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CHAPTER 1

INTRODUCTION

In optimization theory, a major problem is the proximal split feasibility
problem (PSFP). Numerous problems in applied science, economics, engineering
and other related fields can be reformulated as this problem. To be more precise,
the proximal split feasibility problem includes, as special cases, the convex mini-
mization problem, the min-max problem, the complementarity problem, the linear
inverse problem, the fixed point problem of some nonlinear operators, the illposed
problem and the variational inequality problem. The regularization technique is
a powerful tool in handling for solving such problem in some certain spaces. In
the literature, Censor-Elfving introduced a notion of the split feasibility problem
(SFP), which is to find an element of a closed convex subset of the Euclidean
space whose image under a linear operator is an element of 9 another closed con-
vex subset of a Euclidean space. Byrne subsequently proposed the CQ-method for
solving this problem and established the weak convergence of sequences generated
by this method to a solution of SFP. However, it is noted that this method re-
quires a computation on the operator norm which is in general not an easy task
in practice. Subsequently, Moudafi-Thakur presented the notion of the proximal
split feasibility problem (PSFP), which is quite more general and flexible than the
split feasibility problem, in Hilbert spaces. The PSFP is to find a minimizer of the
objective convex function whose image under a linear operator is also a minimizer
of another convex function. However, only the weak convergence was obtained in
some suitable conditions. Since then, due to its applications in various areas, there
have been several modifications and generalizations of these method suggested and
invented independently for solving the problem in many different contexts. It is
therefore the main objective in this research to develop and modify new regulariza-
tion methods and study convergence theorems which admit less stringent and/or

more constructive requirements on solving the proximal split feasibility problem



in a certain space. The main results established in this research can improve and
generalize the corresponding results in this area and, of course, can be applied to
solve major problems existed in science, engineering, economics and other related

branches.



CHAPTER I1

LITERATURE REVIEW

Let Hy and Hj be real Hilbert spaces. Let f: Hy — R U {+o0} and
g : Hy — RU{+00} be proper, lower semi-continuous and convex functions. Let
A: H; — Hj be a bounded linear operator. The proximal split feasibility problem
is to find a minimizer z* of f such that Az* minimizes g, that is, find * € argmin f
such that

Ax* € argmin g, (2.1)
where argmin f = {z € H, : f(z) < f(y), Yy € H;} and argmin g = {x € Hy :

9(x) < g(y), Yy € Hy}.

In what follows, Q = argmin f N A~!(argmin g) will denote the solution

set of the problem (2.1).

The split feasibility problem in finite dimensional Hilbert spaces was first
introduced by Censor-Elfving [9] for modeling inverse problems which arise from
phase retrievals and in medical image reconstruction, especially, intensity-modulated
therapy [8]. Due to its applications, there have been many works rapidly established

in the recent years (see, for instance, [6, 12, 30, 40, 47]).

Let C be a nonempty closed and convex subset of a real Hilbert space H
with the norm || - || and the inner product (-,-). For each x € H, there exists a

unique nearest point in C', denoted by Pcox, such that
— P, = mi — vyl 2.2
lz — Po|| = min [lz — y| (2:2)
Then P is called the metric projection of H onto C. For x € H, we know that
<$—Pcl’,y—PciL’> SO (23)

for all y € C. If f and g are the indicator functions of two nonempty closed and



convex sets C' C Hy and () C H,, that is,

0, if x € C,
f(z) =dc(x) =
+00, otherwise,
and
0, if z € Q,
9(x) = do(x) =

+00, otherwise.

Then the problem (2.1) becomes the following convex minimization problem:

Find z* € C such that
Az* € Q. (2.4)

This problem is called the split feasibility problem. A classical way to solve the
problem (2.4) is to use the CQ-algorithm which was introduced by Byrne [4], which

is defined in the following manner: z; € H; and

Tni1 = Po(x, — u, A"(1 — Pg)Ax,) (2.5)

for each n > 1, where the step-size u, € (0, ”2”2) and Po, Py are the metric

projections on C' and @), respectively.

It is noted that the operator norm [|A|| or the largest eigenvalue of A*A
may not be calculated easily in general. To overcome this difficulty, Lopez et al.
23] suggested the following algorithm: let z; € Hy and assume that {z,,} C C has

been constructed and Vh(zx,) # 0. Then compute x,; via the rule

Tpt1 = Po(zn — pnA* (I — Po)Ax,) (2.6)
for each n > 1, where p,, = pn% with 0 < p, < 4 and

1
h(wn) = ST = Po) Az

It was proved that, if inf,, p,(4 — p,,) > 0, then the sequence {x,} defined by (2.6)

converges weakly to a solution of (2.4).



Recall that the subdifferential of F': H — R U {+o0} at z is defined by
OF(x)={ye H : F(x)+ (y,z—x) < F(z), Vz € H}. (2.7)
The prozimity operator of F' is defined by
() = argmin { Fy) + o5 1o ~ I (2.9
prox,p(x) = argmin )+ oxllz =y :
for any A > 0. It is seen that
0 € 0F (z*) <= " = prox,p(z"). (2.9)

Hence the minimizers of any functions are the fixed point of its proximity operator.

Moreover, the proximity operator of I is firmly nonexpansive, namely,

(prox,p () — proxyp(y), & — y) > |[proxyp(z) — prox,p(y)|” (2.10)

for all x,y € H, which is equivalent to

||PT0X,\F($) - PTOX,\F(y) H2

< lz =yl = (1 = prox,p)(z) — (I — proxyz) (y)| (2.11)

for all x,y € H. Also, the complement [ — prox,, is firmly nonexpansive. This
suggests us to employ the technique in fixed point theory for solving the convex

minimization feasibility problem. See [18].

Recently, Moudafi-Thakur [33] proposed the following split proximal algo-

rithm: x; € H; and
Tp41 = PIOX,,, ; (2 — i A*(I — prox,,) Az,), (2.12)
where the step-size

h(xy,) + U(z,)

Hn = Pn 92(1,”) (2'13)

with

1
0<pn<4, h(z,) = §||([ — prox,,) Az, ||*, (2.14)

1
) = 5“(1 - PTOXHnAf)xn’P (2.15)



and

0(wn) = VIIVA(za) 2 + [Vi(2n) 2. (2.16)

4h(zn)

They proved that, if € < p, < EmETe)

— ¢ for some € > 0 small enough, then
the sequence {z,} generated by (2.12) converges weakly to a solution of (2.1).
However, we observe that the step-size sequence {pu,} appeared in (2.13) seems to

be implicit because of the terms [(x,) and 6(z,,).

In order to solve the proximal split feasibility problem, we introduce a
Halpern-type algorithm and prove its strong convergence under the condition on
the step size suggested by Lopez et al. [23]. Finally, we provide some numerical

experiments to support our main result.
We next consider another type of the proximal split feasibility problem.

Let Hy and H, be real Hilbert spaces. Let t > 1 and » > 1 be given integers
and let {C;}i_; and {Q;}}_, be nonempty, closed and convex subsets of H; and
H,, respectively. The Multiple-sets Split Feasibility Problem (MSFP) which is the
problem of finding a point x* such that

t r
v eC:=()C, ArreQ:={(Q; (2.17)

i=1 j=1
where A is a given bounded linear operator (denote A* by the adjoint operator of A).
This problem was first introduced, in finite-dimensional Hilbert spaces, by Censor
et al. in [10] for modeling inverse problems which arise in modeling of intensity
modulated radiation therapy [8], and signal processing and image reconstruction
[5, 25]. Due to its applications, there have been many algorithms invented to solve
MSFP (see, for instance, [39, 41, 46, 47, 48]). In particular, when ¢ = r = 1, the
MSFP (2.17) becomes the split feasibility problem (SFP) which was introduced in

9].

Throughout this work, we always assume that the MSFP (2.17) is consistent

and also denote the solution set by S. It is known that the MSFP is equivalent to



the following minimization problem:
! , 1 9
min {la — Pe(e)| + 5 | Az — Pa(An)| (215)

where P and FPg are the metric projections onto C' and (@), respectively. It should
be noted that the computation of a projection onto a general closed convex subset
is difficult because of its closed form. To overcome this difficulty, Fukushima [16]
suggested a so-called relaxed projection method to calculate the projection onto a
level set of a convex function by computing a sequence of projections onto half-
spaces containing the original level set. In the setting of finite-dimensional Hilbert
spaces, Yang [44] introduced the relaxed CQ algorithms for solving SFP where the

closed convex subsets C' and @) are level sets of convex functions given as follows:
C=A{zeH :c(x) <0} and Q={y e Hy:q(y) <0}, (2.19)

where ¢ : H; — R and ¢ : Hy — R are convex functions. We assume that both
¢ and ¢ are subdifferentiable on H; and H,, respectively, and that dc and Oq are
bounded operators (i.e., bounded on bounded sets). It is known that every convex
function defined on a finite-dimensional Hilbert space is subdifferentiable and its
subdifferential operator is a bounded operator (see [3]). In what follows, we define

two sets at point x,, by
Cphn=A{x € Hy:clxy) < (&, zn— )}, (2.20)
where &, € 0c(z,,), and

Qn ={y € Hy: q(Az,) < (e, Az, — y) }, (2.21)

where ¢,, € dq(Ax,). It is clear that C,, and @,, are half-spaces and C,, D C' and
@, D Q for every n > 1. The specific form of the metric projections onto C,, and
@n can be found in [3]. In fact, Yang [44] constructed a relaxed CQ algorithm for
solving the SF'P by using the half-spaces C), and @),, instead of the sets C' and @
in the CQ algorithm, respectively and proved its convergence under some suitable

choices of the step-sizes.



In order to achieve the convergence, in such algorithms mentioned above,
the selection of the step-sizes requires prior information on the norm of the bounded
linear operator (matrix in the finite-dimensional framework), which is not always
possible in practice. To avoid this computation, there have been worthwhile works
that the convergence is guaranteed without any prior information of the matrix
norm (see, for examples [38, 41, 42, 45]). Among these works, Lépez et al. [25]
introduced a new way to select the step-size by replacing the parameter p,, appeared

in (2.30) by
iy = Pt (Tn)
V@I

where p, € (0,4), f(z,) = 3||(I — Po)Ax,||* and V f(z,) = A*(I — Py)Ax, for all

n>1, (2.22)

n > 1. They also practised this way of selecting step-sizes for variants of the CQ
algorithm, including a relaxed CQ algorithm, and a Halpern-type algorithm and
proved both weak and strong convergence. Subsequently, in 2013, He and Zhao
[21] introduced the following Halpern-relaxed CQ) algorithm in Hilbert spaces: take

x1 € Hy and generate {x,} by
Tnt1 = Po, [anu + (1 - O‘n)(xn - Tnvfn(xn»]u (2’23>

where C,, and @, are, respectively, given as in (2.31) and (2.32), {a,} C (0,1),

{pn} C (0,4) and the sequence {7,} is given by

T = ————— (2.24)
IV fu(@n) |2
and
fulen) = ST = o)Az, n>1. (225)
In this case, we have
V fulz,) = A*(I — Py, )Ax,. (2.26)

They obtained the strong convergence provided lim o, = 0, > v, = 00 and the
n—oo nzl

step-size is chosen such that in£I pn(4 — pn) > 0.
ne

For solving the MSFP, following [10], we define the level sets of convex



functions by
Ci={r e H :c(z) <0} and Q; ={y € H2:q;(y) <0}, (2:27)

where ¢; : H — R (i = 1,..,t) and ¢; : H» — R (j = 1,...,r) are weakly
lower semi-continuous and convex functions. We assume that ¢; (¢ = 1,...,t) and
¢; (j = 1,...,r) are subdifferentiable on H; and H,, respectively, and that Oc;
(i=1,..,t) and dg; (j =1,...,r) are bounded on bounded sets. Censor et al. [10]

also defined the following proximity function:

1¢ i
f@) =3 Sl = Po @I + 3 S Ml Aw - Po, (A0, (228)
i=1 j=1
where ; (i = 1,...,t) and A\; (: = 1,...,r) are all positive constants such that

S L+ > i—1 Aj = L. In this case, we also have

Vf(z) = Z li(z = Po,(z)) + Y NAT(I = Pg,)Ax. (2.29)

i=1

They introduced the following projection algorithm:

Tny1 = Po(z, — pV f(2,)), (2.30)

where p > 0 and Q C RY is an auxiliary simple nonempty closed convex set
such that QNS # (). It was proved that if p € (0,2/L) with L being the Lipschitz
constant of V f, then the sequence {x,} generated by (2.30) converges to a solution

in MSFP.

As observed in the results of Byrne [4], we see that the selection of the
step-sizes p in (2.30) depends on the largest eigenvalue (spectral radius) of the
matrix A*A which is not always possible in practice. To avoid this computation,
there have been worthwhile works that the convergence is guaranteed without any
prior information of the matrix norm (see, for examples [38, 41, 42, 45]). Among
these works, Lépez et al. [25] introduced a new way to select the step-size and also
practised this way of selecting step-sizes for variants of the CQ algorithm, including

a relaxed C(Q algorithm, and a Halpern-type algorithm and proved both weak and



strong convergence. Combining the relaxed CQ algorithm with that of Lopez et al.
25], in 2013, He and Zhao [21] introduced a new relaxed CQ) algorithm such that
the strong convergence is guaranteed in infinite-dimensional Hilbert spaces. With
this choice of the step-sizes, the estimation of the norm of operators is avoided and

the metric projections are easily to be calculated.
In what follows, we define two sets at point z,, by
C'=A{xe€ Hy:ci(x,) < (&' x, — )}, (2.31)
where &' € d¢;(x,) for i =1,...,t, and

Q;L = {y € H2 : q](Al’n) < < ]naAlﬁ - y>}a (232)

where (7' € 0q;(Ax,) for j = 1,...,r. We see that C' (i = 1,...,t) and Q} (j =
1,...,7) are half-spaces and C]* D C; (i = 1,...,t) and QF D Q; (j = 1,...,7) for all
n > 1. We define
1g 1¢
fule) = 3 Skl = Pp(@)lP + 3 YoMl Aw — Pop(An)P, (233)
i=1 Jj=1

where C'(i = 1, ...,t) and Q% (j = 1,...,7) are given as in (2.31) and (2.32), respec-
tively.
We then have

t

V(@) =Y li(x — Pon(x)) + Y NA (I — Pon) Az, (2.34)

i=1 j=1

where A* is the adjoint operator of A.

For obtaining the strong convergence, recently, inspired by the algorithms
proposed by Zhao et al. [48] and Lépez et al. [25], He et al. [22] introduced a
new relaxed self-adaptive CQ algorithm for solving the MSFP such that the strong
convergence is guaranteed by using Halpern’s iteration process. Let u € H; be
fixed, and choose an initial guess z; € H; arbitrarily. Let {x,} be the sequence

generated by the following manner:

Tl = apu+ (1 — o) (2 — 7 Vfu(z,)), n>1, (2.35)



where f,, is given as in (2.33), {a,,} C (0,1) and 7, = pn% with 0 < p, < 4
for all n € N. It was proved that if o, — 0, > 7 | o, = oo and inf,.en p,,(4—pyn) > 0,

then {x,} generated by (2.35) converges strongly to a solution in MSFP.

In this research, motivated by the previous works, we propose the follow-
ing inertial relaxed CQ algorithm which combines the inertial technique with the

relaxed CQ method:

Algorithm 3.1 Let {a,,} C (0,1), {8,} C [0,1) and {p,} C (0,4). Let
u € Hy be fixed and take xg, 21 € H; arbitrarily. Let the sequences {z,} and {y,}

be generated iteratively by the following manner:

Tpt1 = QpU+ (1 - an)(yn - Tnvfn(yn))>

Yo = Tp+ ﬁn(zn - In—l)a n > 1a (236)

where f,, is given as in (2.33) and 7, = pn% forallm € N. If Vf,(y,) =0,
then y,, is a solution of MSFP. Here (3, is an extrapolation factor and the inertia is
represented by the term (3, (z, — x,_1). It is remarkable that the inertial terminol-
ogy greatly improves the performance of the algorithm and has a nice convergence
properties [1, 14, 15, 24, 35, 36] and also [27, 28]. Using the inertial technique
and Halpern’s idea, we prove its strong convergence of the sequence generated by
our proposed scheme. Our algorithm is easily to be implemented since it involves
the metric projections onto half-spaces which have exact forms and has no need to
know a priori information of the norm of bounded linear operators. Numerical ex-
periments are included to show the effectiveness of the our algorithm. The obtained
results mainly extend and improve that of He et al. [22] and also complement the

corresponding results of [4, 25, 48].



CHAPTER I11

PRELIMINARIES

3.1 Preliminaries and lemmas

In this section, we provide some basic concepts, definitions and lemmas

which will be used in the sequel.

Definition 3.1.1. (Fixed point)
Let X be a nonempty set and T" : X — X a self-mapping. We say that
x € X is a fixed point of T if
T(x)=ux (3.37)

and denote by Fiz(T) the set of all fixed points of 7T'.

Example 3.1.2. 1. If X =R and T(x) = 2> + bz + 4, then Fiz(T) = {-2};
2. If X =R and T(z) = 2* — z, then Fiz(T) = {0,2};
3. If X =R and T'(x) = + 5, then Fix(T) = 0;
4. If X =R and T'(x) = x, then Fix(T) = R;.

Definition 3.1.3. (Metric space)
Let X be a nonempty set and d : X x X — [0,00) a function. Then d is
called a metric on X if the following properties hold:
1. d(z,y) > 0 for all x,y € X;
d(z,y) = 0 if and only if z =y for all z,y € X;
d(xz,y) =d(y,z) for all z,y € X;
d(z,y) < d(z,z) +d(z,y) for all x,y,z € X.
The value of metric d at (x,y) is called distance between x and y, and the ordered

pair (X, d) is called a metric space.

Example 3.1.4. The real line R and define

d(z,y) = |x —y| for all z,y € R. (3.38)



Then (R, d) is a metric space.

Example 3.1.5. The Euclidean plane R? and define

d(z,y) = /(&1 —m)? + (& — 1o)? (3.39)

where x = (£1,&),y = (n1,m2) € R%. Then (R?,d) is a metric space.

Example 3.1.6. The Fuclidean space R™ and define

d(z,y) = V(€& —m)? + (& —m)? + (& = m)* + o + (Ea — )? (3.40)

where x = (£1,82,&3,..,&0),y = (M1, M2, M3, -, ) € R™. Then (R™,d) is a metric

space.

Example 3.1.7. Let X be the set of all bounded sequences of complex numbers;

that is every element of X is a complex sequence

T = (617629 )

such that |§;| < ¢, for all j = 1,2, ... and ¢, is a real number which may depend on

x, but does not depend on j and define

d(z,y) = sup [§; — n;] (3.41)
jeN
where y = (n;) € X and N=1,2,.... Then (X,d) is a metric space.

Definition 3.1.8. (Closed set)
Let (X,d) be a metric space. A subset U C X is open if for every x € X
there exists r > 0 such that B(z,r) C U. A set U is closed if its complement X \ U

is open.

Theorem 3.1.9. Let M be a nonempty subset of a metric space X. Then M is
closed if and only if there ezists a sequence {x,} C M and x, — x implies that

ze M.

Definition 3.1.10. (Convergent sequence)
A sequence {z,} in a metric space X is said to be convergent to x € R if
for all € > 0 there exists N € N if n > N then d(z,y) < e. In this case, we write

T, — X



Definition 3.1.11. (Cauchy sequence)
A sequence {z,} in a metric space X is said to be Cauchy if for all € > 0

there exists N € N if m,n > N then d(z,,, x,) < €.

Definition 3.1.12. (Bounded sequence)
A sequence {z,,} in X is bounded if there exists M > 0 such that ||z, | < M

for all n € N.

Definition 3.1.13. (Lipschitzian mapping)
Let (X, d) be a metric space. Then amap T : X — X is called a lipschitzian

mapping on X if there exists L > 0 such that
d(T(x),T(y)) < Ld(x,y) forall z,y € X.

Definition 3.1.14. (Nonexpansive mapping)
Let (X, d) be a metric space. Then a map T': X — X is called a nonex-

pansive mapping on X if
d(T'(x), T(y)) < d(x,y) forall z,y € X.

Definition 3.1.15. (Contraction mapping)
Let (X, d) be a metric space. Then amap 7" : X — X is called a contraction

mapping on X if there exists ¢ € [0,1) such that
d(T(z), T(y)) < qd(x,y) forall z,y € X.

Theorem 3.1.16. (The Banach contraction principle)
Let X be a complete metric space and let T' be a contraction of X into itself.

Then T has a unique fized point.

Definition 3.1.17. (Vector space)
A vector space or linear space X over the field K (R or C) is a set X together
with an internal binary operation "+ called addition and a scalar multiplication

carrying (o, x) in K x X to ax in X satisfying the following for all z,y,z € X and
a, ek



lLLa+y=y+u

2. (z4y)+z=x+ (y+2);

3. there exists an element 0 € X call the zero vector of X such that xt+0 =«
for all z € X;

4. for every element x € X, there exists an element —x € X called the

additive inverse or the negative of x such that x + (—x) = 0;

5. a(z+y) = ar + ay;
6. (v + B)x = ax+ By;
7. (af)w = a(Br);

8. 1-x=u.

The elements of a vector space X are called vectors, and the elements of K are

called scalars.

Example 3.1.18. The Fuclidean space R™ and define

r+y = (&G +m,&%+n,8+n3, .6 + M)

ar = (Oéfla a€2a 0563, cey agn)

where x = (£1,89,83, -, n)sy = (N1, M2, M3, -, M) € R™ and o € R. Then, space R"

18 a real vector space.

Definition 3.1.19. (Convex set)
Let C be a subset of a linear space X. Then C is said to be convex if

(1 =Nz + Ay € C for all z, y and all scalar A € [0, 1].

Example 3.1.20. 1. Every subspace of vector space is convex set.
2. B(z;r) = {x: ||z|| < r} is conver set.

3. [0,1]Y = [1,0] x [1,0] x ... x [1,0] is convez set in RY.

Proposition 3.1.21. Let C be a subset of a linear space X. Then C is convex if
and only if \yx1 4+ Aoxo + ... + Ay, € C for any finite set {1, x9,...,x,} C C and
scalars Ay > 0 with Ay + Ao+ ... + A\, = 1.



Definition 3.1.22. (Convex function)
Let X be a linear space and f : X — (—o00, 00 a function. Then f is said to

be convex if f(Az + (1 —=N)y) < Af(x)+ (1= N)f(y) for all z,y € X and A € [0, 1].

Example 3.1.23. 1. F(z) = |z|? where p > 1 is convex function in R.

1

2. F(zx) =2° — 2% is convex function in [§,00).

3. F(x) = xlogxz where p > 1 is convex function in RT.

Definition 3.1.24. (Normed space)
let X be a norm linear space over field K (R or C) and || - || : X — R" a
function. Then || - || is said to be a norm if the following properties hold:
1. [|z|| > 0, and ||z|| = 0 < x = 0;
2. ||azx|| = |a|||z| for all z € X and « € K;
3. [z +yll < |l + [|y|| for all z,y € X.

The ordered pair (X, || - ||) is called a normed space.

Example 3.1.25. R" is a normed space with the following norms:
Izl = > |ai| forall = (21,79,..,2,) € R™;
i=1

- 1/p
z|l, = (Z \xi\p) forall = (x1,29,..,2,) € R" and p € (1, 00);
i=1

|zl = 1r£1?<>%|x,| forall © = (xy,29,..,2,) € R".

Remark 3.1.26. 1. R" equipped with the norm defined by ||z, = (31, |24]?) @
is denoted by lg forall 1 < p < oo.

2. R" equipped with the norm defined by ||z|l« = max;<;<, |z;| is denoted by I

Example 3.1.27. Let X = [y, the linear space whose elements consist of all abso-

lutely convergent sequences (x1, T, ..., x;, ...) of scalars (R or C),
Lh={x:2z=(x1,29,...,24,...) and Z |z;| < oo}
i=1

Then 1y is a normed space with the norm defined by ||z|jy = >"°, |z



Example 3.1.28. let X =1, (1 < p < 00), the linear space whose elements consist

of all p-summable sequences (x1,Ta, ..., T;, ...) of scalars (R or C),
={r:2= (21,22, ....,7;,..) and Y _ |z;|” < oo},
i=1

Then 1, is a normed space with the norm defined by ||z|l, = 30, |z:|P)'/P.

Example 3.1.29. let X = I, the linear space whose elements consist of all

bounded sequences (x1, Ta, ..., s, ...) of scalars (R or C),
lo ={z 2= (21,29, ..., 24, ...) and {z;};°, is bounded}.
Then lo is a normed space with the norm defined by ||z = sup;ey |-

Definition 3.1.30. (Completeness)

The space X is said to be complete if every Cauchy sequence in X converges.

Example 3.1.31. The Fuclidean space R™ is complete with

d(z,y) = V(€& —m)? + (& —m)? + (& —m)* + o + (Ea — )? (3.42)

where x = (517527&57 7£n)7y = (7]17 12,135 -y nn) € R".

Example 3.1.32. The sequence space lo, is complete.
Example 3.1.33. The sequence space l,, is complete.

Definition 3.1.34. (Banach space)
A normed space which is complete with respect to the metric induced by

the norm is called a Banach space.

Example 3.1.35. The Fuclidean space R" is a Banach space with the norm defined
by

n 1/2
Jall = (3 i)
i=1

where x = (x1, Ta, ..., T,) € R™.



Example 3.1.36. The space l,, 1 < p < 00 is a Banach space with the norm
defined by

[e.e]

1/p
lally = (D laat”) ™,

i=1
where © = (T1, X, ..., Tp, ...) and Yo" |x,|P < 00.
Example 3.1.37. The space o, of all bounded sequence x = (x1,xo, ..., Tp,...) 1S @

Banach space with the norm defined by
]| = sup [zi].

Definition 3.1.38. (Inner product space)

An inner product space is a vector space X with an inner product defined
on X. Here, an inner product on X is a mapping of X x X into the scalar field K
of X; that is, with every pair of vectors x and y there is associated a scalar which

18 written
(z,y) (3.43)

and is called the inner product of x and y, such that for all vectors z, y, z and

scalars a we have

Example 3.1.39. The function (-,-) : R" x R" — R defined by

(x,y) = szy, forall x = (x1, 29, ..., 2,), ¥y = (y1,Y2, -, Yn) € R" (3.44)
i=1

18 an inner product on R™. In this case R™ with this inner product is called real

FEuclidean n-space.

Example 3.1.40. Let C" be the set of n-tuples of complex numbers. Then the
function (-,-) : R" x R" — R defined by

(x,y) = Zx,@ forall x = (x1, 29, ..., 7,), ¥y = (y1,Y2, -, Yn) € C" (3.45)
i=1



1s an inner product on C". In this case C™ with this inner product is called complex

FEuclidean n-space.
Example 3.1.41. Let Iy be the set of all sequences of complex numbers
(a1, a9, ... a;,...) with Y2, |a;|* < oo. Then the function (-,-) : Iy x Iy — C
defined by
(z,y) = szE forall x = {xi}Zy = {yit2, € b (3.46)

i=1

s an inner product on ls.

Proposition 3.1.42. (The Cauchy-Schwarz inequality)
Let X be an inner product space. Then the following holds:

[z, )| < (z,2)(y,y) for all z,y € X, (3.47)

1.€.,

[z, )| < llellllyll for all z,y € X. (3.48)

Definition 3.1.43. (Hilbert space)
An inner product space which is complete with respect to the induced norm

is called a Hilbert space.

Example 3.1.44. The Fuclidean space R™ is a Hilbert space with inner product
defined by

(x,y) = 2191 + T2y + ... + TpUn

where x = (X1, T2, ..., Tn), Y = (Y1, Y2, -, Yn) € R
Example 3.1.45. The space ls is a Hilbert space with inner product defined by
<£L’, y> = Z Zlij_j,
j=1

where x,y € .

Let H be a Hilbert space. Recall that a mapping T': H — H is said to be

nonexpansive if, for all x,y € H,

[Tz =Tyl < [lz -y (3.49)



T : H— H is said to be firmly nonexpansive if, for all z,y € H,
1Tz — Ty|* < |lo = ylI* = [|[( = T)z — (I = T)y]*, (3.50)

or equivalently

(Tx =Ty, x —y) > Tz — Tyl (3.51)

for all x,y € H. It is known that 7" is firmly nonexpansive if and only if I — T
is firmly nonexpansive. We know that the metric projection Py from H onto
a nonempty, closed and convex subset C' C H is a typical example of a firmly

nonexpansive mapping, which is defined by

Pox = argmin|jz — y|*, =€ H. (3.52)
yeC

It is well known that Pg is characterized by the inequality, for x € H
(x — Pox,y — Pox) <0, VyeC. (3.53)
In a real Hilbert space H, we have the following equality:
(29) = Sl + Slol> = 5o —l? (354)
and the subdifferential inequality
lz +yll* < ll=)* + 2(y, = + ) (3.55)
for all x,y € H.

Definition 3.1.46. (Proper function)
Let function f: X — (—o0,00]. Then f is said to be proper if there exists

x € X with f(x) < oc.

Definition 3.1.47. (Lower semicontinuous function)
Let X be a linear space and f : X — (—o00, 0] a proper function. Then f
is said to be lower semicontinuous (l.s.c.) at zp € X if

f(xo) <liminf f(xg) = sup inf f(x), (3.56)

T—xT0 VeUy, zeV



where U,, is a base of neighborhoods of the point xyp € X. f is said to be lower
semicontinuous on X if it is lower semicontinuous on each point of X, 7.e., for each
re X,

r — xo = f(r) < liminf f(z,). (3.57)

n—~0o0

Example 3.1.48. Let (X, | - ||) be normed space. If F(z) = ||z|| for all z € X

then I is lower semicontinuous function.

Definition 3.1.49. (Bounded linear operator)
Let X and Y be normed spaces and 1" : X — Y a linear operator. The

operator 7' is said to be bounded if there is a real number ¢ such that for all x € X,

I T|] < ] (3.58)

The subdifferential of a proper convex function f : X — (—o0,+o0] is the

set-valued operator Of : X — 2% defined as

Of () = {a" € X*: 2",y —a) + f(z) < f(y)}-

If f is proper convex and lower semicontinuous, then the subdifferential Of (z) # ()

for any x € intD(f), the interior of the domain of f.

Lemma 3.1.50. [10] Let {C;}i_, and {Q;}}—; be closed conver subsets of H,
and Hs respectively and A : Hy — Hs a bounded linear operator. Let f(x)
be the function defined as in (2.28). Then V f(x) is Lipschitz continuous with
L= Li+|AI*X7_ A as the Lipschitz constant.

Lemma 3.1.51. Let f: H — R be given by f(x) = 3||(I — Pg)Az||?. Then

i) f is convex and differential.
ii) Vf(x) = A*(I — Py)Az, v € H.

iii) f is weakly lower semi-continuous on H.

(
(
(
(iv) [Vf(x) = V)l < [|AI2 |z =yl for all z,y € H.



Lemma 3.1.52. [29, 43| Let {a,} and {c,} are sequences of nonnegative real num-
bers such that

QAp+1 S (1 - 5n>an + bn + Cny T Z 17 (359>

where {6,} is a sequence in (0,1) and {b,} is a real sequence. Assume y ¢, <

0o. Then the following results hold:

(i) If b, < 0,M for some M > 0, then {a,} is a bounded sequence.

(i) If 37, 0, = oo and limsup,,_, . b,/d, <0, then lim,, . a, = 0.
Lemma 3.1.53. [30] Let {I',,} be a sequence of real numbers that does not decrease

at infinity in the sense that there exists a subsequence {I',,,} of {I',,} which satisfies

Iy, <Th,41 foralli € N. Define the sequence {T(n)},>n, of integers as follows:
7(n) =max{k <n: Ty <Tru}, (3.60)
where ng € N such that {k < ng: Ty < Ty} #0. Then, the following hold:
(i) 7(ng) < 71(ng+1) < ... and 7(n) — oo;
(i) Trny < Trmy+1 and I'y < Tryg1, Y0 > ng.
Lemma 3.1.54. [19] Assume that {s,} is a sequence of nonnegative real numbers

such that

Sni1 < (1= 9)8n + YnOn (3.61)

and

Spp1 < Sp — Ny + tp (3.62)

for eachn > 0, where {7, } is a sequence in (0,1), {n,} is a sequence of nonnegative

real numbers, {0,} and {t,} are real sequences such that

(2) 22020 T = 00,

(b) limy_ee t = 0,



(¢) limy—oo M, = 0 dmplies imsup,,_, . 9, < 0 for any subsequence {ny} of

{n}.

Then lim,,_,o S, = 0.



CHAPTER IV

MAIN RESULTS

4.1 On solving proximal split feasibility problems and applications

4.1.1 Algorithms and Convergence Theorem

Let H; and Hs be real Hilbert spaces. Let f : Hy — RU{+oc} and g : Hy —
RU{+0o0} be proper, lower semi-continuous and convex functions and A : H; — Hj
be a bounded linear operator. Denote by €2 the solution set of the split proximal

feasibility problem. We introduce the following results:

Algorithm I.
Step 1. Choose an initial point xg € Hy;

Step 2. Assume that {x,} has been constructed. Set
1
() = II(7 = proxy,) Az, (4.63)
with | Vh(z,)| # 0 for each n > 1.

We compute x, 1 via the following manner:
Tny1 = apt+ (1 — ay)proxy | @, — anA (I —prox,,) Az, |, (4.64)
for each n > 1, where u € Hj is fixed, A > 0, {a,,} C (0,1) and {p,} C (0,4).

Theorem 4.1.1. Suppose that Q # O and assume that {c,} and {p,} satisfy the

conditions:
(C1) lim, oo v, = 0;
(C2) D% oy = 005

(C3) liminf, . pn(4 — pn) > 0.

Then the sequence {x,} converges strongly to z = Pqu.



Proof. Let z = Pou. Then z = prox, ;2 and Az = prox,,Az. Note that
Vh(z,) = A*(I — prox,,) Az,. (4.65)
So, since I — prox,, is firmly nonexpansive, using (2.10), we have

(Vh(zy),xn —2) = (A*(I — prox,,) Ay, 2, — 2)
= ((I — proxy,)Awz,, Az, — Az)

= ((I = prox,,)Az, — (I — prox,,)Az, Az, — Az)

> ||(I = prox,,) Az, ||* = 2h(z,,). (4.66)
Using (4.66), we obtain
h(x,) 2
Tp — pn—=————-=Vh(z,) — 2
o= r e 2l )
h?(2,) h(zn
= |lzn = 21* + Ph e 2%7 Vh(zn), Tn — 2
¥~ i, e )
(In) h?(In)
R I e E iy e
h? ()
= xn—ZQ—pnél—pnin. 4.67
o = 217 = a4 = p2) T (4.67)
Since {p,} C (0,4), it then follows that
h(x,)
P TEN U R L (4.68)

Next, we show that {z,} is bounded. Consider

241 — 2|
= ‘a (u—2) 4+ (1 — ) (prox,s(z, — p MA*(I—prox )Az,) — 2)
" ) P = P T, 2 )i
h(zn)
< apllu—z||+ (1 —an)l||lzn — pn—=—"5Vh(x,) — 2
=2l (1 = ) = pu e S V()
< apllu =z + (1 — an)ljzn — 2] (4.69)

It follows, by induction, that

[n — 2] < max{{lu — 2|, [[zo — 2[[} (4.70)



and hence {z,} is bounded. Using (2.11) and (4.67), we see that

[E—t
h(z,) 2
< (1 —on)||proxy (@, — anVh(xn)) —z|| 4200 (u— 2z, Tp41 — 2)
h(x,) 2
< (1-— ) ) —
h(x,) h(x,) 2
— (1 —ap)||lxy — pp——=——=Vh(z,) — prox,,;(z, — pp——=——=Vh(z,
(1= ) = gy V) = ey (= g V()
+ 200, (U — 2, Ty — 2)
h? ()
< (1—ay :zfn—zQ—l—anpnél—pni" 4.71
(1= anllen = =1 = (1= an)on(d = po) e P (4.71)
h(x,) h(x,) 2
— (1= ap)||xn — pn—=——-—>Vh(x,) — prox,;(r, — pn—=—-—=Vh(x,)
o) hGa)? O ]
+ 200, (U — 2, Tpyq — 2).
Set
Sn = |lzn — 2%, Yn = am, (4.72)
Op =2(u— z,xp01 — 2), by =20, (u—2,Tp41 — 2) (4.73)
and
n = (I—an)pn(d—pn)=———5+ (1 —ap)||Tn — ppi=—r—=Vh(z,
T B [VhzE
h(x, 2
From (4.71), it follows that
|Zne1 — 2|17 < (1 —ap)||lwn — 2|2 + 200 (u — 2,241 — 2) (4.75)

and
h2(z,,)
T _Z2 S xn_zz_ ]_—Oén n4_p"7n
[Em— [ 12— ( )t = P TG AT
h(z,)
(= ez = P,y ¥ )
h(zx,) 2

—pI‘OXAf (,’L’n - anVh(xn))

+ 20, (U — 2, Tpyq — 2). (4.76)



It is easy to cheek that lim,, .. t, =0 and >~ =, = oo by using (C1) and (C2),
respectively. In order to apply Lemma 3.1.54, we need to show that limy_.. 7, =0

implies lim sup;,_, ., 0,, < 0 for any subsequence {n;} of {n}.

Suppose that limy_.., 7, = 0 for any subsequence {n;} of {n}. By (Cl)
and (C3), it follows that

. h(xy,)
lim —— " = 0 477
k—oo || Vh(zy,)|| ( )
and
e T e TSR T e T

(4.78)
We note that {Vh(z,, )} is bounded. Indeed, by the Lipschitzian continuity of Vh

and the boundedness of {z,, }, we obtain

IVAza ) < [IVA(2n,) = VA + IVA(2)]]

< AP, = 2l + [IVA)]. (4.79)
So, by (4.77), we obtain
klim h(z,,) =0 (4.80)

for any subsequence {n;} of {n}. Since {z,} is bounded, there exists a subsequence

{z,,} such that x,, — x* and

limsup(u — z,z, — 2) = lim(u — 2z, 2, — 2). (4.81)

n—00 =00

By the lower semi-continuity of h, we have

0 < h(z*) <liminf A(z,,) = lim h(z,,) = 0. (4.82)
Hence we have
1
h(z") = lI(I — prox,,) Az"|| = 0. (4.83)

Thus Az* is a fixed point of the proximity operator g, that is, 0 € dg(Az*) or Ax*

is a minimizer of g.



Next, we show that z* is also a minimizer of f. Observe that

||$nk — PTOX)\ y T, ||

h(zn,)
< ng ng ~ Mn — h n
< om = G = oo ey V)|
h(n,) h(n,)
o R ) s o = V)|
h(zxy,
+ HPI"OXAf(fL"nk — Pny, mvm%k)) — PTOX)\pTny,
h(n,)
< 200 e (4.84)
VA, )l
h(zn,) h(n,)
e = o Ry V) = Prosas o = s V) |
This implies, by (4.77) and (4.78), that
khi& |2, — Prox, s, || = 0 (4.85)

*

for any subsequence {n} of {n}. Note that prox,;, is nonexpansive and z,, — z*.
So, by the demiclosedness principle [17], we conclude that z* is a fixed point of the
proximity operator of f. This shows that z* is also a minimizer of f. Therefore,

x* € €). On the other hand, we observe that

||Ink+1 — Ty, ||

h(@n,
<l (1= ) [P0y (o, = o V) ~
< ank”“ - x”k“
h(zxy,
+ (1 - ank) Prox, s (xnk — Prny, WVh(Ink))
N
()
o= V)|

()

ng ~ FPngii~1/. \Ilo h, n - 4n
(e = o R P )]

+ (1 —ap,)

= anflu—an]

h(xnk)

+ (1 —an,) PToX) f (%;c — Pny, th(%k))
g — oy MEw) o
(o = P e o) |
(1= ap ) ) g (4.86)



as k — oo. Hence, by (2.3), we obtain

limsup(u — 2, Ty, +1 — 2) = limsup(u — 2, x,, — 2)
k—o0 k—o0

< limsup(u — z,x, — 2)

n—~0o0

= lim(u—z,x,, —2)

1—00

= (u—2z,2"—2)

IN

0. (4.87)

This implies that

limsupd,, <0 (4.88)

k—o00

for any subsequence {n;}. Therefore, by using Lemma 3.1.54, we conclude that

$p = ||z, — 2]|* — 0. Hence z,, — 2z = Pou. This completes the proof. O

When f = d¢, g = dg the indicators functions of nonempty closed and

convex sets C, () of Hy and Hs, respectively, we obtain the following results:

Algorithm II.
Step 1. Choose an initial point xq € Hy;

Step 2. Assume that {z,} C C has been constructed. Set h(z,) = 3||(I —

Po)Axz,||* with [[VA(z,)|| # 0. We compute 2,1 via the following manner:

h(zn)

e PQ)A:L'n) (4.89)

Tpa1 = opu+ (1 —ay,) Pe <xn
for each n > 1, where u € C'is fixed, {a,} C (0,1) and {p,} C (0,4).

Corollary 4.1.2. Suppose that © = C' N A7(Q) # 0 and assume that {a,} and
{pn} satisfy the conditions (C1)-(C3). Then the sequence {x,} converges strongly

to z = Pau.

Remark 4.1.3. In the case of ||[Vh(z,)| = 0, we see that Algorithm I reduces to

the following: zo € H; and

Tny1 = apu+ (1 — o) proxy (o, (4.90)



for each n > 1, where v € H; is fixed, {a,} C (0,1) and A > 0. If the sequences
{a,,} satisfies (C1) and (C2), then the sequence {x,} converges strongly to z =
Prgmin fu. Since Vh is continuous, it follows that Vh(z,,) — Vh(2). So, we obtain
Vh(z) = 0 because ||[Vh(zx,)|| = 0. This shows that Az is a minimizer of g. Hence

{z,} converges strongly to a solution of (2.1).
Remark 4.1.4. We highlight our work in the following inclusions:

(1) The strong convergence theorems for solving the proximal split feasibility
problem of two convex functions established in this paper mainly improve and
generalize the results obtained by Byrne [4], Lopez et al. [23] and Moudafi-Thakur
133].

(2) We obtain strong convergence theorem by using a simpler and more
explicitly than that of Moudafi-Thakur [33] which may be required an implicit

computation.

4.1.2 Numerical examples

In this section, we give numerical examples to support our main theorem.

Example 4.1.5. Let f: R* - RU {400} and g : R® — RU {+00} be defined by

fl@) = ||lzl]* + (2,4, =5)z + 10 (4.91)
and
g(z) = ||=|* - (8,10, —8)z — 5, (4.92)
1 0 2
respectively. Let A= | —1 3 4 | . Solve the following proximal split feasibility
2 10
problem:

Find 2* € R? such that z* minimizes f and Ax* also minimizes g.



We can check that z* = (—1,—2,2.5) is a minimizer of f and Az* =

(4,5, —4) minimizes g. We next show the convergence behavior of the sequence

in Algorithm I by using our conditions. Let v = (1,1,1) and zy = (—2,4, —3).

10-3

Choose A = 1, oy, = 73

and p, = 2 for all n € N. Computing Algorithm I,

iteratively, we obtain the following numerical results.

n Tn Az, f(xn) | g(Alzn))
1 | (-2.00000,4.00000,-3.00000) | (-8.00000,2.00000,0.00000) | 66.000000 | 107.000000
5 | (-1.00362,-1.95651,2.47069) | (3.93775,5.01684,-3.96376) | -1.247236 | -61.994527
10 | (-0.99977.-1.99961,2.49974) | (3.99971,4.99992,-3.99915) | -1.250000 | -61.999999
15 | (-0.99987.-1.99973,2.49987) | (3.99988,5.00016,-3.99947) | -1.250000 | -62.000000
20 | (-0.99989,-1.99981,2.49988) | (3.99987,4.99997,-3.99960) | -1.250000 | -62.000000
25 | (-0.99992,-1.99984,2.49992) | (3.99992,5.00009,-3.99969) | -1.250000 | -62.000000
30 | (-0.99993,-1.99988,2.49992) | (3.99991,4.99998.-3.99973) | -1.250000 | -62.000000
35 | (-0.99994,-1.99989,2.49995) | (3.99995,5.00006,-3.99978) | -1.250000 | -62.000000
40 | (-0.99995,-1.99991,2.49994) | (3.99994,4.99999.-3.99980) | -1.250000 | -62.000000
45 | (-0.99996,-1.99991,2.49996) | (3.99996,5.00005,-3.99983) | -1.250000 | -62.000000
50 | (-0.99996,-1.99993,2.49995) | (3.99995,4.99999,-3.99984) | -1.250000 | -62.000000

From Table 1, the minimum values of f and g are -1.25 and -62, respectively. The

errors of ||z,41 — x,||2 are plotted in the following figure.

Table 1 Numerical results for Algorithm I

x10™




Figure 1 Errors plotting of Table 1

Example 4.1.6. Solve the following unconstrained linear equation system: find

z* in R® such that Az* = b, where

2 3 -1 1 6 —20
-2 -4 1 -2 5 21

A= -1 =2 -2 -5 2 |, 6
5 1 -3 3 =3 —15
4 2 4 2 4 18

Let u=(1,1,1,1,1)T and 2y = (=3, 1,4, —2,0)T. Choose A = 1, i, = \}%

and p, = 2 for all n € N. Computing Algorithm II iteratively, we obtain the

following numerical results.

n ) [Zn41 — 2nll2

1 | (-3.00000,1.00000,4.00000,-2.00000,0.00000) 1.906981E+01
50 | (0.70266,-1.46469,2.52074,-0.85842,2.42700) 1.678374E-02
100 | (0.82396,-1.68393,2.71636,-0.91545,2.25244) 5.873192E-03
150 | (0.89597,-1.81311,2.83231,-0.94998,2.14917) 2.054463E-03
200 | (0.93856,-1.88954,2.90090,-0.97041,2.08809) 7.183362E-04
250 | (0.96375,-1.93475,2.94148 -0.98250,2.05196) 2.510188E-04
300 | (0.97865,-1.96149,2.96548,-0.98965,2.03060) 8.764489E-05
350 | (0.98746,-1.97732,2.97968,-0.99389,2.01797) 3.056299E-05
400 | (0.99268,-1.98669,2.98809,-0.99640,2.01049) 1.063548E-05
450 | (0.99577,-1.99226,2.99308,-0.99789,2.00606) 3.687309E-06
500 | (0.99761,-1.99558,2.99606,-0.99878,2.00341) 1.269242E-06
550 | (0.99874,-1.99762,2.99789,-0.99934,2.00180) 4.299900E-07

From Table 2, the solution of the linear equation system is (1, —2, 3,

Table 2 Numerical results for Algorithm II

—1,2)7.




4.2 The Modified Inertial Relaxed CQ Algorithm for Solving the Split

Feasibility Problems

4.2.1 Algorithms and Convergence Theorem

We propose the modified inertial relaxed CQ algorithm as follows:

Algorithm 3.1 Let f : Hy — H; be a contraction (i.e. there exists a
constant a € (0,1) such that ||f(z) — f(y)|| < al|lz — y|| for all x,y € H;) and let
{a,} € (0,1), {6,} C [0,1) and {p,} C (0,4). Take zo,z; € H; arbitrarily and

generate the sequences {z,} and {y,} by the following manner:

Yn = Tp + 0n<xn - xn—l)u

Tnr1 = FPo, [anf(yn) + (1 - an)(iyn - Tnvfn(yn»]v n > 1. (4’93)

Here we set

T = p fa(yn)
IV )12+ 1V ga(yn) 112

for all n € N. We remark that if Vf,(y,) = Vg.(yn) = 0, then y, is a solution of
SFP.

(4.94)

We next prove the strong convergence of the sequence generated by the

proposed algorithm.

Theorem 4.2.1. Assume that {a,} C (0,1), {p,} C (0,4) and {6,} C [0,6),

where 6 € [0,1) satisfy the following conditions:

(C1) lima, =0 and > «, = 00;

n—00 n=1

(C3) lim z—"L

Ty — Tp_1|| = 0.

Then the sequence {x,} generated by Algorithm 3.1 converges strongly to a
solution in SFP.

Proof. Let z = Psf(z). Then z € C C C,, and Az € Q C Q, for all n € N. It



means z = Pp,z and Az = Py, Az for all n € N. Set v, = v, — 7,V f,.(y) and

wyp, = o f(yn) + (1 — ay)v, for all n € N, Then we obtain
lyn — 2l = [lzn — 2+ On(2n — 201 ||
< Nap = 2| + Onllzn — zo—a |- (4.95)

Since (I — Pg,,) is firmly nonexpansive,

(V) yn —2) = (I — PQn)Ayna Ay, — Az)

> ||(I = Po.)Ayn|”

= 2fn(yn>’ (4’96>
Using (4.94) and (4.96), it follows that
|vn — Z||2 = |yn — 7V fulyn) — Z||2

= Hyn - Z||2 + TﬁHan(yn)Hz - 2Tn<vfn(yn)vyn - Z)

< Hyn - Z||2 + Tszfn(nyHz - 4Tnfn(yn)

T i (yn) IV )12
" VGl + [Vgntga e Y Fn s
4 fa(yn)
TG + [N an P
f2(yn)
S Ynp — 2 2 + pi 3
o =21+ P 7 P - IV an P
Y fa(yn)
TG + [N an P
2
- Yn — <% _pn4_pn . 4.97
lvn =2 = et =0+ v 407
So, since p, € (0,4), we have for all n € N,
low = 211 < llyn — =l (4.98)

Thus, using (4.98) and the nonexpansiveness of Pg, , we obtain

[2nt1 =2l = [ Po,wn = Po, ]|
< fwn = 2]

= llan(f(yn) = f(2)) + an(f(2) = 2) + (1 — o) (v — 2)|



< @y = zll + anl f(2) = 2) + (1 = an)llon — 2|
< anallyn = 2l + anll f(2) = 2l + (1 = an)llyn = 2|

= (I=an(l = ))llyn — 2l + anllf(2) — 2] (4.99)
Combining (4.95) and (4.99), we immediately obtain

211 = 2] < (A =n(l=a))|zn = 2]+ (1 = n(l = a))bhllzn —zna | +anl f(2) = 2]

(4.100)
By conditions (C1) and (C3), we see that
1—a,(1—- 0.,
lim o, = lim (M) I\l — 2pa]| = 0, (4.101)
n—0o0 n—oo 1 — an

which implies that the sequence {o,} is bounded. Putting

M = max {M,supan}

-« neN
and using Lemma 3.1.52 (i), we conclude that the sequence {||x,, — z||} is bounded.
This shows that the sequence {x,} is bounded and so is {y,}. On the other hand,

we see that

lyn — 217 = |20 — 2 + Oy — 20) P
= lzn — 2||* + 20, (xp — 2,20 — 2py) + 02 || 2 — 20_1]|%(4.102)

and, from (3.54)

1 1 1
(T — 2,Tp — Tpq) = —§||l’n_1 — z||2 + §||:En — z||2 + §||:En - l’n_1||2. (4.103)

Combining (4.102) and (4.103), we obtain, since 6,, € [0, 1),

lyn = 21" = Non = 2l* + On(llwa—s = 2I* + llzn — 2II* + [lzn — 20 [|)

+9121Hxn - xn—1||2

IN

lzn = 2017 + On(llen — 2II* = lzn-1 — 2]%)

420, || — 212 (4.104)
Using (3.55), (4.97) and the firm nonexpansiveness of Pg,, we also have

lZner = 2l = [1Pe,wn — Pe, 2|



< lwn = 2|* = || P, wn — wy|?
= lan(f(yn) — 2) + (1 = an)(vn — 2)|I> = || Po,, wn — wy|?
< (1 - Ozn)an - Z||2 + 2O‘n<f(yn) — %, Wp — Z) - ||Pann - wn”2

< (A —aw)llyn — 2[I7 = (1 — an)pn(4 — pn) IV ()12 + [V g (yn) |12

+ 200, (f (Yn) — 2, wp — 2) — || P, wy, — wyl?. (4.105)

Combining (4.104) and (4.105), we thus have

lner = 2l < (L= an)llzn — 2l + (1 = an)bn(llzn — 2/° = 20—y — 2[°)

+ 2(1 — )0 || — 21

f2(yn)
- - Ukp n4_ n
(= an)on(d = P T E S + [V an P
200 (f(yn) = 210 — 2) — | Pt — wal”. (4.106)

Set T, = ||z, — 2| for all n € N. We next consider the following two cases.

Case 1: Suppose that there exists a natural number N such that I',,,; < T,
for all n > N. In this case, {I',} is convergent. From (C1) and (C2), we can find a
constant o such that (1 — ay,)p,(4 — p,) > o > 0 for all n € N. So (4.106) reduces

to

Fopr < (T—a)ln + (1 —0)0, (T — Tprt) +2(1 — an)bnl|zn — 2o ||?
f2(yn)

- + 20, n) = % Wp — %
— || Po,wn — wy)?, i
which gives
2

(Va2 + (IVan(yn)ll —
+ 2(1 — )0, ||z, — :)sn_1||2

+ 200, (f(yn) — 2,0, — 2). (4.108)

It is easy to see that (C3) implies 0, ||z, — z,_1|| — 0 since {a,,} is bounded. Since
{I',,} converges and «,, — 0,

J2(yn)
IV fu () 17 + [V gn(yn) |12

—0 (4.109)



asn — o00. It is easily checked that {V g, (y,)} is bounded. Also, we have {V f,,(y.)}

is bounded since {y,} is bounded. Indeed, by Lemma 3.1.51 (iv), we have

IV faya)ll = 1V fulyn) = Va2 < ANy — 2] (4.110)
So from (4.109), we conclude that f,(y,) — 0 as n — oo, i.e.,
(I = Pq,,)Ayall — 0, (4.111)

as n — 00. Since dq is bounded on bounded sets, there exists a constant p > 0

such that ||e,|| < p for all n € N. From (4.111) and Py, (Ay,) € Q,,, we have

q(Ay,)

IN

<5n> Ay, — PQn(Ayn)>
< ull( = Pg,) Ayl

0, (4.112)

}

as n — oo. Since {y,} is bounded, there is a subsequence {yy,, } of {y,} such that
Yn, — =* € Hy. It also follows that Ay,, — Az* € H,. By the lower-semicontinuity
of ¢, we have

q(Az*) < lilzgn infq(Ay,,) <0. (4.113)

This shows that Az* € ). We next prove that z* € C'. Again, using (4.107), we

have

(1 — an) | Poywn —wa|* < (T = Toga) + (1 — )0, (T — Tpiy)
+ 2(1 — )0, ||z, — :)sn_1||2

+ 200, (f(yn) — 2, w0, — 2), (4.114)

consequently, as n — oo,

| Pe, wy, — wy|| — 0. (4.115)

By the definition of C,,, we obtain

c(wy) < (&n, w, — Po,wy,) < Kl|lw, — Po,w,|| — 0, (4.116)



as n — 00, where k is a constant such that ||¢,|| < k for all n € N. We next

consider the following estimation:

||'Un o y"” = ||yn - Tnvfn(yn) - yn”
= Pn Y £ (v
IV () |12+ 11V g () || IV )
o0 (4.117)
as n — oo. We also have

as n — oo. Hence, since y,, — z*, there is a corresponding subsequence {wy,, } of

{w,} such that w,, — z*. From (4.116), it follows that

c(z”) < liminfe(w,,) = 0. (4.119)

k—o00

So we obtain z* € C' and hence z* € S. From (3.53) we obtain

lim_)sup(f(z) —zZ, W, —2) = ]}LIgo<f(z) — 2, Wy, — %)
= (f(z) —z2"—2)
< 0. (4.120)

On the other hand, we see that

lw, — 2|I> = (w, — 2z, w, — 2)
= an(f(yn) — f(2),wn — 2) + A (f(2) — 2z, Wy — 2)

+(1 — an)(vy — 2, W, — 2)

< anallg, — 2l — 2l + an(f(2) = 2w, = 2)

(1= an)fon = 2| lwn = 2|
< (1= an(1 = )llyn — 2lllwn = 2ll + onlF(2) = 2,00 — 2)
< (- a1 -y (L=l =Py

+a, (f(2) — z,w, — 2), (4.121)



which gives

1 —a,(l—a)

L2 l—al—a),
i =2l < Tl ==l
2au,
+m<f(z) — 2, Wy, — Z)
1—a,(1—a) 5
< - /4 N n - en n - n—
< = = 2]+l )

20,
i + a,(l —a) ()
_ <1 20, (1 — )

1+ on(l—a)

-z, W, — 2)

) (lzn = 201 + 20020 — @n-1]||2n — 2]

20y,

2| — T |?) +

(f(2) = z,w, — 2). (4.122)

Then, by (4.122), we obtain

|lzns1 — 21" = [[Po,wn — 2|
< Jhwn = 2|?
20,,(1 — @) 5
< - n 2971 n -~ 4n— n
< (1= 220 = 1P+ 200l — sl 2]
02— ant|2) + 2 () — 2w — 2). (4.123)
" 1+ a,(1—a) ’
Put M; = supl|z, — z|| and v, = % for all n € N. Tt is easily checked that

neN

Yn € (0,1) for all n € N and Y 7, = co. From (4.123), it follows that

n=1

Lorr < (L= + 200 )|2 — 2| M+ On|2n — 21

+ #&_a)q(z) — 2wy, — 2). (4.124)

Applying Lemma 3.1.52 (ii) and using (4.120) and the conditions (C1) and (C3),
we conclude that T',, = ||z, — 2||* — 0 and thus z,, — 2 as n — occ.

Case 2: Suppose that there exists a subsequence {I',.} of the sequence

{I's.} such that I',,, < I',,,4; for all i € N. In this case, we define ¢ : N — N as in

(3.60). Then, by Lemma 3.1.54, we have I'y,) < Iyy41. From (4.106), it follows

that

Pymr < (1= aym)lym) + (1 — aym)Opm) (L) — Dym)—1)

+ 2(1 — o)) Oy | Ty — Tpmy—1 |



5 wi(n) (yw(n))
IV fot) Wum)1? + 1V Gy Yo
— (1 = o)) | Py iy Wisin) — Wy 12

+200(n) {f (Ypn)) — 2 Wy(n) — 2), (4.125)

which gives

. £y Wom)
IV fitm) W) + 1V Gy Yo

IN

(1 = aym)) Oy (Lymy — Dymy-1)
+ 2(1 = ) By | Tpn) — Ty 1[I

+ 20y () (f (Yp(n)) — 2 Wyn) — 2)

IN

(1 = aym))Opm) 1Ty m) — Typmy-1l]
(VT + VTomy-1)

+ 2(1 — o)) Oy | Ty — Tpm)—1l

+ 20y () (f (Yp(n)) — 2 W) — 2)
— 0 (4.126)

as n — oo. It follows that fym)(Yym)) = (I — P, ) Ay |l — 0. Similarly, by

(4.125), we can show that

lim ||Pcw(n)w¢(n) — wd,(n)H = 0 (4.127)

n—oo

and by (4.118)
T {wy) = Yyl = 0. (4.128)

Now repeating the argument of the proof in Case 1, we obtain
limsup(f(z) — 2, wym) — 2) < 0. (4.129)

On the other hand, observe that

|Ypn) — Tyl = Opam) | Tem) — Tym)-1l] — 0, (4.130)

as n — oo. It follows that |[zym)+1 — Tyw)|| — 0 as n — oco. Indeed, by (4.127),
(4.128) and (4.130), we have

[Tyt — Tym)ll = [ PoyWem) — Tym)ll



< N Peymwym)y — Wypm)ll + lwpm) — Ypmll + 1Ypm) — Tyl

— 0, (4.131)

as n — 00. Using (4.124), we have

Tyt < (1= ) Tom) + 200m) | Tpm) — Tym)—1 1My + Oy |60y — Tpm)-1 [

200(n)
Z) = Z,Wypn) — Z), 4.132

which implies

Yooy < 20pm)1Tom) = Tomy—1 My + Oy ) — Ty I
200p(n)

+ Z) — 2, Wy(n) — Z)- 4.133
e e (UORERTNEE (4.133)
Hence
20y(n) Op(n)
Pymy < @) — Tpm)—1 M1 + === T ym) — Tym)—1 )
V(n) Vap(n)
1

Hence from (C3), (4.129) and (4.131), we obtain

lim supl'y ) < 0. (4.135)

n—oo
. . . . 2 o
This means Jir&Fw(n) = nh_}n(r)10||at¢(n) —z||* = 0. So we have ) — 2z as n — o0.

On the other hand, we see that

[zymr =2 < Nzpmer = Tom | + |l2pm) — ||

— 0, (4.136)

as n — oo. By Lemma 3.1.54, we have I',, < I'y,)41 and thus
L, = |z, — 2[1* < |lzgpm+1 — 2]|* — 0. (4.137)
This concludes that x,, — z as n — oo. We thus complete the proof. O

Remark 4.2.2. We remark here that the condition (C3) is easily implemented in

numerical computation since the valued of ||z, — z,_1|| is known before choosing



6,,. Indeed, the parameter 6,, can be chosen such that 0 < 6,, < 6,,, where

. wn .
g — min { Tzn—an_1]’ 9} if Tp # Tna,

=
0 otherwise,

where {w,} is a positive sequence such that w,, = o(a,,).

We next consider the case when the norm of operators can be easily calcu-

lated.

Algorithm 3.2 Take xg, 27 € H; and generate the sequence {z,} by the

following manner:

Yn = xn_'_en(xn_xn—l)’

Tnp1 = Foulanf(yn) + (1= an)(yn = AV ful(yn))], (4.138)
where {a,,} € (0,1), {6,} C [0,1) and {\,} C (0,00).

Theorem 4.2.3. Assume that {a,,} C (0,1), {\,} C (0,00) and {6,} C [0,6),
where 0 € [0,1) satisfy the following conditions:
(C1) lim oy, =0 and > a, = oo;
n— o0 1

(C3) lim z—"L

Ty — Tp_1|| = 0.

Then the sequence {x,} generated by Algorithm 3.2 converges strongly to
the solution of SFP.

Proof. Since the proof line is closed to that of Theorem 4.3.1, we just give a sketch
proof. Let z = Psf(2). Set v, = ¥y — M\ Vfu(yn) and w,, = o f(yn) + (1 — ap)vp
for all n € N. We first show that the sequence {z,} is bounded. To this end, it
suffices to show that ||v, — z|| < ||y, — 2|| for all n € N. By using the argument as

in Theorem 4.3.1, we can show that (V f,(yn), yn — 2) > 2f.(yn). It follows that

||Un - Z||2 = ||yn - Z||2 + )‘gz||vfn(yn)||2 - 2)‘n<vfn(yn)>yn - Z>

< Hyn - Z||2 + )‘i||vfn(yn)||2 - 4)‘nfn(yn>



<y = 2P+ XA = Po,) Ayall® = 4Xn fu(yn)
= Hyn_Z||2+2>‘3L’|A||2fn(yn) _4>‘nfn(yn)
< Hyn - Z||2 - 2>\n(2 - >\nHA||2>fn(yn) (4139>

From (C2), we have ||v, — z|| < ||y, — 2| for all n € N. By (4.105) and (4.139), we

have

21— 2> < (1 —an)llzn — 2] + (1 = an)bu(zn — 2I° = 201 — 2[?)
+ 2(1 — )0y |7, — xn—1||2 — (I = an) (2 — >‘nHA||2)fn(yn)

+ 2an<f(yn) — 2, Wn — Z> - ||Pann - wnHz- (4140)
Set T, = ||z, — z||* for all n € N. We next consider the following two cases.

Case 1: Suppose that there exists a natural number N such that I',,,; < T,
for all n > N. In this case, {I',} is convergent. From (C1) and (C2), we can find a

constant o such that (1 — )\, (2 — \||4]|?) > o > 0 for all n € N. So we obtain

Fopr < (T—a)ln + (1 —0)0,(Ty — Tprt) +2(1 — an)bnl|zn — 2 ||?

— 0 fulYn) + 200 (f(yn) — 2z, Wy — 2) — [ Po,wp — wn||2v (4.141)
which implies

Ofalyn) < (Tn—Toug1) + (1 —an)0p (T — Tht) +2(1 — ) Oz, — xn—1||2

+ 20, (f(yn) — 2z, Wy, — 2). (4.142)

This shows, by (C1) and (C3), that f,(y.) = [|({ — Po,)Ay.|| — 0 as n — oo.
Similarly, we can show that ||Pg, w, — w,|| — 0 n — oco. Following the proof line

as in Theorem 4.3.1, we can prove that {x,} converges strongly to z.

Case 2: Suppose that there exists a subsequence {I',,, } of the sequence {I',,}
such that I',, < I',,, 41 for all ¢ € N. This case can be done by a similar argument

as in Case 1. So we omit the rest of proof. We thus complete the proof. O



4.2.2 Numerical examples

In this section, we provide some numerical examples and illustrate its perfor-

mance by using the modified inertial relaxed CQ method (Algorithm 3.1).

Example 4.2.4. Let H = Hy = R?, C = {2 = (a,b,¢)T € R?®:a® +b* -5 <0}

and Q = {y = (p.q,r)" € R*: p+r? =2 < 0}. Let f: R® — R® be defined by
1 27

f(x) = 3. Find x* € C such that Az* € Q, where A= 1 3 0

4 1 2

Choose «,, = #1 for all n € N and 8 = 0.5. For each n € N, let w,, = m
and define 6,, as in Remark 4.3.2. We now study the effect (in terms of convergence,
stability, number of iterations required and the cpu time) of the sequence {p,} C

(0,4) on the iterative scheme by choosing different p,, such that infp,(4 — p,) > 0

in the following cases.

Case 1: pp, = 5
Case 2: p, = 75
Case 3: p, = nz—fl;
Case 4: p, = nfl

The stopping criterion is defined by

1 1
E, = 5”% — Pcnffn||2 + §||Axn — PQnAan2 <107

We consider different choices of zy and x; as

Choice 1: zg = (=7,-2,—6)" and z; = (-2,2,-6)7;

Choice 2: zg = (1,2, -5)T and 2, = (0,1, -7)7T;

Choice 3: (1,5 —1)T and 21 = (-3,4, -7)7T;
= (

Choice 4: 1,5,2)" and z; = (3,2,7)T

The numerical experiments for each case of p, are shown in Figure 1-4,

respectively.



Table 1: Algorithm 3.1 with different cases of p,, and different choices of xy and x;

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 12 8 5 4
cpu (Time) 0.003553 0.002377 0.002195 0.002075

Choice 2 No. of Iter. 7 6 4 4
cpu (Time) 0.002799 0.002769 0.002357 0.002184

Choice 3 No. of Iter. 12 9 6 4
cpu (Time) 0.003828 0.002602 0.002401 0.002142

Choice 4 No. of Iter. 27 17 11 9
cpu (Time) 0.007181 0.00343  0.002612 0.002431

Figure 1: Comparison of the itertions for Choice 1 in Example 4.1 Figure 2: Comparison of the itertions for Choice 2 in Example 4.1
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%072
—4—0,=35

Example 4.2.5. Let Hy = Hy =R, C = {z = (a,b,c,d,e)T € R®: a> +1? + % +
d>+e*—04<0}and Q ={y= (p,g,7,5,)T €R> :p+q+7r+s—0.75 <0}
Let f : R® — R® be defined by f(z) = %. Find x* € C such that Az* € Q, where
3 -2 5 -2 3

2 =25 -2 9

A —
2 -3 5 -1 -3
-2 -2 8 -7 =2
Let o, 6, and E, be as in Example 4.2.4. We choose different cases of p,
as follows:

Case 1: p, = 0.5;
Case 2: p, = 1;
Case 3: p, = 2;
Case 4: p, = 3.5.

The different choices of xg and x; are given as follows:
Choice 1: zg = (=3.2,—1,-2.5,5,-3.7)7 and z; = (-2.3,-1.5,5.2, —7.5,7.3)T;
Choice 2: zg = (-2, -5,-3,2,-3)T and z; = (-5,—4,5,-7,7)7;
Choice 3: zg = (3,8,5,—2,8)T and z; = (-2, 5,5, —9,9)%;
Choice 4: xy = (

4.5,0,-2.5,1,3)T and z; = (—3.6,—4.2,1,1.5,8)7.

The numerical experiments are shown in Figure 5-8, respectively.

Remark 4.2.6.
We finally make the following conclusions from the numerical experiments in Ex-

amples 4.2.4 and 4.2.5.



Table 2: Algorithm 3.1 with different cases of p,, and different choices of xy and x;

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 19 10 5 5
cpu (Time) 0.005632 0.003408 0.003223 0.002791

Choice 2 No. of Iter. 18 10 6 6
cpu (Time) 0.00391 0.002683 0.002447 0.002381

Choice 3 No. of Iter. 19 10 6 6
cpu (Time) 0.004233 0.003016 0.002601 0.002575

Choice 4 No. of Iter. 13 7 6 6
cpu (Time) 0.004812 0.003559 0.002922 0.002412

——0,35




1. For each different Cases and different Choices, it is shown that Algorithm
3.1 has a good convergence speed. Indeed, we see that it is fast, stable and

required small number of iterations for seeking solutions.

2. It is observed that the number of iterations and the cpu run time are sig-
nificantly decreasing starting from Case 1 to Case 4. However, there is no
significant difference in both cpu run time and number of iterations for each
choice of xy and z;. So, initial guess does not have any significant effect on

the convergence of the algorithm.

3. The conditions in Theorem 4.3.1 are easily implemented in numerical com-

putations and need no estimation on the spectral radius of AT A.

4. The restriction of metric projections onto C' and () is relaxed by using those

of C), and @),, which have specific forms.

We finally end this section by providing a comparison of convergence of
Algorithm 3.1 with Halpern-relaxed CQ algorithm (2.23) defined by He and Zhao
[21] through Examples 4.2.4 and 4.2.5. For the convenience, let us denote Algorithm
3.1 and Algorithm (2.23) by MIner-R-Iter and H-R-Iter, respectively. Let the
contraction f be defined by f(x) = 0.5z. Set a,, = #1’ Pn = 75’—& and w, = m
for all n € N. Set 8= 0.5 and 3, = 3, as in Remark 4.3.2. The stopping criterion

E, is defined as in Example 4.2.4. For points u, xq and x; picked randomly, we

obtain the following numerical results.

The error plotting of F,, of MIner-R-Iter and H-R-Iter for each choice in

Table 3 is shown in the following figures, respectively.

Error plotting of E,, for Table 3

Remark 4.2.7. In numerical experiment, it is revealed that the sequence generated
by MlIner-R-Iter involving the viscosity term and the inertial technique converges

more quickly than by H-R-Iter of He and Zhao [21] does.



Table 3: Comparison of MIner-R-Iter and H-R-Iter in Example 4.2.4
MIner-R-Iter H-R-Iter
Choice 1 u=(0,-1,-5)T No. of Tter. 6 223
ro = (2,6,—-3)T cpu (Time) 0.001384 0.064889
Ty = (_27 -1, 8)T
Choice 2 u=(1,-2,1)7T No. of Iter. 5 181
rg = (=3,—4,-1)T cpu (Time) 0.000836 0.037471
T = (—5, 2, —1)T
Choice 3 u=(5-3,—-1)" No. of Tter. 6 140
o= (2,1,-1)T cpu (Time) 0.000963 0.026824
T = (_57 37 5)T
Choice 4 u=(-2,-1,4)T No. of Iter. 8 763
ro = (7.35,1.75,-3.24)T  cpu (Time) 0.001311 0.687214

21 = (—6.34,0.42,7.36)7
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4.3 Relaxed CQ Algorithms Involving the Inertial Technique for Multiple-

sets Split Feasibility Problems

4.3.1 Algorithms and Convergence Theorem

We study the inertial relaxed self-adaptive C'QQ algorithm in Hilbert spaces for
solving MSFP (2.17). Denote by S the solution set of the SFP.

Theorem 4.3.1. Let Hy and Hy be real Hilbert spaces and let {C;}i_, and {Q;};_,
be nonempty, closed and convex subsets of Hy and Hs, respectively. Let A : H; —
Hy be a bounded linear operator with its adjoint A*. Assume that {c,},{B.} and

{pn} satisfy the following assumptions:

(C1) lim oy, =0 and > «, = oo,
n—oo n:].

(C3) {B.} € [0, 8], where 5 € [0,1) and lim g—:Hxn — 2,_1]| = 0.

Then the sequence {x,} generated by Algorithm 3.1 converges strongly to
Pgu.

Proof. Set z = Psu. We note that [ — Pgn, (i =1,...,t) and I — Par, (j=1,...,7)
are firmly nonexpansive and V f,,(z) = 0 for all n € N. It follows that

(V) g = 2) = (bl = Pep(a)) + D_NA"(L = Pay) Ay, v — 2)

J=1

t r
= Y LI = Pop)yn, yn — 2) + > N((I = Pgn) Ayn, Ay, — Az)

i=1 j=1



t T
D LI = Por)yall® + D NI = Pon) A, ||?

=1 Jj=1

= 2 (yn). (4.143)

v

So we have

Hyn - Tnvfﬂ@ﬂ) - Z||2 = Hyn - ZH2 + T,2L||an(yn)||2 - 27—n<vfn(yn)a Yn — z>

< Hyn - ZH2 + Tn2||vfn(yn)||2 - 4Tnfn(yn>

= T QM_ZL M
9 — 2| P L P T o u P

f(yn)
= lyn = 201> = pu(4 = pn) r=nrs (4.144)
IV fru () |12
Hence we obtain, for each n € N, since p,, € (0,4)
Hyn_Tann(yn) _ZH < ||yn—2|| (4'145)
On the other hand, we also have
lyn =2l = ll#n — 2 4 Ba(@n — T
< g = 2l + Ballwn — 20 (4.146)
Combining (4.145) and (4.146), we obtain
[zn =2l = flom(u = 2) + (1 = an)(Yn — 0V fulyn) — 2]
< apllu—zf| + (1 —an)llyn — 2] (4.147)

< apllu—z|| + (1= an)l|vn — 2| + (1 — an)Bul|lTn — T ]|

By (C3), we see that §, = U=mbnlenzenmrl g Hence it is bounded. Put

Qn

M = max {||u — z||,supd, }.
n>1
So (4.147) becomes
|Zns1 — 2|l < (1 — an)||zn — 2| + oM. (4.148)

Applying Lemma 3.1.52 (i), we can conclude that {x,} is bounded and also {y,}
is bounded. By Lemma 3.1.50, we see that

IV fa(ym) | = IV fu(yn) = VIu(2)]| < Lllyn — 2], (4.149)



where L = >0 I; + || A|]? > j—1 Aj- This shows that {V f.(y,)} is bounded.

We next compute the following estimation:

lyn = 21" = llzn — 2 + Bulzn — 20a) |

= ||z, — z||2 + 26, {xy — Tp_1, Ty — 2) + ﬁi”l’n - :L’n_1||2(4.150)
Using (3.54), we have
9 1 9, 1 2
(T — Tp_1,0p — 2) = —=||Tn_1 — 2|7 + 2|20 — 2||* + =||xn — zpa |7 (4.151)
2 2 2
Combining (4.150) and (4.151), we obtain

lyn = 217 = [l = 2l1* + Bo(=llzn-1 = 21 + |20 — 2[* + |20 — 0 [*)
+02 |z — T |l (4.152)

<l = 207 + Balllzn = 2lI* = lzn-1 = 2[1*) + 2Bul|20 — 20|

Using (3.55) and (4.144), we have

|ner = 21" = llon(u—2) + (1 = 0)(yn = 7V fu(yn) — 2)|”

< (1= n)llyn = TaVhalyn) = 2lI* + 20m(u — 2, 20p1 — 2)
o o 2 o o fr%(yn)
+2a,(u — 2,211 — 2). (4.153)

Combining (4.152) and (4.153), we derive

lner =2l < (1= )z = 2" + (1 = o) Balllzn — 2II* = [lzn-1 — 2[|)

2
201~ an)ullen — tual — (1 — an)pu(d — m%
+ 20, (u — 2, Ty — 2). (4.154)

Set ', = ||z, — z||? for all n € N. We note, by (C1) and (C2), that there is a
constant o such that (1 — «a,)p,(4 — pn) > o > 0 for all n € N. So from (4.154) we

get

Tpin < (1= )T+ (1= an)Bu(Ty — Thiy) (4.155)



fﬁ(yn)

+ 2(1 — o) Bul|n — 0 ||2 — 2
' IV fru(yn) |2

+ 200, (U — 2, Ty — 2).

We next consider the following two cases:
Case 1: Suppose that there exists a natural number N such that I',,.; < T, for all

n > N. In this case, lim, ., I',, exists. From (4.155), we have

fﬁ(yn)

am < (T =Tps1) + (1 —a,)B.(T, —T,1) (4.156)

+ 2(1 — o) Brl|zn — :)sn_1||2 + 200, (U — 2, Tpyy — 2).

It is easy to check that (C3) implies 5,|xn, — zyn—1|| — 0 since {a,} is bounded.
So, by (C1) and the boundedness of {x,}, we have from (4.156)

falyn)
IV ()2

Since {||V f.(y»)||} is bounded, it follows that f,(y,) — 0 as n — oo. This shows

as n — Q.

that
nh—>nolo (I = Por)ynll =0 (1 =1,2,...,t) (4.157)

and
nh_)n;o |(I — PQ?)AynH =0 (j=1,2,...,7). (4.158)

Since dg; (j =1, ...,r) are bounded on bounded sets, there exists a constant ;1 > 0
such that [|¢}'|| < p (j =1,...,r) for all n € N. From (4.158) and Pgr(Ay,) € QF

(j =1,...,7), we obtain
05(Ayn) < (G Ay — Pop(Ayn)) < pll(1 = Pay) Al — 0, (4.159)

as n — oo. Since {y,} is bounded, there exists a subsequence {y,, } of {y,} such

that y,, — «*. Then Ay,, — Az*. Since g; is weakly lower semi-continuous,
¢;(Ax") < liminf ¢;(Ay,,) < 0. (4.160)

Therefore Az* € Q; (j=1,...,7).



We next show that z* € C; (i = 1, ..., t). By the definition of C" (i = 1, ..., t)
and (4.157), we see that

as n — 00, where ¢ is a constant such that ||| < § (i = 1,...,t) for all n € N. By

the weak lower semi-continuity of ¢; (i = 1,...,t) and y,,, — 2*, we have

¢i(2*) < liminf ¢;(y,,) < 0. (4.162)

k—o0

Hence z* € C; (i = 1,...,t) and consequently, z* € S. From (3.53), it follows that

limsup(u — z,y, — 2) = klim (U —2,Yn, — 2)
= <u — z’x* — z> < 0. (4163)

On the other hand, we see that
|90 — 2nll = Bullzn — 2n-all — 0. (4.164)
Hence, by (4.163) and (4.164), we obtain

limsup(u — z, 2, — 2z) < 0. (4.165)

n—oo

Again from (4.155) we have

Lot < (T—an)lh + (1 —a) BTy — Tprt) +2(1 — @) Bullzn — Tna|?
+ 205, (u — 2, Tpy1 — 2)
< (I=an)ly+ (1= a)Bullen — 2o [ (VTn + VTos1)
+2(1 — ) B || Tn — Zp_1|]? + 200 (u — 2, Ty — 2). (4.166)

From (4.165) and conditions (C1) and (C3), using Lemma 3.1.52 (ii), we conclude

that T, = ||z, — 2]|* — 0 and thus z,, — z as n — oo.

Case 2 : Suppose that there exists a subsequence {I',, } of the sequence {I',,}
such that I',,, < I',,. 41 for all ¢ € N. In this case, we define 7 : N — N as in (3.60).

Then, by Lemma 3.1.54, we have I';(,y < I';(,)41. From (4.155), it follows that

i1 < (1- O‘T(n))r'r(n) +(1- O‘T(n))ﬁf(n)nx'r(n) - x'r(n)—ln(\/FT(N) + \/FT(")—l)



F2 (y-(n))
TN Frtoy (5 ()2
+ 200 (U — 2, Trmy41 — 2), (4.167)

+ 2(1 = ar(n) Brn) | Tr () — Ty [|* —

which gives

2 (@)
I fro G . =

(1 = (1)) Briy |r(n) = Tr(my1 [ (\/Trmy + v/ Trm)-1
+ 2(1 = (1)) Brw 1£7(0) = Tr (-1 12

+ 20 () (U — 2, Tr(ny41 — 2)- (4.168)
Using a similar argument as in the proof of Case 1, we can show that

lim ||(] P T(n))yr(n || = 0

n—oo

lim ||(] P T(n))yr(n || = 0

n—oo

and

lim sup(u — 2, T, — 2) < 0. (4.169)

n—oo

On the other hand, we see that

[Zrmy11 — Tem) | < rllu — eyl + (1 = @) [Yr(m) — 7l

+ (1= ar)) 7@ IV o) (5

- aT(n)Hu B xT(n)H + (1 o aT(n))ﬁTonT( — Tr(n 1||
fT(n (yq— ))
+ L - Qr(n p‘r (n)
Rl 7w |
-0 (4.170)

as n — oo. Using (4.169) and (4.170), we obtain

lim sup(u — 2, Trm)+1 — 2) < 0. (4.171)

n—~00

Again from (4.167) we see that

Arm)lrm) < (1— O‘T(n))/@T(n)HxT(n) — Lr(n)-1 H(\/FT(H) + \/FT(")—1

+2(1 - O‘T(n))ﬁr(n)nxf(n) - ﬂfr(n)—1||2



+ 200 (U — 2, Tr(m)+1 — 2), (4.172)

which gives

6T(n)
Ly = (1= ar(n))~ ( )ler(m — Zrm)-1 | (\/Trm) + v/ Trmy—1)
6T(n)
+ 2(1 — ar(n)) ( )Hx'r(n) - xT(n)—l||2
+ 2(u — 2, )11 — 7). (4.173)

This shows that, by (4.171) and (C3)

lim sup Iy < 0. (4.174)

n—oo

Thus ||z, — 2| — 0. We see that

VI = |2rm+1 — 2l < 2rmy+1 — Zemy || + |70y — 2] — 0, (4.175)

as n — 0o. By Lemma 3.1.54, we also have
Iy <T'imysr — 0. (4.176)
So we can conclude that z,, — z as n — co. We thus complete the proof. O

Remark 4.3.2. We remark here that the conditions (C3) is easily implemented in
numerical computation since the valued of ||z, — z,_1|| is known before choosing

B,. Indeed, the parameter (3, can be chosen such that 0 < 3, < 3,,, where

B B min{m,ﬁ} if Tp# Tnoa,
=

15} otherwise,

where {w,} is a positive sequence such that w,, = o(a,,).

4.3.2 Numerical examples

We provide some numerical examples and illustrate its performance by using
Algorithm 3.1. Firstly, numerical results are shown in different choices of the step-

size p, with different values u, z; and z,. Secondly, the comparison of convergence



rate is made by Example 4.3.3 to show that our algorithm has a better convergence
than that of He et al. [22] defined in (2.35). For this convenience, we denote
algorithm (2.35) by Algorithm 3.2.

Example 4.3.3. [22] Let H, = H, =R3, r=t=2andl, =lb = A\; = \y = 1.
Define

Cy ={z =(a,b,¢)T € R¥: a+b*+2¢ <0},
ng{zz(a,b,c)TER?’:“——I—%—l—i—lgO},
Qr={r=(a,b,c)T €eR?:a>+b—c<0}

Q2:{x:(a,b,c)T€R3:%+%+%—1§0}.

Choose «,, = n%rl for all n € N and § = 0.5. For each n € N, let w,, =
W and define 8, = (3, as in Remark 4.3.2. We now study the effect (in terms
of convergence, stability, number of iterations required and the cpu time) of the

sequence {p,} C (0,4) on the iterative scheme by choosing different p,, such that

infp, (4 — p,) > 0 in the following cases.
Case 1: p, = 1; Case 2: p, = 2; Case 3: p, = 3; Case 4: p, = 3.95.

The stopping criterion is defined by
1¢ 1¢

_ 2 2 —4

E, = 3 ;:1 |20 — Pora,||” + 3 jEZl [ Az, — Pon Az, ||” < 1077

We choose different choices of u, xg and z; as
Choice 1: u = (2,2,-2)T, 2o = (1,1,5)" and z; = (5, -3,2)7;

Choice 2: u = (1,3, -2)7, 2o = (—4,3,-2)T and z; = (-5,2,1)%;

(
Choice 3: u = (4, 6)
(

~3 Lo = (7,5,1)T and 21 = (7, -3, ~1)T;
Choice 4: u = (7,—4,—3)

T
,—
_\T

, 1o = (5.32,2.33,7.75)T and x; = (3.23,3.75, —3.86).



The numerical experiments, using our Algorithm 3.1, for each case and
choice are reported in the following Table 1. Table 1: Algorithm 3.1 with different

cases of p, and different choices of u, r¢ and

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 244 122 81 25
cpu (Time) 0.05129 0.027395 0.015663 0.00472

Choice 2 No. of Iter. 392 196 131 13
cpu (Time) 0.090982 0.04594  0.02693 0.002119

Choice 3 No. of Iter. 351 175 105 22
cpu (Time) 0.099001 0.034915 0.02138  0.00473

Choice 4 No. of Iter. 444 178 88 27
cpu (Time) 0.108428 0.036239 0.016809 0.005466

The convergence behavior of the error F,, for each choice of u, xo and z; is shown

in Figure 1-4, respectively.
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Figure 1: Comparison of the itertions for Choice 1 in Example 4.1
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Figure 2: Comparison of the itertions for Choice 2 in Example 4.1
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Figure 3: Comparison of the itertions for Choice 3 in Example 4.1
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Figure 4: Comparison of the itertions for Choice 4 in Example 4.1
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Remark 4.3.4. We make the following observations from our numerical experi-

ments in Example 4.3.3.

1. For each different cases and different choices, we see that our algorithm is
effective. It appears that Algorithm 3.1 has a good convergence speed and

requires small number of iterations in the experiment.

2. It is observed that the number of iterations and the cpu run time are sig-
nificantly decreasing starting from Case 1 to Case 4. However, there is no
significant difference in both cpu run time and number of iterations for each
choice of xy and z;. So, initial guess does not have any significant effect on
the convergence of the algorithm. However, we note that the sequence {z,}
converges to a solution in MSFP which is of the form Psu. Since the solution
set .S is not singleton, so the choice of u effects on the convergence behavior

of the algorithm.

3. Our conditions appeared in Theorem 4.3.1 are easily implemented in numer-
ical computations. This is because it needs no estimation on the spectral
radius or the largest eigenvalue of AT A and the restriction of metric projec-
tions onto C' and () is relaxed by using those of C,, and @),, which have specific

forms in computation.

We finally end this section by providing a comparison of convergence of

Algorithm 3.1 and Algorithm 3.2. Let o, = n%rl, pn = 3.95 and w,, = % for

(n+1



alln € N. Set 3 = 0.5 and 3, = 3, as in Remark 4.3.2. For points u, = and z;

randomly, we obtain the following numerical results.

Table 2: Comparison of Algorithm 3.1 and Algorithm 3.2 in Example 4.1

Algor 3.1 Algor 3.2
Choice 1 u=(0,1,2)T No. of Tter. 21 31
o = (—4,-2,3)T cpu (Time)  0.004364  0.006537
Ty = (—1, 2, O)T
Choice 2 u=(-1,31)7T No. of Iter. 22 69
w0 = (~1,2,3)T cpu (Time)  0.004626  0.013906
ry = (=7,—4,-5)7T
Choice 3 u=(3,1,3)T No. of Iter. 97 287
w0 = (=5,1,—4)T cpu (Time) 0.021787  0.074538
21 = (=5, -2, —3)7
Choice 4 u=(-1,3,-3)T No. of Iter. 18 161
1o = (3.2645, —2.3458, —5.3245)T  cpu (Time) 0.003854  0.034188

21 = (—2.5801, —3.2654, —3.2564)7

The error plotting of E, of Algorithm 3.1 and Algorithm 3.2 for each choice is

shown in Figure 5-8, respectively.
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Figure 5: Comparison of Algorithm 3.1 and 3.2 for Choice 1 in Example 4.1
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Figure 6: Comparison of Algorithm 3.1 and 3.2 for Choice 2 in Example 4.1
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Figure 7: Comparison of Algorithm 3.1 and 3.2 for Choice 3 in Example 4.1
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Figure 8: Comparison of Algorithm 3.1 and 3.2 for Choice 4 in Example 4.1
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Remark 4.3.5. In numerical experiment, it is revealed that the sequence generated
by our proposed Algorithm 3.1 involving the inertial technique converges more
quickly than by Algorithm 3.2 of He et al. [22] does. This concludes that the
inertial term constructed in Algorithm 3.1 improves the speed of convergence for

solving the MSFP.
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ON SOLVING PROXIMAL SPLIT FEASIBILITY PROBLEMS
AND APPLICATIONS

UAMPORN WITTHAYARAT,' YEOL JE CHO,*”? and PRASIT CHOLAMJIAK'"
Communicated by B. Ricceri

ABSTRACT. We study the problem of proximal split feasibility of two objective
convex functions in Hilbert spaces. We prove that, under suitable conditions,
certain strong convergence theorems of the Halpern-type algorithm present
solutions to the proximal split feasibility problem. Finally, we provide some
related applications as well as numerical experiments.

1. INTRODUCTION AND PRELIMINARIES

Let H; and H, be real Hilbert spaces. Let f : Hi — R U {400} and g :
Hy; — R U {400} be proper, lower semicontinuous and convex functions. Let
A : Hi — H, be a bounded linear operator.

Now we consider the proximal split feasibility problem. Find a minimizer z* of
f such that Ax* minimizes g; that is, find * € argmin f such that

Az* € argmin g, (1.1)

where argmin f = {x € H; : f(z) < f(y),Vy € Hy}, and where argming = {z €
Hy : g(z) < g(y),Yy € Hy}. In what follows, Q = arg min f N A~!(arg min g) will
denote the solution set of the problem (1.1).

The split feasibility problem in finite-dimensional Hilbert spaces was first intro-
duced by Censor and Elfving [4]. It concerns modeling inverse problems which
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arise from phase retrievals and in medical image reconstruction, especially
Q2

intensity-modulated therapy (see [3]). Due to its applications, this problem has

been discussed in many works published in recent years (see, for example, [2], [5],

[10], [12], [13}).
Let C' be a nonempty, closed, and convex subset of a real Hilbert space H with
the norm | - || and the inner product (-, -). For each x € H, there exists a unique

nearest point in C', denoted by Pox, such that

— Poz|| = min ||z — y|. 1.2
lz = Poz|| = min lo —y| (1.2)

Then Pg is called the metric projection of H onto C. For any x € H, we know
that

(x — Pox,y — Pox) <0 (1.3)
for all y € C.

If f and g are the indicator functions of two nonempty, closed, and convex sets
C C H; and Q C H,, respectively, then

0 ifxeC,
400 otherwise,

and
0 if x € Q),
+00 otherwise.

g(x) = dg(r) = {

Then the problem (1.1) becomes the following convex minimization problem. Find
x* € C such that

Az* € Q. (1.4)

This problem is called the split feasibility problem. A classical way to solve the
problem (1.4) is to use the CQ algorithm introduced by Byrne [1, p. 442], which
is defined in the following manner: z; € H; and

Tni1 = Po (xn — pn A1 — PQ)A:En) (1.5)

for each n > 1, where the stepsize p, € (0, ij) and Pgo, Py are the metric

projections on C' and @), respectively.

It is noted that, in general, the operator norm ||A|| or the largest eigenvalue
of A*A may not be calculated easily. To overcome this difficulty, Lopez et al. [9,
Algorithm 3.1] suggested the following algorithm: let x; € Hj, and assume that
{z,} C C has been constructed and that Vh(x,) # 0. Then compute x,; via
the rule

Tni1 = Po (xn — A1 — PQ)Axn) (1.6)

for each n > 1, where p,, = Pn% with 0 < p, < 4 and h(z,) = 3||(I —
Po)Az,||*. Tt was proved that, if inf, p,(4 — p,) > 0, then the sequence {z,}

defined by (1.6) converges weakly to a solution of (1.4).
Recall that the subdifferential of F': H — R U {400} at x is defined by

OF (z)={ye H:F(z)+ (y,z —z) < F(2),Vz € H}. (1.7)
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The proximity operator of F' is defined by

1
proxp () = argmin{ F(y) + 5o~y | (1.8)
for any A > 0. It is seen that
0 € OF (z*) <= x* = prox, p(z"). (1.9)

Hence the minimizers of any functions are the fixed point of its proximity opera-
tor. Moreover, the proximity operator of F' is firmly nonexpansive, namely,

2
<P1"0X,\F(x) — proxyp(y),z — Z/> > ||P1”0XAF(33) - prOX/\F(y)H (1.10)
for all x,y € H, which is equivalent to

HPTOXAF (z) — prox,p(y) ||2
< o —yl? = ||( = prox,p)(z) — (I — prox,p)(»)|” (1.11)

for all x,y € H. Also, the complement I — prox, is firmly nonexpansive. This
suggests that we should employ the technique in fixed point theory for solving
the convex minimization feasibility problem (see [6]).

Recently, Moudafi and Thakur [11, p. 2102] proposed the following split prox-
imal algorithm: x; € H; and

Tpy1 = prox/\unf(xn — pn A1 — prox/\g)Axn), (1.12)

where the stepsize
h(x,) + U(z,)

with

0 < pp <4, h(x,) = %H(I - prox)\g)AanQ, (1.14)
1

l(x,) = §||(I - plro>(M>\f)yan2 (1.15)

and

2 2

0(@a) = /| VA + Vi) (1.16)
They proved that, if € < p,, < % — ¢ for some € > 0 small enough, then

the sequence {x,} generated by (1.12) converges weakly to a solution of (1.1).
We observe, however, that the stepsize sequence {u,}, which appeared in (1.13),
seems to be implicit because of the terms [(z,,) and 6(x,,).

In order to solve the proximal split feasibility problem, we introduce a Halpern-
type algorithm and prove its strong convergence under the condition on the step-
size suggested by Lépez et al. [9, Theorem 3.5]. Then we provide some numerical
experiments to support our main result. In order to complete the proof, we need
the following lemma proved by He and Yang [8].
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Lemma 1.1 ([8, Lemma 7]). Assume that {s,} is a sequence of nonnegative real
numbers such that

Snt1 < (1 = Yn)Sn + YnOn, (1.17)
and
Sn+1 < Sn_nn+tn (118)

for each n > 0, where {7v,} is a sequence in (0,1), where {n,} is a sequence of
nonnegative real numbers, and where {6,} and {t,} are real sequences such that

(a) Zzozo 771 = 007
(b) lim, o t, =0, and
(c) img_yoo M, = 0 implies limsup,_, . 0p

of {n}.

Then lim,,_, s, = 0.

. < 0 for any subsequence {ny}

2. MAIN RESULTS

Let H; and Hy be real Hilbert spaces. Let f : Hi — R U {400} and ¢ :
Hy — RU {400} be proper, lower semicontinuous, and convex functions, and let
A Hy — Hs be a bounded linear operator. We introduce the following results.

Algorithm 1.
Step 1. Choose an initial point xg € H;.
Step 2. Assume that {z,} has been constructed. Set

1
h(z,) = §H(I - prox)\g)A:zzan2 (2.1)

with | Vh(z,)| # 0 for each n > 1.

We compute z,1 in the following manner:

h(zn)

— ppim=——— AT — A 2.2
PGP Pros ). (@2)

Tpi1 = ant + (1 — ) prox, (a:n

for each n > 1, where u € Hy is fixed, A > 0, {«,,} C (0,1), {p.} C (0,4).

Theorem 2.1. Suppose that Q # 0, and assume that {a,} and {p,} satisfy the
following conditions:

(C1) limy, 00 vy = 0,
(C2) > o, =00, and
(C3) liminf, o pp(4 — pn) > 0.

Then the sequence {x,} converges strongly to z = Pou.

Proof. Let z = Pqu. Then z = prox,; 2, and Az = prox,, Az. Note that

Vh(x,) = A*(I — prox,,) Az,. (2.3)
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Thus, since I — prox,, is firmly nonexpansive, by using (1.10), we have
(VI(xy), 2 — 2) = (A*(I — prox,,) Az, x, — 2)
= ((I — prox,,) A, Az, — Az)
= ((I — proxy,) Az, — (I — prox,,)Az, Az, — Az)

> ||(1 - p1r0:><>\g)Aan2 = 2h(x,). (2.4)
Then by using (2.4), we obtain
h(zn) 2
Ty — P Vh(z,) — 2
’ IVh ()|
h?(2n) h(zn
= ||lzn — 2|* + PR 2pn— Vh(zy),z, — 2
Wh(e) P~ AP >
h?(x,) h?(xn)
<Nan = 21 + Pprerr 3 — AP
IVh(zn)||? IVh(zn)||?
h*(@n)
= Nz = 21 = puld = po) o3 (2.5)
IV h(zn)||?
Since {p,} C (0,4), it then follows that
h(zn)
T — Pre) T () — ZH < lan — 2. (2.6)
‘ IVh(z)|[?
Next we show that {z,} is bounded. Consider
[zn1 — 2|
= ‘ an(u— 2)
h(zn)
]-_n n_n—A*]_ An_ ’
+(1-«a )(prOX)\f <x p NZIESIE (I — prox,,) Az ) z)
h(zn)
< apllu =zl + (1 — o) ||z — o5 VA(2,) — zH
IVh(zn)||?
< apllu—z|| + (1 — ap)||zn — 2] (2.7)
It follows, by induction, that
o — 2l < max{Jlu — I, 7o — 211} 2.3

hence {x,} is bounded. Using (1.11) and (2.5), we see that

1041 — 2|2
< (1 — an)||prox,, <xn — pn%Vh(wnD — 2H2 + 200, (U — 2, Tpy1 — 2)
h( n) 2
h(xn)
— (1 — ap)||n — anVh(xn)
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h(z,)
— Prox,; (mn — anVh(xn)>

+ 200, (U — 2, Ty — 2)

2

h2(x,
< (1= allen = 217 = (1= an)onld = po) 0
h(z,)
— (1 —ap)||rn — pp=—-r—=Vh(z,
(1=2n) IO (&)
_ h(zn)
+ 20, (u — 2, X001 — 2). (2.9)
Next we set
Sp = ||Tn — z||2, Vo = Q, (2.10)
O = 2(u — 2, Tpy1 — 2), tn =20, (U — 2, Tpyq — 2) (2.11)
and
hQ(xn) h(xn)
=1 —an)pn(d —pp)—=—7—= + (1 — )|y — pn=——5Vh(z,
e S R [Vh
h(zxy,) 2
_ o — pue) G H . 2.12
prOXAf<I P ||Vh(l‘n)||2 (‘T )) ( )
From (2.9), it follows that
nes — 21 < (1= ) lan — 2l + 2000 — 2,500 — ) (2.13)
and that
[ €ni1 — 2|2
h2(x,
< llea = 217 = (1= an)onld = po) 4T
h(z,)
- 1 - tin n-_ MPnliw—1/,_ ~Nllo n
(= an)fen=r VS >|\2Vh<“' )
_ h(wa)
+ 20, (u — 2, Tp1 — 2). (2.14)

It is easy to check that lim, , ¢, = 0 and that "> v, = oo by using (C1)
and (C2), respectively. In order to apply Lemma 1.1, we need to show that
limy,_s00 M, = 0 implies lim sup,,_, . 6,, < 0 for any subsequence {ns} of {n}.

Suppose that limy_,. 7, = 0 for any subsequence {n;} of {n}. By (Cl) and
(C3), it follows that

lim fi(n,)

— " =) 2.15
3 WGl (2.15)
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and that
. h(zn,)
lim ‘ Ty, — Py ==V h(zy,)
L N C] I '
h(znk) o

We note that {Vh(x,,)} is bounded. Indeed, by the Lipschitzian continuity of
Vh and by the boundedness of {xz,, }, we obtain

|Vh(zn,)|| < || VA(@n,) = VR(2)|| + || VR(z)||

< APz, — 2l + [[VA(Z)]- (2.17)
Hence, by (2.15), we obtain
klim M2y, ) =0 (2.18)
—00

for any subsequence {n;} of {n}. Since {x,} is bounded, there exists a subse-
quence {z,,} such that z,, — z*, and

limsup(u — z,z, — z) = lim(u — 2, x,, — 2). (2.19)
n—00 100

By the lower semicontinuity of h, we have

0 < h(z*) < liminf h(z,,) = lim h(z,,) = 0. (2.20)
1—00 1—00
Hence we have X
h(z") = §H(I — prox,,)Az*|| = 0. (2.21)

Thus Az* is a fixed point of the proximity operator g; that is, 0 € dg(Ax*), or
Ax* is a minimizer of g.
Next we show that z* is also a minimizer of f. Observe that

[0, = proxy, |

h(n,)
< _ _ G S . A
o N R e
h(n,)
o = o 7
h(zy,)
pI‘OXAf (l’nk pnkWVh(xnk)> H
+ Hprox (a: —p MVh(x )> — PIoX, ;@
A\ P p
h(2n,) h(2n,)
VA, ’ b VA )P ’
h(zn,)

This implies, by (2.15) and (2.16), that

kh_}rgo |Zn,, — Proxy s T, || =0 (2.23)
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for any subsequence {n;} of {n}. Note that prox,, is nonexpansive and that
x,, — x*. Thus, by the demiclosedness principle (see [7]), we conclude that z* is
a fixed point of the proximity operator of f. This shows that x* is also a minimizer
of f. Hence x* € (2. On the other hand, we observe that

”xnkJrl - znk”
S Oy, ||u - xnk”

+ (1 - ank)

) o N
P TR ) 7
()

prox,; (iff'nk - PnkWVh(%k))

‘proxv (:vnk

< OénkHu - 'xnkH + (1 - aﬂk)

h(xnk)
= (o0 = P p ey Vi) |
h(xnk)
+ (1= ap,) ‘(l’nk Pnkmvm%k)) Ly,
h(z,
=t (1= ) Joross, (0, = )
nk
h,)
= (2 = sy V) |
h(xn )
+ (1 —ay, pnk—’“
(= ) [ )]
— 0 (2.24)

as k — oo. Thus, by (1.3), we obtain

lim sup(u — z, 2, +1 — 2) = limsup(u — 2z, ,, — 2)
k—o0 k—o0

< limsup(u — z,x, — 2)
n—oo

= lim (u — z,z,, — 2)

1—+00
=(u—2z,x"—2)
<0. (2.25)
This implies that
limsupd,, <0 (2.26)

k—o0

for any subsequence {n;}. Therefore, by using Lemma 1.1, we conclude that
$p = ||z, — 2]|* = 0. Hence x,, — 2z = Pou. This completes the proof. O

When f = 6c and g = Jg are indicator functions of nonempty, closed, and
convex sets C' and () of H; and Hs, respectively, we obtain the following results.
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Algorithm 11.

Step 1. Choose an initial point xg € H;.

Step 2. Assume that {z,} C C has been constructed. Set h(z,) = 3||(I —
Po)Axz,||* with [[Vh(z,)|| # 0. Compute 41 in the following manner:

P h(zn)
I Vh(za)I?

for each n > 1, where u € C'is fixed, where {a,,} C (0,1) and where {p,} C (0,4).

Corollary 2.2. Suppose that © = C N A Q) # 0, and assume that {a,} and

{pn} satisfy the conditions (C1)-(C3). Then the sequence {x,} converges strongly
to z = Pou.

Tnar = (1= ) Po (1, - A1 - Po)Az,)  (227)

Remark 2.3. In the case of ||[Vh(z,)|| = 0, we see that Algorithm I reduces to the
following: o € Hy, and

Tny1 = ant + (1 — ay,) Prox, ;s , (2.28)

for each n > 1, where u € H; is fixed, where {«a,,} C (0,1), and where A\ > 0. If the
sequence {a, } satisfies (C1) and (C2), then the sequence {x,} converges strongly
t0 2 = Phyg min fu. Since Vh is continuous, it follows that Vh(z,) — Vh(z). Thus
we obtain Vh(z) = 0 because ||[Vh(z,)|| = 0. This shows that Az is a minimizer
of g. Hence {x,} converges strongly to a solution of (1.1).

Remark 2.4. We highlight our work with the following conclusions.

(1) In this paper, we have established strong convergence theorems for solv-
ing the proximal split feasibility problem of two convex functions. These
theorems mainly improve and generalize the results obtained by Byrne
[1], Lépez et al. [9], and Moudafi and Thakur [11].

(2) We obtain strong convergence theorems by using a simpler and more
explicit method than that of Moudafi and Thakur [11] whose approach
may require an implicit computation.

3. NUMERICAL EXAMPLES
In this section, we give numerical examples to support our main theorem.

Ezample 3.1. Let f: R3> — RU{+o00}, and let g : R® — RU{+o00} be defined by

fx) = [[z]* + (2,4, —5)z + 10 (3.1)
and

g(x) = [lz]* = (8,10, =8)x — 5, (3.2)
respectively. Let A = (—;1 % %). Solve the following proximal split feasibility prob-

lem:
Find z* € R? such that 2* minimizes f and Az* minimizes g.

We can check that z* = (—1,—2,2.5) is a minimizer of f such that Az* =
(4,5, —4) minimizes g. We next show the convergence behavior of the sequence in
Algorithm I by using our conditions. Let v = (1,1, 1), and let zy = (—2,4, —3).
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TABLE 1. Numerical results for Algorithm [

n Tn Axy, f(zn) 9(A(zn))
1 | (—2.00000,4.00000, —3.00000) | (—8.00000,2.00000,0.00000) | 66.000000 | 107.000000
5 | (—1.00362, —1.95651,2.47069) | (3.93775,5.01684, —3.96376) |—1.247236 | —61.994527

10 | (—0.99977,—1.99961,2.49974) | (3.99971,4.99992, —3.99915) | —1.250000 |—61.999999

15 | (—0.99987, —1.99973,2.49987) | (3.99988,5.00016, —3.99947) |—1.250000 |—62.000000

20 | (—0.99989, —1.99981, 2.49988) | (3.99987,4.99997, —3.99960) |—1.250000 |—62.000000

25 | (—0.99992, —1.99984,2.49992) | (3.99992, 5.00009, —3.99969) |—1.250000 |—62.000000

30 | (—0.99993, —1.99988,2.49992) | (3.99991,4.99998, —3.99973) |—1.250000 |—62.000000

35 | (—0.99994, —1.99989, 2.49995) | (3.99995, 5.00006, —3.99978) | —1.250000 | —62.000000

40 | (—0.99995, —1.99991, 2.49994) | (3.99994, 4.99999, —3.99980) | —1.250000 |—62.000000

45 | (—0.99996, —1.99991, 2.49996) | (3.99996, 5.00005, —3.99983) | —1.250000 | —62.000000

50 | (—0.99996, —1.99993,2.49995) | (3.99995,4.99999, —3.99984) |—1.250000 |—62.000000

T
1 1 1 1
10 20 30 40 50

Choose A\ =

n

F1cURE 1. Error plotting of Table 1.

1073
n+17?

1, o, =

iteratively, we obtain the following numerical results.
From Table 1, the minimum values of f and g are —1.25 and —62, respectively.
The errors of [|zn11 — 2p[2 are plotted in Figure 1.

and p, = 2 for all n € N. Computing Algorithm |

Example 3.2. Solve the following unconstrained linear equation system: find z*
in R® such that Az* = b, where

2 3 -1 1 6 —20
—2 —4 1 -2 5 21

A=|-1 -2 =2 =5 2|, b=] 6
5 1 -3 3 -3 ~15

4 2 4 2 4 18
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TABLE 2. Numerical results for Algorithm II

550 | (0.99874, —1.99762,2.99789, —0.99934, 2.00180) | 4.299900E—-07

n Ty [Zn41 — Znl2
1 | (=3.00000, 1.00000, 4.00000, —2.00000, 0.00000) | 1.906981E+01
50 | (0.70266, —1.46469, 2.52074, —0.85842, 2.42700) | 1.678374E—02
100 | (0.82396, —1.68393,2.71636, —0.91545, 2.25244) | 5.873192E—03
150 | (0.89597, —1.81311,2.83231, —0.94998,2.14917) | 2.054463E—03
200 | (0.93856, —1.88954,2.90090, —0.97041, 2.08809) | 7.183362E—04
250 | (0.96375, —1.93475,2.94148, —0.98250, 2.05196) | 2.510188E—-04
300 | (0.97865, —1.96149, 2.96548, —0.98965, 2.03060) | 8.764489E—05
350 | (0.98746, —1.97732,2.97968, —0.99389, 2.01797) | 3.056299E—05
400 | (0.99268, —1.98669, 2.98809, —0.99640, 2.01049) | 1.063548E—05
450 | (0.99577,—1.99226, 2.99308, —0.99789, 2.00606) | 3.687309E—06
500 | (0.99761, —1.99558, 2.99606, —0.99878,2.00341) | 1.269242E—06
( )

Letu = (1,1,1,1,1)7, and let 2y = (=3, 1,4, —2,0)7. Choose A = 1, o, = %
and p, = 2 for all n € N. Computing Algorithm II iteratively, we obtain the
following numerical results.

From Table 2, the solution of the linear equation system is (1, 2,3, —1,2)7.
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1 Introduction

Let H be a real Hilbert space with the inner product (., .) and the induced norm ||.||.
Let I denote the identity operator on H. Let C and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H; and H», respectively. The split feasibility problem
(SFP) was first introduced by Censor and Elfving [6], and it can be formulated as
follows:

find x* € C such that Ax* € Q, (1.1)

if such points exist, where A : H} — H» is a bounded linear operator.
We will use Q2 to denote the solution set of (1.1), i.e.,

Q:={x* € C: Ax* € Q).

The problem (1.1) arises in signal processing and image reconstruction with partic-
ular progress in intensity modulated therapy, and many iterative algorithms have been
established for it (see, e.g., [3,4,6-8,11,15,17,20]).

From an optimization point of view, x* € € if and only if x* is a solution of the
following minimization problem with zero optimal value:

1
min f(x) := = Ax — PpAx|>. (1.2)
xeC 2

Note that the function f is differentiable convex and has a Lipschitz gradient given
by Vf(x) = A*(I — Pg)Ax. Hence, x* solves the SFP if and only if x* solves the
variational inequality problem of finding x € C such that

(Vfx),y—x)=0 VyeC. (1.3)

A popular algorithm was known under the name of CQ algorithm introduced by
Byrne [3,4] as follows:

= Pe (I — yA*(I — Pg)A)x*, keN, (1.4)

where y € (O, W)

In fact, the CQ algorithm is the gradient projection method for the variational
inequality problem (1.3). For more details on the SFP and the CQ algorithm, the
interested reader is referred to see [1,3-5,10,13,19,22,23] and the references therein.
Xu [22] proved the weak convergence of (1.4) in the setting of Hilbert spaces. In order
to obtain strong convergence, Wang and Xu [18] proposed the following algorithm:

= P, [(1 — )k — ny(xk))] . k>0 (1.5)

Wang and Xu [18] proved that the above iterative sequence converges strongly to
the minimum-norm solution of the SFP (1.1) provided that the sequence {«} and
parameter y satisfy the following conditions:
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(1) oek—>0and0<y<ﬁ;

(2) 2ok = 003
(3) either Z;io |Oék+1 - O{k| < OO or limk_mo |(xk+1 - (xk|/otk =0.

In 2012, Yu et al. [20] proved the strong convergence of (1.5) without the condition
(3). It is worth mentioning that the determination of the step-size in (1.5) depends
on the Lipschitz constant L = ||A||?> of gradient V f, which is in general not easy to
compute in practice. This leads us to the following question.

Question Can we design a self-adaptive scheme for the algorithm (1.5) above?

In this paper, we give a positive answer to this question. Motivated and inspired by the
works of Lopéz et al. [13], Tian and Zhang [16], Wang and Xu [18], Xu [22], Yao et
al. [24] and Zhou et al. [25], we will introduce a self-adaptive CQ-type algorithm for
finding a solution of the SFP in the setting of infinite-dimensional real Hilbert spaces.
The advantage of our algorithm lies in the fact that step-sizes are dynamically chosen
and do not depend on the operator norm. Moreover, we will prove that the proposed
algorithm converges strongly to the minimum-norm solution of the SFP.

The rest of the paper is organized as follows. Some useful definitions and results
are collected in Sect. 2 for the convergence analysis of the proposed algorithm. In
Sect. 3, we introduce a new self-adaptive CQ-type algorithm for finding an element
of the set 2 and prove strong convergence of the method. Our result improves the
corresponding results of Chuang [9], Wang and Xu [18], Xu [22] and Yao et al. [24].
We also consider the relaxation version for the proposed method in Sect. 4. Finally in
Sect. 5, we provide some numerical experiments to illustrate the performance of the
proposed algorithms.

2 Preliminaries
Let C be a closed convex subset of a real Hilbert space H. It is easy to see that
lex + (1= Oyl> < tllxl® + A = Dlyl?, @.1)
forall x, y € H and for all ¢ € [0, 1].
In what follows, the strong (weak) convergence of a sequence {x¥} to x will be
denoted by x¥ — x (x¥ — x), respectively. For a given sequence {xX} C H, w,, (x*)
denotes the weak w-limit set of {x}, that is,

a)w(xk) ={xeH: xki — x for some subsequence {k;} of {k}}.

For every element x € H, there exists a unique nearest point in C, denoted by Pcx
such that

llx — Pex|| = inf{|[x — y|[ : y € C}.
Pc is called the metric projection of H onto C.

Lemma 2.1 The metric projection Pc has the following basic properties:
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(1) (x — Pcx,y— Pcx) <O0forallx e Handy € C;
(2) lIPcx — Peyll < llx — yll forallx,y € H;
(3) IIPcx — Pey|* < (x —y, Pcx — Pcy) foreveryx,y € H;

Let C and Q be nonempty closed convex subsets of the infinite-dimensional real
Hilbert spaces H; and H, respectively, A € B(Hy, H»), where B(Hy, Hy) denotes
the family of all bounded linear operators from H; to H;.

Lemma 2.2 (see [2]) Let f : Hl — R be a function defined by f(x) := %||Ax —
PoAx||?. Then

(1) f is convex and differentiable;

(2) fisw-Iscon Hy;

(3) Vf(x) =A*(I — Pg)Ax, x € Hy;
1

4) Vfis W-inverse strongly monotone, i.e.,

1
(Vfx) =V, x=y) = Al

IV = VIWI® ¥x,y € Hi.

Remark 2.1 From (4) of Lemma 2.2, it is easy to see that V f is || A||?-Lipschitz, that
is,

IV ) = VDI < IAIPIx =yl Vx, y € Hi.

In convergence analysis of the proposed algorithms, we will use the well-known
lemmas.

Lemma 2.3 (Maingé [14]) Let {T',)} be a sequence of real numbers that does not
decrease at infinity, in the sense that there exists a subsequence {I'y;} of {I'y} such
that U'y; < U'p;41 for all j = 0. Also consider the sequence of integers {T(n)}n>n
defined by

t(n) =max{k <n: Ty < Trs1}.

Then {t(n)},>n, is a nondecreasing sequence verifying lim t(n) = oo and, for all
- n—oQ

n = no,
max{lzu), Cn} < Trgy41-

Lemma 2.4 (Xu [21]) Assume that {ay} is a sequence of nonnegative real numbers
such that

ak+1 < (1 —ap)ag + oy + by, keN,

where {ay} is a sequence in (0, 1), {by} is a sequence of nonnegative real numbers
and {yx} is a sequence of real numbers such that

(1) Z/?ioak = 00,
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(2) YiZobk < oo,
(3) limsup;_, o, ¥k < 0.
Then limy_, o a; = 0.

We end this section by recalling a new fundamental tool which will be helpful for
proving strong convergence of our relaxation CQ algorithm.

Lemma 2.5 (He and Yang 2013 [12]) Assume that {sy} is a sequence of nonnegative
real numbers such that for all k € N

Se+1 < (1 — ap)si + o b,
Sk+1 = Sk — Nk + Yk

where {ay} is a sequence in (0, 1), {ni} is a sequence of nonnegative real numbers,
and {81} and {yx} are two sequences in R such that

(1) 32 ax = oo,
(2) limg— oo yx =0,
(3) limg—s o Np, = O implies that lim sup;_, o 8,, < O for any subsequence {ny} of

{n}.

Then lim;_, o0 5z = 0.

3 A New Modification of CQ Algorithm and Its Convergence

In this section, we introduce a CQ-type algorithm with self-adaptive step-sizes for
solving the SFP (1.1) and establish its strong convergence under some mild conditions.
The algorithm is designed as follows.

Algorithm 3.1 [CQ-type algorithm for the SFP (1.1)]
Initialization Take two positive sequences {fy} and {px} satisfying the following con-
ditions:

By € 0.1). lim £ =0. Z,Bk = 00, (3.1

k=0
ok (4= pr) > 0. (3.2)

Select initial x° € H; and set k := 0.
Iterative Step Given x*, if V f (x*) = 0 then stop [x* is a solution to the SFP (1.1)].
Otherwise, compute

- ok f (%)
IV £ @02
and
A = pe[ = ot = v ] (3.3)
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Let k := k + 1 and return to Iterative Step.
For the convergence analysis of Algorithm 3.1, we need the following results.

Lemma 3.1 Let {x*} be the sequence generated by Algorithm 3.1. Then, for each
z € Q, the following inequality holds:

Rt

k+1_ 2 2 - k)2 = - TP ey 12
4 = 21 < rlal + (1= Bl = 21 — o4 = o1 = oS s

Proof By Lemma 2.1 (2) and (3.3), we have

et — 2l = 1 Pe [(1 = o) (= v b)) = Pezl?
=10 = o (x* = 2V b)) - 2
= 1A=+ =0 (K =V reh =) I G4
< Bellzl + (1= Bollx’ = 4V £ () — 2. (3.5)

Note that

(V£ xF = 2) = (I — Pp)Ax*, Ax* — Az)
= ((I — Pp)Ax* — (I — Pp)Az, Ax* — Az)
> [|(I — Po)Ax"|* = 2f (x"). (3.6)

We now estimate the second term on the right-hand side of (3.5) as follows:

ka — MV (xR — sz
= [Ix* — 212 + ALV F GO = 224V F (), x5 = 2)
< xF =22+ ANV LI — 4ae f (5

PR fAR)  Ape 2 (xR)

k_z1? - . 3.7
e R S TR e e G
From (3.5) and (3.7), we arrive at
I — 2012 < Bellzl® + (1 = B llx* —zI1
2 2.k 20k
PEF2(RY  dp 2 (K)
+ (- —
( ﬁk)[llvf(x")llz IIVf(xk)llz}
Bl (1 — Bk — 1% — o (d— o (1 — By L)
= Bzl + (= Bl =2l = o4 = o0 (1 = By p o
This completes the proof. O
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Lemma 3.2 The sequence {x*} generated by Algorithm 3.1 is bounded.

Proof By Lemmas 3.1 and (3.2), we have

I 22 < Bzl + (1 — Bl — 21 — prd — (1 — -2
- IV f (xk)||2
< Belizll* + (1 — Bollx* — z|I.
So, we get
x5 — z)1% < max{|Iz|I?, Ix* — z)I?).
By induction,
x5+ — 2012 < max{||z)I?, [+° — z||*},
this implies that sequence {x*} is bounded. O

Lemma 3.3 Let {x¥} be the sequence generated by Algorithm 3.1. Then the following
inequality holds for all z € Q and k € N,

I = 202 < (1 = Bollxk — z)% + B [ﬂk lzl* + 201 = o) (x* — z, —2)
201~ OV (), 2) ]

Proof By (3.2) and (3.7), we have

20

6% = MV 5 = 2l < b = 2l = o4 - Pk)m

k 2
< [l —zl*

Combining with (3.4) of Lemma 3.1, we obtain

=2 < [ 2+ 0 o (¢ - v et <)
<RI+ (1 - B 5 — v sy -
+ 28601 = B0 (¥ = MV () — 2, — 2)
< BElzl? + (1= B?Ix* = 2l + 261 — B (" — 2. —2)
+ 2hi (1 = BV (). 2)
= (1= Bl — 22+ B [ Bellzl® + 21 = Btk — 2, —2)

+ 21 = BOV (), ).

The proof is complete. O
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We are now in a position to establish the strong convergence of the sequence gen-
erated by Algorithm 3.1.

Theorem 3.1 Assume that infy p (4 — px) > 0. Then the sequence {x*} generated by
Algorithm 3.1 converges strongly to the minimum-norm element of 2.

Proof Let z := Pg0. From Lemma 3.1, we have

15— z01% < Bellzl? + (1 = Bollx* — zI1> — ped — p) (1 — ﬂk)&-
= IV f (xh)||2
(3.8)

From (3.2) and the assumption infy px (4 — px) > 0, we can find a constant o such
that (1 — Bx)px (4 — px) = o > 0 for all k € N. Hence

JRED)
I =2l < Blel 4 (1 = ol =P — o 39)
or
2 k
U”fo(—k;”z < Bellzll® + (1 = Bollxk — 2] = Ik — 29
So, we obtain
2N
IV = < e =2l = I — 20 o+ el (3.10)

Now, we consider two possible cases
Case 1 Put Ty, := |x* — z||? for all k € N. Assume that there is a kg > 0 such that for
eachk > ng, [x+1 < I'k. Inthis case, limg_, oo 'k exists and limy— oo (I'x =k +1) = 0.
Since limg—, o, Bx = 0, it follows from (3.10) that
20,k
lim o M = (3.11)
k—oo ||V f(xK)|2

It follows from (3.11) that

S5

1 IV £ (¥ —1
im M| VIO = Jim Sy =

Since V f is Lipschitz, we have
IVLOON = IVLER) = Vi@l < AP IxE =z Vze.

Hence, {V f (xk)} is bounded. This together with (3.11) implies that f (xk) — Oas
k — 00. We now show that w,, (xk ) C Q. Letx € wy (xk ) be an arbitrary element.
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Since {x*} is bounded (by Lemma 3.2), there exists a subsequence {x*/} of {x¥} such
that x*/ — %. With regard to the weak lower semicontinuity of f, we obtain

0 < f(X) < liminf f(x¥) = Jim fb =o.
j—00 — 00

We immediately deduce that f(x) = 0, i.e., Ax € Q. The choice of X in w,, (x5
was arbitrary, and so we conclude that w,, (xk) C Q.
Using Lemma 3.3, we have

I = 2l < (1= Bl — 2l + B [ Bellal + 201 — Bt —z, = 2)
+ 201 = BT (), 2]
< (1= Bl = 212 + Be [ Bellzl® + 201 = Btk — 2, =2)

+2(1 = BV £z (3.12)

To apply Lemma 2.4, it remains to show that lim sup;_, . (x* —z, —z) < 0. Indeed,
since z = Pg0, by using the property of the projection [Lemma 2.1 (1)], we arrive at

lim Sup(xk —2z,—z) = max (Z—z,—z) <0.
k— 00 Z€wy (xk)

By applying Lemma 2.4 to (3.12) with the data:

ap = x5 =21, = Br. br =0,
Vi o= Bellzl* +2(1 = B (xk — 2, —z) + 2 IV LD 2],

we immediately deduce that the sequence {x*} converges strongly to z = Pg0. Fur-
thermore, it follows again from Lemma 2.1 (1) that

(p—z,—2) <0 VpeQ.
Hence
IzII* < (p,2) < llzllllpll Vp € £,

from which we infer that z is the minimum-norm solution of the SFP (1.1).
Case 2 Assume that there exists a subsequence {I'x,,} C {['t} such that I'y,, < Ty, 41
for all m € N. In this case, we can define t : N — N by

t(k) =max{n <k:T, <41}
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Then we have from Lemma 2.3 that (k) — oo ask — oo and I'rk) < I'ggiy1.
So, we have from (3.10) that

2tk
foer )2 < o

NPT 2l = IxTOF =2 + Bego Nzl

2
< Bewllzll”.

Following the same way as the proof of Case 1, we have that

27
lim ————— =0,
k—oo |V f (x7®)]|12
limsup(x™® —z, —z) =  max (F—2z,—2)<0 (3.13)
k—o0 Zewy (x{T0))

and
T ®F — 22 < (1= Bra) Ix™® — 2|
+ Bewy [Bewllzl? + 20 = B x™® = 2, = 2)

+ 21 = Beaheco [V Tz, (3.14)

where B ) — 0.
Since 't (k) < I'r(x)+1, we have from (3.14) that

1x°® — 2)1? < Beyllzll® + 2(1 = Bry) (™% — 2, — 2)
+ 201 = Be) ke IV F TNzl (3.15)

Combining (3.13) and (3.15) yields

lim sup [|x*® — z|* <0,
k—o00

and hence
lim [[x™® — )% = 0.
k— 00

From (3.14), we have

k) _ 2

lim sup [x*®+! — 22 < limsup ||x z)I%.

k— 00 k—00

Thus

kliflgo ”x‘f(k)+1 _ Z”2 — 0
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Therefore, by Lemma 2.3, we obtain

7(k) T(k)+1

k k
0 < llx" —zll < max{[lx™™ —z|l, [x" —z[l} < |lx -zl = 0.

Consequently, {x¥} converges strongly to z = Pq0. The proof is complete. O

Remark 3.1 One main advantage of our algorithm compared to others is that step-
sizes are directly computed in each iteration and do not depend on the norm of A.
Therefore, Theorem 3.1 improves Theorem 5.5 of Chuang [9], Theorem 4.3 of Wang
and Xu [18], Theorem 5.5 of Xu [22], and Theorem 3.1 of Yao et al. [24].

4 A Relaxation Algorithm

When the sets C and Q are complicated, the computation of Pc and Py is expensive.
This may affect the applicability of Algorithm 3.1. To overcome this drawback, we will
use relaxation method of Yang [23] as follows: Consider the split feasibility problem
(1.1) in which the involved sets C and Q are given as sub-level sets of convex functions,
ie.,

C={xeH :c(x) <0} and Q={y e Hy:q(y) =0},

where ¢ : Hy — R and g : H — R are lower semicontinuous convex functions. We
assume that dc and d¢q are bounded operators (i.e., bounded on bounded sets). Set

Cr = {x € Hy : c(x¥) < (€K, x* — x)}, 4.1
where ék € dc(xk), and
O = {y € Hy : q(Ax") < (¢F, AxF — y)), 4.2)

where 7% € 9g(Ax*). Obviously, Cy and Qy, are half-spaces, and it is easy to check
that Cy D C and O D Q hold for every k > 0 from the subdifferentiable inequality.
We now define

1
Ji(x) = EII(I — Po)Ax|?, k=0, (4.3)
where Qy is given as in (4.2). We have
V fi(x) = A*(I — Pg,)Ax.

Now we introduce the following relaxation version of Algorithm 3.1.

Algorithm 4.1 (A relaxation CQ algorithm for SFP (1.1))
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Initialization Take two positive sequences {fx} and {px} satisfying the following con-
ditions:

{Bi} € (0, D), klgrolo Pr =0, Zﬂk = 00, 4.4)
k=0

x4 — pr) > 0. 4.5)

Select initial x° € H; and set k := 0.
Iterative Step Given x¥, if V f;.(x*) = 0 then stop [x¥ is a solution to the SFP (1.1)].
Otherwise, compute

= Pi fie (%)
NERIE
and
= P, [(1= poGR - 1V iG] (46)

Let k := k + 1 and return to Iterative Step.

The following lemma is quite helpful to analyze the convergence of Algorithm 4.1.
Lemma 4.1 Ifok(xk) =0, then x* € Q.
Proof If V fi.(x¥) = 0 for some x* e Cy, then

A*(I — Pg,)Ax* = 0.
It is easy to see that Axk e Qk. By (4.1) and (4.2) we have c(xk) < 0 and
q(Ax*) < 0.So x*¥ € C and Ax* € Q and the proof is complete. O

The strong convergence of Algorithm 4.1 is proved below.

Theorem 4.1 Assume that infy p(4 — pr) > 0. Then the sequence {x*} generated by
Algorithm 4.1 converges strongly to the minimum-norm element of 2.

Proof Let z := PqQ. Since infy pr(4 — px) > 0, we may assume without loss of
generality that there exists € > 0 such that px (4 — px)(1 — Bx) > €. Arguing as the
proof in the proof of Theorem 3.1 and replacing f, C and Q with fi, Cy and Oy,
respectively, we have

ef(x"h)

5+ — 2012 < Bellzl? + (1 — Bollx* — z)? — ==
IV fie (xF)||2

4.7
From (4.7) and (3.12), we obtain the following two inequalities:

K — 212 < (1 = Bollx* — 211> + Brdx,

k+1 2 k 2 2
I = 2ll® < I = 2l1® =+ Brllzll?,
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where

8k = Bellzll® +2(1 = B (x* — 2, —2) +2(1 = B[V £ &) [ N1zl

eff (b -
k= 1or o3 B CO. 1), lim g =0, B = o0.
IV fi(xk) |12 k=00 ,;
In order to use Lemma 2.5 with the data s; := ||x¥ — z||2, it remains to show that

for any subsequence {k;} of {k},

Ny — 0 = limsup §;, < 0.

[—o00

A similar argument as in the proof of Theorem 3.1 shows that

lim f;, (x*) = 0. (4.8)
[— 00
or equivalently,
k 2
lim H (I — P, ) Ax IH —0. (4.9)
[—o0 l

Since {x¥'} is bounded, there exists a subsequence {ockim '} of {xk} which converges
weakly to X. Without loss of generality, we can assume that xX — . Since Po, Axki e
Qy,, we have

g(Ax") < (¢4, Ak - P, AxM), (4.10)
where ¢4 € 9g(Axk). From the boundedness assumption of £¥ and (4.9), we have
g(Ax ) < ||| H Axh — Py, Ax H 0. 4.11)

From the weak lower semicontinuity of the convex function ¢ (x) and since x — &,
it follows from (4.13) that

g(Ax) < lilm inf g(Ax") <0,
— 00

which means that Ax € Q.
We will prove that

lim [|x% — xkF1 = 0. (4.12)
[—o0
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Indeed, from (4.6) we obtain

It = = H Fey, [(1 = B) (xkl - )»k;ka,(xk’)>] —xh
= H(l — Br) (xk’ — 2V fi, (xk’)) _ Lk

Vi@ o,

< B [¥% = 3,V S (6

+ Ak

as | — oo.
Further, using the fact that x¥*! e C &, and by the definition of Cy,, we get

c(xf) < (g4, XM — XM,
where &K € dc(x¥). Due to the boundedness of £¥ and (4.12), we have

c(xMy < €N Hx"l _ xl H -0 (4.13)

as [ — oo. Similarly, we obtain that ¢(x) < 0,i.e.,x € C.
We now deduce that

lim sup 8, = lim sup [,Bk, IIZII2 +2(1 — ﬂk,)(xkl —z,—2)
|—o00

[— 00

+ 21 = iy | VFER| 21
= 2limsup(x¥ — z, —z)
=00

=2 max (Z—z,—z)<0.
Zewy (x{k})

Finally, using Lemma 2.5, we have lxk — z|| = 0. We thus complete the proof.
O

5 Numerical Experiments

In this section, we provide the numerical examples and illustrate its performance by
using Algorithm 3.1.

Example 5.1 Let Hl = Hy = L»[0, 1] with the inner product given by

1
(f,8)=/0 f()g(n)de.

Let C = {x € L2[0,1] : |Ix]lz, < 1}and Q = {x € L»[0,1] : (x, %) = 0}. Find
x € C such that Ax € Q, where (Ax)(t) = ’%
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Table 1 Algorithm 3.1 with different cases of pg

_ 0.5k _ k _ 2k __ 3.5k
Pk = T Pk = 71 Pk = F+1 Pk = &31

x! =sin@) + 2 No. of Iter. 7 5 3 2
cpu (time) 0.0285646 0.0211888 0.0119378 0.0081063

xl=ef +2¢ No. of Iter. 10 6 4 2
cpu (time) 0.0405886 0.0236906 0.0155129 0.0088102

10
—_—— pk=0.5k/(k+1)
- & =p,=k/(k+1)
e p=2Ki(k+1)
107 == pk=3.5k/(k+1)
X
i
107t
\,
A}
N
N
Ay
107 -
10°

Number of iterations (k)

Fig. 1 Error plotting with x! = sin(¢) + 2
Choose Br = ﬁ for all k € N. The stopping criterion is defined by

2
< 107%.
Ly

1
E, = 3 HAxk — PQAxk’

We now study its convergence in terms of the number of iterations and the cpu time
with different step-sizes of {px} as reported in Table 1.

The error plotting of Ej, for each choice of x! are shown in Figs. 1 and 2, respectively.

We next provide some numerical examples and illustrate its performance by using
the modified relaxed CQ method (Algorithm 4.1).

Example 5.2 Let H = Hy =R3, C = {x = (a, b, c)T e R3:a*> +b*> —4 <0} and
Q={x=(,b,c)f eR¥:a+c?—1<0)}. Findx € C such that Ax € Q, where
-1 3 5
A=15 3 2
2 1 0
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10
—o— p,=0.5K/(k+1)
- @ —p=k/(k+1)
107" P e p 2Kk T) |
~ ~
A,  —@—  p,=3.5K/(k+1)
~ .
~
2 S
wi“ 107 N 1
~
~
. *
‘. ~
AS ‘e ~
Y '», ~
/‘/\ AN
0% b 1
A} A Y
’ A
\/\ N
« \
N B \
N \
105 : . .
10 i .
Number of iterations (k)
Fig. 2 Error plotting with x! = ¢! + 21
9
8l —— p,=0.5K/(k+1) | |
- o =p,K/(k+1)
TN e pE2K(kH)
ol L= o= p=3.5K/(k+1) | |
5} J
X
wi
4+ i
3t J
2+ J
11~ o i
0
1 1.5 2 25 3 35 4 4.5 5

Number of iterations (k)

Fig. 3 Error plotting with x! = [0, 1, 2]
Choose By = ﬁ for all k € N. The stopping criterion is defined by

1 2
Bo=3 | axt - PQ,{Aka2 <1074,

The numerical experiments for each case of p; are shown in Figs. 3 and 4, respec-
tively (Table 2).
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50

—— p,=0.5K/(k+1) | ]
- o =pKi(k+1)
e p 2Kk )
Lmem P =3.5K/(k+1) | ]

45

40

35

30

ui 25

Number of iterations (k)

Fig. 4 Error plotting with xl = [—2,5,47

Table 2 Algorithm 4.1 with different cases of pj

0.5k k 2k 3.5k
Pk = ¥H1 Pk = 71 Pk = F+1 Pk = k1

xl=10,1,217 No. of Iter. 7 5 3 2
cpu (time) 0.003993 0.003588 0.002996 0.002916

xt=1-254T No. of Iter. 10 6 4 3
cpu (time) 0.005002 0.004193 0.003783 0.003639

Remark 5.1 From our numerical experiments, it is observed that the different choices
of x! have no effect in terms of cpu run time for the convergence of our algorithm.
However, if the step-sizes {px} is taken close to 4, then the number of iterations and
the cpu time have small reduction.
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ABSTRACT. In this work, we propose a new version of inertial relaxed CQ al-
gorithms for solving the split feasibility problems in the frameworks of Hilbert
spaces. We then prove its strong convergence by using a viscosity approxi-
mation method under some weakened assumptions. To be more precisely, the
computation on the norm of operators and the metric projections is relaxed.
Finally, we provide numerical experiments to illustrate the convergence behav-
ior and to show the effectiveness of the sequences constructed by the inertial
technique.

1. Introduction. Let H; and Hs be real Hilbert spaces. Let C and Q) be nonempty,
closed and convex subsets of H; and Hs, respectively. In this research, we study
the Split Feasibility Problem (SFP) which is the problem of finding a point z € C
such that

Ar € Q (1)

where A : Hy — Hs is a given bounded linear operator (here we denote A* by its
adjoint operator). This problem was first proposed, in finite-dimensional Hilbert
spaces, by Censer and Elfving in [7] for modeling inverse problems which arise from
phase retrievals, medical image reconstruction and recently in modeling of intensity
modulated radiation therapy. The SFP attracts the attention of many authors due
to its application in signal processing and image recovery [13]. Various algorithms
have been invented to solve it (see, for examples, [4, 6, 25, 26]).
We assume the SFP (1) is consistent, and let S be the solution set, i.e.,

S={zeC:AzecQ}.

It is easily seen that S is closed and convex. In Hilbert spaces, a classical way
to solve the SFP is to employ the CQ algorithm which was introduced by Byrne
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Key words and phrases. Inertial method, viscosity approximation method, relaxed CQ algo-
rithm, split feasibility problem, hilbert space.
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[4] and is defined in the following manner: take an initial point x; arbitrarily and
generate the sequence {z,} by

Tp+1 = Po(xn — unA"(I — Pg)Ax,), n>1, (2)

where the step-size ., € (0, W) and Pc, Py are the metric projections on C' and
Q, respectively. We note that this algorithm is found to be a gradient-projection
method in convex minimization as a spacial case. It was proved that {z, } generated
by (2) converges weakly to a solution of SFP.

However, in general, the computation of a projection onto a general closed convex
subset is difficult because of its closed form. To overcome this difficulty, Fukushima
[11] suggested a so-called relaxed projection method to calculate the projection onto
a level set of a convex function by computing a sequence of projections onto half-
spaces containing the original level set. In the setting of finite-dimensional Hilbert
spaces, Yang [28] introduced the relaxed CQ algorithms for solving SFP where the
closed convex subsets C' and @ are level sets of convex functions given as follows:

C={x€H  :c(zx) <0} and Q ={y € Ha: q(y) <0}, (3)

where ¢ : Hy — R and ¢ : H» — R are convex functions. We assume that both
c and ¢ are subdifferentiable on H; and Hs, respectively, and that dc and dq are
bounded operators (i.e., bounded on bounded sets). It is known that every convex
function defined on a finite-dimensional Hilbert space is subdifferentiable and its
subdifferential operator is a bounded operator (see [3]). In what follows, we define
two sets at point x,, by

Cn = {x € Hy: C(In) < <§naxn - x)}, (4)
where &, € Oc(x,,), and

Qn = {y € Hy: q(Azy,) < (en, Azy — y>}, (5)

where ¢,, € 9q(Az,,). It is clear that C,, and @, are half-spaces and C,, D C and
Q» D Q for every n > 1. The specific form of the metric projections onto C,, and
Q. can be found in [3]. In fact, Yang [28] constructed a relaxed CQ algorithm for
solving the SFP by using the half-spaces C,, and @Q,, instead of the sets C' and @
in the CQ algorithm, respectively and proved its convergence under some suitable
choices of the step-sizes.

In order to achieve the convergence, in such algorithms mentioned above, the
selection of the step-sizes requires prior information on the norm of the bounded
linear operator (matrix in the finite-dimensional framework), which is not always
possible in practice. To avoid this computation, there have been worthwhile works
that the convergence is guaranteed without any prior information of the matrix norm
(see, for examples [24, 25, 26, 29]). Among these works, Lépez et al. [13] introduced
a new way to select the step-size by replacing the parameter u,, appeared in (2) by

_ pnf(n) n>1

:u - ) - (6)

"IV Ea)?
where p, € (0,4), f(z,) = ||(I — Pg)Ax,||* and Vf(z,) = A*(I — Pg)Axz, for
all n > 1. They also practised this way of selecting step-sizes for variants of the
CQ algorithm, including a relaxed CQ algorithm, and a Halpern-type algorithm
and proved both weak and strong convergence. Subsequently, in 2013, He and Zhao
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[12] introduced the following Halpern-relaxed CQ algorithm in Hilbert spaces: take
x1 € Hy and generate {z,} by
Tni1 = Po, [anu+ (1 — an)(@n — 7V fn(zn))], (7)

where C,, and @Q,, are, respectively, given as in (4) and (5), {a,} C (0,1), {pn} C
(0,4) and the sequence {7, } is given by

pnfn(xn)
Tn = TS e (8)
IV fr )l

and )

f(@n) = 5”([ - PQn)Axn”Qa n =1 (9)
In this case, we have
V fu(zy) = A*(I — Pg,,)Ax,,. (10)
They obtained the strong convergence provided lim o, =0, Y «, = oo and the
n—00 n=1

step-size is chosen such that in£I pn(4 — pn) > 0.
ne

In optimization theory, to speed up the convergence rate, Polyak [22] firstly
proposed the heavy ball method of the two-order time dynamical system which is
a two-step iterative method for minimizing a smooth convex function f. In order
to improve the convergence rate, Nesterov [21] introduced a modified heavy ball
method as follows:

Yn = Tn + en(-/En - $n71),

where 6, € [0,1) is an extrapolation factor and A, is a positive sequence. Here,
the inertia is represented by the term 6, (z, — x,—1). It is remarkable that the
inertial terminology greatly improves the performance of the algorithm and has a
nice convergence properties (see [9, 10, 14]). In [1], Alvarez and Attouch employed
the idea of the heavy ball method to the setting of a general maximal monotone
operator using the framework of the proximal point algorithm [23]. This method is
called the inertial proximal point algorithm and it is of the following form:

Yn = xn+9n(1‘n*xn—l)7
Top1 = (+XNT) " Hya), n>1, (12)

where T is a maximal monotone operator. It was proved that if A, is non-decreasing
and 6,, € [0,1) is chosen such that

oo
Z an”xn - xn—1H2 < 09,
n=1

then {z,} generated by (12) converges to a zero point of T'. See also [20].

In subsequent work, Maingé [15] (see also [16]) introduced the inertial Mann
algorithm for solving the fixed point problem of nonexpansive mappings in Hilbert
spaces as follows: take xg,z1 € Hy and generate the sequence {z,} by

Yn = Tn + en(fn - xn—l)a
Tn+l = Yn + an(Tyn - yn)7 n = 17 (13)

where T is a nonexpansive mapping on Hy, 6,, € [0,1) and a,, € (0,1). It was shown
that the sequence {z,} converges weakly to a fixed point of T' under the following
conditions:
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(A) 6,, €[0,0) where 6 € [0,1);

(B) 20 [ — s |2 < 003

(C) 0 < infy>1 o < sUP,Sg ap < 1.

Very recently, Dang et al. [9] proposed two kinds of the inertial relaxed CQ
algorithms for solving SFP in Hilbert spaces as follows: take zg,x; € H; and
generate the sequence {z,} iteratively by

Yn = Tp+ ‘lsn(xn - xn—l)a
Thr1 = Po,(yn — VAT(I - Pq,)Ay,), n=>1, (14)
and
Yn = Zn+ On(Tn —Tn_1),
Tpt1 = (1= Bn)Yn + Bule, (Yn — 'YAT(I = Pg,)Ayn), n=>1. (15)

It was proved that if v € (0,2/L) where L denotes the spectral radius of AT A and
én € [0, @) where ¢, = min{¢, 1/max{n2||xn_$n71“= n2||xn_xn*1”2}}7 ¢ €10,1),
then {x,} defined by (14) converges weakly to a solution in SFP. Moreover, in
addition, if 0 < inf,>¢ 8, < R < 1, then {x,} defined by the modified inertial
relaxed CQ algorithm (15) converges weakly to a solution in SFP. See also [8].

In this work, we suggest the modified inertial relaxed CQ algorithm with a new
adaptive way of determining the step-size sequence for solving the SFP. Using the
viscosity approximation method introduced by [19], we then prove its strong con-
vergence of the sequence generated by the proposed scheme. Our algorithm can be
implemented easily since it involves the metric projections onto half-spaces which
have exact forms and has no need to know a priori information of the norm of
bounded linear operators. Numerical experiments are included to illustrate the ef-
fectiveness of our algorithm. The main results complement the results in [4, 9, 12, 13]
and others. To this end, for x € Hy, we now define

gule) = 2L~ Pe el =1, (16)

where C), is given as in (4). We then have, for € Hy
Vgn(x)=(I - Pg,))z, n>1. (17)
The rest of this paper is organized as follows: Some basic concepts and lemmas
are provided in Section 2. The modified inertial relaxed CQ algorithm is presented

and the strong convergence result of this paper is proved in Section 3. Finally, in
Section 4, numerical experiments are shown to support our proposed algorithm.

2. Preliminaries. In this section, we give some preliminaries which will be used
in the sequel. Let H be a Hilbert space. Recall that a mapping T : H — H is said
to be nonexpansive if, for all z,y € H,

[Tz =Tyl <[l —yll (18)
T : H — H is said to be firmly nonexpansive if, for all z,y € H,
1Tz —Ty|* < |z —ylI* = (1 = T)z — (I = T)y|*, (19)
or equivalently
(Tz —Ty,x —y) > | Tz — Ty|? (20)

for all z,y € H. It is known that T is firmly nonexpansive if and only if I —T is firmly
nonexpansive. We know that the metric projection Po from H onto a nonempty,
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closed and convex subset C C H is a typical example of a firmly nonexpansive
mapping, which is defined by

Pox = argmin|lz — y||?, =€ H. (21)
yel

It is well known that P¢ is characterized by the inequality, for z € H
(x — Pox,y — Pox) <0, YyeC. (22)

In a real Hilbert space H, we have the following equality:

Lo, 1o 1 2
- z — 2z — 23
(@) = Sl + 31l = 5l =yl (23)
and the subdifferential inequality
o+ yll* < lz)* + 2(y. « + y) (24)
for all x,y € H.

Definition 2.1. Let f : H — R be a convex function. The subdifferential of f at
x is defined as

Of(@)={§€H: f(y) = f(a)+{{,y—x), VyeH} (25)
A function f : H — R is said to be weakly lower semi-continuous at z if z,
converges weakly to x implies

f(z) <liminff(z,). (26)

n—oo

We know the following results (see [2, 5]).

Lemma 2.2. Let f: H — R be given by f(z) = ||(I — Py)Az||>. Then
(i) f is convex and differential.
(i) Vf(z) = A*(I — Pg)Az, x € H.
(iii) f is weakly lower semi-continuous on H.

(iv) [IVf(z) = V@)l < [AIP[lz =yl for all z,y € H.

Lemma 2.3. [17, 27] Let {a,} and {c,} are sequences of nonnegative real numbers
such that

anJrl S (1 - 6n>an + bn + Cp, N Z 17 (27)

where {6,} is a sequence in (0,1) and {b,} is a real sequence. Assume Y > | ¢, <
00. Then the following results hold:

(i) If by < 5, M for some M >0, then {a,} is a bounded sequence.

(ii) If 3200, 6, = 0o and limsup,,_, . by /d, <0, then lim, o a, = 0.

Lemma 2.4. [18] Let {T',,} be a sequence of real numbers that does not decrease at
infinity in the sense that there exists a subsequence {I'y,} of {I'n} which satisfies
Iy, <Ty,41 for all i € N. Define the sequence {Y(n)}n>n, of integers as follows:

P(n) =max{k <n:Tj <Tgi1}, (28)

where ng € N such that {k <ng: Ty <Tiy1} # 0. Then, the following hold:
(i) T'(ng) <T(np+1) < ... and I'(n) — oo;
(11) ]‘—‘7/)(”) < F@b(n)+1 and Fn < F@b(n)—&-l; Vn > ng.
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3. Strong convergence theorem. In this section, we propose the modified iner-
tial relaxed CQ algorithm as follows:

Algorithm 3.1 Let f : Hy — H; be a contraction (i.e. there exists a constant
a € (0,1) such that || f(z)— f(W)|| < a||lz—y|| for all z,y € Hy) and let {a, } € (0, 1),
{6} C [0,1) and {p,} C (0,4). Take zo,x; € H; arbitrarily and generate the
sequences {z,} and {y,} by the following manner:

Yn = xn"i'en(xn _mn—1>7
o1 = Peylanf(yn) + (1 —an)(Yn — maVialyn))], n>1. (29)

Here we set

T = p fn(yn) .
t IV () I? 4 1V gn () 112
for all n € N. We remark that if Vf,,(y,) = Vgn(yn) = 0, then y,, is a solution of
SEP.
We next prove the strong convergence of the sequence generated by the proposed
algorithm.

(30)

Theorem 3.1. Assume that {a,} C (0,1), {pn} C (0,4) and {6,} C [0,0), where
0 € 10,1) satisfy the following conditions:
(C1) lim ap, =0 and > a, = 005
n—oo n=1
(C2) inf pr(4 = pn) > 0;
(C3) lim &= ||z, — z,—1]| = 0.
n—,oo - "
Then the sequence {x,} generated by Algorithm 3.1 converges strongly to a solu-
tion in SFP.

Proof. Let z = Psf(z). Then z € C C Cp, and Az € Q C @, for all n € N. It
means z = Pg,z and Az = Py, Az for all n € N. Set v, = y,, — 7,V [, (yn) and
Wy, = an f(yn) + (1 — ap)v, for all n € N. Then we obtain

lyn =2l = |lzn — 2+ 0n(Tn — Tn—1)|l
< lan = 2| + Onllzn — 21| (31)

Since (I — Pg,,) is firmly nonexpansive,

<an(yn)7 Yn — Z>

((I - Pg, )AYn, Ay, — Az)
I(I = Po,)Ayal?
2fn(yn)- (32)

Y

Using (30) and (32), it follows that

Hyn - Tnvfn(yn) - Z||2
lyn = 201> + T2V Fr ) 1* = 270V fr(Yn), Yn — 2)

lom — 22

< g — 212+ IV Sl — 4 )
2 2 fa(yn) 2
= n n \% n\JIn
Vo = 2 P O G2 + Wty )
f2(yn)

- 4pn
IV Fn(yn) 12 + 1V gn (yn) 1>
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fa(yn)
S Yn — 2 2 + p?z 3
lon =21 o [ ) 2 + g ) T2
Y fa(yn)
||vfn(yn)||2 =+ ”v.gn(yn)”2
f2(yn)
= |lgn — 2> = pn(4 — pp) 3 : (33)
IV fr(yn) 12 + 1V gn (yn)?
So, since p,, € (0,4), we have for all n € N,
[vn — 2| < llyn — 2. (34)

Thus, using (34) and the nonexpansiveness of Pg, , we obtain

[#ns1 =2l = [Po,wn = Po, 2|
< lwn =2
= llan(f(yn) = f(2) + an(f(2) = 2) + (1 = an)(vn — 2)|
< anallyn =zl + anllf(2) = 2 + (1 = an)lon — 2|
< @y = zll + anll f(2) = 2 + (1 = an)llyn — ||

(1 —an(l = a)llyn — 2l + anllf() — z]| (35)

Combining (31) and (35), we immediately obtain

[#n41—z] < (T=an(l=a))|lzn — 2]+ (1= on(1—a))bnllzn —zn-1l+anl f(z) — 2]

(36)
By conditions (C1) and (C3), we see that
1-— 1-— 0
lim o, = lim (O“l(o‘)) 2 |2n — 2_a|| = O, (37)
n—o00 n—oo 1—« ap,

which implies that the sequence {0, } is bounded. Putting

M = max {lf(lz_);zl, supan}
neN

and using Lemma 2.3 (i), we conclude that the sequence {||x, — z||} is bounded.
This shows that the sequence {z,} is bounded and so is {y,}. On the other hand,
we see that

|20 — 2+ On(2n — xn—l)Hz

= |[lon — ZH2 + 205 (Tn — 2,Tp — Tn_1) + 9ﬁ||wn - xn—lnz (38)

1y — 2|

and, from (23)
1 9 1 9 1 2
(Tn — 2,%p — Tp_1) :_5”377171 | +§||33n_z|| +§||$n_$n71|| . (39)

Combining (38) and (39), we obtain, since 6, € [0, 1),

g = 2l1> = llon — 21 + On(=llen—1 — 21 + |20 — 21> + |20 — 201 [*)
+931Hmn —mn,1||2
lzn — Z||2 + On (|20 — Z||2 = lzn—1 — 2”2)

+20, |20 — 201 |* (40)

IN
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Using (24), (33) and the firm nonexpansiveness of P¢, , we also have

1 = 2] 1Pe, wn — Pe, 2|

< hwon = 2l? = |1 Pe,wn — wyf?
= len(f(yn) = 2) + (1 = an)(va = 2)|* = || Pe,wn — wn|?
< (1= ap)llvn = 2[1? + 200 (f (yn) — 2,00 = 2) = || Pe, wn — wy?
< (1*O‘n)”yn*2’”2
IRl N7 AT EEa 7O
+ 200, (f(yn) — 2, wn — 2) — [[Po,wn — wnH2 (41)

Combining (40) and (41), we thus have
lzns1 =2l < (1= an)llon = 21 + (1 = an)u(llzn — 21° = l2n-1 — 2|)

+ 2(1 — ap) O ||zn — :En,1||2
f2(yn)

~ =)ol = o) G ST g ) P
+ 200, (f(yn) — 2, wn, — 2) — || Po, wn — wn||2. (42)

Set Ty, = ||@,, — 2||? for all n € N. We next consider the following two cases.

Case 1. Suppose that there exists a natural number N such that I',,41 < T, for
all n > N. In this case, {I',} is convergent. From (C1) and (C2), we can find a
constant o such that (1 — ay,)pn(4 — pp) > 0 >0 for all n € N. So (42) reduces to

Fn+1 S (]- - an)rn + (]- - an)en(l—‘n - anl) + 2(]- - an)en”xn - xn71||2

fa(yn)
TN IR 4 [ T 2 ) = 2w = 2)

— 1P, wn — wll?, (43)

which gives
fa(yn)
IV fr () |12+ |V g (g [|? ( +1) + ( )On( 1)
+2(1 = an)bn|Zn — Tn1|)?
+200 (f(yn) — 2, wn — 2). (44)

It is easy to see that (C3) implies 0, ||z, — zn—1]] — 0 since {a, } is bounded. Since
{T"s,} converges and «a,, — 0,

fayn)
IV ()12 + 1V gn (yn) |2

asn — oo. It is easily checked that {V gy, (yn)} is bounded. Also, we have {V f,, (yn)}
is bounded since {y,} is bounded. Indeed, by Lemma 2.2 (iv), we have

IV £u () | = IV fulyn) = Vn () < [AIP 1y — 211 (46)

So from (45), we conclude that f,(y,) — 0 as n — oo, i.e.,

(I = P, )Aynll = 0, (47)

-0 (45)
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as n — 00. Since dq is bounded on bounded sets, there exists a constant p > 0
such that ||e,|| < p for all n € N. From (47) and Py, (Ayn) € Qn, we have

q(Ayn) < (en, AYn — Pq, (Ayn))
< wll = Pg,) Ayl
- 0, (48)

as n — oo. Since {y,} is bounded, there is a subsequence {y,, } of {y,} such that
Yn, — x* € Hy. It also follows that Ay, — Az* € Hy. By the lower-semicontinuity
of ¢, we have

o(Ax*) < liminfq(Ayy,) < 0. (49)
— 00
This shows that Az* € Q. We next prove that 2* € C. Again, using (43), we have

(]-_an)HPann_wnH2 S (Pn_rn+1)+(1_an)en(l—‘n_rnfl)
+2(1 — ap)bp||Zn — Tn1|)?

20, {f (yn) — 2, wn, — 2), (50)
consequently, as n — oo,
| Pc, wn — wy|| — 0. (51)
By the definition of C),, we obtain
c(wy) < (&n,wy, — Po,wy) < kl|lw, — Po, w,|| = 0, (52)

as n — 0o, where k is a constant such that ||&, || < & for all n € N. We next consider
the following estimation:

”vn Yl = ||yn - Tnvfn(yn) — Ynl|
= TalVin(yn)ll
= n \Y n\Yn
P Fu G 2 + Vg2 0
— 0, (53)
as n — 0o. We also have
lwn = ynll < anllf(Yn) = ynll + (1 — an)llvn — ynll = 0, (54)

as n — oo. Hence, since y,, — x*, there is a corresponding subsequence {w,, } of
{w,} such that w,, — z*. From (52), it follows that

c(z™) < liminfe(wy,, ) = 0. (55)

k—o0

So we obtain z* € C' and hence z* € S. From (22) we obtain

limsup(f(z) — z,w, —2z) = kli_>m (f(z) — z,wp, — 2)

(f(2) —z,2" = 2)
0. (56)

IN
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On the other hand, we see that

lw, — 2|2 = (wn—z,w, — 2)
= an(f(yn) = f(2),wn — 2) + an(f(2) = 2,05 — 2)
+(1 — an){vn — 2, w, — 2)
analyn = z||lwn — 2[| + an(f(2) — z,wn — 2)
+(1 = o) flvn — 2[[|wy — 2|
(1= an(l = )y — 2llllwn = 2| + an(f(2) — 2, wn — 2)

(- anlt - ap(a2I | a1y

+an(f(2) — z,w, — 2), (57)

IN

IA

IN

which gives

20,
1+ a,(1—a)

IN

lwn = 2| lyn — 2II* +

(f(2) = z,wn — 2)

IN

([[on — 2|l + Onlln — manH)Q

(f(2) = z,wn — 2)
B (1 200 (1 — )

) (lzn = 211 + 20|20 — 2n_1|||l2n — 2]
+ 9721”3371 - xn—lnz)

20,
+ m<f(2) —z,wn — 2). (58)

Then, by (58), we obtain

|Zn41 _ZHQ ||PC’nwn_Z||2

IN

[wn — 2|2
1 20, (1 — @)
1+ an(l —a)

+ Onllzn — zna]?)

2auy,
—I—m(f(z)—z,wn—z). (59)

2a, (1—a)
14+a,(l—a)

IN

) (zn = I + 20ullen — s ll2n — 2]

Put My = supljz, — 2| and v, = for all n € N. It is easily checked that
neN

Yn € (0,1) for all n € N and ) +, = co. From (59), it follows that
n=1
1_‘n-‘,-l S (1 *'Yn)rn+20n”xn *xn—lan +9nH$n 7xn_1||2

20,

+ m(f(z)—szn—z>~ (60)
Applying Lemma 2.3 (ii) and using (56) and the conditions (C1) and (C3), we
conclude that ', = ||z, — 2/|*> = 0 and thus z,, — 2z as n — oo.

Case 2. Suppose that there exists a subsequence {I'y,} of the sequence {I',,} such
that T, < Ty, 41 for all ¢ € N. In this case, we define ¢ : N — N as in (28). Then,
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by Lemma 2.4, we have I'y(n) < Ty(ny41. From (42), it follows that
Cymyar < (1= aym)lypm) + (1= apm))0ypm) (Cpm) = Tym)-1)
+ 2(1 = aym) ) 1Tpm) = Tp@)-111?
T2 ) W)
IV fin) Y 12 + 1V Gym) Yy n) 2
= (1= aym)lIPey i Wom) = Wyl
+200y(n) (f (Y (n)) = 2 Wy(n) = 2), (61)

—0
|

which gives
- fi(n) (Yy(n))

IV fo(m) W) 12 + 1V 9 () (o)) 112
(1= aym)0ym) (Cyn) = Lym)-1)
+ 2(1 = ay(m) Oy 1T (n) = Tp(my—1 112
+ 200 () (f (Yu(n)) — 2 Wy(n) = 2)

(1 =y 7 o0m = 2o -1 Loy + /Tom-1)

+ 2(1 = () () 1T (n) — Tp(my 111
+ 20 () (f (Y (n)) = 2, Wyp(n) — 2)
— 0, (62)

as n — oo. It follows that fy(m)(Yym)) = (I — Pq,.,)AYym)ll — 0. Similarly, by
(61), we can show that

IN

IA

Jim [[Po, ) Wy (n) — wym || = 0 (63)
and by (54)
Jim [Jwy () = Yl = 0. (64)

Now repeating the argument of the proof in Case 1, we obtain
lim sup(f(2) — 2, Wy(n) — 2) < 0. (65)
n—oo
On the other hand, observe that

19y ) = 2yl = Oy [T () = Ty(my-1ll = 0, (66)
as n — oo. It follows that ||y (m)41 — Tym)l| = 0 as n — oco. Indeed, by (63), (64)
and (66), we have
w1 = 2yl = IPoye wem) = Tymll
< NPy wpm) = Wyl + [wpm) = Yy |
Hywm) = 2yl
=0, (67)
as n — oco. Using (60), we have
Py = (L= 2m)Tym) + 20pm) [Tgm) = Tym)-1[1M
) 1Tgm) = Ty

200 (n)
1+ Oéw(n)(l — Oé) <f(Z) - Z,ww(n) - Z>a (68)
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which implies

T Lom) < 20pm)l[Tpm) = Ty 1M1+ Opm) |2y ) — Ty 1[I

20(n)
z)—z,w —2z). 69
a6~ e =) (69)
Hence
20,(n) Op(n) 2
r n < HJ? n —an,1||M1—|— Hl‘ n) —Z n71||
P(n) Yo P(n) (n) Yo P(n) P(n)
1
1_ Oé<f(Z) = 2y Wep(n) — Z> (70)

Hence from (C3), (65) and (67), we obtain
lim supl'y () < 0. (71)
n—oo

This means lim Iy, = lim |24,y — 2[[* = 0. So we have ) — z as n — oo.
— 00 n—oo
On the other hand, we see that

lzypmy+1 — 2l < zgmyr1 — Tpm)ll + |Zpm) — 2l

— 0, (72)

as n — oo. By Lemma 2.4, we have I', < T'y(n)41 and thus
Ly = [lzn = 2l” < ey mys — 2 = 0. (73)
This concludes that z,, — z as n — oco. We thus complete the proof. O

Lemma 3.2. We remark here that the condition (C3) is easily implemented in
numerical computation since the valued of ||xn — xn 1| is known before choosing
0. Indeed, the parameter 6,, can be chosen such that 0 < 0,, < 0,,, where

. w, .
g, — min {7”%7%71" , 9} if xp # Tp—1,
0 otherwise,
where {wy, } is a positive sequence such that w, = o(ay,).

We next consider the case when the norm of operators can be easily calculated.
Algorithm 3.2 Take zg, 21 € H; and generate the sequence {z,} by the following
manner:

Yn = Tp+ en(xn - xn—l);
Tnp1 = Po,lanf(yn) + (1 —an)(yn — AV fn(yn))], (74)
where {a,} C (0,1), {6,} C[0,1) and {X,} C (0, 00).
Theorem 3.3. Assume that {a,} C (0,1), { .} C (0,00) and {6,} C [0,0), where
0 € 10,1) satisfy the following conditions:
(C1) lim o, =0 and > o, = 005
n—o00 n—=1
(C2) inlf\])\n(Q — A\llAl?) > 0;
ne
(C3) lim 2= ||z, — z,—1]| = 0.
n—oo 4n

Then the sequence {x,} generated by Algorithm 3.2 converges strongly to the
solution of SFP.



THE MODIFIED INERTIAL RELAXED CQ ALGORITHM 13

Proof. Since the proof line is closed to that of Theorem 3.1, we just give a sketch
proof. Let z = Psf(z). Set vy, = yn — AV fu(yn) and w, = o, f(yn) + (1 — ap)v,
for all n € N. We first show that the sequence {x,} is bounded. To this end, it
suffices to show that |v, — 2| < ||y, — 2|| for all n € N. By using the argument as
in Theorem 3.1, we can show that (V f,,(yn), Yn — 2) > 2fn(yn). It follows that

[vn — ZH2 = |lyn - Z||2 + /\721||vfn(yn)”2 = 22XV fr(Yn)s Yn — 2)
< Ay *Z||2+)‘3L”vfn(yn)”2 — 4\ fo(Yn)
< lyn = 2P+ ARNAIPIT — Pg,) Ayall* — 4N fa(yn)
= llyn — 212 + 222 Al fa(yn) — 4Xn fu(yn)
< lyn — Z||2 —2X,(2 - >‘n||A||2)fn(yn) (75)

From (C2), we have |[v, — z|| < ||lyn — z|| for all n € N. By (41) and (75), we have
lZnsr =27 < (1= an)llzn =2 + (1 = an)ba(llzn — 2* = 2n-1 - 2]1?)
+2(1 = an)fnllen — o ||? = (1= an) (2 = Ml AlP) fryn)
+ 200 (f(yn) — 2,00 — 2) — ”Pann*wnH? (76)
Set 'y, = ||@,, — 2||? for all n € N. We next consider the following two cases.
Case 1. Suppose that there exists a natural number N such that I',,41 < T, for
all n > N. In this case, {I',} is convergent. From (C1) and (C2), we can find a
constant o such that (1 — a;,)An(2 — A\, ||A]|?) > o > 0 for all n € N. So we obtain
Lpp1 € (I—ap)ln+ (1= )0, (Tn — Tp1) + 2(1 — )0 |20 — 21
— 0 fa(Yn) + 200 (f(yn) — 2, wn — 2) — | Po,wn — wnHZa (77)

which implies

Ufn(yn) S (Fn - 1_‘nJrl) + (1 - an)en(rn - anl) + 2(1 - an)en”xn - mn71H2
+ 200 (f(yn) — 2, wn — 2). (78)
This shows, by (C1) and (C3), that f,(yn) = ||({ — Pg,)Ayn]| — 0 as n — oo.

Similarly, we can show that ||Pc, w, — wy|| = 0 n — oo. Following the proof line
as in Theorem 3.1, we can prove that {x,} converges strongly to z.

Case 2. Suppose that there exists a subsequence {I',,} of the sequence {T';,} such
that I',,, < I'y,41 for all 7 € N. This case can be done by a similar argument as in
Case 1. So we omit the rest of proof. We thus complete the proof. O

4. Numerical experiments. In this section, we provide some numerical examples
and illustrate its performance by using the modified inertial relaxed CQ method
(Algorithm 3.1).

Examples 1. Let H; = Hy = R3, C = {z = (a,b,c)T € R®:a? +1?> — 5 <0} and
Q={y=mqr)’ eR®:p+r?—2<0}. Let f:R®— R3 be defined by f(z) = £.

Find z* € C such that Axz* € Q, where A =

I
— W N
N O

Choose «,, = n%‘_l for all n € N and 8§ = 0.5. For each n € N, let w,, = ﬁ

and define 6,, as in Remark 3.2. We now study the effect (in terms of convergence,
stability, number of iterations required and the cpu time) of the sequence {p,} C
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(0,4) on the iterative scheme by choosing different p,, such that infp, (4 — p,) > 0

in the following cases.

Case 1. p, = 5773
Case 2. p, = 173
Case 3. p, = 25;
Case 4. p, = f—&

The stopping criterion is defined by
1 1
Ep = 5 llon — Po, zn || + 3 Az, — Pg, Az, > <107

We consider different choices of xg and z1 as

Choice 1: z¢ = (=7,-2,-6)T and z; = (-2,2,-6)T;
Choice 2: z¢ = (1,2, — ) and z1 = (0,1, -7)7;
Choice 3: 79 = (1,5, —1)T and z; = (-3,4,-7)T;
Choice 4: ¢ = (1,5,2)T and z; = (3,2,7)T

TABLE 1. Algorithm 3.1 with different cases of p,, and different
choices of xg and

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 11 8 5 4
cpu (Time) 0.003553 0.002377 0.002195 0.002075

Choice 2 No. of Iter. 7 6 4 4
cpu (Time) 0.002799 0.002769 0.002357 0.002184

Choice 3 No. of Iter. 12 9 6 4
cpu (Time) 0.003828 0.002602 0.002401 0.002142

Choice 4 No. of Iter. 27 17 11 9
cpu (Time) 0.007181 0.00343 0.002612 0.002431

The numerical experiments for each case of p,, are shown in Figure 1-4,
respectively.

Examples 2. Let H; = Hy = R5, C = {z = (a,b,c,d,e)T € R® : a® + b + % +

d*>+e*—-04<0}and Q ={y = (p,q,7,5,t)T €R’ :p+q+7r+s—0.75 < 0}.

Let f: R® — R® be defined by f(x) = %. Find 2* € C such that Az* € Q, where
3 -2 5 =2 3

2 -2 5 =2 9
A= 2 -3 5 -1 -3
-2 -2 8 -7 =2
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F1GURE 1. Comparison of the iterations of Choice 1 in Example 1
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FIGURE 2. Comparison of the iterations of Choice 2 in Example 1

20

———— p_=n/(2n+1

18l p,=n/(2n+1)| |

x - p_=n/(n+1)
n

161 —— p=2n/(n+1) ]

1ar —%— p,=3n/(n+1) H
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10 12

Number of iterations

FiGURE 3. Comparison of the iterations of Choice 3 in Example 1

Let oy, 0, and E,, be as in Example 1. We choose different cases of p,, as follows:
Case 1. p, = 0.5;
Case 2. p, = 1;
Case 3. p, = 2;
Case 4. p, = 3.5.
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T T
R pn=n/(2n+1)
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N
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T
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Number of iterations

FIGURE 4. Comparison of the iterations of Choice 4 in Example 1

The different choices of x¢ and x; are given as follows:
Choice 1:

3.2,—1,-2.5,5,—-3.7)7 and 21 = (2.3, —1.5,5.2, -7.5,7.3)T;

o = (7
Choice 2: 79 = (-2, -5,-3,2,-3)T and 2, = (-5, 4,5, -7,7)7;
o = (3

Choice 3:

,8,5,-2,8)7 and 21 = (—2,-5,5,-9,9)7;

Choice 4: x¢ = (4.5,0,-2.5,1,3)T and z; = (—3.6,—4.2,1,1.5,8)T".

TABLE 2. Algorithm 3.1 with different cases of p,, and different
choices of xy and z;

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 19 10 5 5
cpu (Time) 0.005632 0.003408 0.003223 0.002791

Choice 2 No. of Iter. 18 10 6 6
cpu (Time) 0.00391 0.002683 0.002447 0.002381

Choice 3 No. of Iter. 19 10 6 6
cpu (Time) 0.004233 0.003016 0.002601 0.002575

Choice 4 No. of Iter. 13 7 6 6
cpu (Time) 0.004812 0.003559 0.002922 0.002412

The numerical experiments are shown in Figure 5-8, respectively.

Remark 1. We finally make the following conclusions from the numerical experi-
ments in Examples 1 and 2.

1. For each different Cases and different Choices, it is shown that Algorithm

3.1 has a good convergence speed. Indeed, we see that it is fast, stable and
required small number of iterations for seeking solutions.

. It is observed that the number of iterations and the cpu run time are sig-

nificantly decreasing starting from Case 1 to Case 4. However, there is no
significant difference in both cpu run time and number of iterations for each
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FIGURE 6. Comparison of the iterations of Choice 2 in Example 2
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Number of iterations

FIGURE 7. Comparison of the iterations of Choice 3 in Example 2

choice of zy and z;. So, initial guess does not have any significant effect on
the convergence of the algorithm.

3. The conditions in Theorem 3.1 are easily implemented in numerical compu-
tations and need no estimation on the spectral radius of A7 A.
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FI1GURE 9. Error ploting of Choice 1 in Example 1

4. The restriction of metric projections onto C' and @ is relaxed by using those
of C, and @Q,, which have specific forms.

We finally end this section by providing a comparison of convergence of Algorithm
3.1 with the modified relaxed CQ algorithms defined by He and Zhao [12] and Dang
et al. [9] through the example. For the convenience, let us denote Algorithm

3.1, Algorithm (7) and Algorithm (14) by MIner-R-Iter, Iner-R-Tter and H-R-Iter,
respectively.

Examples 3. Let Hy, Hy,C,@Q, A and f be as in Example 1.

Choose «,, = %H’ Pn = ffl and w, = ﬁ for all n € N. Set 6 =

¢ = 0.8 and 6,, = 0,, as in Remark 3.2. Let v = ﬁ and ¢, = 04 if ¢ <

1 _ 1 )
max{nzuwnf‘l’”,lHQ,nQHw,ffwn,l.H} ‘and (bn - maX{(n‘l’l)?”wn*wnfl”2’(”’4’1)2”1"7?%*1“}’
otherwise. The stopping criterion E,, is defined as in Example 1. For points u,

xo and x; picked randomly, we obtain the following numerical results.

Remark 2. In numerical experiment, it is revealed that the sequence generated by
MIner-R-Iter involving the viscosity term and the inertial technique converges more
quickly than by H-R-Iter of He and Zhao [12] and Iner-R-Iter of Dang et al. [9] do.

Acknowledgments. This research was supported by the Thailand Research Fund
and the Commission on Higher Education under Grant MRG5980248. S. Suantai

wishes to thank Chiang Mai University. N. Pholasa was supported by School of
Science, University of Phayao.
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TABLE 3. Comparison of MIner-R-Iter, Iner-R-Iter and H-R-Iter

in Example 1

MIner-R-Iter Iner-R-Iter H-R-Iter
Choice 1 u=(0,—-1,-57T No. of Tter. 6 33 223
xo = (2,6,-3)T cpu (Time) 0.000737 0.007677  0.064889
T = (727 7178)T
Choice 2 u=(2,1,0)T7 No. of Iter. 4 26 378
xo = (3,4, —-1)T cpu (Time) 0.000522 0.004861  0.137471
T = (757 727 l)T
Choice 3 (5 -3,-1)7T No. of Iter. 9 29 140
=(2,1,-1D)T cpu (Time) 0.001458 0.005175  0.026824
=(-5,3,5)"
Choice 4 u=(-2,-1,4)T No. of Iter. 9 34 763
zo = (7.35,1.75,-3.24)T  cpu (Time) 0.001481 0.008058  0.687214

x; = (—6.34,0.42,7.36)7

The error plotting of F,, of MIner-R-Iter, Iner-R-Iter and H-R-Iter for each choice
in Table 3 is shown in the following figures, respectively.
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A strong convergence result involving an
inertial forward—backward algorithm for
monotone inclusions

Qiaoli Dong, Dan Jiang, Prasit Cholamjiak and Yekini Shehu

Abstract. Our interest in this paper is to prove a strong convergence
result for finding a zero of the sum of two monotone operators, with one
of the two operators being co-coercive using an iterative method which is
a combination of Nesterov’s acceleration scheme and Haugazeau’s algo-
rithm in real Hilbert spaces. Our numerical results show that the pro-
posed algorithm converges faster than the un-accelerated Haugazeau’s
algorithm.
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Projection, Strong Convergence.

1. Introduction

Let H be a real Hilbert space. We study the following inclusion problem: find
Z € H such that
0 € Az + Bz (1.1)

where A:H — H is an operator and B:H — 2¥ is a set-valued operator. This
problem includes, as special cases, convex programming, variational inequal-
ities, split feasibility problem and minimization problem. To be more precise,
some concrete problems in machine learning, image processing and linear
inverse problem can be modeled mathematically as this form.

A classical method for solving problem (1.1) is the forward—backward
splitting method [6,27,34,36,48,49,53,56,61] which is defined by the follow-
ing manner: z; € H and

Tpy1 = (I +7rB) Yz, —rAx,), n>1, (1.2)

where r > 0. We see that each step of iterates involves only A as the forward
step and B as the backward step, but not the sum of A and B. This method
includes, in particular, the proximal point algorithm [17,47,54,59,62,64] and

Y Birkhauser
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the gradient method [58,63,67-69]. In [35], Lions and Mercier introduced the
following splitting iterative methods in a real Hilbert space:

Tpi1 = (2J2 = 1D(©2JP = Dz, n>1 (1.3)

and

Tnp1 = J22IE — Dy + (I — JP)zn, n>1, (1.4)
where JI' = (I +rT)~!. The first one is often called Peaceman—Rachford
algorithm [49] and the second one is called Douglas—Rachford algorithm [28].
We note that both algorithms are weakly convergent in general [5,35]. There
have been many works concerning the problem of finding zero points of the
sum of two monotone operators (in Hilbert spaces) and accretive operators
(in Banach spaces); see [25,26,34,36,48,53,65,66].
Let H be a real Hilbert space and f and g two proper, convex and lower
semi continuous functions from H to R U {400} such that f is differentiable
with L-Lipschitz continuous gradient, and the proximal map of g is “simple”,
meaning that its “proximal map”

: |z —yl?
T > arg ;Ig;{lg(y) A
can be easily computed.
In particular, if A := Vf and B := 0dg, where V[ is the gradient of
f and dg is the subdifferential of g which is defined by dg(xz) := {s € H :
9(y) = g(x)+ (s,y —x), Vy € H} then problem (1.1) becomes the following
minimization problem:

minf(z) + g(z) (1.5)

and (1.2) also becomes
Tpt1 = Prox, (v, —rVf(zn)),n > 1,

where r > 0. Among the many algorithms which exist to tackle such prob-
lems, the proximal splitting algorithms, which perform alternating descents
in f and in g, are frequently used, because of their simplicity and relatively
small per-iteration complexity. One can mention the forward—backward (FB)
splitting, the Douglas—Rachford splitting, the ADMM (alternating direction
method of multipliers), which all have been proved to be efficient in many
imaging problems such as denoising, inpainting, deconvolution, colour trans-
fer and many others.

Let us recall that the inertial term is based upon a discrete version of a second
order dissipative dynamical system [1,2] and can be regarded as a procedure
of speeding up the convergence properties (see, e.g., [4,7,37,38,52]). Recently,
there have been increasing interests in studying inertial type algorithms, see,
for example, inertial forward-backward splitting methods [36,46], inertial
Douglas—Rachford splitting method [13], inertial ADMM [14,22], and inertial
forward-backward—forward method [15]. Some inertial algorithms for solving
nonsmooth and nonconvex optimization problems have been recently studied
in [11,12]. For example, it is known that acceleration scheme developed by
Nesterov improves the theoretical rate of convergence of forward-backward
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method from the standard O(k~!) down to O(k~2) and the inertial extrapola-
tion scheme of Nesterov’s accelerated forward—backward method is actually
o(k~2) rather than O(k~2) (see [3]). These results and other related ones
analyzed the convergence properties of inertial type algorithms and demon-
strated their performance numerically on some imaging and data analysis
problems.

In [4], Alvarez and Attouch translated the idea of the heavy ball method
in [51,52] to the setting of a general maximal monotone operator using the
framework of the proximal point algorithm. The resulting algorithm is called
the inertial proximal point algorithm and it is written as:

Yn = Tn, + an(xn - xn—l)
{-rn-i-l - (I+ TnB)_lyna n Z 1. (16)

Alvarez and Attouch [4], proved that under the condition
Zanﬂxn —2n1|]? < o0, (1.7)

the algorithm (1.6) converges weakly to a zero of B.

In [41], Moudafi and Oliny introduced an additional single-valued, co-
coercive and Lipschitz continuous operator A into the inertial proximal point
algorithm:

Yn = Tn, + an(xn - xn—l) (1 8)
Tn+1 = (I+ Tn,B)il(yn - TnAzn)a n > 1. '

Moudafi and Oliny [41] obtained a weak convergence result using algorithm
(1.8) under the same condition (1.7) imposed above in [4]. As remarked in [36],
the algorithm (1.8) does not take the form of a forward-backward splitting
algorithm, since operator A is still evaluated at the point x,, for a;,, > 0.
We note that there are many problems that arise in infinite dimensional
spaces. In such problems norm convergence is often much more desirable than
weak convergence (see [5] and references therein). For this reason algorithms
that provide strong convergence result is better than forward—backward split-
ting (and its inertial extrapolation type) method that provides weak conver-
gence in infinite dimensional real Hilbert spaces. Another reason to study
their strong convergence result is an academic interest.

In order to obtain the strong convergence, in his unpublished 1968 disserta-
tion, Haugazeau [32] (see also p. 42 in [29]) proposed independently a strongly
convergent variant of a periodic projection algorithm for finding a common
point of m intersecting closed convex sets {S;}7*, in H, requiring essentially
the same kind of computations. To describe his method, let us define, for a
given ordered triplet (z,y,2) € H3,

R(Iay) = {U’EH : <U*y,l‘fy> SO},
and let us denote by Q(z,y,z) the projection of x onto R(z,y) N R(y, z).
Thus, R(z,z) = H and, if x # y, R(z,y) is a closed affine half space onto

which y is the projection of x. Haugazeau [32] showed that, given an arbitrary
starting point xg € H, the sequence {z, } generated by the algorithm

Tn+1 = Q(an'rna Pn(modm)+1x7l)7 vn Z 1
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converges strongly to the projection of x(y onto the set of common points of m
intersecting closed convex sets {S;}7 ;. Many modifications of Haugazeau’s
method have been studied and considered by many authors for solving fixed
point problems and optimization problems in the literature. (see, for example,
[5,33,39,40,42,43,57] and the references contained therein for more details.)
In this work, we study and prove strong convergence results, under some mild
conditions, using a combination of Haugazeau’s algorithm and Nesterov’s
acceleration scheme for solving the inclusion problem (1.1) in the framework
of real Hilbert spaces. Our work is motivated by the accelerated variant of
the forward—backward algorithm proposed by Lorenz and Pock [36], which
in turn generalizes the works of Beck and Teboulle [7], Nesterov [44,45] and
Gdiler [30]. Our results are new, interesting and complement (in terms of mode
of convergence) many recent results previously obtained in this direction in
the literature.

2. Preliminaries

Let C' be a nonempty, closed and convex subset of real Hilbert space H with
inner product (.,.) and norm |[.||.

Definition 2.1. A mapping T : C — C is said to be nonexpansive if
[Tx —Ty| < [z —yll, Yo,y € C.

Construction of fixed points of nonexpansive mappings is an important
subject in nonlinear mapping theory and its applications; in particular, in
image recovery and signal processing (see, for example, [18,50,70]). For the
past 50 years or so, the approximation of fixed points of nonexpansive map-
pings and fixed points of some of their generalizations and approximation of
zeros of monotone-type operators in Hilbert spaces have been a flourishing
area of research for many mathematicians. For example, the reader can con-
sult the recent monographs of Bauschke and Combettes [6], Berinde [9] and
Chidume [24].

For any point w € H, there exists a unique point Pcu € C' such that

[ — Peul| < Jlu—yll, Vy € C.

P is called the metric projection of H onto C. We know that Pg is a
nonexpansive mapping of H onto C. It is also known that P satisfies

(x —y, Pox — Pcy) > ||Pox — Peyll?, (2.1)

for all z,y € H. Furthermore, Pox is characterized by the properties Pox € C
and

(x — Pox, Pox —y) >0, (2.2)

for all y € C. We also know that all Hilbert space has the Kadec—Klee
property, that is, {z,,} converges weakly to z and ||z,| — ||z| imply {z,}
converges strongly to x.
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Definition 2.2. A mapping T:H — H is said to be firmly nonexpansive if and
only if 27" — I is nonexpansive, or equivalently

<’JZ - vax - Ty> Z ||T‘T - Ty||27 V:c,y € H.
Alternatively, T' is firmly nonexpansive if and only if T' can be expressed as
1
2
where S : H — H is nonexpansive. Projections are firmly nonexpansive.

T=-(I+5),

Definition 2.3. A nonlinear operator 7' whose domain D(T) C H and range
R(T) C H is said to be:
(a) monotone if
(b) B-strongly monotone if there exists 3 > 0 such that
(¢ —y, Tz —Ty) > Blle - y||*, Yo,y € D(T),

(¢) v-inverse strongly monotone (for short, v-ism) if there exists v > 0 such
that

<.’E - vax - Ty> > I/||T£L’ - Ty||2avx,y € D(T)

It can be easily seen that (i) if T" is nonexpansive, then I — T is monotone; (ii)
the projection mapping Pc is a 1-ism. The inverse strongly monotone (also
referred to as co-coercive) operators have been widely used to solve practical
problems in various fields, for instance, in traffic assignment problems; see,
for example, [10,31] and the references therein.

The following lemmas will be needed in the sequel.

Lemma 2.4. Let C be a nonempty closed convex subset of a real Hilbert space
H and Po:H — C be the metric projection from H onto C. Then the following
inequality holds:

ly — Pea|® + ||z — Pox||* < ||z —yl[?, Ve H,VyeC.
Lemma 2.5. (Sahu et al. [55]) Let C be a closed and convexr subset of a real
Hilbert space H. For any x,y,z € H, and a real number a € R, the set
{veC:lly—vl]* < |lz —vl|* + (z,0) + a}
is closed and convex.

Lemma 2.6. (Lopez et al. [34]) Let E be a real Banach space. Let A : H — 2
be a maximal monotone operator and B : H — H be an a-inverse strongly
monotone mapping on H. Define T, := (I + rB)~'(x — rAz), r > 0. Then
we have,

(i) forr >0, F(T,) = (A+ B)~1(0).

(ii) for0<s<randxz € E,||lx —Tsz|| < 2||x — T x||.

We shall adopt the following notation in this paper:

e 1, — x means that x,, — x strongly.
e 1, — x means that x,, — x weakly;
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o wy(ry) == {z : Jx,, — x} is the weak w-limit set of the sequence
{antnzs

Lemma 2.7. (Browder [16]) Let C' be a nonempty closed conver subset of a
Hilbert space H and T a nonezpansive mapping with F(T) # 0. If {z,} is a
sequence in C such that v, — x and (I — T)x, — y, then (I —T)x =y. In
particular, if y =0, then x € F(T).

3. Main results

Let H be a real Hilbert space. Let A : H — H be an a-ism and B : H — 2H a
maximal monotone operator such that  := (A+ B)~(0) # 0. Let {a,} CR
and let a sequence {z,}°, in H be generated by zg,2; € H and for all
n>1,
Yn = Tp + an(xn - mnfl)y
Zn = (I + rnB)_l(yn - TnAyn)a
Cp={uc H: ||z, —ul|* <||zn —ul|* = 200 (xy — U, 21 — x,) (3.1)
+ap|[zn-1 =z}, .
Qn={ueH:{u—x,x0— 12, <0}
Tnt1 = Po,nq, (o)
Remark 3.1. We make the following remarks about our iterative method
(3.1).
(1) We observe that for any u € H,
Iz = wl® < llzn = ull® = 2an{en = 4,01 = 20} + a3 ll2n-1 = zall?
<~
202 = 20, 20) < ll2all® - 2(u, 2n) + 200 (u, @n1 — )
—200 (T, Tn—1 — Tn) + @i |[Tn-1 — zn|®
&
2<u,:}cn — Zn — an(ﬂcnﬂ - $n)> < ||5Un||2 - Hzn||2
—200 (T, Tn—1 — Tn) + @i |[Tn—1 — zn|?
<~
20, yn — 2n) < [l@al® = [lz0]1* = 20m(@n, 21 — @n) + @i ||Tn—1 — @nl|?
<~

1
(@0 = 20) < 5 [[2al® = 2ull® = 200 (@0, 201 = 20) + a3 [on-1 —@al].

Therefore, the set C,, defined in our iterative method (3.1) is a half
space. Hence, the metric projection Pc, has a closed-form expression
and can be easily computed (see [19]).
(2) For any u € H,
<u_$n7$0 _mn> < 0
=

(u, 29 — Tp) < (XTp,To — Ty ).
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Therefore. the set @, defined in iterative method (3.1) is a half space
and the metric projection FPg, has a closed-form expression and can
also be easily computed.

(3) Since both C), and @, are half-spaces, then the closed-form expressions
for the projections onto the intersection of two half-spaces C),, and @,
are given in Propositions 28.18 and 28.19 of [6]. Therefore, the iterate
Zp41 in our iterative method (3.1) can be easily computed.

We now give our main result of this paper.

Theorem 3.2. Let H be a real Hilbert space. Let A : H — H be an a-ism and
B : H — 2 a mazimal monotone operator such that Q := (A+ B)~1(0) # 0.
Let {a,} be a bounded real sequence. Let a sequence {x,}5, in H be gen-
erated by (3.1). If 0 < li;r_l)ioréfrn < limsupr, < 2«, then {x,}22, converges

n—oo

strongly to T = Pqxg.

Proof. We divide our proof into these steps.
Step 1 Show that {z,}72 is well defined and 2 C C,, N Q,,, ¥n > 0.
By Lemma 2.5, it is obvious that C,, is closed and convex for all n > 0.
Furthermore, @,, is closed and convex for all n > 0. So, C;, N @Q,, is closed
and convex for all n > 0.
Let u € Q. Then by a direct computation, we obtain,
l[Yn — UJHQ = |[(zn —u) — an(Tn-1— xn)Hz

= ||lzn —ul|* = 200 (Ty, — U, Tp_1 — ) + Q2||Tp_1 — 20 ||*

Furthermore, we have,
|l 2n — UH2 = ||(I + rnB)_l(yn —rnAyn) — (I + rnB>_1(u - TnAu)H2

<|lyn — u =10 (Ayn — AU)H2

= ||yn — u||2 =27 (Ayn — Au, yn —u) + 7"721||Ayn - Au||2

< lyn — ul® = 2rnal| Ay, — Aul® + 3] | Ay, — Aul®

= llyn —ull* = (2a = r5)rnl| Ayp — Aulf®

< lyn — ulf®

= ||zn — ul|* = 200 {2y, — U, Tp_1 — Tn) + Q2||Tp_1 — ||
Therefore, u € C,, VYn > 1. Clearly, u € Cy. So, u € C,, ¥Yn > 0. Thus,
Qc Cpy, Yn > 0. For n = 0, we have that o € H and Qo = H and hence
Q C H = CyN Q. Suppose that xy is given and Q C Cy N Q. for some
k € {0,1,2,...}. Since Cy N Qy is nonempty, closed and convex, there exists
a unique element x4, € C, N Q) such that x11 = Poy,ng, (20). It follows
that,

(2 — Thg1,T0 — Tpg1) <0, Vz € Cp N Q.
Since 2 C C N Q, we have in particular that,
<Z — Tga1,To — {L‘k+1> <0, Vze Q.

This implies that Q C Ck41. Hence Q C Ciy1 N Q1. By induction, Q C
CpNQyp, Yn >0 and {x,}72, is well defined.
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Step 2 Show that {z,,}7%, is bounded.
From our iterative scheme (3.1), we observe that,

(y —xp,x0 — ) <0, Yy € Qn(n >1).

This implies that =, = Pg, (x¢) and hence,

lzn — ol < [lzo — yll, Yy € Qn.
Since ) C @Q,,, we have

|zn — 2ol| < [lzo —yll, Yy € Q. (32)
In particular, we have (since x,,11 € Qn)

llzn — 2ol < ||zn+1 — o[- (33)

By (3.2) and (3.3), we obtain lim ||z, — xol|| exists. This implies that {z,}

is bounded.
Step 3 Show that lim ||x,4+1 — z,|| = 0.

By Lemma 2.4 and the fact that x,, = Py, (zo), we see that,

|2nt1 = 2nl” < l[@ng1 — 20l[> = [|zn — 20>
Since lim ||a, — zol|| exists, it follows that lim ||z,4+1 — zy]| = 0.

n—0oo n—oo
Step 4 Show that lim z, =7, where T = Pq(x0).
n—oo

We obtain from (3.1) and Step 3 that,

lyn — znll = lan|llzn — Tn-1] = 0, n — oco.
Hence,

[Zn+1 = Ynll < [lTns1 — znll + |yn — znll — 0, n — o0
Since z,,41 € C,, we have that,
||Zn - xn+1‘|2 < ||$n - $n+1||2 - 2an<xn — Tp4+1,Tpn—-1 — xn>
+O‘$L||xn—1 - $n||2
<||zn — $n+1||2 + 2|an| | — Tntal|Tn-1 — T4
+02 |21 — x| = 0, n — 0.
Furthermore, we have,
[2n — @l < 20 — Zngall + |20 — Tpga |l = 0, 0 — oo,
and
20 = Ynll < ll2n — 2ol + |20 — ynll = 0, n — oo.
Take z, := T}y, where T}, := (I +r,B)~*(I —r,A). Therefore,
”Tnyn - ynH = HZTL - ynH — 0, n— oo.
Since liminfr,, > 0, there exists ¢ > 0 such that r, > ¢, Vn > 1. Then, by
n—oo
Lemma 2.6, we have,
lim [|Teyn — ynll <2 lim ||Thyn — ynl| = 0.

n—oo n—oo
By Lemmas 3.3 and 3.1 of [34], T, is nonexpansive and F(T.) = (A+B)~1(0).
Since {z,} is bounded, there exists a subsequence {x,,} of {z,} such that
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Zn, — w € H. Using the fact that ||y, — .|| — 0,n — o0 and z,,, = w € H,
we have y,, — w € H. We can therefore make use of Lemma 2.7 to assure
that w € Q.

If T = Pq(xo), it follows from (3.2), the fact that w € Q and the lower
semicontinuity of the norm that,

[lzo = ]| < [leo — wl| < lim inf||zo — @, |
1— 00

< limsup||zo — 2 || < |[0 — .
—00
Thus, we have that lim ||z, — xo|| = ||zo — w|| = ||zo — Z||. This implies
71— 00

that x,, —» w =T, i — oco. It follows that {z,} converges weakly to Z. So
we have,

[|lxo — Z|| < liminf||xg — x|
n—oo

< limsupl||zg — || < ||zo — Z]-
n—oo

This shows that lim ||z, — zo|| = ||zo — T||. From x,, — T, we also have
n—oo
Ty — X9 — T — xg. Since H satisfies the Kadec—Klee property, it follows that

Ty — 9 — T — xg. Therefore x,, — T as n — oo. We thus complete the
proof. O

If we take A := 0 in Theorem 3.2, then we obtain the following corollary
which is new in its own right.

Corollary 3.3. Let H be a real Hilbert space. Let B : H — 2 be a mawi-
mal monotone operator such that B=*(0) # 0. Let {a,,} be a bounded real
sequence. Let a sequence {x,}°2 , in H be generated by xg,x1 € H and for
alln>1,

Yn = Tn, + an(mn - xn—l)v

2p = (I +71,B) Ly,

Cp={u€ H:||zn—ull® <||zn —ul]* = 200 (xn — u,2pn_1 — T)
+ O‘inn—l - xn||2}7

Qn={uveH: {u—xyx0—2,) <0},

Tnt1 = Po,nq., (To)-

If liminfr, > 0, then {x,}52, converges strongly to T = Pqxg.
n—oo

Remark 3.4. We remark here that our Theorem 3.2 and Corollary 3.3 com-
plement many weak convergence results for monotone inclusion problems
using inertial-type algorithms obtained in [4,13-15,21,36,37,41,46] in the
sense that we obtain strong convergence results using the modified inertial
extrapolation method in real Hilbert spaces.
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4. Applications

(1) Application to convex minimization problems
Let f and g be two proper, convex and lower semicontinuous functions
from H to RU{+o0} such that f is differentiable with L-Lipschitz continuous
gradient, and g is such that its proximal map can be easily computed. Assume
that € is the set of solutions of problem (1.5) and  # ). In Theorem 3.2, take
A=V f and B := dg. Therefore, we obtain the following strong convergence
result with inertial for solving problem (1.5).

Theorem 4.1. Let H be a real Hilbert space. Let f and g be two proper, convex
and lower semicontinuous functions from H to R U {400} such that f is
differentiable with L-Lipschitz continuous gradient, and g is such that its
prozimal map can be easily computed. Assume that € is the set of solutions of
problem (1.5) and Q # 0. Let {a,} be a bounded real sequence and y € (0, 2).
Let a sequence {x,}22 in H be generated by xg,x1 € H and for alln > 1,

Yn = Tn + an(xn - (Enfl)v

Zn = prOX'yg(yn - 'va(yn))a

Cp={uecH: |z, —ul|* <||lzn —ul|* =200 {xp —u,Tp_1 — x,)
+ ainn,l - xn||2}v

Qn={ueH:(u—1a,,x9—2,) <0},

Tny1 = Po,nq, (7o)

Then {x,}5°, converges strongly to T = Poxg.

(2) Application to split feasibility problems
Let Hy and Hs be real Hilbert spaces and T : H; — Hy a bounded
linear operator. Let C' and @) be nonempty, closed and convex subsets of H;
and Hj, respectively. The split feasibility problem (SFP) is the problem of
finding a point « € C such that

Tr € Q.

We denote the solution sets by Q == CNT Q) = {y € C : Ty € Q}.
This problem was first introduced by Censor and Elfving [20], in a finite
dimensional Hilbert space, for solving the inverse problems in the context
of phase retrievals, medical image reconstruction and also in modeling of
intensity modulated radiation therapy.

Recall that the indicator function on C' is the function ic, defined as

ic(x) = {O’ rec (4.1)

o0, otherwise.
It is well known that the proximal mapping of i¢ is the metric projection on
C; i.e,
rox; (xr) = argmin||lu —x
prox,, () = argmin lu — ]
- PC (l‘)

Let Hy and Hs be Hilbert spaces. Let T : Hy — Hs be a bounded linear
operator and 7™ the adjoint of 7. Let Py be the projection of Hy onto
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nonempty, closed and convex subset Q. Take f(z) = 3|[T2 — PoTz||* and
g(z) =ic(x). Therefore, from Theorem 4.1, we obtain the following theorem

for solving split feasibility problems:

Corollary 4.2. Let Hy and Hs be real Hilbert spaces. Let T : Hi — Hs be a
bounded linear operator and T™* the adjoint of T'. Let C' and Q) be nonempty,
closed and conver subsets of Hy and Ha, respectively. Let = CNT~1(Q) #

0. Let {an} be a bounded real sequence and v € (0, H:,?HQ). Let a sequence

{zn 2 in H be generated by xo,x1 € H and for alln > 1,

Yn = Tn, + an(mn - xn71)7
Zn = PC(yn - TT*(I - PQ)Tyn)a

Cpn={ueH:|z, 7u||2 <||zn —UHQ — 20 (T — Uy Tyy—1 — Tpy) (4.2)
+O‘121Hxn—l _xn||2}v .

Qn={ueH:(u—1x,x)—2,) <0},
Tni1 = Po,nq., (o),

for alln > 1. Then {x,} converges strongly to q := Poxo, where Pq is the
metric projection from Hy onto €.

(3) Application to LASSO problem

The l;-norm regularized least squares model is
, 1
mlnxeRrLiHA,I*bH% +)\||$H1, (4.3)

where A € R™*™ is a given matrix, b is a given vector and )\ a positive scalar.
Let © be the solution set of (4.3).

The concept of [; regularization has been studied for many years. The least
square problem with [y penalty was presented and popularized independently
under names, Least Absolute Selection and Shrinkage Operator (LASSO)[60],
and Basis Pursuit Denoising [23].

The interest in compressed sensing, is in recovering a solution x to an unde-
termined system of linear equations Ax = b in the case where n > m. It
is known from linear algebra that this linear system either does not exist
or is not unique when the number of unknowns is greater than the number
of equations. The system is usually solved by finding the minimum le-norm
solution, also known as linear least squares. If x is sparse, as is usually the
case in applications, then x can be recovered by computing the above [1-norm
regularized least squares model (4.3). This (4.3) model is most often referred
to as LASSO. The LASSO problem can be cast as a second order cone pro-
gramming and solve by standard general algorithms like an interior point
method [8], but the computational complexity of such traditional methods is
too high to handle large-scale data encountered in many real applications.
Two notable algorithms that take advantage of special structure of LASSO
problems are iterative shrinkage thresholding algorithm (ISTA) and its accel-
erated version fast iterative shrinkage thresholding algorithm (FISTA). The
computation of ISTA, which is also known as the proximal gradient method,
only involves matrix and vector multiplication, and has great advantage over
standard convex algorithms by avoiding a matrix factorization [47]. Beck and



3108 Q. Dong, D. Jiang, P. Cholamjiak and Y. Shehu JFPTA

Teboulle [7] put forward an accelerated ISTA named as FISTA, in which a
relaxation parameter is chosen. Meanwhile, Nesterov [44,45] had earlier devel-
oped a similar algorithm to FISTA. These two algorithms are designed for
solving problems containing convex differentiable objectives combined with
an [ regularization terms as the following problem:

min{ f(z) + g(z) : z € R"}, (4.4)

where f is a smooth convex function and g is continuous function but possibly
nonsmooth. Clearly, LASSO problem is a special case of (4.4), formulation

with f(z) = $||Az — b]|?, g(z) = A||z]|1. Its gradient Vf = A* Az — A*b is

Lipschitz continuous with Lipschitz constant L(f) = ||A*A||. The proximal
map with g(z) = M|[z||1 is given as prox,(z) = argmin, A||z||; + §||u —z|[3,

which is separable in indices. Thus, for x € R",

prox,(x) = prox, |, (z) = (pFOXM_h(m), . ,prox)\l_h(xn))
= (a1,...,Qn),

where oy, = sgn(zy) max{|zy| — A, 0} for k = 1,2,...,n. Thus we get from
Theorem 4.1 the following theorem for solving the Lasso problem in infinite
dimensional Hilbert spaces.

Corollary 4.3. Let H be a real Hilbert space and f and g from H to R such
that f(z) = 3||Az — b||%, g(z) = A|z||1. Suppose Q # 0. Let {ay,} be a
bounded real sequence and r € (0, ﬁ). Let a sequence {x,}5%, in H be
generated by xo,x1 € H and for alln > 1,

Yn = Tp, + an(a?n - $n71)7
Zn = prOXw(yn —rA*(Ay, — b)),

Cpn={ueH:|z, — u||2 <||xn — UHQ — 20 {Ty — Uy Tpy—1 — Tpy) (4.5)
+O‘121Hxn—l _anQ}v .

Qn={ueH:(u—1x,x9—2,) <0},
Tni1 = Po,nq., (o),

for allm > 1. Then {x,} converges strongly to q := Pqxg, where Pq is the
metric projection from H onto €.

5. Numerical example

In this section, we present some numerical examples to illustrate the perfor-
mance of our algorithm. We consider the following simple numerical example
to demonstrate the effectiveness of the algorithm (4.2). We apply the algo-
rithm (4.2) to solve the split feasibility problem and compare the numerical
results with the standard form (i.e., a,, = 0) defined as follows: z; € H and

zn = Po(x, — rA*(I — Pg)Axy,),

Cp={u€H :||lzn —ul|| <|lzn —ull}, (5.1)
Qn={uveH: {u—z,,x9—x,) <0}, ’
Tnt1 = Po,na, (7o),
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In the numerical results listed in the following tables, 'Iter.” and ’Sec.’
denote the number of iterations and the cpu time in seconds, respectively.

Ezample 5.1. Let Hy = La([er, B]) = H2 and we give a numerical example in
(La([e, B, |]-1lL,) of the problem considered in Corollary 4.2 in this section.
Now take

C:= {{E € LQ([avﬂ]) : (a,m) < b}a

where 0 # a € La([a, 5]) and b € R, then (see [19])

b=(a,z) b
Po(x) = | T, 0T % (az)>
x, (a,x) <0.

Let

Q=A{z € Ly([a, B)) : |z = d||, <7}

be a closed ball centered at d € La([a, 8]) with radius r > 0, then

d+T|z an xé¢Q
x, T € Q.

Po(z) = {

Now, suppose

0= {o € La((0,27) : /0% r(t)dt < 1)

and
27
Q= {g: € Ly([0,27]) : /O |l2(t) — sin(t)|2dt < 16}

and A : L?([0,27]) — L2([0,27]), (Az)(s) = z(s), Vo € L*([0,2x]). Then
(A*z)(s) = z(s) and ||A]| = 1. Let us consider the following problem:

find z* € C suchthat Az* € Q. (5.2)

Observe that the set of solutions of problem (5.2) is nonempty (since z(t) =
0, a.e. is in the set of solutions).

In Corollary 4.2, zo(t) = z1(t), t € [0,2n]. Take r = 1.90, o, := ni;ll,
Vn > 1 with @ = 3 and ay = 0.84. We take E(z,) = 1| Po(zn) — z,]]* +
$1Po(Az,,) — Azy||? < e = 1072 as the stopping criterion. We test several
initial values and compare iterative method (4.2) with the un-accelerated one
defined by (5.1). The results are listed in Table 1.

We take E(z,) = 3||Pc(zn) — zn|® + 3| Po(Azyn) — Azy|? < e =

2 _ 2f
l'o—ﬁ,

107%(i = 0,1,2,3) as the stopping criterion.We choose z} = %,
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TABLE 1. Computational results for Example 5.1

o) Un-accelerated algorithm 4.2 Algorithm 4.2
Sec. Tter. Sec. Iter.
% 27.5781 18 12.6094 12
% 35.1094 12 17.5469 8
les 1.3281 9 0.6406 3
%eﬁ + % 3.7969 13 2.7813 6
Llog,(t) + & 23.9844 13 13.2813 6
2sin 5t — 3 cos 2t 49.7656 15 21.3906 11
10° ‘ ‘ ‘ ‘ ‘ ‘
\ — - —  Inertial forward-backward algorithm
N Forward-backward algorithm
\
\
\
107"t | 1
|
~~ |
X [
u |
|
107} ~ i}
10° ‘ . ‘ ‘ > ‘ —
0 2 4 6 8 10 12 14 16 18

Number of Iterations

F1GURE 1. Comparison of the number of iterations, for
example 5.1 with x}

3 = %e%, = %e% + %, z) = Llogy(t) + ;—24 and 2§ = 2sin® 5t — 3 cos 2t
as initial values, and the results are presented in Fig. 1, 2, 3, 4, 5 and 6,

respectively.

6. Conclusion and final remarks

In this paper, we consider an iterative method which is a combination of the
inertial forward-backward algorithm and Haugazeau’s algorithm for solving
monotone inclusions given by the sum of two monotone operators with an
easy-to-compute resolvent operator and another monotone operator which
is co-coercive and prove the strong convergence of the sequence of iterates
generated by our proposed algorithm to a solution of monotone inclusions in
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10° ¢
— - — Inertial forward-backward algorithm
Forward-backward algorithm
- \
10 \ 4
\
EJ/ \
\
\
102F N 1
~ \

~ \

~ \

~ \

~ \
~ \
> \
~. \
N \

107 ‘ w ‘ ~ ‘

0 2 4 6 8 10 12

Number of Iterations

FiGure 2. Comparison of the number of iterations, for
example 5.1 with z2

10°

10

E(x)

-2

10°

— - Inertial forward—-backward algorithm
Forward-backward algorithm

1 2 3 4 5 6 7 8 9
Number of Iterations

FIGURE 3. Comparison of the number of iterations for
Example 5.1 with z}
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real Hilbert spaces. Our results in this paper complement, in terms of the
mode of convergence in infinite dimensional real Hilbert spaces, the results
of Beck and Teboulle [7], the primal-dual algorithm of Chambolle and Pock
[21] and Lorenz and Pock [36]. We can also obtain a strong convergence
result using a combination of inertial primal-dual algorithm and Haugazeau’s
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algorithm for convex concave programming by adapting appropriately our
iterative method in this paper. From our numerical experiment, we see that
the inertial term leads to faster convergence.
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FiGure 6. Comparison of the number of iterations for
Example 5.1 with

In our future research, we shall develop iterative method with inertial extrap-
olation term which does not involve the construction of sets C,, and @Q,, as
given in (3.1) and the sequence of iterates generated by the method con-
verges strongly to a solution z* € (A + B)71(0) # (. When this is achieved,
we would compare numerically the new proposed accelerated method with
the un-accelerated method (see, e.g., [64]) of solving monotone inclusions in
real Hilbert spaces. For the time being, our result in this paper obtains strong
convergence result using Haugazeau’s algorithm involving inertial extrapola-
tion term and show numerically that our proposed scheme converges faster
than the un-accelerated Haugazeau’s algorithm for solving monotone inclu-
sions in real Hilbert spaces.
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Abstract In this work, we introduce implicit and explicit iterations for solving the
variational inclusion problem for the sum of two operators and the fixed point prob-
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1 Introduction

Let X be real Banach space, we consider the following so-called variational inclusion
problem: Find x € X such that

0 € Ax + Bx, (1.1)
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where A : C —> X is a single-valued mapping, B : X — 2% is a set-valued
mapping and 0 is a zero vector in X. The set of solutions of (1.1) is denoted by
(A + B)~10. It is well known that the problem (1.1) has wide applications in the
fields of economics, structural analysis, mechanics, optimization problems, signal
processing, image recovery, and applied sciences (see, e.g., [11, 17, 21, 23, 24], and
the references therein).

A classical method for solving this problem is the forward-backward splitting
method [18, 25, 29, 37] which is defined by the following manner: x; € X and

Xpp1 = (I +71B) (g —rAxy), n > 1, (1.2)

where r > 0. We see that each step of iterates involves only with A as the forward
step and B as the backward step, but not the sum of A and B. This method includes, in
particular, the proximal point algorithm [12, 13, 22, 27, 32] and the gradient method
[9, 19]. Lions-Mercier [25] introduced the following splitting iterative methods in a
real Hilbert space:

Xni1 = QI =DQIE —Dx,, n > 1 (1.3)

and
X1 = JAQIP = Dxy + (I = JP)xy, n > 1, (1.4)

where JrT = (I +rT)~'. The first one is often called Peaceman-Rachford algorithm
[30] and the second one is called Douglas-Rachford algorithm [20]. We note that
both algorithms can be weakly convergent in general [29].

Recently, Lopez et al. [26] introduced the following Halpern-type forward-
backward method: x; € X and

Xpp1 = opu + (1 — Oln)(‘]rl:(xn — ru(Axp +ay)) + by), (1.5)

where J,B is the resolvent of B, {r,} C (0, 00), {a,} C (0, 1] and {a,}, {b,} are error
sequences in X. It was proved that the sequence {x,} generated by (1.5) strongly
converges to a zero point of the sum of A and B under some appropriate conditions.

Very recently, Abdou et al. [1] introduced the following two algorithms for solving
the fixed point problem of a nonexpansive mapping and the variational inclusion
problem in Hilbert spaces:

xp = (1 —)Sx; + . Bty f () + (A —Dx, — 2Axy), (1.6)
forall ¢ € (0, 1) and
X1 = (1 = 1) Sxp + Kf)f‘ (ony f(xn) + (1 = an)xn — AnAxy), (1.7)

for all n > 1. It was proved that the sequences generated by (1.6) and (1.7) converge
strongly to a common solution.

There have been many works concerning the problem of finding zero points of
the sum of two monotone operators (in Hilbert spaces) and accretive operators (in
Banach spaces) (see [14, 16, 36-38, 42]).

In this work, motivated by the previous work, we study implicit and explicit
iteration methods for solving the inclusion problem for the sum of accretive and m-
accretive operators in the framework of Banach spaces. We then prove its strong
convergence under some mild conditions. Finally, we provide some applications

@ Springer
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including its experiments to support the main results. Our results extend and improve
many results in the literature.

2 Preliminaries

Throughout this paper, we denote by X and X* areal Banach space and the dual space
of X, respectively. Let ¢ > 1 be a real number. The generalized duality mapping
Jg: X — 2X" is defined by

Jg () = {jg(0) € X* = (x, jg(0)) = 1219, 1L jg )Nl = Ixl197"),

where (-, ) denotes the duality pairing between X and X*. In particular, J, = J»
is called the normalized duality mapping and J,;(x) = x[1972J2(x) for x # 0. If
X := H is a real Hilbert space, then J = I, where [ is the identity mapping. It is
well known that if X is smooth, then J is single-valued, which is denoted by j; (see
[35D).

The modulus of convexity of X is the function § : (0, 2] — [0, 1] defined by

5(e) =inf{1 SRy e Xkl =Nyl =1, llx — Il = e}.

A Banach space X is said to be uniformly convex if §x (¢) > 0 for all € € (0, 2].
The modulus of smoothness of X is the function p : Rt := [0,00) — R*
defined by

(1) =sup{w —l:x,yeX, x| =yl = 1}.

A Banach space X is said to be uniformly smooth if pr(t) —> Oast —> 0. Suppose
that 1 < g < 2, then X is said to be g-uniformly smooth if there exists ¢ > 0 such that
p(t) < ctd forallt > 0.If X is g-uniformly smooth, then X is uniformly smooth. It
is well known that each uniformly convex Banach space (uniformly smooth Banach
space) is reflexive and strictly convex (see [15, 35]).

Let A : X —> 2% be a set-valued mapping. We denote the domain and range of
an operator A : X —> 2X by D(A) = {x € X : Ax # @} and R(A) = (J{Az:z €
D(A)}, respectively. Let ¢ > 1. A set-valued mapping A : D(A) C X — 2% is said
to be accretive of order q if for each x, y € D(A), there exists j,(x —y) € J,(x —y)
such that

(u—v,j;(x—y)) >0,u € Ax and v € Ay.

An accretive operator A is said to be m-accretive if R(I +rA) = X for all r > 0.
Let A : D(A) C X —> 2% be an m-accretive operator. The resolvent operator of A,
denoted by J)XA : X —> D(A) is defined by

JA =T 4+24)7",
where A is any positive number and also denote A~'0 by the set of zeros of A, that is,

A7'0 = {x € D(A) : 0 € Ax}. Let C be a nonempty subset of a real Banach space
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X. A mapping S : C — C is said to be L-Lipschitzian if there exists a constant
L > 0 such that

[Sx = Syll = Llix = yll. Vx, y € C.

If0 < L < 1, then S is a contraction and if L = 1, then S is a nonexpansive mapping.
We denote the fixed points set of the mapping S by Fix(S) = {x € C : Sx = x}.

Leta > 0and ¢ > 1. A mapping A : C — X is said to be a-inverse strongly
accreive (a-isa) of order ¢ if for each x, y € D(A), there exists j, (x —y) € J,(x—y)
such that

(u—v, j;(x —y)) > afAx — Ay||?7,u € Ax and v € Ay.

Lemma 2.1 ([26]) Let X be a real q-uniformly smooth Banach space and A : X —>
X be an wa-isa of order q. Then, the following inequality holds:

I = 2A)x — (I = 2A)y|? < |lx = yI? = Mg — kgrd™ ]| Ax — Ay
1
forall x,y € X. In particular, if 0 < A < (‘;(l—g)"*‘, then I — LA is nonexpansive.
Lemma 2.2 [39] Let | < g < 2 and X be a Banach space. Then, the following are

equivalent.

(i) X is g-uniformly smooth.
(ii)  There is a constant k; > 0 such that for all x, y € X

e + 19 < 119 4+ gy, jg () + Kkqlly 7. 2.1

Remark 2.3 The constant «, satisfying (2.1) is called the g-uniform smoothness
coefficient of X.

Lemma 2.4 ([39]) Let p > 1 and r > 0 be two fixed real numbers and X be a
Banach space. Then, the following are equivalent.

(i) X is uniformly convex.
(ii)  There is a strictly increasing, continuous, and convex function g : Rt — RT
such that g(0) = 0 and
glx =y = IxI” = px, jp(M) + (p = DIYI?, Vx, y € By.

We use the notation x,, — x stands for weak convergence of {x,} to x and x,, —>
x stands for the strong convergence of {x,} to x.

Lemma 2.5 ([10]) Let C be a nonempty, closed, and convex subset of a uniformly
convex Banach space X and S : C — C be a nonexpansive mapping. Then, I — §

is demiclosed at zero, i.e., x, — x and x,, — Sx, —> 0 implies x = Sx.

Following the proof line as in Lemma 2.7 of [41], we obtain the following results.
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Lemma 2.6 Let C be a nonempty, closed, and convex subset of a real smooth Banach
space X and let j, : X —> X* be a generalized duality mapping. Assume that the
mapping F : C —> X is accretive and weakly continuous along segments, that is,
F(x +ty) = F(x) ast —> 0. Then, the variational inequality

x* e C,(Fx*, j,(x —x*))>0,x e C
is equivalent to the dual variational inequality

x* e C,(Fx, jy(x —x%))>0,x € C.
Lemma 2.7 ([34]) Let {x,} and {l,;} be bounded sequences in a Banach space X and
let {Bn} be a sequence in [0, 1] with 0 < liminf, ., B, < limsup,_, . Bn < L
Suppose xp+1 = (1 — Byl + Buxy for all integers n > 0 and limsup,,__, o (|1ln+1 —

Lll = X1 — xnll) < 0. Then, lim,, o0 I, — x5l = 0.

Lemma 2.8 ([40]) Assume that {a,} is a sequence of nonnegative real numbers such
that

any1 < (I — v)ay + Yubp,

where {y,} is a sequence in (0, 1) and {8,} is a sequence in R such that

(i) YnZo¥n =00
(ii)  limsup, oo 8, < 0o0r Y02 [yad,| < 0.

Then, lim,,__, o a, = 0.
Lemma 2.9 ([28]) Let g > 1. Then, the following inequality holds:
ab < Lat + (Chypat
— q q 9
for arbitrary positive real numbers a, b.
Proposition 2.10 ([28]) Let g > 1. Then, the following inequality holds:
a? — bl < qal™'(a — b),
for arbitrary positive real numbers a, b.

Lemma 2.11 (The resolvent identity [7]) For A > 0, u > 0 and x € X, then

JBx=P <%x + (1 - %) fo).

From Lemma above, we have the following fact.
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Lemma 2.12 For eachr,s > 0 then
178x — JBx| < 1 = 2|17 2x — x|lfor allx € X.
r

Proposition 2.13 Let X be a real q-uniformly smooth Banach space. Let B be an m-
accretive operator on X and let Jf be the resolvent operator associated with B and
M. Then, we have

1% = ZE < (x = v, g (Fx = IEy)) v,y € X.

Proof. For any x,y € X and A > 0, we set u = fo and v = ny. By definition
of the accretive operator, we have x — u € ABu and y — v € ABv. Since B is
m-accretive,

0<(x—-u—-(-—v),ju—-v)
= (x =y, jgu—=v)) = (u—v, jg(u—v))
= (x =y, jg(u —v)) — llu—v|?.

It follows that
”u - qu = (x =Y Jl[(u - U))s

ie.,
195x = 2E17 < (x = v g (45 = IFy)) . vx vy € X.

This completes the proof. ]

3 Main results

In this section, we prove the convergence theorem by using an implicit iteration.

3.1 Convergence theorem for implicit iteration scheme

Let X be a uniformly convex and g-uniformly smooth Banach space which admits a
weakly sequentially continuous generalized duality mapping j, : X — X*. Let f :
X — X bea p-contraction, A : X —> X be an a-isa of order g and B : X —> 2%
be an m-accretive operator. Let JAB = (I + AB) ! be a resolvent of B for » > 0 and
S : X —> X be a nonexpansive mapping such that Fix(S) N (A + B)~'0 # . Let
0 <y < 1.Fort € (0, 1), consider the following mapping S; on X defined by

Six =0 —y)Sx + ny(tf(x) + (1 —t)x —XAx),Vx € X,
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where 0 < a < A; < % <b < ( q)‘i I Tt is observed that S; is a contraction.

Indeed, by the nonexpansiveness of J lf and Lemma 2.1, for all x, y € X, we have

ISex — S,y
= (A =»Sx +yIEaf @) + (1 = D)x = 2 AX)) = (1= )Sy + v IE @ f ) + (1 = )y — 1 A)) |
H(l —y)(Sx — Sy) + y[JAB (tf(x) +1 - t)(

54))
=)l
(@) — fO) +( —t)[(l - fl/‘)x - (’ - 1A—tzA>y]H

e b
L=plx =yl +ytlf ) = fDI+A —t)yH <1 - ﬁA)x - (1 ~ 7 _tA>yH
A =plx =yl +yipllx —yll+ A =Dylx =yl
= (1= =pyt)llx =yl

—J2 <tf(y)+(1 —I)(

A

A =»IISx = Syll +»¥

IA

IA

which implies that the mapping S; is a contraction. Hence, S; has a unique fixed
point, denoted by x;, which uniquely solves the fixed point equation

xp =10 —=y)Sx + J/J,\tj(ff(xz) + (I = D)x; — A Axp). (3.1

Our first main result is to show that the net {x;} defined by (3.1) converges
strongly, as t —> 0, to a point in Fix(S) N (A + B)~'0 which is also a solution of
the variational inequality.

Theorem 3.1 Suppose that Fix(S) N (A+ B)~'0 # @. Then, the net {x;} defined by
(3.1) converges strongly, ast —> 0, to a point x* € Fix(S)N (A + B)~10, which is
the unique solution of the variational inequality

(f(x*) = x*, jy(z —x%) <0,Vz € Fix(S) N (A+ B)~'0. (3.2)
Proof. First, we show the uniqueness of a solution of the variational inequality

(3.2). If x* € Fix(S)N(A+B)"'0and £ € Fix(S)N(A+ B)~'0 both are solutions
to (3.2), then we obtain

(fE@) =%, jgx" = %) <0
and
(f(x™) —x*, jg& —x)) <0.
Adding up above two inequalities, we have
(=3 = (fO) = f(®), Jgx™ = ) <0,
and hence,
lx* =X < pllx™ — %17

This implies that x = x* and the uniqueness is proved.
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Next, we show that {x;} is bounded. Set y; = Jg tf(x) + (1 — t)xy — LAxy).
Taking p € Fix(S) N (A + B)~!0, we see that

B B At
p=Sp=J,(p—MAp)=J; |tp+ (1 —1) I_l—tA pl.

Since Jf: and [ — %A are nonexpansive,

ly: — pll

Jff(zf(x,) +(1— z)(z - 1)\_’ tA)x,) - Jf(zp+ {1 —t)([ - 71)itA>p> H
A A
() = p)+ (1 —z)[(! - —/‘)x’ - (1 - ZA)P] H

A A
1560 = 1+ = pl+ =0 (1= 2o )u = (1= 2 a)|

< tolx — pl+ 2l f(p) — pll + (A = Dllx, — pll
= (1= =p)lx = pll+ 1l f () = pll. (3.3)

Then, it follows that

IA

IA

lx: — pll = (1 = y)(Sx; — p) +y (e — P

(I =IISx: — pll+ vy — pll

< (I =p)x = pll+ vy —pl

< (A =plx —pl+y[(1 = A =p)t)lx; — pl + 11 f(p) — pll]

= (1—A—pyt)lx —pll+yel f(p) — pl, (3.4)

which implies that

IA

1
lx: — pll = ——I1.f (p) — pII.

=1,
Hence, {x;} is bounded and so are { f (x;)}, {Ax;}, and {Sx;}.
Next, we show that lim;— ¢ ||x; — Sx;|| = 0. From (3.4), we know that ||x; — p| <

lly: — pll. Then, by the convexity of || - || for all ¢ > 1 and Lemma 2.2, we have

lxe = pllY < llye = pll

by A
< H(l_t)|:<xt—iAxt>_<P_ﬁAP>i|+t(f(xr)_P)
At 4 At A
(x’_l—t X’)_<p_1—t p)

A q
(= p) — 1—_'t<Ax1 - Ap)” + 1l f ) = pl?

q

q
=1-0 + 1l f @) = pll?

= (-1

qh . kg rd
(- t)I:HXt - qu - E(Axr — Ap, fq(xl -p)+ a q_ ;)q

IA

lAx: — APH":| + 1l f &) = pl?

KqA;]
1 —1)4

IA

agr .
a- t)[HXt -pl? - ﬁ\IAXr —Apl? + |Ax; — APH”’} +lfxo) = pll?

(
qu?q

A
= - I)[H)h -pl? - ﬁ(“q - W)HAX: - APII"] + el f ) — pll?

q—1
g h

(1 — a1

IA

lxe = pll? — 1 <(¥q - )”Axt = AplT + 1l f ) = pll?,
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which implies that

kg hd !
A (aq - #)nf\xt — Apll? <1l f () = plI?.

By our assumption, we obtain

lim0 |Ax; — Ap|l = 0. 3.5)
t—>
On the other hand, from Proposition 2.13 and Lemma 2.4, we have

ly: = plI?
172 f o) + (1= Dxe — A Ax) — JE(p — M Ap) |
(tf () + (1= 0x; — A Ax; = (p — M Ap). jg(i — p))

1
c_l[”tf(xl) + (L= 0)x; — A Ax; — (p — M AP + (g — Dlly: — pll*

IA

IA

—glltf (x) + (1 = O)xs — A (Ax; — Ap) — yzll)},
which implies that

lly: = pll?
ll2f (o) + (1= Dx; = 2 Ax — (p = MAP)T — g(lltf (x0) + (1 = 1)x, — A (Ax, — Ap) — wi)

At At !
H(l 4)[(1 -7 _tA)x, - (17 ] _tA)p] +1(f(x) = p)

= gUltf &) + (1 = 0)x; — A (Axp — Ap) — ¥t )

IA

<{d-o|(I- b Alx,— |1 — & A q+tHf(X)— K
= 1—: t 11— p t p
= g(ltf (x)) + (A = D)xr — A (Axe — Ap) — 3l
< (A =0)lxe = pl? + 2l f ) = pll? — glitf (o) + (1 = )xr — A (Axe — Ap) — i)

IA

lxe — plI? + 2l f o) — pll? — g(litf (x) + (1 — Dxe — A (Ax; — Ap) — yil))
lye = pI? + 2l f () = pIl? — glltf () + (1 = Ox; = A (Ax, — Ap) — yi D).

IA

This gives
glitf x) + (1 = )xy — A (Axe — Ap) — well) <t f (xe) — plI?.

Hence,
lim g(|[tf (x;) + (1 —1)x; — A (Ax, — Ap) — ) = 0.
t—0
Since g is a continuous function, by (3.5), we obtain that
lim [lx; — y|| = 0. (3.6)
t—0
From (3.1), we note that

X =0 =y)Sx + vy
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and hence,
lim |y, — x|l = 0.
t—>0
It follows that, as t — 0,
1Sxr — xell < N Sx: — Syell + I1Syr — xell < llxe — yell + 18y — x¢ || = 0. 3.7

For z € Fix(S) N (A + B)~'0, we see that

lyr —zll?

v (tf(xt) +(1- t)([ - %A)x,) - Jf <tz +(1 - z)<1 - IA_’ [A)z)

At At ,
<[f(xt) + (1 - t)<1 1z [A)Xz —tz—(1— t)(l - EA)Z, Jq e — Z)>

q

IA

A A
= (1- r><(1 - l—th)x, - (1 - l—th)z, Jg e — z)> +1(f(x0) — f@), jgr — 2))
+ @) =z, jg(r — 2))
(I =0)lxe = zllllye — 2097 +tpllxe — zlllye — 2197+ £(f @) = 2, jg (o — 2))
A =Dy =zl +tolly: — 2l +1(f (@) — 2, jg(r — 2))
(1= =pD)lye =zl +1{f (@) — 2, jg(r — D),

INTA

which implies that

1
e =zl < llye — 217 < m(f(Z) — 2, Jqg(r = 2)). (3.8)

Next, we show that {x;} is relatively norm-compact. Assume that ¢, € (0, 1) is a
sequence such that , — O asn —> oo. Put x, 1= x;,, yy 1= y;, and A, := A,,.
From (3.8), we have

1
llon = 2ll? =< m(f(z) =2, Jg(n — 2))- (3.9

By the reflexivity of a Banach space X and the boundedness of {x,}, there exists a
subsequence {xp,} of {x,} such that x,, — x* € X asi — o0. So there exists
a corresponding subsequence {y,;} of {y,} such that y,, — x* € X asi — oo.
From (3.7), we have lim,_,  ||x, — Sx,| = 0. It follows from Lemma 2.5 that
x* € Fix(S). Further, we show that x* € (A + B)~!0. Let v € Bu. Note that

Yn = T8 (tn £ xn) + (1 = 12)x0 — A Axy).

Then, we have

1 X
tnf(xn) + (1 - tn)xn - )tnAxn € (I +)\nB)yn — )L*(tnf(xn) + (1 - tn)xn - )‘nAxn - Yn) € B)’nv
n
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Note that, by the boundedness of {x,}, we can find a positive constant M such that

M; = max { sup [lyn — ull ™", sup | £ (xn) — xpllllyn — u”qil} =

n>1 n>1

Since B is m-accretive, we have for all (u, v) € B,

1
<k_(tnf(xn) + (= t)xn — AnAxy — yn) =, jg(yn — M)> >0

n
> (tu f () + (1 = t0)Xn — ApAxy — yn — Anv, jq(yn —u)) >0,

which implies that

. 1 . t .
(Axy + v, jg(yn —u)) < 7<xn = Yns JgOn —u)) + )\‘i(f(xn) = Xn, jqg(n — u))
n n
1 _ f _
= =yl — u? T4 f||f<xn) — Xy — ulld™!
n n
1
= 5= (o = yull + 1) M1 (3.10)
n

Since (Axn, — Ax*, jg(xn, — x*)) > o Ax,, — Ax*||9, and x,; — x*, we have

Axp, — Ax* since j, is weakly sequentially continuous. Then, by (3.6), it follows

that (Ax*+v, j, (x*—u)) < 0. Hence, (—Ax*—v, j,(x*—u)) > 0 and consequently,

—Ax* € Bx*. So we have x* € (A + B)~'0 and hence x* € Fix(S) N (A+ B)~!0.
From (3.9), in particular, replacing n with n; and z with x*, we have

1
2, —x*[7 < :(f(x*) =X, g ny —x7)). (3.11)

Since y,; — x* and j, is weakly sequentially continuous, we get x,, —> x*. Let
{sk} C (0, 1) be another sequence such that sy — 0 as k — oo. Put x; = Xxg,
Yk = Vs> and Ag := Ay Let {xy;} be a subsequence of {x} such that x;; — X.Ina
similar way, we can show that £ € Fix(S) N (A + B)~'0 and also x* = X.

Now, returning to (3.9) with n = n; and taking the limit as i — oo, we have

% —z]|? < ﬁ(f(Z) =2, jg(x" = 2)).
In particular, x* solves the variational inequality
(f(2) — 2, jg(z — x*)) <0,Vz € Fix(S) N (A + B)~'0,
which is equivalent to the following dual variational inequality (see Lemma 2.6)
(f(x™) —x*, jg(z—x™) <0,Vz € Fix(S)N (A + B)~o. (3.12)

This shows that the net {x;}, as t —> 0, converges strongly to x* € Fix(S) N (A +
B)~'0 which is also a solution of (3.2). This completes the proof. [l
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3.2 Convergence theorem for explicit iteration scheme

In this section, we establish the strong convergence theorem of an explicit iteration
in Banach spaces.

Theorem 3.2 Let X be a uniformly convex and q-uniformly smooth Banach space
which admits a weakly sequentially continuous generalized duality mapping j, :
X — X* Let f : X —> X be a p-contraction, A : X —> X be an a-isa of
order q and B : X —> 2% be an m-accretive operator. Let Jf = (I +AB)"! be
a resolvent of B for A > 0 and S : X —> X be a nonexpansive mapping such that
Fix(S) N (A + B)~'0 # 0. For given x| € X, let {x,} be a sequence defined by

{ Yo =0 —y)Sx, + VJ)i(anf(xn) + (I —ap)xy, — Ay Axy), (3.13)
Xn1 = Buxn + (1 — By, Vn > 1, '

where y € (0,1), {ha} C (0, (q/icg)" ™), {an} € (0, 1), and {B,} C (0, 1)
satisfying the following conditions:

(CI) lim,— ooy =0andy 02 oy = 00;
(C2) O<a<pB,<b<l;

1
(€C3) 0<da <hy <2<t < (F)77 andlimy— oo |1 = dul = 0.

Then, the sequence {x,} defined by (3.13) converges strongly to a point x* &
Fix(S) N (A 4 B)~'0, where x* is the unique solution of the variational inequality
(3.2).

Proof. First, we show that {x,} is bounded. Set z,, = Jﬁ (otn f(xn)+ (1 —ap)x, —
AnAx,) for all n € N. Taking p € Fix(S) N (A + B)~'0, we obtain

An
p=5Sp=JE(p—nrAp) = Jﬁ(anpﬂl —om)(p— o Ap))
n

Since J. f
n

Iz — pll

J}» (a"f(xn) + (l - (X,J(I - )" A)X,,) - J (anp + (1 - an)(l - )L A)p> H
" l—ay 1—oq,
@ (Fo) = p) + (1 —an)[(z - LA)M - (1 - ) ]”
1 —a, 1—a,

An
anllf ) = F(PI+ el f(p) — pll+ (1 —an) (1 1 A)xn - < ) H
—ay l—oz,,

anpllxn — pll + el f(p) — Pl + (1 —an)llxp — pl
(1= = p)an)llxn — pll +anll f () = plI- (3.14)

IA

IA

IA
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Hence, we have

(1= y)(Sxn — p) +v(zn— P

(T =PSxp — pll +¥llza — Pl

< A =lxn—pl+v[(1 = A = p)an)llxn — pll +anll f(p) = pl]
= (1= (1= p)any)llxn — pll + v f(p) — plI.

ly. — Pl

IA

Then, it follows that

IXn+1 — pll = 1B0Gxn — p) + (1 = Bu) (v — P
< Bulxa — pll+ A = B)[(1 = A = p)any)llxn — pll + any | f(p) — pl]
=[1—==p)A=Bany]lxa — pll + (1 = Bany | f(p) — pl
- max{llxn ol Ilf(p)—pl }
I—p

By induction, we have

If(p)—pl
lxn — pll < max {IIX1 -pl,————,Vvn> 1
I—p
Hence, {x,} is bounded. So are { f (x,,)}, {Ax,} and {Sx,}.
Next, we show that lim,—, o [|Xp+1 — x| = 0. Set z,, = Jﬁun, where u,, =

o f(xn) + (1 — ay)x, — Ay Ax,. We observe that

lzn+1 — zall

B B
||J)\n+1”n+l = Jy, unll

B B B B
= ||JAn+lu11+l - J)"H_lun I+ ”J)L"_Hun - J)Lnun”
B B
< |lupg1 — unll + ”J)Lnﬂun - ])Lnun”

llen £ Oen1) + (1 = gD Xnp1 — Anp1 Axpg1r — (o f (Xn) + (1 — o)X — Ay Axp) ||

B B
+1IE iy — T

Apt1 (f nt1) — f(xn) + (@ng1 — an) (f (xn) — xn)

Anal An+l
+d- an+l) <I - s A)xn+1 - (I - s A)-xn + An — )Vn+1)Axn
i 1 —ant1 I — oyt ]
+ 178w = T unl
< it 1 f Gng) — £+ Lot — anl (ILF )| + [1211)
A+l Antl
+ (1= apg1) (1 - %A)xnﬂ —~ (1 e A)xn + Rt — Anlll Ay |
— Opyl 11— Op41
L = T2 unl
< (1= (1 = p)etns1) 1Xn1 = Xnll + ettt — ctal (1f Gl + 12 ll) + A1 — Anl | Axyl

B B
+ ”-I)Lnﬂun - J)Ln”n I
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By Lemma 2.12, we have

B B |)“n+1 - )\n| B
||J>»n+1“n - JM”n“ = T“‘Iknﬂuﬂ — unl.

Then, it follows that

lzntt = znll < (1= (1 = p)ans1)1xn+1 = Xnll + @1 = @l (1 G Il + 120 1) + A1 = A 11 A, I
|)¥n+1 - }“nl

B
TVl (3.15)

Since x,4+1 = Bpxn + (1 — By)yu, where y, = (1 — y)Sx, + yz,, it follows that

11— Y)(Sxpp1 — Sxu) + ¥ (@ng1 — za)ll
< (A = YIISxn41 — Sxull + Vllznt+1 — 2l
< (I =Pxns1 = xull + v llzng1 — zall. (3.16)

lyn+1 — yull

Note that, by the boundedness of {x,}, we can find a positive constant M such that

M, = max { sup(l £ o)l + L. sup A, sup 15 — unll}] < o0.
nx=

n>1 n>1

Substituting (3.15) into (3.16), we have

|Yn+1 — yull
= A =pllxngr — xall + J/|:(1 — (1= p)otnt1) [1Xnt1 = Xall + letntr — | (ILF )| + x4 )

[Ant1 — Al
gt = Al Axy || + =0Ty —
)‘n-%—l

[Ant1 — Anl
= (1 -(1- p)anJr]V)”anrl — x|l + (‘aan — ol + [Apt1 — Anl + % M;.

From (C1) — (C3), we have

limsup ([yn+1 = Yall = [I¥n+1 = xa1l) < 0.

n—-oQ

Hence, from Lemma 2.7, we obtain that

lim ||x, — yull = 0. (3.17)
n—-oQ
Consequently,
lim X, 1 — 2l = lim (1 = Bo)llxn — yull = 0. (3.18)
n—-oQ n—-oo
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Next, we show that lim,,_, o [|x, — Sx,|| = 0. By the convexity of || - |7 for all
q > 1 and Lemma 2.2, we have

A A q
lun — pll? = H(l —w)[(xn -7 2 Axn> - (p - Ap)] + 0, (f (xn) — p)H
—ay, 1—a,
)“)Z )"’1 a " q
< (I =op)|lxn — Axy | — P — AP +(xn|‘f (xp) — PH
1—a, 1—a,
An 4
= (I —a)|,—p)— I a (Axy — Ap)|| +anll f(xn) — pll?
— &n
[ q qhn . Kq}"z q
< (L—aw)| I = pll? = ——"(Axy — Ap, jg(xu — P)) + —2—— || Ax, — Ap]|
L 1- oy (1 —ap)?
+anll £ Gn) — plI?
i agh Kghh
< (L—aw)|lxn = pll? = ——= | Axy — Apl|T + —L"— || Axy — Ap? | + ol f n) — pIIY
L I —ay, (1 —ay)d
r e i . ,
= (I —an)|lx—pl? - ag — — I Axy = Apl9 | + anll £ () = pII?
L 1- oy (1 —ay)?
K, )f’fl
< lxw = pll9 = da (aq - %)nm — Apll? 4+l f (xn) — plI9. (3.19)
(1 —ay)?

Hence, we have

lyn — plI?
(1= y)(Sxw = p) + v (T un — p)II?

< A=ISx = pl* + 717 un = pIl?
< (A =plxn = pl? +yllun — pli?
q—1
q q Kqhn q q
= A=plxn = pl? +y|lxn = pl? =2, T ———] lAx, — Apll? + anll £ (xn) — pll
n
q K‘I)"Z_] q q
= |lxu — pll? = Any aq—m |Ax, — Apll? +any |l f (xn) — plI9.
— &n
Consequently,
lXn41 — pll
< Bullxa = pll? + A = B)llyn — pI?
q—1
q q Kghn q q
< Bullxn = pI7 + (A = B) | llxn — plIY = Any aq_m |Ax, — Apll? +any |l f(xn) — pll

q—1
An

K,
% — plI7 = An(1 — ﬁn)y(aq -

m)”l“xn = Apll? +an (1 = By ILf () = pIIY,

which implies from (C2), (C3) and Proposition 2.10 that

a'(1=byy(ag — kg®) ") |Axy = Apll? < llxw = pIY = llxus1 = pIY + (1 = Bawy | f () = pII?

IA

qlixy = plI9™" (s = pll = g1 = pU) + (1 = By ILf (xa) = plI?

IA

qllxn = plI xns = xall + (1= Bdany Il (ea) — plI9.
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Then, by (C1) and (3.18), we obtain that
lim ||Ax, — Apl| = 0. (3.20)
—>00

n

On the other hand, from Proposition 2.13 and Lemma 2.4, we have
lzn — pII*

172 (o £ Gen) + (1 = atn)xn — 2nAxy) — I (p — An Ap) |17
< {an f(xn) + (A —ap)xp — AyAxy — (p — A Ap), jq(zn - D)

A

1
= C—][llanf(xn) + (I —an)xp — 2nAxy — (p — M AP)? + (g — Dllzn — plI*

—gloy f(xp) + (1 — an)xy — Ap(Axy, — Ap) — Zn||)i|,
which implies that

lzw — pIl
ot f (xn) + (1 = an)xn — AnAxy — (p = A AT — g(lletn f (xn) + (1 — @) xy — hn(Axy — Ap) — zull)

anll fGn) =PI+ llxn — pI? = gllan f (xn) + (1 = @) xn — An(Axy — Ap) — 2nlD).

IA

IA

Then, it follows that
lye = PlI? < A =)ISxy — plI? +ylza — pII?
< (I =Ylxa = plI? + yllze — pll?
< A =plx. = pl?
+y|:an”f(xn)_p”q+”xn - p”q — gUllen f(xn)+ (1 — ) xy — Ay (Ax, — Ap) — Zn“)i|

= llxn = pl?+any L f Gn) — I — v Ulon f o)+ (1 — o) — An(Axn — Ap) — znlD).
(3.21)

Consequently,
%041 = plI?
< Bullxn — I+ (= B)llya — pII?
< Bullxn — P”q
+1 - ﬁn)|:”xn =Pl +ony | fGn) — pI? = ygUllom f (i) +(1 — otn)xn — An(Axn — Ap) — Zn”)]

= |lx0 = pII7+A = Bany | f ) = plI? — (=B yglan f (xn)+ (L —0tn)xy —An (Axy — Ap) —2za ),

which implies from (C2) that
(1 = b)yg(llam f (xn) + (1 — @)Xy — Ay (Axy — Ap) — z,1)
< %0 = Pl = %041 — P + an(1 = By I £ (x0) — plI
< qllxa = pIT (Ixa = pll = Ixns1 — pll) + (1 = By L f () — plI?
< qllxn = pI9 M xn — X1+ (1 = By £ () — plI2.
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Then, by (C1) and (3.18), we have
lim g(llen f(xp) + (1 — ap)xy — Ay (Ax, — Ap) — z,|)) = 0.
n—-oo
Since g is a continuous function, by (3.20), we obtain that
lim ||x, —zn]l = 0. (3.22)
n—-oQ

Since y, = (1—y)Sx,,+y zu, it follows that (1—y)(x;, —Sx,) = X, —Vn+Y (2n—Xn).
Hence,
(I = llxp = Sxull < llxn — yull + ¥ llxn — zall-
From (3.17) and (3.22), we obtain that
lim |x, — Sx,| =0. (3.23)
n—-:o0
Next, we show that

limsup(f(x*) — x*, jg(zn —x™)) <0,

n—-oo

where x* is the same as in Theorem 3.1. Since {z,,} is bounded and X is reflexive,
there exists a subsequence {z,, } of {z,} such that

limsup(f (x*) — x*, jy(zn — x)) = l_ir)noo(f(x*) — X%, jq(zn, — X))

and z,, = z € X asi —> 00. Also, we have a subsequence {x,,} of {x,} such that
Xp; = z € X. From (3.23) and Lemma 2.5, we have z € Fix(S). Further, by the
same agrument as in the proof of Theorem 3.1, we can show that z € (A + B)~'0.
Hence, we obtain that z € Fix(S) N (A + B)~!0. Since Jq is weakly sequentially
continuous, it follows that

lim SuP(f(X*) —x¥, jq(Zn - X*)> = lim <f(X*) —x*, jq(Zni - X*»

n—-oQ 1—> 00

= (f(x") —x", jg(z—=x")) 0. (3.24)

Finally, we show that x,, —> x*. We see that

lza=x*17 = 172 (ctn f () + (1 = @)Xy — Ay Axy) — JE (6 = 1y Ax*)|4
= (anf(xn) + (l - an)xn - )\nAxn - X* + )\nAX*a jq(Zn - X*»

= <anf(xn) + (1 _an)(l_ 1 )"n A>xn _anx*_(l _an)<l_ li’;l A)X*, jq(Zn—X*)>

— oy

An An P *
- (1 70[”) <17 l_anA>xn B (17 l_anA)x ’JL](ZVI - )
+an<f(xn) - f(x*)s jq(zn - x*)> +ay <f(x*) - X*7 jq(zn - X*)>
< (I—au)llxn _X*H 1z _X*”q_l +anpllx,—x*| ”Zn_x*”q_] +ay (f(X*)_X*v jq(Zn _X*»

= (I =y (1= p)lbxn = x*[llzn — x* 197" + 0 (f () = x*, jy (zn — x™))

—1
llzn — x*llq> +an(f (&™) = x*, jg(zn —x),

1 q
= —-a( —p))(;l\xn — X"+
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which yields that
1z = x*17 < (1 —an (1= p) [lxn — x|+ qon (f (x™) = x*, jg(za — x7)). (3.25)
It follows, by (3.25), that

lyn =x*17 < (1 = P)IISxn — x* 7 + v llzn — x|
< (A=p)lxn —X*Ilq+y<(1—an(l—p))llxn — x|+ gon (f (") —x%, jg(zn —x*)>)
= =ya(I = p)lxn — x| + ygon (f () — x7, jg(zn — x™)).

Hence, we obtain

[1%n+1 _X*”q
< Ballxy —x™9 + (1 — Bi)llyn —x*|4

ﬁnIIXn—x*llq-i-(l—ﬁn)((l—J/an(l—,o))llxn =XM1 + yqon (f(x*) = x*, jg(zn — X*)))

IA

(1 — (1= Bya,(1 - p))llxn — XM+ (A = B)yqan(f(x™) — x*, jg(za — x)).

Set yu = (1 = B)yan(1 — p) and 8, = - (f (x*) — x*, jy(za — x*)). From (C1)
and (3.24), it is easily seen that 2211 yn = oo and limsup,__, ., &, < 0. Therefore,
by Lemma 2.8, we conclude that x, —> x*. This completes the proof. (|

We next provide the example and its numerical experiments to support our main
theorem.

Y1
Example 3.3 Let X = R3andletx = | y» | € R?. Define S : R — R3 by S(x) =
3
-1 3 2 -1 1
1—y |.Let F(x) = §|ICx—d|* whereC = | 2 =2 4 |andd = | -2
yr—1 -2 1 =2 0

Let G(x) = Ty; +3y3+5. Find x* € R3 such that x* € Fix(S) ((VF+3G)~1(0),
that is, find x* € Fix(S) which is also a minimizer of the following minimization
problem:

1
min = ||Cx —d||* + 7y1 + 3y3 + 5. (3.26)
xeR3 2

It is known that VF(x) = CT(Cx — d) and VF is 1/K -isa of order 2, where K is
the largest eigenvalue of CT C (see [11]). Moreover, by [2], G is maximal monotone
since G is convex and lower semicontinuous and hence, it is m-accretive. Putting
A =VF and B = 0G, by Theorem 3.2, our algorithm becomes

{ Yo = (1= y)Sxn + v I (@ f () + (1 = @)xn — 2, CT (Cx, — ),

Xpt1 = Buxn + (1 — B)yn, Vo > 1,
(3.27)
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where y € (0, 1), {A,} C (O, 2/K), {an} € (0, 1) and {B,} C (0, 1) which satisfy
the following conditions:

(CI) lim,_ ooy, =0andy 02, oy = 00;
(C2) O0<a<pB,<b<l;

(C3) O0<ad <i, < 1f’&n < b <2/K andlim,— o |Ans1 — An| = 0.

Choose ay = sgiry, B = 275, v = 0.5 and by = & € (0,0.05) C (0,2/K) for

alln € N. Let f : R} — R3 be defined by f(x) = 0.5x. So our algorithm (3.27) has
the following form:

Z -1 0.5y" "
_ 3G 1 50
Zg =05 ln_ yi | +0.57; [(‘50n+1‘) 0‘5)’% + ('SOnil') y%

302 =2\ (30 +2yh i -1
|2 2 1 |2y =2+ 4 42 ]

-1 4 =2 =2y +yy —2y3
n v 7
=GR | n | +ER) 5] =1
yit ¥3 5
(3.28)
v —TA 1
where JfG(x) = V2 . Let x; = | O | be the initial point. Then, we obtain
y3 — 3 2
the following numerical results.
-1
From Tables 1, 2 and 3, we see that x* = | 2 | is an approximation solution of
1

Fix(S) (VF 4+ 3G)~1(0).

From Fig. 1, we observe that the convergence rate of the algorithm depends signif-
icantly on the step size ,,. In fact, from the view of our numerical experience, when
Ay 1S taken close to zero, we have small reduction in the number of iterations.

Table 1 Numerical results of Example 3.3 for iteration process (3.28) with A = 0.01

n xn = O,y DT (B
1 (1.000000000, 0.000000000, 2.00000000)” 1.830712169
10 (—0.895390857, 1.51603082, 0.27313376)7 0.108303666
50 (—0.990134038, 1.866451538, 0.875031661)7 0.00017108
100 (—0.990401512, 1.867307766, 0.876376227)" 5.97E — 06
150 (—0.990443477, 1.867427173, 0.876522724)7 248E — 06
200 (—0.990463745, 1.867484472, 0.87659212)T 1.36E — 06
250 (—0.990475702, 1.867518171, 0.876632687)" 8.54E — 07
300 (—0.990483593, 1.867540367, 0.876659307)" 5.87E — 07
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Table 2 Numerical results of Example 3.3 for iteration process (3.28) with A = 0.001

n xn = Oy yDT %41 — Xu
1 (1000000000, 0.000000000, 2.00000000)” 1.830712169
10 (—0.928728283, 1.640399583, 0.249059878)7 0.133590425
50 (—0.999664389, 1.987139714, 0.986861236)" 5.57E — 05
100 (—0.999787071, 1.98753753, 0.987530573)7 5.89E — 06
150 (—0.999823615, 1.987648759, 0.98768394) 249E — 06
200 (—0.999841469, 1.987702684, 0.987757125)7 1.36E — 06
250 (—0.999852055, 1.987734531, 0.987800007)7 8.61E — 07
300 (—0.999859061, 1.987755558, 0.987828184)7 5.92E — 07

4 Convergence theorem for a family of nonexpansive mappings

In this section, we provide some applications to a countable family of nonexpansive
mappings.

Definition 4.1 Let C be a nonempty subset of a real Banach space X. Let {S,};2 ; :
C —> C be a sequence of mappings with (72, Fix(S,) # @. Suppose that for any
bounded subset B of C. We say that

@) {Sn};’lil satisfies the AK T T -condition (see [5]), if

o0
> sup [ISus1x — Spx|| < o0; @.1)

nzleB

(ii) {Sn},2, satisfies the PU-condition (see [31]), if there exists a continuous and
increasing function i : RT™ — R™ and for all k, [ € N such that

hp(0) = Oand lim sup hp(||Sex — Six|) = 0. 4.2)

L= xeB

Table 3 Numerical results of Example 3.3 for iteration process (3.28) with A = 0.0001

n xn = O,y DT (B
1 (1.000000000, 0.000000000, 2.00000000)” 1.830712169
10 (—0.931946516, 1.652071984, 0.24421647)T 0.136327693
50 (—0.999779317, 1.998110712, 0.997754605)" 443E — 05
100 (—0.999894464, 1.998480861, 0.998363889)" 5.87E — 06
150 (—0.999930274, 1.998590869, 0.998517819)7 248E — 06
200 (—0.999947795, 1.998644262, 0.99859132) 1.36E — 06
250 (—0.99995819, 1.998675811, 0.998634398)7 8.60E — 07
300 (—0.999965071, 1.998696646, 0.998662709)" 5.92E — 07
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Fig. 1 The convergence behavior of the iteration process with different A

Remark 4.2 1f {S,}72, satisfies the AKT T-condition, then {S,};7, satisfies the
PU-condition (see [31], Remark 3.2).

Lemma 4.3 ([31]) Let {S,}72, : C —> C be a sequence of mappings. Suppose that
for any bounded subset B of C, there exists a continuous and increasing function
hp : RT — RT with hg(0) = 0 satisfying (4.2). If the mapping S : C — C be
defined by Sx = lim,_, c Syx for all x € C. Then,

sup{hp(||Sx — Spx|)} = 0.

lim
n—ao0o xeB
Theorem 4.4 Let X be a uniformly convex and q-uniformly smooth Banach space
which admits a weakly sequentially continuous generalized duality mapping j, :
X — X* Let f : X —> X be a p-contraction, A : X —> X be an a-isa of
order g and B : X —> 2% be an m-accretive operator. Let JB = (I + AB)™! be
a resolvent of B for .. > 0 and let {S,}7° | : X —> X be a family of nonexpansive
mappings such that Q = (= Fix(Sy) N (A + B)~'0 # @. For an initial guess
x1 € X, define the sequence {x,} by

{ Yn == Y)Saxn + y I (@ f (n) + (1 = @)xn = nAxn),

43
St = Butn + (1 = By, ¥ = 1, (4-3)

where y € (0, 1), {Aa} C (0, (g /i) ™), {an} € (0, 1) and {B,} C (0, 1)
which satisfy the conditions (C1)-(C3). Suppose, in addition, that {S,}° | satisfies

the PU-condition and S : X —> X be a mapping defined by Sx = lim,,—, 0 Spx
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for all x € X such that Fix(S) = ﬂ,ﬁl F(S,). Then, the sequence {x,} defined by
(4.3) converges strongly to a point x* € 2, where x* is the unique solution of the
variational inequality (3.2).

Proof By using the same arguments and techniques as those of Theorem 3.2, we
know that
lim |lx, — Spx, |l = 0.
n—>-0o0

Now, it suffices to show that lim,_, « [|x, — Sx,,|| = 0. We see that

lxn — Sxull < lxn — Suxnll + 1Snxn — Sxall. 4.4)
Since {Sn};ﬁ] satisfies the PU-condition, by Lemma 4.3, it follows that

lim hg(||Spx, — Sxul) =0,
n—-oo

which implies by the property of #p that lim,—  ||Syx, — Sx,|| = 0. Then, from
(4.4), we get that
lim |x, — Sx,|| =0.
n—-aoo

This completes the proof. O

5 Convergence theorem for a nonexpansive semigroup

Definition 5.1 Let C be a nonempty, closed, and convex subset of a real Banach
space X. A one-parameter family S = {S(¢) : t > 0} : C —> C issaid to be a
nonexpansive semigroup on C if it satisfies the following conditions:

(i) SO)x = xforallx € C;

i) SG+t)x=S0)SE)x forallx € Cands,t > 0;
(iii)) for each x € C the mapping ¢t — S(#)x is continuous;
i) [IS@®x —S®y|l < |lx —y| forallx,y € Candt > 0.

Remark 5.2 We denote by Fix(S) the set of all common fixed points of S,that is
Fix(8) := (o0 Fix(S®)) ={x € C: x = S(t)x}.

Definition 5.3 ([3, 4, 8]) Let C be a nonempty, closed, and convex subset of a real
Banach space X, S = {S(¢) : t > 0} be a continuous operator semigroup on C. Then,
S is said to be uniformly asymptotically regular (in short, u.a.r.) on C if forall 4 > 0
and any bounded subset B of C such that

tlim sup |S(h)S(t)x — S(t)x| = 0.

—>00

x€eB

The nonexpansive semigroup {o; : ¢ > 0} defined by the following lemma is an
example of u.a.r. operator semigroup.

Lemma 5.4 ([33]) Let C be a nonempty, closed, and convex subset of a uniformly
convex Banach space X and let B be a bounded, closed, and convex subset of C.
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If we denote S = {S(¢) : t+ > 0} is a nonexpansive semigroup on C such that
Fix(S) = ;o0 Fix(S(t)) # 0. Forall h > 0, the set o;(x) = 1 [; S(s)xds, then

lim; o0 SUP, ¢ [0y (x) — S(h)or (x) || = 0.

Example 5.5 The set {o; : t > 0} defined by Lemma 5.4 is a u.a.r. nonexpansive
semigroup. In fact, it is obvious that {o; : t > 0} is a nonexpansive semigroup. For
each h > 0, we have

o) = L[S (s)ar (x)dls |

= [ }Jo (@1 (x) = S(s)or(x))ds|
< LMo, (x) = ()01 (x) ds.

llor (x) — ooy (xX)||

A

It follows from Lemma 5.4 that

lim; oo sup, g lloy (x) — S(s)o;(x)[|lds = 0.

Theorem 5.6 Let X be a uniformly convex and q-uniformly smooth Banach space
which admits a weakly sequentially continuous generalized duality mapping j, :
X — X*. Let f : X — X be a p-contraction, A : X —> X be an a-isa of
order q and B : X —> 2% be an m-accretive operator. Let Jf = (I +AB)"! be
a resolvent of B for . > Q0 and let S = {S(¢t) : t > 0} be a u.a.r nonexpansive
semigroup such that Q := (), Fix (S(t)) N (A + B)~'0 # @. For an initial guess
x1 € X, define the sequence {x,} by
{ yn =1 —=y)St)xn + Vjﬁ(anf(xn) + (1 —ap)xp — AAxy), 5.1
Xpt1 = Buxp + (1 = B)yn, Vo > 1, '

where y € (0,1), {ha} C (0, (2q/icg)" ™), fan} € (0, 1), and {B,} C (0, 1)
which satisfy the conditions (C1)-(C3) and {t,,} is a positive real divergent sequence.
Then, the sequence {x,} defined by (5.1) converges strongly as n —> 00 to a point
x* € Q, where x* is the unique solution of the variational inequality (refeq:3.2).

Proof By using the same arguments and techniques as those of Theorem 3.2, we
know that lim,_,  [|x, — S(#,)x,]| = 0. Now, we only show that lim,_,  [|x, —
S(h)x,|| = 0forall &~ > 0. Then, we have

lxn = Sxpll < Nxp — SE)xR 1l + 1S En)xn — SRS @) xn | + SRS (tn)Xn — S(R)xn |
2||xn = SE)xnll + sup [[S(ta)x — S(h)S(ta) x|l (5.2)

XEX{n}

IA

Since {S(¢) : t > 0} is a u.a.r. nonexpansive semigroup and #, —> oo then for all
h > 0 and for any bounded subset C of X containing {x,}, we have

lim [[S(ta)xn — S()S(t)xnll = 1im sup [[S(tn)x — S(M)S(tn)x]| = 0. (5.3)

xeC
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Then, from (5.2) and (5.3), we get that
lim |x, — S(h)x,|l =0,
n—-oo

for all 2 > 0. This completes the proof. O

6 Some applications

In this section, we will utilize Theorems 3.1 and 3.2 to study some convergence
theorem in L, and [, spaces with 1 < p < oo. It well known that spaces of Hilbert
H,Lp,and !, with 1 < p < oo are g-uniformly smooth, i.e.,

2—uniformly smooth, if 2 < p < oo,

H,Lp, andl, are { p—uniformly smooth, if 1 < p < 2.

Furthermore, the following facts are well known (see [6, 39]).

(1) For2 < p < oo, the spaces of L, and [/, are 2-uniformly smooth with «,
kp =p— 1.
(2) Forl < p < 2, the spaces of L, and [, are p-uniformly smooth with «,

kp=(1+ t},’fl)(l + tp)l_f’, where ¢, is the unique solution of the equation
(p=2tP 14+ (p—DtP2-1=0,0<rt<1.

(3)  Every Hilbert space is 2-uniformly smooth with x; = k2 = 1.

4) For1 < p < oo, the spaces of L, and [, are g-uniformly smooth and
uniformly convex.

(5) Forl < p < oo, the space of [, has weakly sequentially continuous gener-
alized duality mappings, but L, space (1 < p < oo, p # 2) does not have
weakly sequentially continuous generalized duality mappings.

Remark 6.1 Theorems 3.1 and 3.2 hold for /,, space with 1 < p < oo and also hold
for L, space with 1 < p < oo, p # 2if L), has a weakly sequentially continuous
generalized duality mapping.
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that

[Sx —Syll = Llix = yll, Vx,yeC.
A mapping S : C — C is said to be nonexpansive, if

[Sx = Syl = llx = yll, Vx,yeC.

A popular way to solve the fixed point problem for nonexpansive mappings is to employ
iterative methods which now have received vast investigations. This is because of its extensive
applications in a variety of applied areas of inverse problem, partial differential equations,
image recovery, and signal processing.

Let C be a nonempty closed convex subset of a real Banach space X. Let A : C — X be
a single-valued nonlinear mapping and let B : X — 2% be a multi-valued mapping. The so
called quasi-variational inclusion problem is to find a point x € X such that

0 € (A+ B)x. (1.1)

We denote the solution set of (1.1) by (A+ B)~ 10. A number of problems arising in structural
analysis, mechanics, and economics can be studied in the framework of this kind of variational
inclusions; see, for instance [1-3]. The problem (1.1) includes many optimization problems
as special cases.

Takahashi et al. [4] proved the following theorem for maximal monotone operators with
nonlinear operator in Hilbert spaces:

Theorem T Let C be a closed and convex subset of a real Hilbert space H. Let A be an «-
inverse strongly-monotone mapping of C into H and let B be a maximal monotone operator
on H such that the domain of B isincluded in C. Let J;, = (I +AB) ! be the resolvent of B for
A > 0andlet S be a nonexpansive mapping of C into itself such that F(S)N(A+B)~'0 £ .
Let x; = x € C and let {x,,} C C be a sequence generated by

Xpg1 = Bnxn + (1 = Bp)S(apx + (1 — an)Jkn (xn — ApAxy)), VYn =1, (1.2)

where {A,} C (0, 2a), {B,} C (0, 1) and {&,} C (0, 1) satisfy

() O<a<i, <b<2a;
) O<c<B,<d<1;
(iii) limy—co(An — Apy1) = 05
(iv) limy oo, =0and Y 02 | &, = 00.

Then {x,} converges strongly to a point of F(S) N (A + B)~10.
Manaka—Takahashi [5] introduced the following iteration process in Hilbert spaces
H :x; € Cand

Xn4+1 = OpXp + (1 - O[n)SJln (xn — MAxy), Yn>1, (13)

where {o,} C (0, 1), {\,} is a positive sequence, S is a nonexpansive mapping on C,
A : C — H is an inverse-strongly monotone mapping, B : D(B) C C — 2 is a maximal
monotone operator, and S is a nonexpansive mapping on C. They showed that the sequence
{x,} generated by (1.3) converges weakly to a pointin F(S) N (A + B)~10 under some mild
conditions.

Recently, Lopez et al. [6] considered the following iteration process in the framework of
Banach spaces: u, x; € X and

Xp41 = gt + (1 - an)(JAn (xn - )\n(Axn + an)) + bn)a Vn > 1, (14)
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where {a,} and {b,} are sequences in X. They proved that the sequence {x,} generated by
(1.4) converges strongly to a solution of (A + B)~l0.

We note that, in applications, there are perturbations always occurring in the iterative
processes because the manipulations are inaccurate. It is no doubt that researching the con-
vergent problems of iterative methods with perturbation members is a significant job. This
leads us, in this paper, to introduce implicit and explicit iterative schemes with perturbations
for solving the fixed point problem for nonexpansive mappings and the quasi-variational
inclusion problem. We then prove its strong convergence under some suitable conditions.
Finally, we provide some applications to the main result. The obtained results improve and
extend some known results appeared in the literature.

2 Preliminaries

In this section, we collect some definitions and lemmas which will be used in the sequel.
In what follows, we shall use the following notations: x, — x mean that {x,} converges
strongly to x; x, — x mean that {x,} converges weakly to x.

A Banach space X is said to be strictly convex, if whenever x and y are not collinear,
then: ||x + y|| < |lx|| + |lyll. Let S(X) = {x € X : ||x|| = 1} denote the unit sphere of X.
The modulus of convexity of X is the function § : (0, 2] — [0, 1] defined by

5(6):inf{1—”“‘+y” cx,y € S(X), x =yl Ze}.

A Banach space X is said to be uniformly convex if 6(¢) > 0 for all € € (0, 2].
The modulus of smoothness of X is the function p : RT := [0, co) — R defined by

p(t) = sup {7”X+Ty”;“x_ry” —1l:x,ye€e S(X)}.

A Banach space X is said to be uniformly smooth if 'O(Tl) —> 0 ast —> 0. Suppose that

q > 1, a Banach space X is said to be g-uniformly smooth if there exists a fixed constant
¢ > O such that p(t) < ct9 forall t > 0. If X is g-uniformly smooth, then ¢ < 2 and X is
uniformly smooth.

Let X* be a dual space of a Banach space X. Letg > 1 be a real number. The generalized
duality mapping J, : X —> 2% is defined by

Jq () = {jg () € X* : {x, jg () = Ixll4, [1jg )l = lIxl197"),

where (-, -) denotes the duality pairing between X and X*. In particular, J, = J> is called
the normalized duality mapping and J,;(x) = ||x 1972 J5 (x) for x # 0. If X is a real Hilbert
space, then J, = I, where I is the identity mapping. It is well known that if X is smooth,
then J, is single-valued, which is denoted by j,. The generalized duality mapping j, is said
to be weakly sequentially continuous generalized duality mapping if for each {x,} in X with
X, — x, we have j, (x,) = j, (x).

The following facts are well known (see [7,8]):

(1) Each uniformly convex Banach space (uniformly smooth Banach space) is reflexive and
strictly convex.

(2) If a Banach space X admits a weakly sequentially continuous generalized duality map-
ping, then X satisfies Opials condition, and X is smooth smooth.
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(3) All Hilbert spaces, L, (or [,,) spaces and the Sobolev spaces W} with p > 2 are 2-
uniformly smooth, while L, (or/,) spaces and the Sobolev spaces Whwithl < p <2
are p-uniformly smooth.

(4) Typical examples of both uniformly convex and uniformly smooth Banach spaces are
L ,, where p > 1. More precisely, L, is min{p, 2} -uniformly smooth for each p > 1.

Let A : X —> 2% be a set-valued mapping. We denote the domain and range of an
operator A : X —> 2X by D(A) = {x € X : Ax # ¥} and R(A) = |J{Az : z € D(A)},
respectively. Let ¢ > 1. A set-valued mapping A : D(A) C X —> 2% is said to be accretive
of order ¢ if for each x, y € D(A), there exists j,(x — y) € J,(x — y) such that

(u—v, j,(x—y) >0, ueAx and v € Ay.

An accretive operator A is said to be m-accretive if R(I + LA) = X for all A > 0. In a real
Hilbert space, an operator A is m-accretive if and only if A is maximal monotone (see [8]).

Let A be an m-accretive operator on X, we use A~10 to denote the set of all zeros of A,
ie, A0 = {x € D(A) : 0 € Ax}. For an accretive operator A, we can define a single
valued operator J* : R(I + *A) —> D(A) by J# = (I +AA)~! for each A > 0, which
is called the resolvent of A for A. It is well known that J{‘ is a nonexpansive mapping with
F(J& =A"10.

Leta > Oand ¢ > 1. A mapping A : C — X is said to be a-inverse strongly accretive
(a-isa) of order g if for each x, y € X, there exists j;(x — y) € J;(x — y) such that

(Ax — Ay, jg(x —y)) = al|Ax — Ay||?.

It is obvious that A is also 1/«-Lipschitz continuous. If X := H is a real Hilbert space, then
A : C — H is called a-inverse strongly monotone (¢-ism).

Lemma 2.1 [6] Let C be a subset of a real q-uniformly smooth Banach space X and
A : C —> X be an «u-isa of order q. Then the following inequality holds:

I = 2A)x — (I = 2A)y119 < lx = y|? = A(ag — kgh?™ )| Ax — Ay|?.
1
forall x,y € X. In particular, if 0 < A < (%)qj, then I — LA is nonexpansive.

Using the concept of sub-differentials, we have the following inequality:

Lemma 2.2 [9] Let ¢ > 1 and X be a real normed space with the generalized duality
mapping Jy. Then, for any x, y € X, we have

e+ ¥l < Ix1? + gy, jg (x + ), 2.1)
where jo(x +y) € Jy(x + y).
Lemma 2.3 [10] Let 1 < g < 2and X be a Banach space. Then the following are equivalent.

(i) X is g-uniformly smooth.
(ii) There is a constant k; > O which is called the g-uniform smoothness coefficient of X
such that forall x,y € X

lx + ylI7 < Nxll? 4+ gy, jqg () + Kqlly 7.

In particular, if X is a real 2-uniformly smooth Banach space, then there exists a constant
K > 0 such that
x4+ YIP < x>+ 2(y, j () + 21 K1
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Lemma 2.4 [10] Let p > 1 and r > 0 be two fixed real numbers and X be a Banach space.
Then the following are equivalent.

(1) X is uniformly convex.

(ii) There is a strictly increasing, continuous and convex function g : RY — R such that
g(0) =0and

glllx =y = xll” = plx, jp() + (p = DIYI?, Vx,y € B,.

Lemma 2.5 [11] Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space X and S : C —> C be a nonexpansive mapping. Then I — S is demiclosed at
zero, i.e., X, — x and x, — Sx, —> 0 implies x = Sx.

Following the proof line as in Lemma 2.7 of [12], we obtain the following result.

Lemma 2.6 Let C be a nonempty, closed and convex subset of a real smooth Banach space
X and let j, : X —> X* be a generalized duality mapping. Assume that the mapping
F : C — X is accretive and weakly continuous along segments, that is, F (x +ty) — F(x)
ast —> 0. Then the variational inequality

x*eC, (Fx* j,x—x%))>0, xeC
is equivalent to the dual variational inequality
x*eC, (Fx,j,(x—x%)>0, xeC.
Proposition 2.7 [13] Let g > 1. Then the following inequality holds:
a? — b9 < gat=(a - b),
for arbitrary positive real numbers a, b.

Lemma 2.8 [14] Let {x,} and {l,;} be bounded sequences in a Banach space X and let {8}
be a sequence in [0, 1] with O < liminf, .~ B, <limsup,_, ., B, < 1. Suppose x, 4| =
(1= By + Buxy for all integers n > 0 and lim sup,,__, oo (1ln+1 = ln | = |Xn41 — x0l)) < 0.
Then, lim,, o ||, — x| = O.

Lemma 2.9 [15] Assume that {a,} is a sequence of nonnegative real numbers such that
a1 < (I = yw)an + Yubn,
where {y,} is a sequence in (0, 1) and {8, } is a sequence in R such that

@) Z;‘;O Vn = O0O;
(i) limsup, o8, <0o0r Y o2 |yndnl < 00.

Then, lim,,__, 5o a, = 0.

Lemma 2.10 (The Resolvent Identity [16]) Let X be a real Banach space. Let A be an
m-accretive operator. For A, u > 0 and x € X, then

Hx =Tt (%x + (1 - %)fo),
where J} = (I +1A) "  and T} = (I + pA)~.

From the Resolvent Identity, we also have the following result.
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Lemma 2.11 For eachr,s > 0 then
1A% — JAx) < |1 = 2[1JAx — x| forallx € X.
r

Proposition 2.12 Let X be a real g-uniformly smooth Banach space. Let A be an m-accretive
operator on X and let J)f‘ be the resolvent operator associated with A and A. Then J)f‘ is
firmly nonexpansive, i.e.,

1J2% — JAI9 < (x — y, jy (Uit — J2y)), Va,y e X.

Proof Foreach x,y € X and A > 0, we set u = J/{“x and v = J{‘y. By definition of the
accretive operator, we have x —u € AAu and y — v € LAv. Since A is m-accretive, we also
have
0<x—u—(Qy-—v),j(u—-v)
=(x =y, jgu—v)) —(u—v, j;(u—0))
={x =y, jgu—v)—llu—v|?,

which implies that

lu —vll? < (x =y, jg(u —v)),

[J2x — JAyI9 < (x — y, jg(Uitx — J2y)), Vx,y e X.

This completes the proof. O

3 Main results

In this section, we prove a strong convergence theorem which is generated by an implicit
iteration process.

Theorem 3.1 Let C be a nonempty, closed and convex subset of a real uniformly convex and
q-uniformly smooth Banach space X which admits a weakly sequentially continuous general-
ized duality mapping j,. Let A : C —> X be an a-isa of order q and let B : D(B) — 2X
be an m-accretive operator such that D(B) C C. Let S : C —> C be a nonexpansive
mapping such that Q := F(S) N (A 4+ B)~'0 # @. Let ) be a real positive constant such

1
that 0 < A < (%)F and let {u;} C X be a perturbation with lim;_ o+ u;, = u’ € X.

1
Foreach0) <t <1 — A(%)qf‘, let {x;} be a net defined by

x; = STE(tu, + (1 — 1)x; — 2Ax,), (3.1

where Jf = (I+AB)~!. Then the net {x,} converges strongly ast —> 07 to a point x* € Q,
which solves uniquely the following variational inequality:

(' —x*, jg(z—x%) <0, VzeQ. (3.2)

1

Proof We first show that the net {x;} is well defined. For each tr € (0,1 — k( )q*1 ), we

define a mapping S; : C — C by

kg
aq

Spx := SJB(tu, + (1 —1)x — 1Ax), Vx e C.
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Since S, J)\B and I — %A (see Lemma 2.1) are nonexpansive. For each x, y € C, we have

ISx — Seyll = 1S (tuy + (1 — )x — AAx) — STE(tu, + (1 — 1)y — 2AY)||
< It + (1 — 0)x — AAx) — (tug + (1 — 1)y — LAY)]|

A A

= (@ =0llx =yl

which implies that S; is a contraction. Hence, S; has a unique fixed point, denoted by x;,
which uniquely solves the fixed point Eq. (3.1). Therefore, {x;} is well defined.
Take any p € . It is observed that

p=Sp=SJZ(p—2rAp)

A L
= Sff<fp+ (1 —t)(p— iAp)), vt e (0, 1 —A(Z‘;)q—l)

Set x; = Sy, where y; = JE(tu; + (1 — £)x, — AAx,). Since S, J and I — {2~ A (see
Lemma 2.1) are nonexpansive, we have

B A B A
ly: — pll = |J; <tu,+(l — t)(] — ﬁA>xl> - Jy (tp—}-(l — t)<] — 17_1‘14)1)) H
< |t(u;—p)+ (1 —t)|:(1 — LA)x, — (1 — LA>pi| ”
- 1—1t 1—1t
A A
<tllu,—pl+A-1) (1 - iA)x, - (1 - iA);;H
< tllus = pll+ A = )llx; — pll. (3.3)

It follows that

lx: — pll = ISy, — Spl|
< lly: = pll
<tlu; — pl + A =0lx; — pll,

A

which implies that

lxe = pll < llur = plI.

Since lim, o+ u, = u’, then there exists a constant K| > 0 such that K| = sup,_ o{|lu||}.
Hence, {x;} is bounded, so are {y;}, {Sx;} and {Ax;}.
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Next, we show that lim,__, g+ ||x; — Sx;|| = 0. Since ||x; — p|| < ||y — pl|. By using the
convexity of || - || for all ¢ > 1 and Lemma 2.3, we derive

lx; — pl? < llye — pll?

A A
=< H(l - t)|:(xt - ﬁsz) - <P - ﬁAP)] +t(uy — p)
A A
<{I-0 (xz 1 _tAxt> - (P— li—tAp>

q

q

q
+ tlus — pl?

= (=00 = p) = T Ax = Ap)| il — pl?
<11 :uxt — Pl = A Ap, g~ )
- (IK"_kf)q lAx, - Apn‘f: + tllu; = pIf
<a-n :ux, — I = 1 Ax, — Apl?
A = ApIY |+l — I
— (-1 :ux, —pllt - <aq - (f‘f_Af);;)nAxt — Apl? + tlu; — pI?
< s — pllY — A(aq - m) 1A% — Apl + tllus — pI”,
which implies that
k(oeq - m)”“’ — Apl? = tlug — pll. (34
Since 7 € (0,1 — A(g—;)ﬁ), we have ag — % > 0. Also, it follows from (3.4) that

lim ||Ax; — Apl|| = 0.
t—0t

By Proposition 2.12 and Lemma 2.4, we have

lye = pll4 = 18 Gtus + (1 = )x, — 2Ax) — JE(p — 2 Ap) |12
< (tu + (1 = t)x; — AAx, — (p — AAp), jo(yr — p))

1

;[”mt + (1 —t)x; —2Ax;, — (p — LAp)||?

IA

+(q = Dy = plIl? = g(lltus + (1 = )x; — A(Ax; — Ap) — ¥ D1
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which implies that

lye = plI? < lltus + (1 = 1)x; — AAx; — (p — AAP)I? — g(lItu;
+ = xr — A(Ax; — Ap) — y:)

Jool(- e )

q

+1(u —p)| —gUltuy + (1 —)x, — A(Ax; — Ap) — yi)

<I - LA)x, - (I - LA)p
1—1 1—1t
+tlu, — pll? — gltu; + (1 — )x; — AM(Ax, — Ap) — yel)

< (I =0)lxe = pl? +tlur — pl? — gUltur+1 = 1)x; — A(Ax; — Ap) — )

< llx; = pll? +tllu, — pll? — g(lltus + (1 — )x; — A(Ax, — Ap) — yel)

< lyr = pll? +tllur — pll? — g(lltu; + (1 = 1)xr — A(Ax; — Ap) — yelD).

Hence, we have

q
=(-9

gltuy + (1 = t)x; — A(Ax; — Ap) — ) < tllus — pl?,
and so
lim g(lltu; + (1 —t)x, — A(Ax; — Ap) — y|) = 0.
t—07F
By the property of g, we have
lim |lx; — y || = 0. (3.5
t—0t
Also, we obtain

lim |y, — Syl =
t—0t

m — x| =0.
" e —xl

li
t—>0
Moreover, we observe that

llxr — Sxell < llxr — yell + 1y = Syell + 1Syr — Sxel|
<2llx; — yell + llye — Sysll — 0 as t —> 0% (3.6)

For any z € 2, we note that

lxy —z|17 < H(l - t)|:<x, — }\ Ax,) — (z — LAz)} +t(u; —z)
1—1¢ 1—1¢
(o=rtm)- - )
1—1¢ 1—1¢

+qt{us —z, jg(xr — 2))
<A =0lx =zl +qt(u’ —z, jg(xi —2)) +qt{uy —u', jy(x; — 2)),

q

<=1 -n1

which implies that
lxr —zl7 < q(u’ — 2z, g (e — 2)) + qlur — ', jg(xe — 2)). (3.7

Next, we show that the net {x;} is relatively norm-compact. Assume that {t,} C (0, 1)
is a sequence such that 1, — 0% asn — oo. Put x,, := Xtys Yn = Y1,» An = As, and
uy = uy,. From (3.7), we have

e — zll? < g’ — 2z, jg(en — ) + qlun — ', jg(xn = 2)). (3.8)
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By the reflexivity of X and the boundedness of {x,}, there exists a subsequence {x,, } of {x,}
such that x,, — x* € C. In addition, by (3.6), we also have lim,_,  [|x, — Sx,|| = 0. It
follows from Lemma 2.5 that x* € F(S). Furthermore, we show that x* € (A + B)~!0. Let
v € Bu. Since

Yn = J)fi (tqun + (1 = 1)xy — Ay Axp).

It is observed that
thuy + (1 —ty)x, — AAx, € (I + )‘nB)yn

1
— )T(tnun + (1 =t)x, — AAx, — yn) € By,.
n

Since B is accretive, we have for all (#, v) € B,

n

1 .
<7(tnun + (1 —ty)xn — AnAxy — yn) -V, ]q(yn - u)> >0
> (tyun + (1 — ) xn — AAxp — yn — Ay, jq(yn —u)) >0,

which implies that

) 1 . t .
(Axy + v, ]q(yn —u)) < 7<xn - Yn» ]q(yn —u)) + %(”n — Xn, ]q(yn —u))
n n

1 1
1 n —1
< —lxn = yulllyn —ull?™" + = llun — xallllyn — ull?

An An
< (llxn = yull + 1) K2, (3.9)
where K, > 0 is a constant such that Ky = sup,-, {,%"(HYn —ull Y luy — xp v —

ulli=h}.

Sinz:c}e aBanach space X has a weakly sequentially continuous generalized duality mapping
and from (3.5), we get (Ax* + v, j,(x* —u)) < 0, or (—Ax™ — v, ju(x* —u)) > 0.
Since B is m-accretive, we have —Ax* € Bx*. This shows that x* € (A + B)~!0. Thus
*eQ:=FW©)NA+ Bl

Now, replacing z in (3.8) with x*, we have

2w = X7 < (' = X%, jg(xn — X)) + (un — u', g (xn — x™). (3.10)

Since x, — x*, we get x, —> x™. This proves the relatively norm compactness of the net
{x;}ast — Ot.
Now, returning to (3.8) and taking the limit as n —> oo, we have

" —zll? < (W' =z, jg(x™ —2)).
In particular, x* solves the variational inequality
W —z,jg(z—x")) <0, VzeQ, (3.11)
which is equivalent to the dual variational inequality (see Lemma 2.6):
' —x*, jy(z—x%) <0, VzeQ. (3.12)

Hence, x* € Q is a solution of variational inequality (3.2). Furthermore, we show that the
solution of (3.2) is singleton. Assume that x, x* € € are solutions of (3.2). Then, we have

W =2, jgx* =%) <0
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and
W —x*, j,(x —x*) <0.
Adding up above two inequalities, we have
lx* = %7 <0,

which implies that X = x* and the uniqueness is proved.

In summary, we have shown that each cluster point of {x;} equal to x* as t —> O7.
Therefore, we can conclude that the net {x;} converges strongly to x*. This completes the
proof. O

Next, we prove a strong convergence theorem which is generated by an explicit iteration
process.

Theorem 3.2 Let C be a nonempty, closed and convex subset of a real uniformly convex
and g-uniformly smooth Banach space X which admits a weakly sequentially continu-
ous generalized duality mapping j,. Let A : C —> X be an a-isa of order q and let
B : D(B) —> 2% be an m-accretive operator such that D(B) C C. Let S : C —> C be a
nonexpansive mapping such that Q := F(S) N (A + B)~'0 # (. Let {,,} be a real positive
sequence and let {o,} and {B,} are sequences in (0, 1). For an initial guess x1 € C, define
the sequence {x,} by

(3.13)

Yn = J)i(anun + (1 —ap)xy, — ApAxy),
Xn+1 = Buxn + (1 = B)Syn, Vn =1,

where J)i =+ B! and {un} C X is a perturbation for the n-step iteration with
lim, ooy, = u’' € X. Suppose that the following conditions are satisfied:

(C1) lim,_, s o, = 0 and Z;’lozl o, = 00y
(C2) 0<a <B, <V <1;

. .
(C3) 0<c <hy< iy <d < (%)q,, and limy,— o0 |Aps1 — An| = 0.

Then the sequence {x,} defined by (3.13) converges strongly to a point x* € Q, which solves
uniquely the variational inequality (3.2).

Proof We first show that {x,} is bounded. Since lim, ., u, = u’ € X, which implies
that {u,} is bounded. Take any p € 2, then there exists a constant M; > 0 such that
My = sup,~{llu, — pl}. It is observed that

B B )‘Vl
p=Sp=J,, (p—2Ap)=J; | anp + (1 —ay) L — Ap ).
— Un
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Since S, J,\li and I — 5 f’; - A are nonexpansive (see Lemma 2.1), we have
B An
lyn — pll = -])w aptty + (1 — o) I_I—Ol A )x,

el

An An
< |y — p) + (1 —ay) Alx, — Alp
l—a,, 1—Oln
< apllun — pll + (1 —ay) A |x, — Gl Alp
l—a,, l—a,,
< apllun — pll+ A —an)llxn — pll. (3.14)

It follows that

X1 = Pl = 182 (xn — p) + (1 = ) (Syn — )l
< Ballxa — pll + (1 = B)IISyn — pll
< Bullxa — Pl + A = B)llyn — pll

< Bullxn — pll + (1 = ,Bn)|:an||un —pl+ A =an)llx, — pll}

(1= = Boan) lxn — pll + (1 = e llun — pl|
max{lx, — pll, Mi}.

IA

By the mathematical induction, we have

v

lxp — pll < max{llx; — pll, M1}, Vn

Thus, {x,} is bounded, so are {y,}, {Ax,} and {Sx,}.
Next, we show that lim,—, o [|Xp+1 — x,]| = 0. Set y, = J}izn, where z, = a,u,
+ (1 — ay)x, — A, Ax,. Then, we have

Ins1 = yall = 192 znt1 = T2 zall < WL, zngr = IE  zall + 12 20 — Tzl
< Mznt1 = zall + 172 20 = T2 zall
= [lapp1ttngr + (I — o1 X011
— Jn1 Ayt — @ty + (1= @)Xy — A Ax) | + 115 20 — T2 za

Ayt (Upg1 — up) + (o1 — o) Uy — xp)

A A
F (=] (1= A ) — (1= 22— A,
1 — oyt I —ay,

+ A — Anr 1) Axy

B B
+ 192 2w — B zull < ctnr (latn s | + Nl )

A
(1 _ ”7"'114))(”“
1 — oy

+ gt = Aalll A | + 1172

+lanst — el (leall + 1xall) + (1 = @1

A
- (1 - A)
1 —a,
= (1 - an+l)”xn+l - xn” +an+l(”un+l” + ”un”) + |(¥n+l
— | (It ll + 12n 1) + Ant1 = 2l Axll + 152 20 = T 20l

B
z+1 J)\”Zn ”
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By Lemma 2.11, we have

|)‘-n+l - )‘-n|

B
||Jx Zn — Zaull.
)"VH—I n+1

B B
”J)WHZn - anzil I <
It follows that

1Yn+1 = Yull <= (1 — @ DlIxXn+1 — X ll + ctns1 (””n-H |+ llun ”) + lon1

|An+1 = Anl
_O‘n|(||”n|| + ”xn”) + [An1 — Al Axp || + %71””])&3”12?1 — znll
n+

< (=D llxn1 — xull + <an+l + a1 — anl + [Anp1 — Aul
A —A
+ | n+1 n|>]‘427
)w1+1

where My = sup,,-.1 {lun+1 114 llunll, s | 112001, 1AXA ], 102 20 =2 |l}. Then, we have

1SYn+1 = Syall = Myn+1 = yull = (A = ctng ) IXn41 — xal

[Ant1 — Anl
+ <an+1 + |1 — @l + [Apr1 — Anl + % M

From (C1) and (C3), we have

lim sup (1| Syn+1 = Syull = xnt1 — xall) <0

n—-o00

By Lemma 2.8, we get

lim ||Sy, — x,|l =0. (3.15)
n—-00
Consequently,
lim |lxp41 —xpll = lim (1 = Bu)lISyn — xxll = 0. (3.16)
n—>-00 n—-:oo
Next, we show that lim,,_,  [|x, — Sx,|| = 0. By the convexity of || - ||4 for all ¢ > 1 and

Lemma 2.3, we have
q An An
lyn — plII? = ||(1 — o) | | Xu — Axp | =\ p— Ap || + an(un — p)
11—, 1 —a,

An An g
ST=a)||xn — -« Axy ) — P—l_a Ap
n n

+ oy lluy — P||q
= —ay)|(xy — p) — (Axy

<A —an)|llxa —pl? -

Kq A q q q
+ﬁ”Axn Apl* | +anllun = plI* = (I = an)| llxn = pli
q

aqhiy KqAn
Ax, — Ap||? + ———||Ax, — Ap|?
1 —a, | Axy, pl?+ a —O{n)q | Ax, Pl i|

+apllup, — pll? =1 —Oln)[llxn - pl?

q

q
+ anllun — pll?

n
1 — oy
qkn

T (Axn Ap, jg(xn = p))
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—1
An KqAZ
Tl (“q T 1A = Al | 4l — I
q K‘i}‘z_l q q
< lxn = plI* =2\ @g = ——————= |1Axn — Ap|* + anllun — plI°.
(1 —ay)d
(3.17)
It follows that
%01 — P19 < Bullxn — pII? + (A = B)IISyn — pII?
< Bullxn — P17+ A = B lyn — PI? < Bullxn — plI? + (1 — Bn)
q K‘I}‘Z_l q q
x| 1% = pllY = An| g — ————— JIAxn — Apl? + anllun, — pll
(I —oy)?
P
= llxn = pI? = dn(1 = ﬂn)<aq - m) 14x, — Apll
+oa, (1 = B)llu, — pll9,
which implies from (C2), (C3) and Proposition 2.7 that
(1= b (ag — kg (@)™ ") Ax, — Ap|*
< lxn = pI? = llxns1 — pI? + on (1 = B)llun — pll?
< qllxn — pll”’*l(llxn = pll = Ixn1 = pll) + (1 = B llun — pl?
< qllxn — 17 M xng1 — xull + a1 = B llun — pl2.
Moreover, from (C1), (C3) and (3.16), we have
lim ||Ax, — Ap| = 0. (3.18)
n—-00

By Proposition 2.12 and Lemma 2.4, we have

lyn = 7 = 172 (tnn + (1 — @) — knAxn) = T (p — A Ap) |17
< Aoty + (1 — o)Xy — Ay Axy — (p — Ay Ap), jq(yn - p)

IA

1
;|:”anun + 0 —ap)xy — ApAxy — (p — )\nAp)”q + (@ — Dllyn — P||q

—g(leputy + (1 — ap)xy — Ap(Ax, — Ap) — yn||)j|7
which implies that
lyn — P||q < llapuy + (I = ay)xy — Ay Axy — (p — MAP)Hq — g(llouy
+ (I —ap)xpy — Ay (Axy — Ap) — yulD
< apllup — pl? + llxn — pll?
—g(lapuy + (1 — ay)xy — Ay (Axy, — Ap) — yulD).
It follows that

lxn+1 — P||q < Bullxn — P||q + A= Bllyn — P||q < Bullxn — P||q

+(1 - ,Bn)|:an lun — plI? 4+ lx0 — pI? — g(llotnun
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+ (I —ap)xy — Ay (Ax, — Ap) — yn”)]
= [lxn = pI? +on(1 = B)llun — plI? — (1 = Bu)g(lnun
+ A —ap)xy — An(Axy — Ap) — yulD),
which implies by (C2) and Proposition 2.7 that
1 - b/)g(”anun + (1 —ap)xy — Xy (Axy — Ap) — yul)
= otn =PI = Wt = PIY + (1 = B)llun — pII?
< qlixn — pll4 (10 = pll = Ixns1 — Pl) + (1 = B)llun — pll?
< qllxn = P17 xnt1 = xall + (1 = B)lluy — plI9.
Then, from (C1), (C2) and (3.16), we have
lim |lx, — yull =0. (3.19)
n—>-00
Consequently,

lXn = Sxull < llxn = Synll + 11Syn — Sxall

< lxp — Syull + lyn — xnll — 0 as n —> oo. (3.20)
Next, we show that

lim sup(u’ — x*, jy(yn — x¥)) <0,
n—-00

where x* is the same as in Theorem 3.1. Since {x,} is bounded, there exists a subsequence
{xy,;} of {x,,} such that

limsup(u’ — x*, jo(x, —x™)) = Lm (" —x*, jy(xn, —x5).
n—s 00 1—>00

By the reflexivity of X and the boundedness of {x,}, there exists a subsequence {x,, } of {x,}
such that x,, — z € C. From (3.19) and (3.20), we also have y, — Sy, — 0. Then from
Lemma 2.5, we have z € F(S). Furthermore, by the similar method in the proof of Theorem
3.1, we can show that z € . Since a Banach space X has a weakly sequentially continuous
generalized duality mapping. Then, we have

limsup(u’ — x*, jg(yn — x™)) = limsup(u’ — x*, j, (xn — x¥))
n—>00 n—>-00

= (' —x*, jy(z — x*) <0. (3.21)

Finally, we show that x, —> x*. From (3.14) and Lemma 2.2, we have
* )‘” )\n * *
lyn —x ”q: (I —ap) I — Alxy— |1 - A)x™ | +oap(uy —x7)
1 —o, 1—a,

A A gl
I——" A)x, — (1 - ——A)x*
1—a, I —a
+qan(u —x*, jq()’n —x") < (1 —an)?lxy — x*|4

+qan (u, —x*, JqgOn — x*)).

q

< (I —ap)?
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Then, it follows that

Ixn1 = x*19 < Ballxn — x*17 + (1 = B lISyn — x|
< Bullxa — x| + (1 = B)llyn — x*|1¢
< Bullxn — x* 17+ (1 = B [(1 — ) ||xn — x* |14
+ oty (ty — x*, jgOn — x)]
< (1= a1 = B))llxn — x* 19 + gon (1 = Ba) (n — ', jg(yn — x™))
+ o (1 = o) (n — x*, jg (yn — x™))
< (1= an(1 = Bp)llxn — x|
+qan(l = B llup — ' |[lyn — x|
+gon (1 = Bu) (un — x*, jg(yn — x™)). (3.22)

Then (3.22) reduces to
[Xn+1 = X 19 < (1= y)llxn — x* N9 + yudn,

where y, 1= a, (1 = B,) and 8, := glluy — u'[[lyn — x*197" + g’ = x*, jy (y — x)). It
is easily seen that ) oo | ¥, = oo and limsup,__, . 8, < 0. We can therefore apply Lemma
2.9 to conclude that x,, —> x*. This completes the proof. O

Corollary 3.3 Let C be a nonempty, closed and convex subset of a real uniformly convex
and 2-uniformly smooth Banach space X which admits a weakly sequentially continuous
duality mapping j. Let A : C —> X be an a-isa of order 2 and let B : D(B) — 2% be an
m-accretive operator such that D(B) C C. Let S : C — C be a nonexpansive mapping
such that Q@ := F(S)N (A + B)~'0 # (. Let {1} be a real positive sequence and let {a,}
and {B,} are sequences in (0, 1). For an initial guess x| € C, define the sequence {x,} by

Yn = J)i(anun + (I — ap)xn — AnAxp),

(3.23)
Xpt1 = Buxn + (1 = B)Syu, Yn =1,

where .l)i = (I + 2BV and {u,} C X is a perturbation for the n-step iteration with
lim, ooy, = u’' € X. Suppose that the following conditions are satisfied:

(C1) lim,_ s a, = 0and ZZOZI o, = 005
(C2) 0<a <B, <V <1;

(C3) 0 < <hy <72 <d < & andlim, oo [pp1 — dnl = 0.

Then the sequence {x,} defined by (3.23) converges strongly to a point x* € Q, which solves
uniquely the following variational inequality:

W —x* jz—x")) <0, VzeQ.

Corollary 3.4 Let C be a nonempty, closed and convex subset of a real Hilbert H. Let
A : C —> H be an a-ism and let B : D(B) —> 2 be a maximal monotone oper-
ator such that D(B) C C. Let S : C —> C be a nonexpansive mapping such that
Q = F(S)N(A+ B)~'0 # 0. Let {1,} be a real positive sequence and let {a,} and
{Bn} are sequences in (0, 1). For an initial guess x| € C, define the sequence {x,} by

(3.24)

Yn = J)ﬁ (aputy + (1 — ap)xy — Ay Axy),
Xp1 = Buxn + (1 — B)Syn, Yn > 1,
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where J/\Ii = (I + 1, B)"" and {u,} C H is a perturbation for the n-step iteration with
lim, ooy, = u' € H. Suppose that the following conditions are satisfied:

(C1) limy— o0ty =0and Y 02, ap = 00;

(C2) 0<a <B, <V <1;

(C3) 0 < <2y < 722 <d <20 andlim, o0 |hny1 — hnl = 0.

Then the sequence {x,} defined by (3.24) converges strongly to a point x* € Q, which solves
uniquely the following variational inequality:

W —x*z—x*) <0, VzeQ.

4 Applications

In this section, we give some applications of Theorem 3.2 in the framework of Hilbert spaces.
Throughout this section, let C be a nonempty, closed and convex subset of a real Hilbert space
H.

4.1 Application to variational inequality problems
Let A : C — H be a nonlinear monotone operator. The variational inequality problem is
to find z € C such that

(Az,y—2) 20, VyeC. (4.1)

The set of solutions of problem (4.1) is denoted by V I (C, A). In the context of the variational
inequality problem, it well known that

7€ VI(C,A) & z= Pc(z — *Az), VYA >0,

where Pc is the metric projection from H onto C.
Let g : H — (—00, 0o] be a proper convex lower semi-continuous function. Then the
subdifferential dg of g is defined as follows:

dg(x)={yeH:g(x)>glx)+{z—x,y), Vz€ H}, Vx € H.

It is known that dg is maximal monotone (see [17]). Let i¢ be the indicator function of C
defined by

ic(x) = {2} ’;Z% (4.2)

Since ic is a proper lower semi-continuous convex function on H, then subdifferential dic

of i¢ is a maximal monotone operator. So, we can define the resolvent J. /\3 ic of dic forA > 0
by

JYCx = (I 4 2dic)'x
forallx € H.

Lgmma 4.1 [18] Let dic be the subdifferential of ic, where ic defined as in (4.2) and let
J;'C be the resolvent of dic for A > 0. Then, we have

y=J§icx<=>y=ch, Vx e H,yeC.
Further, we have (A + dic)~'0 = VI(C, A).
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Theorem 4.2 Let A : C —> H be an a-ism. Let S : C —> C be a nonexpansive mapping
such that F(S)NVI(C, A) # (. Let {A,} be a real positive sequence and let {a,} and {8, }
be sequences in (0, 1). For an initial guess x| € C, define the sequence {x,} by

Yn = Pc(apity + (1 — op)xpy — Ay Axy),

(4.3)
Xnt1 = Bpxn + (1= Bp)Syn, Vn = 1,

where {u,} C H is a perturbation for the n-step iteration with lim,_,cou, = u' € H.
Suppose that the following conditions are satisfied:

(C) limy— oo p =0and Y 02 | o = 00;
(C2) 0<a <B, <V <1;
(C3) 0<c/ <y < 1};1” <d' <2« and lim,—, o |Ang1 — An| = 0.

Then the sequence {x,} defined by (4.3) converges strongly to a point x* € F(S)NVI(C, A).

4.2 Application to equilibrium problems

Let G : C x C — R be a bifunction, where R is the set of all real numbers. The equilibrium
problem is to find z € C such that
G(z,y) =0, 4.4

for all y € C. The set of solutions of problem (4.6) is denoted by E P (G). For solving the
equilibrium problem, let us assume that a bifunction G : C x C — R satisfies the following
conditions:

(Al) G(x,x) =0forallx € C;

(A2) G is monotone, i.e., G(x,y) + G(y,x) <Oforall x € C;
(A3) forallx, y,z € C,limsup, o G(tz+ (1 = 1)y, y) < G(x, y);
(A4) forall x € C, G(x, ) is convex and lower semi-continuous.

Lemmad4.3 [19] Let G : C x C —> R satisfying the conditions (A1)—(A4). Let A > 0
and x € H. Then there exists z € C such that

1
G(z,y)-i-X(y—z,z—sz, Vy e C.

Lemma 4.4 [20] Assume that G : C x C —> R satisfies the conditions (A1)—(A4). For
A > 0and x € H, define a mapping T : H — C as follows:

1
Tk(x)={zeC:G(z,y)-i—X(y—z,z—x)20, Vy e C}, Vx € H.

Then, the following hold:

(1) T, is single-valued;
(2) T, is firmly nonexpansive, i.e., for each x,y € H,

1Tox — Toyll> < (Tax — Toy, x — y);

(3) F(T,) = EP(G);
4) EP(G) is closed and convex.

We call such T;, the resolvent of G for A > 0.
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Lemma 4.5 [18] Let G : C x C —> R satisfies the conditions (A1)—(A4). Let Ag be a
multivalued mapping of H into itself defined by

{{zeH:G(x,y)z(y—x,z), Vy e C}, x € C;

Agx = @, x ¢ C.

Then, EP(G) = AEIO and Ag is a maximal monotone operator with D(Ag) C C. Further,
forany x € H and ) > 0, the resolvent Ty, of G coincides with the resolvent of Ag, that is,

Tix = (I +AAg) 'x.

Theorem 4.6 Let A : C —> H be an a-ism. Let G : C x C —> R be a bifunction which
satisfies the conditions (A1) — —(A4). Let S : C —> C be a nonexpansive mapping such
that F(S) N EP(G) # @. Let {1} be a real positive sequence and let {a,} and {B,} are
sequences in (0, 1). For an initial guess x1 € C, define the sequence {x,} by

{yn =T, (apuy + (1 — ap)xy, — Ay Axy),

4.5)
Xp1 = Bnxn + (A = B)Syn, Yn>1,

where {u,} C H is a perturbation for the n-step iteration with lim,_,cou, = u' € H.
Suppose that the following conditions are satisfied.:

(CD) limy— oo p =0and Y v | oy = 00;
(C2) 0<a' <B,<b <1;
(C3) 0 < <2y < 22 <d <20 andlim, o0 |hny1 — hnl =0.

Then the sequence {x,} defined by (4.5) converges strongly to a point x* € F(S) N EP(G).

4.3 Application to convex minimization problems

Let f : H — R be a convex smooth function and g : H —> R be a convex, lower-
semicontinuous and nonsmooth function. The convex minimization problem is to find z € C
such that

f(@)+8@) = f(x) +g), (4.6)

for all x € C. The set of solutions of problem (4.6) is denoted by CM P(f, g). By Fermat’s
rule, it is known that the problem (4.6) is equivalent to the problem of finding z € C such
that

0eVf()+ag(2),

where V f is a gradient of f and dg is a subdifferential of g. In fact, we canset A = V f and
B = dg in Theorem 3.2. It is also known V f is (1/L)-Lipschitz continuous, then it is also
L-ism (see [21]). Further, dg is maximal monotone (see [17]). So we obtain the following
result.

Theorem 4.7 Let f : H —> R be a convex and differentiable function with (1/L)-Lipschitz
continuous gradient V f and G : H —> R be a convex and lower semi-continuous func-
tion such that D(0G) C C. Let S : C —> C be a nonexpansive mapping such that
F(S)NCMP(f,g) # . Let {,,} be a real positive sequence and let {o,} and {B,} be
sequences in (0, 1). For an initial guess x1 € C, define the sequence {x,} by

iyn = Jkn (pup + (1 —ap)x, — Ay V f(x3)), 4.7)

Xpt1 = Bnxn + (A = B)Syn, Yn>1,
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where {u,} C H is a perturbation for the n-step iteration with lim, . cou, = u' € H.
Suppose that the following conditions are satisfied:

(C1) limy—s o0ty =0and Y 02, ap = 00;
(C2) 0<a <B, <V <1;
(C3) 0<c' <A, < lf’zxn <d <2L andlim,_ o0 |Aps1 — An| = 0.

Then the sequence {x,} defined by (4.7) converges strongly to a point x* € F(S)
NCMP(f,8).

4.4 Application to linear inverse problems

Let T be a bounded linear operator on H and b € H. The unconstrained linear problem is to
find x € H such that

Tx =b. (4.8)

The set of solutions of problem (4.8) is denoted by I' = {x € H : x = T~'b}. For each
x € H,wedefine f : H— Rby

_ ! Tx —b|?
f(X)—QII x —=b|".

It is well known that Vf = T/(Tx — b) and V f is K-Lipschitz continuous with K the
largest eigenvalue of T'T [22]. So we obtain immediately the following result.

Theorem 4.8 Let T : H —> H be a bonded linear operator and b € H with K the largest
eigenvalue of T'T. Let S : H —> H be a nonexpansive mapping such that F(S) N T # @.
Let {\,,} be a real positive sequence and let {ay,} and {f,} be sequences in (0, 1). For an
initial guess x1 € H, define the sequence {x,} by

{yn =auup + (1 —ap)x, — )\nTt(Tx" = b), 4.9)

Xn+1 = ,ann + (1 - ﬂn)Syn, Vn > 1,

where {u,} C H is a perturbation for the n-step iteration with lim,_,cou, = u' € H.
Suppose that the following conditions are satisfied:

(C) limy— oo p =0and Y o2 | oy = 00;
(C2) 0<d <B,<b <1;
(C3) 0<c' <hy <22 <d < 2 andlim, o0 [Ans1 — An| = 0.

—a, —

Then the sequence {x,} defined by (4.9) converges strongly to a point x* € F(S)NT.
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Abstract

In this work, we introduce the inertial relaxed CQ algorithms for solving the multiple-sets
split feasibility problems (MSFP) in the frameworks of Hilbert spaces. By mixing the inertial
technique with the self-adaptive method, not only the computation on the matrix norm and the
orthogonal projection is relaxed but also the convergence speed is improved. We then establish
the strong convergence theorem by combining the relaxed CQ algorithm with Halpern’s itera-
tion process. Finally, we provide numerical experiments to illustrate the convergence behavior
and the effectiveness of our proposed algorithm. The main result extends and improves the

corresponding results.

Keywords: Inertial relaxed CQ algorithm; Halpern’s iteration process; Multiple-sets split feasibility problem;
Self-adaptive method.

AMS Subject Classification: 65K05, 65K10, 49J52.

1 Introduction

Let Hy and Hs be real Hilbert spaces. Let ¢ > 1 and » > 1 be given integers and let {C’i}§:1

and {Q; };7:1 be nonempty, closed and convex subsets of H; and Ho, respectively.

In this research, we study the Multiple-sets Split Feasibility Problem (MSFP) which is the
problem of finding a point * such that

t r
v eCi=()C, Az eQ:=()Q; (1.1)

i=1 j=1
where A is a given bounded linear operator (denote A* by the adjoint operator of A). This problem

was first introduced, in finite-dimensional Hilbert spaces, by Censor et al. in [6] for modeling inverse

*Corresponding author: prasitch2008@yahoo.com (P. Qholamjiak)
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problems which arise in modeling of intensity modulated radiation therapy [7], and signal processing
and image reconstruction [4, 14]. Due to its applications, there have been many algorithms invented
to solve MSFP (see, for instance, [21, 23, 28, 29, 30]). In particular, when t = r = 1, the MSFP
(1.1) becomes the split feasibility problem (SFP) which was introduced in [5].

Throughout this work, we always assume that the MSFP (1.1) is consistent and also denote the

solution set by S. It is known that the MSFP is equivalent to the following minimization problem:
.1 1
mmin—Pc(w)Hz+§HAw—PQ(Ax)H2, (1.2)

where Po and Py are the metric projections onto C' and @, respectively. It should be noted
that the computation of a projection onto a general closed convex subset is difficult because of its
closed form. To overcome this difficulty, Fukushima [10] suggested a so-called relaxed projection
method to calculate the projection onto a level set of a convex function by computing a sequence
of projections onto half-spaces containing the original level set. In the setting of finite-dimensional
Hilbert spaces, Yang [20] introduced the relaxed CQ algorithms for solving SFP where the closed

convex subsets C' and @ are level sets of convex functions given as follows:
C={z€H:cx) <0} and Q= {y € Hy: qly) <0}, (1.3)

where ¢ : H; — R and ¢ : Ho — R are weakly lower semi-continuous and convex functions. It is
assumed that both ¢ and ¢ are subdifferentiable on Hy and Hs, respectively, and that dc and dg
are bounded operators (i.e., bounded on bounded sets). It is known that every convex function
defined on a finite-dimensional Hilbert space is subdifferentiable and its subdifferential operator is

a bounded operator (see [2]). Define two sets at point z,, by
Cpn ={z € Hy:c(xy) < (&n,xn — )}, (1.4)

where &, € dc(zy,), and
Qn = {y € Hy: Q(Awn) < <CnaAwn - y>}7 (15)

where (,, € 9q(Ax,,). It is clear that C), and Q,, are half-spaces and C,, D C and Q,, D Q for every
n > 1. In this case, the metric projections onto the sets C), and Q,, can be easily calculated since
it has the specific form which can be found in [2]. Employing this tool, Yang [26] constructed a
relaxed CQ algorithm for solving the SFP by using the half-spaces C), and @,, instead of the sets C

and @, respectively and then proved its convergence under some suitable choices of the step-sizes.

For solving the MSFP, following [6], we define the level sets of convex functions by
Ci=A{z € Hy:ci(x) <0} and Qj ={y € Ha:q;(y) <0}, (1.6)

where ¢; : Hi - R (i = 1,...,t) and ¢; : Hy = R (j = 1,...,r) are weakly lower semi-continuous
and convex functions. We assume that ¢; (i = 1,...,t) and ¢; (j = 1,...,7) are subdifferentiable on
H, and Ho, respectively, and that JOc; (i = 1,...,t) and dg; (j = 1,...,7) are bounded on bounded

sets. Censor et al. [6] also defined the following proximity function:

t r
1 1
f(@) =3 > lille = Po, ()] + 5 > Nl Az — Py, (Az)|)?, (1.7)
i=1 j=1
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where I; (i = 1,...,t) and \; (i = 1,...,7) are all positive constants such that > ¢_, I, +2 A =1

In this case, we also have

t T

Vi(x) = li(x — Po,(x) + Y NA*(I — Py,;)Ax. (1.8)

i=1 Jj=1

They introduced the following projection algorithm:

Tpt1 = Po(z, — pVf(2n)), (1.9)

where p > 0 and Q C RY is an auxiliary simple nonempty closed convex set such that QNS # ().
It was proved that if p € (0,2/L) with L being the Lipschitz constant of V f, then the sequence
{z,} generated by (1.9) converges to a solution in MSFP.

As observed in the results of Byrne [3], we see that the selection of the step-sizes p in (1.9)
depends on the largest eigenvalue (spectral radius) of the matrix A* A which is not always possible
in practice. To avoid this computation, there have been worthwhile works that the convergence is
guaranteed without any prior information of the matrix norm (see, for examples [22, 23, 24, 27]).
Among these works, Lépez et al. [14] introduced a new way to select the step-size and also practised
this way of selecting step-sizes for variants of the CQ algorithm, including a relaxed CQ algorithm,
and a Halpern-type algorithm and proved both weak and strong convergence. Combining the
relaxed CQ algorithm with that of Lépez et al. [14], in 2013, He and Zhao [11] introduced a new
relaxed CQ algorithm such that the strong convergence is guaranteed in infinite-dimensional Hilbert
spaces. With this choice of the step-sizes, the estimation of the norm of operators is avoided and

the metric projections are easily to be calculated.

In what follows, we define two sets at point z,, by
Cl'={z € Hy:ci(xy) < (&' 20 — 1)}, (1.10)
where &' € Oc¢;(zy,) for ¢ = 1,...,t, and
Qf ={y € Ha : qj(Azn) < ((f', Azn — )}, (1.11)

where (7' € 0q;(Azy) for j = 1,...,7. We see that C' (i = 1,..,¢) and Q} (j = 1,...,7) are
half-spaces and C' D C; (i =1, ...,t) and Q) D Qj (j=1,...,r) for all n > 1. We define

t

1

= LS b - Pep @) + 3" AllAe — Pay(as) P (112
i=1 ] 1

where C'(i = 1,...,t) and Q}(j = 1,...,) are given as in (1.10) and (1.11), respectively.

We then have .

Via(z) =Y li(x — Por(z)) + ZA A*(I — Pgn) Az, (1.13)
i=1 j=1

where A* is the adjoint operator of A.

For obtaining the strong convergence, recently, inspired by the algorithms proposed by Zhao et

al. [30] and Loépez et al. [14], He et al. [12] introduced a new relaxed self-adaptive CQ algorithm
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for solving the MSFP such that the strong convergence is guaranteed by using Halpern’s iteration
process. Let u € Hj be fixed, and choose an initial guess x1 € H; arbitrarily. Let {z,} be the

sequence generated by the following manner:
Tnp1 = o+ (1= an)(@n — 7V fa(zs)), n>1, (1.14)

where f,, is given as in (1.12), {a,} C (0,1) and 7, = pn% with 0 < p, < 4 for all n € N.
It was proved that if a, — 0, Y07 | @, = 00 and infren pn(4 — pn) > 0, then {z,} generated by
(1.14) converges strongly to a solution in MSFP.

In this paper, motivated by the previous works, we propose the following inertial relaxed CQ

algorithm which combines the inertial technique with the relaxed CQ method:

Algorithm 3.1 Let {a,,} C (0,1), {8,} C [0,1) and {p,} C (0,4). Let u € H; be fixed and
take xg,zq1 € Hj arbitrarily. Let the sequences {x,} and {y,} be generated iteratively by the

following manner:

Tptl = QpU+ (1 - an)(yn - Tnvfn(yn)),
Yn = Tn+ Bn(l'n - xn—l)a n>1, (1.15)

where f, is given as in (1.12) and 7, = pn% for all n € N. If Vf,(y,) = 0, then y, is a
solution of MSFP. Here 3, is an extrapolation factor and the inertia is represented by the term
Bn(xy, — xp—1). It is remarkable that the inertial terminology greatly improves the performance of
the algorithm and has a nice convergence properties [1, 8, 9, 13, 19, 20] and also [15, 16]. Using the
inertial technique and Halpern’s idea, we prove its strong convergence of the sequence generated
by our proposed scheme. Our algorithm is easily to be implemented since it involves the metric
projections onto half-spaces which have exact forms and has no need to know a priori information of
the norm of bounded linear operators. Numerical experiments are included to show the effectiveness
of the our algorithm. The obtained results mainly extend and improve that of He et al. [12] and

also complement the corresponding results of [3, 14, 30].

The rest of this paper is organized as follows: Some basic concepts and lemmas are provided in
Section 2. The strong convergence result of this paper is proved in Section 3. Finally, in Section 4,

numerical experiments are demonstrated for supporting the main theorem.

2 Preliminaries and lemmas
In this section, we give some preliminaries which will be used in the sequel. Let H be a Hilbert
space. Recall that a mapping T': H — H is said to be nonexpansive if, for all x,y € H,
[Tz = Ty| < |lz -yl (2.1)
T : H — H is said to be firmly nonexpansive if, for all z,y € H,
|ITe = Ty||* < [lz = y[I* — |1 = T)a — (I = T)y|%, (2.2)

or equivalently
(Tz —Ty,x —y) > | Tz — Ty| (2:3)
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for all z,y € H. It is known that 7T is firmly nonexpansive if and only if I —T" is firmly nonexpansive.
We know that the metric projection Po from H onto a nonempty closed convex subset C' C H is

a typical example of a firmly nonexpansive mapping, which is defined by

Pox := argmin||x — y||?>, =€ H. (2.4)
yeC

It is well known that Po is characterized by the inequality, for x € H

(x — Pox,y — Pcx) <0, VyeC. (2.5)
In a real Hilbert space H, we know the following results:

Lo, byo 1 2
i - — g = 2.
() = llall + 5l = 5l — ol (26)
and the subdifferential inequality
Iz +yl* < ll2]* + 2{y, = + y) (2.7)
for all z,y € H.

Definition 2.1. Let f: H — R be a convex function. The subdifferential of f at x is defined as
Of(x) ={¢ € H: f(y) = f(x)+ &y —x), VyeH} (2.8)
A function f: H — R is said to be weakly lower semi-continuous at z if x,, converges weakly
to x implies
f(x) < liminf f(z,). (2.9)

Lemma 2.2. [6] Let {C;},_; and {Qj};f:l be closed convex subsets of Hy and Hy respectively and
A: Hy — Hs a bounded linear operator. Let f(x) be the function defined as in (1.7). Then V f(x)
is Lipschitz continuous with L = >\ I; + || A||? > j=1Aj as the Lipschitz constant.

Lemma 2.3. [17, 25] Let {a,} and {c,} are sequences of nonnegative real numbers such that
p+1 < (1 —6n)an +bp +cpy, n>1, (2.10)

where {8, } is a sequence in (0,1) and {b,} is a real sequence. Assume Y > ¢, < oo. Then the
following results hold:
(i) If by, < 0, M for some M >0, then {a,} is a bounded sequence.

(i) If Y2021 6, = 00 and limsup,,_, . by, /8, < 0, then lim,_,o0 ay, = 0.

Lemma 2.4. [18] Let {T',} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {T'y,} of {I'n} which satisfies Ty, < T'n, 11 for alli € N. Define

the sequence {T(n)}n>n, of integers as follows:
T(n) =max{k <n:Ty <Tii1}, (2.11)
where ng € N such that {k <ng: T <Tri1} # 0. Then, the following hold:
(i) T'(ng) <T(np+1) < ... and T'(n) — oo;

(11) F7'(71) < I"r(n)—i-l and I'y, < I"r(n)—i-l; Vn > ng.
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3 Strong Convergence Theorem

In this section, we are in position to study the inertial relaxed self-adaptive C'Q) algorithm in
Hilbert spaces for solving MSFP (1.1).

Theorem 3.1. Let Hy and Hy be real Hilbert spaces and let {C;}._; and {Qj};f:l be nonempty,
closed and convex subsets of Hi and Ho, respectively. Let A : Hy — Hy be a bounded linear operator

with its adjoint A*. Assume that {a,},{Bn} and {pn} satisfy the following assumptions:

o0

(C1) hm 0 oy, = 0 and Y a, = oo;

n=1

(C2) mf pn(4 — pn) >
neN

0;

(C3) {Ba} C [0, 8], where 5 € [0,1) and lim Bo |, — 2| = 0.

Then the sequence {x,} generated by Algorithm 3.1 converges strongly to Psu.

Proof. Set z = Psu. We

nonexpansive and V f,(z)

<an(yn)a Yn — Z>

So we have

lYn — 70V fr(yn) — z||2

note that I — Per, (i = 1,...,

0 for all n € N. It follows that

~+

t) and I — PQ;;, (j=1,..,

(> " lilyn — Por(yn) +Z)\A (I = Pgu) Ay, yn — 2)

=1 7j=1

t T
Y Ul = Pop)ynsyn — 2) + Y NI = Pap) Ayn, Ayn — Az)

i=1 J=1

t
> LI = Per)ynl? +Z>\ (I = Por) Aynll?
=1 7=1

2 fn(Yn)-

Hence we obtain, for each n € N, since p,, € (0,4)

On the other hand, we also have

Hyn - Z||2 + Tn2‘|vfn(yn)”2 - 2Tn<vfn(yn)yyn - Z>

< Hyn - 2”2 + Tg“vfn(yn)”z - 4Tnfn(yn)
e P P
= Moo =2 = i p o T () P
f2(yn)
= |lyn — 2||? = pn(4 — p,,) —12T2__
lyn =21 = Pud =Py G
”yn _Tnvfn(yn) - Z” < Hyn - ZH
ln—2ll = llen— 2+ Bal@n — )|

IN

|zn — 2| + Bnllzn — zp—1-

Combining (3.3) and (3.4), we obtain

”xn—i-l - Z”

IN

IN

lon(u — 2) + (1 = an)(Yn — TV fulyn) — 2)||
apllu = z[[ + (1 — an)llyn — 2|
anllu — 2] + (1 = an)l|zn — 2] + (1 — an)Ba |7y

— ZL'n—IH-

r) are firmly

(3.5)
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By (C3), we see that d,, = (l_o‘”)ﬁ"O'J:”_m"”” — 0. Hence it is bounded. Put

M = max {|lu — z||,sup oy }.
n>1

So (3.5) becomes
|Tnt1 — 2] < (1 —an)|zn — 2] + anM. (3.6)

Applying Lemma 2.3 (i), we can conclude that {z,} is bounded and also {y,} is bounded. By

Lemma 2.2, we see that

where L = S°0_ 1; + || A2 > i—1Aj- This shows that {V f,,(y,)} is bounded.

We next compute the following estimation:

”yn_z”z = ”xn_z+ﬂn(wn_wn—l)u2

= ”xn - ZH2 + 2Bn<wn — Tn—-1,Tn — Z> + Br%”‘rn - Z’n_1”2- (38)
Using (2.6), we have
1 o 1 2 1 2
(tn —xn1,20 — 2) = —Sllen1 = 2[I" + Sllzn — 217 + Sllzn — 20" (3.9)
2 2 2
Combining (3.8) and (3.9), we obtain

|z = 211* + Ba(=llzn-1 = 2l + llzn — 2I° + llzn — 2n-1]1%) + Ballzn — 21|

lzn — 201 + Bulllzn — 201 = lwn—1 — 21*) + 28|25 — 21 (3.10)

lyn — 2|1

IN

Using (2.7) and (3.2), we have

21 — 2> = llom(u—2) + (1= an)(Wn — 7V falyn) — 2)|1?
< (L= a)llyn — TV falyn) — 2)1* + 200 (u — 2, 20011 — 2) (3.11)
J2(yn)

< (T =a)yn — 21> = (1 = an)pn(4 — pp) 5 + 200 (u — 2,2n41 — 2).

IV fr(yn)
Combining (3.10) and (3.11), we derive

Zn+1 — 2”2 < (I—an)lzn — 2”2 + (1 — an) B (llzn — 2”2 — 71 — 2”2)
falyn)

IV fu ()12
+ 20, (U — 2, Tpy1 — 2). (3.12)

+ 2(1 — an)Bpllzn — xn—1||2 — (1= an)pn(4 = pp)

Set I'y, = ||z, — z||? for all n € N. We note, by (C1) and (C2), that there is a constant o such that
(1 —an)pn(4 —pn) >0 >0 for all n € N. So from (3.12) we get

Iy < (1 - an)rn + (1 - O‘n)ﬁn(rn - Fn—l)
fyn)

+2(1 — o) BnllTn — 2n_1|)? — 0 Y
IV fu ()12

+ 20, (u — 2,241 — 2).  (3.13)
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We next consider the following two cases:
Case 1: Suppose that there exists a natural number N such that I';,11 < T, for all n > N. In this

case, lim,,_,o '), exists. From (3.13), we have

f2(yn)

UW < (Fn — Fn—i-l) + (1 — an)ﬁn(rn — Fn—l) (3'14)

+ 2(1 — o) BnllTn — Tp_1]|® + 200 (u — 2, Ty — 2).

It is easy to check that (C3) implies 5, ||z, — zn—1|| — 0 since {a,} is bounded. So, by (C1) and
the boundedness of {z,}, we have from (3.14)

fa(n)
IV fulyn)lI?

Since {||V fn(yn)||} is bounded, it follows that f,(y,) — 0 as n — oco. This shows that

—0 as n — oo.

lim ||(I — Per)yall =0 (i=1,2,....%) (3.15)
n—o00 g
and
Tim (7~ Pou)Ayal =0 (j=1,2,...7). (3.16)

Since dg; (j = 1,...,7) are bounded on bounded sets, there exists a constant ¢ > 0 such that
1G]l < p (5 =1,...,7) for all n € N. From (3.16) and Pon(Ay,) € QF (j = 1,...,7), we obtain

q;(Ayn) < (¢f's Ayn — Por(Ayn)) < pll(I — Por) Aynl| — 0, (3.17)

as n — oo. Since {y,} is bounded, there exists a subsequence {yy, } of {y,} such that y,, — z*.

Then Ay,, — Az*. Since g¢; is weakly lower semi-continuous,
¢;(Az™) < liminf ¢;(Ayn,) < 0. (3.18)
k—o0

Therefore Az* € Q; (j =1,...,7).

We next show that z* € C; (i = 1,...,t). By the definition of C]" (i = 1,...,t) and (3.15), we
see that

ci(yn) < &' Yn — PCZ"(yn» < 6[lyn — PCZTLynH — 0, (3.19)

as n — 00, where ¢ is a constant such that ||| < J (i = 1,...,t) for all n € N. By the weak lower

semi-continuity of ¢; (1 =1,...,t) and y,, — z*, we have
¢i(z") < liminf ¢ (yy,,) < 0. (3.20)
k—o0

Hence z* € C; (i = 1,...,t) and consequently, z* € S. From (2.5), it follows that

limsup(u — z,y, —2) = lm (u— 2,yn, — 2)
n—00 k—o0
_ u— a5 <0, (3.21)
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On the other hand, we see that

lyn — 2ol = Bullzn — Tn-1l| — 0. (3.22)

Hence, by (3.21) and (3.22), we obtain

limsup(u — z,z, — z) < 0. (3.23)
n—o0
Again from (3.13) we have
I‘n+1 < (1 - an)rn + (1 - an)ﬁn(rn — I ) + 2( )ﬁn”l'n mn—1||2

+ 20 (U — 2z, Tpg1 — 2)

(1 - an)rn + (1 - an)ﬁn”xn - wn—lH( V Pn + V Fn—l) + 2(1 - an)/BnHwn - xn—l”z
+ 20 (u — 2, Tpt1 — 2). (3.24)

IN

From (3.23) and conditions (C1) and (C3), using Lemma 2.3 (ii), we conclude that I',, = ||z, —z[|*> —

0 and thus z,, — z as n — oo.

Case 2 : Suppose that there exists a subsequence {I',,,} of the sequence {I';,} such that I';,, <
Iy, 41 for all ¢ € N. In this case, we define 7 : N — N as in (2.11). Then, by Lemma 2.4, we have
L) < Trny41- From (3.13), it follows that

Lrmyr < (1= (n))lriy + (1 = ar(n)Brn) 120 (n) — Trm)-1l( \/ )+ \/P
fr(n) (y-(n))

IV £y ()12
+ 2a'r(n) <u — 2 Tr(n)+1 — Z>, (325)

+2(1 = ar () Brn) 1Zr(n) — Trmy-1 /> — @

which gives

T(n)(yr( ))

(1 = s (1) 8o |2y = @) 110/ Doy + 1/ Triy-1)

+ 2(1 = ar (1)) Brn) |7 (n) = Tr ()1 I
+ 2a7(n) <u — 27 xT(TL)-Fl - Z>. (326)

Using a similar argument as in the proof of Case 1, we can show that

lim ”(I P T(7l))y'r (n) H =0,

n—o0

lim ”(I P T(n))y'r (n) H =0,

n—o0

and
limsup(u — 2, ¥y — 2) < 0. (3.27)

n—oo
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On the other hand, we see that

[Zrmye1 — Tr)ll = o) —27m) + (1 = @) Wrn) = Tr) Vir ) Wrn) — Tr @)l
rmyllu =27l + (1 = ) [[Yrm) — 27l

+ (1 = ar ) Trm) IV Fr(n) ()l

eyl = 2ol + (1 = ) Bro [|Tr(n) — Tr(n)—1ll

IN

fT(n (yT ))
+ (1 — Qr(p) )p'r (n)
— 0. (3.28)
as n — oo. Using (3.27) and (3.28), we obtain
limsup(u — 2, T ()41 — 2) < 0. (3.29)

n—o0

Again from (3.25) we see that

Cmlrmy < (1= ar(n)Brm |77y — :ET(n)—1H(\/FT(n) + \/FT(n)—1)
+ 2(1 = a7 (1)) Br(n) |1 Tr () — Tr(ny—1?

+ 2a7(n) <u — 2, Lr(n)+1 — Z>, (330)
which gives
/BT(n)
PTn < (1 —047-(71)) ”xTTL Lr(n 1” I17—n + Frn
(n) Q) (n) (n) \/ (n) \/ (n)
/Br(n) 2
+2(1 - az(n)) 127y = Tr(m)-1l
Urm) (n)
+ 2<’LL =2, Tr(n)+1 — Z>. (3.31)
This shows that, by (3.29) and (C3)
limsup I'7(,,) < 0. (3.32)
n—o0

Thus ||+, — 2|l — 0. We see that

\/ Fr(n)-i-l H‘T n)+1 — Z” < H‘T - xr(n)” + ”xr(n) - ZH — 0, (333)

as n — 0o. By Lemma 2.4, we also have
I, < FT(n)—i-l — 0. (3.34)
So we can conclude that x,, — z as n — co. We thus complete the proof. O

Remark 3.2. We remark here that the conditions (C3) is easily implemented in numerical com-
putation since the valued of ||x, — xp—1|| is known before choosing B,. Indeed, the parameter (3,
can be chosen such that 0 < 8, < B,, where

5, — min{Hwn_zn 1”,ﬁ} if Tp # Tp-1,
" I3 otherwise,

where {wy,} s a positive sequence such that w, = o(ay,).
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4 Numerical Experiments

In this section, we provide some numerical examples and illustrate its performance by using
Algorithm 3.1. Firstly, numerical results are shown in different choices of the step-size p, with
different values u, x1 and xo. Secondly, the comparison of convergence rate is made by Example
4.1 to show that our algorithm has a better convergence than that of He et al. [12] defined in (1.14).
For this convenience, we denote algorithm (1.14) by Algorithm 3.2.

Example 4.1. [12] Let Hi = Hy =R3, r=t=2andly =lp =\ = Ay = %. Define

Cy = {z = (a,b,c)T € R3:a+b*+2¢c <0},

Co={z=(a,be)T €eR¥: & + ¥ 1 & 1 <0},

Q1 ={z=(a,b,c)T €R®:a®+b—c<0},

ng{:ﬂz(a,b,c)TeR?’:%—l—%—l—%—lSO}.

2 -1 3
and A=\ 4 2 5 |. Findxz* € C1NCy such that Ax™ € Q1 N Qs.
2 0 2

ﬁ)m and define

B, = By, as in Remark 3.2. We now study the effect (in terms of convergence, stability, number

Choose «, = %H for all n € N and 8 = 0.5. For each n € N, let w, = 0

of iterations required and the cpu time) of the sequence {p,} C (0,4) on the iterative scheme by

choosing different p,, such that infp, (4 — p,) > 0 in the following cases.
n
Case 1: p, = 1; Case 2: p, = 2; Case 3: p, = 3; Case 4: p, = 3.95.
The stopping criterion is defined by

2 2
1 1 _
By =3 2; |n — Popay || + 3 Zl | Az, — Pon Aw,|* < 107",
1= J=

We choose different choices of u, x¢p and z1 as

Choice 1: v = (2,2, -2)T, 2o = (1,1,5)” and z; = (5,-3,2)7;

Choice 2: u = (1,3, -2)T, 29 = (—4,3,-2)T and 2; = (—5,2,1)7;

Choice 3: v = (4, —-3,-6)", g = (7,5,1)" and z; = (7,-3,-1)T;

Choice 4: u = (7,4, —3)T, g = (5.32,2.33,7.75)" and z; = (3.23,3.75, —3.86)" .

The numerical experiments, using our Algorithm 3.1, for each case and choice are reported in
the following Table 1.
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Table 1: Algorithm 3.1 with different cases of p,, and different choices of u, zo and x

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 244 122 81 25
cpu (Time) 0.05129  0.027395 0.015663  0.00472

Choice 2 No. of Iter. 392 196 131 13
cpu (Time) 0.090982  0.04594  0.02693  0.002119

Choice 3 No. of Iter. 351 175 105 22
cpu (Time) 0.099001 0.034915 0.02138  0.00473

Choice 4 No. of Iter. 444 178 88 27
cpu (Time) 0.108428 0.036239 0.016809 0.005466

The convergence behavior of the error E, for each choice of u, xg and x; is shown in Figure

1-4, respectively.

Figure 1: Comparison of the itertions for Choice 1 in Example 4.1
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Figure 2: Comparison of the itertions for Choice 2 in Example 4.1
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s x107° Figure 3: Comparison of the itertions for Choice 3 in Example 4.1
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Figure 4: Comparison of the itertions for Choice 4 in Example 4.1
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Remark 4.2. We make the following observations from our numerical experiments in Fxample

1.

1. For each different cases and different choices, we see that our algorithm is effective. It appears
that Algorithm 3.1 has a good convergence speed and requires small number of iterations in

the experiment.

2. It is observed that the number of iterations and the cpu run time are significantly decreasing
starting from Case 1 to Case 4. However, there is no significant difference in both cpu run
time and number of iterations for each choice of xg and x1. So, initial guess does not have
any significant effect on the convergence of the algorithm. However, we note that the sequence
{zn} converges to a solution in MSFP which is of the form Psu. Since the solution set S is

not singleton, so the choice of u effects on the convergence behavior of the algorithm.

3. Our conditions appeared in Theorem 3.1 are easily implemented in numerical computations.
This is because it needs no estimation on the spectral radius or the largest eigenvalue of AT A
and the restriction of metric projections onto C and Q is relazed by using those of C,, and

Qrn which have specific forms in computation.

We finally end this section by providing a comparison of convergence of Algorithm 3.1 and

Algorithm 3.2. Let a, = n%rl, pn = 3.95 and w,, = W for all n € N. Set 8 = 0.5 and 3, = 3,

as in Remark 3.2. For points u, zg and x1 randomly, we obtain the following numerical results.
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Table 2: Comparison of Algorithm 3.1 and Algorithm 3.2 in Example 4.1

Algor 3.1 Algor 3.2

Choice 1 u=(0,1,2)" No. of Iter. 21 31
ro = (—4,-2,3)T cpu (Time)  0.004364  0.006537
r = (—1,2,0)7

Choice 2 u=(-1,3,1)T No. of Iter. 22 69
zg = (—1,2,3)T cpu (Time)  0.004626  0.013906

€ryp = (_77 _47 _5)T

Choice 3 u=(3,1,3)T No. of Iter. 97 287
zo = (=5,1, —4)T cpu (Time) 0.021787  0.074538
7y = (=5,-2,-3)T

Choice 4 u=(-1,3,-3)T No. of Tter. 18 161
zo = (3.2645, —2.3458, —5.3245)7  cpu (Time) 0.003854  0.034188
r1 = (—2.5891, —3.2654, —3.2564)"

The error plotting of E,, of Algorithm 3.1 and Algorithm 3.2 for each choice is shown in Figure
5-8, respectively.

Figure 5: Comparison of Algorithm 3.1 and 3.2 for Choice 1 in Example 4.1
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Figure 6: Comparison of Algorithm 3.1 and 3.2 for Choice 2 in Example 4.1
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Figure 7: Comparison of Algorithm 3.1 and 3.2 for Choice 3 in Example 4.1
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Figure 8: Comparison of Algorithm 3.1 and 3.2 for Choice 4 in Example 4.1
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Remark 4.3. In numerical experiment, it is revealed that the sequence gemerated by our proposed
Algorithm 3.1 involving the inertial technique converges more quickly than by Algorithm 3.2 of He

et al. [12] does. This concludes that the inertial term constructed in Algorithm 3.1 improves the
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speed of convergence for solving the MSFP.
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