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                           เอกสารแนบหมายเลข 2 
Abstract  

This research developed a rapid and accurate method based on the use of rapid 
visco analyzer (RVA) for predicting the storage time of rice grain. Freshly harvested rice 
samples, five waxy and five non-waxy rice grains, were stored in paddy form at ambient 
room temperature (28-32 °C) for one year. During storage, the RVA profiles of the rice 
samples were recorded every month. In addition, physicochemical properties, such as 
alkali spreading value (ASV), amylose content, gel consistency, stickiness and 
hardness, were measured. Chemometric models including partial least squares (PLS) 
regression and supervised self-organizing map (supervised SOM) were employed for 
predicting the storage time based on the use of the RVA profiles, the physicochemical 
parameters and both of the data sets simultaneously. In most cases, PLS outperformed 
supervised SOM. The PLS models established using the RVA profiles provided the best 
predictive results with root mean square error of cross validation (RMSECV) = 1.2, 
cross-validated explained variance (Q2) = 0.90 and the ratio of prediction to deviation 
(RPD) = 3.2. Based on partial least squares-variable influence on projection (PLS-VIP), 
pasting properties, including peak viscosity (PV) and final viscosity (FV), were identified 
as the parameters having strong influence on the prediction models. The developed 
method detecting the rheological change of the stored rice samples was simple and 
could be performed quickly with no additional chemicals required. 
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Rice grain freshness measurement using rapid visco analyzer and chemometrics 

1. Introduction 

Rice is an important food for people in many countries. Many Asians consume 

rice as an essential part of everyday meals. However, in many parts of the tropics, rice 

can only be harvested once a year due to the environmental condition. Also, many rice 

cultivars are photosensitive plants meaning that they have a limited growing season 

during the year. Therefore, rice grain should be stored in a barn or warehouse after 

harvested. During storage, rice properties such as head rice yield, pasting, volume 

expansion and water adsorption could change (Keawpeng and Venkatachalam 2015). 

This causes alternation in the cooking quality of rice, in particular, its flavor and texture. 

For example, cooked rice prepared from aged rice has a harder texture (Kanlayakrit and 

Maweang 2013) and the ratios of stickiness to hardness are low in comparison to those 

of fresh rice grains (Keawpeng et al. 2015). Often, the properties of rice as a raw 

material play an important role in guaranteeing desirable product quality during 

manufacturing (Fang et al. 2015). Rice grain freshness, especially, plays a key role in 

product quality. Commercially, knowing the exact time that the rice has been stored is 

required for evaluating the price of the rice products. 

Rice grain freshness can be estimated by measuring the changes in some 

related chemical and physical properties. Fats, such as neutral lipids, bran lipids and 

phospholipids, are among the important components of rice grains (Srikaeo and Panya 

2013). After harvest, these fats, in particular the neutral lipids, start to decompose, 

resulting in free fatty acids. When the ageing process prolongs, an amount of the fatty 

acids could be obtained. Therefore, the storage time of rice grain could be estimated by 
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measuring the amount of these fatty acids using an acid-base indicator, such as 

bromothymol blue (Srikaeo et al. 2013). Chuang et al. (2014) demonstrated the use of 

near infrared (NIR) technique combined with independent component analysis (ICA) for 

evaluating rice grain freshness as quantified by pH values. Although the acidity 

detection method is simple, the fatty acids in the rice grains next decompose into 

hexanal. With the fatty acids decreasing after prolonged storage, this could confuse the 

test results. Besides the measurement of the rice acidity, peroxidase, one of the 

important enzymes involved in reactive-oxygen species scavenging in the rice seed, can 

also be used as an indicator for estimating rice freshness (Srikaeo et al. 2013). Since 

the peroxidase enzyme deteriorates during storage, it is possible to estimate the storage 

time by determining the activity of this enzyme (Chen and Chen 2003). The methods 

that rely on measuring the presence of the end products of the deteriorating chemicals 

in rice may not actually reflect the status of rice quality, in particular, its texture quality. 

Therefore, it was recommended that some other techniques, such as texture analysis or 

human sensory tests, should be performed in combination when analyzing rice grain 

freshness (Srikaeo et al. 2013). Recently, colorimetric sensor array was used to 

discriminate the rice samples with different storage times based on linear discriminate 

analysis (LDA) model (Guan et al. 2017). It was possible to distinguish the difference 

between the rice samples with the storage ages of 6 and 12 months. 

Rapid visco analyzer (RVA) is a rheological testing tool that continuously 

measures viscosity of a viscous sample under different applied temperatures (Tong et 

al. 2014). RVA has been utilized for a variety of agricultural products, such as rice 

(Vongsawasdi et al. 2009), soya (Kaur et al. 2011) and potato (Leivas et al. 2013). 
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Kanlayakrit et al. (2013) used RVA for observing the changes in paddy and milled rice 

stored in different storage conditions. In rice stored for several months, a decreasing 

trend in hydration and viscosity could be noticed (Teo et al. 2000). Zhou et al. (2002) 

also observed the changes in several pasting properties during storage, including, the 

increases in grain hardness and peak viscosity. Although the pasting parameters help 

reveal the characteristics of the rice texture, a methodology to interpret the RVA profiles 

in a meaningful way to reflect rice grain freshness has not been established. 

Chemometrics is a multivariate analysis that utilizes mathematics and statistics to 

extract the relevant information from chemical data (Brereton 2003). Chemometrics can 

be useful in a variety of situations, including data exploration, experimental design, 

pattern recognition/classification and multivariate calibration (Brereton  2009). 

Multivariate calibration methods, such as partial least squares (PLS) regression (Geladi 

and Kowalski 1986) and supervised self-organizing map (supervised SOM) 

(Kittiwachana et al. 2013) can be used to relate the values of predictive data to the 

studied response. It has been proven that PLS is among the most powerful multivariate 

linear calibrations (Funsueb et al. 2016). In contrast, supervised SOM is a nonlinear 

prediction. Compared to other nonlinear methods, SOMs better preserve the local data 

structure. Complex relationships between the samples can be revealed through the 

model structures and this allows the behavior of the studied parameters to be examined 

(Siripatrawan and Harte 2015). 

This research project aimed to develop a new method to evaluate the freshness 

of stored rice grains based on the use of RVA and chemometrics. The rice samples, 

waxy and non-waxy rice, were stored at an ambient room temperature. The RVA 
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profiles of the rice samples were recorded every month for one year. As representatives 

for linear and nonlinear calibration models, PLS and supervised SOM were utilized to 

extract the trend in the RVA profiles in relation to the storage time. In comparison, some 

physicochemical parameters such as alkali spreading value (ASV), amylose content, gel 

consistency, stickiness and hardness were also recorded.  

2. Objectives 

1.  To investigate the relationship between RVA profile data and some rice 

freshness-related parameters such as storage time, hardness and stickiness of cooked 

rice, amylose content, ASV and gel consistency using chemometrics.  

2. To develop chemometric models that can be used to estimate the rice grain 

freshness of the stored rice grains.  

3. Materials and methods 

3.1 Samples 

Ten cultivars of Thai white rice were used in this study. Five of these cultivars 

were selected as representatives of waxy (glutinous) rice and the rests were non-waxy 

rice. These selected rice samples were a part of the development program within the 

Ubon Ratchathani Rice Research Center, Ubon Ratchathani, Thailand. All the rice 

plants were transplanted at the same period in July 2013 at the research area. The rice 

samples were harvested when most of the panicles were ripe (approximately 80% of the 

panicles turn golden yellow and hard) in November 2013. They were then dried in the 

sun until the grain moisture content was 14%. After that, the rice grains in paddy form 
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were stored in sealed plastic containers at ambient room temperature of approximately 

30 ̊C.  

3.2 RVA analysis 

Before RVA analysis, the stored paddy rice grains were dehulled and then 

ground into powder by Cyclotec Sample Mill (CyclotecTM 1093, China) with a 100 mesh 

sieve. After that, 3.00 g of the sample (adjusted to 14% moisture content) was mixed in 

25.0 ml distilled water in an aluminum RVA canister. The samples were analyzed using 

a RVA (RVA-TecMaster, Perten Instruments of Australia Pty Limited). The viscosity 

profile was recorded with a starting temperature of 50 ̊C, which was held for 1.12 min. 

After that, the temperature was raised to 95 ̊C in 3.40 min, kept for 2.28 min and finally 

cooled to 50 ̊C in 4.00 min, and then held for 1.10 min. The total run time was 12.30 

min. The stirring speed was 960 rpm for the starting period (10 s) and 160 rpm for the 

rest of the test time. The RVA condition was adopted from the American Association of 

Cereal Chemists (AACC) International's approved method (AACC 2000) suggested for 

rice samples. The analysis procedure is illustrated in Fig 1. The measurement was 

repeated every month for one year, resulting in a total of thirteen RVA profiles for each 

sample. The test was done in duplicate and the average values were used.  
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Fig. 1. Analysis procedure of the RVA measurement. 

 

3.3 Physicochemical analyses 

During the experimental period, physicochemical parameters of the stored rice, 

including alkali spreading value (ASV), amylose content, gel consistency, stickiness and 

hardness, were also recorded. ASV of the rice samples was investigated using the 

method presented by references (Mariotti et al. 2010; Attaviroj and Noomhorm 2014). 

Stickiness and hardness were measured using texture analyzer (TA.XTplus, Charpa 

Techcenter Co., Ltd., Bangkok, Thailand) according to the method reported by Li et al. 

(2016). Amylose content was determined based on the reaction between amylose and 

iodine solution following the procedure described by Singh et al. (2000). The gel 

consistency of the rice samples was also determined following the procedure of 
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Cagampang et al. (1973). In this research, both waxy and non-waxy rice was used. 

Normally, non-waxy rice has relatively higher amylose content. On the other hand, 

amylose content can be very low or cannot be detected in waxy rice (Wani et al. 2012). 

In this research, the amylose starch could not be detected in the waxy cultivars. In 

addition, the gel consistency test, an indirect method, can be used for screening the 

hardness of cooked rice. Without modification, this method is preferably suitable for soft 

rice with high amylose content particularly the non-waxy rice. Therefore, amylose 

content and gel consistency were only analyzed for the non-waxy rice samples and 

reported.  

3.4 Chemometric analyses 

In this research, the RVA profiles and the rice quality parameters, defined as 

XRVA and XQual, respectively, were used as predictive parameters and the storage time 

(c) was used as response. Partial least squares (PLS) regression and supervised self-

organizing map (supervised SOM) were the prediction models used in this investigation 

to represent linear and nonlinear multivariate calibrations.  

3.4.1 Principal component analysis (PCA) 

PCA is a common exploratory analysis technique in chemometrics (Brereton 

2003). PCA defines new factors that effectively represent as much as possible the 

variation in a dataset. These defined factors are usually called principal components 

(PCs). Using PCA, pattern in multivariate data can be reviewed. The mathematical 

transformation of a data matrix X by PCA is:    

EPTX + =   
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where T is a scores matrix, P is a loadings matrix, and E is a residual matrix. 

The PC model is a product matrix of TP’ containing the systematic variation. Often, the 

first few PCs could explain most of the important variation of the dataset. The 

relationship among the studied samples can be revealed using the scores (T). On the 

other hand, the relationship or the behavior among the studied parameters can be 

examined using the loadings (P). 

3.4.1 Partial least squares (PLS) regression 

Many versions of the PLS algorithms have been proposed, in this research, the 

PLS1 algorithm reported in Brereton (2003) was used. PLS captures variations from 

both the predictive (X) and response (c) parameters and simultaneously uses them for 

constructing the regression model. This can be written as two equations: 

EPTX + =   

F  qT c +=   

Using the non-linear iterative partial least squares (NIPALS) algorithm, X is 

decomposed into X-scores (T) and X-loadings (P). As the same time, c is the product 

approximation of T and c-loadings (q). The aim of the PLS algorithm is to minimize the 

norm of F. To predict the response of unknown sample Xtest, the following equation is 

used:      

qWXc test
=test

ˆ  

where W refers to normalized PLS weights. PLS, in most cases, could 

satisfactorily provide predictive results if the data follows a multivariate normal 

distribution. In addition to the predictive model, the importance of the predictive 

parameters corresponding to the studied response can be evaluated using partial least 
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squares-variable influence on projection (PLS-VIP) (Funsueb et al. 2016). The PLS-VIP 

values represent the influence of X variables on c variance and can be calculated from 

the PLS weights obtained from the PLS model (Farré s et al. 2015). The VIP score 

greater than one is typically used as a criterion for variable selection (Tran et al. 2014). 

3.4.2 Supervised self-organizing map (supervised SOM) 

A self-organizing map (SOM) or Kohonen network is one of the most well-known 

artificial neural networks (Kohonen 1982). Whereas PLS assumes that data follow a 

multivariate normal distribution, SOM can be constructed without assuming any 

mathematical functions. In other words, it is a nonlinear method. Compared to other 

nonlinear models, SOM has an advantage in that insight into complex relationships of 

data can be revealed using visualization methods such as U-matrix, supervised color 

shading and component planes (Lloyd et al. 2008). This allows the behavior of the 

studied parameters to be examined. In this work, SOM, in supervised mode, was 

applied using the algorithm presented in reference (Kittiwachana et al. 2013). In 

supervised SOMs, the measurements X are used together with the response vector c in 

the training process by adding an additional response vector to the measurement 

matrix. Then, the initial weight matrix W can be trained in the same manner as for 

traditional unsupervised SOM learning. After that, the Euclidean distance or the 

dissimilarity between the unknown sample xi and the weight vector wk can be calculated 

by: 


−

=

−=
1

1

2

),( )(
s

ki

J

j

kjij wxs wx  
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where Js is the number of columns in the trained weight matrix W for the 

supervised SOM, which is equal to the number of the supervised component planes (Js 

= J +1). It is noted that J is the number of parameters used in the study. After that, the 

prediction for an unknown sample xi can be determined by identifying the best matching 

unit (BMU) on the trained map: 

}{min ),(),( kibi
ss

k
wx=wx

 

where b is the value of k having the most similar weight vector wk to the 

unknown sample xi: 

}{minarg ),( ki
sb

k
wx=  

Therefore, the prediction of an unknown sample xi is 

sbJi wc =ˆ  

where iĉ is a predicted response of the unknown sample xi which is equal to the 

weight value in the response plane 
sbJw . 

 For a calibration model, different data pre-processing can strongly influence the 

model predictive performance and several studies have reported guidelines as to which 

data pre-processing should be used or avoided. For example, standardization or 

autoscaling can be used to ensure that all the variables are put on approximately the 

same scale (Brereton 2009). Row scaling or normalization can be useful if the absolute 

concentrations of samples are important and cannot be easily controlled (Kittiwachana 

et al. 2008). Element scaling such as square root and logarithmic transformations can 

be used to reduce asymmetry or heteroscedastic noise. They also help to ease the 

effect from large peaks unduly influencing the signal (Kittiwachana et al. 2010). Mean 

centring can be calculated by subtracting the mean of each variable from the raw data. 
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After mean centring, the sum of each column is zero. This allows the models to focus 

on the deviations from the mean and investigate variance from the data mean rather 

than the absolute values (Brereton 2003). Mean centring has successfully provided the 

optimum results for various systems (Kim et al. 2001; Postma et al. 2011; Kittiwachana 

et al. 2008). In this research, mean centring resulted in the best performing model and, 

therefore, this data pre-processing was used as a standard protocol for our dataset. 

However, if the RVA (XRVA) and the rice quality (XQual) data were simultaneously used 

for the prediction, they were standardized by dividing each element by its standard 

deviation after mean centering to ensure that all the variables were adjusted onto the 

same scale. This was to guarantee that all variables had equal influence on the model.  

3.4.3 Model validation (quality of prediction) 

The accuracy of prediction was measured using root mean square error of 

calibration (RMSEC) and root mean square error of cross validation (RMSECV). 

RMSEC is the average difference between predicted ( iĉ ) and expected ( ic ) response 

values in auto-prediction mode and can be calculated as: 

1

)ˆ(
 RMSEC 1

2

−

−
=
 =

N

cc
N

i ii                           

where N is the number of samples. Using RMSEC, the establish model is tested 

directly on the calibration data or training samples, thus it is an internal validation. On 

the other hand, RMSECV calculates the error of the predicted response values ( iĉ ) 

based on cross validation. In this research, the calibration models were built for each 

rice type, waxy and non-waxy rice, where each model consisted of five cultivars. With 

cross validation methodology, a segment of five samples having the same storage age 
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was selected for deletion. Then, the calibration model was developed using the 

remaining samples and the calibration performance was tested using the deleted 

samples. This process was repeated until all samples were used as test samples. The 

segmented criterion was designated for avoiding the overfitting problem when the only 

one sample was left out. The ratio of RMSECV and RMSEC (RCV/auto) was calculated to 

indicate the model robustness. If this ratio is close to 1, this shows a stability of model 

although there is the removal of the samples from the data. The cross-validated 

explained variance (Q2) was also calculated to evaluate the prediction performance of 

the model (Consonni et al. 2009) by: 





=

=

−

−

−=
N

i

i

N

i

ii

cc

cc

Q

1

2

1

2

2

)(

)ˆ(

1  

Values of Q2 as close as possible to 1.0 are desired and imply the greater 

degree of variation within the data modelled by the calibration model. In addition, Bias 

or the systematic error of the average difference between the actual and predicted 

values and were calculated as:  


=

−
=

N

i

ii

N

cc

1

)ˆ(
Bias  

In this case, iĉ is the prediction of the deleted sample. From the Bias value, the 

bias-corrected standard error of the cross validation or (SECV) can be calculated as 

follows: 

1

)Biasˆ(
SECV 1

2

−

−−
=
 =

N

cc
N

i ii  

The ratio of prediction to deviation (RPD) was used to standardized the 

predictive accuracy and was calculated as the ratio of the standard deviation of the 
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reference values (SD) and the root mean square of cross validation (RPD = 

SD/RMSECV). The relative standard deviation (RSD) was calculated according to 

formula: 

100
Mean

RMSECV
RSD =  

where Mean is the average of the storage time. In this research, the calculations 

of PLS, supervised SOMs and the statistical analyses were implemented using in-house 

MATLAB scripts (MATLAB V7.0, The Math Works Inc., Natick). The SOM map consists 

of 8× 10 map units and the SOM parameters such as iteration number, initial learning 

rate and initial neighborhood width; these were set following recommended methodology 

(Lloyd et al. 2008). 

4. Results and discussion 

4.1 RVA profiles and physicochemical properties of the rice samples  

Fig. 2(A) shows the RVA profiles of the rice samples used in this research. The 

difference between pasting curves of the waxy (cultivar 1-5) and non-waxy (cultivar 6-

10) rice can be observed. The peak viscosity (PV) of the waxy rice occurred sooner 

than that of the non-waxy rice. This could be that pasting happened immediately after 

gelatinization in waxy rice, whereas, for non-waxy rice, a delay between gelatinization 

and pasting could be observed (Crosbie and Ross 2007). Normally, non-waxy or non-

glutinous rice is high-amylose starch with a lower amount of amylopectin. On the 

contrary, amylopectin is the main component of waxy rice. During the retrogradation 

process, the recrystallization rate of amylopectin molecules was slower than that of the 

amylose (Wang et al. 2015). Therefore, in the end of the test, the final viscosity (FV) of 

waxy rice was lower than that of the non-waxy rice. The score plot of the first two 
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principal components (PCs) is presented in Fig. 2(B). The rice samples can be clearly 

separated into two main clusters. The left-hand side cluster belongs to the non-waxy 

rice and the waxy rice is located in the right-hand side region, highlighting the difference 

between the RVA profiles of the waxy and non-waxy rice. 

 

Fig. 2. (A) RVA profiles of the rice samples where the blue dotted line indicates the 
temperature profile and (B) score plot of the first two PCs where the numbers indicate 
the storage time starting from 0 (the rice before storage) to 12 (the rice with the storage 
time of 12 months). 

In most cases, the RVA profiles from the same rice variety are located on the 

same region in the PCA score plot, implying that the pasting properties from the rice 

with the prolonged time shared the similar characteristics.  

The physicochemical parameters recorded during storage, including amylose 

content, ASV, gel consistency, stickiness and hardness are presented in Fig. 3. In Fig. 

3(A), it can be seen that the amylose content did not change significantly during 

storage. These results were consistent with Kanlayakrit et al. (2013). Also, the changes 

in ASV (Fig. 3(B)) and gel consistency (Fig. 3(C)) were not much observed. Although, 
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some hydrolysis or degradation probably occurs during storage, leading to a 

proportional increase in reducing sugars and a decrease in non-reducing sugar and 

starch, these chemical changes were very scant (Zhou et al. 2002). Some enzyme 

activities could cause the changes in some main components of the storage rice such 

as oryzenin, amylose and amylopectin, but the changes only in their average molecular 

weights were mainly observed.  

 

Fig. 3. (A) amylose content, (B) ASV, (C) gel consistency, (D) stickiness and (E) 
hardness of the rice samples recorded during storage.   
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Therefore, the average composition, as provided by total protein, starch and lipids, 

changed very little during the storage period (Chrastil 1990).  Slight changes in 

stickiness (Fig. 3(D)) and hardness (Fig. 3(E)) could be observed in some cultivars, but 

the trends were inconsistent. 

Rice ageing is a complex process and the different varieties might possess 

different changing characteristics. Although some rice properties, such as stickiness and 

hardness, have been reported to change during storage in relatively high temperature 

environments (Zhou et al. 2007), the temperature in our study was maintained at room 

temperature; therefore, trends in the changes of the recorded parameters were not 

clearly observed.    

4.2 Prediction using PLS and supervised SOM  

Table 1 shows the predictive results using PLS and supervised SOM established 

using the RVA data (XRVA), the quality-related parameters (XQual) and both data sets 

(XRVA; XQual). In this research, the optimum numbers of latent variables (LVs) for the PLS 

models were investigated using cross validation methodology. Due to the characteristic 

difference in the RVA profiles, the calibration models were built separately for waxy and 

non-waxy rice. Considering the models using different predictive data, the PLS model 

using the RVA profiles (XRVA) resulted in the best calibration performance with the 

RMSEC, RMSECV and Q2 values of 1.1, 1.2 and 0.90, respectively. The corresponding 

correlation graphs between the expected and the predicted storage times for the PLS 

models are shown in Fig. 4. A small value of RMSEC indicated that the PLS adequately 

fitted the data. The RMSECV of 1.2 suggested that the model was suitable for 

predicting the storage age of rice. Only small difference between RMSEC and RMSECV 
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can be observed and the value of RCV/auto is close to 1 implying that the model was 

stable and not prone to the overfitting problem.  The Q2 value of 0.90 indicated that 

90% of the variation within the response parameter was modelled by the calibration 

model. The RCV/auto values from supervised SOMs is relatively higher than those from 

the PLS models especially when the concatenated data (XRVA; XQual) was used. This 

means that the SOM models fitted very well with the training data, but not with the test 

samples implying that the supervised SOM models were slightly prone to overfitting. 

 

Fig. 4. Correlation graphs between expected and predicted storage times of PLS 
prediction of (A) waxy and (B) non-waxy rice. 

The worst predictive results were obtained from the models established using 

the quality-related data (XQual) for both the prediction using PLS and supervised SOM, 

resulting in relatively higher RMSECV ranging from 2.9 to 3.6. This implied that the 

quality-related parameters were not very much related to the storage time. The results 

were confirmed by the increase in the RMSECV values from the models when both data 

sets were concatenated and simultaneously used for the model prediction. A slightly 

deviation of the amylose contents on the 7th month and the ASV values on the 5th 

month can be observed.  
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Table 1 Statistical analysis of the calibration models using PLS and supervised SOM. 

 

However, investigating by plotting PCA scores of the RVA profiles with these 

quality-related parameters against the storage time (results not shown), no clear 

correlation was observed. Therefore, these matters should not interfere in the predictive 

results of the calibration models using the RVA profiles.  

PLS 
Calibration 
statistics 

Waxy rice Non-waxy rice 
XRVA XQual [XRVA; XQual] XRVA XQual [XRVA; XQual] 

RMSEC 1.1 3.6 1.2 1.4 2.9 1.6 
LVs* 6 3 5 5 3 5 

RMSECV 1.2 3.7 1.3 1.5 3.4 1.7 
RCV/auto 1.1 1.0 1.1 1.1 1.2 1.1 

Q2 0.90 0.07 0.87 0.83 0.16 0.81 
SECV 1.23 3.65 1.35 1.55 3.06 1.68 
Bias 0.01 0.01 0.01 0.01 0.02 0.01 
RPD 3.2 1.1 2.9 2.5 1.3 2.3 

RSD(%) 17.5 52.1 19.3 22.1 43.8 24.1 
Supervised SOM 

Calibration 
statistics 

Waxy rice Non-waxy rice 
XRVA XQual [XRVA; XQual] XRVA XQual [XRVA; XQual] 

RMSEC 1.2 3.2 1.7 1.9 2.8 1.5 
RMSECV 1.4 3.1 2.4 2.2 2.9 2.2 

RCV/auto 1.2 1.0 1.4 1.2 1.0 1.5 
Q2 0.86 0.32 0.82 0.72 0.40 0.60 

SECV 1.32 3.10 1.59 2.11 2.92 2.40 
Bias 0.01 -0.02 -0.06 -0.65 0.14 -0.21 
RPD 3.0 1.3 2.4 1.8 1.3 1.6 

RSD(%) 18.9 44.3 22.6 30.2 41.8 34.2 
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In general, RPD and RSD allow the comparison of the prediction accuracy from 

different models. Higher values of RPD indicate a better predictive ability corresponding 

to lower Bias, SECV and RSD with higher Q2. It has been noted by several reports that 

RPD values greater than 2.5 are considered good enough for prediction purposes; 

however, in some complex systems, the calibration models with the RPD values greater 

than 1.75 could possess a reliable performance (Aleixandre-Tudo et al. 2015). In Table 

1, using the RVA profiles, the RMSECV values from the supervised SOM, in most 

cases, are slightly higher. However, the predictive models were still reliable when 

considered that the RPD values >1.75 were good enough for prediction purposes. With 

the higher RPD values, it could be conducted that PLS provided the better predictive 

performance (RPD>2.5) than the supervised SOM models with our dataset. 

4.3 Evaluation of important parameters for the model prediction 

 

Fig. 5. PLS-VIP for the waxy and non-waxy rice samples. RVA parameters are the 
average values and indicated using black closed (waxy) and black dotted (non-waxy) 
lines. 
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The PLS-VIP values for the RVA profiles are shown in Fig. 5; positions of some 

common pasting properties, such as pasting temperature (PT), peak viscosity (PV), 

holding strength (HS), and final viscosity (FV) are indicated. The PLS-VIP parameters 

imply the importance of the parameters with respect to the prediction of the storage 

time. The size of the PLS-VIP parameter can be used to determine the significance or 

influence of the variable on the prediction model. A larger value implies that the 

parameter is likely to be associated with the predicted value. Normally, parameters with 

PLS-VIP values greater than one are considered significant. From the plots, the 

positions of the PT and PV parameters for the waxy and non-waxy rice are different. 

This result corresponds to the plots of the RVA profiles in Fig. 2(A), indicating the 

difference between the waxy and non-waxy types. For both waxy and non-waxy rice, PV 

and FV can be identified as the important parameters, since their PLS-VIP values are 

relatively high. In this research, a moving-window protocol based on moving window 

partial least squares (MWPLS) (Kasemsumran et al. 2004) was also tested with the 

RVA data and the regions identified as significance were more or less similar to those 

identified using PLS-VIP. To investigate if the model established using some selected 

parameters could obtain good results, common pasting properties in the RVA profiles 

including PT, PV, HS, FV, breakdown (BD), setback (SB) and pasting time (Pt), were 

used to calibrate the PLS and supervised SOM models. However, the predictive results 

were not better than those using the whole RVA profiles (results not shown). The 

changes in PV and FV were consistent with the previous report that observed 

noticeable changes in the RVA of the rice that had been stored for a long time 

(Keawpeng et al. 2015). These rheological changes could be due to natural aging 
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process. Several mechanisms of aging have been hypothesized.  Zhou et al. (2002) 

suggested that the alternation could be due to the changes in cell wall and proteins by 

enzyme activities. In addition, the interaction between starch and non-starch 

components (e.g. lipid, proteins and polysaccharides) in the rice could play an important 

role in the aging process (Patindol 2005). These ageing-induced structural changes may 

be attributed to the characteristics of the starch granules. For example, the starch 

granules of stored rice were more resistant to swelling that those of the fresh rice 

(Sowbhagya and Bhattacharya 2001). The removal of water from the amylose in the 

starch granules could lend to change in hardness and limited the granule hydration and 

swelling. These aging behaviors could cause the variations in the pasting properties 

detected by RVA.    

To examine the effect of storage time on PV and FV, the component plane 

visualization of the PV and FV parameters is presented in Fig. 6. The numbers 

represented storage time ranging from 0 to 12 months. A component plane can be used 

to see how each variable influences the map (Kittiwachana et al. 2013). By comparing a 

component plane with the response plane of the supervised SOM model, it is possible 

to investigate their relationship. For waxy rice (Fig. 6(A)), the PV and FV values 

monotonically increased along with the extended storage time. The changing patterns 

among the response and component planes were more or less identical, implying they 

have a positive or direct relationship. For non-waxy rice (Fig. 6(B)), the changes in the 

PV and FV parameters were rather complicated. The increases in the PV and FV 

values were not directly related to the storage time. For example, the PV and FV values 

in month 2 were higher than month 7, indicating that the PV and FV values of non-waxy 
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rice increased during early storage. After that, they decreased two to three months later. 

These results were consistent with the previous study by Zhou et al. (2002) reporting 

the change of RVA profiles during the storage time. During the first few months, the 

germ of fresh paddy grain was still in maturing stage and carried on with day to day 

metabolic processes. The foregoing suppositions could simply reflect the complexity of 

the rice aging process. This could be the reason that the RMSECV values from the non-

waxy rice were slightly lower than those of the waxy rice.  

 

Fig. 6. Response (copper shading) and component planes (gray shading) of (A) 
waxy and (B) non-waxy rice. The recorded times (t) and temperatures (T) of the 
component planes are indicated and the numbers are the storage times starting for 0 to 
12 months. 

5. Conclusion 

Rice grain gradually changes during storage and it is possible to observe the 

change using RVA. Chemometrics can extract the important information from the RVA 
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profiles in relation to the rice storage time. Using PLS and supervised SOM, the storage 

time of the aged rice samples can be predicted. In our study, PLS offered better 

predictive results in terms of the RMSECV, Q2, RCV/auto, RPD and RSD values. The 

overall prediction performance of the waxy rice samples was better than the non-waxy. 

The developed method is an effective technique for determining the storage time of rice 

grains. It is simple and can be performed quickly with no chemicals required.  
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Appendix 

7. Suggestions for the next development 

• It is suggested that the prediction for mixed rice samples should be investigated. 

For example, aged rice grain is mixed with fresh rice grain. The concern is that 

the age of the mixed rice grain can be possible or not used to identify if the rice 

sample has been adulterated.   

• This research reported that RVA can be applied to determine the rice grain 

freshness. The developed method can do performed quickly without any 

chemical requirement. The operation cost is relative low. However, the RVA 

analyzer is rather expensive. The development of rapid viscosity measurement 

with low cost should be considered. It is not required that the developed 

measurement can operated with the same performance as the commercial RVA 

analyzer since only selected viscosity profiles are used for the prediction of the 

rice grain freshness.     
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