั่นไหว อาคารหรือตึกสูงๆไหวเพียงเบาๆแต่ในบางครั้งอาจเกิดความ เสียหายต่ออาคารบ้านเรือนหรือสิ่งปลูกสร้างสูงๆ เช่น ตึก สำนักงาน คอนโด โรงแรม และอาจ ร้ายแรงถึงชีวิตคน เนื่องจากอาคารอาจพังถล่มมาทับคนได้ และเมื่อเกิดแผ่นดินไหว สิ่งที่สำคัญ ที่สุดคือโรงพยาบาล เนื่องจากเวลาเกิดแผ่นดินไหว อาจมีผู้ประสบภัยที่บาดเจ็บหรืออาจ เสียชีวิตซึ่งต้องไปโรงพยาบาล โรงพยาบาลจึงไปที่สำคัญที่ต้องรับแรงแผ่นดินไหวได้

การเกิดแผ่นดินไหวส่วนใหญ่ในประเทศไทย จะเกิดบริเวณภาคเหนือและภาคตะวันตกเฉียง เหนือ เนื่องจากได้ตรวจพบว่าแถบบริเวณภาคเหนือและภาคตะวันตกเฉียงเหนือนั้น มีการตรวจ พบรอยเลื่อนซึ่งมีโอกาสทำให้เกิดแผ่นดินไหวและก่อให้เกิดความเสียหายที่บริเวณจุดศูนย์กลาง หรือบริเวณใกล้เคียงได้และหากกล่าวถึงเหตุการณ์แผ่นดินไหวที่ส่งผลกระทบต่อโรงพยาบาลนั้น เมื่อวันที่ 5 พฤศจิกายน 2557 ได้เกิดเหตุการณ์แผ่นดินไหว ซึ่งมีจุดศูนย์กลางอยู่บริเวณ ตำบล ทรายขาว อำเภอพาน จังหวัดเชียงราย ขนาด 6.3 ที่ความลึก 7 กิโลเมตร และมีการเกิดอาฟ เตอร์ช็อกต่อเนื่องหลายครั้ง ทำให้สถานบริการของกระทรวงสาธารณสุขได้รับความเสียหาย ทั้งหมด 7 แห่ง โดยเกิดที่จังหวัดเชียงรายทั้งหมด 5 แห่ง ได้แก่ รพ.เชียงรายประชานุเคราะห์ โรงพยาบาลแม่ลาว โรงพยาบาลพาน โรงพยาบาลส่งเสริมสุขภาพตำบลร่องคาน อำเภอพาน และโรงพยาบาลสุขภาพตำบลใน อำเภอแม่ลาวและที่จังหวัดเชียงใหม่ โรงพยาบาลนครพิงค์และโรงพยาบาลฝาง โดยจากการสำรวจเบื้องต้นพบว่า แต่ไม่กระทบโครงสร้างอาคาร และได้มีการย้ายผู้ป่วยไปยัง โรงพยาบาลบางแห่งมีรอยร้าว อาคารที่ปลอดภัยหรือเต็นท์นอกอาคารและทุกโรงพยาบาลยังสามารถเปิดให้บริการผู้ป่วยนอก ได้ตามปกติ ยกเว้นที่ โรงพยาบาลเชียงรายประชานุเคราะห์และโรงพยาบาลแม่ลาว อาคาร สามารถให้บริการได้เฉพาะเหตุฉุกเฉินเท่านั้น ได้รับความเสียหายหนัก สาธารณสุขต้องวางแผนรับมือกับเหตุแผ่นดินไหว กลุ่มจังหวัดทางภาคเหนือและภาคกลาง 20 จังหวัดที่มีรอยเลื่อนและมีแนวโน้มจะเกิดแผ่นดินไหว เช่น จังหวัดแม่ฮ่องสอน จังหวัดเชียงใหม่ จังหวัดเชียงราย จังหวัดตาก จังหวัดกาญจนบุรี ซึ่งทางผู้เชี่ยวชาญเผยว่าอาจจะมีแผ่นดินไหว ขนาดย่อย หรืออาฟเตอร์ซ็อก เกิดตามมาเป็นระยะ ๆ ซึ่งอาจก่อให้เกิดความเสียหายกับอาคาร บ้านเรือน และเป็นอันตรายกับประชาชนได้

ตามที่ได้กล่าวไว้ข้างต้นนั้นตระหนักได้ว่าในการเกิดแผ่นดินไหวในแต่ละครั้งทำให้เกิดความ เสียหายต่ออาคารบ้านเรือนหรือโรงพยาบาลได้ ซึ่งความเสียหายเหล่านี้เกิดขึ้นเพราะโครงสร้าง ของอาคารไม่สามารถรับแรงที่เกิดขึ้นจากเหตุการณ์แผ่นดินไหวได้ จึงได้ทำการสำรวจประเภท บ้านใน อำเภอแม่ลาว จังหวัดเชียงราย เพื่อวิเคราะห์โอกาสที่จะเกิดความเสียหายเมื่อเกิด เหตุการณ์แผ่นดินไหวและศึกษาโครงสร้างโรงพยาบาลสุขภาพตำบล อำเภอแม่ลาว จังหวัด เชียงราย เนื่องจากโรงพยาบาลได้รับความเสียหาย จากเหตุการณ์แผ่นดินไหว

Keywords: Earthquake, Hospital, Non-structural components

(คำหลัก): แผ่นดินไหว, โรงพยาบาล, ส่วนไม่ใช่โครงสร้าง

บทสรุปผู้บริหาร (Executive Summary)

เมื่อเกิดภัยพิบัติขึ้นในพื้นที่ โรงพยาบาลและสถานพยาบาลถือว่าเป็นสถานที่ที่มีส่วน สำคัญในการตอบสนอง ทางด้านบริการสาธารณสุข ให้กับประชาชนในพื้นที่ประสบภัย ทั้งในช่วงเริ่มต้นของการเกิดภัยพิบัติ (acute phase response) ช่วงต่อเนื่องหลังเหตุภัย พิบัติ (delayed phase response) และในระยะฟื้นฟู (recovery phase) ภายหลังภัย ธรรมชาติ ซึ่งภารกิจของสถานพยาบาลในพื้นที่ประสบภัย นอกจากจะเป็นการดูแล ผู้ป่วยและบาดเจ็บฉุกเฉินจากเหตุภัยพิบัติแล้ว ยังมีภารกิจในการให้การรักษาผู้ป่วยโรค เรื้อรัง และส่งเสริมสุขภาพอนามัยของประชาชนในพื้นที่ เนื่องมาจากว่าจะเป็นสถานที่ ให้บริการภาวะฉุกเฉินดังนั้นการที่สถานพยาบาลในพื้นที่ประสบภัยสูญเสียศักยภาพใน การให้บริการทางการแพทย์ไม่สามารถใช้การได้ภายหลังเกิดภัยพิบัติธรรมชาติ เช่น แผ่นดินไหว จึงเป็นการเสียโอกาสในการดูแลรักษาผู้ป่วย และประชาชนในพื้นที่ที่ ประสบภัย ซึ่งมักมีความต้องการทางการแพทย์เพิ่มขึ้น

เนื่องมาจากความเสียหายที่เกิดกับสถานพยาบาลนั้น อาจแบ่งได้เป็น 1. ส่วนที่เป็น โครงสร้างอาคาร (structural) 2.ส่วนที่ไม่ใช่โครงสร้าง (non-structural) 3.อุปกรณ์ที่ เกี่ยวข้องกับการให้บริการทางการแพทย์ (operational) และ 4. ระบบสาธารณูปโภค (ไฟฟ้า น้ำประปา ออกซิเจน และแก๊สที่ที่ใช้ทางการแพทย์)ระบบไฟฟ้าจึงเป็นปัญหาที่ ซ้ำเติมกับประชากรในพื้นที่ประสบภัยธรรมชาติเป็นอย่างมาก โดย

การจัดระดับสถานพยาบาลโดยกระทรวงสาธารณสุข สถานพยาบาลจะถูกจัดออก แบ่งเป็นหลาย 3 ระดับ (ตามตารางที่ 1) ความเสียหายต่อสถานพยาบาลเหล่านี้ถึงแม้ เกิดแค่บางแห่งแต่ก็อาจทำให้เกิดผลต่อความสามารถในการให้บริการในภาพรวมได้ เช่น หากโรงพยาบาลชุมชนเกิดพังถล่มภาระหน้าที่ของการคัดแยกแยกคัดกรองผู้ป่วยก็ จะตกไปอยู่ที่โรงพยาบาลศูนย์ซึ่งก่อให้เกิดความล่าช้าในการรักษา

โดยแผ่นดินไหวเมื่อวันที่ 5 พฤษภาคม พ.ศ. 2557 ขนาด 6.3 ตามมาตราริกเตอร์ถือว่า เป็นแผ่นดินไหวขนาดกลางค่อนไปทางอ่อนแต่เป็นเหตุการณ์แผ่นดินไหวขนาดกลาง ครั้งแรกในประเทศไทยซึ่งเกิดขึ้นในบริเวณชุมชนที่มีประชากรอาศัยอยู่ โดยมีศูนย์กลาง บริเวณ อำเภอ แม่ลาว จังหวัดเชียงราย โดยก่อนหน้านั้นประชากรส่วนใหญ่ในพื้นที่มี ความคุ้นเคยกับแผ่นดินไหวขนาดเล็กในพื้นที่อยู่บ้างแต่แผ่นดินไหวในครั้งนี้ถือว่าเป็น แผ่นดินไหวขนาดกลางครั้งแรกที่เกิดใกล้กับสิ่งปลูกสร้างซึ่งไม่เหมือนในอดีตซึ่ง แผ่นดินไหวส่วนใหญ่จะเกิดขึ้นในเขตไร้สิ่งปลูกสร้าง โดยภายหลังแผ่นดินไหวได้มีการ รายงานผู้เสียชีวิต 1 ราย และบาดเจ็บเป็นจำนวนมาก และสถานพยาบาลที่อยู่ใกล้ที่สุด กับเหตุการณ์ครั้งนี้คือ โรงพยาบาลชุมชนแม่ลาวซึ่งอยู่ห่างจากศูนย์กลางแผ่นดินไหว ประมาณ 7 กิโลเมตร โดยโรงพยาบาลแห่งนี้ได้รับผลกระทบความเสียหายและจำเป็นที่ จะต้องอพยพผู้ป่วยทันทีภายหลังเหตุการณ์แผ่นดินไหว

ด้วยเหตุผลด้านโดยความไม่มั่นใจถึงสภาพโครงสร้างอาคารของโรงพยาบาลภายหลัง แผ่นดินไหว ทำให้เกิดปัญหาต่อการกลับเข้าไปใช้งานอาคาร รวมถึงคำถามในการ จัดการภายหลังเหตุการณ์แผ่นดินไหว โดย การศึกษานี้จัดทำขึ้นเพื่อประเมินความ เสียหายโรงพยาบาลแม่ลาวภายหลังเหตุการณ์แผ่นดินไหวและทำการตรวจสอบถึง ความพร้อมของโรงพยาบาลในการให้บริการหากเกิดเหตุการณ์แผ่นดินไหวที่รุนแรงขึ้น กว่าครั้งที่ผ่านมา โดยการศึกษาจะเน้นไปถึงความเกี่ยวเนื่องระหว่างความเสียหายและ ความสูญเสียโอกาสในการให้บริการสาธารณสุขกับประชาชนผู้ประสบภัยซึ่งจะเป็น บทเรียนสำคัญเพื่อที่จะลดจำนวนวันที่สถานพยาบาลต้องหยุดการให้บริการภายหลัง สภาวะฉุกเฉินเนื่องจากภัยแผ่นดินไหว

ระบบการให้บริการสาธารณสุขและโรงพยาบาลในพื้นที่ศูนย์กลางแผ่นดินไหว

ระบบการให้บริการสาธารณสุขในจังหวัดเชียงรายมีการแบ่งพื้นที่บริการนั้นได้ถูกแบ่ง ออกเป็นรายอำเภอ โดยมีโรงพยาบาลชุมชนประจำแต่ละอำเภอ คอยดูแลและมี โรงพยาบาลศูนย์ตั้งอยู่ในที่ อำเภอเมือง จังหวัดเชียงราย โดยสถานพยาบาลในจังหวัด เชียงรายที่ต้องรับมือภายหลังเหตุการณ์แผ่นดินไหวเมื่อปี พ.ศ. 2557 คือ โรงพยาบาล เชียงรายประชานุเคราะห์ โรงพยาบาลแม่ลาว โรงพยาบาลแม่สรวย โรงพยาบาลพาน โดยแต่ละอำเภอนั้นมีประชากรประมาณ 224,000, 30,000, 77,000 และ 121,000 ตามลำดับ จำนวนประชากรที่สถานพยาบาลทั้งสี่แห่งต้องดูแลภายหลังแผ่นดินไหว รวมกันแล้วประมาณ 452,000 คน ภายหลังการเกิดแผ่นดินไหวทางโรงพยาบาลชุมชนใน แต่ละอำเภอยังสามารถคัดแยกคัดกรองผู้ป่วยเบื้องต้นก่อนที่จะส่งผู้ป่วยหนักไป โรงพยาบาลเชียงรายประชานูเคราะห์ได้แต่โรงพยาบาลแม่ลาวสามารถรับได้แต่ผู้ป่วย

กรณีฉุกเฉินเท่านั้น และจำเป็นที่จต้องส่งต่อผู้ป่วยในไปรักษาที่โรงพยาบาลเชียงราย ประชานุเคราะห์ 17 คน โดยทุกโรงพยาบาลได้ทำการอพยพคนไข้ออกมาภายนอก อาคารภายหลังเหตุแผ่นดินไหว

โรงพยาบาลแม่ลาวนั้นเป็นโรงพยาบาลชุมชนซึ่งมีขนาดเตียง 30 เตียง และมีแพทย์เวช ปฏิบัติทั่วไป GP ประจำการ 4 ท่าน โดยและมีบุคลากรทางการแพทย์สายสหับสนุนอีก ประมาณ 160 คน โดยความสามารถของโรงพยาบาลชุมชนแห่งนี้เพื่อทำให้การรักษาใน ระดับขั้นปฐมภูมิและทุติยภูมิ และงาหส่งเสริมสุขภาพท้องถิ่น โดยมี ส่วนงาหต่าง ๆ ประกอบด้วย งานผู้ป่วยนอก ห้องทำคลอด งานผู้ป่วยใน งานทันตกรรม ห้องบริการทาง ตา ห้องปฏิบัติการวิทยาศาสตร์ หน่วยกำจัดเชื้อและอุปกรณ์การแพทย์ แพทย์แผนไทย โดยทั้งหมดนั้นอยู่ชั้นล่างของอาคาร มีเพียงฝ่ายบริหารและธุรการซึ่งอยู่ชั้นสองของ อาคารหลักของโรงพยาบาล จากการสัมภาษณ์กับผู้บริหารโรงพยาบาลแม่ลาวพบว่าการ ตัดสินใจอพยพผู้ป่วยและการจัดตั้งโรงพยาบาลสนามในพื้นที่ว่างบริเวณโรงพยาบาลนั้น เนื่องมาจากว่าความไม่แน่ใจที่เกิดขึ้นกับโครงสร้างอาคารโรงพยาบาล ภายหลังจะมีวิศวกรจากหลาย ๆหน่วยงานมาร่วมตรวจสอบโดยไม่พบความเสียหาย หนักที่เกิดขึ้นกับอาคาร โดยความเสียหายส่วนใหญ่เกิดขึ้นกับส่วนที่ไม่ใช่โครงสร้างหลัก (Nonstructural damage) เช่น ผนัง ฝ้าเพดาน เพียงเล็กน้อย ส่วนระบบสาธารณูปโภค อันได้แก่ ระบบไฟฟ้า น้ำประปา และ ระบบสื่อสารสามารถใช้การได้ภายหลังเหตุการณ์ แผ่นดินไหวโดย และให้ทางโรงพยาบาลสามารถกลับเข้าใช้งานอาคารได้ ความเสียหาย ส่วนใหญ่เกิดขึ้นกับส่วนที่ไม่ใช่โครงสร้างหลัก (Nonstructural damage) เช่น ผนัง ฝ้า เพดาน แค่เพียงเล็กน้อยเท่านั้น โดยระบบไฟฟ้า น้ำประปา และ ระบบสื่อสารสามารถใช้ แต่เนื่องมาจากว่าได้เกิดยังมีแผ่นดินไหว การได้ภายหลังเหตุการณ์แผ่นดินไหว Aftershock ขึ้นตามมาอีกหลายครั้ง มากจึงทำให้ผู้ป่วย ญาติผู้ป่วย และเจ้าหน้าที่ไม่กล้า กลับเข้าไปในบริเวณอาคาร และจำเป็นที่ทางโรงพยาบาลจึงจำเป็นต้องให้บริการทำการ ดูแลรักษาผู้ป่วยภายนอกอาคารต่ออีกเป็นเวลา 2 สัปดาห์

ความเสียหายต่อตัวอาคารโรงพยาบาล

อาคารหลักของโรงพยาบาลแม่ลาวนั้นเป็นอาคารคอนกรีตเสริมเหล็กสองชั้น โดย อาคารหลักมีลักษณะสมมาตรซึ่งส่งผลดีต่อการกระจายแรงแผ่นดินไหว เสาชั้นล่างมี ขนาด 30 🗆 30 ซม. ซึ่งมีขนาดใหญ่แตกต่างจากอาคารชาวบ้านโดยทั่วไปที่มีขนาดเสา เล็กกว่า 20 🗆 20 ซม. จึงทำให้ได้รับความเสียหายกว่ามาก อาคารโรงพยาบาลได้เปิดใช้ งานในเมื่อปี พ.ศ. 2538 ซึ่งเป็นเวลาประมาณ 1 ปี การเปิดใช้ให้หลังเหตุการณ์

แผ่นดินไหวที่ อำเภอ พาน เมื่อวันที่ ในปี พ.ศ. 2537 เป็นเวลาประมาณ 1 ปี และ 2 ปีก่อนการประกาศโดยกฎกระทรวงฉบับที่ 49 โดยกระทรวงมหาดไทยเกี่ยวกับ แผ่นดินไหว ได้ออกมาเมื่อในปี พ.ศ. 2540 ดังนั้นอาคารหลักของโรงพยาบาลแม่ลาวจึง เป็นอาคารที่ถูกออกแบบโดยไม่ได้ให้รองรับแผ่นดินไหวมีความเสี่ยงจากการไม่ได้รับ การออกแบบให้รองรับเหตุแผ่นดินไหว จากผลการสำรวจสภาพความเสียหายของ โรงพยาบาลแม่ลาวพบว่ามีความเสียหายบริเวณผนังอาคาร ฝ้า และ บริเวณรอยต่อ เชื่อมตัวอาคาร โดยความเสียหายส่วนใหญ่ไม่ได้เป็นส่วนงานโครงสร้างอาคาร ทางด้าน ส่วนโครงสร้างอาคารนั้นไม่พบความเสียหายแต่อย่างใด โดยบริเวณผนังที่เสียหายนั้น เนื่องมาจากว่าเป็นผนังที่ก่อสร้างเพิ่มเติมระหว่างสองอาคาร ดังนั้นจึงเป็นผนังขนาด ใหญ่กว่าปกติ โดยรอยผนังบ่งชี้ได้ถึงการถล่มของผนังสามารถที่อาจถล่มลงมาทับผู้ใช้ อาคารได้หากแผ่นดินไหวครั้งที่ผ่านมารุนแรงกว่านี้

ภูปที่ 1. Observed cracks on infill wall if the ground shaking was larger this wall would collapse inside the buildings.

รูปที่ 2. Observed cracks between two adjacent buildings since there is very minimum distance between these two structures.

ความเสียหายของโรงพยาบาลต่อแผ่นดินไหว

ความเสี่ยงต่อการเกิดเสียหายของโรงพยาบาล (Risk) ที่สามารถเกิดขึ้นได้ภายหลัง เหตุการณ์แผ่นดินไหวนั้นเกิดขึ้นเนื่องมาจาก เหตุภัยพิบัติ (Hazard) ซึ่งในที่นี้ก็คือ ความ รุนแรงของแผ่นดินไหว (Hazard) และ ความอ่อนแอของสิ่งปลูกสร้าง (Vulnerability) โดยมีความเกี่ยวพันกันคือ

ความเสียหายของโรงพยาบาล (Risk) = ความรุนแรงของแผ่นดินไหว (Hazard) X ความ อ่อนแอของสิ่งปลูกสร้าง (Vulnerability)

โดยหากที่เราต้องการที่จะลดความเสียหายของที่เกิดจากจุดอ่อนด้านโครงสร้างของ โรงพยาบาล เนื่องมาจากแผ่นดินไหว การปรับปรุงโครงสร้างของอาคาร การ เตรียมพร้อมเพื่อลด ความอ่อนแอของสิ่งปลูกสร้างเป็นเพียงหนทางเดียวเท่านั้นที่จะทำ ได้ การจัดการลดจุดอ่อนทางโครงสร้าง จะต้องทำควบคู่ไปทั้งความอ่อนแอของสิ่งปลูก สร้างจำเป็นที่จะต้องแบ่งออกเป็น 2 ส่วน คือ งานโครงสร้าง (Structural components) และ งานส่วนที่ไม่ใช่โครงสร้าง (Nonstructural components) โดยตัวอย่างของงาน โครงสร้าง เช่น ขนาด เสา คาน ที่รับน้ำหนักของอาคาร และ ตัวอย่างของงานส่วนที่ ไม่ใช่โครงสร้างคือ ผนัง ฝ้าเพดาน อุปกรณ์การแพทย์ เป็นต้น โดยเนื่องจากว่า โรงพยาบาลนั้นเป็นสิ่งปลูกสร้างที่แตกต่างไปจากอาคารประเภทอื่นเนื่องมาจากภายใน อาคารจะประกอบไปด้วยระบบไฟฟ้า ประปา ท่อแก๊สแก็ส และ เครื่องมือทางการแพทย์ ซึ่งล้วนแล้วแต่มีความสำคัญต่อภารกิจการให้ดูแลรักษาผู้ป่วย โดยเฉพาะผู้ป่วยวิกฤติ ฉุกเฉิน ที่ต้องได้รับการรักษาทันทีการดำเนินการใช้งานสถานพยาบาลในภาวะวิกฤติ และมูลค่าของอุปกรณ์เหล่านี้ก็มีราคาแพงมีมูลค่าสูง จัดหาทดแทนได้ยาก และล่าช้า ดังนั้นอาจทำให้เกิดความล่าช้าในการจัดหาอุปกรณ์ทดแทนในกรณีที่เกิดความเสียหาย ต่ออุปกรณ์เหล่านี้ ดังนั้น ระบบเหล่านี้ต้องมีการสำรวจและพิจารณาถึงการปรับปรุงให้ดี ขึ้นเพื่อรองรับแรงแผ่นดินไหวการปรับปรุงเพื่อลดจุดอ่อนทางด้านโครงสร้าง และที่ไม่ใช่ โครงสร้าง เพื่อให้มีความต้านทานต่อเหตุแผ่นดินไหว สามารถช่วยให้โรงพยาบาลรอด พันจากภัยพิบัติ และสามารถให้บริการทางการแพทย์แก่ประชาชนในพื้นที่ประสบภัยได้ อย่างต่อเนื่อง และเต็มศักยภาพ

ในอดีตวิศวกรแผ่นดินไหวส่วนใหญ่จะคอยตรวจสอบความสามารถของโครงสร้างหลัก ของอาคารเพื่อลดความเสียหายต่อแผ่นดินไหว แต่ทว่าสำหรับอาคารที่มีความสำคัญ การคำนวณเพื่อลดความเสียหายต่องานส่วนที่ไม่ใช่โครงสร้างก็เริ่มมีความจำเป็นจึงได้ มีการนำงานส่วนที่ไม่ใช่โครงสร้างมากำหนดเอาไว้ในระดับความเสียหายที่ผู้ใช้อาคาร คาดหวังให้เกิดขึ้นภายหลังเหตุการณ์แผ่นดินไหวโดยเสนอตามที่ FEMA 396 ได้เสนอ สามารถแบ่งได้สี่ระดับความปลอดภัยคือ

- 1. ระดับความเสียหายเล็กน้อยสามารถใช้งานอาคารต่อได้ทันที (Operational Level) เพื่อป้องกันการสูญเสียโอกาสในการใช้งานอาคารภายหลังเหตุการณ์แผ่นดินไหว
- 2. ระดับความเสียหายเล็กน้อยสามารถใช้งานอาคารได้ (Immediate Occupancy Level) เพื่อป้องกันความเสียหายของอาคารและยังสามารถใช้หลบภัยได้โดยอาจมีต้อง ซ่อมแซมบ้างแต่เล็กน้อย
- 3. ระดับความเสียหายมากแต่ไม่เกิดอันตรายต่อชีวิต (Life Safety Level) เพื่อป้องกันให้ อาคารไม่เกิดการถล่มแต่อาจไม่สามารถปฏิบัติงานใช้งานต่อได้ภายหลังแผ่นดินไหว
- 4. ระดับความเสียหายมากและอาคารไม่ถล่ม (Collapse Prevention Level) เพื่อป้องกัน ให้อาคารไม่เกิดการถล่มและไม่สามารถปฏิบัติงานได้ภายหลังแผ่นดินไหว

	Collapse	Life Safety	Immediate	Operational
	Prevention	Level	Occupancy	Level
	Level		Level	
Structural	โครงสร้างอาคาร	โครงสร้าง	โครงสร้างอาคาร	โครงสร้างอาคาร
components	ยังแบกรับ	อาคารยังแบก	ยังแบกรับ	ยังแบกรับ
	น้ำหนักได้แต่	รับน้ำหนักได้แต่	น้ำหนักได้ส่วน	น้ำหนักได้ส่วน
	ส่วนโครงสร้าง	ส่วนโครงสร้าง	โครงสร้างอาคาร	โครงสร้างอาคาร
	อาคารเสียหาย	อาคารเสียหาย	ไม่เสียหาย	ไม่เสียหาย
	อย่างหนัก	บ้าง		
	อาคารอาจถล่ม			
	ได้			
		. ra		
Nonstructural	อุปกรณ์ทุกอย่าง	อุปกรณ์เสียหาย	อุปกรณ์สามารถ	อุปกรณ์สามารถ
components	เสียหายหนักและ	มาก	ใช้งานได้แต่อาจ	ใช้งานได้ทันที
	ไม่สามารถใช้		ต้องมีการ	
	การได้		calibrate	
			เครื่องมือใหม่	

โดยการจัดระดับความเสียหายนั้นจำเป็นเพื่อนำมาใช้ประโยชน์ในการจัดลำดับ ความสำคัญในการสร้างหรือปรับปรุงอาคารที่มีอยู่หรือจะสร้างใหม่ให้มีความปลอดภัย ตามความเสียหายที่ยอมรับได้ เช่น การปรับปรุงสถานพยาบาลทุกแห่งภายในจังหวัด เชียงรายให้มีความปลอดภัยในระดับ Operational Level ได้ทันทีนั้นอาจจะที่ต้องใช้ งบประมาณเป็นจำนวนมาก จึงอาจที่จะจัดความสำคัญโดยให้การปรับปรุงโรงพยาบาล สูนย์มีความปลอดภัยระดับ Operational Level แต่โรงพยาบาลชุมชนมีความปลอดภัย ในระดับ Immediate Occupancy Level เป็นต้น

การสำรวจความอ่อนแอจุดอ่อนด้านโครงสร้างของโรงพยาบาล

การที่จะจัดลำดับความปลอดภัยของโรงพยาบาลได้นั้นจำเป็นที่จะต้องทำการสำรวจ ความอ่อนแอจุดอ่อนของโรงสถานพยาบาล โดยในที่นี้จะเน้นถึงการสำรวจงานส่วนที่ ไม่ใช่โครงสร้างซึ่งเป็นตัวชี้วัดถึงระดับความปลอดภัยในระดับ Immediate Occupancy Level กับ Operational Level โดยอ้างอิงตาม FEMA E-74 (2011) ได้ทำการแบ่งประเภท ของงานส่วนที่ไม่ใช่โครงสร้างออกเป็นประเภทต่าง ๆเพื่อให้เกิดความเข้าใจตามแต่ละ ประเภทการใช้งานและสามารถแบ่งออกได้เป็น 3 ประเภทคือ

- 1. ส่วนสถาปัตยกรรม (Architectural components) เช่น ผนัง ฝ้าเพดาน กระจก ป้าย อาคาร
- 2. ส่วนงานระบบ (Mechanical, electrical, and plumbing, MEP, components) เช่น งาน ระบบไฟฟ้า ประปา แก๊สแก็ส งานระบบระบายอากาศ
- 3. ส่วนเฟอร์นิเจอร์ อุปกรณ์การแพทย์ (Furniture, fixture & equipment, FF&E, components) เช่น ชั้นวางหนังสือ คอมพิวเตอร์ เครื่อง X-ray

จากการสัมภาษณ์ผู้บริหารโรงพยาบาลแม่ลาว และภาพกล้องวงจรปิดใหช่วงเวลาที่เกิด เหตุพบว่า แผ่นดินไหวเมื่อวันที่ 5 พฤษภาคม พ.ศ. 2557 นั้นไม่ได้ส่งผลต่อส่วนที่ไม่ใช่ โครงสร้างมากนักแตกต่างจากที่คาดเอาไว้ในตอนต้นเนื่องจากว่าจุดศูนย์กลาง แผ่นดินไหวค่อนข้างใกล้กับโรงพยาบาล โดยอาจจะเนื่องมาจากว่าและส่วนงานการ บริการทางด้านสาธารณสุขของโรงพยาบาลแม่ลาวนั้นตั้งอยู่ที่ชั้นล่างจึงทำให้ความ รุนแรงของการสั่นไหวน้อยกว่าชั้นสองซึ่งเปรียบเทียบได้กับภาพกล้องวงจรปิดที่ทาง โรงพยาบาลได้เก็บเอาไว้

โดยการลงพื้นที่สำรวจการเตรียมพร้อมรับมือแผ่นดินไหวพบว่าโรงพยาบาลมีปัจจัย ความอ่อนแอปัจจัยที่สามารถปรับปรุงในหลาย ๆกรณีภายในตัวอาคาร ระบบ สาธารณูปโภค เครื่องมือแพทย์ และ การเตรียมพร้อมด้านความปลอดภัย โดยจะ นำเสนอตามลำดับประเภทของส่วนที่ไม่ใช่โครงสร้าง

ปัจจัยเสี่ยงในส่วนสถาปัตยกรรม

กระจก

การระบายอากาศที่ดีเป็นสิ่งสำคัญต่อสุขภาพผู้ป่วยภายในโรงพยาบาลแต่ทว่าในบริเวณ เสี่ยงต่อแผ่นดินไหวนั้นกระจกอาจเกิดการแตกและหล่นลงมาใส่เจ้าหน้าที่สาธารณสุข หรือคนไข้ได้ ดังนั้นการป้องกันในเบื้องต้นคือการย้ายบริเวณที่ทำงานหรือเตียงผู้ป่วย ไม่ให้อยู่ใกล้กระจกจนเกินไปและทำการเคลือบกระจกด้วยฟิลม์นิรภัยเพื่อป้องกัน กระจกแตกได้

ระดับความปลอดภัยที่ เกิดขึ้นหากมีการปรับปรุง	จำนวนที่พบ	วิธีการแก้ไข
Life Safety Level	มาก	ย้ายเตียงผู้ป่วยและที่ทำงาน ให้ห่างจากหน้าต่าง และ ทำ การติดฟิลม์นิรภัย

รูปที่ 3. ความปลอดภัยระดับ Life safety level จะเกิดขึ้นได้ถ้ามีการปรับปรุงกระจก โดยรอบสถานพยาบาล

ผนังอาคาร

โดยปกติแล้วผนังอาคารเป็นสาเหตุหลักในการที่ทำให้เกิดการเสียชีวิตแทบจะทุกครั้งที่ เกิดแผ่นดินไหวในบ้านของประชาชนทั่วไป แต่ผนังอาคารที่ก่อสร้างตามหลักวิศวกรรม เช่นโรงพยาบาลหรือโรงเรียนจะพบความเสียหายได้น้อยกว่ามาก แต่อย่างไรก็ตามการ สร้างผนังอาคารที่มีขนาดใหญ่เกินไปก็พบความเสียหายได้เช่นกัน โดยบริเวณที่พบ ความเสียหายคือผนังอาคารที่ก่อสร้างต่อเติมขึ้นมาระหว่าง สองอาคารซึ่งทำให้ผนังมี ขนาดใหญ่เกินไปโดยส่วนใหญ่แล้วผนังที่พบว่ามีความเสียหายจะเป็นผนังที่มีขนาดใหญ่ เกินกว่า 3 × 3 เมตร

ระดับความปลอดภัยที่ เกิดขึ้นหากมีการปรับปรุง	จำนวนที่พบ	วิธีการแก้ไข
Life Safety Level	ปานกลาง	ผนังอาคารระหว่างการ ก่อสร้างต้องยึดให้แน่น หรือ ใช้ผนังไฟเบอร์บอร์ดและยึดให้ แน่นกับเสาและคาน

ฝ้าเพดาน

โดยปกติความเสียหายต่อฝ้าเพดานนั้นจะพบเฉพาะในบริเวณชั้นสองของอาคาร เนื่องมาจากว่าการสั่นไหวของอาคารบนชั้นที่อยู่สูงจะมากกว่าชั้นล่าง โดยฝ้าเพดานนั้น ปกติจะก่อสร้างโดยใช้เหล็กตัว T ยึดและมีเพียงสายเอ็นซึ่งโยงลงมาจากหลังคาเมื่อแรง แผ่นดินไหวมากระทำจะทำให้ เหล็กตัว T หรือฝ้าเพดานหล่นลงมาได้ โดยประเทศไทย ยังไม่ได้มีมาตรฐานการคำณวนขนาดฝ้าเพดานในเขตแผ่นดินไหว แต่มาตรฐาน ASCE7-10 ได้กำหนดไว้ว่าฝ้าเพดานที่มีพื้นที่ใหญ่กว่า 100 ตารางเมตรนั้นจำเป็นที่จะต้องมีการเสริมกำลังฝ้าเพดานโดยใช้เหล็กที่หนาขึ้นมายึดแทนเส้นเอ็นธรรมดา

ระดับความปลอดภัยที่ เกิดขึ้นหากมีการปรับปรุง	จำนวนที่พบ	วิธีการแก้ไข
Immediate Occupancy Level	มาก	บริเวณฝ้าเพดานที่กว้าง มากกว่า 100 ตารางเมตร เช่น ห้องประชุม ต้องทำการ ปรับปรุงเสริมความแข็งแรง ของฝ้าเพดาน

รูปที่ 4 การติดตั้งฝ้าเพดานโดยมีเหล็กตัว T และใช้น็อตยึดกับคานคอนกรีตเสริมเหล็ก ฝ้าเพดานร่วงหล่นลงมาบริเวณชั้นสองของอาคารแพทย์แผนไทย

รูปที่ 5 สภาพความเสียหายของฝ้าเพดาน และ ระบบหลอดไฟฟ้า และ ระบบระบาย อากาศที่โรงพยาบาล Los Angeles เนื่องจากแผ่นดินไหวขนาด 8.8 ที่ประเทศชีลีเมื่อปี พ.ศ. 2553

รูปที่ 6 สภาพการเสริมความแข็งแรงของฝ้าเพดานเพื่อรองรับแผ่นดินไหวในกรณีที่ฝ้า เพดานมีน้ำหนักมากและมีขนาดใหญ่มากกว่า 100 ตารางเมตร

อาคารชนกัน

ส่วนใหญ่แล้วอาคารภายในโรงพยาบาลจะมีส่วนที่ต่อเชื่อมกันระหว่างตึกโดยบางช่วง อาจจะเป็นแค่เพียงทางเดินกันฝนและแดดแต่หากการก่อสร้างไม่ได้มีการเผื่อระยะห่าง ไว้เพียงพอ ก็จะทำให้โครงสร้างทั้งสองซึ่งอยู่ติดกันกระแทกกันได้ตอนเกิดแผ่นดินไหว โดยการแก้ปัญหาสามารถทำได้โดยการทำรอยต่อระหว่างโครงสร้างอาคารให้มีขนาด กว้างขึ้น โดยในการคำนวณของตึกสูงจำเป็นต้องใช้วิศวกรที่มีความเชี่ยวชาญรู้มา คำนวณถึงระยะห่างที่เหมาะสม เช่น ระยะห่างระหว่างโครงสร้างทั้งสองประมาณ 10 ซ.ม.

ระดับความปลอดภัยที่ เกิดขึ้นหากมีการปรับปรุง	จำนวนที่พบ	วิธีการแก้ไข
Immediate Occupancy Level	มาก	บริเวณระหว่างโครงสร้าง จำเป็นที่จะต้องเผื่อระยะห่าง เพื่อกันการกระแทกของ โครงสร้างระหว่างเกิด แผ่นดินไหว

ปัจจัยเสี่ยงในส่วนงาน ระบบสาธารณูปโภค

ถังแก๊ส

ปกติแล้วในโรงพยาบาลจำเป็นที่จะต้องมีถังอ็อกซิเจนออกซิเจนและแก๊สแก็สไว้เพื่อใช้ กับอุปกรณ์ต่าง ๆ แต่ทว่าถังแก็สแก๊สเหล่านี้หากไม่ได้มีการยึดเอาไว้กับผนังกำแพงที่ แข็งแรงก็อาจที่จะทำให้ถังแก็สแก๊สหล่นเสียหายและเกิดไฟไหฟม้ตามขึ้นมาได้

ระดับความปลอดภัยที่ เกิดขึ้นหากมีการปรับปรุง	จำนวนที่พบ	วิธีการแก้ไข
Life Safety Level	มาก	ควรทำการยึดถังแก๊สติดกับ ผนังเพื่อกันความเสียหายที่จะ เกิดขึ้นเนื่องจากแรง แผ่นดินไหว

5. อ้างอิง

- ศูนย์ประสานงานและตรวจสอบอาคาร จ.เชียงราย 2557
- Ornthammrath and Warnitchai, 2016 "The 5 May 2014 M_W 6.1 Mae Lao (Northern Thailand) earthquake: Interpretations of recorded ground motion and structural damage", Earthquake Spectra

กิตติกรรมประกาศ

This study is supported by the Thailand Research Fund, Office of the Higher Education Commission, and Faculty of Engineering, Mahidol University under contract no.TRG5780243 and MRG5980243, and it is gratefully acknowledged.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

- 1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ
- Teraphan Ornthammarath and Pennung Warnitchai (2016) The 5 May 2014 MW 6.1 Mae Lao(Northern Thailand) earthquake: Interpretations of recorded ground motion and structural damage. Earthquake Spectra In-Press. doi: http://dx.doi.org/10.1193/081814EQS129M
- Saw Htwe Zaw, Teraphan Ornthammarath & Nakhorn Poovarodom (2017)
 Seismic Reconnaissance and Observed Damage after the Mw 6.8, 24 August
 2016 Chauk (Central Myanmar) Earthquake, Journal of Earthquake Engineering,
 DOI: 10.1080/13632469.2017.1323050
- 2. การนำผลงานวิจัยไปใช้ประโยชน์
 - เชิงพาณิชย์ (มีการนำไปผลิต/ขาย/ก่อให้เกิดรายได้ หรือมีการนำไปประยุกต์ใช้ โดยภาคธุรกิจ/บุคคลทั่วไป)
 N/A
 - เชิงนโยบาย (มีการกำหนดนโยบายอิงงานวิจัย/เกิดมาตรการใหม่/เปลี่ยนแปลง ระเบียบข้อบังคับหรือวิธีทำงาน)

ผลการวิจัยจากชุดโครงการ "โครงการการตรวจสอบและเตรียมความพร้อมโรงพยาบาลในพื้นที่ เสี่ยงภัยแผ่นดินไหว: บทเรียนจากแผ่นดินไหวแม่ลาว" ได้สร้างชุดความรู้และบุคลากรวิจัยใน การประเมินปัจจัยเสี่ยงของอาคารสาธารณสุขต่อแผ่นดินไหวและวิธีการประเมินอาคารที่ได้รับ ความเสียหาย ซึ่งข้อมูลที่ได้มีการใช้ประโยชน์ในการกำหนดนโยบายเพื่อเตรียมความพร้อมใน การพัฒนามาตรฐานสำหรับอาคารสาธารณสุขที่อยู่ในพื้นที่เสี่ยงภัยแผ่นดินไหวต่อไป

- เชิงสาธารณะ (มีเครือข่ายความร่วมมือ/สร้างกระแสความสนใจในวงกว้าง)
 "โครงการการตรวจสอบและเตรียมความพร้อมโรงพยาบาลในพื้นที่เสี่ยงภัยแผ่นดินไหว:
 บทเรียนจากแผ่นดินไหวแม่ลาว" ได้รวบรวมข้อมูลลักษณะเสี่ยงของอาคารสาธารณสุขที่ไม่
 ปลอดภัยจากแผ่นดินไหว โดยได้จัดพิมพ์ในวารสาร หนังสือพิมพ์ บทสัมภาษณ์ เพื่อให้
 ประชาชนทั่วไปมีความเข้าใจถึงประเภทอาคารที่ไม่ปลอดภัยต่อแผ่นดินไหวต่อไป
- เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สร้างนักวิจัยใหม่) จากผลการดำเนินงานโครงการ "โครงการการตรวจสอบและเตรียมความพร้อมโรงพยาบาลใน พื้นที่เสี่ยงภัยแผ่นดินไหว: บทเรียนจากแผ่นดินไหวแม่ลาว" โดยสามารถพัฒนาวิธีประเมิน ลักษณะประเภทอาคารที่เสี่ยงภัยต่อแผ่นดินไหวสำหรับอาคารสาธารณสุขในประเทศไทย ซึ่ง โครงการนี้สามารถสร้างองค์ความรู้ใหม่ (Journal paper) และผลิตบุคลากรทางด้านวิศวกรรม แผ่นดินไหวของประเทศ สร้างประเด็นวิจัยใหม่เพื่อใช้ในการออกแบบผนังอาคารให้มีความ ปลอดภัยยิ่งขึ้นต่อไป
- 3. อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุม วิชาการ หนังสือ การจดสิทธิบัตร)

- ชีรพันธ์ อรธรรมรัตน์ ถอดบทเรียนอาคารสีแดงจากแรงแผ่นดินไหว วารสาร ประชาคมวิจัย ฉบับที่ 123 ปีที่ 21 เดือน กันยายน - ตุลาคม หน้าที่ : 10 2558
- Teraphan Ornthammarath and Pennung Warnitchai (2015) A note on ground motion recorded during Mw 6.1 Mae Lao (Northern Thailand) earthquake on 5 May 2014. the Tenth Pacific Conference on Earthquake Engineering (PCEE) in Sydney, Australia
- Teraphan Ornthammarath and Pennung Warnitchai (2015) Seismic Performance of Non-Engineered Residential Buildings in the 2014 Mae Lao Earthquake . the Tenth Pacific Conference on Earthquake Engineering (PCEE) in Sydney, Australia

Journal of Earthquake Engineering

ISSN: 1363-2469 (Print) 1559-808X (Online) Journal homepage: http://www.tandfonline.com/loi/ueqe20

Seismic Reconnaissance and Observed Damage after the Mw 6.8, 24 August 2016 Chauk (Central Myanmar) Earthquake

Saw Htwe Zaw, Teraphan Ornthammarath & Nakhorn Poovarodom

To cite this article: Saw Htwe Zaw, Teraphan Ornthammarath & Nakhorn Poovarodom (2017): Seismic Reconnaissance and Observed Damage after the Mw 6.8, 24 August 2016 Chauk (Central Myanmar) Earthquake, Journal of Earthquake Engineering, DOI: <u>10.1080/13632469.2017.1323050</u>

To link to this article: http://dx.doi.org/10.1080/13632469.2017.1323050

	Accepted author version posted online: 19 May 2017. Published online: 19 May 2017.
	Submit your article to this journal $oldsymbol{oldsymbol{\mathcal{G}}}$
hh	Article views: 58
a`	View related articles 🗗
CrossMark	View Crossmark data ☑

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ueqe20

Seismic Reconnaissance and Observed Damage after the Mw 6.8, 24 August 2016 Chauk (Central Myanmar) Earthquake

Saw Htwe Zawa, Teraphan Ornthammarathb, and Nakhorn Poovarodomc

^aMyanmar Earthquake Committee, Yangoon, Myanmar; ^bDepartment of Civil and Environmental Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, Thailand; ^cDepartment of Civil Engineering, Faculty of Engineering, Thammasat University

ABSTRACT

On 24 August 2016, Mw 6.8 earthquake occurred near Chauk, Central Myanmar. This earthquake caused a significant amount of damage over a very large number of historical monuments. After providing a general summary of the regional tectonic settings and seismicity, the observed ground motion has been discussed, and performance of structures in the epicentral area is addressed, focusing on the damage observed in both historical and recent constructions. The observed damage patterns and their extent are analyzed and interpreted in light of observed damage that was found. Lastly, seismic fragility curves of local buildings have been derived.

ARTICLE HISTORY

Received 12 November 2016 Accepted 13 April 2017

KEYWORDS

Myanmar Earthquake; Ancient Monument; Strong ground motion; Seismic Fragility Curve; Seismic reconnaissance

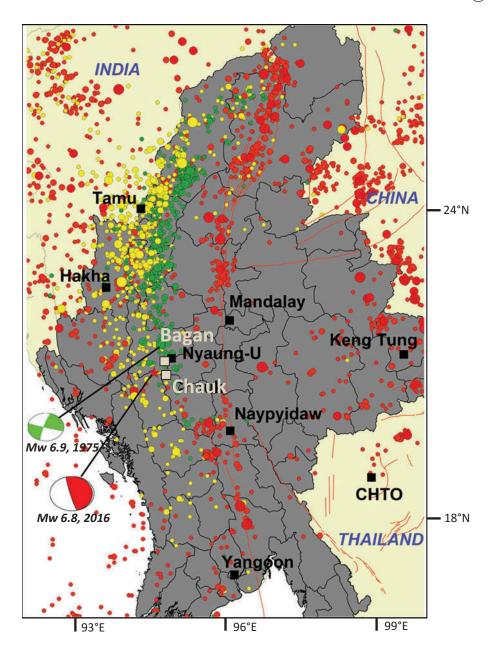
1. Overview of the 2016 Chauk Earthquake

Historically, Bagan is an ancient Myanmar capital city from 9th to 13th centuries. Over 10,000 Buddhist pagodas and temples had been constructed during that time. Based on available literatures, Bagan suffered damage from historical earthquakes since the 4th century [Tint Lwin Swe, 2015], but over 2,000 temples and pagodas still remain to date. The last earthquake that caused severe damage to historical structures in Bagan is the Mw 6.9 event on July 8, 1975. This tremor was located about 34 km northwest of Bagan with a hypocentral depth of 100 km. More than 70% of historical religious monuments were affected with at least 15 collapsed pagodas [Shwe Gaig Tha, 1976].

Forty years later, an Mw 6.8 earthquake occurred on August 24, 2016 at 10:34:54 UTC with 85 km focal depth, 26 km west to Chauk and 48 km southwest to Bagan, a rural town of 180,000 inhabitants in the Magway Division, Myanmar. This earthquake was widely felt throughout Myanmar, as well as people in high-rise buildings in Calcutta and Bangkok (at epicentral distance of 500 and 1,000 km, respectively). Soon after, the damaged reports inside Myanmar started to emerge, and they showed 3 casualties, severe damage to some historical structures, mud volcano and very few structural damages corresponding to Modified Mercalli Intensity (MMI) about VI in Chauk Township. Despite severe damage to ancient pagodas in Bagan, the observed damage for residential and government buildings in Bagan and Nyaung U are relatively less intense corresponding to MMI about V. The large numbers of buildings within epicentral area are still intact with minimal

structural damage. They were reported to be in service immediately after the earthquake. Most damaged buildings in Chauk seem to represent those buildings featuring seismic vulnerability and bad configurations.

Since local buildings in epicentral area are largely undamaged, and situation in epicentral area appeared to return to normal after 2 weeks after the main earthquake, a significant amount of damage occurred over a very large number of ancient monuments. In this context, a brief overview of the damage that was observed over the course of a 5day reconnaissance mission that took place 2 weeks after the earthquake is presented. After providing a general summary of the regional tectonic settings and seismicity, the observed ground motion is discussed, and the performance of heritage structures and local residential and government buildings is evaluated. Lastly, seismic fragility curves of local buildings have been derived based on observed damage.


Seismotectonic Settings and 2016 Chauk Earthquake

Myanmar lies in the part of Indo-Australian and Eurasian boundary convergence plate, including the Myanmar oblique subduction zone, Andaman thrust and Sunda arc, to the North West, west and south, respectively. The plate kinematics of the Indo-Australian and Eurasian region is, in a broad sense, the simple interaction of the convergence plates (Fig. 1). However, in detail, it is much more complex than that. Deformation rates across these plate boundaries are variable. The observed seismicity and seismotectonic settings of these plate boundaries clearly indicate the capability of producing large events, where the December 26, 2004 earthquake occurred. A convergence rate of 65-70 mm/year as a result of Australia moving toward South East Asia is reported by McCaffrey [1996].

The distribution of active deformation in Myanmar is partitioned between the right-lateral Sagaing fault slipping at 18 mm/year and the Burma subduction zone accommodating 20 mm/year of oblique convergence oriented N30° [Socquet et al., 2006]. The Sagaing fault is a major fault running from north to south in Myanmar and believed to be responsible for several earthquakes with magnitudes greater than 7 that occurred in the last century.

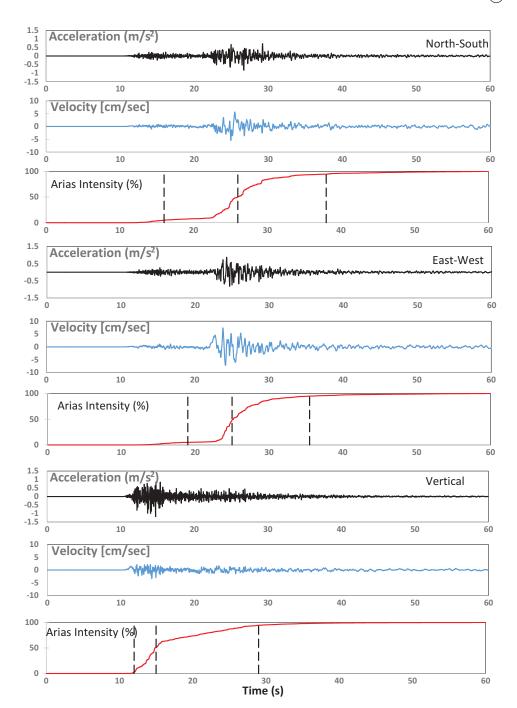
For Northern and Central Myanmar, an eastward-dipping Wadati-Benioff zone extends to about 180-km depth and the majority of intermediate-depth earthquakes have east-trending down-dip T axes and along-strike P axes [e.g., Fitch, 1970; Frohlich, 2006]. Therefore, these earthquakes occurred not along the plate boundary, but within the subducting Indian Plate, reflecting its negative buoyancy or slab pull. The maximum depth of intermediate-depth earthquakes becomes shallower when passing southward into southern Myanmar. Southward from 18 Latitude, no intermediate-depth earthquakes occur in the area between the Andaman Islands and Myanmar [e.g., Sinvhal et al., 1978]. Intermediate-depth earthquakes reappear farther south, as is clear from the existence of aftershocks of the 2004 Sumatra Andaman earthquake, which was a subduction earthquake (Fig. 1) [e.g., Engdahl et al., 2007].

Despite Bagan's historical earthquake damage, major earthquake that occurred in this region since 1900 is relatively low. The 1975 Mw 6.9 event is the biggest tremor that occurred near Bagan in the last 100 years and was the most damaging one until the 2016 event. Based on available seismicity, seismic hazard in and around Bagan is mainly controlled by intermediate and deep earthquakes. The 2016 event took place in an area previously characterized as moderate seismic hazard. The seismic hazard of Bago and Chuak has been estimated with estimated peak ground accelerations around 0.2-0.3 g for 475-year return periods at bedrock

Figure 1. Distribution of shallow (focal depth less than 50 km) (red circles), intermediate (focal depth between 50 and 100 km) (yellow circles), and deep earthquakes (focal depth greater than 100 km) (green circles) in Central Myanmar. The red star displays the location of Mw 6.8 on 24 August 2016. Recorded seismic stations are displayed in black rectangles. Active faults in this region are shown as red lines.

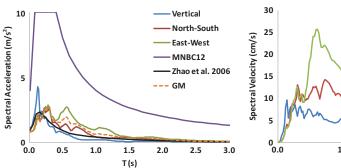
conditions [Shedlock *et al.*, 2000; Myo Thant *et al.*, 2012]. The 2016 event was located 50 km south of the 1975 event. The rupture length of the 2016 event would then occur on different rupture zone compared to the one in 1975. The fault plane solution of the 1975 event shows that it resulted from in-slab event with strike-slip focal mechanism [Storchak *et al.*, 2013]. In contrast, the fault plane solution of the 2016 tremor shows that it resulted from in-slab event

Downloaded by [Teraphan Ornthammarath] at 00:20 12 September 2017


with thrust focal mechanism. The strongest aftershocks occurred on August 24, 2016 at 10:57:16 UTC (mb = 4.5), located 10 km east to the mainshock with 92 km focal depth.

3. Observed Ground Motion

Ground motion records were obtained from Department of Meteorology and Hydrology (DMH) and Ministry of Transport and Communication (Fig. 2). The ground motion records from mainshock and aftershock were processed by applying the standard zeroorder correction. Each recorded ground motion is visually inspected for obvious errors or multiple earthquakes. From August 24, 2016 event, the nearest accelerograph station is in Nyaung U seismic station, located 48-km distance from 2016 epicenter. At this station, the observed Peak Ground Acceleration (PGA) in North-South (NS), East-West (EW), and Up-Down (UD) reaches 0.08, 0.08, and 0.12 g, respectively. Figure 2 displays the acceleration and velocity time histories and Arias Intensity at Nyaung U station. Arias intensity (AI) provides a measure of the total energy content of ground motion. The seismic station is located at the base of sand stone hill, and it is classified based on existing geological test as rock type.


The acceleration time histories contain two separated parts, which could be clearly identified. The initial part of the acceleration trace corresponds to high-frequency bodywave phases, which occurs between 10 and 16 s. And the long period waves begin to arrive between 22 and 40 s. It could be clearly seen that the vertical acceleration energy is concentrated only in the first part, where sixty percent of AI is contributed. In contrast, for horizontal acceleration, AI is rapidly evolving when the S-wave begins to arrive. Moreover, several differences could also be observed between horizontal and vertical axes in the velocity time history. Both horizontal components (NS and EW) contain a long period wave that increases up to 5 and 7 cm/s, respectively, while the vertical direction is 3 cm/s. Despite the similarity between both horizontal components, the significant duration, which is the interval between the 5 and 95% percentage of AI (the first and the third dash lines, respectively), seems to indicate different energy releases over time. A short significant duration of the EW component is accumulated in 16 s while that of the NS component is about 22 s.

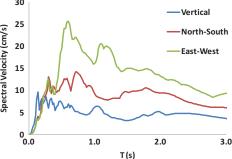

Figure 3 also shows the spectral acceleration at Nyaung U station, and at short vibration periods, there is pronounced difference between vertical and horizontal accelerations due to the effect of body wave. However, for moderate periods (0.5 < T < 1.0 s), the horizontal spectra contain large energy with largest observed spectral ordinates almost 0.3 g. The same level of damage to similar historical structures in this region due to similar level of seismic intensities has been observed in the past [Ornthammarath, 2013], which could explain the severe damage in moderate-to-large ancient monuments in Bagan. Based on comparison of spectral acceleration and velocity, spectra in EW component is relatively higher than NS component spectra in moderate periods, which is due to the fact that the energy concentrated in a shorter duration is observed in the EW component. Figure 3 also compares the horizontal components of the recorded spectral acceleration, the predicted spectra of deep in-slab event based on Zhao et al. [2006; Z06], and the design spectra for a return period of 475 years as stated in the Myanmar National Building Code (MNBC12). The design spectrum is for rock type corresponding to site class B with average shear wave velocity of V_{S30} from 760 to 1500 m/s, and the spectra at Nyaung U station did not exceed the

Figure 2. Acceleration and velocity time histories and Arias Intensity percentage over time observed at Nyaung U seismic station from Mw 6.8 August 24, 2016 event with an epicentral distance of 48 km.

MNBC12 spectra. Observed horizontal spectra ordinates at the Nyaung U station are similar to those predicted by Z06 in short period; however, the recorded spectral are larger than those predicted by Z06 at moderate periods. This moderate period content

Figure 3. Response acceleration and velocity observed at Nyaung U seismic station from Mw 6.8 August 24, 2016 event with an epicentral distance of 48 km. GM stands for the geometric mean of the two horizontal components.

is seen in both the recorded horizontal components of motion; however, it could not be observed from aftershock spectrum, which could partly explain that it is not due to site effect. In addition, the characteristic of vertical ground motion seems to be a strong function of periods with short periods exhibiting higher ratio than long periods. The observed vertical to horizontal (V/H) ratios varies from 1 to 2 between 0.01 and 0.2 s. This confirms that the standard engineering rule-of-thumb of assuming V/H = 2/3 when estimating vertical ground motion for design at short periods should not be considered for near source region of large earthquake with deep focus.

4. Field Survey of Ancient Monuments

4.1. Structural System of Ancient Monuments in Bagan

An overall description of monuments in Bagan can be classified generally to 2 types. The first one is the stupa-style solid structures such as Bupaya and Shwezigon Pagodas, which is a mound-like or dome-shaped structure containing relics. The base of stupas is made either of bricks or sandstone to support a hemispherical dome with a parasol placed on top. Its function is considered as a site of worship, rituals, and ceremonies. Their presence eventually attracted other constructions including monasteries. In contrast to the stupas, the second type is the gu-style hollow temple, which is a structural masonry arch, which transfers vertical loads laterally along the arch to the abutments at each end. The base of temple is generally made of bricks as a very large square solid core to support superstructure weight. A single-story temple is widely observed such as Ananda temple, but multistory temples are also common such as Thatbyinnyu, Htilominlo, and Sulamani Temples. The use of regularly dressed well squared and graded sandstone blocks was for quoins and plinths. A majority of these structures are made with bricks and earthen plaster, and they are massive without earthquake resistance design constructed from the 9th to 13th centuries.

Although most temples have rectangular plan shapes, some of them, such as Sularmani or Hitominlo temples, exhibit vertical irregularities due to the existence of several roof levels located at different heights, which cover different liturgical spaces. Moreover, both the organization and the height of the interior spaces of temples are such that it gives the idea of a dome shape despite the fact it is rectangular. It is also noted that some of the specific

architectural features of temples can play a significant role in their behavior under earth-quakes. For example, multistory temples with large liturgical space on the upper level can suddenly decrease the lateral stiffness along the height, such as Sularmani temple. However, some multistory temples with good symmetrical design on the upper level by putting rows of solid cores separating aisles to the central core can still maintain the lateral stiffness along the height while creating ritual space to the pilgrims such as Thatbyinnyu temple.

Heavy damage or collapse of top spire or bell is a typical damage pattern for both pagoda and temples. This part of ancient monuments can be significantly damaged even on low-intensity earthquakes due to the dynamic amplification of the ground motion as a result of historical monument characteristics. The collapse of top bell can also be the source of additional damage to other structural parts. This situation was observed in Sularmani temple. In general, most monuments had been retrofitted following earthquake damage in 1975 Mw 6.9 event; however, observed damage during earthquake reconnaissance indicated same patterns of damage and lack of proper engineering or seismic retrofitting details, which increase seismic vulnerability to some ancient heritages.

4.2. Observed Damage of Heritage Structures

The earthquake caused extensive damages to Bagan historical monuments, but the effects were seen to vary for each structure. Given Bagan's past seismic history, the damage that occurred to historical monuments during the 2016 event is highly expected. The field survey had been carried out by Myanmar Earthquake Committee (MEC) with staffs from Department of Archeology. Over 270 monuments had been identified with different degrees of damage during the period from 3rd to 6th September, 2016. The assessment is based on damage level of primary structural part (such as major load bearing system and main masonry arches) and secondary structural system (such as local masonry arches), and the results were identified as red tag for severely damaged to primary and secondary structural system, yellow tag for moderately damage to primary and secondary structural system, and green tag for lightly damaged for primary and secondary structural system with no immediate danger of collapse and little secondary impact from collapse. According to survey results, the statistical data were tabulated in Table 2, which represented the damage situation that was found in order to facilitate the recovery and retrofit process. In addition, the survey monument is further classified to three sizes depending on the base width. For small monuments, these represent monuments with base width less than 12 m. For moderate monument, the base width is generally between 12 and 25 m. Finally, for large monuments, the base width is greater than 25 m.

From Table 1, it is quite clear that the heaviest damaged historical monuments are, as expected, large and medium monuments (base width greater than 12 m). Out of 2,000 ancient monuments in Bagan, 50 of them (2.5%) are classified as heavy damage (red class). In contrast to 1975 event, there is no report of collapsed pagoda from 2016 Chuak earthquake. In addition, Fig. 4 displays spatial distribution of damaged pagoda (red, yellow, and green tags), and it could be noticed that the distribution of red and yellow tag pagodas in Old Bagan area uniformly distributed and extend entirely across the city, from Irrawaddy River to the north into the flat plain in the south. Plotting the tags on Fig. 4 is also overlaid by ShakeMap of the August 24, 2016 mainshock, and the MMI V has been assigned to the entire Bagan and Nyaung U area. In addition, microtremor analysis

Table 1. Damage	statistics o	f damaged	ancient	monuments in Ba	gan.

	Red	Yellow	Green	Total
Large	18	31	21	70
Medium	18	43	64	125
Small	14	22	39	75
Total	50	96	124	270

has been performed in Bagan. The result indicated that the average shear wave velocities from surface to 30-m depth were about soil type D with average shear wave velocity of $V_{\rm S30}$ about 250 m/s.

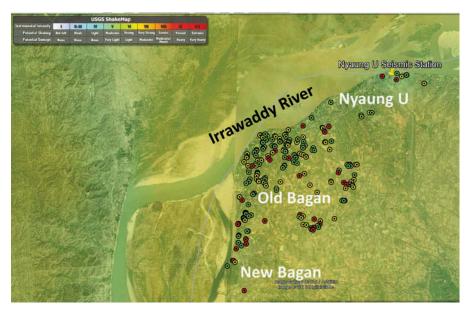
In addition to damage statistics of ancient monuments, damage description, and basic information of six important monuments visited during the earthquake reconnaissance provided in Table 2. The information included name, construction period, structural type, height, number of stories, etc. To compliment the data presented in Table 2, additional details are provided in the following with respect to the damages that were observed in some of these monuments.

Ancient monuments that did not suffer extensive damage generally exhibited a symmetrical pattern both in horizontal and vertical planes with good-quality construction material and good maintenance from local authorities. Shwezigon is a very large solid stupa made from sandstone in contrast to other monuments generally made from brick masonry. It was constructed during the middle of 11th century. This stupa has a square base of 55 m and height of 53 m. In the 1975 earthquake, considerable damage was mainly concentrated at the spire and dome. In contrast, no observed damage is reported from the 2016 event. The proper symmetry both in horizontal and vertical directions with height per base width ratio (around 1.0) might partly explain low observed damaged of this monument.

The Ananda temple (see Fig. 5) has a large, single-story temple with four vestibules and long corridors and is an example of a structure with moderate damage. It was first constructed in 1086 AD making it one of the oldest monuments in Bagan. The temple has symmetrical planes in horizontal and vertical directions. A large solid core, approximately 30 by 30 m, in the middle is responsible for the load bearing of the superstructure, which is about 51-m height. Observed damage was the damage of the top part of main bell and in one of the approach corridors from the temple's main entrance. Minimum damage has been observed in the main structure system. It is worth mentioning that similar a damage pattern has been observed from both 1975 and 2016 events.

The other moderate damage is Thatbyinnyu temple, Fig. 6. It is a four-storied temple with a large solid core constructed in 1144 AD. The height of this temple is 61 m and is considered as the highest historical monument in Bagan. The solid core, approximately 44 by 44 m, is designed to bear the loads from the top structural part. All four sides of the walls at the base of the "Kundaung," the 3rd story, were slanted outward with large cracks. The arched halls below those walls were also damaged with peeling of plasters and stuccos and with large cracks at the crown of the arched roof. In some parts, a small portion of bricks on the roof were even pushed down about 5–7 cm. Similar damage patterns were also found in Dhammayangyi and Htilominlo temples. Toppled spire was found on the upper level of Htilominlo temple, causing additional damages to other parts. Its retrofitting during 1990s could be observed with a few numbers of longitudinal bars without lateral ties; however, it did not seem to be effective to prevent damage from future earthquake. Mostly, the structure at ground floor was basically unharmed. The

(Continued)


ι of surveyed ancient monuments.
ancient
urveyed
on of si
formatic
Basic in
Table 2. Basic information

Iable 2. Basic Information of Surveyed ancient monuments. Name Shwezigon	surveyed ancient monuments. Shwezigon	Ananda	Dhammayangyi
Damage State	Green	Yellow	Yellow
Structural type	Stupa	Arch and masonry solid core load bearing system	Arch and masonry solid core load bearing system
Construction Period	11th century	12th century	12th century
Height (m)	53	51	60 (Approximated)
Ground floor solid core (m)	55	27	28.7
Height/Solid Core Width ratio	0.96 (53/55)	1.9 (51/27)	2 (60/28.7)
Total Base Width (m)	55	06	56
Number of stories	_	-	1
Before 2016 Mw 6.8			
	[wg os]	[we col	
After 2016 Mw 6.8	CHARLES OF THE PARTY OF THE PAR		

Downloaded by [Teraphan Ornthammarath] at 00:20 12 September 2017

	_	
:	7	
	ζ	
	٥	
	=	
	-	
	ontini	
•	-	
	+	
	c	
	7	
	•	
١	L	
•	_	
	_	
ı	•	
	а	
	_	
۰	מ	
	π	
ı	-	
ľ		

Table 2. (Continued).			
Name	Thatbyinnyu	Htilominlo	Sularmani
Damage State Structural type Construction Period Height (m) Ground floor solid core (m) Height/Solid Core Width ratio Total Base Width (m) Number of stories	Yellow Arch and masonry solid core load-bearing system 12th century 61 44 1.4 (61/44) 55	Yellow Yellow Red Arch and masonry solid core load-bearing system 12th can do masonry solid core load-bearing system 12th century 12th century 46 55 44 37 34 14 (61/44) 1.3 (46/37) 51 55 54 4 2	Red Arch and masonry solid core load-bearing system 12th century 55 34 1.6 (55/34) 2
Before 2016 Mw 6.8			
After 2016 Mw 6.8			

Figure 4. Spatial distribution of damaged pagodas (green, yellow, and red tag) from Mw 6.8 earth-quake on August 24, 2016 following structural assessment by Myanmar Earthquake Committee (MEC). Nyaung U seismic station is located at the top right corner.

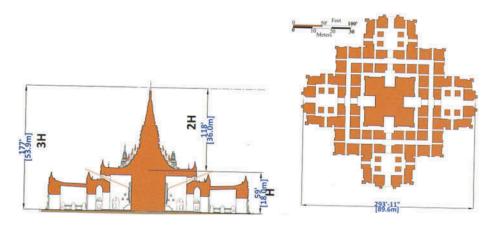
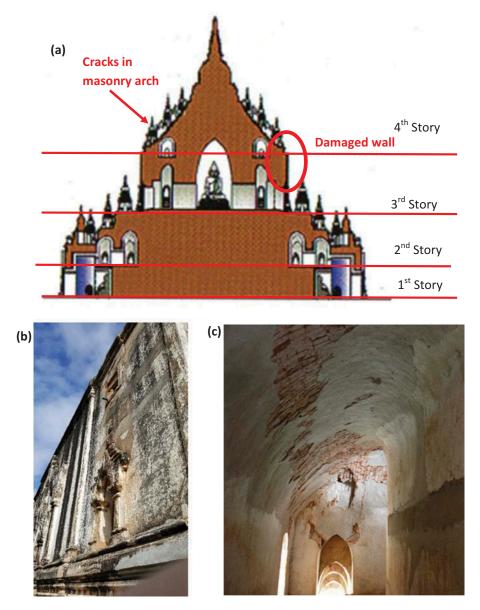
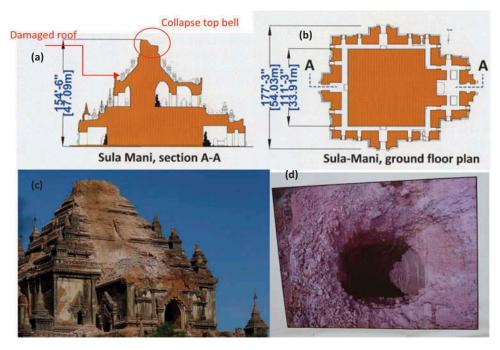



Figure 5. Ananda temple cross-section and ground floor plan damages to Ananda temple.


intervention works of reinforced concrete corner ties installed after 1975 earthquake were intact and had worked very well noticeably.

Among the visited ancient monuments, Sularmani is the most severely damaged one due to the collapse of the top bell and extensive damage to the roof in the second story, Fig. 7. Since the construction system of this structure was seen to be similar to that of Thatbyinnyu and Htilominlo Temples, the level of observed damage was surprisingly high. The difference between observed damage of these three temples might be due to the fact that the vertical irregularity of Sularmani temple, which differs from the more regular shape of Thatbyinnyu temple. Additional factor that might be able to explain the differences in observed damage is the

Figure 6. (a) Cross-section of Thatbyinnyu temple. Damages to Thatbyinnyu temple including, (b) observed wall damage in the third story due to high acceleration on top part, and (c) concentration of cracking at the central part of masonry arch in the fourth story.

slenderness ratio of Sularmani Temple (height per width of solid core) is about 1.6 (55/34), which differs from the slenderness ratio of other monuments (e.g. 1.4 for Thatbyinnyu temple and 1.3 for Htilominlo temple). The collapse of the top part seems to have similar damage patterns as have been observed in the previous Mw 6.8 in 1975. Based on a local interview, the upper part "Kundaung" was reinstalled in 1990s with reinforced concrete and that upper part fell down on the roof of the upper terrace making a large hole at the top. The viewing stair and railing walls were also damaged significantly as a consequence. However, the base of the Pagoda

Figure 7. Damages to Sularmani pagoda including (a) Sularmani cross-section, (b) Sularmani ground floor plan, (c) collapse of top bell, and (d) severe damage to the eastern side roof at the second story due to falling of the top part. Soe Zeya Tun/Reuters.

and structure below the upper terrace were intact and strong despite the large impact of falling upper part. At the time of the reconnaissance survey, the team was not able to get inside only this temple due to the ongoing restoration operation.

For other heavy damage monuments, the damage on the upper level found on the arches was significant and, at the time of the reconnaissance mission, an emergency retrofit of such masonry arches by replacing new bricks to the damaged elements was also in place to prevent their collapse. It could be understandable that these arches had been retrofitted before due to 1975 earthquake since new layers of brick tend to have thick mortar comparing to thin layers of mortar during Bagan's period. The renovation and rebuilding efforts made during 1990s did not seem to be effective to prevent it from future earthquake damage.

5. Observed Structural and Nonstructural Damage of Buildings

The damages of buildings and nonmonumental structures were also assessed visually in Chauk, Bagan, and Nyaung U. A detailed survey had been done by MEC emphasizing on schools, hospitals, and administrative institutions based on the damage report. Detailed information was collected from various sources and personal interviews. In general, small structural damage was found in Chauk, whereas in most structures in Bagan and Nyaung U, the damage was insignificant or none. Most damaged buildings in Chauk seem to represent those buildings featuring nonengineered design, bad configurations, or poor maintenance. It is worthwhile to mention also that these building types are commonly found in Central Myanmar. Predominant structural system used for buildings in Bagan,

Downloaded by [Teraphan Ornthammarath] at 00:20 12 September 2017

Nyaung U, and Chauk consists of the following four categories: reinforced concrete building, timber frame, unreinforced masonry, and bamboo frame.

5.1. Low-rise Reinforced Concrete Building

This type of building is quite common for government and commercial occupancy classes. Most of them are two stories or less. The reinforced concrete frame is the main lateral force resisting system, and column cross sections are between 300 and 350 mm. Unreinforced Masonry (URM) infill at the ground story is widely observed to contribute significantly to reducing the vertical and torsional irregularities. The contribution of the URM infill panels leads to less seismic demand on the components in the structural system. Construction materials might be low in quality since river stone had been used as a concrete mixing material. No significant structural damage was noticed during the reconnaissance survey; however, nonstructural damage is observed in few buildings.

URM walls, generally single-layer 100-mm thick (including 15-20 mm cement plastering on each face), are extensively used as nonstructural partitions, with a small number of dowel bars connecting the panels and the boundary reinforced concrete (RC) frames. Bricks for infill panels and mortar are of low quality since they are used as nonstructural elements. Both interior and exterior infills are generally made up of brick masonry (6 cm thick). Diagonal cracks in nonload-bearing unreinforced masonry walls occur in some buildings (Fig. 8). The damage pattern observed in unreinforced masonry walls in RC frame buildings was in-plane shear cracking, which is characterized by diagonal cracks. Inplane shear cracking occurs when the masonry tensile strength is exceeded due to the effect of combined shear and gravity loads. This type of damage was observed at the ground floor level of three-story building in Chauk.

5.2. Timber frame

Timber columns, beams, and slabs are the loading members to resist both the lateral and gravity loads. This structural form is used for one- to two-story building heights, and its occupancy is varied from single-story commercial to residential and office buildings. Infill panels are generally placed inside the secondary timber frame with typical dimension of each panel about 1 m by 1 m. Partial out-of-plane of brick noggin walls were found, but full collapse of entire walls was not reported. One example was a partial collapse of infill wall concentrated at upper level in local government offices in Chauk, as shown in Fig. 9. The building had timber floors and a timber truss roof. The wall parapets at upper level are also felt down. This out-of-plane damage was mainly observed in the transverse direction of the buildings. In addition, timber buildings with mat infill wall are also widely found, which is mainly used for residential purpose and is less likely to be damaged since it is light and more flexible (Fig. 10). However, older buildings of this type are vulnerable, as the quality of wood has deteriorated over time. No structural damage has been reported for this type of structure in epicentral area.

Figure 8. Light damage observed in reinforced concrete building in Chauk. (a) The vertical crack line occurred at the joint between main structure and concrete shaft causing pounding against each other during the earthquake and (b) observed in-plane shear cracking in URM infill. Depending on the wall geometry, in particular, the height/length aspect ratio, this URM infill is classified as flexural shear wall subjected to shear force and bending moment.

Figure 9. Timber frame with brick noggin is widely observed in Bagan and Chauk without any structural damage; however, nonstructural failures such as out-of-plane failure of brick wall and ceiling were observed in Chauk.

5.3. Unreinforced Masonry (URM)

Brick load-bearing structural system is mostly built during British colony period. Most of them are two-story or less. In Chauk, only light damage could be observed to URM buildings. The most importantly observed damages for this kind of structure are the cracking developed in the main façade, namely around the first store windows and openings, and the extensive shear cracking in the second story, which indicated that the façade was in an initial stage of failure (Fig. 11). Very few observed damage for this kind of

Figure 10. Wooden frame with mat infills is widely used in Chauk and Bagan without any structural and nonstructural damage since it is light and more flexible. Most of these kinds of structures are usually one- or two-story buildings.

Figure 11. Moderate damage to unreinforced brick masonry building built during British colony era. The extensive shear cracking in the second story indicated that the façade was in an initial stage of failure.

structure in Bagan and Nyaung U. However, there was a report of one collapsed URM building in Pakoku (around 70 km epicentral distance). These types of buildings are the most vulnerable to earthquakes in the epicentral area; however, URM buildings with good maintenance seem to perform well with minimal damage.

5.4. Bamboo

Bamboo building is considered to be the largest building stock in the epicentral region. Most of them are one-story building and are generally used for residential purpose with few of them serving as local schools. The bamboo-framed houses, with bamboo mat walls and floors and thatched roofing incorporate key points of earthquake-resistant construction, and are less likely to be damaged since they are light and more flexible. No damage has been reported for this type of structure in the epicentral area.

6. Quantification of Observed Damage and Seismic Fragility Curves

Based on the field observations, it is possible to quantify the observed damage by type and class of building in the vicinity of the most affected villages. For quantification of damage, we employed the European Macroseismic Scale [EMS; Grünthal 1998]. The EMS scale provides damage grade charts separately for masonry and RC structures. Damage grades range between 1 and 5, with the former representing negligible to slight damage and the latter representing total collapse or destruction.

According to the field observations in Chauk, a few of the URM buildings (Class A according to EMS) were moderately damaged (Grade 2 according to EMS), most of the RC buildings (Class C according to EMS) were moderately damaged (Grade 1 according to EMS). However, few RC buildings have moderate nonstructural damage (Grade 2 according to EMS) due to the presence of vulnerable construction such as pounding effect (Class B according to EMS), and most of the timber buildings with brick noggin and mat infill wall (Class C according to EMS) were negligible to slight damaged (Grade 1 according to EMS). Comparing the observed damage with the definitions given in the EMS intensity scale, it is observed that EMS Intensity VI (slightly damaging) can be assigned to Chauk for the August 2016 tremor (Fig. 12). The EMS scale is somewhat similar to the MMI scale used in the United States. Both scales have 12 intensity degrees expressed in Arabic numerals. The principal difference between EMS and MMI is that it is more clearly written and structured in such a way as to make it easier for different investigators to obtain consistent results.

According to survey results, almost 15,000 buildings were investigated. Only light damage (green tag) could be observed to very few buildings in Chauk, and these buildings could be immediately used without any structural retrofitting with some nonstructural damage. No observed damage was reported in Bagan and Nyaung U. This might partly be explained by the deep focus of mainshock, which produced lower ground motion compared to same types of structures that have been damaged in the previous Mw 6.8 Tarlay earthquake on March 24, 2011 [Ruangrassamee et al., 2012; Ornthammarath, 2013]. The statistical building damage data are shown in Table 3 with each damage level. Seismic fragility curves will be developed for light damage buildings and compared among different structural systems with observed MMI.

The building damage probabilities for light damage level were calculated and shown against MMI. Linear regression analysis was performed to develop the fragility function. The cumulative probability *P* of occurrence of damage is given either by Eq. (1) or by (2):

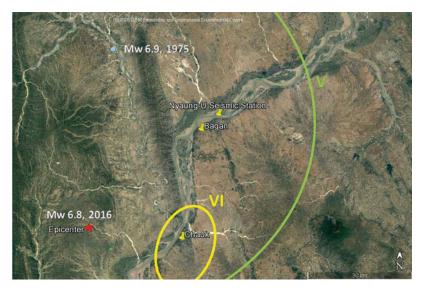


Figure 12. Isoseismal map for the Mw 6.8 Chauk earthquake of August 24, 2016, 10:34 UTC. Contour intensity lines had been drawn according to observed damage from this field survey.

Table 3. Damage statistics of damaged structures in Bagan, Nyaung U, and Chauk.

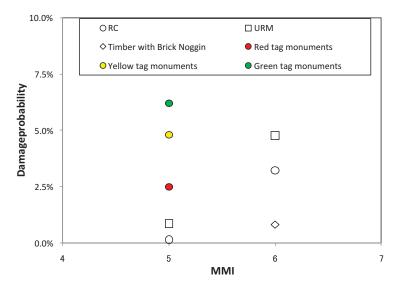
	(JRM	RC b	uildings		er frame ick Noggin		er frame mat infill	Ba	mboo
	Green	No damage	Green	No damage	Green	No damage	Green	No damage	Green	No damage
Chauk Bagan & Nyaung U	4	80 161	1	61 676	5 0	617 1281	0	1,151 2,202	0	5,036 3,559

$$P(x) = \phi \left[\frac{x - \mu}{\sigma} \right] \tag{1}$$

$$P(x) = \phi \left[\frac{\ln(x) - \mu'}{\sigma'} \right] \tag{2}$$

where Ø represents the standardized normal distribution function, x stands for MMI, and μ and $\sigma(\mu')$ and σ') represent the mean and standard deviation of x (ln x), respectively. Two statistical parameters of fragility function, μ and σ (μ ' and σ '), are obtained by plotting x (ln x) against the inverse of Ø on normal or lognormal probability papers and by performing least-square fitting of this plot. Consequently, two parameters are obtained by taking the intercept (μ or μ ') and the angular coefficient (σ or σ ') in Eq. (3) or (4):

$$x = \sigma \phi^{-1} + \mu \tag{3}$$


$$ln(x) = \sigma'\phi^{-1} + \mu' \tag{4}$$

Throughout the regression analysis, the parameters are determined to obtain the best fit (in the least squares sense) of fragility curves with respect to MMI. The statistical parameters that were derived and used to construct the seismic fragility curve in this study are summarized in Table 4. Due to limited damage in Bagan and Nyaung U, only damage statistic of 2 structural types could be able to develop seismic fragility curve, i.e, URM and RC buildings. Figure 13 illustrates the fragility curves for URM and RC buildings constructed in epicentral area. In addition, damage probabilities of three damage levels of historical monuments in Bagan (Table 1) were also shown. The main findings of this study and their applicability are summarized as below.

- At slightly damaging ground motion level (MMI VI), the results show a better resistant performance of timber with brick noggin over RC and URM buildings.
- Only poorly maintained URM buildings and RC buildings with the presence of vulnerable construction such as pounding effect could be damaged.
- Historical monuments in Bagan performed badly compared to other existing structures even at low ground motion intensities (MMI V, PGA 0.08 g). Around 6% monuments were classified as light damage, whereas 5% and 2.5% ancient monuments suffered moderate and heavy damage, respectively.

Table 4. Summary of parameters for constructing seismic fragility curves based on observed damage from the 2016 Mw 6.8 Chauk earthquake.

	μ′	σ'
RC	2.0917	0.1622
URM	2.2164	0.2545

Figure 13. Damage probability of light damage level for different existing structures and monuments against MMI for Bagan, Nyaung U, and Chauk with different building types.

7. Conclusion

Based on available seismotectonic information and instrumental data, a summary of the 24 August 2016 Mw 6.8 Chauk earthquake has been presented. The earthquake occurred along an eastward-dipping Wadati-Benioff zone at 85 km focal depth. Observed strong ground motion has been recorded in Nyaung U seismic stations at 48 km epicentral distance. In addition, the observed earthquake damage to historical monuments and local buildings stocks has been discussed. The majority of retrofitting work to ancient monuments after 1975 tremor did not improve overall performance to resist a future earthquake, and same pattern of damage could be widely observed. From surveys and damage reports, minimum damage has been identified in Chauk corresponding to MMI VI, while patterns of damage states are similar to previous moderate earthquakes in this region. Lastly, seismic fragility curves of local buildings have been derived based on survey damage.

Acknowledgments

The strong ground motion data and related information provided by the DMH are highly appreciated. The authors would like to extend their gratitude to local authorities of Department of Archeology, Myanmar for their support during the field survey. The second author is supported by the Thailand Research Fund, Office of the Higher Education Commission, and Faculty of Engineering, Mahidol University under contract No.TRG5780243 and MRG5980243, and it is gratefully acknowledged. The earthquake reconnaissance team was organized by Regional Integrated Multi Hazard Early Warning System with support from US Agency for International Development (USAID) program. The authors are grateful to two anonymous reviewers for their constructive comments that enhanced the quality of the paper.

References

- Engdahl, R. E., Villasenor, A., Deshon, R. H., and Thurber, C. H. [2007] "Teleseismic relocation and assessment of seismicity (1918-2005) in the region of the 2004 MW 9.0 Sumatra-Andaman and 2005 MW 8.6 Nias Island Great Earthquakes," Bulletin of the Seismological Society of America 97 (1A), S43–S61
- Fitch, T. J., [1970] "Earthquake mechanisms in the Himalayan, Burmese, and Andaman regions and continental tectonics in central Asia," Journal of Geophysical Research 75, 2699-2709.
- Frohlich, C., Deep Earthquakes, Cambridge Univ. Press, Cambridge, [2006] McCaffrey R [1996] Slip partitioning at convergent plate boundaries of SE Asia. In: Hall R, Blundell DJ (eds) Tectonic evolution of Southeast Asia, vol. 106. Geological Society London Special Publications, pp. 3–18.
- Myo Thant. [2012] Seismic Sources Identification and Characterization for Myanmar: Towards Updating the Probabilistic Seismic Hazard Maps. AGU Fall meeting San Francisco, 14-18 December 2015
- Ornthammarath, T. [2013] "A note on the strong ground motion recorded during the M_W 6.8 earthquake in Myanmar on 24 March 2011," Bulletin of Earthquake Engineering 11, 241-254.
- Ruangrassamee, A., Ornthammarath, T., and Lukkunaprasit, P., [2012]. Damage due to 24 March 2011 M6.8 Tarlay earthquake in Northern Thailand, in Proceeding of the 15th World Conference in Earthquake Engineering (15WCEE), 24-28 September, 2012, Lisbon, Portugal.
- Scordilis, E. M. [2006] "Empirical global relations converting MS and mb to moment magnitude," Journal of Seismology 10, 225-236
- Sinvhal, H., Khattri, K. N., Rai, K., and Gaur, V. K. [1978] "Neo-tectonics and timespace seismicity of the Andaman-Nicobar region," Bulletin of the Seismological Society of America 68, 399-409.

- Shwe Gaing Tha. [1976] Historical Earthquakes and the Bagan Earthquake, Sanay Literature Group, Yangon, Myanmar (in Burmese).
- Shedlock, K. M., Giardini, D., Grünthal, G., and Zhang, P. [2000] "The GSHAP global seismic hazard map," Seismological Research Letters 71(6), 679–689.
- Socquet, A., Vigny, C., Chamot-Rooke, N., Simons, W., Rangin, C., and Ambrosius, B. [2006] "India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS," *Journal of Geophysical Research* 111, B05406. doi:10.1029/2005JB003877.
- Storchak, D. A., Di Giacomo, D., Bondár, I., Engdahl, E. R., Harris, J., Lee, W. H. K., Villaseñor, A., and Bormann, P. [2013] "Public release of the ISC-GEM global instrumental earthquake catalogue (1900–2009)," Seismological Research Letters 84(5), 810–815, doi: 10.1785/0220130034.
- Tint Lwin Swe. [2015] Historical Earthquakes of Myanmar 12th Annual Meeting Asia Ocean Geosciences Society, 2th to 7th August 2015, Singapore.
- Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H., Somerville, P., Fukushima, Y., and Fukushima, Y. [2006] "Attenuation relations of strong ground motion in Japan using site classification based on predominant period," Bulletin of the Seismological Society of America 96(3), 898–913.