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CHAPTER I

INTRODUCTION

In optimization theory, a major problem is the proximal split feasibility

problem (PSFP). Numerous problems in applied science, economics, engineering

and other related fields can be reformulated as this problem. To be more precise,

the proximal split feasibility problem includes, as special cases, the convex mini-

mization problem, the min-max problem, the complementarity problem, the linear

inverse problem, the fixed point problem of some nonlinear operators, the illposed

problem and the variational inequality problem. The regularization technique is

a powerful tool in handling for solving such problem in some certain spaces. In

the literature, Censor-Elfving introduced a notion of the split feasibility problem

(SFP), which is to find an element of a closed convex subset of the Euclidean

space whose image under a linear operator is an element of 9 another closed con-

vex subset of a Euclidean space. Byrne subsequently proposed the CQ-method for

solving this problem and established the weak convergence of sequences generated

by this method to a solution of SFP. However, it is noted that this method re-

quires a computation on the operator norm which is in general not an easy task

in practice. Subsequently, Moudafi-Thakur presented the notion of the proximal

split feasibility problem (PSFP), which is quite more general and flexible than the

split feasibility problem, in Hilbert spaces. The PSFP is to find a minimizer of the

objective convex function whose image under a linear operator is also a minimizer

of another convex function. However, only the weak convergence was obtained in

some suitable conditions. Since then, due to its applications in various areas, there

have been several modifications and generalizations of these method suggested and

invented independently for solving the problem in many different contexts. It is

therefore the main objective in this research to develop and modify new regulariza-

tion methods and study convergence theorems which admit less stringent and/or

more constructive requirements on solving the proximal split feasibility problem



in a certain space. The main results established in this research can improve and

generalize the corresponding results in this area and, of course, can be applied to

solve major problems existed in science, engineering, economics and other related

branches.



CHAPTER II

LITERATURE REVIEW

Let H1 and H2 be real Hilbert spaces. Let f : H1 → R ∪ {+∞} and

g : H2 → R ∪ {+∞} be proper, lower semi-continuous and convex functions. Let

A : H1 → H2 be a bounded linear operator. The proximal split feasibility problem

is to find a minimizer x∗ of f such that Ax∗ minimizes g, that is, find x∗ ∈ arg min f

such that

Ax∗ ∈ arg min g, (2.1)

where arg min f = {x ∈ H1 : f(x) ≤ f(y), ∀y ∈ H1} and arg min g = {x ∈ H2 :

g(x) ≤ g(y), ∀y ∈ H2}.

In what follows, Ω = arg min f ∩ A−1(arg min g) will denote the solution

set of the problem (2.1).

The split feasibility problem in finite dimensional Hilbert spaces was first

introduced by Censor-Elfving [9] for modeling inverse problems which arise from

phase retrievals and in medical image reconstruction, especially, intensity-modulated

therapy [8]. Due to its applications, there have been many works rapidly established

in the recent years (see, for instance, [6, 12, 30, 40, 47]).

Let C be a nonempty closed and convex subset of a real Hilbert space H

with the norm ‖ · ‖ and the inner product 〈·, ·〉. For each x ∈ H , there exists a

unique nearest point in C, denoted by PCx, such that

‖x− PCx‖ = min
y∈C

‖x− y‖. (2.2)

Then PC is called the metric projection of H onto C. For x ∈ H , we know that

〈x− PCx, y − PCx〉 ≤ 0 (2.3)

for all y ∈ C. If f and g are the indicator functions of two nonempty closed and



convex sets C ⊂ H1 and Q ⊂ H2, that is,

f(x) = δC(x) =







0, if x ∈ C,

+∞, otherwise,

and

g(x) = δQ(x) =







0, if x ∈ Q,

+∞, otherwise.

Then the problem (2.1) becomes the following convex minimization problem:

Find x∗ ∈ C such that

Ax∗ ∈ Q. (2.4)

This problem is called the split feasibility problem. A classical way to solve the

problem (2.4) is to use the CQ-algorithm which was introduced by Byrne [4], which

is defined in the following manner: x1 ∈ H1 and

xn+1 = PC(xn − µnA
∗(I − PQ)Axn) (2.5)

for each n ≥ 1, where the step-size µn ∈ (0, 2
‖A‖2 ) and PC , PQ are the metric

projections on C and Q, respectively.

It is noted that the operator norm ‖A‖ or the largest eigenvalue of A∗A

may not be calculated easily in general. To overcome this difficulty, Lopez et al.

[23] suggested the following algorithm: let x1 ∈ H1 and assume that {xn} ⊂ C has

been constructed and ∇h(xn) 6= 0. Then compute xn+1 via the rule

xn+1 = PC
(

xn − µnA
∗(I − PQ)Axn

)

(2.6)

for each n ≥ 1, where µn = ρn
h(xn)

‖∇h(xn)‖2 with 0 < ρn < 4 and

h(xn) =
1

2
‖(I − PQ)Axn‖

2.

It was proved that, if infn ρn(4 − ρn) > 0, then the sequence {xn} defined by (2.6)

converges weakly to a solution of (2.4).



Recall that the subdifferential of F : H → R ∪ {+∞} at x is defined by

∂F (x) = {y ∈ H : F (x) + 〈y, z − x〉 ≤ F (z), ∀z ∈ H}. (2.7)

The proximity operator of F is defined by

proxλF (x) = arg min
y∈H

{

F (y) +
1

2λ
‖x− y‖2

}

(2.8)

for any λ > 0. It is seen that

0 ∈ ∂F (x∗) ⇐⇒ x∗ = proxλF (x∗). (2.9)

Hence the minimizers of any functions are the fixed point of its proximity operator.

Moreover, the proximity operator of F is firmly nonexpansive, namely,

〈proxλF (x) − proxλF (y), x− y〉 ≥ ‖proxλF (x) − proxλF (y)‖2 (2.10)

for all x, y ∈ H , which is equivalent to

‖proxλF (x) − proxλF (y)‖2

≤ ‖x− y‖2 − ‖(I − proxλF )(x) − (I − proxλF )(y)‖2 (2.11)

for all x, y ∈ H . Also, the complement I − proxλF is firmly nonexpansive. This

suggests us to employ the technique in fixed point theory for solving the convex

minimization feasibility problem. See [18].

Recently, Moudafi-Thakur [33] proposed the following split proximal algo-

rithm: x1 ∈ H1 and

xn+1 = proxλµnf
(

xn − µnA
∗(I − proxλg)Axn

)

, (2.12)

where the step-size

µn = ρn
h(xn) + l(xn)

θ2(xn)
(2.13)

with

0 < ρn < 4, h(xn) =
1

2
‖(I − proxλg)Axn‖

2, (2.14)

l(xn) =
1

2
‖(I − proxµnλf )xn‖

2 (2.15)



and

θ(xn) =
√

‖∇h(xn)‖2 + ‖∇l(xn)‖2. (2.16)

They proved that, if ǫ ≤ ρn ≤ 4h(xn)
h(xn)+l(xn)

− ǫ for some ǫ > 0 small enough, then

the sequence {xn} generated by (2.12) converges weakly to a solution of (2.1).

However, we observe that the step-size sequence {µn} appeared in (2.13) seems to

be implicit because of the terms l(xn) and θ(xn).

In order to solve the proximal split feasibility problem, we introduce a

Halpern-type algorithm and prove its strong convergence under the condition on

the step size suggested by Lopez et al. [23]. Finally, we provide some numerical

experiments to support our main result.

We next consider another type of the proximal split feasibility problem.

Let H1 and H2 be real Hilbert spaces. Let t ≥ 1 and r ≥ 1 be given integers

and let {Ci}
t
i=1 and {Qj}

r
j=1 be nonempty, closed and convex subsets of H1 and

H2, respectively. The Multiple-sets Split Feasibility Problem (MSFP) which is the

problem of finding a point x∗ such that

x∗ ∈ C :=
t

⋂

i=1

Ci, Ax∗ ∈ Q :=
r

⋂

j=1

Qj, (2.17)

where A is a given bounded linear operator (denoteA∗ by the adjoint operator ofA).

This problem was first introduced, in finite-dimensional Hilbert spaces, by Censor

et al. in [10] for modeling inverse problems which arise in modeling of intensity

modulated radiation therapy [8], and signal processing and image reconstruction

[5, 25]. Due to its applications, there have been many algorithms invented to solve

MSFP (see, for instance, [39, 41, 46, 47, 48]). In particular, when t = r = 1, the

MSFP (2.17) becomes the split feasibility problem (SFP) which was introduced in

[9].

Throughout this work, we always assume that the MSFP (2.17) is consistent

and also denote the solution set by S. It is known that the MSFP is equivalent to



the following minimization problem:

min
1

2
‖x− PC(x)‖2 +

1

2
‖Ax− PQ(Ax)‖2, (2.18)

where PC and PQ are the metric projections onto C and Q, respectively. It should

be noted that the computation of a projection onto a general closed convex subset

is difficult because of its closed form. To overcome this difficulty, Fukushima [16]

suggested a so-called relaxed projection method to calculate the projection onto a

level set of a convex function by computing a sequence of projections onto half-

spaces containing the original level set. In the setting of finite-dimensional Hilbert

spaces, Yang [44] introduced the relaxed CQ algorithms for solving SFP where the

closed convex subsets C and Q are level sets of convex functions given as follows:

C = {x ∈ H1 : c(x) ≤ 0} and Q = {y ∈ H2 : q(y) ≤ 0}, (2.19)

where c : H1 → R and q : H2 → R are convex functions. We assume that both

c and q are subdifferentiable on H1 and H2, respectively, and that ∂c and ∂q are

bounded operators (i.e., bounded on bounded sets). It is known that every convex

function defined on a finite-dimensional Hilbert space is subdifferentiable and its

subdifferential operator is a bounded operator (see [3]). In what follows, we define

two sets at point xn by

Cn = {x ∈ H1 : c(xn) ≤ 〈ξn, xn − x〉}, (2.20)

where ξn ∈ ∂c(xn), and

Qn = {y ∈ H2 : q(Axn) ≤ 〈εn, Axn − y〉}, (2.21)

where εn ∈ ∂q(Axn). It is clear that Cn and Qn are half-spaces and Cn ⊃ C and

Qn ⊃ Q for every n ≥ 1. The specific form of the metric projections onto Cn and

Qn can be found in [3]. In fact, Yang [44] constructed a relaxed CQ algorithm for

solving the SFP by using the half-spaces Cn and Qn instead of the sets C and Q

in the CQ algorithm, respectively and proved its convergence under some suitable

choices of the step-sizes.



In order to achieve the convergence, in such algorithms mentioned above,

the selection of the step-sizes requires prior information on the norm of the bounded

linear operator (matrix in the finite-dimensional framework), which is not always

possible in practice. To avoid this computation, there have been worthwhile works

that the convergence is guaranteed without any prior information of the matrix

norm (see, for examples [38, 41, 42, 45]). Among these works, López et al. [25]

introduced a new way to select the step-size by replacing the parameter µn appeared

in (2.30) by

µn =
ρnf(xn)

‖∇f(xn)‖2
, n ≥ 1, (2.22)

where ρn ∈ (0, 4), f(xn) = 1
2
‖(I − PQ)Axn‖

2 and ∇f(xn) = A∗(I − PQ)Axn for all

n ≥ 1. They also practised this way of selecting step-sizes for variants of the CQ

algorithm, including a relaxed CQ algorithm, and a Halpern-type algorithm and

proved both weak and strong convergence. Subsequently, in 2013, He and Zhao

[21] introduced the following Halpern-relaxed CQ algorithm in Hilbert spaces: take

x1 ∈ H1 and generate {xn} by

xn+1 = PCn [αnu+ (1 − αn)(xn − τn∇fn(xn))], (2.23)

where Cn and Qn are, respectively, given as in (2.31) and (2.32), {αn} ⊂ (0, 1),

{ρn} ⊂ (0, 4) and the sequence {τn} is given by

τn =
ρnfn(xn)

‖∇fn(xn)‖2
(2.24)

and

fn(xn) =
1

2
‖(I − PQn)Axn‖

2, n ≥ 1. (2.25)

In this case, we have

∇fn(xn) = A∗(I − PQn)Axn. (2.26)

They obtained the strong convergence provided lim
n→∞

αn = 0,
∞
∑

n=1

αn = ∞ and the

step-size is chosen such that inf
n∈N

ρn(4 − ρn) > 0.

For solving the MSFP, following [10], we define the level sets of convex



functions by

Ci = {x ∈ H1 : ci(x) ≤ 0} and Qj = {y ∈ H2 : qj(y) ≤ 0}, (2.27)

where ci : H1 → R (i = 1, ..., t) and qj : H2 → R (j = 1, ..., r) are weakly

lower semi-continuous and convex functions. We assume that ci (i = 1, ..., t) and

qj (j = 1, ..., r) are subdifferentiable on H1 and H2, respectively, and that ∂ci

(i = 1, ..., t) and ∂qj (j = 1, ..., r) are bounded on bounded sets. Censor et al. [10]

also defined the following proximity function:

f(x) :=
1

2

t
∑

i=1

li‖x− PCi(x)‖
2 +

1

2

r
∑

j=1

λj‖Ax− PQj(Ax)‖
2, (2.28)

where li (i = 1, ..., t) and λj (i = 1, ..., r) are all positive constants such that
∑t

i=1 li +
∑r

j=1 λj = 1. In this case, we also have

∇f(x) =
t

∑

i=1

li(x− PCi(x)) +
r

∑

j=1

λjA
∗(I − PQj)Ax. (2.29)

They introduced the following projection algorithm:

xn+1 = PΩ(xn − ρ∇f(xn)), (2.30)

where ρ > 0 and Ω ⊆ RN is an auxiliary simple nonempty closed convex set

such that Ω ∩ S 6= ∅. It was proved that if ρ ∈ (0, 2/L) with L being the Lipschitz

constant of ∇f , then the sequence {xn} generated by (2.30) converges to a solution

in MSFP.

As observed in the results of Byrne [4], we see that the selection of the

step-sizes ρ in (2.30) depends on the largest eigenvalue (spectral radius) of the

matrix A∗A which is not always possible in practice. To avoid this computation,

there have been worthwhile works that the convergence is guaranteed without any

prior information of the matrix norm (see, for examples [38, 41, 42, 45]). Among

these works, López et al. [25] introduced a new way to select the step-size and also

practised this way of selecting step-sizes for variants of the CQ algorithm, including

a relaxed CQ algorithm, and a Halpern-type algorithm and proved both weak and



strong convergence. Combining the relaxed CQ algorithm with that of López et al.

[25], in 2013, He and Zhao [21] introduced a new relaxed CQ algorithm such that

the strong convergence is guaranteed in infinite-dimensional Hilbert spaces. With

this choice of the step-sizes, the estimation of the norm of operators is avoided and

the metric projections are easily to be calculated.

In what follows, we define two sets at point xn by

Cn
i = {x ∈ H1 : ci(xn) ≤ 〈ξni , xn − x〉}, (2.31)

where ξni ∈ ∂ci(xn) for i = 1, ..., t, and

Qn
j = {y ∈ H2 : qj(Axn) ≤ 〈ζnj , Axn − y〉}, (2.32)

where ζnj ∈ ∂qj(Axn) for j = 1, ..., r. We see that Cn
i (i = 1, ..., t) and Qn

j (j =

1, ..., r) are half-spaces and Cn
i ⊃ Ci (i = 1, ..., t) and Qn

j ⊃ Qj (j = 1, ..., r) for all

n ≥ 1. We define

fn(x) :=
1

2

t
∑

i=1

li‖x− PCni (x)‖2 +
1

2

r
∑

j=1

λj‖Ax− PQnj (Ax)‖
2, (2.33)

where Cn
i (i = 1, ..., t) and Qn

j (j = 1, ..., r) are given as in (2.31) and (2.32), respec-

tively.

We then have

∇fn(x) :=

t
∑

i=1

li(x− PCni (x)) +

r
∑

j=1

λjA
∗(I − PQnj )Ax, (2.34)

where A∗ is the adjoint operator of A.

For obtaining the strong convergence, recently, inspired by the algorithms

proposed by Zhao et al. [48] and López et al. [25], He et al. [22] introduced a

new relaxed self-adaptive CQ algorithm for solving the MSFP such that the strong

convergence is guaranteed by using Halpern’s iteration process. Let u ∈ H1 be

fixed, and choose an initial guess x1 ∈ H1 arbitrarily. Let {xn} be the sequence

generated by the following manner:

xn+1 = αnu+ (1 − αn)(xn − τn∇fn(xn)), n ≥ 1, (2.35)



where fn is given as in (2.33), {αn} ⊂ (0, 1) and τn = ρn
fn(xn)

‖∇fn(xn)‖2 with 0 < ρn < 4

for all n ∈ N. It was proved that if αn → 0,
∑∞

n=1 αn = ∞ and infn∈N ρn(4−ρn) > 0,

then {xn} generated by (2.35) converges strongly to a solution in MSFP.

In this research, motivated by the previous works, we propose the follow-

ing inertial relaxed CQ algorithm which combines the inertial technique with the

relaxed CQ method:

Algorithm 3.1 Let {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and {ρn} ⊂ (0, 4). Let

u ∈ H1 be fixed and take x0, x1 ∈ H1 arbitrarily. Let the sequences {xn} and {yn}

be generated iteratively by the following manner:

xn+1 = αnu+ (1 − αn)(yn − τn∇fn(yn)),

yn = xn + βn(xn − xn−1), n ≥ 1, (2.36)

where fn is given as in (2.33) and τn = ρn
fn(yn)

‖∇fn(yn)‖2 for all n ∈ N. If ∇fn(yn) = 0,

then yn is a solution of MSFP. Here βn is an extrapolation factor and the inertia is

represented by the term βn(xn− xn−1). It is remarkable that the inertial terminol-

ogy greatly improves the performance of the algorithm and has a nice convergence

properties [1, 14, 15, 24, 35, 36] and also [27, 28]. Using the inertial technique

and Halpern’s idea, we prove its strong convergence of the sequence generated by

our proposed scheme. Our algorithm is easily to be implemented since it involves

the metric projections onto half-spaces which have exact forms and has no need to

know a priori information of the norm of bounded linear operators. Numerical ex-

periments are included to show the effectiveness of the our algorithm. The obtained

results mainly extend and improve that of He et al. [22] and also complement the

corresponding results of [4, 25, 48].



CHAPTER III

PRELIMINARIES

3.1 Preliminaries and lemmas

In this section, we provide some basic concepts, definitions and lemmas

which will be used in the sequel.

Definition 3.1.1. (Fixed point)

Let X be a nonempty set and T : X → X a self-mapping. We say that

x ∈ X is a fixed point of T if

T (x) = x (3.37)

and denote by Fix(T ) the set of all fixed points of T .

Example 3.1.2. 1. If X = R and T (x) = x2 + 5x+ 4, then Fix(T ) = {−2};

2. If X = R and T (x) = x2 − x, then Fix(T ) = {0, 2};

3. If X = R and T (x) = x+ 5, then Fix(T ) = ∅;

4. If X = R and T (x) = x, then Fix(T ) = R;.

Definition 3.1.3. (Metric space)

Let X be a nonempty set and d : X × X → [0,∞) a function. Then d is

called a metric on X if the following properties hold:

1. d(x, y) ≥ 0 for all x, y ∈ X;

2. d(x, y) = 0 if and only if x = y for all x, y ∈ X;

3. d(x, y) = d(y, x) for all x, y ∈ X;

4. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

The value of metric d at (x, y) is called distance between x and y, and the ordered

pair (X, d) is called a metric space.

Example 3.1.4. The real line R and define

d(x, y) = |x− y| for all x, y ∈ R. (3.38)



Then (R, d) is a metric space.

Example 3.1.5. The Euclidean plane R2 and define

d(x, y) =
√

(ξ1 − η1)2 + (ξ2 − η2)2 (3.39)

where x = (ξ1, ξ2), y = (η1, η2) ∈ R2. Then (R2, d) is a metric space.

Example 3.1.6. The Euclidean space Rn and define

d(x, y) =
√

(ξ1 − η1)2 + (ξ2 − η2)2 + (ξ3 − η3)2 + ...+ (ξn − ηn)2 (3.40)

where x = (ξ1, ξ2, ξ3, ..., ξn), y = (η1, η2, η3, ..., ηn) ∈ Rn. Then (Rn, d) is a metric

space.

Example 3.1.7. Let X be the set of all bounded sequences of complex numbers;

that is every element of X is a complex sequence

x = (ξ1, ξ2, ...)

such that |ξj| ≤ cx for all j = 1, 2, ... and cx is a real number which may depend on

x, but does not depend on j and define

d(x, y) = sup
j∈N

|ξj − ηj | (3.41)

where y = (ηj) ∈ X and N = 1, 2, .... Then (X, d) is a metric space.

Definition 3.1.8. (Closed set)

Let (X, d) be a metric space. A subset U ⊆ X is open if for every x ∈ X

there exists r > 0 such that B(x, r) ⊆ U . A set U is closed if its complement X \U

is open.

Theorem 3.1.9. Let M be a nonempty subset of a metric space X. Then M is

closed if and only if there exists a sequence {xn} ⊆ M and xn → x implies that

x ∈M .

Definition 3.1.10. (Convergent sequence)

A sequence {xn} in a metric space X is said to be convergent to x ∈ R if

for all ǫ > 0 there exists N ∈ N if n > N then d(x, y) < ǫ. In this case, we write

xn → x



Definition 3.1.11. (Cauchy sequence)

A sequence {xn} in a metric space X is said to be Cauchy if for all ǫ > 0

there exists N ∈ N if m,n > N then d(xm, xn) < ǫ.

Definition 3.1.12. (Bounded sequence)

A sequence {xn} in X is bounded if there exists M > 0 such that ‖xn‖ ≤M

for all n ∈ N.

Definition 3.1.13. (Lipschitzian mapping)

Let (X, d) be a metric space. Then a map T : X → X is called a lipschitzian

mapping on X if there exists L > 0 such that

d(T (x), T (y)) ≤ Ld(x, y) for all x, y ∈ X.

Definition 3.1.14. (Nonexpansive mapping)

Let (X, d) be a metric space. Then a map T : X → X is called a nonex-

pansive mapping on X if

d(T (x), T (y)) ≤ d(x, y) for all x, y ∈ X.

Definition 3.1.15. (Contraction mapping)

Let (X, d) be a metric space. Then a map T : X → X is called a contraction

mapping on X if there exists q ∈ [0, 1) such that

d(T (x), T (y)) ≤ qd(x, y) for all x, y ∈ X.

Theorem 3.1.16. (The Banach contraction principle)

Let X be a complete metric space and let T be a contraction of X into itself.

Then T has a unique fixed point.

Definition 3.1.17. (Vector space)

A vector space or linear space X over the field K (R or C) is a set X together

with an internal binary operation ”+” called addition and a scalar multiplication

carrying (α, x) in K×X to αx in X satisfying the following for all x, y, z ∈ X and

α, β ∈ K:



1. x+ y = y + x;

2. (x+ y) + z = x+ (y + z);

3. there exists an element 0 ∈ X call the zero vector of X such that x+0 = x

for all x ∈ X;

4. for every element x ∈ X, there exists an element −x ∈ X called the

additive inverse or the negative of x such that x+ (−x) = 0;

5. α(x+ y) = αx+ αy;

6. (α + β)x = αx+ βy;

7. (αβ)x = α(βx);

8. 1 · x = x.

The elements of a vector space X are called vectors, and the elements of K are

called scalars.

Example 3.1.18. The Euclidean space Rn and define

x+ y = (ξ1 + η1, ξ2 + η2, ξ3 + η3, ..., ξn + ηn)

αx = (αξ1, αξ2, αξ3, ..., αξn)

where x = (ξ1, ξ2, ξ3, ..., ξn), y = (η1, η2, η3, ..., ηn) ∈ Rn and α ∈ R. Then, space Rn

is a real vector space.

Definition 3.1.19. (Convex set)

Let C be a subset of a linear space X. Then C is said to be convex if

(1 − λ)x+ λy ∈ C for all x, y and all scalar λ ∈ [0, 1].

Example 3.1.20. 1. Every subspace of vector space is convex set.

2. B(x; r) = {x : ‖x‖ ≤ r} is convex set.

3. [0, 1]N = [1, 0] × [1, 0] × ...× [1, 0] is convex set in RN .

Proposition 3.1.21. Let C be a subset of a linear space X. Then C is convex if

and only if λ1x1 + λ2x2 + ...+ λnxn ∈ C for any finite set {x1, x2, ..., xn} ⊆ C and

scalars λi ≥ 0 with λ1 + λ2 + ... + λn = 1.



Definition 3.1.22. (Convex function)

Let X be a linear space and f : X → (−∞,∞] a function. Then f is said to

be convex if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ X and λ ∈ [0, 1].

Example 3.1.23. 1. F (x) = |x|p where p ≥ 1 is convex function in R.

2. F (x) = x3 − x2 is convex function in [1
3
,∞).

3. F (x) = x log x where p ≥ 1 is convex function in R+.

Definition 3.1.24. (Normed space)

let X be a norm linear space over field K (R or C) and ‖ · ‖ : X → R+ a

function. Then ‖ · ‖ is said to be a norm if the following properties hold:

1. ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = 0;

2. ‖αx‖ = |α|‖x‖ for all x ∈ X and α ∈ K;

3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X.

The ordered pair (X, ‖ · ‖) is called a normed space.

Example 3.1.25. Rn is a normed space with the following norms:

‖x‖1 =

n
∑

i=1

|xi| for all x = (x1, x2, .., xn) ∈ R
n;

‖x‖p =
(

n
∑

i=1

|xi|
p
)1/p

for all x = (x1, x2, .., xn) ∈ R
n and p ∈ (1,∞);

‖x‖∞ = max
1≤i≤n

|xi| for all x = (x1, x2, .., xn) ∈ R
n.

Remark 3.1.26. 1. Rn equipped with the norm defined by ‖x‖p =
(
∑n

i=1 |xi|
p
)1/p

is denoted by lnq for all 1 ≤ p <∞.

2. Rn equipped with the norm defined by ‖x‖∞ = max1≤i≤n |xi| is denoted by ln∞.

Example 3.1.27. Let X = l1, the linear space whose elements consist of all abso-

lutely convergent sequences (x1, x2, ..., xi, ...) of scalars (R or C),

l1 = {x : x = (x1, x2, ..., xi, ...) and

∞
∑

i=1

|xi| <∞}.

Then l1 is a normed space with the norm defined by ‖x‖1 =
∑∞

i=1 |xi|.



Example 3.1.28. let X = lp (1 < p <∞), the linear space whose elements consist

of all p-summable sequences (x1, x2, ..., xi, ...) of scalars (R or C),

lp = {x : x = (x1, x2, ..., xi, ...) and

∞
∑

i=1

|xi|
p <∞}.

Then lp is a normed space with the norm defined by ‖x‖p = (
∑∞

i=1 |xi|
p)1/p.

Example 3.1.29. let X = l∞, the linear space whose elements consist of all

bounded sequences (x1, x2, ..., xi, ...) of scalars (R or C),

l∞ = {x : x = (x1, x2, ..., xi, ...) and {xi}
∞
i=1 is bounded}.

Then l∞ is a normed space with the norm defined by ‖x‖∞ = supi∈N
|xi|.

Definition 3.1.30. (Completeness)

The space X is said to be complete if every Cauchy sequence in X converges.

Example 3.1.31. The Euclidean space Rn is complete with

d(x, y) =
√

(ξ1 − η1)2 + (ξ2 − η2)2 + (ξ3 − η3)2 + ...+ (ξn − ηn)2 (3.42)

where x = (ξ1, ξ2, ξ3, ..., ξn), y = (η1, η2, η3, ..., ηn) ∈ Rn.

Example 3.1.32. The sequence space l∞ is complete.

Example 3.1.33. The sequence space lp is complete.

Definition 3.1.34. (Banach space)

A normed space which is complete with respect to the metric induced by

the norm is called a Banach space.

Example 3.1.35. The Euclidean space R
n is a Banach space with the norm defined

by

‖x‖ =
(

n
∑

i=1

|xi|
2
)1/2

,

where x = (x1, x2, ..., xn) ∈ Rn.



Example 3.1.36. The space lp, 1 ≤ p < ∞ is a Banach space with the norm

defined by

‖x‖p =
(

∞
∑

i=1

|xi|
p
)1/p

,

where x = (x1, x2, ..., xn, ...) and
∑∞

n=1 |xn|
p <∞.

Example 3.1.37. The space l∞ of all bounded sequence x = (x1, x2, ..., xn, ...) is a

Banach space with the norm defined by

‖x‖ = sup
i

|xi|.

Definition 3.1.38. (Inner product space)

An inner product space is a vector space X with an inner product defined

on X. Here, an inner product on X is a mapping of X ×X into the scalar field K

of X; that is, with every pair of vectors x and y there is associated a scalar which

is written

〈x, y〉 (3.43)

and is called the inner product of x and y, such that for all vectors x, y, z and

scalars a we have

(IP1) 〈x, x〉 ≥ 0;

(IP2) 〈x, x〉 = 0 ⇔ x = 0;

(IP3) 〈αx, y〉 = α〈x, y〉;

(IP4) 〈x, y〉 = 〈y, x〉;

(IP5) 〈x+ y, z〉 = 〈x, z〉 + 〈z, y〉.

Example 3.1.39. The function 〈·, ·〉 : R
n × R

n → R defined by

〈x, y〉 =

n
∑

i=1

xiyi for all x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ R
n (3.44)

is an inner product on R
n. In this case R

n with this inner product is called real

Euclidean n-space.

Example 3.1.40. Let Cn be the set of n-tuples of complex numbers. Then the

function 〈·, ·〉 : Rn × Rn → R defined by

〈x, y〉 =

n
∑

i=1

xiyi for all x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ C
n (3.45)



is an inner product on Cn. In this case Cn with this inner product is called complex

Euclidean n-space.

Example 3.1.41. Let l2 be the set of all sequences of complex numbers

(a1, a2, . . . , ai, . . .) with
∑∞

i=1 |ai|
2 < ∞. Then the function 〈·, ·〉 : l2 × l2 → C

defined by

〈x, y〉 =
∞

∑

i=1

xiyi for all x = {xi}
∞
i=1, y = {yi}

∞
i=1 ∈ l2 (3.46)

is an inner product on l2.

Proposition 3.1.42. (The Cauchy-Schwarz inequality)

Let X be an inner product space. Then the following holds:

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 for all x, y ∈ X, (3.47)

i.e.,

|〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ X. (3.48)

Definition 3.1.43. (Hilbert space)

An inner product space which is complete with respect to the induced norm

is called a Hilbert space.

Example 3.1.44. The Euclidean space Rn is a Hilbert space with inner product

defined by

〈x, y〉 = x1y1 + x2y2 + ... + xnyn

where x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Rn

Example 3.1.45. The space l2 is a Hilbert space with inner product defined by

〈x, y〉 =
∞

∑

j=1

xjyj,

where x, y ∈ l2.

Let H be a Hilbert space. Recall that a mapping T : H → H is said to be

nonexpansive if, for all x, y ∈ H ,

‖Tx− Ty‖ ≤ ‖x− y‖ (3.49)



T : H → H is said to be firmly nonexpansive if, for all x, y ∈ H ,

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2, (3.50)

or equivalently

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2 (3.51)

for all x, y ∈ H . It is known that T is firmly nonexpansive if and only if I − T

is firmly nonexpansive. We know that the metric projection PC from H onto

a nonempty, closed and convex subset C ⊂ H is a typical example of a firmly

nonexpansive mapping, which is defined by

PCx := arg min
y∈C

‖x− y‖2, x ∈ H. (3.52)

It is well known that PC is characterized by the inequality, for x ∈ H

〈x− PCx, y − PCx〉 ≤ 0, ∀y ∈ C. (3.53)

In a real Hilbert space H , we have the following equality:

〈x, y〉 =
1

2
‖x‖2 +

1

2
‖y‖2 −

1

2
‖x− y‖2 (3.54)

and the subdifferential inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉 (3.55)

for all x, y ∈ H .

Definition 3.1.46. (Proper function)

Let function f : X → (−∞,∞]. Then f is said to be proper if there exists

x ∈ X with f(x) <∞.

Definition 3.1.47. (Lower semicontinuous function)

Let X be a linear space and f : X → (−∞,∞] a proper function. Then f

is said to be lower semicontinuous (l.s.c.) at x0 ∈ X if

f(x0) ≤ lim inf
x→x0

f(x0) = sup
V ∈Ux0

inf
x∈V

f(x), (3.56)



where Ux0 is a base of neighborhoods of the point x0 ∈ X. f is said to be lower

semicontinuous on X if it is lower semicontinuous on each point of X, i.e., for each

x ∈ X,

x→ x0 ⇒ f(x) ≤ lim inf
n→∞

f(xn). (3.57)

Example 3.1.48. Let (X, ‖ · ‖) be normed space. If F (x) = ‖x‖ for all x ∈ X

then F is lower semicontinuous function.

Definition 3.1.49. (Bounded linear operator)

Let X and Y be normed spaces and T : X → Y a linear operator. The

operator T is said to be bounded if there is a real number c such that for all x ∈ X,

‖Tx‖ ≤ c‖x‖. (3.58)

The subdifferential of a proper convex function f : X → (−∞,+∞] is the

set-valued operator ∂f : X → 2X defined as

∂f(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 + f(x) ≤ f(y)}.

If f is proper convex and lower semicontinuous, then the subdifferential ∂f(x) 6= ∅

for any x ∈ intD(f), the interior of the domain of f .

Lemma 3.1.50. [10] Let {Ci}
t
i=1 and {Qj}

r
j=1 be closed convex subsets of H1

and H2 respectively and A : H1 → H2 a bounded linear operator. Let f(x)

be the function defined as in (2.28). Then ∇f(x) is Lipschitz continuous with

L =
∑t

i=1 li + ‖A‖2
∑r

j=1 λj as the Lipschitz constant.

Lemma 3.1.51. Let f : H → R be given by f(x) = 1
2
‖(I − PQ)Ax‖2. Then

(i) f is convex and differential.

(ii) ∇f(x) = A∗(I − PQ)Ax, x ∈ H.

(iii) f is weakly lower semi-continuous on H.

(iv) ‖∇f(x) −∇f(y)‖ ≤ ‖A‖2‖x− y‖ for all x, y ∈ H.



Lemma 3.1.52. [29, 43] Let {an} and {cn} are sequences of nonnegative real num-

bers such that

an+1 ≤ (1 − δn)an + bn + cn, n ≥ 1, (3.59)

where {δn} is a sequence in (0, 1) and {bn} is a real sequence. Assume
∑∞

n=1 cn <

∞. Then the following results hold:

(i) If bn ≤ δnM for some M ≥ 0, then {an} is a bounded sequence.

(ii) If
∑∞

n=1 δn = ∞ and lim supn→∞ bn/δn ≤ 0, then limn→∞ an = 0.

Lemma 3.1.53. [30] Let {Γn} be a sequence of real numbers that does not decrease

at infinity in the sense that there exists a subsequence {Γni} of {Γn} which satisfies

Γni < Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max {k ≤ n : Γk < Γk+1}, (3.60)

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} 6= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ ... and τ(n) → ∞;

(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

Lemma 3.1.54. [19] Assume that {sn} is a sequence of nonnegative real numbers

such that

sn+1 ≤ (1 − γn)sn + γnδn (3.61)

and

sn+1 ≤ sn − ηn + tn (3.62)

for each n ≥ 0, where {γn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative

real numbers, {δn} and {tn} are real sequences such that

(a)
∑∞

n=0 γn = ∞,

(b) limn→∞ tn = 0,



(c) limk→∞ ηnk = 0 implies lim supk→∞ δnk ≤ 0 for any subsequence {nk} of

{n}.

Then limn→∞ sn = 0.



CHAPTER IV

MAIN RESULTS

4.1 On solving proximal split feasibility problems and applications

4.1.1 Algorithms and Convergence Theorem

Let H1 and H2 be real Hilbert spaces. Let f : H1 → R ∪ {+∞} and g : H2 →

R∪{+∞} be proper, lower semi-continuous and convex functions and A : H1 → H2

be a bounded linear operator. Denote by Ω the solution set of the split proximal

feasibility problem. We introduce the following results:

Algorithm I.

Step 1. Choose an initial point x0 ∈ H1;

Step 2. Assume that {xn} has been constructed. Set

h(xn) =
1

2
‖(I − proxλg)Axn‖

2 (4.63)

with ‖∇h(xn)‖ 6= 0 for each n ≥ 1.

We compute xn+1 via the following manner:

xn+1 = αnu+ (1 − αn)proxλf

(

xn − ρn
h(xn)

‖∇h(xn)‖2
A∗(I − proxλg)Axn

)

, (4.64)

for each n ≥ 1, where u ∈ H1 is fixed, λ > 0, {αn} ⊂ (0, 1) and {ρn} ⊂ (0, 4).

Theorem 4.1.1. Suppose that Ω 6= ∅ and assume that {αn} and {ρn} satisfy the

conditions:

(C1) limn→∞ αn = 0;

(C2)
∑∞

n=0 αn = ∞;

(C3) lim infn→∞ ρn(4 − ρn) > 0.

Then the sequence {xn} converges strongly to z = PΩu.



Proof. Let z = PΩu. Then z = proxλfz and Az = proxλgAz. Note that

∇h(xn) = A∗(I − proxλg)Axn. (4.65)

So, since I − proxλg is firmly nonexpansive, using (2.10), we have

〈∇h(xn), xn − z〉 =
〈

A∗(I − proxλg)Axn, xn − z
〉

=
〈

(I − proxλg)Axn, Axn − Az
〉

=
〈

(I − proxλg)Axn − (I − proxλg)Az,Axn − Az
〉

≥ ‖(I − proxλg)Axn‖
2 = 2h(xn). (4.66)

Using (4.66), we obtain

∥

∥

∥
xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn) − z

∥

∥

∥

2

= ‖xn − z‖2 + ρ2
n

h2(xn)

‖∇h(xn)‖2
− 2ρn

h(xn)

‖∇h(xn)‖2

〈

∇h(xn), xn − z
〉

≤ ‖xn − z‖2 + ρ2
n

h2(xn)

‖∇h(xn)‖2
− 4ρn

h2(xn)

‖∇h(xn)‖2

= ‖xn − z‖2 − ρn(4 − ρn)
h2(xn)

‖∇h(xn)‖2
. (4.67)

Since {ρn} ⊂ (0, 4), it then follows that

∥

∥

∥
xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn) − z

∥

∥

∥
≤ ‖xn − z‖. (4.68)

Next, we show that {xn} is bounded. Consider

‖xn+1 − z‖

=
∥

∥

∥
αn(u− z) + (1 − αn)

(

proxλf(xn − ρn
h(xn)

‖∇h(xn)‖2
A∗(I − proxλg)Axn) − z

)

∥

∥

∥

≤ αn‖u− z‖ + (1 − αn)
∥

∥

∥
xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn) − z

∥

∥

∥

≤ αn‖u− z‖ + (1 − αn)‖xn − z‖. (4.69)

It follows, by induction, that

‖xn − z‖ ≤ max{‖u− z‖, ‖x0 − z‖} (4.70)



and hence {xn} is bounded. Using (2.11) and (4.67), we see that

‖xn+1 − z‖2

≤ (1 − αn)
∥

∥

∥
proxλf

(

xn − ρn
h(xn)

‖∇h(xn)‖2
∇h(xn)

)

− z
∥

∥

∥

2

+ 2αn〈u− z, xn+1 − z〉

≤ (1 − αn)
∥

∥

∥
xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn) − z

∥

∥

∥

2

− (1 − αn)
∥

∥

∥
xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn) − proxλf

(

xn − ρn
h(xn)

‖∇h(xn)‖2
∇h(xn)

)

∥

∥

∥

2

+ 2αn〈u− z, xn+1 − z〉

≤ (1 − αn)‖xn − z‖2 − (1 − αn)ρn(4 − ρn)
h2(xn)

‖∇h(xn)‖2
(4.71)

− (1 − αn)
∥

∥

∥
xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn) − proxλf

(

xn − ρn
h(xn)

‖∇h(xn)‖2
∇h(xn)

)

∥

∥

∥

2

+ 2αn〈u− z, xn+1 − z〉.

Set

sn = ‖xn − z‖2, γn = αn, (4.72)

δn = 2〈u− z, xn+1 − z〉, tn = 2αn〈u− z, xn+1 − z〉 (4.73)

and

ηn = (1 − αn)ρn(4 − ρn)
h2(xn)

‖∇h(xn)‖2
+ (1 − αn)

∥

∥

∥
xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn)

−proxλf
(

xn − ρn
h(xn)

‖∇h(xn)‖2
∇h(xn)

)

∥

∥

∥

2

. (4.74)

From (4.71), it follows that

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + 2αn〈u− z, xn+1 − z〉 (4.75)

and

‖xn+1 − z‖2 ≤ ‖xn − z‖2 − (1 − αn)ρn(4 − ρn)
h2(xn)

‖∇h(xn)‖2

− (1 − αn)
∥

∥

∥
xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn)

−proxλf
(

xn − ρn
h(xn)

‖∇h(xn)‖2
∇h(xn)

)

∥

∥

∥

2

+ 2αn〈u− z, xn+1 − z〉. (4.76)



It is easy to cheek that limn→∞ tn = 0 and
∑∞

n=0 γn = ∞ by using (C1) and (C2),

respectively. In order to apply Lemma 3.1.54, we need to show that limk→∞ ηnk = 0

implies lim supk→∞ δnk ≤ 0 for any subsequence {nk} of {n}.

Suppose that limk→∞ ηnk = 0 for any subsequence {nk} of {n}. By (C1)

and (C3), it follows that

lim
k→∞

h(xnk)

‖∇h(xnk)‖
= 0 (4.77)

and

lim
k→∞

∥

∥

∥
xnk−ρnk

h(xnk)

‖∇h(xnk)‖
2
∇h(xnk)−proxλf

(

xnk−ρnk
h(xnk)

‖∇h(xnk)‖
2
∇h(xnk)

)

∥

∥

∥
= 0.

(4.78)

We note that {∇h(xnk)} is bounded. Indeed, by the Lipschitzian continuity of ∇h

and the boundedness of {xnk}, we obtain

‖∇h(xnk)‖ ≤ ‖∇h(xnk) −∇h(z)‖ + ‖∇h(z)‖

≤ ‖A‖2‖xnk − z‖ + ‖∇h(z)‖. (4.79)

So, by (4.77), we obtain

lim
k→∞

h(xnk) = 0 (4.80)

for any subsequence {nk} of {n}. Since {xn} is bounded, there exists a subsequence

{xni} such that xni ⇀ x∗ and

lim sup
n→∞

〈u− z, xn − z〉 = lim
i→∞

〈u− z, xni − z〉. (4.81)

By the lower semi-continuity of h, we have

0 ≤ h(x∗) ≤ lim inf
i→∞

h(xni) = lim
i→∞

h(xni) = 0. (4.82)

Hence we have

h(x∗) =
1

2
‖(I − proxλg)Ax

∗‖ = 0. (4.83)

Thus Ax∗ is a fixed point of the proximity operator g, that is, 0 ∈ ∂g(Ax∗) or Ax∗

is a minimizer of g.



Next, we show that x∗ is also a minimizer of f . Observe that

‖xnk − proxλfxnk‖

≤
∥

∥

∥
xnk − (xnk − ρnk

h(xnk)

‖∇h(xnk)‖
2
∇h(xnk))

∥

∥

∥

+
∥

∥

∥
xnk − ρnk

h(xnk)

‖∇h(xnk)‖
2
∇h(xnk) − proxλf

(

xnk − ρnk
h(xnk)

‖∇h(xnk)‖
2
∇h(xnk)

)

∥

∥

∥

+
∥

∥

∥
proxλf(xnk − ρnk

h(xnk)

‖∇h(xnk)‖
2
∇h(xnk)) − proxλfxnk

∥

∥

∥

≤ 2ρnk
h(xnk)

‖∇h(xnk)‖
(4.84)

+
∥

∥

∥
xnk − ρnk

h(xnk)

‖∇h(xnk)‖
2
∇h(xnk) − proxλf

(

xnk − ρnk
h(xnk)

‖∇h(xnk)‖
2
∇h(xnk)

)

∥

∥

∥
.

This implies, by (4.77) and (4.78), that

lim
k→∞

‖xnk − proxλfxnk‖ = 0 (4.85)

for any subsequence {nk} of {n}. Note that proxλf is nonexpansive and xni ⇀ x∗.

So, by the demiclosedness principle [17], we conclude that x∗ is a fixed point of the

proximity operator of f . This shows that x∗ is also a minimizer of f . Therefore,

x∗ ∈ Ω. On the other hand, we observe that

‖xnk+1 − xnk‖

≤ αnk‖u− xnk‖ + (1 − αnk)
∥

∥

∥
proxλf

(

xnk − ρnk
h(xnk)

‖∇h(xnk)‖
2
∇h(xnk)

)

− xnk

∥

∥

∥

≤ αnk‖u− xnk‖

+ (1 − αnk)
∥

∥

∥
proxλf

(

xnk − ρnk
h(xnk)

‖∇h(xnk)‖
2
∇h(xnk)

)

−
(

xnk − ρnk
h(xnk)

‖∇h(xnk)‖
2
∇h(xnk)

)

∥

∥

∥

+ (1 − αnk)
∥

∥

∥

(

xnk − ρnk
h(xnk)

‖∇h(xnk)‖
2
∇h(xnk)

)

− xnk

∥

∥

∥

= αnk‖u− xnk‖

+ (1 − αnk)
∥

∥

∥
proxλf

(

xnk − ρnk
h(xnk)

‖∇h(xnk)‖
2
∇h(xnk)

)

−
(

xnk − ρnk
h(xnk)

‖∇h(xnk)‖
2
∇h(xnk)

)

∥

∥

∥

+ (1 − αnk)ρnk
h(xnk)

‖∇h(xnk)‖
→ 0 (4.86)



as k → ∞. Hence, by (2.3), we obtain

lim sup
k→∞

〈u− z, xnk+1 − z〉 = lim sup
k→∞

〈u− z, xnk − z〉

≤ lim sup
n→∞

〈u− z, xn − z〉

= lim
i→∞

〈u− z, xni − z〉

= 〈u− z, x∗ − z〉

≤ 0. (4.87)

This implies that

lim sup
k→∞

δnk ≤ 0 (4.88)

for any subsequence {nk}. Therefore, by using Lemma 3.1.54, we conclude that

sn = ‖xn − z‖2 → 0. Hence xn → z = PΩu. This completes the proof.

When f = δC , g = δQ the indicators functions of nonempty closed and

convex sets C, Q of H1 and H2, respectively, we obtain the following results:

Algorithm II.

Step 1. Choose an initial point x0 ∈ H1;

Step 2. Assume that {xn} ⊆ C has been constructed. Set h(xn) = 1
2
‖(I −

PQ)Axn‖
2 with ‖∇h(xn)‖ 6= 0. We compute xn+1 via the following manner:

xn+1 = αnu+ (1 − αn)PC

(

xn − ρn
h(xn)

‖∇h(xn)‖2
A∗(I − PQ)Axn

)

(4.89)

for each n ≥ 1, where u ∈ C is fixed, {αn} ⊂ (0, 1) and {ρn} ⊂ (0, 4).

Corollary 4.1.2. Suppose that Θ = C ∩ A−1(Q) 6= ∅ and assume that {αn} and

{ρn} satisfy the conditions (C1)–(C3). Then the sequence {xn} converges strongly

to z = PΘu.

Remark 4.1.3. In the case of ‖∇h(xn)‖ = 0, we see that Algorithm I reduces to

the following: x0 ∈ H1 and

xn+1 = αnu+ (1 − αn)proxλfxn (4.90)



for each n ≥ 1, where u ∈ H1 is fixed, {αn} ⊂ (0, 1) and λ > 0. If the sequences

{αn} satisfies (C1) and (C2), then the sequence {xn} converges strongly to z =

Parg min fu. Since ∇h is continuous, it follows that ∇h(xn) → ∇h(z). So, we obtain

∇h(z) = 0 because ‖∇h(xn)‖ = 0. This shows that Az is a minimizer of g. Hence

{xn} converges strongly to a solution of (2.1).

Remark 4.1.4. We highlight our work in the following inclusions:

(1) The strong convergence theorems for solving the proximal split feasibility

problem of two convex functions established in this paper mainly improve and

generalize the results obtained by Byrne [4], Lopez et al. [23] and Moudafi-Thakur

[33].

(2) We obtain strong convergence theorem by using a simpler and more

explicitly than that of Moudafi-Thakur [33] which may be required an implicit

computation.

4.1.2 Numerical examples

In this section, we give numerical examples to support our main theorem.

Example 4.1.5. Let f : R3 → R ∪ {+∞} and g : R3 → R ∪ {+∞} be defined by

f(x) = ‖x‖2 + (2, 4,−5)x+ 10 (4.91)

and

g(x) = ‖x‖2 − (8, 10,−8)x− 5, (4.92)

respectively. Let A =











1 0 2

−1 3 4

2 1 0











. Solve the following proximal split feasibility

problem:

Find x∗ ∈ R
3 such that x∗ minimizes f and Ax∗ also minimizes g.



We can check that x∗ = (−1,−2, 2.5) is a minimizer of f and Ax∗ =

(4, 5,−4) minimizes g. We next show the convergence behavior of the sequence

in Algorithm I by using our conditions. Let u = (1, 1, 1) and x0 = (−2, 4,−3).

Choose λ = 1, αn = 10−3

n+1
and ρn = 2 for all n ∈ N. Computing Algorithm I,

iteratively, we obtain the following numerical results.

n xn Axn f(xn) g(A(xn))

1 (-2.00000,4.00000,-3.00000) (-8.00000,2.00000,0.00000) 66.000000 107.000000

5 (-1.00362,-1.95651,2.47069) (3.93775,5.01684,-3.96376) -1.247236 -61.994527

10 (-0.99977,-1.99961,2.49974) (3.99971,4.99992,-3.99915) -1.250000 -61.999999

15 (-0.99987,-1.99973,2.49987) (3.99988,5.00016,-3.99947) -1.250000 -62.000000

20 (-0.99989,-1.99981,2.49988) (3.99987,4.99997,-3.99960) -1.250000 -62.000000

25 (-0.99992,-1.99984,2.49992) (3.99992,5.00009,-3.99969) -1.250000 -62.000000

30 (-0.99993,-1.99988,2.49992) (3.99991,4.99998,-3.99973) -1.250000 -62.000000

35 (-0.99994,-1.99989,2.49995) (3.99995,5.00006,-3.99978) -1.250000 -62.000000

40 (-0.99995,-1.99991,2.49994) (3.99994,4.99999,-3.99980) -1.250000 -62.000000

45 (-0.99996,-1.99991,2.49996) (3.99996,5.00005,-3.99983) -1.250000 -62.000000

50 (-0.99996,-1.99993,2.49995) (3.99995,4.99999,-3.99984) -1.250000 -62.000000

Table 1 Numerical results for Algorithm I

From Table 1, the minimum values of f and g are -1.25 and -62, respectively. The

errors of ‖xn+1 − xn‖2 are plotted in the following figure.
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Figure 1 Errors plotting of Table 1

Example 4.1.6. Solve the following unconstrained linear equation system: find

x∗ in R5 such that Ax∗ = b, where

A =

























2 3 −1 1 6

−2 −4 1 −2 5

−1 −2 −2 −5 2

5 1 −3 3 −3

4 2 4 2 4

























, b =

























−20

21

6

−15

18

























.

Let u = (1, 1, 1, 1, 1)T and x0 = (−3, 1, 4,−2, 0)T . Choose λ = 1, αn = 10−5
√
n+1

and ρn = 2 for all n ∈ N. Computing Algorithm II iteratively, we obtain the

following numerical results.

n xTn ‖xn+1 − xn‖2

1 (-3.00000,1.00000,4.00000,-2.00000,0.00000) 1.906981E+01

50 (0.70266,-1.46469,2.52074,-0.85842,2.42700) 1.678374E-02

100 (0.82396,-1.68393,2.71636,-0.91545,2.25244) 5.873192E-03

150 (0.89597,-1.81311,2.83231,-0.94998,2.14917) 2.054463E-03

200 (0.93856,-1.88954,2.90090,-0.97041,2.08809) 7.183362E-04

250 (0.96375,-1.93475,2.94148,-0.98250,2.05196) 2.510188E-04

300 (0.97865,-1.96149,2.96548,-0.98965,2.03060) 8.764489E-05

350 (0.98746,-1.97732,2.97968,-0.99389,2.01797) 3.056299E-05

400 (0.99268,-1.98669,2.98809,-0.99640,2.01049) 1.063548E-05

450 (0.99577,-1.99226,2.99308,-0.99789,2.00606) 3.687309E-06

500 (0.99761,-1.99558,2.99606,-0.99878,2.00341) 1.269242E-06

550 (0.99874,-1.99762,2.99789,-0.99934,2.00180) 4.299900E-07

Table 2 Numerical results for Algorithm II

From Table 2, the solution of the linear equation system is (1,−2, 3,−1, 2)T .



4.2 The Modified Inertial Relaxed CQ Algorithm for Solving the Split

Feasibility Problems

4.2.1 Algorithms and Convergence Theorem

We propose the modified inertial relaxed CQ algorithm as follows:

Algorithm 3.1 Let f : H1 → H1 be a contraction (i.e. there exists a

constant α ∈ (0, 1) such that ‖f(x) − f(y)‖ ≤ α‖x − y‖ for all x, y ∈ H1) and let

{αn} ⊂ (0, 1), {θn} ⊂ [0, 1) and {ρn} ⊂ (0, 4). Take x0, x1 ∈ H1 arbitrarily and

generate the sequences {xn} and {yn} by the following manner:

yn = xn + θn(xn − xn−1),

xn+1 = PCn[αnf(yn) + (1 − αn)(yn − τn∇fn(yn))], n ≥ 1. (4.93)

Here we set

τn = ρn
fn(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2
. (4.94)

for all n ∈ N. We remark that if ∇fn(yn) = ∇gn(yn) = 0, then yn is a solution of

SFP.

We next prove the strong convergence of the sequence generated by the

proposed algorithm.

Theorem 4.2.1. Assume that {αn} ⊂ (0, 1), {ρn} ⊂ (0, 4) and {θn} ⊂ [0, θ),

where θ ∈ [0, 1) satisfy the following conditions:

(C1) lim
n→∞

αn = 0 and
∞
∑

n=1

αn = ∞;

(C2) inf
n∈N

ρn(4 − ρn) > 0;

(C3) lim
n→∞

θn
αn
‖xn − xn−1‖ = 0.

Then the sequence {xn} generated by Algorithm 3.1 converges strongly to a

solution in SFP.

Proof. Let z = PSf(z). Then z ∈ C ⊂ Cn and Az ∈ Q ⊂ Qn for all n ∈ N. It



means z = PCnz and Az = PQnAz for all n ∈ N. Set vn = yn − τn∇fn(yn) and

wn = αnf(yn) + (1 − αn)vn for all n ∈ N. Then we obtain

‖yn − z‖ = ‖xn − z + θn(xn − xn−1)‖

≤ ‖xn − z‖ + θn‖xn − xn−1‖. (4.95)

Since (I − PQn) is firmly nonexpansive,

〈∇fn(yn), yn − z〉 = 〈(I − PQn)Ayn, Ayn −Az〉

≥ ‖(I − PQn)Ayn‖
2

= 2fn(yn). (4.96)

Using (4.94) and (4.96), it follows that

‖vn − z‖2 = ‖yn − τn∇fn(yn) − z‖2

= ‖yn − z‖2 + τ 2
n‖∇fn(yn)‖

2 − 2τn〈∇fn(yn), yn − z〉

≤ ‖yn − z‖2 + τ 2
n‖∇fn(yn)‖

2 − 4τnfn(yn)

= ‖yn − z‖2 + ρ2
n

f 2
n(yn)

(‖∇fn(yn)‖2 + ‖∇gn(yn)‖2)2
‖∇fn(yn)‖

2

− 4ρn
f 2
n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2

≤ ‖yn − z‖2 + ρ2
n

f 2
n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2

− 4ρn
f 2
n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2

= ‖yn − z‖2 − ρn(4 − ρn)
f 2
n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2
. (4.97)

So, since ρn ∈ (0, 4), we have for all n ∈ N,

‖vn − z‖ ≤ ‖yn − z‖. (4.98)

Thus, using (4.98) and the nonexpansiveness of PCn , we obtain

‖xn+1 − z‖ = ‖PCnwn − PCnz‖

≤ ‖wn − z‖

= ‖αn(f(yn) − f(z)) + αn(f(z) − z) + (1 − αn)(vn − z)‖



≤ αnα‖yn − z‖ + αn‖f(z) − z‖ + (1 − αn)‖vn − z‖

≤ αnα‖yn − z‖ + αn‖f(z) − z‖ + (1 − αn)‖yn − z‖

= (1 − αn(1 − α))‖yn − z‖ + αn‖f(z) − z‖. (4.99)

Combining (4.95) and (4.99), we immediately obtain

‖xn+1−z‖ ≤ (1−αn(1−α))‖xn−z‖+(1−αn(1−α))θn‖xn−xn−1‖+αn‖f(z)−z‖.

(4.100)

By conditions (C1) and (C3), we see that

lim
n→∞

σn = lim
n→∞

(

1 − αn(1 − α)

1 − α

)

θn
αn

‖xn − xn−1‖ = 0, (4.101)

which implies that the sequence {σn} is bounded. Putting

M = max

{

‖f(z) − z‖

1 − α
, sup
n∈N

σn

}

and using Lemma 3.1.52 (i), we conclude that the sequence {‖xn−z‖} is bounded.

This shows that the sequence {xn} is bounded and so is {yn}. On the other hand,

we see that

‖yn − z‖2 = ‖xn − z + θn(xn − xn−1)‖
2

= ‖xn − z‖2 + 2θn〈xn − z, xn − xn−1〉 + θ2
n‖xn − xn−1‖

2(4.102)

and, from (3.54)

〈xn − z, xn − xn−1〉 = −
1

2
‖xn−1 − z‖2 +

1

2
‖xn − z‖2 +

1

2
‖xn − xn−1‖

2. (4.103)

Combining (4.102) and (4.103), we obtain, since θn ∈ [0, 1),

‖yn − z‖2 = ‖xn − z‖2 + θn(−‖xn−1 − z‖2 + ‖xn − z‖2 + ‖xn − xn−1‖
2)

+θ2
n‖xn − xn−1‖

2

≤ ‖xn − z‖2 + θn(‖xn − z‖2 − ‖xn−1 − z‖2)

+2θn‖xn − xn−1‖
2. (4.104)

Using (3.55), (4.97) and the firm nonexpansiveness of PCn, we also have

‖xn+1 − z‖2 = ‖PCnwn − PCnz‖
2



≤ ‖wn − z‖2 − ‖PCnwn − wn‖
2

= ‖αn(f(yn) − z) + (1 − αn)(vn − z)‖2 − ‖PCnwn − wn‖
2

≤ (1 − αn)‖vn − z‖2 + 2αn〈f(yn) − z, wn − z〉 − ‖PCnwn − wn‖
2

≤ (1 − αn)‖yn − z‖2 − (1 − αn)ρn(4 − ρn)
f 2
n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2

+ 2αn〈f(yn) − z, wn − z〉 − ‖PCnwn − wn‖
2. (4.105)

Combining (4.104) and (4.105), we thus have

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + (1 − αn)θn(‖xn − z‖2 − ‖xn−1 − z‖2)

+ 2(1 − αn)θn‖xn − xn−1‖
2

−(1 − αn)ρn(4 − ρn)
f 2
n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2

+ 2αn〈f(yn) − z, wn − z〉 − ‖PCnwn − wn‖
2. (4.106)

Set Γn = ‖xn − z‖2 for all n ∈ N. We next consider the following two cases.

Case 1: Suppose that there exists a natural number N such that Γn+1 ≤ Γn

for all n ≥ N . In this case, {Γn} is convergent. From (C1) and (C2), we can find a

constant σ such that (1 − αn)ρn(4 − ρn) ≥ σ > 0 for all n ∈ N. So (4.106) reduces

to

Γn+1 ≤ (1 − αn)Γn + (1 − αn)θn(Γn − Γn−1) + 2(1 − αn)θn‖xn − xn−1‖
2

− σ
f 2
n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2
+ 2αn〈f(yn) − z, wn − z〉

− ‖PCnwn − wn‖
2, (4.107)

which gives

σ
f 2
n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2
≤ (Γn − Γn+1) + (1 − αn)θn(Γn − Γn−1)

+ 2(1 − αn)θn‖xn − xn−1‖
2

+ 2αn〈f(yn) − z, wn − z〉. (4.108)

It is easy to see that (C3) implies θn‖xn−xn−1‖ → 0 since {αn} is bounded. Since

{Γn} converges and αn → 0,

f 2
n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2
→ 0 (4.109)



as n→ ∞. It is easily checked that {∇gn(yn)} is bounded. Also, we have {∇fn(yn)}

is bounded since {yn} is bounded. Indeed, by Lemma 3.1.51 (iv), we have

‖∇fn(yn)‖ = ‖∇fn(yn) −∇fn(z)‖ ≤ ‖A‖2‖yn − z‖. (4.110)

So from (4.109), we conclude that fn(yn) → 0 as n→ ∞, i.e.,

‖(I − PQn)Ayn‖ → 0, (4.111)

as n → ∞. Since ∂q is bounded on bounded sets, there exists a constant µ > 0

such that ‖εn‖ ≤ µ for all n ∈ N. From (4.111) and PQn(Ayn) ∈ Qn, we have

q(Ayn) ≤ 〈εn, Ayn − PQn(Ayn)〉

≤ µ‖(I − PQn)Ayn‖

→ 0, (4.112)

as n → ∞. Since {yn} is bounded, there is a subsequence {ynk} of {yn} such that

ynk ⇀ x∗ ∈ H1. It also follows that Aynk ⇀ Ax∗ ∈ H2. By the lower-semicontinuity

of q, we have

q(Ax∗) ≤ lim inf
k→∞

q(Aynk) ≤ 0. (4.113)

This shows that Ax∗ ∈ Q. We next prove that x∗ ∈ C. Again, using (4.107), we

have

(1 − αn)‖PCnwn − wn‖
2 ≤ (Γn − Γn+1) + (1 − αn)θn(Γn − Γn−1)

+ 2(1 − αn)θn‖xn − xn−1‖
2

+ 2αn〈f(yn) − z, wn − z〉, (4.114)

consequently, as n→ ∞,

‖PCnwn − wn‖ → 0. (4.115)

By the definition of Cn, we obtain

c(wn) ≤ 〈ξn, wn − PCnwn〉 ≤ κ‖wn − PCnwn‖ → 0, (4.116)



as n → ∞, where κ is a constant such that ‖ξn‖ ≤ κ for all n ∈ N. We next

consider the following estimation:

‖vn − yn‖ = ‖yn − τn∇fn(yn) − yn‖

= τn‖∇fn(yn)‖

= ρn
fn(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2
‖∇fn(yn)‖

→ 0, (4.117)

as n→ ∞. We also have

‖wn − yn‖ ≤ αn‖f(yn) − yn‖ + (1 − αn)‖vn − yn‖ → 0, (4.118)

as n → ∞. Hence, since ynk ⇀ x∗, there is a corresponding subsequence {wnk} of

{wn} such that wnk ⇀ x∗. From (4.116), it follows that

c(x∗) ≤ lim inf
k→∞

c(wnk) = 0. (4.119)

So we obtain x∗ ∈ C and hence x∗ ∈ S. From (3.53) we obtain

lim sup
n→∞

〈f(z) − z, wn − z〉 = lim
k→∞

〈f(z) − z, wnk − z〉

= 〈f(z) − z, x∗ − z〉

≤ 0. (4.120)

On the other hand, we see that

‖wn − z‖2 = 〈wn − z, wn − z〉

= αn〈f(yn) − f(z), wn − z〉 + αn〈f(z) − z, wn − z〉

+(1 − αn)〈vn − z, wn − z〉

≤ αnα‖yn − z‖‖wn − z‖ + αn〈f(z) − z, wn − z〉

+(1 − αn)‖vn − z‖‖wn − z‖

≤ (1 − αn(1 − α))‖yn − z‖‖wn − z‖ + αn〈f(z) − z, wn − z〉

≤ (1 − αn(1 − α))
(‖yn − z‖2

2
+

‖wn − z‖2

2

)

+αn〈f(z) − z, wn − z〉, (4.121)



which gives

‖wn − z‖2 ≤
1 − αn(1 − α)

1 + αn(1 − α)
‖yn − z‖2

+
2αn

1 + αn(1 − α)
〈f(z) − z, wn − z〉

≤
1 − αn(1 − α)

1 + αn(1 − α)
(‖xn − z‖ + θn‖xn − xn−1‖)

2

+
2αn

1 + αn(1 − α)
〈f(z) − z, wn − z〉

=

(

1 −
2αn(1 − α)

1 + αn(1 − α)

)

(‖xn − z‖2 + 2θn‖xn − xn−1‖‖xn − z‖

+θ2
n‖xn − xn−1‖

2) +
2αn

1 + αn(1 − α)
〈f(z) − z, wn − z〉. (4.122)

Then, by (4.122), we obtain

‖xn+1 − z‖2 = ‖PCnwn − z‖2

≤ ‖wn − z‖2

≤

(

1 −
2αn(1 − α)

1 + αn(1 − α)

)

(‖xn − z‖2 + 2θn‖xn − xn−1‖‖xn − z‖

+θ2
n‖xn − xn−1‖

2) +
2αn

1 + αn(1 − α)
〈f(z) − z, wn − z〉. (4.123)

Put M1 = sup
n∈N

‖xn − z‖ and γn = 2αn(1−α)
1+αn(1−α)

for all n ∈ N. It is easily checked that

γn ∈ (0, 1) for all n ∈ N and
∞
∑

n=1

γn = ∞. From (4.123), it follows that

Γn+1 ≤ (1 − γn)Γn + 2θn‖xn − xn−1‖M1 + θn‖xn − xn−1‖
2

+
2αn

1 + αn(1 − α)
〈f(z) − z, wn − z〉. (4.124)

Applying Lemma 3.1.52 (ii) and using (4.120) and the conditions (C1) and (C3),

we conclude that Γn = ‖xn − z‖2 → 0 and thus xn → z as n→ ∞.

Case 2: Suppose that there exists a subsequence {Γni} of the sequence

{Γn} such that Γni < Γni+1 for all i ∈ N. In this case, we define ψ : N → N as in

(3.60). Then, by Lemma 3.1.54, we have Γψ(n) ≤ Γψ(n)+1. From (4.106), it follows

that

Γψ(n)+1 ≤ (1 − αψ(n))Γψ(n) + (1 − αψ(n))θψ(n)(Γψ(n) − Γψ(n)−1)

+ 2(1 − αψ(n))θψ(n)‖xψ(n) − xψ(n)−1‖
2



−σ
f 2

ψ(n)(yψ(n))

‖∇fψ(n)(yψ(n))‖2 + ‖∇gψ(n)(yψ(n))‖2

− (1 − αψ(n))‖PCψ(n)
wψ(n) − wψ(n)‖

2

+2αψ(n)〈f(yψ(n)) − z, wψ(n) − z〉, (4.125)

which gives

σ
f 2
ψ(n)(yψ(n))

‖∇fψ(n)(yψ(n))‖2 + ‖∇gψ(n)(yψ(n))‖2
≤ (1 − αψ(n))θψ(n)(Γψ(n) − Γψ(n)−1)

+ 2(1 − αψ(n))θψ(n)‖xψ(n) − xψ(n)−1‖
2

+ 2αψ(n)〈f(yψ(n)) − z, wψ(n) − z〉

≤ (1 − αψ(n))θψ(n)‖xψ(n) − xψ(n)−1‖

(
√

Γψ(n) +
√

Γψ(n)−1)

+ 2(1 − αψ(n))θψ(n)‖xψ(n) − xψ(n)−1‖
2

+ 2αψ(n)〈f(yψ(n)) − z, wψ(n) − z〉

→ 0, (4.126)

as n → ∞. It follows that fψ(n)(yψ(n)) = ‖(I − PQψ(n)
)Ayψ(n)‖ → 0. Similarly, by

(4.125), we can show that

lim
n→∞

‖PCψ(n)
wψ(n) − wψ(n)‖ = 0 (4.127)

and by (4.118)

lim
n→∞

‖wψ(n) − yψ(n)‖ = 0. (4.128)

Now repeating the argument of the proof in Case 1, we obtain

lim sup
n→∞

〈f(z) − z, wψ(n) − z〉 ≤ 0. (4.129)

On the other hand, observe that

‖yψ(n) − xψ(n)‖ = θψ(n)‖xψ(n) − xψ(n)−1‖ → 0, (4.130)

as n → ∞. It follows that ‖xψ(n)+1 − xψ(n)‖ → 0 as n → ∞. Indeed, by (4.127),

(4.128) and (4.130), we have

‖xψ(n)+1 − xψ(n)‖ = ‖PCψ(n)
wψ(n) − xψ(n)‖



≤ ‖PCψ(n)
wψ(n) − wψ(n)‖ + ‖wψ(n) − yψ(n)‖ + ‖yψ(n) − xψ(n)‖

→ 0, (4.131)

as n→ ∞. Using (4.124), we have

Γψ(n)+1 ≤ (1 − γψ(n))Γψ(n) + 2θψ(n)‖xψ(n) − xψ(n)−1‖M1 + θψ(n)‖xψ(n) − xψ(n)−1‖
2

+
2αψ(n)

1 + αψ(n)(1 − α)
〈f(z) − z, wψ(n) − z〉, (4.132)

which implies

γψ(n)Γψ(n) ≤ 2θψ(n)‖xψ(n) − xψ(n)−1‖M1 + θψ(n)‖xψ(n) − xψ(n)−1‖
2

+
2αψ(n)

1 + αψ(n)(1 − α)
〈f(z) − z, wψ(n) − z〉. (4.133)

Hence

Γψ(n) ≤
2θψ(n)

γψ(n)

‖xψ(n) − xψ(n)−1‖M1 +
θψ(n)

γψ(n)

‖xψ(n) − xψ(n)−1‖
2

+
1

1 − α
〈f(z) − z, wψ(n) − z〉. (4.134)

Hence from (C3), (4.129) and (4.131), we obtain

lim sup
n→∞

Γψ(n) ≤ 0. (4.135)

This means lim
n→∞

Γψ(n) = lim
n→∞

‖xψ(n) − z‖2 = 0. So we have xψ(n) → z as n → ∞.

On the other hand, we see that

‖xψ(n)+1 − z‖ ≤ ‖xψ(n)+1 − xψ(n)‖ + ‖xψ(n) − z‖

→ 0, (4.136)

as n→ ∞. By Lemma 3.1.54, we have Γn ≤ Γψ(n)+1 and thus

Γn = ‖xn − z‖2 ≤ ‖xψ(n)+1 − z‖2 → 0. (4.137)

This concludes that xn → z as n→ ∞. We thus complete the proof.

Remark 4.2.2. We remark here that the condition (C3) is easily implemented in

numerical computation since the valued of ‖xn − xn−1‖ is known before choosing



θn. Indeed, the parameter θn can be chosen such that 0 ≤ θn ≤ θ̄n, where

θ̄n =







min
{

ωn
‖xn−xn−1‖ , θ

}

if xn 6= xn−1,

θ otherwise,

where {ωn} is a positive sequence such that ωn = o(αn).

We next consider the case when the norm of operators can be easily calcu-

lated.

Algorithm 3.2 Take x0, x1 ∈ H1 and generate the sequence {xn} by the

following manner:

yn = xn + θn(xn − xn−1),

xn+1 = PCn[αnf(yn) + (1 − αn)(yn − λn∇fn(yn))], (4.138)

where {αn} ⊂ (0, 1), {θn} ⊂ [0, 1) and {λn} ⊂ (0,∞).

Theorem 4.2.3. Assume that {αn} ⊂ (0, 1), {λn} ⊂ (0,∞) and {θn} ⊂ [0, θ),

where θ ∈ [0, 1) satisfy the following conditions:

(C1) lim
n→∞

αn = 0 and
∞
∑

n=1

αn = ∞;

(C2) inf
n∈N

λn(2 − λn‖A‖
2) > 0;

(C3) lim
n→∞

θn
αn
‖xn − xn−1‖ = 0.

Then the sequence {xn} generated by Algorithm 3.2 converges strongly to

the solution of SFP.

Proof. Since the proof line is closed to that of Theorem 4.3.1, we just give a sketch

proof. Let z = PSf(z). Set vn = yn − λn∇fn(yn) and wn = αnf(yn) + (1 − αn)vn

for all n ∈ N. We first show that the sequence {xn} is bounded. To this end, it

suffices to show that ‖vn − z‖ ≤ ‖yn − z‖ for all n ∈ N. By using the argument as

in Theorem 4.3.1, we can show that 〈∇fn(yn), yn − z〉 ≥ 2fn(yn). It follows that

‖vn − z‖2 = ‖yn − z‖2 + λ2
n‖∇fn(yn)‖

2 − 2λn〈∇fn(yn), yn − z〉

≤ ‖yn − z‖2 + λ2
n‖∇fn(yn)‖

2 − 4λnfn(yn)



≤ ‖yn − z‖2 + λ2
n‖A‖

2‖(I − PQn)Ayn‖
2 − 4λnfn(yn)

= ‖yn − z‖2 + 2λ2
n‖A‖

2fn(yn) − 4λnfn(yn)

≤ ‖yn − z‖2 − 2λn(2 − λn‖A‖
2)fn(yn). (4.139)

From (C2), we have ‖vn− z‖ ≤ ‖yn− z‖ for all n ∈ N. By (4.105) and (4.139), we

have

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + (1 − αn)θn(‖xn − z‖2 − ‖xn−1 − z‖2)

+ 2(1 − αn)θn‖xn − xn−1‖
2 − (1 − αn)λn(2 − λn‖A‖

2)fn(yn)

+ 2αn〈f(yn) − z, wn − z〉 − ‖PCnwn − wn‖
2. (4.140)

Set Γn = ‖xn − z‖2 for all n ∈ N. We next consider the following two cases.

Case 1: Suppose that there exists a natural number N such that Γn+1 ≤ Γn

for all n ≥ N . In this case, {Γn} is convergent. From (C1) and (C2), we can find a

constant σ such that (1 − αn)λn(2 − λn‖A‖
2) ≥ σ > 0 for all n ∈ N. So we obtain

Γn+1 ≤ (1 − αn)Γn + (1 − αn)θn(Γn − Γn−1) + 2(1 − αn)θn‖xn − xn−1‖
2

− σfn(yn) + 2αn〈f(yn) − z, wn − z〉 − ‖PCnwn − wn‖
2, (4.141)

which implies

σfn(yn) ≤ (Γn − Γn+1) + (1 − αn)θn(Γn − Γn−1) + 2(1 − αn)θn‖xn − xn−1‖
2

+ 2αn〈f(yn) − z, wn − z〉. (4.142)

This shows, by (C1) and (C3), that fn(yn) = ‖(I − PQn)Ayn‖ → 0 as n → ∞.

Similarly, we can show that ‖PCnwn − wn‖ → 0 n → ∞. Following the proof line

as in Theorem 4.3.1, we can prove that {xn} converges strongly to z.

Case 2: Suppose that there exists a subsequence {Γni} of the sequence {Γn}

such that Γni < Γni+1 for all i ∈ N. This case can be done by a similar argument

as in Case 1. So we omit the rest of proof. We thus complete the proof.



4.2.2 Numerical examples

In this section, we provide some numerical examples and illustrate its perfor-

mance by using the modified inertial relaxed CQ method (Algorithm 3.1).

Example 4.2.4. Let H1 = H2 = R
3, C = {x = (a, b, c)T ∈ R

3 : a2 + b2 − 5 ≤ 0}

and Q = {y = (p, q, r)T ∈ R3 : p + r2 − 2 ≤ 0}. Let f : R3 → R3 be defined by

f(x) = x
2
. Find x∗ ∈ C such that Ax∗ ∈ Q, where A =











1 2 7

1 3 0

4 1 2











.

Choose αn = 1
n+1

for all n ∈ N and θ = 0.5. For each n ∈ N, let ωn = 1
(n+1)3

and define θn as in Remark 4.3.2. We now study the effect (in terms of convergence,

stability, number of iterations required and the cpu time) of the sequence {ρn} ⊂

(0, 4) on the iterative scheme by choosing different ρn such that inf
n
ρn(4 − ρn) > 0

in the following cases.

Case 1: ρn = n
2n+1

;

Case 2: ρn = n
n+1

;

Case 3: ρn = 2n
n+1

;

Case 4: ρn = 3n
n+1

.

The stopping criterion is defined by

En =
1

2
‖xn − PCnxn‖

2 +
1

2
‖Axn − PQnAxn‖

2 < 10−4.

We consider different choices of x0 and x1 as

Choice 1: x0 = (−7,−2,−6)T and x1 = (−2, 2,−6)T ;

Choice 2: x0 = (1, 2,−5)T and x1 = (0, 1,−7)T ;

Choice 3: x0 = (1, 5,−1)T and x1 = (−3, 4,−7)T ;

Choice 4: x0 = (1, 5, 2)T and x1 = (3, 2, 7)T

The numerical experiments for each case of ρn are shown in Figure 1-4,

respectively.



Table 1: Algorithm 3.1 with different cases of ρn and different choices of x0 and x1

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 12 8 5 4

cpu (Time) 0.003553 0.002377 0.002195 0.002075

Choice 2 No. of Iter. 7 6 4 4

cpu (Time) 0.002799 0.002769 0.002357 0.002184

Choice 3 No. of Iter. 12 9 6 4

cpu (Time) 0.003828 0.002602 0.002401 0.002142

Choice 4 No. of Iter. 27 17 11 9

cpu (Time) 0.007181 0.00343 0.002612 0.002431
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Figure 1: Comparison of the itertions for Choice 1 in Example 4.1
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Figure 2: Comparison of the itertions for Choice 2 in Example 4.1
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Figure 3: Comparison of the itertions for Choice 3 in Example 4.1
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Figure 4: Comparison of the itertions for Choice 4 in Example 4.1
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Figure 5: Comparison of the itertions for Choice 1 in Example 4.2
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Figure 6: Comparison of the itertions for Choice 2 in Example 4.2
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Example 4.2.5. Let H1 = H2 = R
5, C = {x = (a, b, c, d, e)T ∈ R

5 : a2 + b2 + c2 +

d2 + e2 − 0.4 ≤ 0} and Q = {y = (p, q, r, s, t)T ∈ R5 : p + q + r + s − 0.75 ≤ 0}.

Let f : R5 → R5 be defined by f(x) = x
2
. Find x∗ ∈ C such that Ax∗ ∈ Q, where

A =



















3 −2 5 −2 3

2 −2 5 −2 9

2 −3 5 −1 −3

−2 −2 8 −7 −2



















.

Let αn, θn and En be as in Example 4.2.4. We choose different cases of ρn

as follows:

Case 1: ρn = 0.5;

Case 2: ρn = 1;

Case 3: ρn = 2;

Case 4: ρn = 3.5.

The different choices of x0 and x1 are given as follows:

Choice 1: x0 = (−3.2,−1,−2.5, 5,−3.7)T and x1 = (−2.3,−1.5, 5.2,−7.5, 7.3)T ;

Choice 2: x0 = (−2,−5,−3, 2,−3)T and x1 = (−5,−4, 5,−7, 7)T ;

Choice 3: x0 = (3, 8, 5,−2, 8)T and x1 = (−2,−5, 5,−9, 9)T ;

Choice 4: x0 = (4.5, 0,−2.5, 1, 3)T and x1 = (−3.6,−4.2, 1, 1.5, 8)T .

The numerical experiments are shown in Figure 5-8, respectively.

Remark 4.2.6.

We finally make the following conclusions from the numerical experiments in Ex-

amples 4.2.4 and 4.2.5.



Table 2: Algorithm 3.1 with different cases of ρn and different choices of x0 and x1

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 19 10 5 5

cpu (Time) 0.005632 0.003408 0.003223 0.002791

Choice 2 No. of Iter. 18 10 6 6

cpu (Time) 0.00391 0.002683 0.002447 0.002381

Choice 3 No. of Iter. 19 10 6 6

cpu (Time) 0.004233 0.003016 0.002601 0.002575

Choice 4 No. of Iter. 13 7 6 6

cpu (Time) 0.004812 0.003559 0.002922 0.002412
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Figure 7: Comparison of the itertions for Choice 3 in Example 4.2
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Figure 8: Comparison of the itertions for Choice 4 in Example 4.2
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1. For each different Cases and different Choices, it is shown that Algorithm

3.1 has a good convergence speed. Indeed, we see that it is fast, stable and

required small number of iterations for seeking solutions.

2. It is observed that the number of iterations and the cpu run time are sig-

nificantly decreasing starting from Case 1 to Case 4. However, there is no

significant difference in both cpu run time and number of iterations for each

choice of x0 and x1. So, initial guess does not have any significant effect on

the convergence of the algorithm.

3. The conditions in Theorem 4.3.1 are easily implemented in numerical com-

putations and need no estimation on the spectral radius of ATA.

4. The restriction of metric projections onto C and Q is relaxed by using those

of Cn and Qn which have specific forms.

We finally end this section by providing a comparison of convergence of

Algorithm 3.1 with Halpern-relaxed CQ algorithm (2.23) defined by He and Zhao

[21] through Examples 4.2.4 and 4.2.5. For the convenience, let us denote Algorithm

3.1 and Algorithm (2.23) by MIner-R-Iter and H-R-Iter, respectively. Let the

contraction f be defined by f(x) = 0.5x. Set αn = 1
n+1

, ρn = 3n
n+1

and ωn = 1
(n+1)3

for all n ∈ N. Set β = 0.5 and βn = β̄n as in Remark 4.3.2. The stopping criterion

En is defined as in Example 4.2.4. For points u, x0 and x1 picked randomly, we

obtain the following numerical results.

The error plotting of En of MIner-R-Iter and H-R-Iter for each choice in

Table 3 is shown in the following figures, respectively.

Error plotting of En for Table 3

Remark 4.2.7. In numerical experiment, it is revealed that the sequence generated

by MIner-R-Iter involving the viscosity term and the inertial technique converges

more quickly than by H-R-Iter of He and Zhao [21] does.



Table 3: Comparison of MIner-R-Iter and H-R-Iter in Example 4.2.4

MIner-R-Iter H-R-Iter

Choice 1 u = (0,−1,−5)T No. of Iter. 6 223

x0 = (2, 6,−3)T cpu (Time) 0.001384 0.064889

x1 = (−2,−1, 8)T

Choice 2 u = (1,−2, 1)T No. of Iter. 5 181

x0 = (−3,−4,−1)T cpu (Time) 0.000836 0.037471

x1 = (−5, 2,−1)T

Choice 3 u = (5,−3,−1)T No. of Iter. 6 140

x0 = (2, 1,−1)T cpu (Time) 0.000963 0.026824

x1 = (−5, 3, 5)T

Choice 4 u = (−2,−1, 4)T No. of Iter. 8 763

x0 = (7.35, 1.75,−3.24)T cpu (Time) 0.001311 0.687214

x1 = (−6.34, 0.42, 7.36)T
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4.3 Relaxed CQ Algorithms Involving the Inertial Technique for Multiple-

sets Split Feasibility Problems

4.3.1 Algorithms and Convergence Theorem

We study the inertial relaxed self-adaptive CQ algorithm in Hilbert spaces for

solving MSFP (2.17). Denote by S the solution set of the SFP.

Theorem 4.3.1. Let H1 and H2 be real Hilbert spaces and let {Ci}
t
i=1 and {Qj}

r
j=1

be nonempty, closed and convex subsets of H1 and H2, respectively. Let A : H1 →

H2 be a bounded linear operator with its adjoint A∗. Assume that {αn}, {βn} and

{ρn} satisfy the following assumptions:

(C1) lim
n→∞

αn = 0 and
∞
∑

n=1

αn = ∞;

(C2) inf
n∈N

ρn(4 − ρn) > 0;

(C3) {βn} ⊂ [0, β], where β ∈ [0, 1) and lim
n→∞

βn
αn
‖xn − xn−1‖ = 0.

Then the sequence {xn} generated by Algorithm 3.1 converges strongly to

PSu.

Proof. Set z = PSu. We note that I − PCni , (i = 1, ..., t) and I − PQnj , (j = 1, ..., r)

are firmly nonexpansive and ∇fn(z) = 0 for all n ∈ N. It follows that

〈∇fn(yn), yn − z〉 =
〈

t
∑

i=1

li(yn − PCni (yn)) +
r

∑

j=1

λjA
∗(I − PQnj )Ayn, yn − z

〉

=

t
∑

i=1

li〈(I − PCni )yn, yn − z〉 +

r
∑

j=1

λj〈(I − PQnj )Ayn, Ayn − Az〉



≥
t

∑

i=1

li‖(I − PCni )yn‖
2 +

r
∑

j=1

λj‖(I − PQnj )Ayn‖
2

= 2fn(yn). (4.143)

So we have

‖yn − τn∇fn(yn) − z‖2 = ‖yn − z‖2 + τ 2
n‖∇fn(yn)‖

2 − 2τn〈∇fn(yn), yn − z〉

≤ ‖yn − z‖2 + τ 2
n‖∇fn(yn)‖

2 − 4τnfn(yn)

= ‖yn − z‖2 − ρ2
n

f 2
n(yn)

‖∇fn(yn)‖2
− 4ρn

f 2
n(yn)

‖∇fn(yn)‖2

= ‖yn − z‖2 − ρn(4 − ρn)
f 2
n(yn)

‖∇fn(yn)‖2
. (4.144)

Hence we obtain, for each n ∈ N, since ρn ∈ (0, 4)

‖yn − τn∇fn(yn) − z‖ ≤ ‖yn − z‖. (4.145)

On the other hand, we also have

‖yn − z‖ = ‖xn − z + βn(xn − xn−1)‖

≤ ‖xn − z‖ + βn‖xn − xn−1‖. (4.146)

Combining (4.145) and (4.146), we obtain

‖xn+1 − z‖ = ‖αn(u− z) + (1 − αn)(yn − τn∇fn(yn) − z)‖

≤ αn‖u− z‖ + (1 − αn)‖yn − z‖ (4.147)

≤ αn‖u− z‖ + (1 − αn)‖xn − z‖ + (1 − αn)βn‖xn − xn−1‖.

By (C3), we see that δn = (1−αn)βn‖xn−xn−1‖
αn

→ 0. Hence it is bounded. Put

M = max
{

‖u− z‖, sup
n≥1

δn
}

.

So (4.147) becomes

‖xn+1 − z‖ ≤ (1 − αn)‖xn − z‖ + αnM. (4.148)

Applying Lemma 3.1.52 (i), we can conclude that {xn} is bounded and also {yn}

is bounded. By Lemma 3.1.50, we see that

‖∇fn(yn)‖ = ‖∇fn(yn) −∇fn(z)‖ ≤ L‖yn − z‖, (4.149)



where L =
∑t

i=1 li + ‖A‖2
∑r

j=1 λj . This shows that {∇fn(yn)} is bounded.

We next compute the following estimation:

‖yn − z‖2 = ‖xn − z + βn(xn − xn−1)‖
2

= ‖xn − z‖2 + 2βn〈xn − xn−1, xn − z〉 + β2
n‖xn − xn−1‖

2.(4.150)

Using (3.54), we have

〈xn − xn−1, xn − z〉 = −
1

2
‖xn−1 − z‖2 +

1

2
‖xn − z‖2 +

1

2
‖xn − xn−1‖

2. (4.151)

Combining (4.150) and (4.151), we obtain

‖yn − z‖2 = ‖xn − z‖2 + βn(−‖xn−1 − z‖2 + ‖xn − z‖2 + ‖xn − xn−1‖
2)

+β2
n‖xn − xn−1‖

2 (4.152)

≤ ‖xn − z‖2 + βn(‖xn − z‖2 − ‖xn−1 − z‖2) + 2βn‖xn − xn−1‖
2.

Using (3.55) and (4.144), we have

‖xn+1 − z‖2 = ‖αn(u− z) + (1 − αn)(yn − τn∇fn(yn) − z)‖2

≤ (1 − αn)‖yn − τn∇fn(yn) − z‖2 + 2αn〈u− z, xn+1 − z〉

≤ (1 − αn)‖yn − z‖2 − (1 − αn)ρn(4 − ρn)
f 2
n(yn)

‖∇fn(yn)‖2

+2αn〈u− z, xn+1 − z〉. (4.153)

Combining (4.152) and (4.153), we derive

‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + (1 − αn)βn(‖xn − z‖2 − ‖xn−1 − z‖2)

+ 2(1 − αn)βn‖xn − xn−1‖
2 − (1 − αn)ρn(4 − ρn)

f 2
n(yn)

‖∇fn(yn)‖2

+ 2αn〈u− z, xn+1 − z〉. (4.154)

Set Γn = ‖xn − z‖2 for all n ∈ N. We note, by (C1) and (C2), that there is a

constant σ such that (1−αn)ρn(4− ρn) ≥ σ > 0 for all n ∈ N. So from (4.154) we

get

Γn+1 ≤ (1 − αn)Γn + (1 − αn)βn(Γn − Γn−1) (4.155)



+ 2(1 − αn)βn‖xn − xn−1‖
2 − σ

f 2
n(yn)

‖∇fn(yn)‖2
+ 2αn〈u− z, xn+1 − z〉.

We next consider the following two cases:

Case 1: Suppose that there exists a natural number N such that Γn+1 ≤ Γn for all

n ≥ N . In this case, limn→∞ Γn exists. From (4.155), we have

σ
f 2
n(yn)

‖∇fn(yn)‖2
≤ (Γn − Γn+1) + (1 − αn)βn(Γn − Γn−1) (4.156)

+ 2(1 − αn)βn‖xn − xn−1‖
2 + 2αn〈u− z, xn+1 − z〉.

It is easy to check that (C3) implies βn‖xn − xn−1‖ → 0 since {αn} is bounded.

So, by (C1) and the boundedness of {xn}, we have from (4.156)

f 2
n(yn)

‖∇fn(yn)‖2
→ 0 as n→ ∞.

Since {‖∇fn(yn)‖} is bounded, it follows that fn(yn) → 0 as n → ∞. This shows

that

lim
n→∞

‖(I − PCni )yn‖ = 0 (i = 1, 2, ..., t) (4.157)

and

lim
n→∞

‖(I − PQnj )Ayn‖ = 0 (j = 1, 2, ..., r). (4.158)

Since ∂qj (j = 1, ..., r) are bounded on bounded sets, there exists a constant µ > 0

such that ‖ζnj ‖ ≤ µ (j = 1, ..., r) for all n ∈ N. From (4.158) and PQnj (Ayn) ∈ Qn
j

(j = 1, ..., r), we obtain

qj(Ayn) ≤ 〈ζnj , Ayn − PQnj (Ayn)〉 ≤ µ‖(I − PQnj )Ayn‖ → 0, (4.159)

as n → ∞. Since {yn} is bounded, there exists a subsequence {ynk} of {yn} such

that ynk ⇀ x∗. Then Aynk ⇀ Ax∗. Since qj is weakly lower semi-continuous,

qj(Ax
∗) ≤ lim inf

k→∞
qj(Aynk) ≤ 0. (4.160)

Therefore Ax∗ ∈ Qj (j = 1, ..., r).



We next show that x∗ ∈ Ci (i = 1, ..., t). By the definition of Cn
i (i = 1, ..., t)

and (4.157), we see that

ci(yn) ≤ 〈ξni , yn − PCni (yn)〉 ≤ δ‖yn − PCni yn‖ → 0, (4.161)

as n→ ∞, where δ is a constant such that ‖ξni ‖ ≤ δ (i = 1, ..., t) for all n ∈ N. By

the weak lower semi-continuity of ci (i = 1, ..., t) and ynk ⇀ x∗, we have

ci(x
∗) ≤ lim inf

k→∞
ci(ynk) ≤ 0. (4.162)

Hence x∗ ∈ Ci (i = 1, ..., t) and consequently, x∗ ∈ S. From (3.53), it follows that

lim sup
n→∞

〈u− z, yn − z〉 = lim
k→∞

〈u− z, ynk − z〉

= 〈u− z, x∗ − z〉 ≤ 0. (4.163)

On the other hand, we see that

‖yn − xn‖ = βn‖xn − xn−1‖ → 0. (4.164)

Hence, by (4.163) and (4.164), we obtain

lim sup
n→∞

〈u− z, xn − z〉 ≤ 0. (4.165)

Again from (4.155) we have

Γn+1 ≤ (1 − αn)Γn + (1 − αn)βn(Γn − Γn−1) + 2(1 − αn)βn‖xn − xn−1‖
2

+ 2αn〈u− z, xn+1 − z〉

≤ (1 − αn)Γn + (1 − αn)βn‖xn − xn−1‖(
√

Γn +
√

Γn−1)

+2(1 − αn)βn‖xn − xn−1‖
2 + 2αn〈u− z, xn+1 − z〉. (4.166)

From (4.165) and conditions (C1) and (C3), using Lemma 3.1.52 (ii), we conclude

that Γn = ‖xn − z‖2 → 0 and thus xn → z as n→ ∞.

Case 2 : Suppose that there exists a subsequence {Γni} of the sequence {Γn}

such that Γni < Γni+1 for all i ∈ N. In this case, we define τ : N → N as in (3.60).

Then, by Lemma 3.1.54, we have Γτ(n) ≤ Γτ(n)+1. From (4.155), it follows that

Γτ(n)+1 ≤ (1 − ατ (n))Γτ(n) + (1 − ατ (n))βτ(n)‖xτ(n) − xτ(n)−1‖(
√

Γτ(n) +
√

Γτ(n)−1)



+ 2(1 − ατ (n))βτ(n)‖xτ(n) − xτ(n)−1‖
2 − σ

f 2
τ(n)(yτ(n))

‖∇fτ(n)(yτ (n))‖2

+ 2ατ(n)〈u− z, xτ(n)+1 − z〉, (4.167)

which gives

σ
f 2
τ(n)(yτ (n))

‖∇fτ(n)(yτ (n))‖2
≤ (1 − ατ (n))βτ(n)‖xτ(n) − xτ(n)−1‖(

√

Γτ(n) +
√

Γτ(n)−1)

+ 2(1 − ατ (n))βτ(n)‖xτ(n) − xτ(n)−1‖
2

+ 2ατ(n)〈u− z, xτ(n)+1 − z〉. (4.168)

Using a similar argument as in the proof of Case 1, we can show that

lim
n→∞

‖(I − P
C
τ(n)
i

)yτ(n)‖ = 0,

lim
n→∞

‖(I − P
Q
τ(n)
j

)yτ(n)‖ = 0,

and

lim sup
n→∞

〈u− z, xτ(n) − z〉 ≤ 0. (4.169)

On the other hand, we see that

‖xτ(n)+1 − xτ(n)‖ ≤ ατ(n)‖u− xτ(n)‖ + (1 − αn)‖yτ(n) − xτ(n)‖

+ (1 − ατ(n))ττ(n)‖∇fτ(n)(yτ(n))‖

= ατ(n)‖u− xτ(n)‖ + (1 − ατ(n))βτn‖xτ(n) − xτ(n)−1‖

+ (1 − ατ(n))ρτ(n)

fτ(n)(yτ(n))

‖∇fτ(n)(yτ(n))‖

→ 0. (4.170)

as n→ ∞. Using (4.169) and (4.170), we obtain

lim sup
n→∞

〈u− z, xτ(n)+1 − z〉 ≤ 0. (4.171)

Again from (4.167) we see that

ατ(n)Γτ(n) ≤ (1 − ατ (n))βτ(n)‖xτ(n) − xτ(n)−1‖(
√

Γτ(n) +
√

Γτ(n)−1)

+ 2(1 − ατ (n))βτ(n)‖xτ(n) − xτ(n)−1‖
2



+ 2ατ(n)〈u− z, xτ(n)+1 − z〉, (4.172)

which gives

Γτ(n) ≤ (1 − ατ (n))
βτ(n)

ατ(n)

‖xτ(n) − xτ(n)−1‖(
√

Γτ(n) +
√

Γτ(n)−1)

+ 2(1 − ατ (n))
βτ(n)

ατ(n)
‖xτ(n) − xτ(n)−1‖

2

+ 2〈u− z, xτ(n)+1 − z〉. (4.173)

This shows that, by (4.171) and (C3)

lim sup
n→∞

Γτ(n) ≤ 0. (4.174)

Thus ‖xτ(n) − z‖ → 0. We see that

√

Γτ(n)+1 = ‖xτ(n)+1 − z‖ ≤ ‖xτ(n)+1 − xτ(n)‖ + ‖xτ(n) − z‖ → 0, (4.175)

as n→ ∞. By Lemma 3.1.54, we also have

Γn ≤ Γτ(n)+1 → 0. (4.176)

So we can conclude that xn → z as n→ ∞. We thus complete the proof.

Remark 4.3.2. We remark here that the conditions (C3) is easily implemented in

numerical computation since the valued of ‖xn − xn−1‖ is known before choosing

βn. Indeed, the parameter βn can be chosen such that 0 ≤ βn ≤ β̄n, where

β̄n =







min
{

ωn
‖xn−xn−1‖ , β

}

if xn 6= xn−1,

β otherwise,

where {ωn} is a positive sequence such that ωn = o(αn).

4.3.2 Numerical examples

We provide some numerical examples and illustrate its performance by using

Algorithm 3.1. Firstly, numerical results are shown in different choices of the step-

size ρn with different values u, x1 and x2. Secondly, the comparison of convergence



rate is made by Example 4.3.3 to show that our algorithm has a better convergence

than that of He et al. [22] defined in (2.35). For this convenience, we denote

algorithm (2.35) by Algorithm 3.2.

Example 4.3.3. [22] Let H1 = H2 = R3, r = t = 2 and l1 = l2 = λ1 = λ2 = 1
4
.

Define

C1 = {x = (a, b, c)T ∈ R3 : a + b2 + 2c ≤ 0},

C2 = {x = (a, b, c)T ∈ R3 : a
2

16
+ b2

9
+ c2

4
− 1 ≤ 0},

Q1 = {x = (a, b, c)T ∈ R3 : a2 + b− c ≤ 0},

Q2 = {x = (a, b, c)T ∈ R3 : a
2

4
+ b2

4
+ c2

9
− 1 ≤ 0}.

and A =











2 −1 3

4 2 5

2 0 2











. Find x∗ ∈ C1 ∩ C2 such that Ax∗ ∈ Q1 ∩Q2.

Choose αn = 1
n+1

for all n ∈ N and β = 0.5. For each n ∈ N, let ωn =

1
(n+1)1.2

and define βn = β̄n as in Remark 4.3.2. We now study the effect (in terms

of convergence, stability, number of iterations required and the cpu time) of the

sequence {ρn} ⊂ (0, 4) on the iterative scheme by choosing different ρn such that

inf
n
ρn(4 − ρn) > 0 in the following cases.

Case 1: ρn = 1; Case 2: ρn = 2; Case 3: ρn = 3; Case 4: ρn = 3.95.

The stopping criterion is defined by

En =
1

2

2
∑

i=1

‖xn − PCni xn‖
2 +

1

2

2
∑

j=1

‖Axn − PQnjAxn‖
2 < 10−4.

We choose different choices of u, x0 and x1 as

Choice 1: u = (2, 2,−2)T , x0 = (1, 1, 5)T and x1 = (5,−3, 2)T ;

Choice 2: u = (1, 3,−2)T , x0 = (−4, 3,−2)T and x1 = (−5, 2, 1)T ;

Choice 3: u = (4,−3,−6)T , x0 = (7, 5, 1)T and x1 = (7,−3,−1)T ;

Choice 4: u = (7,−4,−3)T , x0 = (5.32, 2.33, 7.75)T and x1 = (3.23, 3.75,−3.86)T .



The numerical experiments, using our Algorithm 3.1, for each case and

choice are reported in the following Table 1. Table 1: Algorithm 3.1 with different

cases of ρn and different choices of u, x0 and x1

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 244 122 81 25

cpu (Time) 0.05129 0.027395 0.015663 0.00472

Choice 2 No. of Iter. 392 196 131 13

cpu (Time) 0.090982 0.04594 0.02693 0.002119

Choice 3 No. of Iter. 351 175 105 22

cpu (Time) 0.099001 0.034915 0.02138 0.00473

Choice 4 No. of Iter. 444 178 88 27

cpu (Time) 0.108428 0.036239 0.016809 0.005466

The convergence behavior of the error En for each choice of u, x0 and x1 is shown

in Figure 1-4, respectively.
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Figure 1: Comparison of the itertions for Choice 1 in Example 4.1
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Remark 4.3.4. We make the following observations from our numerical experi-

ments in Example 4.3.3.

1. For each different cases and different choices, we see that our algorithm is

effective. It appears that Algorithm 3.1 has a good convergence speed and

requires small number of iterations in the experiment.

2. It is observed that the number of iterations and the cpu run time are sig-

nificantly decreasing starting from Case 1 to Case 4. However, there is no

significant difference in both cpu run time and number of iterations for each

choice of x0 and x1. So, initial guess does not have any significant effect on

the convergence of the algorithm. However, we note that the sequence {xn}

converges to a solution in MSFP which is of the form PSu. Since the solution

set S is not singleton, so the choice of u effects on the convergence behavior

of the algorithm.

3. Our conditions appeared in Theorem 4.3.1 are easily implemented in numer-

ical computations. This is because it needs no estimation on the spectral

radius or the largest eigenvalue of ATA and the restriction of metric projec-

tions onto C and Q is relaxed by using those of Cn and Qn which have specific

forms in computation.

We finally end this section by providing a comparison of convergence of

Algorithm 3.1 and Algorithm 3.2. Let αn = 1
n+1

, ρn = 3.95 and ωn = 1
(n+1)1.2

for



all n ∈ N. Set β = 0.5 and βn = β̄n as in Remark 4.3.2. For points u, x0 and x1

randomly, we obtain the following numerical results.

Table 2: Comparison of Algorithm 3.1 and Algorithm 3.2 in Example 4.1

Algor 3.1 Algor 3.2

Choice 1 u = (0, 1, 2)T No. of Iter. 21 31

x0 = (−4,−2, 3)T cpu (Time) 0.004364 0.006537

x1 = (−1, 2, 0)T

Choice 2 u = (−1, 3, 1)T No. of Iter. 22 69

x0 = (−1, 2, 3)T cpu (Time) 0.004626 0.013906

x1 = (−7,−4,−5)T

Choice 3 u = (3, 1, 3)T No. of Iter. 97 287

x0 = (−5, 1,−4)T cpu (Time) 0.021787 0.074538

x1 = (−5,−2,−3)T

Choice 4 u = (−1, 3,−3)T No. of Iter. 18 161

x0 = (3.2645,−2.3458,−5.3245)T cpu (Time) 0.003854 0.034188

x1 = (−2.5891,−3.2654,−3.2564)T

The error plotting of En of Algorithm 3.1 and Algorithm 3.2 for each choice is

shown in Figure 5-8, respectively.
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Remark 4.3.5. In numerical experiment, it is revealed that the sequence generated

by our proposed Algorithm 3.1 involving the inertial technique converges more

quickly than by Algorithm 3.2 of He et al. [22] does. This concludes that the

inertial term constructed in Algorithm 3.1 improves the speed of convergence for

solving the MSFP.
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Abstract. We study the problem of proximal split feasibility of two objective
convex functions in Hilbert spaces. We prove that, under suitable conditions,
certain strong convergence theorems of the Halpern-type algorithm present
solutions to the proximal split feasibility problem. Finally, we provide some
related applications as well as numerical experiments.

1. Introduction and preliminaries

Let H1 and H2 be real Hilbert spaces. Let f : H1 → R ∪ {+∞} and g :
H2 → R ∪ {+∞} be proper, lower semicontinuous and convex functions. Let
A : H1 → H2 be a bounded linear operator.

Now we consider the proximal split feasibility problem. Find a minimizer x∗ of
f such that Ax∗ minimizes g; that is, find x∗ ∈ argmin f such that

Ax∗ ∈ argmin g, (1.1)

where argmin f = {x ∈ H1 : f(x) ≤ f(y),∀y ∈ H1}, and where argmin g = {x ∈
H2 : g(x) ≤ g(y),∀y ∈ H2}. In what follows, Ω = argmin f ∩ A−1(argmin g) will
denote the solution set of the problem (1.1).

The split feasibility problem in finite-dimensional Hilbert spaces was first intro-
duced by Censor and Elfving [4]. It concerns modeling inverse problems which
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arise from phase retrievals and in medical image reconstruction, especially
intensity-modulated therapy (see [3]). Due to its applications, this problem has
been discussed in many works published in recent years (see, for example, [2], [5],
[10], [12], [13]).

Let C be a nonempty, closed, and convex subset of a real Hilbert space H with
the norm ‖ · ‖ and the inner product 〈·, ·〉. For each x ∈ H, there exists a unique
nearest point in C, denoted by PCx, such that

‖x− PCx‖ = min
y∈C

‖x− y‖. (1.2)

Then PC is called the metric projection of H onto C. For any x ∈ H, we know
that

〈x− PCx, y − PCx〉 ≤ 0 (1.3)

for all y ∈ C.
If f and g are the indicator functions of two nonempty, closed, and convex sets

C ⊂ H1 and Q ⊂ H2, respectively, then

f(x) = δC(x) =

{
0 if x ∈ C,

+∞ otherwise,

and

g(x) = δQ(x) =

{
0 if x ∈ Q,

+∞ otherwise.

Then the problem (1.1) becomes the following convex minimization problem. Find
x∗ ∈ C such that

Ax∗ ∈ Q. (1.4)

This problem is called the split feasibility problem. A classical way to solve the
problem (1.4) is to use the CQ algorithm introduced by Byrne [1, p. 442], which
is defined in the following manner: x1 ∈ H1, and

xn+1 = PC

(
xn − µnA

∗(I − PQ)Axn

)
(1.5)

for each n ≥ 1, where the stepsize µn ∈ (0, 2
‖A‖2 ) and PC , PQ are the metric

projections on C and Q, respectively.
It is noted that, in general, the operator norm ‖A‖ or the largest eigenvalue

of A∗A may not be calculated easily. To overcome this difficulty, López et al. [9,
Algorithm 3.1] suggested the following algorithm: let x1 ∈ H1, and assume that
{xn} ⊂ C has been constructed and that ∇h(xn) 6= 0. Then compute xn+1 via
the rule

xn+1 = PC

(
xn − µnA

∗(I − PQ)Axn

)
(1.6)

for each n ≥ 1, where µn = ρn
h(xn)

‖∇h(xn)‖2 with 0 < ρn < 4 and h(xn) = 1
2
‖(I −

PQ)Axn‖2. It was proved that, if infn ρn(4 − ρn) > 0, then the sequence {xn}
defined by (1.6) converges weakly to a solution of (1.4).

Recall that the subdifferential of F : H → R ∪ {+∞} at x is defined by

∂F (x) =
{
y ∈ H : F (x) + 〈y, z − x〉 ≤ F (z),∀z ∈ H

}
. (1.7)
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The proximity operator of F is defined by

proxλF (x) = argmin
y∈H

{
F (y) +

1

2λ
‖x− y‖2

}
(1.8)

for any λ > 0. It is seen that

0 ∈ ∂F (x∗) ⇐⇒ x∗ = proxλF (x
∗). (1.9)

Hence the minimizers of any functions are the fixed point of its proximity opera-
tor. Moreover, the proximity operator of F is firmly nonexpansive, namely,〈

proxλF (x)− proxλF (y), x− y
〉
≥

∥∥proxλF (x)− proxλF (y)
∥∥2

(1.10)

for all x, y ∈ H, which is equivalent to∥∥proxλF (x)− proxλF (y)
∥∥2

≤ ‖x− y‖2 −
∥∥(I − proxλF )(x)− (I − proxλF )(y)

∥∥2
(1.11)

for all x, y ∈ H. Also, the complement I − proxλF is firmly nonexpansive. This
suggests that we should employ the technique in fixed point theory for solving
the convex minimization feasibility problem (see [6]).

Recently, Moudafi and Thakur [11, p. 2102] proposed the following split prox-
imal algorithm: x1 ∈ H1 and

xn+1 = proxλµnf

(
xn − µnA

∗(I − proxλg)Axn

)
, (1.12)

where the stepsize

µn = ρn
h(xn) + l(xn)

θ2(xn)
(1.13)

with

0 < ρn < 4, h(xn) =
1

2

∥∥(I − proxλg)Axn

∥∥2
, (1.14)

l(xn) =
1

2

∥∥(I − proxµnλf )xn

∥∥2
(1.15)

and

θ(xn) =

√∥∥∇h(xn)
∥∥2

+
∥∥∇l(xn)

∥∥2
. (1.16)

They proved that, if ε ≤ ρn ≤ 4h(xn)
h(xn)+l(xn)

− ε for some ε > 0 small enough, then

the sequence {xn} generated by (1.12) converges weakly to a solution of (1.1).
We observe, however, that the stepsize sequence {µn}, which appeared in (1.13),
seems to be implicit because of the terms l(xn) and θ(xn).

In order to solve the proximal split feasibility problem, we introduce a Halpern-
type algorithm and prove its strong convergence under the condition on the step-
size suggested by López et al. [9, Theorem 3.5]. Then we provide some numerical
experiments to support our main result. In order to complete the proof, we need
the following lemma proved by He and Yang [8].
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Lemma 1.1 ([8, Lemma 7]). Assume that {sn} is a sequence of nonnegative real
numbers such that

sn+1 ≤ (1− γn)sn + γnδn, (1.17)

and

sn+1 ≤ sn − ηn + tn (1.18)

for each n ≥ 0, where {γn} is a sequence in (0, 1), where {ηn} is a sequence of
nonnegative real numbers, and where {δn} and {tn} are real sequences such that

(a)
∑∞

n=0 γn = ∞,
(b) limn→∞ tn = 0, and
(c) limk→∞ ηnk

= 0 implies lim supk→∞ δnk
≤ 0 for any subsequence {nk}

of {n}.
Then limn→∞ sn = 0.

2. Main results

Let H1 and H2 be real Hilbert spaces. Let f : H1 → R ∪ {+∞} and g :
H2 → R∪ {+∞} be proper, lower semicontinuous, and convex functions, and let
A : H1 → H2 be a bounded linear operator. We introduce the following results.

Algorithm I.
Step 1. Choose an initial point x0 ∈ H1.
Step 2. Assume that {xn} has been constructed. Set

h(xn) =
1

2

∥∥(I − proxλg)Axn

∥∥2
(2.1)

with ‖∇h(xn)‖ 6= 0 for each n ≥ 1.

We compute xn+1 in the following manner:

xn+1 = αnu+ (1− αn) proxλf

(
xn − ρn

h(xn)

‖∇h(xn)‖2
A∗(I − proxλg)Axn

)
, (2.2)

for each n ≥ 1, where u ∈ H1 is fixed, λ > 0, {αn} ⊂ (0, 1), {ρn} ⊂ (0, 4).

Theorem 2.1. Suppose that Ω 6= ∅, and assume that {αn} and {ρn} satisfy the
following conditions:

(C1) limn→∞ αn = 0,
(C2)

∑∞
n=0 αn = ∞, and

(C3) lim infn→∞ ρn(4− ρn) > 0.

Then the sequence {xn} converges strongly to z = PΩu.

Proof. Let z = PΩu. Then z = proxλf z, and Az = proxλg Az. Note that

∇h(xn) = A∗(I − proxλg)Axn. (2.3)
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Thus, since I − proxλg is firmly nonexpansive, by using (1.10), we have〈
∇h(xn), xn − z

〉
=

〈
A∗(I − proxλg)Axn, xn − z

〉
=

〈
(I − proxλg)Axn, Axn − Az

〉
=

〈
(I − proxλg)Axn − (I − proxλg)Az,Axn − Az

〉
≥

∥∥(I − proxλg)Axn

∥∥2
= 2h(xn). (2.4)

Then by using (2.4), we obtain∥∥∥xn − ρn
h(xn)

‖∇h(xn)‖2
∇h(xn)− z

∥∥∥2

= ‖xn − z‖2 + ρ2n
h2(xn)

‖∇h(xn)‖2
− 2ρn

h(xn)

‖∇h(xn)‖2
〈
∇h(xn), xn − z

〉
≤ ‖xn − z‖2 + ρ2n

h2(xn)

‖∇h(xn)‖2
− 4ρn

h2(xn)

‖∇h(xn)‖2

= ‖xn − z‖2 − ρn(4− ρn)
h2(xn)

‖∇h(xn)‖2
. (2.5)

Since {ρn} ⊂ (0, 4), it then follows that∥∥∥xn − ρn
h(xn)

‖∇h(xn)‖2
∇h(xn)− z

∥∥∥ ≤ ‖xn − z‖. (2.6)

Next we show that {xn} is bounded. Consider

‖xn+1 − z‖

=
∥∥∥αn(u− z)

+ (1− αn)
(
proxλf

(
xn − ρn

h(xn)

‖∇h(xn)‖2
A∗(I − proxλg)Axn

)
− z

)∥∥∥
≤ αn‖u− z‖+ (1− αn)

∥∥∥xn − ρn
h(xn)

‖∇h(xn)‖2
∇h(xn)− z

∥∥∥
≤ αn‖u− z‖+ (1− αn)‖xn − z‖. (2.7)

It follows, by induction, that

‖xn − z‖ ≤ max
{
‖u− z‖, ‖x0 − z‖

}
; (2.8)

hence {xn} is bounded. Using (1.11) and (2.5), we see that

‖xn+1 − z‖2

≤ (1− αn)
∥∥∥proxλf(xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn)

)
− z

∥∥∥2

+ 2αn〈u− z, xn+1 − z〉

≤ (1− αn)
∥∥∥xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn)− z

∥∥∥2

− (1− αn)
∥∥∥xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn)
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− proxλf

(
xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn)

)∥∥∥2

+ 2αn〈u− z, xn+1 − z〉

≤ (1− αn)‖xn − z‖2 − (1− αn)ρn(4− ρn)
h2(xn)

‖∇h(xn)‖2

− (1− αn)
∥∥∥xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn)

− proxλf

(
xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn)

)∥∥∥2

+ 2αn〈u− z, xn+1 − z〉. (2.9)

Next we set

sn = ‖xn − z‖2, γn = αn, (2.10)

δn = 2〈u− z, xn+1 − z〉, tn = 2αn〈u− z, xn+1 − z〉 (2.11)

and

ηn = (1− αn)ρn(4− ρn)
h2(xn)

‖∇h(xn)‖2
+ (1− αn)

∥∥∥xn − ρn
h(xn)

‖∇h(xn)‖2
∇h(xn)

− proxλf

(
xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn)

)∥∥∥2

. (2.12)

From (2.9), it follows that

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 + 2αn〈u− z, xn+1 − z〉 (2.13)

and that

‖xn+1 − z‖2

≤ ‖xn − z‖2 − (1− αn)ρn(4− ρn)
h2(xn)

‖∇h(xn)‖2

− (1− αn)
∥∥∥xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn)

− proxλf

(
xn − ρn

h(xn)

‖∇h(xn)‖2
∇h(xn)

)∥∥∥2

+ 2αn〈u− z, xn+1 − z〉. (2.14)

It is easy to check that limn→∞ tn = 0 and that
∑∞

n=0 γn = ∞ by using (C1)
and (C2), respectively. In order to apply Lemma 1.1, we need to show that
limk→∞ ηnk

= 0 implies lim supk→∞ δnk
≤ 0 for any subsequence {nk} of {n}.

Suppose that limk→∞ ηnk
= 0 for any subsequence {nk} of {n}. By (C1) and

(C3), it follows that

lim
k→∞

h(xnk
)

‖∇h(xnk
)‖

= 0 (2.15)
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and that

lim
k→∞

∥∥∥xnk
− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)

− proxλf

(
xnk

− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)
)∥∥∥ = 0. (2.16)

We note that {∇h(xnk
)} is bounded. Indeed, by the Lipschitzian continuity of

∇h and by the boundedness of {xnk
}, we obtain∥∥∇h(xnk

)
∥∥ ≤

∥∥∇h(xnk
)−∇h(z)

∥∥+
∥∥∇h(z)

∥∥
≤ ‖A‖2‖xnk

− z‖+
∥∥∇h(z)

∥∥. (2.17)

Hence, by (2.15), we obtain

lim
k→∞

h(xnk
) = 0 (2.18)

for any subsequence {nk} of {n}. Since {xn} is bounded, there exists a subse-
quence {xni

} such that xni
⇀ x∗, and

lim sup
n→∞

〈u− z, xn − z〉 = lim
i→∞

〈u− z, xni
− z〉. (2.19)

By the lower semicontinuity of h, we have

0 ≤ h(x∗) ≤ lim inf
i→∞

h(xni
) = lim

i→∞
h(xni

) = 0. (2.20)

Hence we have

h(x∗) =
1

2

∥∥(I − proxλg)Ax
∗∥∥ = 0. (2.21)

Thus Ax∗ is a fixed point of the proximity operator g; that is, 0 ∈ ∂g(Ax∗), or
Ax∗ is a minimizer of g.

Next we show that x∗ is also a minimizer of f . Observe that

‖xnk
− proxλf xnk

‖

≤
∥∥∥xnk

−
(
xnk

− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)
)∥∥∥

+
∥∥∥xnk

− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)

− proxλf

(
xnk

− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)
)∥∥∥

+
∥∥∥proxλf(xnk

− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)
)
− proxλf xnk

∥∥∥
≤ 2ρnk

h(xnk
)

‖∇h(xnk
)‖

+
∥∥∥xnk

− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)

− proxλf

(
xnk

− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)
)∥∥∥. (2.22)

This implies, by (2.15) and (2.16), that

lim
k→∞

‖xnk
− proxλf xnk

‖ = 0 (2.23)
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for any subsequence {nk} of {n}. Note that proxλf is nonexpansive and that
xni

⇀ x∗. Thus, by the demiclosedness principle (see [7]), we conclude that x∗ is
a fixed point of the proximity operator of f . This shows that x∗ is also a minimizer
of f . Hence x∗ ∈ Ω. On the other hand, we observe that

‖xnk+1 − xnk
‖

≤ αnk
‖u− xnk

‖

+ (1− αnk
)
∥∥∥proxλf(xnk

− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)
)
− xnk

∥∥∥
≤ αnk

‖u− xnk
‖+ (1− αnk

)
∥∥∥proxλf(xnk

− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)
)

−
(
xnk

− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)
)∥∥∥

+ (1− αnk
)
∥∥∥(xnk

− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)
)
− xnk

∥∥∥
= αnk

‖u− xnk
‖+ (1− αnk

)
∥∥∥proxλf(xnk

− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)
)

−
(
xnk

− ρnk

h(xnk
)

‖∇h(xnk
)‖2

∇h(xnk
)
)∥∥∥

+ (1− αnk
)ρnk

h(xnk
)

‖∇h(xnk
)‖

→ 0 (2.24)

as k → ∞. Thus, by (1.3), we obtain

lim sup
k→∞

〈u− z, xnk+1 − z〉 = lim sup
k→∞

〈u− z, xnk
− z〉

≤ lim sup
n→∞

〈u− z, xn − z〉

= lim
i→∞

〈u− z, xni
− z〉

= 〈u− z, x∗ − z〉
≤ 0. (2.25)

This implies that

lim sup
k→∞

δnk
≤ 0 (2.26)

for any subsequence {nk}. Therefore, by using Lemma 1.1, we conclude that
sn = ‖xn − z‖2 → 0. Hence xn → z = PΩu. This completes the proof. �

When f = δC and g = δQ are indicator functions of nonempty, closed, and
convex sets C and Q of H1 and H2, respectively, we obtain the following results.
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Algorithm II.
Step 1. Choose an initial point x0 ∈ H1.
Step 2. Assume that {xn} ⊆ C has been constructed. Set h(xn) = 1

2
‖(I −

PQ)Axn‖2 with ‖∇h(xn)‖ 6= 0. Compute xn+1 in the following manner:

xn+1 = αnu+ (1− αn)PC

(
xn − ρn

h(xn)

‖∇h(xn)‖2
A∗(I − PQ)Axn

)
(2.27)

for each n ≥ 1, where u ∈ C is fixed, where {αn} ⊂ (0, 1) and where {ρn} ⊂ (0, 4).

Corollary 2.2. Suppose that Θ = C ∩ A−1(Q) 6= ∅, and assume that {αn} and
{ρn} satisfy the conditions (C1)–(C3). Then the sequence {xn} converges strongly
to z = PΘu.

Remark 2.3. In the case of ‖∇h(xn)‖ = 0, we see that Algorithm I reduces to the
following: x0 ∈ H1, and

xn+1 = αnu+ (1− αn) proxλf xn (2.28)

for each n ≥ 1, where u ∈ H1 is fixed, where {αn} ⊂ (0, 1), and where λ > 0. If the
sequence {αn} satisfies (C1) and (C2), then the sequence {xn} converges strongly
to z = Parg min fu. Since ∇h is continuous, it follows that ∇h(xn) → ∇h(z). Thus
we obtain ∇h(z) = 0 because ‖∇h(xn)‖ = 0. This shows that Az is a minimizer
of g. Hence {xn} converges strongly to a solution of (1.1).

Remark 2.4. We highlight our work with the following conclusions.

(1) In this paper, we have established strong convergence theorems for solv-
ing the proximal split feasibility problem of two convex functions. These
theorems mainly improve and generalize the results obtained by Byrne
[1], López et al. [9], and Moudafi and Thakur [11].

(2) We obtain strong convergence theorems by using a simpler and more
explicit method than that of Moudafi and Thakur [11] whose approach
may require an implicit computation.

3. Numerical examples

In this section, we give numerical examples to support our main theorem.

Example 3.1. Let f : R3 → R∪{+∞}, and let g : R3 → R∪{+∞} be defined by

f(x) = ‖x‖2 + (2, 4,−5)x+ 10 (3.1)

and

g(x) = ‖x‖2 − (8, 10,−8)x− 5, (3.2)

respectively. Let A =
( 1 0 2
−1 3 4
2 1 0

)
. Solve the following proximal split feasibility prob-

lem:
Find x∗ ∈ R3 such that x∗ minimizes f and Ax∗ minimizes g.

We can check that x∗ = (−1,−2, 2.5) is a minimizer of f such that Ax∗ =
(4, 5,−4) minimizes g. We next show the convergence behavior of the sequence in
Algorithm I by using our conditions. Let u = (1, 1, 1), and let x0 = (−2, 4,−3).
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Table 1. Numerical results for Algorithm I

n xn Axn f(xn) g(A(xn))
1 (−2.00000, 4.00000,−3.00000) (−8.00000, 2.00000, 0.00000) 66.000000 107.000000
5 (−1.00362,−1.95651, 2.47069) (3.93775, 5.01684,−3.96376) −1.247236 −61.994527
10 (−0.99977,−1.99961, 2.49974) (3.99971, 4.99992,−3.99915) −1.250000 −61.999999
15 (−0.99987,−1.99973, 2.49987) (3.99988, 5.00016,−3.99947) −1.250000 −62.000000
20 (−0.99989,−1.99981, 2.49988) (3.99987, 4.99997,−3.99960) −1.250000 −62.000000
25 (−0.99992,−1.99984, 2.49992) (3.99992, 5.00009,−3.99969) −1.250000 −62.000000
30 (−0.99993,−1.99988, 2.49992) (3.99991, 4.99998,−3.99973) −1.250000 −62.000000
35 (−0.99994,−1.99989, 2.49995) (3.99995, 5.00006,−3.99978) −1.250000 −62.000000
40 (−0.99995,−1.99991, 2.49994) (3.99994, 4.99999,−3.99980) −1.250000 −62.000000
45 (−0.99996,−1.99991, 2.49996) (3.99996, 5.00005,−3.99983) −1.250000 −62.000000
50 (−0.99996,−1.99993, 2.49995) (3.99995, 4.99999,−3.99984) −1.250000 −62.000000

Figure 1. Error plotting of Table 1.

Choose λ = 1, αn = 10−3

n+1
, and ρn = 2 for all n ∈ N. Computing Algorithm I

iteratively, we obtain the following numerical results.
From Table 1, the minimum values of f and g are −1.25 and −62, respectively.

The errors of ‖xn+1 − xn‖2 are plotted in Figure 1.

Example 3.2. Solve the following unconstrained linear equation system: find x∗

in R5 such that Ax∗ = b, where

A =


2 3 −1 1 6
−2 −4 1 −2 5
−1 −2 −2 −5 2
5 1 −3 3 −3
4 2 4 2 4

 , b =


−20
21
6

−15
18

 .
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Table 2. Numerical results for Algorithm II

n xT
n ‖xn+1 − xn‖2

1 (−3.00000, 1.00000, 4.00000,−2.00000, 0.00000) 1.906981E+01
50 (0.70266,−1.46469, 2.52074,−0.85842, 2.42700) 1.678374E−02
100 (0.82396,−1.68393, 2.71636,−0.91545, 2.25244) 5.873192E−03
150 (0.89597,−1.81311, 2.83231,−0.94998, 2.14917) 2.054463E−03
200 (0.93856,−1.88954, 2.90090,−0.97041, 2.08809) 7.183362E−04
250 (0.96375,−1.93475, 2.94148,−0.98250, 2.05196) 2.510188E−04
300 (0.97865,−1.96149, 2.96548,−0.98965, 2.03060) 8.764489E−05
350 (0.98746,−1.97732, 2.97968,−0.99389, 2.01797) 3.056299E−05
400 (0.99268,−1.98669, 2.98809,−0.99640, 2.01049) 1.063548E−05
450 (0.99577,−1.99226, 2.99308,−0.99789, 2.00606) 3.687309E−06
500 (0.99761,−1.99558, 2.99606,−0.99878, 2.00341) 1.269242E−06
550 (0.99874,−1.99762, 2.99789,−0.99934, 2.00180) 4.299900E−07

Let u = (1, 1, 1, 1, 1)T , and let x0 = (−3, 1, 4,−2, 0)T . Choose λ = 1, αn = 10−5
√
n+1

and ρn = 2 for all n ∈ N. Computing Algorithm II iteratively, we obtain the
following numerical results.

From Table 2, the solution of the linear equation system is (1,−2, 3,−1, 2)T .
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1 Introduction

Let H be a real Hilbert space with the inner product 〈., .〉 and the induced norm ||.||.
Let I denote the identity operator on H . LetC and Q be nonempty, closed, and convex
subsets of real Hilbert spaces H1 and H2, respectively. The split feasibility problem
(SFP) was first introduced by Censor and Elfving [6], and it can be formulated as
follows:

find x∗ ∈ C such that Ax∗ ∈ Q, (1.1)

if such points exist, where A : H1 → H2 is a bounded linear operator.
We will use � to denote the solution set of (1.1), i.e.,

� := {x∗ ∈ C : Ax∗ ∈ Q}.

The problem (1.1) arises in signal processing and image reconstruction with partic-
ular progress in intensity modulated therapy, and many iterative algorithms have been
established for it (see, e.g., [3,4,6–8,11,15,17,20]).

From an optimization point of view, x∗ ∈ � if and only if x∗ is a solution of the
following minimization problem with zero optimal value:

min
x∈C f (x) := 1

2
‖Ax − PQ Ax‖2. (1.2)

Note that the function f is differentiable convex and has a Lipschitz gradient given
by ∇ f (x) = A∗(I − PQ)Ax . Hence, x∗ solves the SFP if and only if x∗ solves the
variational inequality problem of finding x ∈ C such that

〈∇ f (x), y − x〉 ≥ 0 ∀y ∈ C. (1.3)

A popular algorithm was known under the name of CQ algorithm introduced by
Byrne [3,4] as follows:

xk+1 = PC
(
I − γ A∗(I − PQ)A

)
xk, k ∈ N, (1.4)

where γ ∈
(
0, 2

‖A‖2
)
.

In fact, the CQ algorithm is the gradient projection method for the variational
inequality problem (1.3). For more details on the SFP and the CQ algorithm, the
interested reader is referred to see [1,3–5,10,13,19,22,23] and the references therein.
Xu [22] proved the weak convergence of (1.4) in the setting of Hilbert spaces. In order
to obtain strong convergence, Wang and Xu [18] proposed the following algorithm:

xk+1 = PC
[
(1 − αk)(x

k − γ∇ f (xk))
]
, k ≥ 0. (1.5)

Wang and Xu [18] proved that the above iterative sequence converges strongly to
the minimum-norm solution of the SFP (1.1) provided that the sequence {αk} and
parameter γ satisfy the following conditions:
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(1) αk → 0 and 0 < γ < 2
‖A‖2 ;

(2)
∑∞

k=0 αk = ∞;
(3) either

∑∞
k=0 |αk+1 − αk | < ∞ or limk→∞ |αk+1 − αk |/αk = 0.

In 2012, Yu et al. [20] proved the strong convergence of (1.5) without the condition
(3). It is worth mentioning that the determination of the step-size in (1.5) depends
on the Lipschitz constant L = ‖A‖2 of gradient ∇ f , which is in general not easy to
compute in practice. This leads us to the following question.

Question Can we design a self-adaptive scheme for the algorithm (1.5) above?
In this paper, we give a positive answer to this question. Motivated and inspired by the
works of Lopéz et al. [13], Tian and Zhang [16], Wang and Xu [18], Xu [22], Yao et
al. [24] and Zhou et al. [25], we will introduce a self-adaptive CQ-type algorithm for
finding a solution of the SFP in the setting of infinite-dimensional real Hilbert spaces.
The advantage of our algorithm lies in the fact that step-sizes are dynamically chosen
and do not depend on the operator norm. Moreover, we will prove that the proposed
algorithm converges strongly to the minimum-norm solution of the SFP.

The rest of the paper is organized as follows. Some useful definitions and results
are collected in Sect. 2 for the convergence analysis of the proposed algorithm. In
Sect. 3, we introduce a new self-adaptive CQ-type algorithm for finding an element
of the set � and prove strong convergence of the method. Our result improves the
corresponding results of Chuang [9], Wang and Xu [18], Xu [22] and Yao et al. [24].
We also consider the relaxation version for the proposed method in Sect. 4. Finally in
Sect. 5, we provide some numerical experiments to illustrate the performance of the
proposed algorithms.

2 Preliminaries

Let C be a closed convex subset of a real Hilbert space H . It is easy to see that

‖t x + (1 − t)y‖2 ≤ t‖x‖2 + (1 − t)‖y‖2, (2.1)

for all x, y ∈ H and for all t ∈ [0, 1].
In what follows, the strong (weak) convergence of a sequence {xk} to x will be

denoted by xk → x ( xk ⇀ x), respectively. For a given sequence {xk} ⊂ H , ωw(xk)
denotes the weak ω-limit set of {xk}, that is,

ωw(xk) := {x ∈ H : xk j ⇀ x for some subsequence {k j } of {k}}.

For every element x ∈ H , there exists a unique nearest point in C , denoted by PCx
such that

||x − PCx || = inf{||x − y|| : y ∈ C}.

PC is called the metric projection of H onto C .

Lemma 2.1 The metric projection PC has the following basic properties:
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(1) 〈x − PCx, y − PCx〉 ≤ 0 for all x ∈ H and y ∈ C;
(2) ‖PCx − PC y‖ ≤ ‖x − y‖ for all x, y ∈ H;
(3) ‖PCx − PC y‖2 ≤ 〈x − y, PCx − PC y〉 for every x, y ∈ H;

Let C and Q be nonempty closed convex subsets of the infinite-dimensional real
Hilbert spaces H1 and H2, respectively, A ∈ B(H1, H2), where B(H1, H2) denotes
the family of all bounded linear operators from H1 to H2.

Lemma 2.2 (see [2]) Let f : H1 → R be a function defined by f (x) := 1
2‖Ax −

PQ Ax‖2. Then
(1) f is convex and differentiable;
(2) f is w-lsc on H1;
(3) ∇ f (x) = A∗(I − PQ)Ax, x ∈ H1;
(4) ∇ f is 1

‖A‖2 -inverse strongly monotone, i.e.,

〈∇ f (x) − ∇ f (y), x − y〉 ≥ 1

‖A‖2 ‖∇ f (x) − ∇ f (y)‖2 ∀x, y ∈ H1.

Remark 2.1 From (4) of Lemma 2.2, it is easy to see that ∇ f is ‖A‖2-Lipschitz, that
is,

‖∇ f (x) − ∇ f (y)‖ ≤ ‖A‖2‖x − y‖ ∀x, y ∈ H1.

In convergence analysis of the proposed algorithms, we will use the well-known
lemmas.

Lemma 2.3 (Maingé [14]) Let {�n} be a sequence of real numbers that does not
decrease at infinity, in the sense that there exists a subsequence {�n j } of {�n} such
that �n j < �n j+1 for all j ≥ 0. Also consider the sequence of integers {τ(n)}n≥n0
defined by

τ(n) = max{k ≤ n : �k < �k+1}.

Then {τ(n)}n≥n0 is a nondecreasing sequence verifying lim
n→∞τ(n) = ∞ and, for all

n ≥ n0,

max{�τ(n), �n} ≤ �τ(n)+1.

Lemma 2.4 (Xu [21]) Assume that {ak} is a sequence of nonnegative real numbers
such that

ak+1 ≤ (1 − αk)ak + αkγk + bk, k ∈ N,

where {αk} is a sequence in (0, 1), {bk} is a sequence of nonnegative real numbers
and {γk} is a sequence of real numbers such that

(1)
∑∞

k=0 αk = ∞,
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(2)
∑∞

k=0 bk < ∞,
(3) lim supk→∞ γk ≤ 0.

Then limk→∞ ak = 0.

We end this section by recalling a new fundamental tool which will be helpful for
proving strong convergence of our relaxation CQ algorithm.

Lemma 2.5 (He and Yang 2013 [12]) Assume that {sk} is a sequence of nonnegative
real numbers such that for all k ∈ N

sk+1 ≤ (1 − αk)sk + αkδk,

sk+1 ≤ sk − ηk + γk,

where {αk} is a sequence in (0, 1), {ηk} is a sequence of nonnegative real numbers,
and {δk} and {γk} are two sequences in R such that

(1)
∑∞

k=0 αk = ∞,
(2) limk→∞ γk = 0,
(3) limk→∞ ηnk = 0 implies that lim supk→∞ δnk ≤ 0 for any subsequence {nk} of

{n}.
Then lims→∞ sk = 0.

3 A New Modification of CQ Algorithm and Its Convergence

In this section, we introduce a CQ-type algorithm with self-adaptive step-sizes for
solving the SFP (1.1) and establish its strong convergence under somemild conditions.
The algorithm is designed as follows.

Algorithm 3.1 [CQ-type algorithm for the SFP (1.1)]
Initialization Take two positive sequences {βk} and {ρk} satisfying the following con-
ditions:

{βk} ⊂ (0, 1), lim
k→∞ βk = 0,

∞∑

k=0

βk = ∞, (3.1)

ρk(4 − ρk) > 0. (3.2)

Select initial x0 ∈ H1 and set k := 0.
Iterative Step Given xk , if ∇ f (xk) = 0 then stop [xk is a solution to the SFP (1.1)].
Otherwise, compute

λk = ρk f (xk)

‖∇ f (xk)‖2

and

xk+1 = PC
[
(1 − βk)(x

k − λk∇ f (xk))
]
. (3.3)
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Let k := k + 1 and return to Iterative Step.

For the convergence analysis of Algorithm 3.1, we need the following results.

Lemma 3.1 Let {xk} be the sequence generated by Algorithm 3.1. Then, for each
z ∈ �, the following inequality holds:

‖xk+1 − z‖2 ≤ βk‖z‖2 + (1 − βk)‖xk − z‖2 − ρk(4 − ρk)(1 − βk)
f 2(xk)

‖∇ f (xk)‖2 .

Proof By Lemma 2.1 (2) and (3.3), we have

‖xk+1 − z‖2 = ‖PC
[
(1 − βk)

(
xk − λk∇ f (xk)

)]
− PCz‖2

≤ ‖(1 − βk)
(
xk − λk∇ f (xk)

)
− z‖2

= ‖βk(−z) + (1 − βk)
(
xk − λk∇ f (xk) − z

)
‖2 (3.4)

≤ βk‖z‖2 + (1 − βk)‖xk − λk∇ f (xk) − z‖2. (3.5)

Note that

〈∇ f (xk), xk − z〉 = 〈(I − PQ)Axk, Axk − Az〉
= 〈(I − PQ)Axk − (I − PQ)Az, Axk − Az〉
≥ ‖(I − PQ)Axk‖2 = 2 f (xk). (3.6)

We now estimate the second term on the right-hand side of (3.5) as follows:

∥∥
∥xk − λk∇ f (xk) − z

∥∥
∥
2

= ‖xk − z‖2 + λ2k‖∇ f (xk)‖2 − 2λk〈∇ f (xk), xk − z〉
≤ ‖xk − z‖2 + λ2k‖∇ f (xk)‖2 − 4λk f (x

k)

≤ ‖xk − z‖2 + ρ2
k f

2(xk)

‖∇ f (xk)‖2 − 4ρk f 2(xk)

‖∇ f (xk)‖2 . (3.7)

From (3.5) and (3.7), we arrive at

‖xk+1 − z‖2 ≤ βk‖z‖2 + (1 − βk)‖xk − z‖2

+ (1 − βk)

[
ρ2
k f

2(xk)

‖∇ f (xk)‖2 − 4ρk f 2(xk)

‖∇ f (xk)‖2
]

= βk‖z‖2 + (1 − βk)‖xk − z‖2 − ρk(4 − ρk)(1 − βk)
f 2(xk)

‖∇ f (xk)‖2 .

This completes the proof. ��
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Lemma 3.2 The sequence {xk} generated by Algorithm 3.1 is bounded.

Proof By Lemmas 3.1 and (3.2), we have

‖xk+1 − z‖2 ≤ βk‖z‖2 + (1 − βk)‖xk − z‖2 − ρk(4 − ρk)(1 − βk)
f 2(xk)

‖∇ f (xk)‖2
≤ βk‖z‖2 + (1 − βk)‖xk − z‖2.

So, we get

‖xk+1 − z‖2 ≤ max{‖z‖2, ‖xk − z‖2}.

By induction,

‖xk+1 − z‖2 ≤ max{‖z‖2, ‖x0 − z‖2},

this implies that sequence {xk} is bounded. ��
Lemma 3.3 Let {xk} be the sequence generated by Algorithm 3.1. Then the following
inequality holds for all z ∈ � and k ∈ N,

‖xk+1 − z‖2 ≤ (1 − βk)‖xk − z‖2 + βk

[
βk‖z‖2 + 2(1 − βk)〈xk − z,−z〉

+ 2λk(1 − βk)〈∇ f (xk), z〉
]
.

Proof By (3.2) and (3.7), we have

‖xk − λk∇ f (xk) − z‖2 ≤ ‖xk − z‖2 − ρk(4 − ρk)
f 2(xk)

‖∇ f (xk)‖2
≤ ‖xk − z‖2.

Combining with (3.4) of Lemma 3.1, we obtain

‖xk+1 − z‖2 ≤
∥∥∥βk(− z) + (1 − βk)

(
xk − λk∇ f (xk) − z

)∥∥∥
2

≤β2
k ‖z‖2 + (1 − βk)

2
∥∥∥xk − λk∇ f (xk) − z

∥∥∥
2

+ 2βk(1 − βk)
〈
xk − λk∇ f (xk) − z,− z

〉

≤ β2
k ‖z‖2 + (1 − βk)

2‖xk − z‖2 + 2βk(1 − βk)〈xk − z,−z〉
+ 2βkλk(1 − βk)〈∇ f (xk), z〉

≤ (1 − βk)‖xk − z‖2 + βk

[
βk‖z‖2 + 2(1 − βk)〈xk − z,−z〉

+ 2λk(1 − βk)〈∇ f (xk), z〉
]
.

The proof is complete. ��
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We are now in a position to establish the strong convergence of the sequence gen-
erated by Algorithm 3.1.

Theorem 3.1 Assume that infk ρk(4−ρk) > 0. Then the sequence {xk} generated by
Algorithm 3.1 converges strongly to the minimum-norm element of �.

Proof Let z := P�0. From Lemma 3.1, we have

‖xk+1 − z‖2 ≤ βk‖z‖2 + (1 − βk)‖xk − z‖2 − ρk(4 − ρk)(1 − βk)
f 2(xk)

‖∇ f (xk)‖2 .

(3.8)

From (3.2) and the assumption infk ρk(4− ρk) > 0, we can find a constant σ such
that (1 − βk)ρk(4 − ρk) ≥ σ > 0 for all k ∈ N. Hence

‖xk+1 − z‖2 ≤ βk‖z‖2 + (1 − βk)‖xk − z‖2 − σ
f 2(xk)

‖∇ f (xk)‖2 (3.9)

or

σ
f 2(xk)

‖∇ f (xk)‖2 ≤ βk‖z‖2 + (1 − βk)‖xk − z‖2 − ‖xk+1 − z‖2.

So, we obtain

σ
f 2(xk)

‖∇ f (xk)‖2 ≤ ‖xk − z‖2 − ‖xk+1 − z‖2 + βk‖z‖2. (3.10)

Now, we consider two possible cases
Case 1 Put �k := ‖xk − z‖2 for all k ∈ N. Assume that there is a k0 ≥ 0 such that for
each k ≥ n0,�k+1 ≤ �k . In this case, limk→∞ �k exists and limk→∞(�k−�k+1) = 0.

Since limk→∞ βk = 0, it follows from (3.10) that

lim
k→∞ σ

f 2(xk)

‖∇ f (xk)‖2 = 0. (3.11)

It follows from (3.11) that

lim
k→∞ λk

∥∥∇ f (xk)
∥∥ = lim

k→∞
f (xk)

‖∇ f (xk)‖ = 0.

Since ∇ f is Lipschitz, we have

‖∇ f (xk)‖ = ‖∇ f (xk) − ∇ f (z)‖ ≤ ‖A‖2‖xk − z‖ ∀z ∈ �.

Hence, {∇ f (xk)} is bounded. This together with (3.11) implies that f (xk) → 0 as
k → ∞. We now show that ωw(xk) ⊂ �. Let x̄ ∈ ωw(xk) be an arbitrary element.
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Since {xk} is bounded (by Lemma 3.2), there exists a subsequence {xk j } of {xk} such
that xk j ⇀ x̄ . With regard to the weak lower semicontinuity of f , we obtain

0 ≤ f (x̄) ≤ lim inf
j→∞ f (xk j ) = lim

k→∞ f (xk) = 0.

We immediately deduce that f (x̄) = 0, i.e., Ax̄ ∈ Q. The choice of x̄ in ωw(xk)
was arbitrary, and so we conclude that ωw(xk) ⊂ �.

Using Lemma 3.3, we have

‖xk+1 − z‖2 ≤ (1 − βk)‖xk − z‖2 + βk

[
βk‖z‖2 + 2(1 − βk)〈xk − z,− z〉

+ 2λk(1 − βk)〈∇ f (xk), z〉
]

≤ (1 − βk)‖xk − z‖2 + βk

[
βk‖z‖2 + 2(1 − βk)〈xk − z,−z〉

+ 2(1 − βk)λk‖∇ f (xk)‖‖z‖
]
. (3.12)

To apply Lemma 2.4, it remains to show that lim supk→∞〈xk − z,−z〉 ≤ 0. Indeed,
since z = P�0, by using the property of the projection [Lemma 2.1 (1)], we arrive at

lim sup
k→∞

〈xk − z,−z〉 = max
ẑ∈ωw(xk )

〈ẑ − z,−z〉 ≤ 0.

By applying Lemma 2.4 to (3.12) with the data:

ak := ‖xk − z‖2, αk := βk, bk := 0,

γk := βk‖z‖2 + 2(1 − βk)〈xk − z,−z〉 + 2λk‖∇ f (xk)‖‖z‖,

we immediately deduce that the sequence {xk} converges strongly to z = P�0. Fur-
thermore, it follows again from Lemma 2.1 (1) that

〈p − z,−z〉 ≤ 0 ∀p ∈ �.

Hence

‖z‖2 ≤ 〈p, z〉 ≤ ‖z‖‖p‖ ∀p ∈ �,

from which we infer that z is the minimum-norm solution of the SFP (1.1).
Case 2 Assume that there exists a subsequence {�km } ⊂ {�k} such that �km ≤ �km+1
for all m ∈ N. In this case, we can define τ : N → N by

τ(k) = max{n ≤ k : �n < �n+1}.
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Then we have from Lemma 2.3 that τ(k) → ∞ as k → ∞ and �τ(k) < �τ(k)+1.
So, we have from (3.10) that

σ
f 2(xτ(k))

‖∇ f (xτ(k))‖2 ≤ ‖xτ(k) − z‖2 − ‖xτ(k)+1 − z‖2 + βτ(k)‖z‖2

≤ βτ(k)‖z‖2.

Following the same way as the proof of Case 1, we have that

lim
k→∞

f 2(xτ(k))

‖∇ f (xτ(k))‖2 = 0,

lim sup
k→∞

〈xτ(k) − z,− z〉 = max
z̃∈ωw(x{τ (k)})

〈̃z − z,− z〉 ≤ 0 (3.13)

and

‖xτ(k)+1 − z‖2 ≤ (1 − βτ(k))‖xτ(k) − z‖2

+ βτ(k)

[
βτ(k)‖z‖2 + 2(1 − βτ(k))〈xτ(k) − z,− z〉

+ 2(1 − βτ(k))λτ(k)

∥∥∥∇ f (xτ(k))

∥∥∥ ‖z‖
]
, (3.14)

where βτ(k) → 0.
Since �τ(k) < �τ(k)+1, we have from (3.14) that

‖xτ(k) − z‖2 ≤ βτ(k)‖z‖2 + 2(1 − βτ(k))〈xτ(k) − z,− z〉
+ 2(1 − βτ(k))λτ(k)‖∇ f (xτ(k))‖‖z‖, (3.15)

Combining (3.13) and (3.15) yields

lim sup
k→∞

‖xτ(k) − z‖2 ≤ 0,

and hence

lim
k→∞ ‖xτ(k) − z‖2 = 0.

From (3.14), we have

lim sup
k→∞

‖xτ(k)+1 − z‖2 ≤ lim sup
k→∞

‖xτ(k) − z‖2.

Thus

lim
k→∞ ‖xτ(k)+1 − z‖2 = 0.
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Therefore, by Lemma 2.3, we obtain

0 ≤ ‖xk − z‖ ≤ max{‖xτ(k) − z‖, ‖xk − z‖} ≤ ‖xτ(k)+1 − z‖ → 0.

Consequently, {xk} converges strongly to z = P�0. The proof is complete. ��
Remark 3.1 One main advantage of our algorithm compared to others is that step-
sizes are directly computed in each iteration and do not depend on the norm of A.
Therefore, Theorem 3.1 improves Theorem 5.5 of Chuang [9], Theorem 4.3 of Wang
and Xu [18], Theorem 5.5 of Xu [22], and Theorem 3.1 of Yao et al. [24].

4 A Relaxation Algorithm

When the sets C and Q are complicated, the computation of PC and PQ is expensive.
Thismay affect the applicability ofAlgorithm3.1. To overcome this drawback, wewill
use relaxation method of Yang [23] as follows: Consider the split feasibility problem
(1.1) inwhich the involved setsC and Q are given as sub-level sets of convex functions,
i.e.,

C = {x ∈ H1 : c(x) ≤ 0} and Q = {y ∈ H2 : q(y) ≤ 0},

where c : H1 → R and q : H2 → R are lower semicontinuous convex functions. We
assume that ∂c and ∂q are bounded operators (i.e., bounded on bounded sets). Set

Ck = {x ∈ H1 : c(xk) ≤ 〈ξ k, xk − x〉}, (4.1)

where ξ k ∈ ∂c(xk), and

Qk = {y ∈ H2 : q(Axk) ≤ 〈ζ k, Axk − y〉}, (4.2)

where ζ k ∈ ∂q(Axk). Obviously, Ck and Qk are half-spaces, and it is easy to check
that Ck ⊃ C and Qk ⊃ Q hold for every k ≥ 0 from the subdifferentiable inequality.
We now define

fk(x) = 1

2
‖(I − PQk )Ax‖2, k ≥ 0, (4.3)

where Qk is given as in (4.2). We have

∇ fk(x) = A∗(I − PQk )Ax .

Now we introduce the following relaxation version of Algorithm 3.1.

Algorithm 4.1 (A relaxation CQ algorithm for SFP (1.1))
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Initialization Take two positive sequences {βk} and {ρk} satisfying the following con-
ditions:

{βk} ⊂ (0, 1), lim
k→∞ βk = 0,

∞∑

k=0

βk = ∞, (4.4)

ρk(4 − ρk) > 0. (4.5)

Select initial x0 ∈ H1 and set k := 0.
Iterative Step Given xk , if ∇ fk(xk) = 0 then stop [xk is a solution to the SFP (1.1)].
Otherwise, compute

λk = ρk fk(xk)

‖∇ fk(xk)‖2

and

xk+1 = PCk

[
(1 − βk)(x

k − λk∇ fk(x
k))

]
. (4.6)

Let k := k + 1 and return to Iterative Step.

The following lemma is quite helpful to analyze the convergence of Algorithm 4.1.

Lemma 4.1 If ∇ fk(xk) = 0, then xk ∈ �.

Proof If ∇ fk(xk) = 0 for some xk ∈ Ck , then

A∗(I − PQk )Ax
k = 0.

It is easy to see that Axk ∈ Qk . By (4.1) and (4.2) we have c(xk) ≤ 0 and
q(Axk) ≤ 0. So xk ∈ C and Axk ∈ Q and the proof is complete. ��

The strong convergence of Algorithm 4.1 is proved below.

Theorem 4.1 Assume that infk ρk(4−ρk) > 0. Then the sequence {xk} generated by
Algorithm 4.1 converges strongly to the minimum-norm element of �.

Proof Let z := P�0. Since infk ρk(4 − ρk) > 0, we may assume without loss of
generality that there exists ε > 0 such that ρk(4 − ρk)(1 − βk) ≥ ε. Arguing as the
proof in the proof of Theorem 3.1 and replacing f , C and Q with fk , Ck and Qk ,
respectively, we have

‖xk+1 − z‖2 ≤ βk‖z‖2 + (1 − βk)‖xk − z‖2 − ε f 2k (xk)

‖∇ fk(xk)‖2 . (4.7)

From (4.7) and (3.12), we obtain the following two inequalities:

‖xk+1 − z‖2 ≤ (1 − βk)‖xk − z‖2 + βkδk,

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − ηk + βk‖z‖2,
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where

δk := βk‖z‖2 + 2(1 − βk)〈xk − z,−z〉 + 2(1 − βk)λk
∥
∥∇ fk(x

k)
∥
∥‖z‖,

ηk = ε f 2k (xk)

‖∇ fk(xk)‖2 , {βk} ⊂ (0, 1), lim
k→∞ βk = 0,

∞∑

k=0

βk = ∞.

In order to use Lemma 2.5 with the data sk := ‖xk − z‖2, it remains to show that
for any subsequence {kl} of {k},

ηkl → 0 �⇒ lim sup
l→∞

δkl ≤ 0.

A similar argument as in the proof of Theorem 3.1 shows that

lim
l→∞ fkl (x

kl ) = 0. (4.8)

or equivalently,

lim
l→∞

∥∥
∥(I − PQkl

)Axkl
∥∥
∥
2 = 0. (4.9)

Since {xkl } is bounded, there exists a subsequence {xklm } of {xkl } which converges
weakly to x̄ .Without loss of generality,we can assume that xkl ⇀ x̄ . Since PQkl

Axkl ∈
Qkl , we have

q(Axkl ) ≤
〈
ζ kl , Axkl − PQkl

Axkl
〉
, (4.10)

where ζ kl ∈ ∂q(Axkl ). From the boundedness assumption of ζ kl and (4.9), we have

q(Axkl ) ≤ ‖ζ kl‖
∥∥∥Axkl − PQkl

Axkl
∥∥∥ → 0. (4.11)

From theweak lower semicontinuity of the convex functionq(x) and since xkl ⇀ x̄ ,
it follows from (4.13) that

q(Ax̄) ≤ lim inf
l→∞ q(Axkl ) ≤ 0,

which means that Ax̄ ∈ Q.
We will prove that

lim
l→∞ ‖xkl − xkl+1‖ = 0. (4.12)
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Indeed, from (4.6) we obtain

‖xkl+1 − xkl‖ =
∥∥∥PCkl

[
(1 − βkl )

(
xkl − λkl∇ fkl (x

kl )
)]

− xkl
∥∥∥

≤
∥∥∥(1 − βkl )

(
xkl − λkl∇ fkl (x

kl )
)

− xkl
∥∥∥

≤ βkl

∥
∥∥xkl − λkl∇ fkl (x

kl )

∥
∥∥ + λkl

∥
∥∥∇ fkl (x

kl )

∥
∥∥ → 0,

as l → ∞.
Further, using the fact that xkl+1 ∈ Ckl and by the definition of Ckl , we get

c(xkl ) ≤ 〈ξ kl , xkl − xkl+1〉,

where ξ kl ∈ ∂c(xkl ). Due to the boundedness of ξ kl and (4.12), we have

c(xkl ) ≤ ‖ξ kl‖
∥∥∥xkl − xkl+1

∥∥∥ → 0 (4.13)

as l → ∞. Similarly, we obtain that c(x̄) ≤ 0, i.e., x̄ ∈ C .
We now deduce that

lim sup
l→∞

δkl = lim sup
l→∞

[
βkl‖z‖2 + 2(1 − βkl )〈xkl − z,−z〉

+ 2(1 − βkl )λkl

∥∥∥∇ f (xkl )
∥∥∥ ‖z‖

]

= 2 lim sup
l→∞

〈xkl − z,−z〉
= 2 max

z̄∈ωw(x{kl })
〈z̄ − z,−z〉 ≤ 0.

Finally, using Lemma 2.5, we have ‖xk − z‖ → 0. We thus complete the proof.
��

5 Numerical Experiments

In this section, we provide the numerical examples and illustrate its performance by
using Algorithm 3.1.

Example 5.1 Let H1 = H2 = L2[0, 1] with the inner product given by

〈 f, g〉 =
∫ 1

0
f (t)g(t)dt.

Let C = {x ∈ L2[0, 1] : ‖x‖L2 ≤ 1} and Q = {x ∈ L2[0, 1] : 〈x, t
2 〉 = 0}. Find

x ∈ C such that Ax ∈ Q, where (Ax)(t) = x(t)
2 .
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Table 1 Algorithm 3.1 with different cases of ρk

ρk = 0.5k
k+1 ρk = k

k+1 ρk = 2k
k+1 ρk = 3.5k

k+1

x1 = sin(t) + t2 No. of Iter. 7 5 3 2

cpu (time) 0.0285646 0.0211888 0.0119378 0.0081063

x1 = et + 2t No. of Iter. 10 6 4 2

cpu (time) 0.0405886 0.0236906 0.0155129 0.0088102

100
10−4

10−3

10−2

10−1

Number of iterations (k)

E
k

ρk=0.5k/(k+1)

ρk=k/(k+1)

ρk=2k/(k+1)

ρk=3.5k/(k+1)

Fig. 1 Error plotting with x1 = sin(t) + t2

Choose βk = 1
k+1 for all k ∈ N. The stopping criterion is defined by

Ek = 1

2

∥∥∥Axk − PQ Axk
∥∥∥
2

L2
< 10−4.

We now study its convergence in terms of the number of iterations and the cpu time
with different step-sizes of {ρk} as reported in Table 1.

The error plotting of Ek for each choice of x1 are shown inFigs. 1 and2, respectively.
We next provide some numerical examples and illustrate its performance by using

the modified relaxed CQ method (Algorithm 4.1).

Example 5.2 Let H1 = H2 = R
3, C = {x = (a, b, c)T ∈ R

3 : a2 + b2 − 4 ≤ 0} and
Q = {x = (a, b, c)T ∈ R

3 : a + c2 − 1 ≤ 0}. Find x ∈ C such that Ax ∈ Q, where

A =
⎛

⎝
− 1 3 5
5 3 2
2 1 0

⎞

⎠.
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10010−4

10−3

10−2

10−1

100

Number of iterations (k)

E
k

ρk=0.5k/(k+1)

ρk=k/(k+1)

ρk=2k/(k+1)

ρk=3.5k/(k+1)

Fig. 2 Error plotting with x1 = et + 2t

1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

Number of iterations (k)

E
k

ρk=0.5k/(k+1)

ρk=k/(k+1)

ρk=2k/(k+1)

ρk=3.5k/(k+1)

Fig. 3 Error plotting with x1 = [0, 1, 2]T

Choose βk = 1
k+1 for all k ∈ N. The stopping criterion is defined by

Ek = 1

2

∥∥∥Axk − PQk Ax
k
∥∥∥
2

2
< 10−4.

The numerical experiments for each case of ρk are shown in Figs. 3 and 4, respec-
tively (Table 2).
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1 2 3 4 5 6 7 8 9 10
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Number of iterations (k)

E
k

ρk=0.5k/(k+1)

ρk=k/(k+1)

ρk=2k/(k+1)

ρk=3.5k/(k+1)

Fig. 4 Error plotting with x1 = [− 2, 5, 4]T

Table 2 Algorithm 4.1 with different cases of ρk

ρk = 0.5k
k+1 ρk = k

k+1 ρk = 2k
k+1 ρk = 3.5k

k+1

x1 = [0, 1, 2]T No. of Iter. 7 5 3 2

cpu (time) 0.003993 0.003588 0.002996 0.002916

x1 = [− 2, 5, 4]T No. of Iter. 10 6 4 3

cpu (time) 0.005002 0.004193 0.003783 0.003639

Remark 5.1 From our numerical experiments, it is observed that the different choices
of x1 have no effect in terms of cpu run time for the convergence of our algorithm.
However, if the step-sizes {ρk} is taken close to 4, then the number of iterations and
the cpu time have small reduction.
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Abstract. In this work, we propose a new version of inertial relaxed CQ al-

gorithms for solving the split feasibility problems in the frameworks of Hilbert
spaces. We then prove its strong convergence by using a viscosity approxi-

mation method under some weakened assumptions. To be more precisely, the

computation on the norm of operators and the metric projections is relaxed.
Finally, we provide numerical experiments to illustrate the convergence behav-

ior and to show the effectiveness of the sequences constructed by the inertial

technique.

1. Introduction. LetH1 andH2 be real Hilbert spaces. Let C andQ be nonempty,
closed and convex subsets of H1 and H2, respectively. In this research, we study
the Split Feasibility Problem (SFP) which is the problem of finding a point x ∈ C
such that

Ax ∈ Q (1)

where A : H1 → H2 is a given bounded linear operator (here we denote A∗ by its
adjoint operator). This problem was first proposed, in finite-dimensional Hilbert
spaces, by Censer and Elfving in [7] for modeling inverse problems which arise from
phase retrievals, medical image reconstruction and recently in modeling of intensity
modulated radiation therapy. The SFP attracts the attention of many authors due
to its application in signal processing and image recovery [13]. Various algorithms
have been invented to solve it (see, for examples, [4, 6, 25, 26]).

We assume the SFP (1) is consistent, and let S be the solution set, i.e.,

S = {x ∈ C : Ax ∈ Q}.

It is easily seen that S is closed and convex. In Hilbert spaces, a classical way
to solve the SFP is to employ the CQ algorithm which was introduced by Byrne
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Key words and phrases. Inertial method, viscosity approximation method, relaxed CQ algo-

rithm, split feasibility problem, hilbert space.
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[4] and is defined in the following manner: take an initial point x1 arbitrarily and
generate the sequence {xn} by

xn+1 = PC(xn − µnA∗(I − PQ)Axn), n ≥ 1, (2)

where the step-size µn ∈ (0, 2
‖A‖2 ) and PC , PQ are the metric projections on C and

Q, respectively. We note that this algorithm is found to be a gradient-projection
method in convex minimization as a spacial case. It was proved that {xn} generated
by (2) converges weakly to a solution of SFP.

However, in general, the computation of a projection onto a general closed convex
subset is difficult because of its closed form. To overcome this difficulty, Fukushima
[11] suggested a so-called relaxed projection method to calculate the projection onto
a level set of a convex function by computing a sequence of projections onto half-
spaces containing the original level set. In the setting of finite-dimensional Hilbert
spaces, Yang [28] introduced the relaxed CQ algorithms for solving SFP where the
closed convex subsets C and Q are level sets of convex functions given as follows:

C = {x ∈ H1 : c(x) ≤ 0} and Q = {y ∈ H2 : q(y) ≤ 0}, (3)

where c : H1 → R and q : H2 → R are convex functions. We assume that both
c and q are subdifferentiable on H1 and H2, respectively, and that ∂c and ∂q are
bounded operators (i.e., bounded on bounded sets). It is known that every convex
function defined on a finite-dimensional Hilbert space is subdifferentiable and its
subdifferential operator is a bounded operator (see [3]). In what follows, we define
two sets at point xn by

Cn = {x ∈ H1 : c(xn) ≤ 〈ξn, xn − x〉}, (4)

where ξn ∈ ∂c(xn), and

Qn = {y ∈ H2 : q(Axn) ≤ 〈εn, Axn − y〉}, (5)

where εn ∈ ∂q(Axn). It is clear that Cn and Qn are half-spaces and Cn ⊃ C and
Qn ⊃ Q for every n ≥ 1. The specific form of the metric projections onto Cn and
Qn can be found in [3]. In fact, Yang [28] constructed a relaxed CQ algorithm for
solving the SFP by using the half-spaces Cn and Qn instead of the sets C and Q
in the CQ algorithm, respectively and proved its convergence under some suitable
choices of the step-sizes.

In order to achieve the convergence, in such algorithms mentioned above, the
selection of the step-sizes requires prior information on the norm of the bounded
linear operator (matrix in the finite-dimensional framework), which is not always
possible in practice. To avoid this computation, there have been worthwhile works
that the convergence is guaranteed without any prior information of the matrix norm
(see, for examples [24, 25, 26, 29]). Among these works, López et al. [13] introduced
a new way to select the step-size by replacing the parameter µn appeared in (2) by

µn =
ρnf(xn)

‖∇f(xn)‖2
, n ≥ 1, (6)

where ρn ∈ (0, 4), f(xn) = 1
2‖(I − PQ)Axn‖2 and ∇f(xn) = A∗(I − PQ)Axn for

all n ≥ 1. They also practised this way of selecting step-sizes for variants of the
CQ algorithm, including a relaxed CQ algorithm, and a Halpern-type algorithm
and proved both weak and strong convergence. Subsequently, in 2013, He and Zhao
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[12] introduced the following Halpern-relaxed CQ algorithm in Hilbert spaces: take
x1 ∈ H1 and generate {xn} by

xn+1 = PCn [αnu+ (1− αn)(xn − τn∇fn(xn))], (7)

where Cn and Qn are, respectively, given as in (4) and (5), {αn} ⊂ (0, 1), {ρn} ⊂
(0, 4) and the sequence {τn} is given by

τn =
ρnfn(xn)

‖∇fn(xn)‖2
(8)

and

fn(xn) =
1

2
‖(I − PQn)Axn‖2, n ≥ 1. (9)

In this case, we have
∇fn(xn) = A∗(I − PQn)Axn. (10)

They obtained the strong convergence provided lim
n→∞

αn = 0,
∞∑
n=1

αn =∞ and the

step-size is chosen such that inf
n∈N

ρn(4− ρn) > 0.

In optimization theory, to speed up the convergence rate, Polyak [22] firstly
proposed the heavy ball method of the two-order time dynamical system which is
a two-step iterative method for minimizing a smooth convex function f . In order
to improve the convergence rate, Nesterov [21] introduced a modified heavy ball
method as follows:

yn = xn + θn(xn − xn−1),

xn+1 = yn − λn∇f(yn), n ≥ 1, (11)

where θn ∈ [0, 1) is an extrapolation factor and λn is a positive sequence. Here,
the inertia is represented by the term θn(xn − xn−1). It is remarkable that the
inertial terminology greatly improves the performance of the algorithm and has a
nice convergence properties (see [9, 10, 14]). In [1], Alvarez and Attouch employed
the idea of the heavy ball method to the setting of a general maximal monotone
operator using the framework of the proximal point algorithm [23]. This method is
called the inertial proximal point algorithm and it is of the following form:

yn = xn + θn(xn − xn−1),

xn+1 = (I + λnT )−1(yn), n ≥ 1, (12)

where T is a maximal monotone operator. It was proved that if λn is non-decreasing
and θn ∈ [0, 1) is chosen such that

∞∑
n=1

θn‖xn − xn−1‖2 <∞,

then {xn} generated by (12) converges to a zero point of T . See also [20].
In subsequent work, Maingé [15] (see also [16]) introduced the inertial Mann

algorithm for solving the fixed point problem of nonexpansive mappings in Hilbert
spaces as follows: take x0, x1 ∈ H1 and generate the sequence {xn} by

yn = xn + θn(xn − xn−1),

xn+1 = yn + αn(Tyn − yn), n ≥ 1, (13)

where T is a nonexpansive mapping on H1, θn ∈ [0, 1) and αn ∈ (0, 1). It was shown
that the sequence {xn} converges weakly to a fixed point of T under the following
conditions:
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(A) θn ∈ [0, θ) where θ ∈ [0, 1);
(B)

∑∞
n=1 θn‖xn − xn−1‖2 <∞;

(C) 0 < infn≥1 αn ≤ supn≥1 αn < 1.
Very recently, Dang et al. [9] proposed two kinds of the inertial relaxed CQ

algorithms for solving SFP in Hilbert spaces as follows: take x0, x1 ∈ H1 and
generate the sequence {xn} iteratively by

yn = xn + φn(xn − xn−1),

xn+1 = PCn(yn − γAT (I − PQn)Ayn), n ≥ 1, (14)

and

yn = xn + φn(xn − xn−1),

xn+1 = (1− βn)yn + βnPCn(yn − γAT (I − PQn)Ayn), n ≥ 1. (15)

It was proved that if γ ∈ (0, 2/L) where L denotes the spectral radius of ATA and
φn ∈ [0, φ̄n) where φ̄n = min{φ, 1/max{n2‖xn−xn−1‖, n2‖xn−xn−1‖2}}, φ ∈ [0, 1),
then {xn} defined by (14) converges weakly to a solution in SFP. Moreover, in
addition, if 0 < infn≥0 βn < R < 1, then {xn} defined by the modified inertial
relaxed CQ algorithm (15) converges weakly to a solution in SFP. See also [8].

In this work, we suggest the modified inertial relaxed CQ algorithm with a new
adaptive way of determining the step-size sequence for solving the SFP. Using the
viscosity approximation method introduced by [19], we then prove its strong con-
vergence of the sequence generated by the proposed scheme. Our algorithm can be
implemented easily since it involves the metric projections onto half-spaces which
have exact forms and has no need to know a priori information of the norm of
bounded linear operators. Numerical experiments are included to illustrate the ef-
fectiveness of our algorithm. The main results complement the results in [4, 9, 12, 13]
and others. To this end, for x ∈ H1, we now define

gn(x) =
1

2
‖(I − PCn)x‖2, n ≥ 1, (16)

where Cn is given as in (4). We then have, for x ∈ H1

∇gn(x) = (I − PCn)x, n ≥ 1. (17)

The rest of this paper is organized as follows: Some basic concepts and lemmas
are provided in Section 2. The modified inertial relaxed CQ algorithm is presented
and the strong convergence result of this paper is proved in Section 3. Finally, in
Section 4, numerical experiments are shown to support our proposed algorithm.

2. Preliminaries. In this section, we give some preliminaries which will be used
in the sequel. Let H be a Hilbert space. Recall that a mapping T : H → H is said
to be nonexpansive if, for all x, y ∈ H,

‖Tx− Ty‖ ≤ ‖x− y‖ (18)

T : H → H is said to be firmly nonexpansive if, for all x, y ∈ H,

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2, (19)

or equivalently

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2 (20)

for all x, y ∈ H. It is known that T is firmly nonexpansive if and only if I−T is firmly
nonexpansive. We know that the metric projection PC from H onto a nonempty,
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closed and convex subset C ⊂ H is a typical example of a firmly nonexpansive
mapping, which is defined by

PCx := arg min
y∈C

‖x− y‖2, x ∈ H. (21)

It is well known that PC is characterized by the inequality, for x ∈ H

〈x− PCx, y − PCx〉 ≤ 0, ∀y ∈ C. (22)

In a real Hilbert space H, we have the following equality:

〈x, y〉 =
1

2
‖x‖2 +

1

2
‖y‖2 − 1

2
‖x− y‖2 (23)

and the subdifferential inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉 (24)

for all x, y ∈ H.

Definition 2.1. Let f : H → R be a convex function. The subdifferential of f at
x is defined as

∂f(x) = {ξ ∈ H : f(y) ≥ f(x) + 〈ξ, y − x〉, ∀y ∈ H}. (25)

A function f : H → R is said to be weakly lower semi-continuous at x if xn
converges weakly to x implies

f(x) ≤ lim inf
n→∞

f(xn). (26)

We know the following results (see [2, 5]).

Lemma 2.2. Let f : H → R be given by f(x) = 1
2‖(I − PQ)Ax‖2. Then

(i) f is convex and differential.
(ii) ∇f(x) = A∗(I − PQ)Ax, x ∈ H.
(iii) f is weakly lower semi-continuous on H.
(iv) ‖∇f(x)−∇f(y)‖ ≤ ‖A‖2‖x− y‖ for all x, y ∈ H.

Lemma 2.3. [17, 27] Let {an} and {cn} are sequences of nonnegative real numbers
such that

an+1 ≤ (1− δn)an + bn + cn, n ≥ 1, (27)

where {δn} is a sequence in (0, 1) and {bn} is a real sequence. Assume
∑∞
n=1 cn <

∞. Then the following results hold:
(i) If bn ≤ δnM for some M ≥ 0, then {an} is a bounded sequence.
(ii) If

∑∞
n=1 δn =∞ and lim supn→∞ bn/δn ≤ 0, then limn→∞ an = 0.

Lemma 2.4. [18] Let {Γn} be a sequence of real numbers that does not decrease at
infinity in the sense that there exists a subsequence {Γni} of {Γn} which satisfies
Γni < Γni+1 for all i ∈ N. Define the sequence {ψ(n)}n≥n0

of integers as follows:

ψ(n) = max {k ≤ n : Γk < Γk+1}, (28)

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} 6= ∅. Then, the following hold:
(i) Γ(n0) ≤ Γ(n0 + 1) ≤ ... and Γ(n)→∞;
(ii) Γψ(n) ≤ Γψ(n)+1 and Γn ≤ Γψ(n)+1, ∀n ≥ n0.
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3. Strong convergence theorem. In this section, we propose the modified iner-
tial relaxed CQ algorithm as follows:

Algorithm 3.1 Let f : H1 → H1 be a contraction (i.e. there exists a constant
α ∈ (0, 1) such that ‖f(x)−f(y)‖ ≤ α‖x−y‖ for all x, y ∈ H1) and let {αn} ⊂ (0, 1),
{θn} ⊂ [0, 1) and {ρn} ⊂ (0, 4). Take x0, x1 ∈ H1 arbitrarily and generate the
sequences {xn} and {yn} by the following manner:

yn = xn + θn(xn − xn−1),

xn+1 = PCn [αnf(yn) + (1− αn)(yn − τn∇fn(yn))], n ≥ 1. (29)

Here we set

τn = ρn
fn(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2
. (30)

for all n ∈ N. We remark that if ∇fn(yn) = ∇gn(yn) = 0, then yn is a solution of
SFP.

We next prove the strong convergence of the sequence generated by the proposed
algorithm.

Theorem 3.1. Assume that {αn} ⊂ (0, 1), {ρn} ⊂ (0, 4) and {θn} ⊂ [0, θ), where
θ ∈ [0, 1) satisfy the following conditions:

(C1) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞;

(C2) inf
n∈N

ρn(4− ρn) > 0;

(C3) lim
n→∞

θn
αn
‖xn − xn−1‖ = 0.

Then the sequence {xn} generated by Algorithm 3.1 converges strongly to a solu-
tion in SFP.

Proof. Let z = PSf(z). Then z ∈ C ⊂ Cn and Az ∈ Q ⊂ Qn for all n ∈ N. It
means z = PCnz and Az = PQnAz for all n ∈ N. Set vn = yn − τn∇fn(yn) and
wn = αnf(yn) + (1− αn)vn for all n ∈ N. Then we obtain

‖yn − z‖ = ‖xn − z + θn(xn − xn−1)‖
≤ ‖xn − z‖+ θn‖xn − xn−1‖. (31)

Since (I − PQn) is firmly nonexpansive,

〈∇fn(yn), yn − z〉 = 〈(I − PQn)Ayn, Ayn −Az〉
≥ ‖(I − PQn)Ayn‖2

= 2fn(yn). (32)

Using (30) and (32), it follows that

‖vn − z‖2 = ‖yn − τn∇fn(yn)− z‖2

= ‖yn − z‖2 + τ2n‖∇fn(yn)‖2 − 2τn〈∇fn(yn), yn − z〉
≤ ‖yn − z‖2 + τ2n‖∇fn(yn)‖2 − 4τnfn(yn)

= ‖yn − z‖2 + ρ2n
f2n(yn)

(‖∇fn(yn)‖2 + ‖∇gn(yn)‖2)2
‖∇fn(yn)‖2

− 4ρn
f2n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2
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≤ ‖yn − z‖2 + ρ2n
f2n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2

− 4ρn
f2n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2

= ‖yn − z‖2 − ρn(4− ρn)
f2n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2
. (33)

So, since ρn ∈ (0, 4), we have for all n ∈ N,

‖vn − z‖ ≤ ‖yn − z‖. (34)

Thus, using (34) and the nonexpansiveness of PCn , we obtain

‖xn+1 − z‖ = ‖PCnwn − PCnz‖
≤ ‖wn − z‖
= ‖αn(f(yn)− f(z)) + αn(f(z)− z) + (1− αn)(vn − z)‖
≤ αnα‖yn − z‖+ αn‖f(z)− z‖+ (1− αn)‖vn − z‖
≤ αnα‖yn − z‖+ αn‖f(z)− z‖+ (1− αn)‖yn − z‖
= (1− αn(1− α))‖yn − z‖+ αn‖f(z)− z‖. (35)

Combining (31) and (35), we immediately obtain

‖xn+1−z‖ ≤ (1−αn(1−α))‖xn−z‖+(1−αn(1−α))θn‖xn−xn−1‖+αn‖f(z)−z‖.
(36)

By conditions (C1) and (C3), we see that

lim
n→∞

σn = lim
n→∞

(
1− αn(1− α)

1− α

)
θn
αn
‖xn − xn−1‖ = 0, (37)

which implies that the sequence {σn} is bounded. Putting

M = max

{
‖f(z)−z‖

1−α , sup
n∈N

σn

}
and using Lemma 2.3 (i), we conclude that the sequence {‖xn − z‖} is bounded.
This shows that the sequence {xn} is bounded and so is {yn}. On the other hand,
we see that

‖yn − z‖2 = ‖xn − z + θn(xn − xn−1)‖2

= ‖xn − z‖2 + 2θn〈xn − z, xn − xn−1〉+ θ2n‖xn − xn−1‖2 (38)

and, from (23)

〈xn − z, xn − xn−1〉 = −1

2
‖xn−1 − z‖2 +

1

2
‖xn − z‖2 +

1

2
‖xn − xn−1‖2. (39)

Combining (38) and (39), we obtain, since θn ∈ [0, 1),

‖yn − z‖2 = ‖xn − z‖2 + θn(−‖xn−1 − z‖2 + ‖xn − z‖2 + ‖xn − xn−1‖2)

+θ2n‖xn − xn−1‖2

≤ ‖xn − z‖2 + θn(‖xn − z‖2 − ‖xn−1 − z‖2)

+2θn‖xn − xn−1‖2. (40)
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Using (24), (33) and the firm nonexpansiveness of PCn , we also have

‖xn+1 − z‖2 = ‖PCnwn − PCnz‖2

≤ ‖wn − z‖2 − ‖PCnwn − wn‖2

= ‖αn(f(yn)− z) + (1− αn)(vn − z)‖2 − ‖PCnwn − wn‖2

≤ (1− αn)‖vn − z‖2 + 2αn〈f(yn)− z, wn − z〉 − ‖PCnwn − wn‖2

≤ (1− αn)‖yn − z‖2

−(1− αn)ρn(4− ρn)
f2n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2

+ 2αn〈f(yn)− z, wn − z〉 − ‖PCnwn − wn‖2. (41)

Combining (40) and (41), we thus have

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 + (1− αn)θn(‖xn − z‖2 − ‖xn−1 − z‖2)

+ 2(1− αn)θn‖xn − xn−1‖2

−(1− αn)ρn(4− ρn)
f2n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2

+ 2αn〈f(yn)− z, wn − z〉 − ‖PCnwn − wn‖2. (42)

Set Γn = ‖xn − z‖2 for all n ∈ N. We next consider the following two cases.

Case 1. Suppose that there exists a natural number N such that Γn+1 ≤ Γn for
all n ≥ N . In this case, {Γn} is convergent. From (C1) and (C2), we can find a
constant σ such that (1− αn)ρn(4− ρn) ≥ σ > 0 for all n ∈ N. So (42) reduces to

Γn+1 ≤ (1− αn)Γn + (1− αn)θn(Γn − Γn−1) + 2(1− αn)θn‖xn − xn−1‖2

− σ
f2n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2
+ 2αn〈f(yn)− z, wn − z〉

−‖PCnwn − wn‖2, (43)

which gives

σ
f2n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2
≤ (Γn − Γn+1) + (1− αn)θn(Γn − Γn−1)

+2(1− αn)θn‖xn − xn−1‖2

+2αn〈f(yn)− z, wn − z〉. (44)

It is easy to see that (C3) implies θn‖xn−xn−1‖ → 0 since {αn} is bounded. Since
{Γn} converges and αn → 0,

f2n(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2
→ 0 (45)

as n→∞. It is easily checked that {∇gn(yn)} is bounded. Also, we have {∇fn(yn)}
is bounded since {yn} is bounded. Indeed, by Lemma 2.2 (iv), we have

‖∇fn(yn)‖ = ‖∇fn(yn)−∇fn(z)‖ ≤ ‖A‖2‖yn − z‖. (46)

So from (45), we conclude that fn(yn)→ 0 as n→∞, i.e.,

‖(I − PQn)Ayn‖ → 0, (47)
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as n → ∞. Since ∂q is bounded on bounded sets, there exists a constant µ > 0
such that ‖εn‖ ≤ µ for all n ∈ N. From (47) and PQn(Ayn) ∈ Qn, we have

q(Ayn) ≤ 〈εn, Ayn − PQn(Ayn)〉
≤ µ‖(I − PQn)Ayn‖
→ 0, (48)

as n→∞. Since {yn} is bounded, there is a subsequence {ynk} of {yn} such that
ynk ⇀ x∗ ∈ H1. It also follows that Aynk ⇀ Ax∗ ∈ H2. By the lower-semicontinuity
of q, we have

q(Ax∗) ≤ lim inf
k→∞

q(Aynk) ≤ 0. (49)

This shows that Ax∗ ∈ Q. We next prove that x∗ ∈ C. Again, using (43), we have

(1− αn)‖PCnwn − wn‖2 ≤ (Γn − Γn+1) + (1− αn)θn(Γn − Γn−1)

+ 2(1− αn)θn‖xn − xn−1‖2

+2αn〈f(yn)− z, wn − z〉, (50)

consequently, as n→∞,

‖PCnwn − wn‖ → 0. (51)

By the definition of Cn, we obtain

c(wn) ≤ 〈ξn, wn − PCnwn〉 ≤ κ‖wn − PCnwn‖ → 0, (52)

as n→∞, where κ is a constant such that ‖ξn‖ ≤ κ for all n ∈ N. We next consider
the following estimation:

‖vn − yn‖ = ‖yn − τn∇fn(yn)− yn‖
= τn‖∇fn(yn)‖

= ρn
fn(yn)

‖∇fn(yn)‖2 + ‖∇gn(yn)‖2
‖∇fn(yn)‖

→ 0, (53)

as n→∞. We also have

‖wn − yn‖ ≤ αn‖f(yn)− yn‖+ (1− αn)‖vn − yn‖ → 0, (54)

as n → ∞. Hence, since ynk ⇀ x∗, there is a corresponding subsequence {wnk} of
{wn} such that wnk ⇀ x∗. From (52), it follows that

c(x∗) ≤ lim inf
k→∞

c(wnk) = 0. (55)

So we obtain x∗ ∈ C and hence x∗ ∈ S. From (22) we obtain

lim sup
n→∞

〈f(z)− z, wn − z〉 = lim
k→∞

〈f(z)− z, wnk − z〉

= 〈f(z)− z, x∗ − z〉
≤ 0. (56)
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On the other hand, we see that

‖wn − z‖2 = 〈wn − z, wn − z〉
= αn〈f(yn)− f(z), wn − z〉+ αn〈f(z)− z, wn − z〉

+(1− αn)〈vn − z, wn − z〉
≤ αnα‖yn − z‖‖wn − z‖+ αn〈f(z)− z, wn − z〉

+(1− αn)‖vn − z‖‖wn − z‖
≤ (1− αn(1− α))‖yn − z‖‖wn − z‖+ αn〈f(z)− z, wn − z〉

≤ (1− αn(1− α))
(‖yn − z‖2

2
+
‖wn − z‖2

2

)
+αn〈f(z)− z, wn − z〉, (57)

which gives

‖wn − z‖2 ≤ 1− αn(1− α)

1 + αn(1− α)
‖yn − z‖2 +

2αn
1 + αn(1− α)

〈f(z)− z, wn − z〉

≤ 1− αn(1− α)

1 + αn(1− α)
(‖xn − z‖+ θn‖xn − xn−1‖)2

+
2αn

1 + αn(1− α)
〈f(z)− z, wn − z〉

=

(
1− 2αn(1− α)

1 + αn(1− α)

)
(‖xn − z‖2 + 2θn‖xn − xn−1‖‖xn − z‖

+ θ2n‖xn − xn−1‖2)

+
2αn

1 + αn(1− α)
〈f(z)− z, wn − z〉. (58)

Then, by (58), we obtain

‖xn+1 − z‖2 = ‖PCnwn − z‖2

≤ ‖wn − z‖2

≤
(

1− 2αn(1− α)

1 + αn(1− α)

)
(‖xn − z‖2 + 2θn‖xn − xn−1‖‖xn − z‖

+ θ2n‖xn − xn−1‖2)

+
2αn

1 + αn(1− α)
〈f(z)− z, wn − z〉. (59)

Put M1 = sup
n∈N
‖xn − z‖ and γn = 2αn(1−α)

1+αn(1−α) for all n ∈ N. It is easily checked that

γn ∈ (0, 1) for all n ∈ N and
∞∑
n=1

γn =∞. From (59), it follows that

Γn+1 ≤ (1− γn)Γn + 2θn‖xn − xn−1‖M1 + θn‖xn − xn−1‖2

+
2αn

1 + αn(1− α)
〈f(z)− z, wn − z〉. (60)

Applying Lemma 2.3 (ii) and using (56) and the conditions (C1) and (C3), we
conclude that Γn = ‖xn − z‖2 → 0 and thus xn → z as n→∞.

Case 2. Suppose that there exists a subsequence {Γni} of the sequence {Γn} such
that Γni < Γni+1 for all i ∈ N. In this case, we define ψ : N→ N as in (28). Then,
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by Lemma 2.4, we have Γψ(n) ≤ Γψ(n)+1. From (42), it follows that

Γψ(n)+1 ≤ (1− αψ(n))Γψ(n) + (1− αψ(n))θψ(n)(Γψ(n) − Γψ(n)−1)

+ 2(1− αψ(n))θψ(n)‖xψ(n) − xψ(n)−1‖2

−σ
f2ψ(n)(yψ(n))

‖∇fψ(n)(yψ(n))‖2 + ‖∇gψ(n)(yψ(n))‖2

− (1− αψ(n))‖PCψ(n)
wψ(n) − wψ(n)‖2

+2αψ(n)〈f(yψ(n))− z, wψ(n) − z〉, (61)

which gives

σ
f2ψ(n)(yψ(n))

‖∇fψ(n)(yψ(n))‖2 + ‖∇gψ(n)(yψ(n))‖2

≤ (1− αψ(n))θψ(n)(Γψ(n) − Γψ(n)−1)

+ 2(1− αψ(n))θψ(n)‖xψ(n) − xψ(n)−1‖2

+ 2αψ(n)〈f(yψ(n))− z, wψ(n) − z〉

≤ (1− αψ(n))θψ(n)‖xψ(n) − xψ(n)−1‖(
√

Γψ(n) +
√

Γψ(n)−1)

+ 2(1− αψ(n))θψ(n)‖xψ(n) − xψ(n)−1‖2

+ 2αψ(n)〈f(yψ(n))− z, wψ(n) − z〉
→ 0, (62)

as n → ∞. It follows that fψ(n)(yψ(n)) = ‖(I − PQψ(n)
)Ayψ(n)‖ → 0. Similarly, by

(61), we can show that

lim
n→∞

‖PCψ(n)
wψ(n) − wψ(n)‖ = 0 (63)

and by (54)

lim
n→∞

‖wψ(n) − yψ(n)‖ = 0. (64)

Now repeating the argument of the proof in Case 1, we obtain

lim sup
n→∞

〈f(z)− z, wψ(n) − z〉 ≤ 0. (65)

On the other hand, observe that

‖yψ(n) − xψ(n)‖ = θψ(n)‖xψ(n) − xψ(n)−1‖ → 0, (66)

as n→∞. It follows that ‖xψ(n)+1 − xψ(n)‖ → 0 as n→∞. Indeed, by (63), (64)
and (66), we have

‖xψ(n)+1 − xψ(n)‖ = ‖PCψ(n)
wψ(n) − xψ(n)‖

≤ ‖PCψ(n)
wψ(n) − wψ(n)‖+ ‖wψ(n) − yψ(n)‖

+‖yψ(n) − xψ(n)‖
→ 0, (67)

as n→∞. Using (60), we have

Γψ(n)+1 ≤ (1− γψ(n))Γψ(n) + 2θψ(n)‖xψ(n) − xψ(n)−1‖M1

+θψ(n)‖xψ(n) − xψ(n)−1‖2

+
2αψ(n)

1 + αψ(n)(1− α)
〈f(z)− z, wψ(n) − z〉, (68)
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which implies

γψ(n)Γψ(n) ≤ 2θψ(n)‖xψ(n) − xψ(n)−1‖M1 + θψ(n)‖xψ(n) − xψ(n)−1‖2

+
2αψ(n)

1 + αψ(n)(1− α)
〈f(z)− z, wψ(n) − z〉. (69)

Hence

Γψ(n) ≤
2θψ(n)

γψ(n)
‖xψ(n) − xψ(n)−1‖M1 +

θψ(n)

γψ(n)
‖xψ(n) − xψ(n)−1‖2

+
1

1− α
〈f(z)− z, wψ(n) − z〉. (70)

Hence from (C3), (65) and (67), we obtain

lim sup
n→∞

Γψ(n) ≤ 0. (71)

This means lim
n→∞

Γψ(n) = lim
n→∞

‖xψ(n) − z‖2 = 0. So we have xψ(n) → z as n → ∞.

On the other hand, we see that

‖xψ(n)+1 − z‖ ≤ ‖xψ(n)+1 − xψ(n)‖+ ‖xψ(n) − z‖
→ 0, (72)

as n→∞. By Lemma 2.4, we have Γn ≤ Γψ(n)+1 and thus

Γn = ‖xn − z‖2 ≤ ‖xψ(n)+1 − z‖2 → 0. (73)

This concludes that xn → z as n→∞. We thus complete the proof.

Lemma 3.2. We remark here that the condition (C3) is easily implemented in
numerical computation since the valued of ‖xn − xn−1‖ is known before choosing
θn. Indeed, the parameter θn can be chosen such that 0 ≤ θn ≤ θ̄n, where

θ̄n =

{
min

{
ωn

‖xn−xn−1‖ , θ
}

if xn 6= xn−1,

θ otherwise,

where {ωn} is a positive sequence such that ωn = o(αn).

We next consider the case when the norm of operators can be easily calculated.

Algorithm 3.2 Take x0, x1 ∈ H1 and generate the sequence {xn} by the following
manner:

yn = xn + θn(xn − xn−1),

xn+1 = PCn [αnf(yn) + (1− αn)(yn − λn∇fn(yn))], (74)

where {αn} ⊂ (0, 1), {θn} ⊂ [0, 1) and {λn} ⊂ (0,∞).

Theorem 3.3. Assume that {αn} ⊂ (0, 1), {λn} ⊂ (0,∞) and {θn} ⊂ [0, θ), where
θ ∈ [0, 1) satisfy the following conditions:

(C1) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞;

(C2) inf
n∈N

λn(2− λn‖A‖2) > 0;

(C3) lim
n→∞

θn
αn
‖xn − xn−1‖ = 0.

Then the sequence {xn} generated by Algorithm 3.2 converges strongly to the
solution of SFP.
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Proof. Since the proof line is closed to that of Theorem 3.1, we just give a sketch
proof. Let z = PSf(z). Set vn = yn − λn∇fn(yn) and wn = αnf(yn) + (1− αn)vn
for all n ∈ N. We first show that the sequence {xn} is bounded. To this end, it
suffices to show that ‖vn − z‖ ≤ ‖yn − z‖ for all n ∈ N. By using the argument as
in Theorem 3.1, we can show that 〈∇fn(yn), yn − z〉 ≥ 2fn(yn). It follows that

‖vn − z‖2 = ‖yn − z‖2 + λ2n‖∇fn(yn)‖2 − 2λn〈∇fn(yn), yn − z〉
≤ ‖yn − z‖2 + λ2n‖∇fn(yn)‖2 − 4λnfn(yn)

≤ ‖yn − z‖2 + λ2n‖A‖2‖(I − PQn)Ayn‖2 − 4λnfn(yn)

= ‖yn − z‖2 + 2λ2n‖A‖2fn(yn)− 4λnfn(yn)

≤ ‖yn − z‖2 − 2λn(2− λn‖A‖2)fn(yn). (75)

From (C2), we have ‖vn − z‖ ≤ ‖yn − z‖ for all n ∈ N. By (41) and (75), we have

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 + (1− αn)θn(‖xn − z‖2 − ‖xn−1 − z‖2)

+ 2(1− αn)θn‖xn − xn−1‖2 − (1− αn)λn(2− λn‖A‖2)fn(yn)

+ 2αn〈f(yn)− z, wn − z〉 − ‖PCnwn − wn‖2. (76)

Set Γn = ‖xn − z‖2 for all n ∈ N. We next consider the following two cases.

Case 1. Suppose that there exists a natural number N such that Γn+1 ≤ Γn for
all n ≥ N . In this case, {Γn} is convergent. From (C1) and (C2), we can find a
constant σ such that (1− αn)λn(2− λn‖A‖2) ≥ σ > 0 for all n ∈ N. So we obtain

Γn+1 ≤ (1− αn)Γn + (1− αn)θn(Γn − Γn−1) + 2(1− αn)θn‖xn − xn−1‖2

− σfn(yn) + 2αn〈f(yn)− z, wn − z〉 − ‖PCnwn − wn‖2, (77)

which implies

σfn(yn) ≤ (Γn − Γn+1) + (1− αn)θn(Γn − Γn−1) + 2(1− αn)θn‖xn − xn−1‖2

+ 2αn〈f(yn)− z, wn − z〉. (78)

This shows, by (C1) and (C3), that fn(yn) = ‖(I − PQn)Ayn‖ → 0 as n → ∞.
Similarly, we can show that ‖PCnwn − wn‖ → 0 n → ∞. Following the proof line
as in Theorem 3.1, we can prove that {xn} converges strongly to z.

Case 2. Suppose that there exists a subsequence {Γni} of the sequence {Γn} such
that Γni < Γni+1 for all i ∈ N. This case can be done by a similar argument as in
Case 1. So we omit the rest of proof. We thus complete the proof.

4. Numerical experiments. In this section, we provide some numerical examples
and illustrate its performance by using the modified inertial relaxed CQ method
(Algorithm 3.1).

Examples 1. Let H1 = H2 = R3, C = {x = (a, b, c)T ∈ R3 : a2 + b2 − 5 ≤ 0} and
Q = {y = (p, q, r)T ∈ R3 : p+r2−2 ≤ 0}. Let f : R3 → R3 be defined by f(x) = x

2 .

Find x∗ ∈ C such that Ax∗ ∈ Q, where A =

 1 2 7
1 3 0
4 1 2

.

Choose αn = 1
n+1 for all n ∈ N and θ = 0.5. For each n ∈ N, let ωn = 1

(n+1)3

and define θn as in Remark 3.2. We now study the effect (in terms of convergence,
stability, number of iterations required and the cpu time) of the sequence {ρn} ⊂
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(0, 4) on the iterative scheme by choosing different ρn such that inf
n
ρn(4− ρn) > 0

in the following cases.

Case 1. ρn = n
2n+1 ;

Case 2. ρn = n
n+1 ;

Case 3. ρn = 2n
n+1 ;

Case 4. ρn = 3n
n+1 .

The stopping criterion is defined by

En =
1

2
‖xn − PCnxn‖2 +

1

2
‖Axn − PQnAxn‖2 < 10−4.

We consider different choices of x0 and x1 as
Choice 1: x0 = (−7,−2,−6)T and x1 = (−2, 2,−6)T ;
Choice 2: x0 = (1, 2,−5)T and x1 = (0, 1,−7)T ;
Choice 3: x0 = (1, 5,−1)T and x1 = (−3, 4,−7)T ;
Choice 4: x0 = (1, 5, 2)T and x1 = (3, 2, 7)T

Table 1. Algorithm 3.1 with different cases of ρn and different
choices of x0 and x1

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 11 8 5 4
cpu (Time) 0.003553 0.002377 0.002195 0.002075

Choice 2 No. of Iter. 7 6 4 4
cpu (Time) 0.002799 0.002769 0.002357 0.002184

Choice 3 No. of Iter. 12 9 6 4
cpu (Time) 0.003828 0.002602 0.002401 0.002142

Choice 4 No. of Iter. 27 17 11 9
cpu (Time) 0.007181 0.00343 0.002612 0.002431

The numerical experiments for each case of ρn are shown in Figure 1-4,
respectively.

Examples 2. Let H1 = H2 = R5, C = {x = (a, b, c, d, e)T ∈ R5 : a2 + b2 + c2 +
d2 + e2 − 0.4 ≤ 0} and Q = {y = (p, q, r, s, t)T ∈ R5 : p + q + r + s − 0.75 ≤ 0}.
Let f : R5 → R5 be defined by f(x) = x

2 . Find x∗ ∈ C such that Ax∗ ∈ Q, where

A =


3 −2 5 −2 3
2 −2 5 −2 9
2 −3 5 −1 −3
−2 −2 8 −7 −2

.
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Figure 1. Comparison of the iterations of Choice 1 in Example 1
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Figure 2. Comparison of the iterations of Choice 2 in Example 1
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Figure 3. Comparison of the iterations of Choice 3 in Example 1

Let αn, θn and En be as in Example 1. We choose different cases of ρn as follows:

Case 1. ρn = 0.5;

Case 2. ρn = 1;

Case 3. ρn = 2;

Case 4. ρn = 3.5.
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Figure 4. Comparison of the iterations of Choice 4 in Example 1

The different choices of x0 and x1 are given as follows:
Choice 1: x0 = (−3.2,−1,−2.5, 5,−3.7)T and x1 = (−2.3,−1.5, 5.2,−7.5, 7.3)T ;
Choice 2: x0 = (−2,−5,−3, 2,−3)T and x1 = (−5,−4, 5,−7, 7)T ;
Choice 3: x0 = (3, 8, 5,−2, 8)T and x1 = (−2,−5, 5,−9, 9)T ;
Choice 4: x0 = (4.5, 0,−2.5, 1, 3)T and x1 = (−3.6,−4.2, 1, 1.5, 8)T .

Table 2. Algorithm 3.1 with different cases of ρn and different
choices of x0 and x1

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 19 10 5 5
cpu (Time) 0.005632 0.003408 0.003223 0.002791

Choice 2 No. of Iter. 18 10 6 6
cpu (Time) 0.00391 0.002683 0.002447 0.002381

Choice 3 No. of Iter. 19 10 6 6
cpu (Time) 0.004233 0.003016 0.002601 0.002575

Choice 4 No. of Iter. 13 7 6 6
cpu (Time) 0.004812 0.003559 0.002922 0.002412

The numerical experiments are shown in Figure 5-8, respectively.

Remark 1. We finally make the following conclusions from the numerical experi-
ments in Examples 1 and 2.

1. For each different Cases and different Choices, it is shown that Algorithm
3.1 has a good convergence speed. Indeed, we see that it is fast, stable and
required small number of iterations for seeking solutions.

2. It is observed that the number of iterations and the cpu run time are sig-
nificantly decreasing starting from Case 1 to Case 4. However, there is no
significant difference in both cpu run time and number of iterations for each
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Figure 6. Comparison of the iterations of Choice 2 in Example 2

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

Number of iterations

E
rr

or

 

 
ρ

n
=0.5

ρ
n
=1

ρ
n
=2

ρ
n
=3.5

Figure 7. Comparison of the iterations of Choice 3 in Example 2

choice of x0 and x1. So, initial guess does not have any significant effect on
the convergence of the algorithm.

3. The conditions in Theorem 3.1 are easily implemented in numerical compu-
tations and need no estimation on the spectral radius of ATA.
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Figure 8. Comparison of the iterations of Choice 4 in Example 2
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Figure 9. Error ploting of Choice 1 in Example 1

4. The restriction of metric projections onto C and Q is relaxed by using those
of Cn and Qn which have specific forms.

We finally end this section by providing a comparison of convergence of Algorithm
3.1 with the modified relaxed CQ algorithms defined by He and Zhao [12] and Dang
et al. [9] through the example. For the convenience, let us denote Algorithm
3.1, Algorithm (7) and Algorithm (14) by MIner-R-Iter, Iner-R-Iter and H-R-Iter,
respectively.

Examples 3. Let H1, H2, C,Q,A and f be as in Example 1.

Choose αn = 1
n+1 , ρn = 3n

n+1 and ωn = 1
(n+1)2 for all n ∈ N. Set θ =

φ = 0.8 and θn = θ̄n as in Remark 3.2. Let γ = 1
‖ATA‖ and φn = 0.4 if φ ≤

1
max{n2‖xn−xn−1‖2,n2‖xn−xn−1‖} and φn = 1

max{(n+1)2‖xn−xn−1‖2,(n+1)2‖xn−xn−1‖} ;

otherwise. The stopping criterion En is defined as in Example 1. For points u,
x0 and x1 picked randomly, we obtain the following numerical results.

Remark 2. In numerical experiment, it is revealed that the sequence generated by
MIner-R-Iter involving the viscosity term and the inertial technique converges more
quickly than by H-R-Iter of He and Zhao [12] and Iner-R-Iter of Dang et al. [9] do.
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Table 3. Comparison of MIner-R-Iter, Iner-R-Iter and H-R-Iter
in Example 1

MIner-R-Iter Iner-R-Iter H-R-Iter

Choice 1 u = (0,−1,−5)T No. of Iter. 6 33 223
x0 = (2, 6,−3)T cpu (Time) 0.000737 0.007677 0.064889
x1 = (−2,−1, 8)T

Choice 2 u = (2, 1, 0)T No. of Iter. 4 26 378
x0 = (3, 4,−1)T cpu (Time) 0.000522 0.004861 0.137471
x1 = (−5,−2, 1)T

Choice 3 u = (5,−3,−1)T No. of Iter. 9 29 140
x0 = (2, 1,−1)T cpu (Time) 0.001458 0.005175 0.026824
x1 = (−5, 3, 5)T

Choice 4 u = (−2,−1, 4)T No. of Iter. 9 34 763
x0 = (7.35, 1.75,−3.24)T cpu (Time) 0.001481 0.008058 0.687214
x1 = (−6.34, 0.42, 7.36)T

The error plotting of En of MIner-R-Iter, Iner-R-Iter and H-R-Iter for each choice
in Table 3 is shown in the following figures, respectively.
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Figure 10. Error ploting of Choice 2 in Example 1
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Abstract. Our interest in this paper is to prove a strong convergence
result for finding a zero of the sum of two monotone operators, with one
of the two operators being co-coercive using an iterative method which is
a combination of Nesterov’s acceleration scheme and Haugazeau’s algo-
rithm in real Hilbert spaces. Our numerical results show that the pro-
posed algorithm converges faster than the un-accelerated Haugazeau’s
algorithm.
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1. Introduction

Let H be a real Hilbert space. We study the following inclusion problem: find
x̂ ∈ H such that

0 ∈ Ax̂ + Bx̂ (1.1)
where A:H → H is an operator and B:H → 2H is a set-valued operator. This
problem includes, as special cases, convex programming, variational inequal-
ities, split feasibility problem and minimization problem. To be more precise,
some concrete problems in machine learning, image processing and linear
inverse problem can be modeled mathematically as this form.

A classical method for solving problem (1.1) is the forward–backward
splitting method [6,27,34,36,48,49,53,56,61] which is defined by the follow-
ing manner: x1 ∈ H and

xn+1 = (I + rB)−1(xn − rAxn), n ≥ 1, (1.2)

where r > 0. We see that each step of iterates involves only A as the forward
step and B as the backward step, but not the sum of A and B. This method
includes, in particular, the proximal point algorithm [17,47,54,59,62,64] and

http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-017-0472-7&domain=pdf
http://orcid.org/0000-0001-9224-7139
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the gradient method [58,63,67–69]. In [35], Lions and Mercier introduced the
following splitting iterative methods in a real Hilbert space:

xn+1 = (2JA
r − I)(2JB

r − I)xn, n ≥ 1 (1.3)

and
xn+1 = JA

r (2JB
r − I)xn + (I − JB

r )xn, n ≥ 1, (1.4)
where JT

r = (I + rT )−1. The first one is often called Peaceman–Rachford
algorithm [49] and the second one is called Douglas–Rachford algorithm [28].
We note that both algorithms are weakly convergent in general [5,35]. There
have been many works concerning the problem of finding zero points of the
sum of two monotone operators (in Hilbert spaces) and accretive operators
(in Banach spaces); see [25,26,34,36,48,53,65,66].
Let H be a real Hilbert space and f and g two proper, convex and lower
semi continuous functions from H to R ∪ {+∞} such that f is differentiable
with L-Lipschitz continuous gradient, and the proximal map of g is “simple”,
meaning that its “proximal map”

x �→ arg min
y∈H

g(y) +
||x − y||2

2γ

can be easily computed.
In particular, if A := ∇f and B := ∂g, where ∇f is the gradient of

f and ∂g is the subdifferential of g which is defined by ∂g(x) :=
{
s ∈ H :

g(y) ≥ g(x) + 〈s, y − x〉, ∀y ∈ H
}

then problem (1.1) becomes the following
minimization problem:

min
x∈H

f(x) + g(x) (1.5)

and (1.2) also becomes

xn+1 = proxrg(xn − r∇f(xn)), n ≥ 1,

where r > 0. Among the many algorithms which exist to tackle such prob-
lems, the proximal splitting algorithms, which perform alternating descents
in f and in g, are frequently used, because of their simplicity and relatively
small per-iteration complexity. One can mention the forward–backward (FB)
splitting, the Douglas–Rachford splitting, the ADMM (alternating direction
method of multipliers), which all have been proved to be efficient in many
imaging problems such as denoising, inpainting, deconvolution, colour trans-
fer and many others.
Let us recall that the inertial term is based upon a discrete version of a second
order dissipative dynamical system [1,2] and can be regarded as a procedure
of speeding up the convergence properties (see, e.g., [4,7,37,38,52]). Recently,
there have been increasing interests in studying inertial type algorithms, see,
for example, inertial forward–backward splitting methods [36,46], inertial
Douglas–Rachford splitting method [13], inertial ADMM [14,22], and inertial
forward–backward–forward method [15]. Some inertial algorithms for solving
nonsmooth and nonconvex optimization problems have been recently studied
in [11,12]. For example, it is known that acceleration scheme developed by
Nesterov improves the theoretical rate of convergence of forward–backward
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method from the standard O(k−1) down to O(k−2) and the inertial extrapola-
tion scheme of Nesterov’s accelerated forward–backward method is actually
o(k−2) rather than O(k−2) (see [3]). These results and other related ones
analyzed the convergence properties of inertial type algorithms and demon-
strated their performance numerically on some imaging and data analysis
problems.
In [4], Alvarez and Attouch translated the idea of the heavy ball method
in [51,52] to the setting of a general maximal monotone operator using the
framework of the proximal point algorithm. The resulting algorithm is called
the inertial proximal point algorithm and it is written as:

{
yn = xn + αn(xn − xn−1)
xn+1 = (I + rnB)−1yn, n ≥ 1.

(1.6)

Alvarez and Attouch [4], proved that under the condition
∑

αn‖xn − xn−1‖2 < ∞, (1.7)

the algorithm (1.6) converges weakly to a zero of B.
In [41], Moudafi and Oliny introduced an additional single-valued, co-
coercive and Lipschitz continuous operator A into the inertial proximal point
algorithm:

{
yn = xn + αn(xn − xn−1)
xn+1 = (I + rnB)−1(yn − rnAxn), n ≥ 1.

(1.8)

Moudafi and Oliny [41] obtained a weak convergence result using algorithm
(1.8) under the same condition (1.7) imposed above in [4]. As remarked in [36],
the algorithm (1.8) does not take the form of a forward–backward splitting
algorithm, since operator A is still evaluated at the point xn for αn > 0.
We note that there are many problems that arise in infinite dimensional
spaces. In such problems norm convergence is often much more desirable than
weak convergence (see [5] and references therein). For this reason algorithms
that provide strong convergence result is better than forward–backward split-
ting (and its inertial extrapolation type) method that provides weak conver-
gence in infinite dimensional real Hilbert spaces. Another reason to study
their strong convergence result is an academic interest.
In order to obtain the strong convergence, in his unpublished 1968 disserta-
tion, Haugazeau [32] (see also p. 42 in [29]) proposed independently a strongly
convergent variant of a periodic projection algorithm for finding a common
point of m intersecting closed convex sets {Si}m

i=1 in H, requiring essentially
the same kind of computations. To describe his method, let us define, for a
given ordered triplet (x, y, z) ∈ H3,

R(x, y) = {u ∈ H : 〈u − y, x − y〉 ≤ 0},

and let us denote by Q(x, y, z) the projection of x onto R(x, y) ∩ R(y, z).
Thus, R(x, x) = H and, if x �= y, R(x, y) is a closed affine half space onto
which y is the projection of x. Haugazeau [32] showed that, given an arbitrary
starting point x0 ∈ H, the sequence {xn} generated by the algorithm

xn+1 = Q(x0, xn, Pn(modm)+1xn), ∀n ≥ 1
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converges strongly to the projection of x0 onto the set of common points of m
intersecting closed convex sets {Si}m

i=1. Many modifications of Haugazeau’s
method have been studied and considered by many authors for solving fixed
point problems and optimization problems in the literature. (see, for example,
[5,33,39,40,42,43,57] and the references contained therein for more details.)
In this work, we study and prove strong convergence results, under some mild
conditions, using a combination of Haugazeau’s algorithm and Nesterov’s
acceleration scheme for solving the inclusion problem (1.1) in the framework
of real Hilbert spaces. Our work is motivated by the accelerated variant of
the forward–backward algorithm proposed by Lorenz and Pock [36], which
in turn generalizes the works of Beck and Teboulle [7], Nesterov [44,45] and
Güler [30]. Our results are new, interesting and complement (in terms of mode
of convergence) many recent results previously obtained in this direction in
the literature.

2. Preliminaries

Let C be a nonempty, closed and convex subset of real Hilbert space H with
inner product 〈., .〉 and norm ||.||.
Definition 2.1. A mapping T : C → C is said to be nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C.

Construction of fixed points of nonexpansive mappings is an important
subject in nonlinear mapping theory and its applications; in particular, in
image recovery and signal processing (see, for example, [18,50,70]). For the
past 50 years or so, the approximation of fixed points of nonexpansive map-
pings and fixed points of some of their generalizations and approximation of
zeros of monotone-type operators in Hilbert spaces have been a flourishing
area of research for many mathematicians. For example, the reader can con-
sult the recent monographs of Bauschke and Combettes [6], Berinde [9] and
Chidume [24].
For any point u ∈ H, there exists a unique point PCu ∈ C such that

||u − PCu|| ≤ ||u − y||, ∀y ∈ C.

PC is called the metric projection of H onto C. We know that PC is a
nonexpansive mapping of H onto C. It is also known that PC satisfies

〈x − y, PCx − PCy〉 ≥ ||PCx − PCy||2, (2.1)

for all x, y ∈ H. Furthermore, PCx is characterized by the properties PCx ∈ C
and

〈x − PCx, PCx − y〉 ≥ 0, (2.2)

for all y ∈ C. We also know that all Hilbert space has the Kadec–Klee
property, that is, {xn} converges weakly to x and ‖xn‖ → ‖x‖ imply {xn}
converges strongly to x.
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Definition 2.2. A mapping T :H → H is said to be firmly nonexpansive if and
only if 2T − I is nonexpansive, or equivalently

〈x − y, Tx − Ty〉 ≥ ||Tx − Ty||2, ∀x, y ∈ H.

Alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =
1
2
(I + S),

where S : H → H is nonexpansive. Projections are firmly nonexpansive.

Definition 2.3. A nonlinear operator T whose domain D(T ) ⊂ H and range
R(T ) ⊂ H is said to be:
(a) monotone if

〈x − y, Tx − Ty〉 ≥ 0,∀x, y ∈ D(T ),

(b) β-strongly monotone if there exists β > 0 such that

〈x − y, Tx − Ty〉 ≥ β||x − y||2,∀x, y ∈ D(T ),

(c) ν-inverse strongly monotone (for short, ν-ism) if there exists ν > 0 such
that

〈x − y, Tx − Ty〉 ≥ ν||Tx − Ty||2,∀x, y ∈ D(T ).

It can be easily seen that (i) if T is nonexpansive, then I −T is monotone; (ii)
the projection mapping PC is a 1-ism. The inverse strongly monotone (also
referred to as co-coercive) operators have been widely used to solve practical
problems in various fields, for instance, in traffic assignment problems; see,
for example, [10,31] and the references therein.

The following lemmas will be needed in the sequel.

Lemma 2.4. Let C be a nonempty closed convex subset of a real Hilbert space
H and PC :H → C be the metric projection from H onto C. Then the following
inequality holds:

||y − PCx||2 + ||x − PCx||2 ≤ ||x − y||2, ∀x ∈ H,∀y ∈ C.

Lemma 2.5. (Sahu et al. [55]) Let C be a closed and convex subset of a real
Hilbert space H. For any x, y, z ∈ H, and a real number a ∈ R, the set

{v ∈ C : ||y − v||2 ≤ ||x − v||2 + 〈z, v〉 + a}
is closed and convex.

Lemma 2.6. (Lopez et al. [34]) Let E be a real Banach space. Let A : H → 2H

be a maximal monotone operator and B : H → H be an α-inverse strongly
monotone mapping on H. Define Tr := (I + rB)−1(x − rAx), r > 0. Then
we have,

(i) for r > 0, F (Tr) = (A + B)−1(0).
(ii) for 0 < s ≤ r and x ∈ E, ||x − Tsx|| ≤ 2||x − Trx||.

We shall adopt the following notation in this paper:
• xn → x means that xn → x strongly.
• xn ⇀ x means that xn → x weakly;
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• ww(xn) := {x : ∃xnj
⇀ x} is the weak w-limit set of the sequence

{xn}∞
n=1.

Lemma 2.7. (Browder [16]) Let C be a nonempty closed convex subset of a
Hilbert space H and T a nonexpansive mapping with F (T ) �= ∅. If {xn} is a
sequence in C such that xn ⇀ x and (I − T )xn → y, then (I − T )x = y. In
particular, if y = 0, then x ∈ F (T ).

3. Main results

Let H be a real Hilbert space. Let A : H → H be an α-ism and B : H → 2H a
maximal monotone operator such that Ω := (A+B)−1(0) �= ∅. Let {αn} ⊂ R

and let a sequence {xn}∞
n=0 in H be generated by x0, x1 ∈ H and for all

n ≥ 1,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn = xn + αn(xn − xn−1),
zn = (I + rnB)−1(yn − rnAyn),
Cn = {u ∈ H : ||zn − u||2 ≤ ||xn − u||2 − 2αn〈xn − u, xn−1 − xn〉

+ α2
n||xn−1 − xn||2},

Qn = {u ∈ H : 〈u − xn, x0 − xn〉 ≤ 0},
xn+1 = PCn∩Qn

(x0).

(3.1)

Remark 3.1. We make the following remarks about our iterative method
(3.1).
(1) We observe that for any u ∈ H,

||zn − u||2 ≤ ||xn − u||2 − 2αn〈xn − u, xn−1 − xn〉 + α2
n||xn−1 − xn||2

⇔
‖zn‖2 − 2〈u, zn〉 ≤ ‖xn‖2 − 2〈u, xn〉 + 2αn〈u, xn−1 − xn〉
−2αn〈xn, xn−1 − xn〉 + α2

n||xn−1 − xn||2
⇔
2〈u, xn − zn − αn(xn−1 − xn)〉 ≤ ‖xn‖2 − ‖zn‖2
−2αn〈xn, xn−1 − xn〉 + α2

n||xn−1 − xn||2
⇔
2〈u, yn − zn〉 ≤ ‖xn‖2 − ‖zn‖2 − 2αn〈xn, xn−1 − xn〉 + α2

n||xn−1 − xn||2
⇔
〈u, xn − zn〉 ≤ 1

2

[
‖xn‖2 − ‖zn‖2 − 2αn〈xn, xn−1 − xn〉 + α2

n||xn−1 − xn||2
]
.

Therefore, the set Cn defined in our iterative method (3.1) is a half
space. Hence, the metric projection PCn

has a closed-form expression
and can be easily computed (see [19]).

(2) For any u ∈ H,

〈u − xn, x0 − xn〉 ≤ 0
⇔
〈u, x0 − xn〉 ≤ 〈xn, x0 − xn〉.
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Therefore. the set Qn defined in iterative method (3.1) is a half space
and the metric projection PQn

has a closed-form expression and can
also be easily computed.

(3) Since both Cn and Qn are half-spaces, then the closed-form expressions
for the projections onto the intersection of two half-spaces Cn and Qn

are given in Propositions 28.18 and 28.19 of [6]. Therefore, the iterate
xn+1 in our iterative method (3.1) can be easily computed.

We now give our main result of this paper.

Theorem 3.2. Let H be a real Hilbert space. Let A : H → H be an α-ism and
B : H → 2H a maximal monotone operator such that Ω := (A+B)−1(0) �= ∅.
Let {αn} be a bounded real sequence. Let a sequence {xn}∞

n=0 in H be gen-
erated by (3.1). If 0 < lim inf

n→∞ rn ≤ lim sup
n→∞

rn < 2α, then {xn}∞
n=0 converges

strongly to x = PΩx0.

Proof. We divide our proof into these steps.
Step 1 Show that {xn}∞

n=0 is well defined and Ω ⊂ Cn ∩ Qn, ∀n ≥ 0.
By Lemma 2.5, it is obvious that Cn is closed and convex for all n ≥ 0.
Furthermore, Qn is closed and convex for all n ≥ 0. So, Cn ∩ Qn is closed
and convex for all n ≥ 0.
Let u ∈ Ω. Then by a direct computation, we obtain,

||yn − u||2 = ||(xn − u) − αn(xn−1 − xn)||2
= ||xn − u||2 − 2αn〈xn − u, xn−1 − xn〉 + α2

n||xn−1 − xn||2.
Furthermore, we have,

||zn − u||2 = ||(I + rnB)−1(yn − rnAyn) − (I + rnB)−1(u − rnAu)||2
≤ ||yn − u − rn(Ayn − Au)||2
= ||yn − u||2 − 2rn〈Ayn − Au, yn − u〉 + r2

n||Ayn − Au||2
≤ ||yn − u||2 − 2rnα||Ayn − Au||2 + r2

n||Ayn − Au||2
= ||yn − u||2 − (2α − rn)rn||Ayn − Au||2
≤ ||yn − u||2
= ||xn − u||2 − 2αn〈xn − u, xn−1 − xn〉 + α2

n||xn−1 − xn||2.
Therefore, u ∈ Cn, ∀n ≥ 1. Clearly, u ∈ C0. So, u ∈ Cn, ∀n ≥ 0. Thus,
Ω ⊂ Cn, ∀n ≥ 0. For n = 0, we have that x0 ∈ H and Q0 = H and hence
Ω ⊂ H = C0 ∩ Q0. Suppose that xk is given and Ω ⊂ Ck ∩ Qk for some
k ∈ {0, 1, 2, . . .}. Since Ck ∩ Qk is nonempty, closed and convex, there exists
a unique element xk+1 ∈ Ck ∩ Qk such that xk+1 = PCk∩Qk

(x0). It follows
that,

〈z − xk+1, x0 − xk+1〉 ≤ 0, ∀z ∈ Ck ∩ Qk.

Since Ω ⊂ Ck ∩ Qk, we have in particular that,

〈z − xk+1, x0 − xk+1〉 ≤ 0, ∀z ∈ Ω.

This implies that Ω ⊂ Ck+1. Hence Ω ⊂ Ck+1 ∩ Qk+1. By induction, Ω ⊂
Cn ∩ Qn, ∀n ≥ 0 and {xn}∞

n=0 is well defined.
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Step 2 Show that {xn}∞
n=0 is bounded.

From our iterative scheme (3.1), we observe that,

〈y − xn, x0 − xn〉 ≤ 0, ∀y ∈ Qn(n ≥ 1).

This implies that xn = PQn
(x0) and hence,

||xn − x0|| ≤ ||x0 − y||, ∀y ∈ Qn.

Since Ω ⊂ Qn, we have

||xn − x0|| ≤ ||x0 − y||, ∀y ∈ Ω. (3.2)

In particular, we have (since xn+1 ∈ Qn)

||xn − x0|| ≤ ||xn+1 − x0||. (3.3)

By (3.2) and (3.3), we obtain lim
n→∞||xn − x0|| exists. This implies that {xn}

is bounded.
Step 3 Show that lim

n→∞||xn+1 − xn|| = 0.

By Lemma 2.4 and the fact that xn = PQn
(x0), we see that,

||xn+1 − xn||2 ≤ ||xn+1 − x0||2 − ||xn − x0||2.
Since lim

n→∞||xn − x0|| exists, it follows that lim
n→∞||xn+1 − xn|| = 0.

Step 4 Show that lim
n→∞xn = x, where x = PΩ(x0).

We obtain from (3.1) and Step 3 that,

‖yn − xn‖ = |αn|‖xn − xn−1‖ → 0, n → ∞.

Hence,

‖xn+1 − yn‖ ≤ ||xn+1 − xn|| + ‖yn − xn‖ → 0, n → ∞.

Since xn+1 ∈ Cn, we have that,

||zn − xn+1||2 ≤ ||xn − xn+1||2 − 2αn〈xn − xn+1, xn−1 − xn〉
+α2

n||xn−1 − xn||2
≤ ||xn − xn+1||2 + 2|αn|‖xn − xn+1‖xn−1 − xn‖

+α2
n||xn−1 − xn||2 → 0, n → ∞.

Furthermore, we have,

‖zn − xn‖ ≤ ‖zn − xn+1‖ + ‖xn − xn+1‖ → 0, n → ∞,

and

‖zn − yn‖ ≤ ‖zn − xn‖ + ‖xn − yn‖ → 0, n → ∞.

Take zn := Tnyn, where Tn := (I + rnB)−1(I − rnA). Therefore,

‖Tnyn − yn‖ = ‖zn − yn‖ → 0, n → ∞.

Since lim inf
n→∞ rn > 0, there exists ε > 0 such that rn ≥ ε, ∀n ≥ 1. Then, by

Lemma 2.6, we have,

lim
n→∞||Tεyn − yn|| ≤ 2 lim

n→∞||Tnyn − yn|| = 0.

By Lemmas 3.3 and 3.1 of [34], Tε is nonexpansive and F (Tε) = (A+B)−1(0).
Since {xn} is bounded, there exists a subsequence {xni

} of {xn} such that
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xni
⇀ w ∈ H. Using the fact that ‖yn −xn‖ → 0, n → ∞ and xni

⇀ w ∈ H,
we have yni

⇀ w ∈ H. We can therefore make use of Lemma 2.7 to assure
that w ∈ Ω.
If x = PΩ(x0), it follows from (3.2), the fact that w ∈ Ω and the lower
semicontinuity of the norm that,

||x0 − x|| ≤ ||x0 − w|| ≤ lim inf
i→∞

||x0 − xni
||

≤ lim sup
i→∞

||x0 − xni
|| ≤ ||x0 − x||.

Thus, we have that lim
i→∞

||xni
− x0|| = ||x0 − w|| = ||x0 − x||. This implies

that xni
→ w = x, i → ∞. It follows that {xn} converges weakly to x. So

we have,

||x0 − x|| ≤ lim inf
n→∞ ||x0 − xn||

≤ lim sup
n→∞

||x0 − xn|| ≤ ||x0 − x||.

This shows that lim
n→∞||xn − x0|| = ||x0 − x||. From xn ⇀ x, we also have

xn − x0 ⇀ x − x0. Since H satisfies the Kadec–Klee property, it follows that
xn − x0 → x − x0. Therefore xn → x as n → ∞. We thus complete the
proof. �

If we take A := 0 in Theorem 3.2, then we obtain the following corollary
which is new in its own right.

Corollary 3.3. Let H be a real Hilbert space. Let B : H → 2H be a maxi-
mal monotone operator such that B−1(0) �= ∅. Let {αn} be a bounded real
sequence. Let a sequence {xn}∞

n=0 in H be generated by x0, x1 ∈ H and for
all n ≥ 1,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn = xn + αn(xn − xn−1),
zn = (I + rnB)−1yn,
Cn = {u ∈ H : ||zn − u||2 ≤ ||xn − u||2 − 2αn〈xn − u, xn−1 − xn〉

+ α2
n||xn−1 − xn||2},

Qn = {u ∈ H : 〈u − xn, x0 − xn〉 ≤ 0},
xn+1 = PCn∩Qn

(x0).

If lim inf
n→∞ rn > 0, then {xn}∞

n=0 converges strongly to x = PΩx0.

Remark 3.4. We remark here that our Theorem 3.2 and Corollary 3.3 com-
plement many weak convergence results for monotone inclusion problems
using inertial-type algorithms obtained in [4,13–15,21,36,37,41,46] in the
sense that we obtain strong convergence results using the modified inertial
extrapolation method in real Hilbert spaces.
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4. Applications

(1) Application to convex minimization problems

Let f and g be two proper, convex and lower semicontinuous functions
from H to R∪{+∞} such that f is differentiable with L-Lipschitz continuous
gradient, and g is such that its proximal map can be easily computed. Assume
that Ω is the set of solutions of problem (1.5) and Ω �= ∅. In Theorem 3.2, take
A := ∇f and B := ∂g. Therefore, we obtain the following strong convergence
result with inertial for solving problem (1.5).

Theorem 4.1. Let H be a real Hilbert space. Let f and g be two proper, convex
and lower semicontinuous functions from H to R ∪ {+∞} such that f is
differentiable with L-Lipschitz continuous gradient, and g is such that its
proximal map can be easily computed. Assume that Ω is the set of solutions of
problem (1.5) and Ω �= ∅. Let {αn} be a bounded real sequence and γ ∈ (0, 2

L ).
Let a sequence {xn}∞

n=0 in H be generated by x0, x1 ∈ H and for all n ≥ 1,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn = xn + αn(xn − xn−1),
zn = proxγg(yn − γ∇f(yn)),
Cn = {u ∈ H : ||zn − u||2 ≤ ||xn − u||2 − 2αn〈xn − u, xn−1 − xn〉

+ α2
n||xn−1 − xn||2},

Qn = {u ∈ H : 〈u − xn, x0 − xn〉 ≤ 0},
xn+1 = PCn∩Qn

(x0).

Then {xn}∞
n=0 converges strongly to x = PΩx0.

(2) Application to split feasibility problems

Let H1 and H2 be real Hilbert spaces and T : H1 → H2 a bounded
linear operator. Let C and Q be nonempty, closed and convex subsets of H1

and H2, respectively. The split feasibility problem (SFP) is the problem of
finding a point x ∈ C such that

Tx ∈ Q.

We denote the solution sets by Ω := C ∩ T−1(Q) = {y ∈ C : Ty ∈ Q}.
This problem was first introduced by Censor and Elfving [20], in a finite
dimensional Hilbert space, for solving the inverse problems in the context
of phase retrievals, medical image reconstruction and also in modeling of
intensity modulated radiation therapy.

Recall that the indicator function on C is the function iC , defined as

iC(x) :=
{

0, x ∈ C
∞, otherwise. (4.1)

It is well known that the proximal mapping of iC is the metric projection on
C; i.e,

proxiC (x) = arg min
u∈C

||u − x||
= PC(x).

Let H1 and H2 be Hilbert spaces. Let T : H1 → H2 be a bounded linear
operator and T ∗ the adjoint of T . Let PQ be the projection of H2 onto



Vol. 19 (2017) A strong convergence result involving an inertial 3107

nonempty, closed and convex subset Q. Take f(x) = 1
2 ||Tx − PQTx||2 and

g(x) = iC(x). Therefore, from Theorem 4.1, we obtain the following theorem
for solving split feasibility problems:

Corollary 4.2. Let H1 and H2 be real Hilbert spaces. Let T : H1 → H2 be a
bounded linear operator and T ∗ the adjoint of T . Let C and Q be nonempty,
closed and convex subsets of H1 and H2, respectively. Let Ω = C ∩T−1(Q) �=
∅. Let {αn} be a bounded real sequence and r ∈ (0, 2

‖T‖2 ). Let a sequence
{xn}∞

n=0 in H be generated by x0, x1 ∈ H and for all n ≥ 1,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn = xn + αn(xn − xn−1),
zn = PC(yn − rT ∗(I − PQ)Tyn),
Cn = {u ∈ H : ||zn − u||2 ≤ ||xn − u||2 − 2αn〈xn − u, xn−1 − xn〉

+ α2
n||xn−1 − xn||2},

Qn = {u ∈ H : 〈u − xn, x0 − xn〉 ≤ 0},
xn+1 = PCn∩Qn

(x0),

(4.2)

for all n ≥ 1. Then {xn} converges strongly to q := PΩx0, where PΩ is the
metric projection from H1 onto Ω.

(3) Application to LASSO problem

The l1-norm regularized least squares model is

minx∈Rn

1
2
||Ax − b||22 + λ||x||1, (4.3)

where A ∈ R
m×n is a given matrix, b is a given vector and λ a positive scalar.

Let Ω be the solution set of (4.3).
The concept of l1 regularization has been studied for many years. The least
square problem with l1 penalty was presented and popularized independently
under names, Least Absolute Selection and Shrinkage Operator (LASSO)[60],
and Basis Pursuit Denoising [23].
The interest in compressed sensing, is in recovering a solution x to an unde-
termined system of linear equations Ax = b in the case where n � m. It
is known from linear algebra that this linear system either does not exist
or is not unique when the number of unknowns is greater than the number
of equations. The system is usually solved by finding the minimum l2-norm
solution, also known as linear least squares. If x is sparse, as is usually the
case in applications, then x can be recovered by computing the above l1-norm
regularized least squares model (4.3). This (4.3) model is most often referred
to as LASSO. The LASSO problem can be cast as a second order cone pro-
gramming and solve by standard general algorithms like an interior point
method [8], but the computational complexity of such traditional methods is
too high to handle large-scale data encountered in many real applications.
Two notable algorithms that take advantage of special structure of LASSO
problems are iterative shrinkage thresholding algorithm (ISTA) and its accel-
erated version fast iterative shrinkage thresholding algorithm (FISTA). The
computation of ISTA, which is also known as the proximal gradient method,
only involves matrix and vector multiplication, and has great advantage over
standard convex algorithms by avoiding a matrix factorization [47]. Beck and
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Teboulle [7] put forward an accelerated ISTA named as FISTA, in which a
relaxation parameter is chosen. Meanwhile, Nesterov [44,45] had earlier devel-
oped a similar algorithm to FISTA. These two algorithms are designed for
solving problems containing convex differentiable objectives combined with
an l1 regularization terms as the following problem:

min{f(x) + g(x) : x ∈ R
n}, (4.4)

where f is a smooth convex function and g is continuous function but possibly
nonsmooth. Clearly, LASSO problem is a special case of (4.4), formulation
with f(x) = 1

2 ||Ax − b||2, g(x) = λ||x||1. Its gradient ∇f = A∗Ax − A∗b is
Lipschitz continuous with Lipschitz constant L(f) = ‖A∗A‖. The proximal

map with g(x) = λ||x||1 is given as proxg(x) = arg minu λ||x||1 +
1
2
||u − x||22,

which is separable in indices. Thus, for x ∈ R
n,

proxg(x) = proxλ||.||1(x) =
(
proxλ|.|1(x1), . . . ,proxλ|.|1(xn)

)

= (α1, . . . , αn),

where αk = sgn(xk)max{|xk| − λ, 0} for k = 1, 2, . . . , n. Thus we get from
Theorem 4.1 the following theorem for solving the Lasso problem in infinite
dimensional Hilbert spaces.

Corollary 4.3. Let H be a real Hilbert space and f and g from H to R such
that f(x) = 1

2‖Ax − b‖2, g(x) = λ||x||1. Suppose Ω �= ∅. Let {αn} be a
bounded real sequence and r ∈ (0, 2

‖A∗A‖ ). Let a sequence {xn}∞
n=0 in H be

generated by x0, x1 ∈ H and for all n ≥ 1,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn = xn + αn(xn − xn−1),
zn = proxγg(yn − rA∗(Ayn − b)),
Cn = {u ∈ H : ||zn − u||2 ≤ ||xn − u||2 − 2αn〈xn − u, xn−1 − xn〉

+ α2
n||xn−1 − xn||2},

Qn = {u ∈ H : 〈u − xn, x0 − xn〉 ≤ 0},
xn+1 = PCn∩Qn

(x0),

(4.5)

for all n ≥ 1. Then {xn} converges strongly to q := PΩx0, where PΩ is the
metric projection from H onto Ω.

5. Numerical example

In this section, we present some numerical examples to illustrate the perfor-
mance of our algorithm. We consider the following simple numerical example
to demonstrate the effectiveness of the algorithm (4.2). We apply the algo-
rithm (4.2) to solve the split feasibility problem and compare the numerical
results with the standard form (i.e., αn = 0) defined as follows: x1 ∈ H and

⎧
⎪⎪⎨

⎪⎪⎩

zn = PC(xn − rA∗(I − PQ)Axn),
Cn = {u ∈ H : ||zn − u|| ≤ ||xn − u||},
Qn = {u ∈ H : 〈u − xn, x0 − xn〉 ≤ 0},
xn+1 = PCn∩Qn

(x0),

(5.1)
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In the numerical results listed in the following tables, ’Iter.’ and ’Sec.’
denote the number of iterations and the cpu time in seconds, respectively.

Example 5.1. Let H1 = L2([α, β]) = H2 and we give a numerical example in
(L2([α, β]), ||.||L2) of the problem considered in Corollary 4.2 in this section.
Now take

C := {x ∈ L2([α, β]) : 〈a, x〉 ≤ b},

where 0 �= a ∈ L2([α, β]) and b ∈ R, then (see [19])

PC(x) =

{
b−〈a,x〉
||a||2L2

a + x, 〈a, x〉 > b

x, 〈a, x〉 ≤ b.

Let

Q = {x ∈ L2([α, β]) : ||x − d||L2 ≤ r}

be a closed ball centered at d ∈ L2([α, β]) with radius r > 0, then

PQ(x) =
{

d + r x−d
||x−d|| , x /∈ Q

x, x ∈ Q.

Now, suppose

C :=
{

x ∈ L2([0, 2π]) :
∫ 2π

0

x(t)dt ≤ 1
}

and

Q =
{

x ∈ L2([0, 2π]) :
∫ 2π

0

|x(t) − sin(t)|2dt ≤ 16
}

and A : L2([0, 2π]) → L2([0, 2π]), (Ax)(s) = x(s), ∀x ∈ L2([0, 2π]). Then
(A∗x)(s) = x(s) and ‖A‖ = 1. Let us consider the following problem:

find x∗ ∈ C such that Ax∗ ∈ Q. (5.2)

Observe that the set of solutions of problem (5.2) is nonempty (since x(t) =
0, a.e. is in the set of solutions).
In Corollary 4.2, x0(t) = x1(t), t ∈ [0, 2π]. Take r = 1.90, αn := n−1

n+α−1 ,
∀n ≥ 1 with α = 3 and α0 = 0.84. We take E(xn) = 1

2‖PC(xn) − xn‖2 +
1
2‖PQ(Axn) − Axn‖2 ≤ ε = 10−3 as the stopping criterion. We test several
initial values and compare iterative method (4.2) with the un-accelerated one
defined by (5.1). The results are listed in Table 1.

We take E(xn) = 1
2‖PC(xn) − xn‖2 + 1

2‖PQ(Axn) − Axn‖2 ≤ ε =
10−i(i = 0, 1, 2, 3) as the stopping criterion.We choose x1

0 = t2

10 , x2
0 = 2t

16 ,
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Table 1. Computational results for Example 5.1

x0 Un-accelerated algorithm 4.2 Algorithm 4.2
Sec. Iter. Sec. Iter.

t2

10 27.5781 18 12.6094 12
2t

16 35.1094 12 17.5469 8
1
2e

t
3 1.3281 9 0.6406 3

1
2e

t
4 + t2

24 3.7969 13 2.7813 6
1
2 log2(t) + t2

24 23.9844 13 13.2813 6
2 sin4 5t − 3 cos 2t 49.7656 15 21.3906 11

0 2 4 6 8 10 12 14 16 18
10−3

10−2

10−1

100

Number of Iterations

E
(x

n)

Inertial forward−backward algorithm
Forward−backward algorithm

Figure 1. Comparison of the number of iterations, for
example 5.1 with x1

0

x3
0 = 1

2e
t
3 , x4

0 = 1
2e

t
4 + t2

24 , x5
0 = 1

2 log2(t) + t2

24 and x6
0 = 2 sin4 5t − 3 cos 2t

as initial values, and the results are presented in Fig. 1, 2, 3, 4, 5 and 6,
respectively.

6. Conclusion and final remarks

In this paper, we consider an iterative method which is a combination of the
inertial forward–backward algorithm and Haugazeau’s algorithm for solving
monotone inclusions given by the sum of two monotone operators with an
easy-to-compute resolvent operator and another monotone operator which
is co-coercive and prove the strong convergence of the sequence of iterates
generated by our proposed algorithm to a solution of monotone inclusions in
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Figure 2. Comparison of the number of iterations, for
example 5.1 with x2

0
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10−3

10−2

10−1

100

Number of Iterations

E
(x

n)

Inertial forward−backward algorithm
Forward−backward algorithm

Figure 3. Comparison of the number of iterations for
Example 5.1 with x3

0

real Hilbert spaces. Our results in this paper complement, in terms of the
mode of convergence in infinite dimensional real Hilbert spaces, the results
of Beck and Teboulle [7], the primal-dual algorithm of Chambolle and Pock
[21] and Lorenz and Pock [36]. We can also obtain a strong convergence
result using a combination of inertial primal-dual algorithm and Haugazeau’s
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10−3

10−2

10−1

100
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Figure 4. Comparison of the number of iterations for
Example 5.1 with x4

0
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10−3

10−2

10−1

100

Number of Iterations

E
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Inertial forward−backward algorithm
Forward−backward algorithm

Figure 5. Comparison of the number of iterations for
Example 5.1 with x5

0

algorithm for convex concave programming by adapting appropriately our
iterative method in this paper. From our numerical experiment, we see that
the inertial term leads to faster convergence.
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Figure 6. Comparison of the number of iterations for
Example 5.1 with x6

0

In our future research, we shall develop iterative method with inertial extrap-
olation term which does not involve the construction of sets Cn and Qn as
given in (3.1) and the sequence of iterates generated by the method con-
verges strongly to a solution x∗ ∈ (A + B)−1(0) �= ∅. When this is achieved,
we would compare numerically the new proposed accelerated method with
the un-accelerated method (see, e.g., [64]) of solving monotone inclusions in
real Hilbert spaces. For the time being, our result in this paper obtains strong
convergence result using Haugazeau’s algorithm involving inertial extrapola-
tion term and show numerically that our proposed scheme converges faster
than the un-accelerated Haugazeau’s algorithm for solving monotone inclu-
sions in real Hilbert spaces.
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Abstract In this work, we introduce implicit and explicit iterations for solving the
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1 Introduction

LetX be real Banach space, we consider the following so-called variational inclusion
problem: Find x ∈ X such that

0 ∈ Ax + Bx, (1.1)
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where A : C −→ X is a single-valued mapping, B : X −→ 2X is a set-valued
mapping and 0 is a zero vector in X. The set of solutions of (1.1) is denoted by
(A + B)−10. It is well known that the problem (1.1) has wide applications in the
fields of economics, structural analysis, mechanics, optimization problems, signal
processing, image recovery, and applied sciences (see, e.g., [11, 17, 21, 23, 24], and
the references therein).

A classical method for solving this problem is the forward-backward splitting
method [18, 25, 29, 37] which is defined by the following manner: x1 ∈ X and

xn+1 = (I + rB)−1(xn − rAxn), n ≥ 1, (1.2)

where r > 0. We see that each step of iterates involves only with A as the forward
step andB as the backward step, but not the sum ofA andB. This method includes, in
particular, the proximal point algorithm [12, 13, 22, 27, 32] and the gradient method
[9, 19]. Lions-Mercier [25] introduced the following splitting iterative methods in a
real Hilbert space:

xn+1 = (2JA
r − I )(2JB

r − I )xn, n ≥ 1 (1.3)

and
xn+1 = JA

r (2JB
r − I )xn + (I − JB

r )xn, n ≥ 1, (1.4)

where J T
r = (I + rT )−1. The first one is often called Peaceman-Rachford algorithm

[30] and the second one is called Douglas-Rachford algorithm [20]. We note that
both algorithms can be weakly convergent in general [29].

Recently, López et al. [26] introduced the following Halpern-type forward-
backward method: x1 ∈ X and

xn+1 = αnu + (1 − αn)(J
B
rn

(xn − rn(Axn + an)) + bn), (1.5)

where JB
r is the resolvent of B, {rn} ⊂ (0, ∞), {αn} ⊂ (0, 1] and {an}, {bn} are error

sequences in X. It was proved that the sequence {xn} generated by (1.5) strongly
converges to a zero point of the sum of A and B under some appropriate conditions.

Very recently, Abdou et al. [1] introduced the following two algorithms for solving
the fixed point problem of a nonexpansive mapping and the variational inclusion
problem in Hilbert spaces:

xt = (1 − κ)Sxt + κJB
λ (tγf (xt ) + (1 − t)xt − λAxt ), (1.6)

for all t ∈ (0, 1) and

xn+1 = (1 − κ)Sxn + κJB
λn

(αnγf (xn) + (1 − αn)xn − λnAxn), (1.7)

for all n ≥ 1. It was proved that the sequences generated by (1.6) and (1.7) converge
strongly to a common solution.

There have been many works concerning the problem of finding zero points of
the sum of two monotone operators (in Hilbert spaces) and accretive operators (in
Banach spaces) (see [14, 16, 36–38, 42]).

In this work, motivated by the previous work, we study implicit and explicit
iteration methods for solving the inclusion problem for the sum of accretive and m-
accretive operators in the framework of Banach spaces. We then prove its strong
convergence under some mild conditions. Finally, we provide some applications
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including its experiments to support the main results. Our results extend and improve
many results in the literature.

2 Preliminaries

Throughout this paper, we denote byX andX∗ a real Banach space and the dual space
of X, respectively. Let q > 1 be a real number. The generalized duality mapping
Jq : X −→ 2X∗

is defined by

Jq(x) = {jq(x) ∈ X∗ : 〈x, jq(x)〉 = ‖x‖q, ‖jq(x)‖ = ‖x‖q−1},
where 〈·, ·〉 denotes the duality pairing between X and X∗. In particular, Jq = J2
is called the normalized duality mapping and Jq(x) = ‖x‖q−2J2(x) for x �= 0. If
X := H is a real Hilbert space, then J = I , where I is the identity mapping. It is
well known that if X is smooth, then Jq is single-valued, which is denoted by jq (see
[35]).

The modulus of convexity of X is the function δ : (0, 2] −→ [0, 1] defined by

δ(ε) = inf

{
1 − ‖x+y‖

2 : x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
.

A Banach space X is said to be uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2].
The modulus of smoothness of X is the function ρ : R

+ := [0, ∞) −→ R
+

defined by

ρ(t) = sup

{
‖x+ty‖+‖x−ty‖

2 − 1 : x, y ∈ X, ‖x‖ = ‖y‖ = 1

}
.

A Banach space X is said to be uniformly smooth if ρX(t)
t

−→ 0 as t −→ 0. Suppose
that 1 < q ≤ 2, thenX is said to be q-uniformly smooth if there exists c > 0 such that
ρ(t) ≤ ctq for all t > 0. If X is q-uniformly smooth, then X is uniformly smooth. It
is well known that each uniformly convex Banach space (uniformly smooth Banach
space) is reflexive and strictly convex (see [15, 35]).

Let A : X −→ 2X be a set-valued mapping. We denote the domain and range of
an operator A : X −→ 2X by D(A) = {x ∈ X : Ax �= ∅} and R(A) = ⋃{Az : z ∈
D(A)}, respectively. Let q > 1. A set-valued mappingA : D(A) ⊂ X −→ 2X is said
to be accretive of order q if for each x, y ∈ D(A), there exists jq(x −y) ∈ Jq(x −y)

such that

〈u − v, jq(x − y)〉 ≥ 0, u ∈ Ax and v ∈ Ay.

An accretive operator A is said to be m-accretive if R(I + rA) = X for all r > 0.
Let A : D(A) ⊂ X −→ 2X be an m-accretive operator. The resolvent operator of A,
denoted by JA

λ : X −→ D(A) is defined by

JA
λ = (I + λA)−1,

where λ is any positive number and also denote A−10 by the set of zeros of A, that is,
A−10 = {x ∈ D(A) : 0 ∈ Ax}. Let C be a nonempty subset of a real Banach space
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X. A mapping S : C −→ C is said to be L-Lipschitzian if there exists a constant
L > 0 such that

‖Sx − Sy‖ ≤ L‖x − y‖,∀x, y ∈ C.

If 0 < L < 1, then S is a contraction and ifL = 1, then S is a nonexpansive mapping.
We denote the fixed points set of the mapping S by Fix(S) = {x ∈ C : Sx = x}.

Let α > 0 and q > 1. A mapping A : C −→ X is said to be α-inverse strongly
accreive (α-isa) of order q if for each x, y ∈ D(A), there exists jq(x−y) ∈ Jq(x−y)

such that

〈u − v, jq(x − y)〉 ≥ α‖Ax − Ay‖q, u ∈ Ax and v ∈ Ay.

Lemma 2.1 ([26]) LetX be a real q-uniformly smooth Banach space andA : X −→
X be an α-isa of order q. Then, the following inequality holds:

‖(I − λA)x − (I − λA)y‖q ≤ ‖x − y‖q − λ(αq − κqλq−1)‖Ax − Ay‖q

for all x, y ∈ X. In particular, if 0 < λ ≤ (αq
κq

) 1
q−1 , then I − λA is nonexpansive.

Lemma 2.2 [39] Let 1 < q ≤ 2 and X be a Banach space. Then, the following are
equivalent.

(i) X is q-uniformly smooth.
(ii) There is a constant κq > 0 such that for all x, y ∈ X

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x)〉 + κq‖y‖q . (2.1)

Remark 2.3 The constant κq satisfying (2.1) is called the q-uniform smoothness
coefficient of X.

Lemma 2.4 ([39]) Let p > 1 and r > 0 be two fixed real numbers and X be a
Banach space. Then, the following are equivalent.

(i) X is uniformly convex.
(ii) There is a strictly increasing, continuous, and convex function g : R+ −→ R

+
such that g(0) = 0 and

g(‖x − y‖) ≤ ‖x‖p − p〈x, jp(y)〉 + (p − 1)‖y‖p, ∀x, y ∈ Br.

We use the notation xn ⇀ x stands for weak convergence of {xn} to x and xn −→
x stands for the strong convergence of {xn} to x.

Lemma 2.5 ([10]) Let C be a nonempty, closed, and convex subset of a uniformly
convex Banach space X and S : C −→ C be a nonexpansive mapping. Then, I − S

is demiclosed at zero, i.e., xn ⇀ x and xn − Sxn −→ 0 implies x = Sx.

Following the proof line as in Lemma 2.7 of [41], we obtain the following results.
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Lemma 2.6 LetC be a nonempty, closed, and convex subset of a real smooth Banach
space X and let jq : X −→ X∗ be a generalized duality mapping. Assume that the
mapping F : C −→ X is accretive and weakly continuous along segments, that is,
F(x + ty) ⇀ F(x) as t −→ 0. Then, the variational inequality

x∗ ∈ C, 〈Fx∗, jq(x − x∗)〉 ≥ 0, x ∈ C

is equivalent to the dual variational inequality

x∗ ∈ C, 〈Fx, jq(x − x∗)〉 ≥ 0, x ∈ C.

Lemma 2.7 ([34]) Let {xn} and {ln} be bounded sequences in a Banach space X and
let {βn} be a sequence in [0, 1] with 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1.
Suppose xn+1 = (1− βn)ln + βnxn for all integers n ≥ 0 and lim supn−→∞(‖ln+1 −
ln‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn−→∞ ‖ln − xn‖ = 0.

Lemma 2.8 ([40]) Assume that {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1 − γn)an + γnδn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=0 γn = ∞;
(ii) lim supn−→∞ δn ≤ 0 or

∑∞
n=0 |γnδn| < ∞.

Then, limn−→∞ an = 0.

Lemma 2.9 ([28]) Let q > 1. Then, the following inequality holds:

ab ≤ 1
q
aq + ( q−1

q

)
b

q
q−1 ,

for arbitrary positive real numbers a, b.

Proposition 2.10 ([28]) Let q > 1. Then, the following inequality holds:

aq − bq ≤ qaq−1(a − b),

for arbitrary positive real numbers a, b.

Lemma 2.11 (The resolvent identity [7]) For λ > 0, μ > 0 and x ∈ X, then

JB
λ x = JB

μ

(
μ

λ
x +

(
1 − μ

λ

)
JB

λ x

)
.

From Lemma above, we have the following fact.
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Lemma 2.12 For each r, s > 0 then

‖JB
r x − JB

s x‖ ≤ ∣∣1 − s

r

∣∣‖JB
r x − x‖for allx ∈ X.

Proposition 2.13 Let X be a real q-uniformly smooth Banach space. Let B be an m-
accretive operator on X and let JB

λ be the resolvent operator associated with B and
λ. Then, we have

‖JB
λ x − JB

λ y‖q ≤
〈
x − y, jq

(
JB

λ x − JB
λ y
)〉

, ∀x, y ∈ X.

Proof. For any x, y ∈ X and λ > 0, we set u = JB
λ x and v = JB

λ y. By definition
of the accretive operator, we have x − u ∈ λBu and y − v ∈ λBv. Since B is
m-accretive,

0 ≤ 〈x − u − (y − v), jq(u − v)〉
= 〈x − y, jq(u − v)〉 − 〈u − v, jq(u − v)〉
= 〈x − y, jq(u − v)〉 − ‖u − v‖q .

It follows that

‖u − v‖q ≤ 〈x − y, jq(u − v)〉,

i.e.,

‖JB
λ x − JB

λ y‖q ≤
〈
x − y, jq

(
JB

λ x − JB
λ y
)〉

, ∀x, y ∈ X.

This completes the proof. �

3 Main results

In this section, we prove the convergence theorem by using an implicit iteration.

3.1 Convergence theorem for implicit iteration scheme

Let X be a uniformly convex and q-uniformly smooth Banach space which admits a
weakly sequentially continuous generalized duality mapping jq : X −→ X∗. Let f :
X −→ X be a ρ-contraction, A : X −→ X be an α-isa of order q and B : X −→ 2X

be an m-accretive operator. Let JB
λ = (I + λB)−1 be a resolvent of B for λ > 0 and

S : X −→ X be a nonexpansive mapping such that Fix(S) ∩ (A + B)−10 �= ∅. Let
0 < γ < 1. For t ∈ (0, 1), consider the following mapping St on X defined by

Stx := (1 − γ )Sx + γ JB
λt

(tf (x) + (1 − t)x − λtAx), ∀x ∈ X,
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where 0 < a ≤ λt < λt

1−t
≤ b <

(αq
κq

) 1
q−1 . It is observed that St is a contraction.

Indeed, by the nonexpansiveness of JB
λt

and Lemma 2.1, for all x, y ∈ X, we have

‖Stx − St y‖
= ∥∥((1 − γ )Sx + γ JB

λt
(tf (x) + (1 − t)x − λtAx)

)− ((1 − γ )Sy + γ JB
λt

(tf (y) + (1 − t)y − λtAy)
)∥∥

=
∥∥∥∥(1 − γ )(Sx − Sy) + γ

[
JB

λt

(
tf (x) + (1 − t)

(
I − λt

1 − t
A

)
x

)

−JB
λt

(
tf (y) + (1 − t)

(
I − λt

1 − t
A

)
y

)]∥∥∥∥
≤ (1 − γ )‖Sx − Sy‖ + γ

∥∥∥∥t (f (x) − f (y)) + (1 − t)

[(
I − λt

1 − t
A

)
x −

(
I − λt

1 − t
A

)
y

]∥∥∥∥
≤ (1 − γ )‖x − y‖ + γ t‖f (x) − f (y)‖ + (1 − t)γ

∥∥∥∥
(

I − λt

1 − t
A

)
x −

(
I − λt

1 − t
A

)
y

∥∥∥∥
≤ (1 − γ )‖x − y‖ + γ tρ‖x − y‖ + (1 − t)γ ‖x − y‖
= (

1 − (1 − ρ)γ t
)‖x − y‖,

which implies that the mapping St is a contraction. Hence, St has a unique fixed
point, denoted by xt , which uniquely solves the fixed point equation

xt = (1 − γ )Sxt + γ JB
λt

(tf (xt ) + (1 − t)xt − λtAxt ). (3.1)

Our first main result is to show that the net {xt } defined by (3.1) converges
strongly, as t −→ 0, to a point in Fix(S) ∩ (A + B)−10 which is also a solution of
the variational inequality.

Theorem 3.1 Suppose that Fix(S)∩ (A+B)−10 �= ∅. Then, the net {xt } defined by
(3.1) converges strongly, as t −→ 0, to a point x∗ ∈ Fix(S) ∩ (A + B)−10, which is
the unique solution of the variational inequality

〈f (x∗) − x∗, jq(z − x∗)〉 ≤ 0,∀z ∈ Fix(S) ∩ (A + B)−10. (3.2)

Proof. First, we show the uniqueness of a solution of the variational inequality
(3.2). If x∗ ∈ Fix(S)∩(A+B)−10 and x̂ ∈ Fix(S)∩(A+B)−10 both are solutions
to (3.2), then we obtain

〈f (x̂) − x̂, jq(x∗ − x̂)〉 ≤ 0

and

〈f (x∗) − x∗, jq(x̂ − x∗)〉 ≤ 0.

Adding up above two inequalities, we have

〈x∗ − x̂ − (f (x∗) − f (x̂)
)
, jq(x∗ − x̂)〉 ≤ 0,

and hence,

‖x∗ − x̂‖q ≤ ρ‖x∗ − x̂‖q .

This implies that x̂ = x∗ and the uniqueness is proved.
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Next, we show that {xt } is bounded. Set yt = JB
λt

(tf (xt ) + (1 − t)xt − λAxt ).

Taking p ∈ Fix(S) ∩ (A + B)−10, we see that

p = Sp = JB
λt

(p − λtAp) = JB
λt

(
tp + (1 − t)

(
I − λt

1 − t
A

)
p

)
.

Since JB
λt

and I − λt

1−t
A are nonexpansive,

‖yt − p‖
=
∥∥∥∥JB

λt

(
tf (xt ) + (1 − t)

(
I − λt

1 − t
A

)
xt

)
− JB

λt

(
tp + (1 − t)

(
I − λt

1 − t
A

)
p

)∥∥∥∥
≤
∥∥∥∥t (f (xt ) − p) + (1 − t)

[(
I − λt

1 − t
A

)
xt −

(
I − λt

1 − t
A

)
p

]∥∥∥∥
≤ t‖f (xt ) − f (p)‖ + t‖f (p) − p‖ + (1 − t)

∥∥∥∥
(

I − λt

1 − t
A

)
xt −

(
I − λt

1 − t
A

)
p

∥∥∥∥
≤ tρ‖xt − p‖ + t‖f (p) − p‖ + (1 − t)‖xt − p‖
= (

1 − (1 − ρ)t
)‖xt − p‖ + t‖f (p) − p‖. (3.3)

Then, it follows that

‖xt − p‖ = ‖(1 − γ )(Sxt − p) + γ (yt − p)‖
≤ (1 − γ )‖Sxt − p‖ + γ ‖yt − p‖
≤ (1 − γ )‖xt − p‖ + γ ‖yt − p‖
≤ (1 − γ )‖xt − p‖ + γ

[(
1 − (1 − ρ)t

)‖xt − p‖ + t‖f (p) − p‖]
= (

1 − (1 − ρ)γ t
)‖xt − p‖ + γ t‖f (p) − p‖, (3.4)

which implies that
‖xt − p‖ ≤ 1

1 − ρ
‖f (p) − p‖.

Hence, {xt } is bounded and so are {f (xt )}, {Axt }, and {Sxt }.
Next, we show that limt−→0 ‖xt −Sxt‖ = 0. From (3.4), we know that ‖xt −p‖ ≤

‖yt − p‖. Then, by the convexity of ‖ · ‖q for all q > 1 and Lemma 2.2, we have

‖xt − p‖q ≤ ‖yt − p‖q

≤
∥∥∥∥(1 − t)

[(
xt − λt

1 − t
Axt

)
−
(

p − λt

1 − t
Ap

)]
+ t (f (xt ) − p)

∥∥∥∥
q

≤ (1 − t)

∥∥∥∥
(

xt − λt

1 − t
Axt

)
−
(

p − λt

1 − t
Ap

)∥∥∥∥
q

+ t‖f (xt ) − p‖q

= (1 − t)

∥∥∥∥(xt − p) − λt

1 − t
(Axt − Ap)

∥∥∥∥
q

+ t‖f (xt ) − p‖q

≤ (1 − t)

[
‖xt − p‖q − qλt

1 − t
〈Axt − Ap, jq (xt − p)〉 + κqλ

q
t

(1 − t)q
‖Axt − Ap‖q

]
+ t‖f (xt ) − p‖q

≤ (1 − t)

[
‖xt − p‖q − αqλt

1 − t
‖Axt − Ap‖q + κqλ

q
t

(1 − t)q
‖Axt − Ap‖q

]
+ t‖f (xt ) − p‖q

= (1 − t)

[
‖xt − p‖q − λt

1 − t

(
αq − κqλ

q−1
t

(1 − t)q−1

)
‖Axt − Ap‖q

]
+ t‖f (xt ) − p‖q

≤ ‖xt − p‖q − λt

(
αq − κqλ

q−1
t

(1 − t)q−1

)
‖Axt − Ap‖q + t‖f (xt ) − p‖q ,
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which implies that

λt

(
αq − κqλ

q−1
t

(1 − t)q−1

)
‖Axt − Ap‖q ≤ t‖f (xt ) − p‖q .

By our assumption, we obtain

lim
t−→0

‖Axt − Ap‖ = 0. (3.5)

On the other hand, from Proposition 2.13 and Lemma 2.4, we have

‖yt − p‖q

= ‖JB
λt

(tf (xt ) + (1 − t)xt − λtAxt ) − JB
λt

(p − λtAp)‖q

≤ 〈tf (xt ) + (1 − t)xt − λtAxt − (p − λtAp), jq(yt − p)〉
≤ 1

q

[
‖tf (xt ) + (1 − t)xt − λtAxt − (p − λtAp)‖q + (q − 1)‖yt − p‖q

−g(‖tf (xt ) + (1 − t)xt − λt (Axt − Ap) − yt‖)
]
,

which implies that

‖yt − p‖q

≤ ‖tf (xt ) + (1 − t)xt − λtAxt − (p − λtAp)‖q − g(‖tf (xt ) + (1 − t)xt − λt (Axt − Ap) − yt‖)
=
∥∥∥∥(1 − t)

[(
I − λt

1 − t
A

)
xt −

(
I − λt

1 − t
A

)
p

]
+ t (f (xt ) − p)

∥∥∥∥
q

− g(‖tf (xt ) + (1 − t)xt − λt (Axt − Ap) − yt‖)
≤ (1 − t)

∥∥∥∥
(

I − λt

1 − t
A

)
xt −

(
I − λt

1 − t
A

)
p

∥∥∥∥
q

+ t‖f (xt ) − p‖q

− g(‖tf (xt ) + (1 − t)xt − λt (Axt − Ap) − yt‖)
≤ (1 − t)‖xt − p‖q + t‖f (xt ) − p‖q − g(‖tf (xt ) + (1 − t)xt − λt (Axt − Ap) − yt‖)
≤ ‖xt − p‖q + t‖f (xt ) − p‖q − g(‖tf (xt ) + (1 − t)xt − λt (Axt − Ap) − yt‖)
≤ ‖yt − p‖q + t‖f (xt ) − p‖q − g(‖tf (xt ) + (1 − t)xt − λt (Axt − Ap) − yt‖).

This gives

g(‖tf (xt ) + (1 − t)xt − λt (Axt − Ap) − yt‖) ≤ t‖f (xt ) − p‖q .

Hence,

lim
t−→0

g(‖tf (xt ) + (1 − t)xt − λt (Axt − Ap) − yt‖) = 0.

Since g is a continuous function, by (3.5), we obtain that

lim
t−→0

‖xt − yt‖ = 0. (3.6)

From (3.1), we note that

xt = (1 − γ )Sxt + γyt
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and hence,

lim
t−→0

‖yt − Sxt‖ = 0.

It follows that, as t → 0,

‖Sxt − xt‖ ≤ ‖Sxt − Syt‖ + ‖Syt − xt‖ ≤ ‖xt − yt‖ + ‖Syt − xt‖ → 0. (3.7)

For z ∈ Fix(S) ∩ (A + B)−10, we see that

‖yt − z‖q

=
∥∥∥∥JB

λt

(
tf (xt ) + (1 − t)

(
I − λt

1 − t
A

)
xt

)
− JB

λt

(
tz + (1 − t)

(
I − λt

1 − t
A

)
z

)∥∥∥∥
q

≤
〈
tf (xt ) + (1 − t)

(
I − λt

1 − t
A

)
xt − tz − (1 − t)

(
I − λt

1 − t
A

)
z, jq(yt − z)

〉

= (1 − t)

〈(
I − λt

1 − t
A

)
xt −

(
I − λt

1 − t
A

)
z, jq(yt − z)

〉
+ t〈f (xt ) − f (z), jq(yt − z)〉

+ t〈f (z) − z, jq(yt − z)〉
≤ (1 − t)‖xt − z‖‖yt − z‖q−1 + tρ‖xt − z‖‖yt − z‖q−1 + t〈f (z) − z, jq(yt − z)〉
≤ (1 − t)‖yt − z‖q + tρ‖yt − z‖q + t〈f (z) − z, jq(yt − z)〉
= (1 − (1 − ρ)t)‖yt − z‖q + t〈f (z) − z, jq(yt − z)〉,

which implies that

‖xt − z‖q ≤ ‖yt − z‖q ≤ 1

1 − ρ
〈f (z) − z, jq(yt − z)〉. (3.8)

Next, we show that {xt } is relatively norm-compact. Assume that tn ∈ (0, 1) is a
sequence such that tn −→ 0 as n −→ ∞. Put xn := xtn , yn := ytn and λn := λtn .
From (3.8), we have

‖xn − z‖q ≤ 1

1 − ρ
〈f (z) − z, jq(yn − z)〉. (3.9)

By the reflexivity of a Banach space X and the boundedness of {xn}, there exists a
subsequence {xni

} of {xn} such that xni
⇀ x∗ ∈ X as i −→ ∞. So there exists

a corresponding subsequence {yni
} of {yn} such that yni

⇀ x∗ ∈ X as i −→ ∞.
From (3.7), we have limn−→∞ ‖xn − Sxn‖ = 0. It follows from Lemma 2.5 that
x∗ ∈ Fix(S). Further, we show that x∗ ∈ (A + B)−10. Let v ∈ Bu. Note that

yn = JB
λn

(tnf (xn) + (1 − tn)xn − λnAxn).

Then, we have

tnf (xn) + (1 − tn)xn − λnAxn ∈ (I + λnB)yn ⇐⇒ 1

λn

(
tnf (xn) + (1 − tn)xn − λnAxn − yn

) ∈ Byn.
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Note that, by the boundedness of {xn}, we can find a positive constant M1 such that

M1 = max
{
sup
n≥1

‖yn − u‖q−1, sup
n≥1

‖f (xn) − xn‖‖yn − u‖q−1
}

< ∞.

Since B is m-accretive, we have for all (u, v) ∈ B,

〈
1

λn

(
tnf (xn) + (1 − tn)xn − λnAxn − yn

)− v, jq(yn − u)

〉
≥ 0

⇐⇒ 〈tnf (xn) + (1 − tn)xn − λnAxn − yn − λnv, jq(yn − u)〉 ≥ 0,

which implies that

〈Axn + v, jq(yn − u)〉 ≤ 1

λn

〈xn − yn, jq(yn − u)〉 + tn

λn

〈f (xn) − xn, jq(yn − u)〉

≤ 1

λn

‖xn − yn‖‖yn − u‖q−1 + tn

λn

‖f (xn) − xn‖‖yn − u‖q−1

≤ 1

λn

(‖xn − yn‖ + tn
)
M1. (3.10)

Since 〈Axni
− Ax∗, jq(xni

− x∗)〉 ≥ α‖Axni
− Ax∗‖q , and xni

⇀ x∗, we have
Axni

→ Ax∗ since jq is weakly sequentially continuous. Then, by (3.6), it follows
that 〈Ax∗+v, jq(x∗−u)〉 ≤ 0. Hence, 〈−Ax∗−v, jq(x∗−u)〉 ≥ 0 and consequently,
−Ax∗ ∈ Bx∗. So we have x∗ ∈ (A + B)−10 and hence x∗ ∈ Fix(S) ∩ (A + B)−10.

From (3.9), in particular, replacing n with ni and z with x∗, we have

‖xni
− x∗‖q ≤ 1

1 − ρ
〈f (x∗) − x∗, jq(yni

− x∗)〉. (3.11)

Since yni
⇀ x∗ and jq is weakly sequentially continuous, we get xni

−→ x∗. Let
{sk} ⊂ (0, 1) be another sequence such that sk → 0 as k → ∞. Put xk := xsk ,
yk := ysk , and λk := λsk . Let {xkj

} be a subsequence of {xk} such that xkj
⇀ x̂. In a

similar way, we can show that x̂ ∈ Fix(S) ∩ (A + B)−10 and also x∗ = x̂.
Now, returning to (3.9) with n = ni and taking the limit as i −→ ∞, we have

‖x∗ − z‖q ≤ 1

1 − ρ
〈f (z) − z, jq(x∗ − z)〉.

In particular, x∗ solves the variational inequality

〈f (z) − z, jq(z − x∗)〉 ≤ 0,∀z ∈ Fix(S) ∩ (A + B)−10,

which is equivalent to the following dual variational inequality (see Lemma 2.6)

〈f (x∗) − x∗, jq(z − x∗)〉 ≤ 0,∀z ∈ Fix(S) ∩ (A + B)−10. (3.12)

This shows that the net {xt }, as t −→ 0, converges strongly to x∗ ∈ Fix(S) ∩ (A +
B)−10 which is also a solution of (3.2). This completes the proof. �
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3.2 Convergence theorem for explicit iteration scheme

In this section, we establish the strong convergence theorem of an explicit iteration
in Banach spaces.

Theorem 3.2 Let X be a uniformly convex and q-uniformly smooth Banach space
which admits a weakly sequentially continuous generalized duality mapping jq :
X −→ X∗. Let f : X −→ X be a ρ-contraction, A : X −→ X be an α-isa of
order q and B : X −→ 2X be an m-accretive operator. Let JB

λ = (I + λB)−1 be
a resolvent of B for λ > 0 and S : X −→ X be a nonexpansive mapping such that
Fix(S) ∩ (A + B)−10 �= ∅. For given x1 ∈ X, let {xn} be a sequence defined by

{
yn = (1 − γ )Sxn + γ JB

λn
(αnf (xn) + (1 − αn)xn − λnAxn),

xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,
(3.13)

where γ ∈ (0, 1), {λn} ⊂ (
0,
(
αq/κq

)1/(q−1))
, {αn} ⊂ (0, 1), and {βn} ⊂ (0, 1)

satisfying the following conditions:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a ≤ βn ≤ b < 1;

(C3) 0 < a′ ≤ λn < λn

1−αn
≤ b′ <

(αq
κq

) 1
q−1 and limn−→∞ |λn+1 − λn| = 0.

Then, the sequence {xn} defined by (3.13) converges strongly to a point x∗ ∈
Fix(S) ∩ (A + B)−10, where x∗ is the unique solution of the variational inequality
(3.2).

Proof. First, we show that {xn} is bounded. Set zn = JB
λn

(αnf (xn)+ (1−αn)xn −
λnAxn) for all n ∈ N. Taking p ∈ Fix(S) ∩ (A + B)−10, we obtain

p = Sp = JB
λn

(p − λnAp) = JB
λn

(
αnp + (1 − αn)

(
p − λn

1 − αn

Ap

))
.

Since JB
λn

and I − λn

1−αn
A are nonexpansive, it follows that

‖zn − p‖
=
∥∥∥∥JB

λn

(
αnf (xn) + (1 − αn)

(
I − λn

1 − αn

A

)
xn

)
− JB

λn

(
αnp + (1 − αn)

(
I − λn

1 − αn

A

)
p

)∥∥∥∥
≤
∥∥∥∥αn(f (xn) − p) + (1 − αn)

[(
I − λn

1 − αn

A

)
xn −

(
I − λn

1 − αn

A

)
p

]∥∥∥∥
≤ αn‖f (xn) − f (p)‖ + αn‖f (p) − p‖ + (1 − αn)

∥∥∥∥
(

I − λn

1 − αn

A

)
xn −

(
I − λn

1 − αn

A

)
p

∥∥∥∥
≤ αnρ‖xn − p‖ + αn‖f (p) − p‖ + (1 − αn)‖xn − p‖
= (

1 − (1 − ρ)αn

)‖xn − p‖ + αn‖f (p) − p‖. (3.14)
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Hence, we have

‖yn − p‖ = ‖(1 − γ )(Sxn − p) + γ (zn − p)‖
≤ (1 − γ )‖Sxn − p‖ + γ ‖zn − p‖
≤ (1 − γ )‖xn − p‖ + γ

[(
1 − (1 − ρ)αn

)‖xn − p‖ + αn‖f (p) − p‖]
= (

1 − (1 − ρ)αnγ
)‖xn − p‖ + αnγ ‖f (p) − p‖.

Then, it follows that

‖xn+1 − p‖ = ‖βn(xn − p) + (1 − βn)(yn − p)‖
≤ βn‖xn − p‖ + (1 − βn)

[(
1 − (1 − ρ)αnγ

)‖xn − p‖ + αnγ ‖f (p) − p‖]
= [

1 − (1 − ρ)(1 − βn)αnγ
]‖xn − p‖ + (1 − βn)αnγ ‖f (p) − p‖

≤ max

{
‖xn − p‖, ‖f (p) − p‖

1 − ρ

}
.

By induction, we have

‖xn − p‖ ≤ max

{
‖x1 − p‖, ‖f (p) − p‖

1 − ρ

}
, ∀n ≥ 1.

Hence, {xn} is bounded. So are {f (xn)}, {Axn} and {Sxn}.
Next, we show that limn−→∞ ‖xn+1 − xn‖ = 0. Set zn = JB

λn
un, where un =

αnf (xn) + (1 − αn)xn − λnAxn. We observe that

‖zn+1 − zn‖
= ‖JB

λn+1
un+1 − JB

λn
un‖

≤ ‖JB
λn+1

un+1 − JB
λn+1

un‖ + ‖JB
λn+1

un − JB
λn

un‖
≤ ‖un+1 − un‖ + ‖JB

λn+1
un − JB

λn
un‖

= ‖αnf (xn+1) + (1 − αn+1)xn+1 − λn+1Axn+1 − (αnf (xn) + (1 − αn)xn − λnAxn)‖
+ ‖JB

λn+1
un − JB

λn
un‖

=
∥∥∥∥αn+1(f (xn+1) − f (xn)) + (αn+1 − αn)(f (xn) − xn)

+ (1 − αn+1)

[(
I − λn+1

1 − αn+1
A

)
xn+1 −

(
I − λn+1

1 − αn+1
A

)
xn

]
+ (λn − λn+1)Axn

∥∥∥∥
+ ‖JB

λn+1
un − JB

λn
un‖

≤ αn+1‖f (xn+1) − f (xn)‖ + |αn+1 − αn|
(‖f (xn)‖ + ‖xn‖

)

+ (1 − αn+1)

∥∥∥∥
(

I − λn+1

1 − αn+1
A

)
xn+1 −

(
I − λn+1

1 − αn+1
A

)
xn

∥∥∥∥+ |λn+1 − λn|‖Axn‖

+ ‖JB
λn+1

un − JB
λn

un‖
≤ (

1 − (1 − ρ)αn+1
)‖xn+1 − xn‖ + |αn+1 − αn|

(‖f (xn)‖ + ‖xn‖
)+ |λn+1 − λn|‖Axn‖

+ ‖JB
λn+1

un − JB
λn

un‖.
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By Lemma 2.12, we have

‖JB
λn+1

un − JB
λn

un‖ ≤ |λn+1 − λn|
λn+1

‖JB
λn+1

un − un‖.

Then, it follows that

‖zn+1 − zn‖ ≤ (
1 − (1 − ρ)αn+1

)‖xn+1 − xn‖ + |αn+1 − αn|
(‖f (xn)‖ + ‖xn‖

)+ |λn+1 − λn|‖Axn‖
+ |λn+1 − λn|

λn+1
‖JB

λn+1
un − un‖. (3.15)

Since xn+1 = βnxn + (1 − βn)yn, where yn = (1 − γ )Sxn + γ zn, it follows that

‖yn+1 − yn‖ = ‖(1 − γ )(Sxn+1 − Sxn) + γ (zn+1 − zn)‖
≤ (1 − γ )‖Sxn+1 − Sxn‖ + γ ‖zn+1 − zn‖
≤ (1 − γ )‖xn+1 − xn‖ + γ ‖zn+1 − zn‖. (3.16)

Note that, by the boundedness of {xn}, we can find a positive constant M2 such that

M2 = max
{
sup
n≥1

(‖f (xn)‖ + ‖xn‖), sup
n≥1

‖Axn‖, sup
n≥1

‖JB
λn+1

un − un‖
}}

< ∞.

Substituting (3.15) into (3.16), we have

‖yn+1 − yn‖
≤ (1 − γ )‖xn+1 − xn‖ + γ

[(
1 − (1 − ρ)αn+1

)‖xn+1 − xn‖ + |αn+1 − αn|
(‖f (xn)‖ + ‖xn‖

)

+|λn+1 − λn|‖Axn‖ + |λn+1 − λn|
λn+1

‖JB
λn+1

un − un‖
]

≤ (
1 − (1 − ρ)αn+1γ

)‖xn+1 − xn‖ +
(

|αn+1 − αn| + |λn+1 − λn| + |λn+1 − λn|
a′

)
M2.

From (C1) − (C3), we have

lim sup
n−→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖
) ≤ 0.

Hence, from Lemma 2.7, we obtain that

lim
n−→∞ ‖xn − yn‖ = 0. (3.17)

Consequently,

lim
n−→∞ ‖xn+1 − xn‖ = lim

n−→∞(1 − βn)‖xn − yn‖ = 0. (3.18)
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Next, we show that limn−→∞ ‖xn − Sxn‖ = 0. By the convexity of ‖ · ‖q for all
q > 1 and Lemma 2.2, we have

‖un − p‖q =
∥∥∥∥(1 − αn)

[(
xn − λn

1 − αn

Axn

)
−
(

p − λn

1 − αn

Ap

)]
+ αn(f (xn) − p)

∥∥∥∥
q

≤ (1 − αn)

∥∥∥∥
(

xn − λn

1 − αn

Axn

)
−
(

p − λn

1 − αn

Ap

)∥∥∥∥
q

+ αn‖f (xn) − p‖q

= (1 − αn)

∥∥∥∥(xn − p) − λn

1 − αn

(Axn − Ap)

∥∥∥∥
q

+ αn‖f (xn) − p‖q

≤ (1 − αn)

[
‖xn − p‖q − qλn

1 − αn

〈Axn − Ap, jq(xn − p)〉 + κqλ
q
n

(1 − αn)q
‖Axn − Ap‖q

]

+αn‖f (xn) − p‖q

≤ (1 − αn)

[
‖xn − p‖q − αqλn

1 − αn

‖Axn − Ap‖q + κqλ
q
n

(1 − αn)q
‖Axn − Ap‖q

]
+ αn‖f (xn) − p‖q

= (1 − αn)

[
‖xn − p‖q − λn

1 − αn

(
αq − κqλ

q−1
n

(1 − αn)q−1

)
‖Axn − Ap‖q

]
+ αn‖f (xn) − p‖q

≤ ‖xn − p‖q − λn

(
αq − κqλ

q−1
n

(1 − αn)q−1

)
‖Axn − Ap‖q + αn‖f (xn) − p‖q . (3.19)

Hence, we have

‖yn − p‖q

= ‖(1 − γ )(Sxn − p) + γ (JB
λn

un − p)‖q

≤ (1 − γ )‖Sxn − p‖q + γ ‖JB
λn

un − p‖q

≤ (1 − γ )‖xn − p‖q + γ ‖un − p‖q

≤ (1 − γ )‖xn − p‖q + γ

[
‖xn − p‖q − λn

(
αq − κqλ

q−1
n

(1 − αn)q−1

)
‖Axn − Ap‖q + αn‖f (xn) − p‖q

]

= ‖xn − p‖q − λnγ

(
αq − κqλ

q−1
n

(1 − αn)q−1

)
‖Axn − Ap‖q + αnγ ‖f (xn) − p‖q .

Consequently,

‖xn+1 − p‖q

≤ βn‖xn − p‖q + (1 − βn)‖yn − p‖q

≤ βn‖xn − p‖q + (1 − βn)

[
‖xn − p‖q − λnγ

(
αq − κqλ

q−1
n

(1 − αn)q−1

)
‖Axn − Ap‖q + αnγ ‖f (xn) − p‖q

]

= ‖xn − p‖q − λn(1 − βn)γ

(
αq − κqλ

q−1
n

(1 − αn)q−1

)
‖Axn − Ap‖q + αn(1 − βn)γ ‖f (xn) − p‖q ,

which implies from (C2), (C3) and Proposition 2.10 that

a′(1 − b)γ
(
αq − κq (b′)q−1)‖Axn − Ap‖q ≤ ‖xn − p‖q − ‖xn+1 − p‖q + (1 − βn)αnγ ‖f (xn) − p‖q

≤ q‖xn − p‖q−1(‖xn − p‖ − ‖xn+1 − p‖)+ (1 − βn)αnγ ‖f (xn) − p‖q

≤ q‖xn − p‖q−1‖xn+1 − xn‖ + (1 − βn)αnγ ‖f (xn) − p‖q .
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Then, by (C1) and (3.18), we obtain that

lim
n−→∞ ‖Axn − Ap‖ = 0. (3.20)

On the other hand, from Proposition 2.13 and Lemma 2.4, we have

‖zn − p‖q

= ‖JB
λn

(αnf (xn) + (1 − αn)xn − λnAxn) − JB
λn

(p − λnAp)‖q

≤ 〈αnf (xn) + (1 − αn)xn − λnAxn − (p − λnAp), jq(zn − p)〉
≤ 1

q

[
‖αnf (xn) + (1 − αn)xn − λnAxn − (p − λnAp)‖q + (q − 1)‖zn − p‖q

−g(‖αnf (xn) + (1 − αn)xn − λn(Axn − Ap) − zn‖)
]
,

which implies that

‖zn − p‖q

≤ ‖αnf (xn) + (1 − αn)xn − λnAxn − (p − λnAp)‖q − g(‖αnf (xn) + (1 − αn)xn − λn(Axn − Ap) − zn‖)
≤ αn‖f (xn) − p‖q + ‖xn − p‖q − g(‖αnf (xn) + (1 − αn)xn − λn(Axn − Ap) − zn‖).

Then, it follows that

‖yn − p‖q ≤ (1 − γ )‖Sxn − p‖q + γ ‖zn − p‖q

≤ (1 − γ )‖xn − p‖q + γ ‖zn − p‖q

≤ (1 − γ )‖xn − p‖q

+γ

[
αn‖f (xn)−p‖q +‖xn − p‖q − g(‖αnf (xn)+(1 − αn)xn − λn(Axn − Ap) − zn‖)

]

= ‖xn − p‖q +αnγ ‖f (xn) − p‖q − γg(‖αnf (xn)+(1 − αn)xn − λn(Axn − Ap) − zn‖).
(3.21)

Consequently,

‖xn+1 − p‖q

≤ βn‖xn − p‖q + (1 − βn)‖yn − p‖q

≤ βn‖xn − p‖q

+ (1 − βn)

[
‖xn − p‖q +αnγ ‖f (xn) − p‖q − γg(‖αnf (xn)+(1 − αn)xn − λn(Axn − Ap) − zn‖)

]

= ‖xn − p‖q +(1 − βn)αnγ ‖f (xn)−p‖q − (1−βn)γg(‖αnf (xn)+(1−αn)xn−λn(Axn−Ap)−zn‖),

which implies from (C2) that

(1 − b)γg(‖αnf (xn) + (1 − αn)xn − λn(Axn − Ap) − zn‖)
≤ ‖xn − p‖q − ‖xn+1 − p‖q + αn(1 − βn)γ ‖f (xn) − p‖q

≤ q‖xn − p‖q−1(‖xn − p‖ − ‖xn+1 − p‖)+ (1 − βn)αnγ ‖f (xn) − p‖q

≤ q‖xn − p‖q−1‖xn − xn+1‖ + (1 − βn)αnγ ‖f (xn) − p‖q .
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Then, by (C1) and (3.18), we have

lim
n−→∞ g(‖αnf (xn) + (1 − αn)xn − λn(Axn − Ap) − zn‖) = 0.

Since g is a continuous function, by (3.20), we obtain that

lim
n−→∞ ‖xn − zn‖ = 0. (3.22)

Since yn = (1−γ )Sxn+γ zn, it follows that (1−γ )(xn−Sxn) = xn−yn+γ (zn−xn).
Hence,

(1 − γ )‖xn − Sxn‖ ≤ ‖xn − yn‖ + γ ‖xn − zn‖.
From (3.17) and (3.22), we obtain that

lim
n−→∞ ‖xn − Sxn‖ = 0. (3.23)

Next, we show that

lim sup
n−→∞

〈f (x∗) − x∗, jq(zn − x∗)〉 ≤ 0,

where x∗ is the same as in Theorem 3.1. Since {zn} is bounded and X is reflexive,
there exists a subsequence {zni

} of {zn} such that

lim sup
n−→∞

〈f (x∗) − x∗, jq(zn − x∗)〉 = lim
i−→∞〈f (x∗) − x∗, jq(zni

− x∗)〉

and zni
⇀ z ∈ X as i −→ ∞. Also, we have a subsequence {xni

} of {xn} such that
xni

⇀ z ∈ X. From (3.23) and Lemma 2.5, we have z ∈ Fix(S). Further, by the
same agrument as in the proof of Theorem 3.1, we can show that z ∈ (A + B)−10.
Hence, we obtain that z ∈ Fix(S) ∩ (A + B)−10. Since jq is weakly sequentially
continuous, it follows that

lim sup
n−→∞

〈f (x∗) − x∗, jq(zn − x∗)〉 = lim
i−→∞〈f (x∗) − x∗, jq(zni

− x∗)〉
= 〈f (x∗) − x∗, jq(z − x∗)〉 ≤ 0. (3.24)

Finally, we show that xn −→ x∗. We see that

‖zn−x∗‖q = ‖JB
λn

(αnf (xn) + (1 − αn)xn − λnAxn) − JB
λn

(x∗ − λnAx∗)‖q

≤ 〈αnf (xn) + (1 − αn)xn − λnAxn − x∗ + λnAx∗, jq (zn − x∗)〉

=
〈
αnf (xn) + (1−αn)

(
I − λn

1 − αn

A

)
xn−αnx

∗−(1−αn)

(
I − λn

1−αn

A

)
x∗, jq (zn−x∗)

〉

= (1 − αn)

〈(
I − λn

1 − αn

A

)
xn −

(
I − λn

1 − αn

A

)
x∗, jq (zn − x∗)

〉

+αn〈f (xn) − f (x∗), jq (zn − x∗)〉 + αn〈f (x∗) − x∗, jq (zn − x∗)〉
≤ (1−αn)‖xn−x∗‖‖zn−x∗‖q−1+αnρ‖xn−x∗‖‖zn−x∗‖q−1+αn〈f (x∗)−x∗, jq (zn−x∗)〉
= (1 − αn(1 − ρ))‖xn − x∗‖‖zn − x∗‖q−1 + αn〈f (x∗) − x∗, jq (zn − x∗)〉
≤ (1 − αn(1 − ρ))

(
1

q
‖xn − x∗‖q + q − 1

q
‖zn − x∗‖q

)
+ αn〈f (x∗) − x∗, jq (zn − x∗)〉,
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which yields that

‖zn − x∗‖q ≤ (1− αn(1− ρ))‖xn − x∗‖q + qαn〈f (x∗) − x∗, jq(zn − x∗)〉. (3.25)

It follows, by (3.25), that

‖yn−x∗‖q ≤ (1 − γ )‖Sxn − x∗‖q + γ ‖zn − x∗‖q

≤ (1−γ )‖xn−x∗‖q +γ
(
(1−αn(1−ρ))‖xn−x∗‖q +qαn〈f (x∗)−x∗, jq(zn−x∗)〉

)
= (1 − γαn(1 − ρ))‖xn − x∗‖q + γ qαn〈f (x∗) − x∗, jq(zn − x∗)〉.

Hence, we obtain

‖xn+1 − x∗‖q

≤ βn‖xn − x∗‖q + (1 − βn)‖yn − x∗‖q

≤ βn‖xn−x∗‖q +(1−βn)

(
(1−γαn(1−ρ))‖xn − x∗‖q + γ qαn〈f (x∗) − x∗, jq(zn − x∗)〉

)

=
(
1 − (1 − βn)γ αn(1 − ρ)

)
‖xn − x∗‖q + (1 − βn)γ qαn〈f (x∗) − x∗, jq(zn − x∗)〉.

Set γn = (1 − βn)γ αn(1 − ρ) and δn = q
1−ρ

〈f (x∗) − x∗, jq(zn − x∗)〉. From (C1)

and (3.24), it is easily seen that
∑∞

n=1 γn = ∞ and lim supn−→∞ δn ≤ 0. Therefore,
by Lemma 2.8, we conclude that xn −→ x∗. This completes the proof. �

We next provide the example and its numerical experiments to support our main
theorem.

Example 3.3 LetX = R
3 and let x =

⎛
⎝ y1

y2
y3

⎞
⎠ ∈ R

3. Define S : R3 → R
3 by S(x) =

⎛
⎝ −1
1 − y1
y2 − 1

⎞
⎠. Let F(x) = 1

2‖Cx−d‖2 where C =
⎛
⎝ 3 2 −1

2 −2 4
−2 1 −2

⎞
⎠ and d =

⎛
⎝ 1

−2
0

⎞
⎠.

Let G(x) = 7y1+3y3+5. Find x∗ ∈ R
3 such that x∗ ∈ Fix(S)

⋂
(∇F +∂G)−1(0),

that is, find x∗ ∈ Fix(S) which is also a minimizer of the following minimization
problem:

min
x∈R3

1

2
‖Cx − d‖2 + 7y1 + 3y3 + 5. (3.26)

It is known that ∇F(x) = CT (Cx − d) and ∇F is 1/K-isa of order 2, where K is
the largest eigenvalue of CT C (see [11]). Moreover, by [2], ∂G is maximal monotone
since G is convex and lower semicontinuous and hence, it is m-accretive. Putting
A = ∇F and B = ∂G, by Theorem 3.2, our algorithm becomes{

yn = (1 − γ )Sxn + γ J ∂G
λn

(αnf (xn) + (1 − αn)xn − λnC
T (Cxn − d)),

xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,
(3.27)
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where γ ∈ (0, 1), {λn} ⊂ (
0, 2/K

)
, {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) which satisfy

the following conditions:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a ≤ βn ≤ b < 1;
(C3) 0 < a′ ≤ λn < λn

1−αn
≤ b′ < 2/K and limn−→∞ |λn+1 − λn| = 0.

Choose αn = 1
50n+1 , βn = 2n−1

4n+2 , γ = 0.5 and λn = λ ∈ (0, 0.05) ⊂ (0, 2/K) for

all n ∈ N. Let f : R3 → R
3 be defined by f (x) = 0.5x. So our algorithm (3.27) has

the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝zn

1
zn
2

zn
3

⎞
⎠ = 0.5

⎛
⎝ −1
1 − yn

1
yn
2 − 1

⎞
⎠+ 0.5J ∂G

λ

[( 1
50n+1

)⎛⎝0.5y
n
1

0.5yn
2

0.5yn
3

⎞
⎠+ ( 50n

50n+1

)⎛⎝yn
1

yn
2

yn
3

⎞
⎠

−λ

⎛
⎝ 3 2 −2

2 −2 1
−1 4 −2

⎞
⎠
⎛
⎝ 3yn

1 + 2yn
2 − yn

3 − 1
2yn

1 − 2yn
2 + 4yn

3 + 2
−2yn

1 + yn
2 − 2yn

3

⎞
⎠
]
,

⎛
⎝yn+1

1
yn+1
2

yn+1
3

⎞
⎠ = ( 2n−1

4n+2

)⎛⎝yn
1

yn
2

yn
3

⎞
⎠+ ( 2n+3

4n+2

)⎛⎝zn
1

zn
2

zn
3

⎞
⎠ , ∀n ≥ 1,

(3.28)

where J ∂G
λ (x) =

⎛
⎝y1 − 7λ

y2
y3 − 3λ

⎞
⎠. Let x1 =

⎛
⎝ 1
0
2

⎞
⎠ be the initial point. Then, we obtain

the following numerical results.

From Tables 1, 2 and 3, we see that x∗ =
⎛
⎝−1

2
1

⎞
⎠ is an approximation solution of

Fix(S)
⋂

(∇F + ∂G)−1(0).
From Fig. 1, we observe that the convergence rate of the algorithm depends signif-

icantly on the step size λn. In fact, from the view of our numerical experience, when
λn is taken close to zero, we have small reduction in the number of iterations.

Table 1 Numerical results of Example 3.3 for iteration process (3.28) with λ = 0.01

n xn = (yn
1 , yn

2 , yn
3 )T ‖xn+1 − xn‖

1 (1.000000000, 0.000000000, 2.00000000)T 1.830712169

10 (−0.895390857, 1.51603082, 0.27313376)T 0.108303666

50 (−0.990134038, 1.866451538, 0.875031661)T 0.00017108

100 (−0.990401512, 1.867307766, 0.876376227)T 5.97E − 06

150 (−0.990443477, 1.867427173, 0.876522724)T 2.48E − 06

200 (−0.990463745, 1.867484472, 0.87659212)T 1.36E − 06

250 (−0.990475702, 1.867518171, 0.876632687)T 8.54E − 07

300 (−0.990483593, 1.867540367, 0.876659307)T 5.87E − 07
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Table 2 Numerical results of Example 3.3 for iteration process (3.28) with λ = 0.001

n xn = (yn
1 , yn

2 , yn
3 )T ‖xn+1 − xn‖

1 (1.000000000, 0.000000000, 2.00000000)T 1.830712169

10 (−0.928728283, 1.640399583, 0.249059878)T 0.133590425

50 (−0.999664389, 1.987139714, 0.986861236)T 5.57E − 05

100 (−0.999787071, 1.98753753, 0.987530573)T 5.89E − 06

150 (−0.999823615, 1.987648759, 0.98768394)T 2.49E − 06

200 (−0.999841469, 1.987702684, 0.987757125)T 1.36E − 06

250 (−0.999852055, 1.987734531, 0.987800007)T 8.61E − 07

300 (−0.999859061, 1.987755558, 0.987828184)T 5.92E − 07

4 Convergence theorem for a family of nonexpansive mappings

In this section, we provide some applications to a countable family of nonexpansive
mappings.

Definition 4.1 Let C be a nonempty subset of a real Banach space X. Let {Sn}∞n=1 :
C −→ C be a sequence of mappings with

⋂∞
n=1 Fix(Sn) �= ∅. Suppose that for any

bounded subset B of C. We say that

(i) {Sn}∞n=1 satisfies the AKT T -condition (see [5]), if

∞∑
n=1

sup
x∈B

‖Sn+1x − Snx‖ < ∞; (4.1)

(ii) {Sn}∞n=1 satisfies the PU -condition (see [31]), if there exists a continuous and
increasing function hB : R+ −→ R

+ and for all k, l ∈ N such that

hB(0) = 0and lim
k,l−→∞ sup

x∈B

hB(‖Skx − Slx‖) = 0. (4.2)

Table 3 Numerical results of Example 3.3 for iteration process (3.28) with λ = 0.0001

n xn = (yn
1 , yn

2 , yn
3 )T ‖xn+1 − xn‖

1 (1.000000000, 0.000000000, 2.00000000)T 1.830712169

10 (−0.931946516, 1.652071984, 0.24421647)T 0.136327693

50 (−0.999779317, 1.998110712, 0.997754605)T 4.43E − 05

100 (−0.999894464, 1.998480861, 0.998363889)T 5.87E − 06

150 (−0.999930274, 1.998590869, 0.998517819)T 2.48E − 06

200 (−0.999947795, 1.998644262, 0.99859132)T 1.36E − 06

250 (−0.99995819, 1.998675811, 0.998634398)T 8.60E − 07

300 (−0.999965071, 1.998696646, 0.998662709)T 5.92E − 07
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Fig. 1 The convergence behavior of the iteration process with different λ

Remark 4.2 If {Sn}∞n=1 satisfies the AKT T -condition, then {Sn}∞n=1 satisfies the
PU -condition (see [31], Remark 3.2).

Lemma 4.3 ([31]) Let {Sn}∞n=1 : C −→ C be a sequence of mappings. Suppose that
for any bounded subset B of C, there exists a continuous and increasing function
hB : R+ −→ R

+ with hB(0) = 0 satisfying (4.2). If the mapping S : C −→ C be
defined by Sx = limn−→∞ Snx for all x ∈ C. Then,

lim
n−→∞ sup

x∈B

{hB(‖Sx − Snx‖)} = 0.

Theorem 4.4 Let X be a uniformly convex and q-uniformly smooth Banach space
which admits a weakly sequentially continuous generalized duality mapping jq :
X −→ X∗. Let f : X −→ X be a ρ-contraction, A : X −→ X be an α-isa of
order q and B : X −→ 2X be an m-accretive operator. Let JB

λ = (I + λB)−1 be
a resolvent of B for λ > 0 and let {Sn}∞n=1 : X −→ X be a family of nonexpansive
mappings such that � := ⋂∞

n=1 Fix(Sn) ∩ (A + B)−10 �= ∅. For an initial guess
x1 ∈ X, define the sequence {xn} by{

yn = (1 − γ )Snxn + γ JB
λn

(αnf (xn) + (1 − αn)xn − λnAxn),

xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,
(4.3)

where γ ∈ (0, 1), {λn} ⊂ (
0,
(
αq/κq

)1/(q−1))
, {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1)

which satisfy the conditions (C1)-(C3). Suppose, in addition, that {Sn}∞n=1 satisfies
the PU -condition and S : X −→ X be a mapping defined by Sx = limn−→∞ Snx
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for all x ∈ X such that Fix(S) = ⋂∞
n=1 F(Sn). Then, the sequence {xn} defined by

(4.3) converges strongly to a point x∗ ∈ �, where x∗ is the unique solution of the
variational inequality (3.2).

Proof By using the same arguments and techniques as those of Theorem 3.2, we
know that

lim
n−→∞ ‖xn − Snxn‖ = 0.

Now, it suffices to show that limn−→∞ ‖xn − Sxn‖ = 0. We see that

‖xn − Sxn‖ ≤ ‖xn − Snxn‖ + ‖Snxn − Sxn‖. (4.4)

Since {Sn}∞n=1 satisfies the PU -condition, by Lemma 4.3, it follows that

lim
n−→∞ hB(‖Snxn − Sxn‖) = 0,

which implies by the property of hB that limn−→∞ ‖Snxn − Sxn‖ = 0. Then, from
(4.4), we get that

lim
n−→∞ ‖xn − Sxn‖ = 0.

This completes the proof.

5 Convergence theorem for a nonexpansive semigroup

Definition 5.1 Let C be a nonempty, closed, and convex subset of a real Banach
space X. A one-parameter family S = {S(t) : t ≥ 0} : C −→ C is said to be a
nonexpansive semigroup on C if it satisfies the following conditions:

(i) S(0)x = xfor allx ∈ C;
(ii) S(s + t)x = S(s)S(t)x for all x ∈ C and s, t ≥ 0;
(iii) for each x ∈ C the mapping t �→ S(t)x is continuous;
(iv) ‖S(t)x − S(t)y‖ ≤ ‖x − y‖ for all x, y ∈ C and t > 0.

Remark 5.2 We denote by Fix(S) the set of all common fixed points of S,that is
Fix(S) :=⋂t>0 Fix(S(t)) = {x ∈ C : x = S(t)x}.

Definition 5.3 ([3, 4, 8]) Let C be a nonempty, closed, and convex subset of a real
Banach space X, S = {S(t) : t > 0} be a continuous operator semigroup on C. Then,
S is said to be uniformly asymptotically regular (in short, u.a.r.) on C if for all h ≥ 0
and any bounded subset B of C such that

lim
t−→∞ sup

x∈B

‖S(h)S(t)x − S(t)x‖ = 0.

The nonexpansive semigroup {σt : t > 0} defined by the following lemma is an
example of u.a.r. operator semigroup.

Lemma 5.4 ([33]) Let C be a nonempty, closed, and convex subset of a uniformly
convex Banach space X and let B be a bounded, closed, and convex subset of C.
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If we denote S = {S(t) : t > 0} is a nonexpansive semigroup on C such that
Fix(S) =⋂t>0 Fix(S(t)) �= ∅. For all h > 0, the set σt (x) = 1

t

∫ t

0S(s)xds,then

limt−→∞ supx∈B ‖σt (x) − S(h)σt (x)‖ = 0.

Example 5.5 The set {σt : t > 0} defined by Lemma 5.4 is a u.a.r. nonexpansive
semigroup. In fact, it is obvious that {σt : t > 0} is a nonexpansive semigroup. For
each h > 0, we have

‖σt (x) − σhσt (x)‖ = ∥∥σt (x) − 1
h

∫ h

0 S(s)σt (x)ds
∥∥

= ∥∥ 1
h

∫ h

0 (σt (x) − S(s)σt (x))ds
∥∥

≤ 1
h

∫ h

0 ‖σt (x) − S(s)σt (x)‖ds.

It follows from Lemma 5.4 that

limt−→∞ supx∈B ‖σt (x) − S(s)σt (x)‖ds = 0.

Theorem 5.6 Let X be a uniformly convex and q-uniformly smooth Banach space
which admits a weakly sequentially continuous generalized duality mapping jq :
X −→ X∗. Let f : X −→ X be a ρ-contraction, A : X −→ X be an α-isa of
order q and B : X −→ 2X be an m-accretive operator. Let JB

λ = (I + λB)−1 be
a resolvent of B for λ > 0 and let S = {S(t) : t > 0} be a u.a.r nonexpansive
semigroup such that � := ⋂

t>0 Fix
(
S(t)

) ∩ (A + B)−10 �= ∅. For an initial guess
x1 ∈ X, define the sequence {xn} by

{
yn = (1 − γ )S(tn)xn + γ JB

λn
(αnf (xn) + (1 − αn)xn − λnAxn),

xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,
(5.1)

where γ ∈ (0, 1), {λn} ⊂ (
0,
(
αq/κq

)1/(q−1))
, {αn} ⊂ (0, 1), and {βn} ⊂ (0, 1)

which satisfy the conditions (C1)-(C3) and {tn} is a positive real divergent sequence.
Then, the sequence {xn} defined by (5.1) converges strongly as n −→ ∞ to a point
x∗ ∈ �, where x∗ is the unique solution of the variational inequality (refeq:3.2).

Proof By using the same arguments and techniques as those of Theorem 3.2, we
know that limn−→∞ ‖xn − S(tn)xn‖ = 0. Now, we only show that limn−→∞ ‖xn −
S(h)xn‖ = 0 for all h ≥ 0. Then, we have

‖xn − S(h)xn‖ ≤ ‖xn − S(tn)xn‖ + ‖S(tn)xn − S(h)S(tn)xn‖ + ‖S(h)S(tn)xn − S(h)xn‖
≤ 2‖xn − S(tn)xn‖ + sup

x∈x{n}
‖S(tn)x − S(h)S(tn)x‖. (5.2)

Since {S(t) : t ≥ 0} is a u.a.r. nonexpansive semigroup and tn −→ ∞ then for all
h ≥ 0 and for any bounded subset C of X containing {xn}, we have

lim
n−→∞‖S(tn)xn − S(h)S(tn)xn‖ ≤ lim

n−→∞ sup
x∈C

‖S(tn)x − S(h)S(tn)x‖ = 0. (5.3)
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Then, from (5.2) and (5.3), we get that

lim
n−→∞ ‖xn − S(h)xn‖ = 0,

for all h ≥ 0. This completes the proof.

6 Some applications

In this section, we will utilize Theorems 3.1 and 3.2 to study some convergence
theorem in Lp and lp spaces with 1 < p < ∞. It well known that spaces of Hilbert
H , Lp, and lp with 1 < p < ∞ are q-uniformly smooth, i.e.,

H,Lp, and lp are

{
2–uniformly smooth, if 2 ≤ p < ∞,

p–uniformly smooth, if 1 < p ≤ 2.

Furthermore, the following facts are well known (see [6, 39]).

(1) For 2 ≤ p < ∞, the spaces of Lp and lp are 2-uniformly smooth with κq =
κ2 = p − 1.

(2) For 1 < p ≤ 2, the spaces of Lp and lp are p-uniformly smooth with κq =
κp = (1 + t

p−1
p )(1 + tp)1−p, where tp is the unique solution of the equation

(p − 2)tp−1 + (p − 1)tp−2 − 1 = 0, 0 < t < 1.

(3) Every Hilbert space is 2-uniformly smooth with κq = κ2 = 1.
(4) For 1 < p < ∞, the spaces of Lp and lp are q-uniformly smooth and

uniformly convex.
(5) For 1 < p < ∞, the space of lp has weakly sequentially continuous gener-

alized duality mappings, but Lp space (1 < p < ∞, p �= 2) does not have
weakly sequentially continuous generalized duality mappings.

Remark 6.1 Theorems 3.1 and 3.2 hold for lp space with 1 < p < ∞ and also hold
for Lp space with 1 < p < ∞, p �= 2 if Lp has a weakly sequentially continuous
generalized duality mapping.
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that

‖Sx − Sy‖ ≤ L‖x − y‖, ∀x, y ∈ C.

A mapping S : C −→ C is said to be nonexpansive, if

‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C.

A popular way to solve the fixed point problem for nonexpansive mappings is to employ
iterativemethodswhich nowhave received vast investigations. This is because of its extensive
applications in a variety of applied areas of inverse problem, partial differential equations,
image recovery, and signal processing.

Let C be a nonempty closed convex subset of a real Banach space X . Let A : C → X be
a single-valued nonlinear mapping and let B : X → 2X be a multi-valued mapping. The so
called quasi-variational inclusion problem is to find a point x ∈ X such that

0 ∈ (A + B)x . (1.1)

We denote the solution set of (1.1) by (A+B)−10. A number of problems arising in structural
analysis,mechanics, and economics can be studied in the framework of this kind of variational
inclusions; see, for instance [1–3]. The problem (1.1) includes many optimization problems
as special cases.

Takahashi et al. [4] proved the following theorem for maximal monotone operators with
nonlinear operator in Hilbert spaces:

Theorem T Let C be a closed and convex subset of a real Hilbert space H . Let A be an α-
inverse strongly-monotone mapping of C into H and let B be a maximal monotone operator
on H such that the domain of B is included inC . Let Jλ = (I+λB)−1 be the resolvent of B for
λ > 0 and let S be a nonexpansivemapping ofC into itself such that F(S)∩(A+B)−10 �= ∅.
Let x1 = x ∈ C and let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1 − βn)S(αnx + (1 − αn)Jλn (xn − λn Axn)), ∀n ≥ 1, (1.2)

where {λn} ⊂ (0, 2α), {βn} ⊂ (0, 1) and {αn} ⊂ (0, 1) satisfy

(i) 0 < a ≤ λn ≤ b < 2α;
(ii) 0 < c ≤ βn ≤ d < 1;
(iii) limn→∞(λn − λn+1) = 0;
(iv) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞.

Then {xn} converges strongly to a point of F(S) ∩ (A + B)−10.
Manaka–Takahashi [5] introduced the following iteration process in Hilbert spaces

H : x1 ∈ C and

xn+1 = αnxn + (1 − αn)SJλn (xn − λn Axn), ∀n ≥ 1, (1.3)

where {αn} ⊂ (0, 1), {λn} is a positive sequence, S is a nonexpansive mapping on C ,
A : C → H is an inverse-strongly monotone mapping, B : D(B) ⊂ C → 2H is a maximal
monotone operator, and S is a nonexpansive mapping on C . They showed that the sequence
{xn} generated by (1.3) converges weakly to a point in F(S) ∩ (A+ B)−10 under some mild
conditions.

Recently, Lopez et al. [6] considered the following iteration process in the framework of
Banach spaces: u, x1 ∈ X and

xn+1 = αnu + (1 − αn)(Jλn (xn − λn(Axn + an)) + bn), ∀n ≥ 1, (1.4)
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where {an} and {bn} are sequences in X . They proved that the sequence {xn} generated by
(1.4) converges strongly to a solution of (A + B)−10.

We note that, in applications, there are perturbations always occurring in the iterative
processes because the manipulations are inaccurate. It is no doubt that researching the con-
vergent problems of iterative methods with perturbation members is a significant job. This
leads us, in this paper, to introduce implicit and explicit iterative schemes with perturbations
for solving the fixed point problem for nonexpansive mappings and the quasi-variational
inclusion problem. We then prove its strong convergence under some suitable conditions.
Finally, we provide some applications to the main result. The obtained results improve and
extend some known results appeared in the literature.

2 Preliminaries

In this section, we collect some definitions and lemmas which will be used in the sequel.
In what follows, we shall use the following notations: xn → x mean that {xn} converges
strongly to x ; xn ⇀ x mean that {xn} converges weakly to x .

A Banach space X is said to be strictly convex, if whenever x and y are not collinear,
then: ‖x + y‖ < ‖x‖ + ‖y‖. Let S(X) = {x ∈ X : ‖x‖ = 1} denote the unit sphere of X .
The modulus of convexity of X is the function δ : (0, 2] −→ [0, 1] defined by

δ(ε) = inf

{

1 − ‖x+y‖
2 : x, y ∈ S(X), ‖x − y‖ ≥ ε

}

.

A Banach space X is said to be uniformly convex if δ(ε) > 0 for all ε ∈ (0, 2].
The modulus of smoothness of X is the function ρ : R+ := [0,∞) −→ R

+ defined by

ρ(τ) = sup

{
‖x+τ y‖+‖x−τ y‖

2 − 1 : x, y ∈ S(X)

}

.

A Banach space X is said to be uniformly smooth if ρ(t)
t −→ 0 as t −→ 0. Suppose that

q > 1, a Banach space X is said to be q-uniformly smooth if there exists a fixed constant
c > 0 such that ρ(t) ≤ ctq for all t > 0. If X is q-uniformly smooth, then q ≤ 2 and X is
uniformly smooth.

Let X∗ be a dual space of a Banach space X . Let q > 1 be a real number. The generalized
duality mapping Jq : X −→ 2X

∗
is defined by

Jq(x) = { jq(x) ∈ X∗ : 〈x, jq(x)〉 = ‖x‖q , ‖ jq(x)‖ = ‖x‖q−1},
where 〈·, ·〉 denotes the duality pairing between X and X∗. In particular, Jq = J2 is called
the normalized duality mapping and Jq(x) = ‖x‖q−2 J2(x) for x �= 0. If X is a real Hilbert
space, then Jq = I , where I is the identity mapping. It is well known that if X is smooth,
then Jq is single-valued, which is denoted by jq . The generalized duality mapping jq is said
to be weakly sequentially continuous generalized duality mapping if for each {xn} in X with
xn ⇀ x , we have jq(xn) ⇀∗ jq(x).

The following facts are well known (see [7,8]):

(1) Each uniformly convex Banach space (uniformly smooth Banach space) is reflexive and
strictly convex.

(2) If a Banach space X admits a weakly sequentially continuous generalized duality map-
ping, then X satisfies Opials condition, and X is smooth smooth.
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(3) All Hilbert spaces, L p (or l p) spaces and the Sobolev spaces W p
m with p ≥ 2 are 2-

uniformly smooth, while L p (or l p) spaces and the Sobolev spaces W
p
m with 1 < p ≤ 2

are p-uniformly smooth.
(4) Typical examples of both uniformly convex and uniformly smooth Banach spaces are

L p , where p > 1. More precisely, L p is min{p, 2} -uniformly smooth for each p > 1.

Let A : X −→ 2X be a set-valued mapping. We denote the domain and range of an
operator A : X −→ 2X by D(A) = {x ∈ X : Ax �= ∅} and R(A) = ⋃{Az : z ∈ D(A)},
respectively. Let q > 1. A set-valued mapping A : D(A) ⊂ X −→ 2X is said to be accretive
of order q if for each x, y ∈ D(A), there exists jq(x − y) ∈ Jq(x − y) such that

〈u − v, jq(x − y)〉 ≥ 0, u ∈ Ax and v ∈ Ay.

An accretive operator A is said to be m-accretive if R(I + λA) = X for all λ > 0. In a real
Hilbert space, an operator A is m-accretive if and only if A is maximal monotone (see [8]).

Let A be an m-accretive operator on X , we use A−10 to denote the set of all zeros of A,
i.e., A−10 = {x ∈ D(A) : 0 ∈ Ax}. For an accretive operator A, we can define a single
valued operator J A

λ : R(I + λA) −→ D(A) by J A
λ = (I + λA)−1 for each λ > 0, which

is called the resolvent of A for λ. It is well known that J A
λ is a nonexpansive mapping with

F(J A
λ ) = A−10.
Let α > 0 and q > 1. A mapping A : C −→ X is said to be α-inverse strongly accretive

(α-isa) of order q if for each x, y ∈ X , there exists jq(x − y) ∈ Jq(x − y) such that

〈Ax − Ay, jq(x − y)〉 ≥ α‖Ax − Ay‖q .
It is obvious that A is also 1/α-Lipschitz continuous. If X := H is a real Hilbert space, then
A : C −→ H is called α-inverse strongly monotone (α-ism).

Lemma 2.1 [6] Let C be a subset of a real q-uniformly smooth Banach space X and
A : C −→ X be an α-isa of order q. Then the following inequality holds:

‖(I − λA)x − (I − λA)y‖q ≤ ‖x − y‖q − λ(αq − κqλ
q−1)‖Ax − Ay‖q .

for all x, y ∈ X. In particular, if 0 < λ ≤ (
αa
κq

) 1
q−1 , then I − λA is nonexpansive.

Using the concept of sub-differentials, we have the following inequality:

Lemma 2.2 [9] Let q > 1 and X be a real normed space with the generalized duality
mapping Jq . Then, for any x, y ∈ X, we have

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x + y)〉, (2.1)

where jq(x + y) ∈ Jq(x + y).

Lemma 2.3 [10]Let 1 < q ≤ 2 and X be aBanach space. Then the following are equivalent.

(i) X is q-uniformly smooth.
(ii) There is a constant κq > 0 which is called the q-uniform smoothness coefficient of X

such that for all x, y ∈ X

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x)〉 + κq‖y‖q .
In particular, if X is a real 2-uniformly smooth Banach space, then there exists a constant

K > 0 such that
‖x + y‖2 ≤ ‖x‖2 + 2〈y, j (x)〉 + 2‖Ky‖2.
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Lemma 2.4 [10] Let p > 1 and r > 0 be two fixed real numbers and X be a Banach space.
Then the following are equivalent.

(i) X is uniformly convex.
(ii) There is a strictly increasing, continuous and convex function g : R+ −→ R

+ such that
g(0) = 0 and

g(‖x − y‖) ≤ ‖x‖p − p〈x, jp(y)〉 + (p − 1)‖y‖p, ∀x, y ∈ Br .

Lemma 2.5 [11] Let C be a nonempty, closed and convex subset of a uniformly convex
Banach space X and S : C −→ C be a nonexpansive mapping. Then I − S is demiclosed at
zero, i.e., xn ⇀ x and xn − Sxn −→ 0 implies x = Sx .

Following the proof line as in Lemma 2.7 of [12], we obtain the following result.

Lemma 2.6 Let C be a nonempty, closed and convex subset of a real smooth Banach space
X and let jq : X −→ X∗ be a generalized duality mapping. Assume that the mapping
F : C −→ X is accretive and weakly continuous along segments, that is, F(x+ t y) ⇀ F(x)
as t −→ 0. Then the variational inequality

x∗ ∈ C, 〈Fx∗, jq(x − x∗)〉 ≥ 0, x ∈ C

is equivalent to the dual variational inequality

x∗ ∈ C, 〈Fx, jq(x − x∗)〉 ≥ 0, x ∈ C.

Proposition 2.7 [13] Let q > 1. Then the following inequality holds:

aq − bq ≤ qaq−1(a − b),

for arbitrary positive real numbers a, b.

Lemma 2.8 [14] Let {xn} and {ln} be bounded sequences in a Banach space X and let {βn}
be a sequence in [0, 1] with 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1. Suppose xn+1 =
(1−βn)ln +βnxn for all integers n ≥ 0 and lim supn−→∞(‖ln+1 − ln‖−‖xn+1 − xn‖) ≤ 0.
Then, limn−→∞ ‖ln − xn‖ = 0.

Lemma 2.9 [15] Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − γn)an + γnδn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=0 γn = ∞;
(ii) lim supn−→∞ δn ≤ 0 or

∑∞
n=0 |γnδn | < ∞.

Then, limn−→∞ an = 0.

Lemma 2.10 (The Resolvent Identity [16]) Let X be a real Banach space. Let A be an
m-accretive operator. For λ,μ > 0 and x ∈ X, then

J A
λ x = J A

μ

(
μ

λ
x +

(

1 − μ

λ

)

J A
λ x

)

,

where J A
λ = (I + λA)−1 and J A

μ = (I + μA)−1.

From the Resolvent Identity, we also have the following result.
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Lemma 2.11 For each r, s > 0 then

‖J A
r x − J A

s x‖ ≤ ∣
∣1 − s

r

∣
∣‖J A

r x − x‖ for all x ∈ X.

Proposition 2.12 Let X be a real q-uniformly smooth Banach space. Let A be anm-accretive
operator on X and let J A

λ be the resolvent operator associated with A and λ. Then J A
λ is

firmly nonexpansive, i.e.,

‖J A
λ x − J A

λ y‖q ≤ 〈x − y, jq(J
A
λ x − J A

λ y)〉, ∀x, y ∈ X.

Proof For each x, y ∈ X and λ > 0, we set u = J A
λ x and v = J A

λ y. By definition of the
accretive operator, we have x − u ∈ λAu and y − v ∈ λAv. Since A is m-accretive, we also
have

0 ≤ 〈x − u − (y − v), jq(u − v)〉
= 〈x − y, jq(u − v)〉 − 〈u − v, jq(u − v)〉
= 〈x − y, jq(u − v)〉 − ‖u − v‖q ,

which implies that

‖u − v‖q ≤ 〈x − y, jq(u − v)〉,
i.e.,

‖J A
λ x − J A

λ y‖q ≤ 〈x − y, jq(J
A
λ x − J A

λ y)〉, ∀x, y ∈ X.

This completes the proof. ��

3 Main results

In this section, we prove a strong convergence theorem which is generated by an implicit
iteration process.

Theorem 3.1 Let C be a nonempty, closed and convex subset of a real uniformly convex and
q-uniformly smooth Banach space X which admits a weakly sequentially continuous general-
ized duality mapping jq . Let A : C −→ X be an α-isa of order q and let B : D(B) −→ 2X

be an m-accretive operator such that D(B) ⊂ C. Let S : C −→ C be a nonexpansive
mapping such that � := F(S) ∩ (A + B)−10 �= ∅. Let λ be a real positive constant such

that 0 < λ <
(αq

κq

) 1
q−1 and let {ut } ⊂ X be a perturbation with limt−→0+ ut = u′ ∈ X.

For each 0 < t < 1 − λ
( κq

αq

) 1
q−1 , let {xt } be a net defined by

xt = SJ B
λ (tut + (1 − t)xt − λAxt ), (3.1)

where J B
λ = (I+λB)−1. Then the net {xt } converges strongly as t −→ 0+ to a point x∗ ∈ �,

which solves uniquely the following variational inequality:

〈u′ − x∗, jq(z − x∗)〉 ≤ 0, ∀z ∈ �. (3.2)

Proof We first show that the net {xt } is well defined. For each t ∈ (0, 1 − λ
( κq

αq

) 1
q−1 ), we

define a mapping St : C −→ C by

St x := SJ B
λ (tut + (1 − t)x − λAx), ∀x ∈ C.
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Since S, J B
λ and I − λ

1−t A (see Lemma 2.1) are nonexpansive. For each x, y ∈ C , we have

‖St x − St y‖ = ‖SJ B
λ (tut + (1 − t)x − λAx) − SJ B

λ (tut + (1 − t)y − λAy)‖
≤ ‖(tut + (1 − t)x − λAx) − (tut + (1 − t)y − λAy)‖
= (1 − t)

∥
∥
∥
∥

(

I − λ

1 − t
A

)

x −
(

I − λ

1 − t
A

)

y

∥
∥
∥
∥

≤ (1 − t)‖x − y‖,

which implies that St is a contraction. Hence, St has a unique fixed point, denoted by xt ,
which uniquely solves the fixed point Eq. (3.1). Therefore, {xt } is well defined.

Take any p ∈ �. It is observed that

p = Sp = SJ B
λ (p − λAp)

= SJ B
λ

(

tp + (1 − t)

(

p − λ

1 − t
Ap

))

, ∀t ∈
(

0, 1 − λ
( κq

αq

) 1
q−1

)

.

Set xt = Syt , where yt = J B
λ (tut + (1 − t)xt − λAxt ). Since S, J B

λ and I − λ
1−t A (see

Lemma 2.1) are nonexpansive, we have

‖yt − p‖ =
∥
∥
∥
∥J

B
λ

(

tut+(1 − t)

(

I − λ

1 − t
A

)

xt

)

− J B
λ

(

tp+(1 − t)

(

I − λ

1 − t
A

)

p

)∥
∥
∥
∥

≤
∥
∥
∥
∥t (ut − p) + (1 − t)

[(

I − λ

1 − t
A

)

xt −
(

I − λ

1 − t
A

)

p

]∥
∥
∥
∥

≤ t‖ut − p‖ + (1 − t)

∥
∥
∥
∥

(

I − λ

1 − t
A

)

xt −
(

I − λ

1 − t
A

)

p

∥
∥
∥
∥

≤ t‖ut − p‖ + (1 − t)‖xt − p‖. (3.3)

It follows that

‖xt − p‖ = ‖Syt − Sp‖
≤ ‖yt − p‖
≤ t‖ut − p‖ + (1 − t)‖xt − p‖,

which implies that

‖xt − p‖ ≤ ‖ut − p‖.

Since limt−→0+ ut = u′, then there exists a constant K1 > 0 such that K1 = supt>0{‖ut‖}.
Hence, {xt } is bounded, so are {yt }, {Sxt } and {Axt }.
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Next, we show that limt−→0+ ‖xt − Sxt‖ = 0. Since ‖xt − p‖ ≤ ‖yt − p‖. By using the
convexity of ‖ · ‖q for all q > 1 and Lemma 2.3, we derive

‖xt − p‖q ≤ ‖yt − p‖q

≤
∥
∥
∥
∥(1 − t)

[(

xt − λ

1 − t
Axt

)

−
(

p − λ

1 − t
Ap

)]

+ t (ut − p)

∥
∥
∥
∥

q

≤ (1 − t)

∥
∥
∥
∥

(

xt − λ

1 − t
Axt

)

−
(

p − λ

1 − t
Ap

)∥
∥
∥
∥

q

+ t‖ut − p‖q

= (1 − t)

∥
∥
∥
∥(xt − p) − λ

1 − t
(Axt − Ap)

∥
∥
∥
∥

q

+ t‖ut − p‖q

≤ (1 − t)

[

‖xt − p‖q − qλ

1 − t
〈Axt − Ap, jq(xt − p)〉

+ κqλ
q

(1 − t)q
‖Axt − Ap‖q

]

+ t‖ut − p‖q

≤ (1 − t)

[

‖xt − p‖q − αqλ

1 − t
‖Axt − Ap‖q

+ κqλ
q

(1 − t)q
‖Axt − Ap‖q

]

+ t‖ut − p‖q

= (1 − t)

[

‖xt − p‖q − λ

1 − t

(

αq − κqλ
q−1

(1 − t)q−1

)

‖Axt − Ap‖q + t‖ut − p‖q

≤ ‖xt − p‖q − λ

(

αq − κqλ
q−1

(1 − t)q−1

)

‖Axt − Ap‖q + t‖ut − p‖q ,

which implies that

λ

(

αq − κqλ
q−1

(1 − t)q−1

)

‖Axt − Ap‖q ≤ t‖ut − p‖q . (3.4)

Since t ∈ (
0, 1 − λ

( κq
αq

) 1
q−1

)
, we have αq − κqλq−1

(1−t)q−1 > 0. Also, it follows from (3.4) that

lim
t−→0+ ‖Axt − Ap‖ = 0.

By Proposition 2.12 and Lemma 2.4, we have

‖yt − p‖q = ‖J B
λ (tut + (1 − t)xt − λAxt ) − J B

λ (p − λAp)‖q
≤ 〈tut + (1 − t)xt − λAxt − (p − λAp), jq(yt − p)〉
≤ 1

q
[‖tut + (1 − t)xt − λAxt − (p − λAp)‖q

+ (q − 1)‖yt − p‖q − g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖)],
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which implies that

‖yt − p‖q ≤ ‖tut + (1 − t)xt − λAxt − (p − λAp)‖q − g(‖tut
+ (1 − t)xt − λ(Axt − Ap) − yt‖)

=
∥
∥
∥
∥(1 − t)

[(

I − λ

1 − t
A

)

xt −
(

I − λ

1 − t
A

)

p

]

+ t (ut − p)

∥
∥
∥
∥

q

− g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖)

≤ (1 − t)

∥
∥
∥
∥

(

I − λ

1 − t
A

)

xt −
(

I − λ

1 − t
A

)

p

∥
∥
∥
∥

q

+ t‖ut − p‖q − g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖)
≤ (1 − t)‖xt − p‖q + t‖ut − p‖q − g(‖tut+(1 − t)xt − λ(Axt − Ap) − yt‖)
≤ ‖xt − p‖q + t‖ut − p‖q − g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖)
≤ ‖yt − p‖q + t‖ut − p‖q − g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖).

Hence, we have

g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖) ≤ t‖ut − p‖q ,
and so

lim
t−→0+ g(‖tut + (1 − t)xt − λ(Axt − Ap) − yt‖) = 0.

By the property of g, we have

lim
t−→0+ ‖xt − yt‖ = 0. (3.5)

Also, we obtain

lim
t−→0+ ‖yt − Syt‖ = lim

t−→0+ ‖yt − xt‖ = 0.

Moreover, we observe that

‖xt − Sxt‖ ≤ ‖xt − yt‖ + ‖yt − Syt‖ + ‖Syt − Sxt‖
≤ 2‖xt − yt‖ + ‖yt − Syt‖ −→ 0 as t −→ 0+. (3.6)

For any z ∈ �, we note that

‖xt − z‖q ≤
∥
∥
∥
∥(1 − t)

[(

xt − λ

1 − t
Axt

)

−
(

z − λ

1 − t
Az

)]

+ t (ut − z)

∥
∥
∥
∥

q

≤ (1 − t)q
∥
∥
∥
∥

(

xt − λ

1 − t
Axt

)

−
(

z − λ

1 − t
Az

)∥
∥
∥
∥

q

+ qt〈ut − z, jq(xt − z)〉
≤ (1 − t)‖xt − z‖q + qt〈u′ − z, jq(xt − z)〉 + qt〈ut − u′, jq(xt − z)〉,

which implies that

‖xt − z‖q ≤ q〈u′ − z, jq(xt − z)〉 + q〈ut − u′, jq(xt − z)〉. (3.7)

Next, we show that the net {xt } is relatively norm-compact. Assume that {tn} ⊂ (0, 1)
is a sequence such that tn −→ 0+ as n −→ ∞. Put xn := xtn , yn := ytn , λn := λtn and
un := utn . From (3.7), we have

‖xn − z‖q ≤ q〈u′ − z, jq(xn − z)〉 + q〈un − u′, jq(xn − z)〉. (3.8)
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By the reflexivity of X and the boundedness of {xn}, there exists a subsequence {xni } of {xn}
such that xni ⇀ x∗ ∈ C . In addition, by (3.6), we also have limn−→∞ ‖xn − Sxn‖ = 0. It
follows from Lemma 2.5 that x∗ ∈ F(S). Furthermore, we show that x∗ ∈ (A + B)−10. Let
v ∈ Bu. Since

yn = J B
λn

(tnun + (1 − tn)xn − λn Axn).

It is observed that

tnun + (1 − tn)xn − λn Axn ∈ (I + λn B)yn

⇐⇒ 1

λn

(
tnun + (1 − tn)xn − λn Axn − yn

) ∈ Byn .

Since B is accretive, we have for all (u, v) ∈ B,
〈
1

λn

(
tnun + (1 − tn)xn − λn Axn − yn

) − v, jq(yn − u)

〉

≥ 0

⇐⇒ 〈tnun + (1 − tn)xn − λn Axn − yn − λnv, jq(yn − u)〉 ≥ 0,

which implies that

〈Axn + v, jq(yn − u)〉 ≤ 1

λn
〈xn − yn, jq(yn − u)〉 + tn

λn
〈un − xn, jq(yn − u)〉

≤ 1

λn
‖xn − yn‖‖yn − u‖q−1 + tn

λn
‖un − xn‖‖yn − u‖q−1

≤ (‖xn − yn‖ + tn)K2, (3.9)

where K2 > 0 is a constant such that K2 = supn≥1
{ 1

λn

(‖yn − u‖q−1, ‖un − xn‖‖yn −
u‖q−1

)}
.

Since aBanach space X has aweakly sequentially continuous generalized dualitymapping
and from (3.5), we get 〈Ax∗ + v, jq(x∗ − u)〉 ≤ 0, or 〈−Ax∗ − v, jq(x∗ − u)〉 ≥ 0.
Since B is m-accretive, we have −Ax∗ ∈ Bx∗. This shows that x∗ ∈ (A + B)−10. Thus
x∗ ∈ � := F(S) ∩ (A + B)−10.

Now, replacing z in (3.8) with x∗, we have

‖xn − x∗‖q ≤ 〈u′ − x∗, jq(xn − x∗)〉 + 〈un − u′, jq(xn − x∗)〉. (3.10)

Since xn ⇀ x∗, we get xn −→ x∗. This proves the relatively norm compactness of the net
{xt } as t −→ 0+.

Now, returning to (3.8) and taking the limit as n −→ ∞, we have

‖x∗ − z‖q ≤ 〈u′ − z, jq(x
∗ − z)〉.

In particular, x∗ solves the variational inequality

〈u′ − z, jq(z − x∗)〉 ≤ 0, ∀z ∈ �, (3.11)

which is equivalent to the dual variational inequality (see Lemma 2.6):

〈u′ − x∗, jq(z − x∗)〉 ≤ 0, ∀z ∈ �. (3.12)

Hence, x∗ ∈ � is a solution of variational inequality (3.2). Furthermore, we show that the
solution of (3.2) is singleton. Assume that x̂, x∗ ∈ � are solutions of (3.2). Then, we have

〈u′ − x̂, jq(x
∗ − x̂)〉 ≤ 0
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and

〈u′ − x∗, jq(x̂ − x∗)〉 ≤ 0.

Adding up above two inequalities, we have

‖x∗ − x̂‖q ≤ 0,

which implies that x̂ = x∗ and the uniqueness is proved.
In summary, we have shown that each cluster point of {xt } equal to x∗ as t −→ 0+.

Therefore, we can conclude that the net {xt } converges strongly to x∗. This completes the
proof. ��

Next, we prove a strong convergence theorem which is generated by an explicit iteration
process.

Theorem 3.2 Let C be a nonempty, closed and convex subset of a real uniformly convex
and q-uniformly smooth Banach space X which admits a weakly sequentially continu-
ous generalized duality mapping jq . Let A : C −→ X be an α-isa of order q and let
B : D(B) −→ 2X be an m-accretive operator such that D(B) ⊂ C. Let S : C −→ C be a
nonexpansive mapping such that � := F(S) ∩ (A + B)−10 �= ∅. Let {λn} be a real positive
sequence and let {αn} and {βn} are sequences in (0, 1). For an initial guess x1 ∈ C, define
the sequence {xn} by

{
yn = J B

λn
(αnun + (1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(3.13)

where J B
λn

= (I + λn B)−1 and {un} ⊂ X is a perturbation for the n-step iteration with
limn−→∞ un = u′ ∈ X. Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;

(C3) 0 < c′ ≤ λn < λn
1−αn

≤ d ′ <
(αq

κq

) 1
q−1 and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (3.13) converges strongly to a point x∗ ∈ �, which solves
uniquely the variational inequality (3.2).

Proof We first show that {xn} is bounded. Since limn−→∞ un = u′ ∈ X , which implies
that {un} is bounded. Take any p ∈ �, then there exists a constant M1 > 0 such that
M1 = supn≥1{‖un − p‖}. It is observed that

p = Sp = J B
λn

(p − λn Ap) = J B
λn

(

αn p + (1 − αn)

(

p − λn

1 − αn
Ap

))

.
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Since S, J B
λn

and I − λn
1−αn

A are nonexpansive (see Lemma 2.1), we have

‖yn − p‖ =
∥
∥
∥
∥J

B
λn

(

αnun + (1 − αn)

(

I − λn

1 − αn
A

)

xn

)

− J B
λn

(

αn p + (1 − αn)

(

I − λn

1 − αn
A

)

p

)∥
∥
∥
∥

≤
∥
∥
∥
∥αn(un − p) + (1 − αn)

[(

I − λn

1 − αn
A

)

xn −
(

I − λn

1 − αn
A

)

p

]∥
∥
∥
∥

≤ αn‖un − p‖ + (1 − αn)

∥
∥
∥
∥

(

I − λn

1 − αn
A

)

xn −
(

I − λn

1 − αn
A

)

p

∥
∥
∥
∥

≤ αn‖un − p‖ + (1 − αn)‖xn − p‖. (3.14)

It follows that

‖xn+1 − p‖ = ‖βn(xn − p) + (1 − βn)(Syn − p)‖
≤ βn‖xn − p‖ + (1 − βn)‖Syn − p‖
≤ βn‖xn − p‖ + (1 − βn)‖yn − p‖
≤ βn‖xn − p‖ + (1 − βn)

[

αn‖un − p‖ + (1 − αn)‖xn − p‖
]

= (
1 − (1 − βn)αn

)‖xn − p‖ + (1 − βn)αn‖un − p‖
≤ max{‖xn − p‖, M1}.

By the mathematical induction, we have

‖xn − p‖ ≤ max{‖x1 − p‖, M1}, ∀n ≥ 1.

Thus, {xn} is bounded, so are {yn}, {Axn} and {Sxn}.
Next, we show that limn−→∞ ‖xn+1 − xn‖ = 0. Set yn = J B

λn
zn , where zn = αnun

+ (1 − αn)xn − λn Axn . Then, we have

‖yn+1 − yn‖ = ‖J B
λn+1

zn+1 − J B
λn
zn‖ ≤ ‖J B

λn+1
zn+1 − J B

λn+1
zn‖ + ‖J B

λn+1
zn − J B

λn
zn‖

≤ ‖zn+1 − zn‖ + ‖J B
λn+1

zn − J B
λn
zn‖

= ‖αn+1un+1 + (1 − αn+1)xn+1

− λn+1Axn+1 − (αnun + (1 − αn)xn − λn Axn)‖ + ‖J B
λn+1

zn − J B
λn
zn‖

=
∥
∥
∥
∥αn+1(un+1 − un) + (αn+1 − αn)(un − xn)

+ (1 − αn+1)

[(

I − λn+1

1 − αn+1
A

)

xn+1 −
(

I − λn

1 − αn
A

)

xn

]

+ (λn − λn+1)Axn

∥
∥
∥
∥ + ‖J B

λn+1
zn − J B

λn
zn‖ ≤ αn+1

(‖un+1‖ + ‖un‖
)

+ |αn+1 − αn |
(‖un‖ + ‖xn‖

) + (1 − αn+1)

∥
∥
∥
∥

(

I − λn+1

1 − αn+1
A

)

xn+1

−
(

I − λn

1 − αn
A

)

xn

∥
∥
∥
∥ + |λn+1 − λn |‖Axn‖ + ‖J B

λn+1
zn − J B

λn
zn‖

≤ (1 − αn+1)‖xn+1 − xn‖ + αn+1
(‖un+1‖ + ‖un‖

) + |αn+1

−αn |
(‖un‖ + ‖xn‖

) + |λn+1 − λn |‖Axn‖ + ‖J B
λn+1

zn − J B
λn
zn‖.
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By Lemma 2.11, we have

‖J B
λn+1

zn − J B
λn
zn‖ ≤ |λn+1 − λn |

λn+1
‖J B

λn+1
zn − zn‖.

It follows that

‖yn+1 − yn‖ ≤ (1 − αn+1)‖xn+1 − xn‖ + αn+1
(‖un+1‖ + ‖un‖

) + |αn+1

−αn |
(‖un‖ + ‖xn‖

) + |λn+1 − λn |‖Axn‖ + |λn+1 − λn |
λn+1

‖J B
λn+1

zn − zn‖

≤ (1 − αn+1)‖xn+1 − xn‖ +
(

αn+1 + |αn+1 − αn | + |λn+1 − λn |

+ |λn+1 − λn |
λn+1

)

M2,

where M2 = supn≥1
{‖un+1‖+‖un‖, ‖un‖+‖xn‖, ‖Axn‖, ‖J B

λn+1
zn−zn‖

}
. Then, we have

‖Syn+1 − Syn‖ ≤ ‖yn+1 − yn‖ ≤ (1 − αn+1)‖xn+1 − xn‖
+

(

αn+1 + |αn+1 − αn | + |λn+1 − λn | + |λn+1 − λn |
a′

)

M2.

From (C1) and (C3), we have

lim sup
n−→∞

(‖Syn+1 − Syn‖ − ‖xn+1 − xn‖
) ≤ 0.

By Lemma 2.8, we get

lim
n−→∞ ‖Syn − xn‖ = 0. (3.15)

Consequently,

lim
n−→∞ ‖xn+1 − xn‖ = lim

n−→∞(1 − βn)‖Syn − xn‖ = 0. (3.16)

Next, we show that limn−→∞ ‖xn − Sxn‖ = 0. By the convexity of ‖ · ‖q for all q > 1 and
Lemma 2.3, we have

‖yn − p‖q =
∥
∥
∥
∥(1 − αn)

[(

xn − λn

1 − αn
Axn

)

−
(

p − λn

1 − αn
Ap

)]

+ αn(un − p)

∥
∥
∥
∥

q

≤ (1 − αn)

∥
∥
∥
∥

(

xn − λn

1 − αn
Axn

)

−
(

p − λn

1 − αn
Ap

)∥
∥
∥
∥

q

+ αn‖un − p‖q

= (1 − αn)

∥
∥
∥
∥(xn − p) − λn

1 − αn
(Axn − Ap)

∥
∥
∥
∥

q

+ αn‖un − p‖q

≤ (1 − αn)

[

‖xn − p‖q − qλn

1 − αn
〈Axn − Ap, jq(xn − p)〉

+ κqλ
q
n

(1 − αn)q
‖Axn − Ap‖q

]

+ αn‖un − p‖q ≤ (1 − αn)

[

‖xn − p‖q

− αqλn

1 − αn
‖Axn − Ap‖q + κqλ

q
n

(1 − αn)q
‖Axn − Ap‖q

]

+αn‖un − p‖q = (1 − αn)

[

‖xn − p‖q
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− λn

1 − αn

(

αq − κqλ
q−1
n

(1 − αn)q−1

)

‖Axn − Ap‖q
]

+ αn‖un − p‖q

≤ ‖xn − p‖q − λn

(

αq − κqλ
q−1
n

(1 − αn)q−1

)

‖Axn − Ap‖q + αn‖un − p‖q .
(3.17)

It follows that

‖xn+1 − p‖q ≤ βn‖xn − p‖q + (1 − βn)‖Syn − p‖q
≤ βn‖xn − p‖q + (1 − βn)‖yn − p‖q ≤ βn‖xn − p‖q + (1 − βn)

×
[

‖xn − p‖q − λn

(

αq − κqλ
q−1
n

(1 − αn)q−1

)

‖Axn − Ap‖q + αn‖un − p‖q
]

= ‖xn − p‖q − λn(1 − βn)

(

αq − κqλ
q−1
n

(1 − αn)q−1

)

‖Axn − Ap‖q

+αn(1 − βn)‖un − p‖q ,
which implies from (C2), (C3) and Proposition 2.7 that

c′(1 − b′)
(
αq − κq(d

′)q−1)‖Axn − Ap‖q
≤ ‖xn − p‖q − ‖xn+1 − p‖q + αn(1 − βn)‖un − p‖q
≤ q‖xn − p‖q−1(‖xn − p‖ − ‖xn+1 − p‖) + αn(1 − βn)‖un − p‖q
≤ q‖xn − p‖q−1‖xn+1 − xn‖ + αn(1 − βn)‖un − p‖q .

Moreover, from (C1), (C3) and (3.16), we have

lim
n−→∞ ‖Axn − Ap‖ = 0. (3.18)

By Proposition 2.12 and Lemma 2.4, we have

‖yn − p‖q = ‖J B
λn

(αnun + (1 − αn)xn − λn Axn) − J B
λn

(p − λn Ap)‖q
≤ 〈αnun + (1 − αn)xn − λn Axn − (p − λn Ap), jq(yn − p)〉
≤ 1

q

[

‖αnun + (1 − αn)xn − λn Axn − (p − λn Ap)‖q + (q − 1)‖yn − p‖q

−g(‖αnun + (1 − αn)xn − λn(Axn − Ap) − yn‖)
]

,

which implies that

‖yn − p‖q ≤ ‖αnun + (1 − αn)xn − λn Axn − (p − λn Ap)‖q − g(‖αnun

+ (1 − αn)xn − λn(Axn − Ap) − yn‖)
≤ αn‖un − p‖q + ‖xn − p‖q
− g(‖αnun + (1 − αn)xn − λn(Axn − Ap) − yn‖).

It follows that

‖xn+1 − p‖q ≤ βn‖xn − p‖q + (1 − βn)‖yn − p‖q ≤ βn‖xn − p‖q

+ (1 − βn)

[

αn‖un − p‖q + ‖xn − p‖q − g(‖αnun
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+ (1 − αn)xn − λn(Axn − Ap) − yn‖)
]

= ‖xn − p‖q + αn(1 − βn)‖un − p‖q − (1 − βn)g(‖αnun

+ (1 − αn)xn − λn(Axn − Ap) − yn‖),
which implies by (C2) and Proposition 2.7 that

(1 − b′)g(‖αnun + (1 − αn)xn − λn(Axn − Ap) − yn‖)
≤ ‖xn − p‖q − ‖xn+1 − p‖q + αn(1 − βn)‖un − p‖q
≤ q‖xn − p‖q−1(‖xn − p‖ − ‖xn+1 − p‖) + αn(1 − βn)‖un − p‖q
≤ q‖xn − p‖q−1‖xn+1 − xn‖ + αn(1 − βn)‖un − p‖q .

Then, from (C1), (C2) and (3.16), we have

lim
n−→∞ ‖xn − yn‖ = 0. (3.19)

Consequently,

‖xn − Sxn‖ ≤ ‖xn − Syn‖ + ‖Syn − Sxn‖
≤ ‖xn − Syn‖ + ‖yn − xn‖ −→ 0 as n −→ ∞. (3.20)

Next, we show that

lim sup
n−→∞

〈u′ − x∗, jq(yn − x∗)〉 ≤ 0,

where x∗ is the same as in Theorem 3.1. Since {xn} is bounded, there exists a subsequence
{xni } of {xn} such that

lim sup
n−→∞

〈u′ − x∗, jq(xn − x∗)〉 = lim
i−→∞〈u′ − x∗, jq(xni − x∗)〉.

By the reflexivity of X and the boundedness of {xn}, there exists a subsequence {xni } of {xn}
such that xni ⇀ z ∈ C . From (3.19) and (3.20), we also have yn − Syn −→ 0. Then from
Lemma 2.5, we have z ∈ F(S). Furthermore, by the similar method in the proof of Theorem
3.1, we can show that z ∈ �. Since a Banach space X has a weakly sequentially continuous
generalized duality mapping. Then, we have

lim sup
n−→∞

〈u′ − x∗, jq(yn − x∗)〉 = lim sup
n−→∞

〈u′ − x∗, jq(xn − x∗)〉
= 〈u′ − x∗, jq(z − x∗)〉 ≤ 0. (3.21)

Finally, we show that xn −→ x∗. From (3.14) and Lemma 2.2, we have

‖yn − x∗‖q =
∥
∥
∥
∥(1 − αn)

[(

I − λn

1 − αn
A

)

xn −
(

I − λn

1 − αn
A

)

x∗
]

+ αn(un − x∗)
∥
∥
∥
∥

q

≤ (1 − αn)
q
∥
∥
∥
∥

(

I − λn

1 − αn
A

)

xn −
(

I − λn

1 − αn
A

)

x∗
∥
∥
∥
∥

q

+ qαn〈un − x∗, jq(yn − x∗)〉 ≤ (1 − αn)
q‖xn − x∗‖q

+ qαn〈un − x∗, jq(yn − x∗)〉.
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Then, it follows that

‖xn+1 − x∗‖q ≤ βn‖xn − x∗‖q + (1 − βn)‖Syn − x∗‖q
≤ βn‖xn − x∗‖q + (1 − βn)‖yn − x∗‖q
≤ βn‖xn − x∗‖q + (1 − βn)

[
(1 − αn)

q‖xn − x∗‖q
+ qαn〈un − x∗, jq(yn − x∗)〉]

≤ (
1 − αn(1 − βn)

)‖xn − x∗‖q + qαn(1 − βn)〈un − u′, jq(yn − x∗)〉
+ qαn(1 − βn)〈un − x∗, jq(yn − x∗)〉

≤ (
1 − αn(1 − βn)

)‖xn − x∗‖q
+ qαn(1 − βn)‖un − u′‖‖yn − x∗‖q−1

+ qαn(1 − βn)〈un − x∗, jq(yn − x∗)〉. (3.22)

Then (3.22) reduces to

‖xn+1 − x∗‖q ≤ (1 − γn)‖xn − x∗‖q + γnδn,

where γn := αn(1 − βn) and δn := q‖un − u′‖‖yn − x∗‖q−1 + q〈u′ − x∗, jq(yn − x∗)〉. It
is easily seen that

∑∞
n=1 γn = ∞ and lim supn−→∞ δn ≤ 0. We can therefore apply Lemma

2.9 to conclude that xn −→ x∗. This completes the proof. ��
Corollary 3.3 Let C be a nonempty, closed and convex subset of a real uniformly convex
and 2-uniformly smooth Banach space X which admits a weakly sequentially continuous
duality mapping j . Let A : C −→ X be an α-isa of order 2 and let B : D(B) −→ 2X be an
m-accretive operator such that D(B) ⊂ C. Let S : C −→ C be a nonexpansive mapping
such that � := F(S) ∩ (A + B)−10 �= ∅. Let {λn} be a real positive sequence and let {αn}
and {βn} are sequences in (0, 1). For an initial guess x1 ∈ C, define the sequence {xn} by

{
yn = J B

λn
(αnun + (1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(3.23)

where J B
λn

= (I + λn B)−1 and {un} ⊂ X is a perturbation for the n-step iteration with
limn−→∞ un = u′ ∈ X. Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;
(C3) 0 < c′ ≤ λn < λn

1−αn
≤ d ′ < α

K 2 and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (3.23) converges strongly to a point x∗ ∈ �, which solves
uniquely the following variational inequality:

〈u′ − x∗, j (z − x∗)〉 ≤ 0, ∀z ∈ �.

Corollary 3.4 Let C be a nonempty, closed and convex subset of a real Hilbert H. Let
A : C −→ H be an α-ism and let B : D(B) −→ 2H be a maximal monotone oper-
ator such that D(B) ⊂ C. Let S : C −→ C be a nonexpansive mapping such that
� := F(S) ∩ (A + B)−10 �= ∅. Let {λn} be a real positive sequence and let {αn} and
{βn} are sequences in (0, 1). For an initial guess x1 ∈ C, define the sequence {xn} by

{
yn = J B

λn
(αnun + (1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(3.24)
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where J B
λn

= (I + λn B)−1 and {un} ⊂ H is a perturbation for the n-step iteration with
limn−→∞ un = u′ ∈ H. Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;
(C3) 0 < c′ ≤ λn < λn

1−αn
≤ d ′ < 2α and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (3.24) converges strongly to a point x∗ ∈ �, which solves
uniquely the following variational inequality:

〈u′ − x∗, z − x∗〉 ≤ 0, ∀z ∈ �.

4 Applications

In this section, we give some applications of Theorem 3.2 in the framework of Hilbert spaces.
Throughout this section, letC be a nonempty, closed and convex subset of a real Hilbert space
H .

4.1 Application to variational inequality problems

Let A : C −→ H be a nonlinear monotone operator. The variational inequality problem is
to find z ∈ C such that

〈Az, y − z〉 ≥ 0, ∀y ∈ C. (4.1)

The set of solutions of problem (4.1) is denoted by V I (C, A). In the context of the variational
inequality problem, it well known that

z ∈ V I (C, A) ⇐⇒ z = PC (z − λAz), ∀λ > 0,

where PC is the metric projection from H onto C .
Let g : H −→ (−∞,∞] be a proper convex lower semi-continuous function. Then the

subdifferential ∂g of g is defined as follows:

∂g(x) = {y ∈ H : g(z) ≥ g(x) + 〈z − x, y〉, ∀z ∈ H}, ∀x ∈ H.

It is known that ∂g is maximal monotone (see [17]). Let iC be the indicator function of C
defined by

iC (x) =
{

0, x ∈ C;
∞, x /∈ C.

(4.2)

Since iC is a proper lower semi-continuous convex function on H , then subdifferential ∂iC
of iC is a maximal monotone operator. So, we can define the resolvent J ∂iC

λ of ∂iC for λ > 0
by

J ∂iC
λ x = (I + λ∂iC )−1x

for all x ∈ H .

Lemma 4.1 [18] Let ∂iC be the subdifferential of iC , where iC defined as in (4.2) and let
J ∂iC
λ be the resolvent of ∂iC for λ > 0. Then, we have

y = J ∂iC
λ x ⇐⇒ y = PCx, ∀x ∈ H, y ∈ C.

Further, we have (A + ∂iC )−10 = V I (C, A).
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Theorem 4.2 Let A : C −→ H be an α-ism. Let S : C −→ C be a nonexpansive mapping
such that F(S) ∩ V I (C, A) �= ∅. Let {λn} be a real positive sequence and let {αn} and {βn}
be sequences in (0, 1). For an initial guess x1 ∈ C, define the sequence {xn} by

{
yn = PC (αnun + (1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(4.3)

where {un} ⊂ H is a perturbation for the n-step iteration with limn−→∞ un = u′ ∈ H.
Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;
(C3) 0 < c′ ≤ λn < λn

1−αn
≤ d ′ < 2α and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (4.3) converges strongly to a point x∗ ∈ F(S)∩V I (C, A).

4.2 Application to equilibrium problems

LetG : C×C −→ R be a bifunction, whereR is the set of all real numbers. The equilibrium
problem is to find z ∈ C such that

G(z, y) ≥ 0, (4.4)

for all y ∈ C . The set of solutions of problem (4.6) is denoted by EP(G). For solving the
equilibrium problem, let us assume that a bifunctionG : C×C −→ R satisfies the following
conditions:

(A1) G(x, x) = 0 for all x ∈ C ;
(A2) G is monotone, i.e., G(x, y) + G(y, x) ≤ 0 for all x ∈ C ;
(A3) for all x, y, z ∈ C , lim supt↓0 G(t z + (1 − t)y, y) ≤ G(x, y);
(A4) for all x ∈ C , G(x, ·) is convex and lower semi-continuous.

Lemma 4.3 [19] Let G : C × C −→ R satisfying the conditions (A1)−(A4). Let λ > 0
and x ∈ H. Then there exists z ∈ C such that

G(z, y) + 1

λ
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Lemma 4.4 [20] Assume that G : C × C −→ R satisfies the conditions (A1)−(A4). For
λ > 0 and x ∈ H, define a mapping Tλ : H −→ C as follows:

Tλ(x) = {
z ∈ C : G(z, y) + 1

λ
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
, ∀x ∈ H.

Then, the following hold:

(1) Tλ is single-valued;
(2) Tλ is firmly nonexpansive, i.e., for each x, y ∈ H,

‖Tλx − Tλy‖2 ≤ 〈Tλx − Tλy, x − y〉;
(3) F(Tλ) = EP(G);
(4) EP(G) is closed and convex.

We call such Tλ the resolvent of G for λ > 0.
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Lemma 4.5 [18] Let G : C × C −→ R satisfies the conditions (A1)−(A4). Let AG be a
multivalued mapping of H into itself defined by

AGx =
{ {z ∈ H : G(x, y) ≥ 〈y − x, z〉, ∀y ∈ C}, x ∈ C;

∅, x /∈ C.

Then, E P(G) = A−1
G 0 and AG is a maximal monotone operator with D(AG) ⊂ C. Further,

for any x ∈ H and λ > 0, the resolvent Tλ of G coincides with the resolvent of AG, that is,

Tλx = (I + λAG)−1x .

Theorem 4.6 Let A : C −→ H be an α-ism. Let G : C × C −→ R be a bifunction which
satisfies the conditions (A1) − −(A4). Let S : C −→ C be a nonexpansive mapping such
that F(S) ∩ EP(G) �= ∅. Let {λn} be a real positive sequence and let {αn} and {βn} are
sequences in (0, 1). For an initial guess x1 ∈ C, define the sequence {xn} by

{
yn = Tλn (αnun + (1 − αn)xn − λn Axn),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(4.5)

where {un} ⊂ H is a perturbation for the n-step iteration with limn−→∞ un = u′ ∈ H.
Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;
(C3) 0 < c′ ≤ λn < λn

1−αn
≤ d ′ < 2α and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (4.5) converges strongly to a point x∗ ∈ F(S) ∩ EP(G).

4.3 Application to convex minimization problems

Let f : H −→ R be a convex smooth function and g : H −→ R be a convex, lower-
semicontinuous and nonsmooth function. The convex minimization problem is to find z ∈ C
such that

f (z) + g(z) ≤ f (x) + g(x), (4.6)

for all x ∈ C . The set of solutions of problem (4.6) is denoted by CMP( f, g). By Fermat’s
rule, it is known that the problem (4.6) is equivalent to the problem of finding z ∈ C such
that

0 ∈ ∇ f (z) + ∂g(z),

where ∇ f is a gradient of f and ∂g is a subdifferential of g. In fact, we can set A = ∇ f and
B = ∂g in Theorem 3.2. It is also known ∇ f is (1/L)-Lipschitz continuous, then it is also
L-ism (see [21]). Further, ∂g is maximal monotone (see [17]). So we obtain the following
result.

Theorem 4.7 Let f : H −→ R be a convex and differentiable function with (1/L)-Lipschitz
continuous gradient ∇ f and G : H −→ R be a convex and lower semi-continuous func-
tion such that D(∂G) ⊂ C. Let S : C −→ C be a nonexpansive mapping such that
F(S) ∩ CMP( f, g) �= ∅. Let {λn} be a real positive sequence and let {αn} and {βn} be
sequences in (0, 1). For an initial guess x1 ∈ C, define the sequence {xn} by

{
yn = Jλn (αnun + (1 − αn)xn − λn∇ f (xn)),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(4.7)
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where {un} ⊂ H is a perturbation for the n-step iteration with limn−→∞ un = u′ ∈ H.
Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;
(C3) 0 < c′ ≤ λn < λn

1−αn
≤ d ′ < 2L and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (4.7) converges strongly to a point x∗ ∈ F(S)

∩ CMP( f, g).

4.4 Application to linear inverse problems

Let T be a bounded linear operator on H and b ∈ H . The unconstrained linear problem is to
find x ∈ H such that

T x = b. (4.8)

The set of solutions of problem (4.8) is denoted by � = {x ∈ H : x = T−1b}. For each
x ∈ H , we define f : H −→ R by

f (x) = 1

2
‖T x − b‖2.

It is well known that ∇ f = T t (T x − b) and ∇ f is K -Lipschitz continuous with K the
largest eigenvalue of T t T [22]. So we obtain immediately the following result.

Theorem 4.8 Let T : H −→ H be a bonded linear operator and b ∈ H with K the largest
eigenvalue of T t T . Let S : H −→ H be a nonexpansive mapping such that F(S) ∩ � �= ∅.
Let {λn} be a real positive sequence and let {αn} and {βn} be sequences in (0, 1). For an
initial guess x1 ∈ H, define the sequence {xn} by

{
yn = αnun + (1 − αn)xn − λnT t (T xn − b),

xn+1 = βnxn + (1 − βn)Syn, ∀n ≥ 1,
(4.9)

where {un} ⊂ H is a perturbation for the n-step iteration with limn−→∞ un = u′ ∈ H.
Suppose that the following conditions are satisfied:

(C1) limn−→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < a′ ≤ βn ≤ b′ < 1;
(C3) 0 < c′ ≤ λn < λn

1−αn
≤ d ′ < 2

K and limn−→∞ |λn+1 − λn | = 0.

Then the sequence {xn} defined by (4.9) converges strongly to a point x∗ ∈ F(S) ∩ �.
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Abstract

In this work, we introduce the inertial relaxed CQ algorithms for solving the multiple-sets

split feasibility problems (MSFP) in the frameworks of Hilbert spaces. By mixing the inertial

technique with the self-adaptive method, not only the computation on the matrix norm and the

orthogonal projection is relaxed but also the convergence speed is improved. We then establish

the strong convergence theorem by combining the relaxed CQ algorithm with Halpern’s itera-

tion process. Finally, we provide numerical experiments to illustrate the convergence behavior

and the effectiveness of our proposed algorithm. The main result extends and improves the

corresponding results.

Keywords: Inertial relaxed CQ algorithm; Halpern’s iteration process; Multiple-sets split feasibility problem;

Self-adaptive method.

AMS Subject Classification: 65K05, 65K10, 49J52.

1 Introduction

Let H1 and H2 be real Hilbert spaces. Let t ≥ 1 and r ≥ 1 be given integers and let {Ci}
t
i=1

and {Qj}
r
j=1 be nonempty, closed and convex subsets of H1 and H2, respectively.

In this research, we study the Multiple-sets Split Feasibility Problem (MSFP) which is the

problem of finding a point x∗ such that

x∗ ∈ C :=
t
⋂

i=1

Ci, Ax∗ ∈ Q :=
r
⋂

j=1

Qj, (1.1)

where A is a given bounded linear operator (denote A∗ by the adjoint operator of A). This problem

was first introduced, in finite-dimensional Hilbert spaces, by Censor et al. in [6] for modeling inverse

∗Corresponding author: prasitch2008@yahoo.com (P. Cholamjiak)
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Relaxed CQ Algorithms Involving the Inertial Technique for Multiple-sets Split Feasibility Problems2

problems which arise in modeling of intensity modulated radiation therapy [7], and signal processing

and image reconstruction [4, 14]. Due to its applications, there have been many algorithms invented

to solve MSFP (see, for instance, [21, 23, 28, 29, 30]). In particular, when t = r = 1, the MSFP

(1.1) becomes the split feasibility problem (SFP) which was introduced in [5].

Throughout this work, we always assume that the MSFP (1.1) is consistent and also denote the

solution set by S. It is known that the MSFP is equivalent to the following minimization problem:

min
1

2
‖x− PC(x)‖

2 +
1

2
‖Ax− PQ(Ax)‖

2, (1.2)

where PC and PQ are the metric projections onto C and Q, respectively. It should be noted

that the computation of a projection onto a general closed convex subset is difficult because of its

closed form. To overcome this difficulty, Fukushima [10] suggested a so-called relaxed projection

method to calculate the projection onto a level set of a convex function by computing a sequence

of projections onto half-spaces containing the original level set. In the setting of finite-dimensional

Hilbert spaces, Yang [26] introduced the relaxed CQ algorithms for solving SFP where the closed

convex subsets C and Q are level sets of convex functions given as follows:

C = {x ∈ H1 : c(x) ≤ 0} and Q = {y ∈ H2 : q(y) ≤ 0}, (1.3)

where c : H1 → R and q : H2 → R are weakly lower semi-continuous and convex functions. It is

assumed that both c and q are subdifferentiable on H1 and H2, respectively, and that ∂c and ∂q

are bounded operators (i.e., bounded on bounded sets). It is known that every convex function

defined on a finite-dimensional Hilbert space is subdifferentiable and its subdifferential operator is

a bounded operator (see [2]). Define two sets at point xn by

Cn = {x ∈ H1 : c(xn) ≤ 〈ξn, xn − x〉}, (1.4)

where ξn ∈ ∂c(xn), and

Qn = {y ∈ H2 : q(Axn) ≤ 〈ζn, Axn − y〉}, (1.5)

where ζn ∈ ∂q(Axn). It is clear that Cn and Qn are half-spaces and Cn ⊃ C and Qn ⊃ Q for every

n ≥ 1. In this case, the metric projections onto the sets Cn and Qn can be easily calculated since

it has the specific form which can be found in [2]. Employing this tool, Yang [26] constructed a

relaxed CQ algorithm for solving the SFP by using the half-spaces Cn and Qn instead of the sets C

and Q, respectively and then proved its convergence under some suitable choices of the step-sizes.

For solving the MSFP, following [6], we define the level sets of convex functions by

Ci = {x ∈ H1 : ci(x) ≤ 0} and Qj = {y ∈ H2 : qj(y) ≤ 0}, (1.6)

where ci : H1 → R (i = 1, ..., t) and qj : H2 → R (j = 1, ..., r) are weakly lower semi-continuous

and convex functions. We assume that ci (i = 1, ..., t) and qj (j = 1, ..., r) are subdifferentiable on

H1 and H2, respectively, and that ∂ci (i = 1, ..., t) and ∂qj (j = 1, ..., r) are bounded on bounded

sets. Censor et al. [6] also defined the following proximity function:

f(x) :=
1

2

t
∑

i=1

li‖x− PCi
(x)‖2 +

1

2

r
∑

j=1

λj‖Ax− PQj
(Ax)‖2, (1.7)
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Relaxed CQ Algorithms Involving the Inertial Technique for Multiple-sets Split Feasibility Problems3

where li (i = 1, ..., t) and λj (i = 1, ..., r) are all positive constants such that
∑t

i=1 li+
∑r

j=1 λj = 1.

In this case, we also have

∇f(x) =
t

∑

i=1

li(x− PCi
(x)) +

r
∑

j=1

λjA
∗(I − PQj

)Ax. (1.8)

They introduced the following projection algorithm:

xn+1 = PΩ(xn − ρ∇f(xn)), (1.9)

where ρ > 0 and Ω ⊆ R
N is an auxiliary simple nonempty closed convex set such that Ω ∩ S 6= ∅.

It was proved that if ρ ∈ (0, 2/L) with L being the Lipschitz constant of ∇f , then the sequence

{xn} generated by (1.9) converges to a solution in MSFP.

As observed in the results of Byrne [3], we see that the selection of the step-sizes ρ in (1.9)

depends on the largest eigenvalue (spectral radius) of the matrix A∗A which is not always possible

in practice. To avoid this computation, there have been worthwhile works that the convergence is

guaranteed without any prior information of the matrix norm (see, for examples [22, 23, 24, 27]).

Among these works, López et al. [14] introduced a new way to select the step-size and also practised

this way of selecting step-sizes for variants of the CQ algorithm, including a relaxed CQ algorithm,

and a Halpern-type algorithm and proved both weak and strong convergence. Combining the

relaxed CQ algorithm with that of López et al. [14], in 2013, He and Zhao [11] introduced a new

relaxed CQ algorithm such that the strong convergence is guaranteed in infinite-dimensional Hilbert

spaces. With this choice of the step-sizes, the estimation of the norm of operators is avoided and

the metric projections are easily to be calculated.

In what follows, we define two sets at point xn by

Cn
i = {x ∈ H1 : ci(xn) ≤ 〈ξni , xn − x〉}, (1.10)

where ξni ∈ ∂ci(xn) for i = 1, ..., t, and

Qn
j = {y ∈ H2 : qj(Axn) ≤ 〈ζnj , Axn − y〉}, (1.11)

where ζnj ∈ ∂qj(Axn) for j = 1, ..., r. We see that Cn
i (i = 1, ..., t) and Qn

j (j = 1, ..., r) are

half-spaces and Cn
i ⊃ Ci (i = 1, ..., t) and Qn

j ⊃ Qj (j = 1, ..., r) for all n ≥ 1. We define

fn(x) :=
1

2

t
∑

i=1

li‖x− PCn
i
(x)‖2 +

1

2

r
∑

j=1

λj‖Ax− PQn
j
(Ax)‖2, (1.12)

where Cn
i (i = 1, ..., t) and Qn

j (j = 1, ..., r) are given as in (1.10) and (1.11), respectively.

We then have

∇fn(x) :=

t
∑

i=1

li(x− PCn
i
(x)) +

r
∑

j=1

λjA
∗(I − PQn

j
)Ax, (1.13)

where A∗ is the adjoint operator of A.

For obtaining the strong convergence, recently, inspired by the algorithms proposed by Zhao et

al. [30] and López et al. [14], He et al. [12] introduced a new relaxed self-adaptive CQ algorithm
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Relaxed CQ Algorithms Involving the Inertial Technique for Multiple-sets Split Feasibility Problems4

for solving the MSFP such that the strong convergence is guaranteed by using Halpern’s iteration

process. Let u ∈ H1 be fixed, and choose an initial guess x1 ∈ H1 arbitrarily. Let {xn} be the

sequence generated by the following manner:

xn+1 = αnu+ (1− αn)(xn − τn∇fn(xn)), n ≥ 1, (1.14)

where fn is given as in (1.12), {αn} ⊂ (0, 1) and τn = ρn
fn(xn)

‖∇fn(xn)‖2
with 0 < ρn < 4 for all n ∈ N.

It was proved that if αn → 0,
∑∞

n=1 αn = ∞ and infn∈N ρn(4 − ρn) > 0, then {xn} generated by

(1.14) converges strongly to a solution in MSFP.

In this paper, motivated by the previous works, we propose the following inertial relaxed CQ

algorithm which combines the inertial technique with the relaxed CQ method:

Algorithm 3.1 Let {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and {ρn} ⊂ (0, 4). Let u ∈ H1 be fixed and

take x0, x1 ∈ H1 arbitrarily. Let the sequences {xn} and {yn} be generated iteratively by the

following manner:

xn+1 = αnu+ (1− αn)(yn − τn∇fn(yn)),

yn = xn + βn(xn − xn−1), n ≥ 1, (1.15)

where fn is given as in (1.12) and τn = ρn
fn(yn)

‖∇fn(yn)‖2
for all n ∈ N. If ∇fn(yn) = 0, then yn is a

solution of MSFP. Here βn is an extrapolation factor and the inertia is represented by the term

βn(xn − xn−1). It is remarkable that the inertial terminology greatly improves the performance of

the algorithm and has a nice convergence properties [1, 8, 9, 13, 19, 20] and also [15, 16]. Using the

inertial technique and Halpern’s idea, we prove its strong convergence of the sequence generated

by our proposed scheme. Our algorithm is easily to be implemented since it involves the metric

projections onto half-spaces which have exact forms and has no need to know a priori information of

the norm of bounded linear operators. Numerical experiments are included to show the effectiveness

of the our algorithm. The obtained results mainly extend and improve that of He et al. [12] and

also complement the corresponding results of [3, 14, 30].

The rest of this paper is organized as follows: Some basic concepts and lemmas are provided in

Section 2. The strong convergence result of this paper is proved in Section 3. Finally, in Section 4,

numerical experiments are demonstrated for supporting the main theorem.

2 Preliminaries and lemmas

In this section, we give some preliminaries which will be used in the sequel. Let H be a Hilbert

space. Recall that a mapping T : H → H is said to be nonexpansive if, for all x, y ∈ H,

‖Tx− Ty‖ ≤ ‖x− y‖ (2.1)

T : H → H is said to be firmly nonexpansive if, for all x, y ∈ H,

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2, (2.2)

or equivalently

〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2 (2.3)
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Relaxed CQ Algorithms Involving the Inertial Technique for Multiple-sets Split Feasibility Problems5

for all x, y ∈ H. It is known that T is firmly nonexpansive if and only if I−T is firmly nonexpansive.

We know that the metric projection PC from H onto a nonempty closed convex subset C ⊂ H is

a typical example of a firmly nonexpansive mapping, which is defined by

PCx := argmin
y∈C

‖x− y‖2, x ∈ H. (2.4)

It is well known that PC is characterized by the inequality, for x ∈ H

〈x− PCx, y − PCx〉 ≤ 0, ∀y ∈ C. (2.5)

In a real Hilbert space H, we know the following results:

〈x, y〉 =
1

2
‖x‖2 +

1

2
‖y‖2 −

1

2
‖x− y‖2 (2.6)

and the subdifferential inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉 (2.7)

for all x, y ∈ H.

Definition 2.1. Let f : H → R be a convex function. The subdifferential of f at x is defined as

∂f(x) = {ξ ∈ H : f(y) ≥ f(x) + 〈ξ, y − x〉, ∀y ∈ H}. (2.8)

A function f : H → R is said to be weakly lower semi-continuous at x if xn converges weakly

to x implies

f(x) ≤ lim inf
n→∞

f(xn). (2.9)

Lemma 2.2. [6] Let {Ci}
t
i=1 and {Qj}

r
j=1 be closed convex subsets of H1 and H2 respectively and

A : H1 → H2 a bounded linear operator. Let f(x) be the function defined as in (1.7). Then ∇f(x)

is Lipschitz continuous with L =
∑t

i=1 li + ‖A‖2
∑r

j=1 λj as the Lipschitz constant.

Lemma 2.3. [17, 25] Let {an} and {cn} are sequences of nonnegative real numbers such that

an+1 ≤ (1− δn)an + bn + cn, n ≥ 1, (2.10)

where {δn} is a sequence in (0, 1) and {bn} is a real sequence. Assume
∑∞

n=1 cn < ∞. Then the

following results hold:

(i) If bn ≤ δnM for some M ≥ 0, then {an} is a bounded sequence.

(ii) If
∑∞

n=1 δn = ∞ and lim supn→∞ bn/δn ≤ 0, then limn→∞ an = 0.

Lemma 2.4. [18] Let {Γn} be a sequence of real numbers that does not decrease at infinity in the

sense that there exists a subsequence {Γni
} of {Γn} which satisfies Γni

< Γni+1 for all i ∈ N. Define

the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max {k ≤ n : Γk < Γk+1}, (2.11)

where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} 6= ∅. Then, the following hold:

(i) Γ(n0) ≤ Γ(n0 + 1) ≤ ... and Γ(n) → ∞;

(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.
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Relaxed CQ Algorithms Involving the Inertial Technique for Multiple-sets Split Feasibility Problems6

3 Strong Convergence Theorem

In this section, we are in position to study the inertial relaxed self-adaptive CQ algorithm in

Hilbert spaces for solving MSFP (1.1).

Theorem 3.1. Let H1 and H2 be real Hilbert spaces and let {Ci}
t
i=1 and {Qj}

r
j=1 be nonempty,

closed and convex subsets of H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator

with its adjoint A∗. Assume that {αn}, {βn} and {ρn} satisfy the following assumptions:

(C1) lim
n→∞

αn = 0 and
∞
∑

n=1
αn = ∞;

(C2) inf
n∈N

ρn(4− ρn) > 0;

(C3) {βn} ⊂ [0, β], where β ∈ [0, 1) and lim
n→∞

βn

αn
‖xn − xn−1‖ = 0.

Then the sequence {xn} generated by Algorithm 3.1 converges strongly to PSu.

Proof. Set z = PSu. We note that I − PCn
i
, (i = 1, ..., t) and I − PQn

j
, (j = 1, ..., r) are firmly

nonexpansive and ∇fn(z) = 0 for all n ∈ N. It follows that

〈∇fn(yn), yn − z〉 =
〈

t
∑

i=1

li(yn − PCn
i
(yn)) +

r
∑

j=1

λjA
∗(I − PQn

j
)Ayn, yn − z

〉

=

t
∑

i=1

li〈(I − PCn
i
)yn, yn − z〉+

r
∑

j=1

λj〈(I − PQn
j
)Ayn, Ayn −Az〉

≥
t

∑

i=1

li‖(I − PCn
i
)yn‖

2 +

r
∑

j=1

λj‖(I − PQn
j
)Ayn‖

2

= 2fn(yn). (3.1)

So we have

‖yn − τn∇fn(yn)− z‖2 = ‖yn − z‖2 + τ2n‖∇fn(yn)‖
2 − 2τn〈∇fn(yn), yn − z〉

≤ ‖yn − z‖2 + τ2n‖∇fn(yn)‖
2 − 4τnfn(yn)

= ‖yn − z‖2 − ρ2n
f2
n(yn)

‖∇fn(yn)‖2
− 4ρn

f2
n(yn)

‖∇fn(yn)‖2

= ‖yn − z‖2 − ρn(4− ρn)
f2
n(yn)

‖∇fn(yn)‖2
. (3.2)

Hence we obtain, for each n ∈ N, since ρn ∈ (0, 4)

‖yn − τn∇fn(yn)− z‖ ≤ ‖yn − z‖. (3.3)

On the other hand, we also have

‖yn − z‖ = ‖xn − z + βn(xn − xn−1)‖

≤ ‖xn − z‖+ βn‖xn − xn−1‖. (3.4)

Combining (3.3) and (3.4), we obtain

‖xn+1 − z‖ = ‖αn(u− z) + (1− αn)(yn − τn∇fn(yn)− z)‖

≤ αn‖u− z‖+ (1− αn)‖yn − z‖

≤ αn‖u− z‖+ (1− αn)‖xn − z‖+ (1− αn)βn‖xn − xn−1‖. (3.5)
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Relaxed CQ Algorithms Involving the Inertial Technique for Multiple-sets Split Feasibility Problems7

By (C3), we see that δn = (1−αn)βn‖xn−xn−1‖
αn

→ 0. Hence it is bounded. Put

M = max
{

‖u− z‖, sup
n≥1

δn
}

.

So (3.5) becomes

‖xn+1 − z‖ ≤ (1− αn)‖xn − z‖+ αnM. (3.6)

Applying Lemma 2.3 (i), we can conclude that {xn} is bounded and also {yn} is bounded. By

Lemma 2.2, we see that

‖∇fn(yn)‖ = ‖∇fn(yn)−∇fn(z)‖ ≤ L‖yn − z‖, (3.7)

where L =
∑t

i=1 li + ‖A‖2
∑r

j=1 λj . This shows that {∇fn(yn)} is bounded.

We next compute the following estimation:

‖yn − z‖2 = ‖xn − z + βn(xn − xn−1)‖
2

= ‖xn − z‖2 + 2βn〈xn − xn−1, xn − z〉+ β2
n‖xn − xn−1‖

2. (3.8)

Using (2.6), we have

〈xn − xn−1, xn − z〉 = −
1

2
‖xn−1 − z‖2 +

1

2
‖xn − z‖2 +

1

2
‖xn − xn−1‖

2. (3.9)

Combining (3.8) and (3.9), we obtain

‖yn − z‖2 = ‖xn − z‖2 + βn(−‖xn−1 − z‖2 + ‖xn − z‖2 + ‖xn − xn−1‖
2) + β2

n‖xn − xn−1‖
2

≤ ‖xn − z‖2 + βn(‖xn − z‖2 − ‖xn−1 − z‖2) + 2βn‖xn − xn−1‖
2. (3.10)

Using (2.7) and (3.2), we have

‖xn+1 − z‖2 = ‖αn(u− z) + (1− αn)(yn − τn∇fn(yn)− z)‖2

≤ (1− αn)‖yn − τn∇fn(yn)− z‖2 + 2αn〈u− z, xn+1 − z〉 (3.11)

≤ (1− αn)‖yn − z‖2 − (1− αn)ρn(4− ρn)
f2
n(yn)

‖∇fn(yn)‖2
+ 2αn〈u− z, xn+1 − z〉.

Combining (3.10) and (3.11), we derive

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 + (1− αn)βn(‖xn − z‖2 − ‖xn−1 − z‖2)

+ 2(1 − αn)βn‖xn − xn−1‖
2 − (1− αn)ρn(4− ρn)

f2
n(yn)

‖∇fn(yn)‖2

+ 2αn〈u− z, xn+1 − z〉. (3.12)

Set Γn = ‖xn − z‖2 for all n ∈ N. We note, by (C1) and (C2), that there is a constant σ such that

(1− αn)ρn(4− ρn) ≥ σ > 0 for all n ∈ N. So from (3.12) we get

Γn+1 ≤ (1− αn)Γn + (1− αn)βn(Γn − Γn−1)

+ 2(1− αn)βn‖xn − xn−1‖
2 − σ

f2
n(yn)

‖∇fn(yn)‖2
+ 2αn〈u− z, xn+1 − z〉. (3.13)
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We next consider the following two cases:

Case 1: Suppose that there exists a natural number N such that Γn+1 ≤ Γn for all n ≥ N . In this

case, limn→∞ Γn exists. From (3.13), we have

σ
f2
n(yn)

‖∇fn(yn)‖2
≤ (Γn − Γn+1) + (1− αn)βn(Γn − Γn−1) (3.14)

+ 2(1− αn)βn‖xn − xn−1‖
2 + 2αn〈u− z, xn+1 − z〉.

It is easy to check that (C3) implies βn‖xn − xn−1‖ → 0 since {αn} is bounded. So, by (C1) and

the boundedness of {xn}, we have from (3.14)

f2
n(yn)

‖∇fn(yn)‖2
→ 0 as n → ∞.

Since {‖∇fn(yn)‖} is bounded, it follows that fn(yn) → 0 as n → ∞. This shows that

lim
n→∞

‖(I − PCn
i
)yn‖ = 0 (i = 1, 2, ..., t) (3.15)

and

lim
n→∞

‖(I − PQn
j
)Ayn‖ = 0 (j = 1, 2, ..., r). (3.16)

Since ∂qj (j = 1, ..., r) are bounded on bounded sets, there exists a constant µ > 0 such that

‖ζnj ‖ ≤ µ (j = 1, ..., r) for all n ∈ N. From (3.16) and PQn
j
(Ayn) ∈ Qn

j (j = 1, ..., r), we obtain

qj(Ayn) ≤ 〈ζnj , Ayn − PQn
j
(Ayn)〉 ≤ µ‖(I − PQn

j
)Ayn‖ → 0, (3.17)

as n → ∞. Since {yn} is bounded, there exists a subsequence {ynk
} of {yn} such that ynk

⇀ x∗.

Then Aynk
⇀ Ax∗. Since qj is weakly lower semi-continuous,

qj(Ax
∗) ≤ lim inf

k→∞
qj(Aynk

) ≤ 0. (3.18)

Therefore Ax∗ ∈ Qj (j = 1, ..., r).

We next show that x∗ ∈ Ci (i = 1, ..., t). By the definition of Cn
i (i = 1, ..., t) and (3.15), we

see that

ci(yn) ≤ 〈ξni , yn − PCn
i
(yn)〉 ≤ δ‖yn − PCn

i
yn‖ → 0, (3.19)

as n → ∞, where δ is a constant such that ‖ξni ‖ ≤ δ (i = 1, ..., t) for all n ∈ N. By the weak lower

semi-continuity of ci (i = 1, ..., t) and ynk
⇀ x∗, we have

ci(x
∗) ≤ lim inf

k→∞
ci(ynk

) ≤ 0. (3.20)

Hence x∗ ∈ Ci (i = 1, ..., t) and consequently, x∗ ∈ S. From (2.5), it follows that

lim sup
n→∞

〈u− z, yn − z〉 = lim
k→∞

〈u− z, ynk
− z〉

= 〈u− z, x∗ − z〉 ≤ 0. (3.21)
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On the other hand, we see that

‖yn − xn‖ = βn‖xn − xn−1‖ → 0. (3.22)

Hence, by (3.21) and (3.22), we obtain

lim sup
n→∞

〈u− z, xn − z〉 ≤ 0. (3.23)

Again from (3.13) we have

Γn+1 ≤ (1− αn)Γn + (1− αn)βn(Γn − Γn−1) + 2(1− αn)βn‖xn − xn−1‖
2

+ 2αn〈u− z, xn+1 − z〉

≤ (1− αn)Γn + (1− αn)βn‖xn − xn−1‖(
√

Γn +
√

Γn−1) + 2(1− αn)βn‖xn − xn−1‖
2

+ 2αn〈u− z, xn+1 − z〉. (3.24)

From (3.23) and conditions (C1) and (C3), using Lemma 2.3 (ii), we conclude that Γn = ‖xn−z‖2 →

0 and thus xn → z as n → ∞.

Case 2 : Suppose that there exists a subsequence {Γni
} of the sequence {Γn} such that Γni

<

Γni+1 for all i ∈ N. In this case, we define τ : N → N as in (2.11). Then, by Lemma 2.4, we have

Γτ(n) ≤ Γτ(n)+1. From (3.13), it follows that

Γτ(n)+1 ≤ (1− ατ (n))Γτ(n) + (1− ατ (n))βτ(n)‖xτ(n) − xτ(n)−1‖(
√

Γτ(n) +
√

Γτ(n)−1)

+ 2(1 − ατ (n))βτ(n)‖xτ(n) − xτ(n)−1‖
2 − σ

f2
τ(n)(yτ (n))

‖∇fτ(n)(yτ (n))‖2

+ 2ατ(n)〈u− z, xτ(n)+1 − z〉, (3.25)

which gives

σ
f2
τ(n)(yτ (n))

‖∇fτ(n)(yτ (n))‖2
≤ (1− ατ (n))βτ(n)‖xτ(n) − xτ(n)−1‖(

√

Γτ(n) +
√

Γτ(n)−1)

+ 2(1− ατ (n))βτ(n)‖xτ(n) − xτ(n)−1‖
2

+ 2ατ(n)〈u− z, xτ(n)+1 − z〉. (3.26)

Using a similar argument as in the proof of Case 1, we can show that

lim
n→∞

‖(I − P
C

τ(n)
i

)yτ(n)‖ = 0,

lim
n→∞

‖(I − P
Q

τ(n)
j

)yτ(n)‖ = 0,

and

lim sup
n→∞

〈u− z, xτ(n) − z〉 ≤ 0. (3.27)
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On the other hand, we see that

‖xτ(n)+1 − xτ(n)‖ = ‖ατ(n)(u− xτ(n)) + (1− ατ(n))(yτ(n) − ττ(n)∇fτ(n)(yτ(n))− xτ(n))‖

≤ ατ(n)‖u− xτ(n)‖+ (1− αn)‖yτ(n) − xτ(n)‖

+ (1− ατ(n))ττ(n)‖∇fτ(n)(yτ(n))‖

= ατ(n)‖u− xτ(n)‖+ (1− ατ(n))βτn‖xτ(n) − xτ(n)−1‖

+ (1− ατ(n))ρτ(n)
fτ(n)(yτ(n))

‖∇fτ(n)(yτ(n))‖

→ 0. (3.28)

as n → ∞. Using (3.27) and (3.28), we obtain

lim sup
n→∞

〈u− z, xτ(n)+1 − z〉 ≤ 0. (3.29)

Again from (3.25) we see that

ατ(n)Γτ(n) ≤ (1− ατ (n))βτ(n)‖xτ(n) − xτ(n)−1‖(
√

Γτ(n) +
√

Γτ(n)−1)

+ 2(1 − ατ (n))βτ(n)‖xτ(n) − xτ(n)−1‖
2

+ 2ατ(n)〈u− z, xτ(n)+1 − z〉, (3.30)

which gives

Γτ(n) ≤ (1− ατ (n))
βτ(n)

ατ(n)
‖xτ(n) − xτ(n)−1‖(

√

Γτ(n) +
√

Γτ(n)−1)

+ 2(1 − ατ (n))
βτ(n)

ατ(n)
‖xτ(n) − xτ(n)−1‖

2

+ 2〈u− z, xτ(n)+1 − z〉. (3.31)

This shows that, by (3.29) and (C3)

lim sup
n→∞

Γτ(n) ≤ 0. (3.32)

Thus ‖xτ(n) − z‖ → 0. We see that

√

Γτ(n)+1 = ‖xτ(n)+1 − z‖ ≤ ‖xτ(n)+1 − xτ(n)‖+ ‖xτ(n) − z‖ → 0, (3.33)

as n → ∞. By Lemma 2.4, we also have

Γn ≤ Γτ(n)+1 → 0. (3.34)

So we can conclude that xn → z as n → ∞. We thus complete the proof.

Remark 3.2. We remark here that the conditions (C3) is easily implemented in numerical com-

putation since the valued of ‖xn − xn−1‖ is known before choosing βn. Indeed, the parameter βn

can be chosen such that 0 ≤ βn ≤ β̄n, where

β̄n =

{

min
{

ωn

‖xn−xn−1‖
, β

}

if xn 6= xn−1,

β otherwise,

where {ωn} is a positive sequence such that ωn = o(αn).
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4 Numerical Experiments

In this section, we provide some numerical examples and illustrate its performance by using

Algorithm 3.1. Firstly, numerical results are shown in different choices of the step-size ρn with

different values u, x1 and x2. Secondly, the comparison of convergence rate is made by Example

4.1 to show that our algorithm has a better convergence than that of He et al. [12] defined in (1.14).

For this convenience, we denote algorithm (1.14) by Algorithm 3.2.

Example 4.1. [12] Let H1 = H2 = R
3, r = t = 2 and l1 = l2 = λ1 = λ2 =

1
4 . Define

C1 = {x = (a, b, c)T ∈ R
3 : a+ b2 + 2c ≤ 0},

C2 = {x = (a, b, c)T ∈ R
3 : a2

16 + b2

9 + c2

4 − 1 ≤ 0},

Q1 = {x = (a, b, c)T ∈ R
3 : a2 + b− c ≤ 0},

Q2 = {x = (a, b, c)T ∈ R
3 : a2

4 + b2

4 + c2

9 − 1 ≤ 0}.

and A =







2 −1 3

4 2 5

2 0 2






. Find x∗ ∈ C1 ∩ C2 such that Ax∗ ∈ Q1 ∩Q2.

Choose αn = 1
n+1 for all n ∈ N and β = 0.5. For each n ∈ N, let ωn = 1

(n+1)1.2 and define

βn = β̄n as in Remark 3.2. We now study the effect (in terms of convergence, stability, number

of iterations required and the cpu time) of the sequence {ρn} ⊂ (0, 4) on the iterative scheme by

choosing different ρn such that inf
n
ρn(4− ρn) > 0 in the following cases.

Case 1: ρn = 1; Case 2: ρn = 2; Case 3: ρn = 3; Case 4: ρn = 3.95.

The stopping criterion is defined by

En =
1

2

2
∑

i=1

‖xn − PCn
i
xn‖

2 +
1

2

2
∑

j=1

‖Axn − PQn
j
Axn‖

2 < 10−4.

We choose different choices of u, x0 and x1 as

Choice 1: u = (2, 2,−2)T , x0 = (1, 1, 5)T and x1 = (5,−3, 2)T ;

Choice 2: u = (1, 3,−2)T , x0 = (−4, 3,−2)T and x1 = (−5, 2, 1)T ;

Choice 3: u = (4,−3,−6)T , x0 = (7, 5, 1)T and x1 = (7,−3,−1)T ;

Choice 4: u = (7,−4,−3)T , x0 = (5.32, 2.33, 7.75)T and x1 = (3.23, 3.75,−3.86)T .

The numerical experiments, using our Algorithm 3.1, for each case and choice are reported in

the following Table 1.
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Table 1: Algorithm 3.1 with different cases of ρn and different choices of u, x0 and x1

Case 1 Case 2 Case 3 Case 4

Choice 1 No. of Iter. 244 122 81 25

cpu (Time) 0.05129 0.027395 0.015663 0.00472

Choice 2 No. of Iter. 392 196 131 13

cpu (Time) 0.090982 0.04594 0.02693 0.002119

Choice 3 No. of Iter. 351 175 105 22

cpu (Time) 0.099001 0.034915 0.02138 0.00473

Choice 4 No. of Iter. 444 178 88 27

cpu (Time) 0.108428 0.036239 0.016809 0.005466

The convergence behavior of the error En for each choice of u, x0 and x1 is shown in Figure

1-4, respectively.
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Figure 1: Comparison of the itertions for Choice 1 in Example 4.1
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Figure 3: Comparison of the itertions for Choice 3 in Example 4.1
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Figure 4: Comparison of the itertions for Choice 4 in Example 4.1
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Remark 4.2. We make the following observations from our numerical experiments in Example

4.1.

1. For each different cases and different choices, we see that our algorithm is effective. It appears

that Algorithm 3.1 has a good convergence speed and requires small number of iterations in

the experiment.

2. It is observed that the number of iterations and the cpu run time are significantly decreasing

starting from Case 1 to Case 4. However, there is no significant difference in both cpu run

time and number of iterations for each choice of x0 and x1. So, initial guess does not have

any significant effect on the convergence of the algorithm. However, we note that the sequence

{xn} converges to a solution in MSFP which is of the form PSu. Since the solution set S is

not singleton, so the choice of u effects on the convergence behavior of the algorithm.

3. Our conditions appeared in Theorem 3.1 are easily implemented in numerical computations.

This is because it needs no estimation on the spectral radius or the largest eigenvalue of ATA

and the restriction of metric projections onto C and Q is relaxed by using those of Cn and

Qn which have specific forms in computation.

We finally end this section by providing a comparison of convergence of Algorithm 3.1 and

Algorithm 3.2. Let αn = 1
n+1 , ρn = 3.95 and ωn = 1

(n+1)1.2 for all n ∈ N. Set β = 0.5 and βn = β̄n

as in Remark 3.2. For points u, x0 and x1 randomly, we obtain the following numerical results.
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Table 2: Comparison of Algorithm 3.1 and Algorithm 3.2 in Example 4.1

Algor 3.1 Algor 3.2

Choice 1 u = (0, 1, 2)T No. of Iter. 21 31

x0 = (−4,−2, 3)T cpu (Time) 0.004364 0.006537

x1 = (−1, 2, 0)T

Choice 2 u = (−1, 3, 1)T No. of Iter. 22 69

x0 = (−1, 2, 3)T cpu (Time) 0.004626 0.013906

x1 = (−7,−4,−5)T

Choice 3 u = (3, 1, 3)T No. of Iter. 97 287

x0 = (−5, 1,−4)T cpu (Time) 0.021787 0.074538

x1 = (−5,−2,−3)T

Choice 4 u = (−1, 3,−3)T No. of Iter. 18 161

x0 = (3.2645,−2.3458,−5.3245)T cpu (Time) 0.003854 0.034188

x1 = (−2.5891,−3.2654,−3.2564)T

The error plotting of En of Algorithm 3.1 and Algorithm 3.2 for each choice is shown in Figure

5-8, respectively.
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Figure 5: Comparison of Algorithm 3.1 and  3.2 for Choice 1 in Example 4.1
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Figure 6: Comparison of Algorithm 3.1 and  3.2 for Choice 2 in Example 4.1
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Figure 8: Comparison of Algorithm 3.1 and  3.2 for Choice 4 in Example 4.1
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Remark 4.3. In numerical experiment, it is revealed that the sequence generated by our proposed

Algorithm 3.1 involving the inertial technique converges more quickly than by Algorithm 3.2 of He

et al. [12] does. This concludes that the inertial term constructed in Algorithm 3.1 improves the

speed of convergence for solving the MSFP.
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