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กิตติกรรมประกาศ

หัวหนšาโครงการวิจัยขอขอบพระคุณสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ที่คอยสนับสนุนและใหš
โอกาสหัวหนšาโครงการวิจัยไดšการจัดทำโครงการวิจัยนี้มาตลอดสองปŘที่ไดšรับทุน หัวหนšาโครงการวิจัยขอ
ขอบพระคุณนักวิจัยที่ปรึกษา ศ. ดร. ยูเปŨง แยน ที่คอยชŠวยเหลือสนับสนุนใหšคำชี้แนะปรึกษาและกำลังใจ
ตลอดโครงการวิจัย อีกทั้งคณะผูšบริหารและเพื่อนรŠวมงานที่มหาวิทยาลัยเทคโนโลยีราชมงคลอีสานที่ชŠวย
จัดสรรเวลาและโอกาสในการทำจัย นอกจากนี้หัวหนšาโครงการขอขอบพระคุณเจšาหนšาที่ฝśายวิชาการของ
สกว. ที่คŠอยชŠวยเหลือและแกšปŦณหาหลายๆอยŠางที่เกิดขึ้นตั้งแตŠเริ่มตšนจนเสร็จสิ้นในการดำเนินโครงการ
วิจัยนี้ ที่สำคัญที่สุดคือคุณแมŠของหัวหนšาโครงการวิจัยที่คอยเปŨนแรงผลักดันใหšมีกำลังกายและใจในการทำ
วิจัยโดยตลอด รวมทั้งบุคคลอื่นๆที่ไมŠไดšเอŠยนาม ณ ที่นี้หัวหนšาโครงการวิจัยขอขอบคุณในทุกๆสิ่งทุกอยŠาง
ที่ชŠวยใหšโครงการวิจัยนี้สำเร็จลุลŠวงทุกประการ



 
                           เอกสารแนบหมายเลข 2 
 

Abstract  
 
Project Code : MRG5980255 
 
Project Title : Analysis of baryon properties in combined chiral and 1/Nc expansions 
 
Investigator : Dr. Daris Samart 
 
E-mail Address : jod_daris@yahoo.com 
 
Project Period : 2 years 
 

In this project, we studied the N∗(1875)(3/2−) resonance with a coupled channel unitary 

scheme, considering the  and *K, with their interaction extracted from SU(3) chiral 

Lagrangians, and then added two more channels, the N∗(1535) and N, which proceed 

via triangle diagrams involving the *K and  respectively in the intermediate states. 

The triangle diagram in the N∗(1535) case develops a singularity at the same energy as 

the resonance mass of the N∗(1875)(3/2−) state.  
 
On the other hand, 1/Nc expansion is very useful tool to study octet-octet baryon 
potential in SU(3) flavor symmetry. By constructing octet-octet baryon potential in 
framework of the 1/Nc expansion, we obtain the Nc scale of coupling constants from chiral 
Lagrangian for contact term interactions up to next-to-next-to leading order (NNLO). The 
application of large-Nc sum rules to the hyperon-nucleon (YN) potential at leading order 
(LO) of the chiral expansion reduces the model parameters to 3 from 5 at the LO of 1/Nc 
expansion.    
 
Keywords : Chiral SU(3) lagrangian, triangle singularity, coupled channel unitary scheme, 
1/Nc expansion, SU(3) flavor symmetry, baryon-baryon interactions 

 
 
 
 
 



บทคัดย่อ 
 
รหัสโครงการ : MRG5980255 
 
ชื่อโครงการ : การวิเคราะห์สมบัติของแบริออนในการกระจายร่วมแบบไครัลและส่วนกลับเลขควอนตัมสี 
 
ชื่อนักวจิัย : ดร. ดริศ สามารถ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน  
 
E-mail Address : jod_daris@yahoo.com 
 
ระยะเวลาโครงการ : 2 ปี 
 

ในโครงการวิจัยนี้ เราได้ศึกษาการสั่นพ้องของอนุภาค N∗(1875)(3/2−) ด้วยวิธีการยูนิทารีปฏิกิริยาคู่ควบโดย

พิจารณาคู่อันตรกิริยาของ  และ *K ที่หาได้จากไครัล SU(3) ลากรางเจียน และจากนั้นเราได้เพ่ิมการ

พิจารณาการคู่ควบของอันตรกิริยาคู่ควบของ N∗(1535) และ N เข้าไปด้วยซ่ึงจะเกี่ยวพันผ่านแผนภาพ

แบบสามเหลี่ยมที่มี *K และ  เป็นสถานะระหว่างกลาง แผนภาพแบบสามเหลี่ยมในกรณีของ 

N∗(1535) สามารถท าให้ เกิดภาวะเอกฐานได้ที่ต าแหน่งพลังงานเดียวกันมวลสั่นพ้องของสถานะ 

N∗(1875)(3/2−)  
 
ในขณะเดียวกัน การกระจายแบบ 1/Nc เป็นวีธีการที่เป็นประโยชน์ในการศึกษาศักย์ระหว่างออคเตท-ออคเตท
แบริออนในสมมาตรเฟลเวอร์ SU(3) จากการสร้างศักย์ออคเตท-ออคเตทแบริออนด้วยวิธีการกระจาย 1/Nc 
เราสามารถทราบค่ามาตร Nc ของค่าคงท่ีคู่ควบของอันตรกิริยาคอนแทคจากไครัล SU(3) ลากรางเจียนจนถึง
อันดับถัดจาก-ถัดจากแรกเร่ิม การประยุกต์ของซัมรูลของ Nc ขนาดใหญ่กับศักย์ไฮเปอรอน-นิวคลีออนที่อันดับ
แรกเร่ิมของการกระจายแบบไครัลสามารถลดจ านวนพารามิเตอร์ของแบบจ าลองได้เหลือ 3 จาก 5 ตัว  
  
Keywords : ไครัล SU(3) ลากรางเจียน, ภาวะเอกฐานสามเหลี่ยม, วิธีการยูนิทารีปฏิกิริยาคูค่วบ, การกระจาย
ส่วนกลับเลขควอนตัมส,ี สมมาตรเฟลเวอร์ SU(3), อันตรกิริยาของแบริออน-แบริออน 
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วัตถุประสงคŤ

1. เพื่อศึกษาการเกิดการสั่นพšองของอนุภาค N∗(1875) ดšวยวิธีการยูนิทารีคูŠควบจากแอมพลิจูดของ
แผนภาพสามเหลี่ยม
2. เพื่อใชšวิธีการการกระจายสŠวนกลับเลขควอนตัมสีในทฤษฎีคิวซีดีในศักยŤของแบริออนออคเตทที่ไดšจาก
ไครัล SU(3) ลากรางเจียน

บทนำ
ทฤษฎีควอนตัมรงคพลศาสตรŤ (Quantum Chromo-Dynamics) หรือเรียกโดยยŠอวŠาคิวซีดี (QCD) เปŨน
ทฤษฎีพื้นฐานยุคใหมŠของแรงนิวเคลียรŤอยŠางเขšม โดยในทฤษฎีดังกลŠาวมีอนุภาคมูลฐานที่ เรียกวŠา ควารŤ
ก และมีพาหะของแรงที่ เรียกวŠา กลูออน ทั้งนี้ เมื่อรวมคิวซีดีกับทฤษฎีสนามควอนตัมของแรงนิวเคลียรŤ
อยŠางอŠอนและแรงแมŠเหล็กไฟฟŜาไดšทำใหšเกิดแบบจำลองมาตรฐานของอนุภาคขึ้นเพื่อใชšอธิบายลักษณะ
และอันตรกิริยาของอนุภาคมูลฐานทั้งหมดในเอกภพ ทฤษฎีคิวซีดีประสบความสำเร็จอยŠางยิ่งเมื่อใชšอธิบาย
รูปแบบของแรงนิวเคลียรŤอยŠางเขšมที่ระดับพลังงานสูงๆ ซึ่งคŠาความแรงของอันตรกิริยาในทฤษฎีคิวซีดีมี
คŠานšอยๆจึงทำใหšสามารถประยุกตŤทฤษฎีการกŠอกวนในสนามควอนตัมในการคำนวณและทำนายผลการ
ทดลองตŠางๆไดšอยŠางแมŠนยำ จนทำใหšรางวัลโนเบลสาขาฟŗสิกสŤปŘ 2006 ไดšมอบรางวัลใหšแกŠนักฟŗสิกสŤผูš
ทำนายผลของทฤษฎีคิวซีที่ระดับพลังงานสูงไดš แตŠอยŠางไรก็ตามเนื่องคŠาความแรงของอันตรกิริยาของคิว
ซีดีมีคŠาแปรผกผันกับระดับพลังงาน นั่นคือ ที่ระดับพลังงานนšอยๆคŠาความแรงของอันตรกิริยาก็จะมีคŠา
มาก ซึ่งทำใหšเกิดปŦญหาขึ้นนั่นคือนักฟŗสิกสŤไมŠสามารถใชšรูปแบบการคำนวณแบบเดียวกันกับทฤษฎีคิวซีดีที่
พลังงานสูงๆไดš นอกจากนั้นแลšวปรากฏการณŤตŠางๆของแรงนิวเคลียรŤอยŠางเขšมยังไมŠสามารถใชšทฤษฎีคิวซีดี
อธิบายไดšโดยตรง ดšวยเหตุนี้จึงเกิดคำถามที่ตามมาดังตŠอไปนี้ เราจะสามารถใชšคิวซีดีที่พลังงานต่ำอธิบาย
ปรากฏการณŤของแรงนิวเคลียรŤอยŠางเขšมที่มีอยูŠอยŠางมากมายไดšอยŠางไร เราสามารถทำความเขšาใจการกำ
ทอนและการกักกันในคิวซีดีโดยใชšแฮดรอนแทนที่ควารŤกและกลูออนไดšอยŠางเปŨนระบบหรือไมŠ และตัว
ทฤษฎีคิวซีดีสามารถทำนายโครงสรšางการเกิดแฮดรอนที่แปลกประหลาดไดšหรือไมŠ เปŨนตšน

กŠอนปŘ ค.ศ. 2012 ฐานขšอมูล Particle Data Group (PDG) ซึ่งเปŨนแหลŠงรวบรวมขšอมูลทั้งหมดของ
อนุภาคมูลฐานไดšรายงานการคšนพบอนุภาคประหลาดที่มีลักษณะคลšายกับวŠามีอนุภาคควารŤกหšากšอนที่
เรียกวŠาเพนตะควารŤก (Penta-quark) ที่เรียกวŠา N∗(1875) ที่มีแพริตี้เปŨนคี่และมีเลขควอนตัมสปŗน 3/2
และมีมวลอยูŠที่ประมาณ 1800 MeV เมื่อเร็วๆนี้ PDG ไดšมีการปรับปรุงชุดขšอมูลที่เปŨนปŦจจุบันของอนุภาค
ดังกลŠาวและพบวŠา N∗(1875) มีมวลอยูŠที่ชŠวง 1875 -1920 MeV และมีชŠวงอายุของการสลายตัวที่ 250 ±
70 MeV ชŠองทางของการสลายตัวของอนุภาคนี้ไดšแกŠ Nω (15-25%), ∆π (10-35%) และ Nσ (30-60%)
มีสิ่งที่นŠาสนใจเกี่ยวกับสำหรับการคšนพบอนุภาค N∗(1875) จากการสังเกตการเกิดกำทอนซึ่งจะมีจุดยอด
อยูŠที่ 1875 MeV จากการศึกษาอันตรกิริยาของซูโดสเกลารŤเมซอน-แบริออนพบวŠาในกรณีที่เลขควอนตัม
S = 0 และ I = 1/2 โดยใชšการคำนวณแบบคูŠควบอันตรกิริยา ∆π และ Σ∗K สามารถทำใหšเกิดการ
กำทอนของอนุภาค N∗(1875) อยŠางไรก็ดีสมบัติโครงสรšางและองคŤประกอบของอนุภาค N∗(1875) ยัง
ไมŠสามารถยืนยันไดšอยŠางชัดเจนวŠาเปŨนสถานะควารŤกหšากšอน, เปŨนสถานะโมเลกุลของเมซอน (แฮดรอนที่
ประกอบดšวยควารŤกสองกšอน) กับแบริออน (แฮดรอนที่ประกอดšวยควารŤกสามกšอน) หรือ เกิดจากการผล
ทางจลนศาสตรŤของการกระเจิงกันแนŠ ดšวยเหตุนี้การศึกษารูปแบบการสลายตัวของ N∗(1875) ทั้งไปเปŨน
เมซอนและแบริออนชนิดอื่นๆ จะชŠวยใหšเราทราบขšอมูลเพิ่มเติมเกี่ยวกับธรรมชาติของอนุภาคดังกลŠาวไดš
นอกจากนี้ยังเปŨนชŠวยหาคำตอบหรือคำอธิบายสŠวนเติมเต็มของแบบจำลองมาตรฐานฟŗสิกสŤอนุภาคในสŠวน



5

ของแรงนิวเคลียรŤอยŠางเขšมไดšอีกทางหนึ่ง

อันตรกิริยาระหวŠางไฮเปอรอนกับนิวคลีออนหรือไฮเปอรอนกับไฮเปอรอนยังไมŠไดšรับการศึกษาอยŠาง
กวšางขวางและลึกซึ้งเหมือนกับอันตรกิริยาระหวŠางนิวคลีออนกับนิวคลีออนทั้งเชิงทฤษฎีและการทดลอง
ทั้งที่อันตรกิริยาหรือแรงของไฮเปอรอนกับนิวคลีออนมีความสำคัญในการทำความเขšาใจเกี่ยวกับสสารที่
เรียกวŠาควารŤกกลูออนพลาสมาที่เปŨนสถานะของสสารที่อยูŠในเอกภพระยะแรกเริ่มหรือแกนกลางของดาว
นิวตรอน นอกจากนี้ยังมีสŠวนในการทำความเขšาใจเกี่ยวกับแผนภาพสภาวะสสารคิวซีดีอีกทางหนึ่งอีกดšวย
ทฤษฎีสนามยังผลไครัลเปŨนวิธีการที่ไดšรับความนิยมและประสบความสำเร็จในการศึกษาอันตรกิริยาระ
หวŠางนิวคลีออนนิวคลีออนเปŨนอยŠางยิ่งและไดšถูกนำมาใชšในการศึกษาอันตรกิริยาระหวŠางไฮเปอรอนกับ
นิวคลีออนหรือไฮเปอรอนกับไฮเปอรอนอีกดšวย อยŠางไรก็ดีเนื่องจากขšอมูลทางการทดลองที่มีอยูŠนšอยมาก
ไมŠสามารถทำใหšการศึกษาอันตรกิริยาดังกลŠาวมีความกšาวหนšานักเนื่องจากทฤษฎีสนามยังผลไครัลนั่นมี
พารามิเตอรŤอิสระที่อยูŠเปŨนจำนวนมากจึงเปŨนการยากในการศึกษา ดังนั้นการใชšการกระจายสŠวนกลับเลขค
วอนตัมสีในคิวซีดีสามารถชŠวยใหšเราสามารถลดจำนวนพารามิเตอรŤอิสระลองไดšซึ่งจะเปŨนประโยชนŤตŠอการ
ใชšทฤษฎีสนามยังผลไครัลในการศึกษาอันตรกิริยาระหวŠางไฮเปอรอนกับนิวคลีออนหรือไฮเปอรอนกับไฮเป
อรอนไดšดียิ่งขึ้น

ระเบียบวิธีวิจัย

ในโครงการวิจัยนี้ไดšแบŠงการดำเนินงานออกเปŨน 2 สŠวนหลัก ดังนี้คือ

1. การคำนวณดšวยวิธีการยูนิทารีปฏิกิริยาคูŠควบจากแผนภาพไฟยนŤแมนสามเหลี่ยม

1.1. วิธีการยูนิทารีปฏิกิริยาคูŠควบ
วิธีการยูนิทารีปฏิกิริยาคูŠควบเปŨนรูปแบบหนึ่งในการคำนวณปฏิกิริยาของการกระเจิงกันของอนุภาคเพื่อใชš
อธิบายการเกิดการสั่นพšองของอนุภาคเมซอนหรือแบริออนที่เกิดขึ้นในหšองปฏิบัติการการทดลองของการ
ชนกันของอนุภาค แนวคิดหลักของวิธีการยูนิทารีปฏิกิริยาคูŠควบนี้มีอยูŠวŠาการสั่นพšองของเมซอนหรือแบ
ริออนเกิดจากผลของการคูŠควบคูŠกันระหวŠางอันตรกิริยาของการกระเจิงกันของอนุภาคหลายๆคูŠปฏิกิริยา
ที่มีเลขควอนตัมที่เทŠากันในแตŠละกรณีที่เราพิจารณาการเกิดการสั่นพšองของอนุภาคนั้นๆโดยรูปแบบและ
ขšอมูลอันตรกิริยาของการกระเจิงระหวŠางอนุภาคสามารถหาไดšจากไครัลลากรางเจียนในทฤษฎีสนามยังผล
ไครัล [1] และผนวกรวมกับการพิจารณาการควบคุมของหลักการยูนิทารีจากกลศาสตรŤควอนตัมในแอมพลิ
จูดการกระเจิงจึงทำใหšเกิดรูปแแบบการคำนวณที่เรียกวŠาวิธีการยูนิทารีปฏิกิริยาคูŠควบนั่นเอง [2] ซึ่งวิธีการ
ดังกลŠาวกลŠาวประสบความสำเร็จอยŠางมากในการอธิบายรูปแบบการเกิดการสั่นพšองไดšเกือบทั้งหมดของ
การสั่นพšองของอนุภาคแฮดรอน(เมซอนและแบริออน)ที่ตรวจวัดไดšในหšองปฏิบัติการ (ดูบทความบททวน
วรรณกรรมของที่มาความสำคัญ หลักการ รูปแบบการคำนวณและการนำไปใชšไดšที่อšางอิง [3]) โดยขšอมูล
ตŠางๆของการสั่นพšองของอนุภาคแฮดรอนไดšถูกรวบรวมไวšในฐานขšอมูล Particle Data Group หรือ PDG
[4]

ในหัวขšอนี้เราจะใชšวิธีการคำนวณดšวยวิธีการยูนิทารีปฏิกิริยาคูŠควบตาม [5] และในสŠวนของเลขควอน
ตัม S = 0, I = 1

2
ก็จะมีคูŠปฏิกิริยาอนุภาค ∆π, Σ∗K สำหรับอันตรกิริยาของ s-wave ที่ทำใหšเกิด

สถานะที่มีเลขควอนตัมเปŨน JP = 3/2− และอันตรกิริยาสามารถเขียนไดšดังนี้

Vij = −Cij
1

4f 2
(k0 + k′0), (1)
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∆π Σ∗K
∆π 5 2
Σ∗K 2 2

Table 1: The Cij coefųcients of the Eq. (1).

i (P )

Σ∗(P − q)

K(q)

Λ(P − q − k)

π(k)

N∗(1535)

Figure 1: แผนภาพสามเหลี่ยมสำหรับสถานะสŠงผŠานของ i(∆π, Σ∗K) → N∗(1535)π

เมื่อ k0, k′0 คือพลังงานของเมซอนเริ่มตšนและเมซอนสุดทšายตามลำดับและ f คือคŠางคงที่การสลายตัว
ของเมซอนสŠวนสัมประสิทธิ์ Cij ไดšถูกแสดงในตารางที่ 1 เมทริกซŤการกระเจิงสามารถหาไดšจากสมการ
Bethe-Salpeter เมทริกซŤการกระเจิงที่อยูŠในรูปเมทริกซŤดังนี้

T =
[
1− V G

]−1
V, (2)

โดยที่ G คือฟŦงกŤชั่นลูปของคูŠเมซอนแบริออนซึ่งสามารถนิยามไดšดังนี้

G =

∫
d4q

(2π)4
M

E(q⃗ )

1

k0 + p0 − q0 − E(q⃗ ) + i ϵ

1

q2 −m2 + i ϵ
(3)

เมื่อ M และ m คือมวลของแบริออนและเมซอนตามลำดับ

1.2. ภาวะเอกฐานสามเหลี่ยม (Triangle singularity)
ภาวะเอกฐานสามเหลี่ยมเปŨนปรากฎการณŤที่เกิดขึ้นการที่ตัวหารที่อยูŠในแอมพลิจูดการกระเจิงของอนุภาค
สามตัวที่มีคŠาเปŨนศูนยŤซึ่งจะทำใหšเราสามารถไดšรับผลการสั่นพšอง [6, 7] เงื่อนไขในการเกิดภาวะเอกฐาน
สำหรับแอมพลิจูดของแผนภาพสามเหลี่ยมสามารถเขียนไดšดังนี้ [8]

qon+ − qa− = 0 , (4)

เมื่อ qon+ และ qa− คือโมเมนตัมที่ถูกนิยามในอšางอิง [8] ซึ่งเปŨนการแสดงในรูปของพลังงานในกรอบ
อšางอิงศูนยŤกลาง √s ที่ทำใหšภาวะเอกฐานสามเหลี่ยมปรากฎขึ้นในแอมพลิจูด เมื่อเราตรวจสอบสมการ 4
สำหรับมวลของ N∗(1535) ที่มากกวŠาผลรวมของ mΛ +mK ที่ระดับมวล 1615 MeV ซึ่งอยูŠในชŠวงของ
คŠามวล N∗(1535) เมื่อพิจารณาคŠาคงที่ความกวšางของการสลายตัว 150 MeV และสมการ 4 ใหšผลเฉลย
คŠามวลที่ 1878 MeV ดšวยเหตุนี้เราจึงจะพิจารณาแผนภาพไฟยนŤแมนดังรูปที่ 1. แอมพลิจูดของแผนภาพ
สามเหลี่ยมสามารถเขียนไดšในรูป

−it∆π,πN∗ = V
(I=1/2)
∆π,Σ∗K gΣ∗,πΛ gN∗,KΛ(S⃗ · k⃗) 2MΛ2MΣ∗

∫ d4q

(2π)4
i

(P − q)2 −M2
Σ∗ + iϵ

× i

(P − q − k)2 −M2
Λ + iϵ

i

q2 −m2
K + iϵ

≡ V
(I=1/2)
∆π,Σ∗K gΣ∗,πΛ gN∗,KΛ(S⃗ · k⃗) 2MΛ2MΣ∗ tT , (5)
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เมื่อเราทำการอินทริเกรตทั่วทั้งตัวแปร q0 เราจะไดšวŠา [8]

tT =

∫
d3q

(2π)3
1

8ωKEΣ∗EΛ

1

k0 − EΛ − EΣ∗

× 1

P 0 + ωK + EΛ − k0

1

P 0 − ωK − EΛ − k0 + iϵ

1

P 0 − EΣ∗ − ωK + iϵ

×
{
2P 0ωK + 2k0EΛ − 2(ωK + EΛ)(ωK + EΛ + EΣ∗)

}
, (6)

where

ωK =
√

m2
K + q⃗2, EΣ∗ =

√
M2

Σ∗ + q⃗2 +
iΓΣ∗

2
, EΛ =

√
M2

Λ + (q⃗ + k⃗)2,

k0 =
s+m2

π −M2
N∗

2
√
s

, |⃗k| = λ
1
2 (s,m2

π,M
2
N∗)

2
√
s

,

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2xz (7)

นอกจากนี้เรายังไดšเพิ่มการพิจารณาผลจากภาวะเอกฐานสามเหลี่ยมของคูŠปฏิกิริยาอนุภาคNσ ซึ่งสามารถ
แสดงไดšดังรูปที่ 2

i

∆

π

π

N

σ[f0(500)]

∆,Σ∗

π,K

Figure 2: แผนภาพสามเหลี่ยมสำหรับสถานะสŠงผŠานของ i(∆π, Σ∗K) → Nσ.

2. การวิเคราะหŤศักยŤออคเตทแบริออนสองกšอนโดยใชšวิธีการการกระจายสŠวนกลับเลขควอนตัมสี
ในทฤษฎีคิวซีดี
การกระจายสŠวนกลับพารามิเตอรŤจำนวนของสีในทฤษฎีคิวซีดี คือ วิธีการหนึ่งที่ใชšในการศึกษาผลของคิว
ซีดีในแฮดรอนที่ระดับพลังงานงานต่ำๆ โดยการพิจารณาใหšคŠาคงที่คูŠควบของอันตรกิริยาระหวŠางควารŤก
และกลูออน (gs) ใหšอยูŠในมาตรของจำนวนประจุสี (Nc) กลŠาวคือ gs → gs/

√
Nc ) [9] ซึ่งจากผลการ

ทดลองที่บŠงชี้วŠา Nc = 3 ใหšกลายเปŨนจำนวนขนาดใหญŠใดๆก็ไดš ดังนั้นโครงสรšางภายในของนิวคลีออ
นหรือแบริออนชนิดอื่นๆสามารถทำความเขšาใจไดšงŠายขึ้นเมื่อมีจำนวนของสีเปŨน Nc ซึ่งมีคŠามากๆ [10]
เนื่องจากคŠา gs/

√
Nc มีคŠานšอยจึงทำใหšเราสามารถประยุกตŤทฤษฎีการกŠอกวนในสนามควอนตัมในการ

คำนวณไดšแมšจะอยูŠในระดับพลังงานนšอยๆก็ตาม นอกจากนี้การกระจายจำนวนสีแบบ 1/Nc [11] สามารถ
พิสูจนŤใหšเห็นไดšวŠามันมีสมมาตรเทียบเทŠากันกับแบบจำลองควารŤกที่ไมŠเปŨนสัมพัทธภาพซึ่งเปŨนแบบจำลอง
โครงสรšางของแฮดรอนเชิงปรากฏการณŤที่ไมŠไดšมีความเชื่อมโยงกับคิวซีดีโดยตรง [12]

ผลจากการวิเคราะหŤการประมาณจำนวนของสีขนาดใหญŠทำใหšเราสามารถทำการกระจายสŠวนประ
กอบแมทริกซŤของแบริออนใหšอยูŠในรูปการกระจาย 1/Nc ไดš ซึ่งเราสามารถเขียนรูปแบบทั่วไปของวิธีการก
ระจายสŠวนกลับพารามิเตอรŤจำนวนของสีในทฤษฎีคิวซีดีไดšดังนี้ [13, 14, 15, 16]

⟨p̄, χ̄|CQCD |p, χ⟩ =
∑
r

cr(p̄, p)(χ̄| O(r)
eff |χ) . (8)

โดยที่ |p, χ⟩ คือสถานะจริงของแบริออนในคิวซีดีและ CQCD คือฟŦงกŤชั่นสหสัมพันธŤของตัวดำเนินการค
วารŤกจากคิวซีดีซึ่งสามารถคำนวณไดšโดยตรงจากไครัล SU(3) ลากรางเจียน ขšอมูลที่ซับซšอนจากคิวซีดี
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สามารถเขียนใหšอยูŠในฟŦงกŤชั่นไมŠทราบคŠา cr(p̄, p) และ |χ) คือสถานะยังผลที่แสดงสมบัติของสปŗนและ
เฟลเวอรŤเทŠานั้น ตัวดำเนินการยังผล O(r)

eff สามารถเขียนใหšอยูŠ ในรูปผลคูณดังนี้ (J)l (T )m (G)n เมื่อ
l+m+n = r โดยที่ตัวดำเนินการ J , T และ G คือ ตัวดำเนินการ สปŗน เฟลเวอรŤ และ สปŗน-เฟลเวอรŤ
ตามลำดับ [16] มาตร Nc ของตัวดำเนินการดังกลŠาวมีประโยชนŤเปŨนอยŠางยิ่งในการกระจายสŠวนประกอบ
เมทริกซŤของแบริออนในรูปกำลังของ 1/Nc ซึ่งสามารถสรุปไดšดังนี้ [15]:

J i ∼ 1

Nc

, T a ∼ N0
c , Gi a ∼ N0

c . (9)

ในหัวขšอนี้เราจะศึกษาศักยŤของแบริออนแบริออนโดยที่สŠวนประกอบเมทริกซŤของศักยŤในระบบแบริ
ออนสองกšอนสามารถนิยามไดšดังนี้ [17, 18]

V (p−,p+) = ⟨(p′
1, C), (p′

2, D)|H|(p1, A), (p2, B)⟩. (10)

ในที่นี้ A, . . . , D แสดงแทนองคŤประกอบของสปŗนและเฟลเวอรŤของแบริออนแตŠละตัว สŠวนตัวแปร pi

(p′
i) โมเมนตัมของแบริออนตัวที่ i = 1, 2 กŠอน(หลัง)การชน เราไดšนิยามตัวแปรโมเมนตัมที่เหมาะสมใน

การศึกษาการชนของแบริออนสองกšอนไดšดังนี้
p± = p′ ± p , (11)

โดยที่
p =

1

2
(p1 − p2) , p′ =

1

2
(p′

1 − p′
2) . (12)

และมีเงื่อนไข p+ · p− = 0 ขนาดโมเมนตัมในการศึกษานี้จะอยูŠในระดับ p ∼ ΛQCD

แฮมิลโตเนียนสำหรับแรงนิวเคลียรŤ ในรูปแบบการกระจายของฮารŤทีที่ขีดจำกัดของจำนวนของสีมี
ขนาดใหญŠสามารถเขียนใหšอยูŠในรูป [16, 18]

H = Nc

∑
s,t,u

vstu

(
J

Nc

)s(
T

Nc

)t(
G

Nc

)u

, (13)

โดยที่ ฟŦงกŤชั่นสัมประสิทธิ์ vstu เปŨนฟŦงกŤชั่นของโมเมนตัม p± สŠวนตำดำเนินการยังผลในวิธีการกระจายวน
กลับพารามิเตอรŤจำนวนของสีในทฤษฎีคิวซีดี J (สปŗน) T (เฟลเวอรŤ) และ G (สปŗน-เฟลเวอรŤ) ไดšถูกนิยาม
ไดšดังนี้

J i = q†
σi

2
q , T a = q†

λa

2
q , Gia = q†

σiλa

4
q , (14)

เมื่อ q และ q† คือสนามควารŤกที่อยูŠขีดจำกัดของจำนวนพารามิเตอรŤในขนาดใหญŠ นอกจากนี้มาตร Nc ของ
การกระทำของตัวดำเนินการดังกลŠาวบนสถานะของแบริออนแตŠละตัวมีคŠามาตรดังนี้ [18]

⟨N ′|J i|N⟩ ∼ 1 , ⟨N ′|T a|N⟩ ∼ Nc , ⟨N ′|Gia|N⟩ ∼ Nc . (15)

โดยที่มาตร Nc ของตัวดำเนินการเหลŠานี้มีความสำคัญในการสรšางศักยŤแบริออนในแตŠละอันดับ Nc

นอกจากนี้แลšวในการวิเคราะหŤดšวยวิธีการ Nc ขนาดใหญŠ ตัวแปรโมเมนตัม p± และมวลแบริออน mB

มีมาตร Nc ไดšแกŠ
p+ ∼ 1/Nc , p− ∼ 1 , mB ∼ Nc (16)

ในขั้นตŠอไปเราจะสรšางแฮมิลโตเนียน H ของศักยŤระบบแบริออนสองตัวจากตัวดำเนินการในสมการ (14)
และโมเมนตัม p± ที่ไมŠแปรเปลี่ยนภายใหšการหมุนและการสลับกันของอนุภาค (P12) ในแตŠละอันดับของ
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p+ p− σ⃗1 · σ⃗2 (σ⃗1 + σ⃗2) (σ⃗1 − σ⃗2) σ⃗1 × σ⃗2 [σ1σ2]
ij
2

T - + + - - + +
P - - + + + + +
P12 - - + + - - +

Table 2: สมบัติการแปลงของโมเมนตัมและตัวดำเนินการสปŗนภายใตš การผันกลับของเวลา (T) แพริตี้ (P)
และ การสลับกันของอนุภาค (P12)

λ1 · λ2 (λ1 + λ2)
a (λ1 − λ2)

a (λ1 × λ2)
a [λ1λ2]

ab
2

T + + + - +
P + + + + +
P12 + + - - +

Table 3: สมบัติการแปลงของโมเมนตัมและตัวดำเนินการเฟลเวอรŤภายใตš การผันกลับของเวลา (T) แพริตี้
(P) และ การสลับกันของอนุภาค (P12)

Nc ตั่งแตŠ อันดับ Nc จนถึง 1/Nc สมบัติการแปลงของโอเปอเรเตอรŤตŠางๆและโมเมนตัมภายใตš การผัน
กลับของเวลา (T) แพริตี้ (P) และ การสลับกันของอนุภาค (P12) ไดšถูกแสดงไวšในตารางที่ 2 และ 3 สังเกต
วŠาสัญกร [AB]ij2 แทนเทนเซอรŤอันดับสองสมมาตรและเทรซเปŨนศูนยŤที่เกิกจากเวกเตอรŤสองตัว Ai, Bj

นั่นคือ
[AB]ij2 ≡ AiBj + AjBi − 2

3
δijA⃗ · B⃗ (17)

ผลการทดลอง

ในโครงการวิจัยนี้ไดšแบŠงผลการวิจัยออกเปŨน 2 สŠวนหลัก ดังนี้คือ

1. การคำนวณดšวยวิธีการยูนิทารีปฏิกิริยาคูŠควบจากแผนภาพไฟยนŤแมนสามเหลี่ยม
เมื่อพิจารณาแอมพลิจูดจากแผนภาพสามเหลี่ยมในรูปที่ 1 และ 2 ในกรณีของภาวะเอกฐานสามเหลี่ยม
ของปฏิกิริยากการกระเจิงในรูปทั้งสองจะเกิดขึ้นเมื่ออนุภาคภายในแผนภาพเมื่อโมเมนตัมสี่มิติของอนุภาค
ทั้งสามมีคŠาเทŠากับมวลนิ่งของพวกมันเองจะเปŨนไดšวŠาสŠวนจินตภาพของแอมพลิจูดสามารถทำใหšเกิดการ
สั่นพšองที่ระดับพลังงานเดียวกันกับมวลการสั่นพšองของอนุภาค N∗(1875) ดังรูปที่ 3 ดšวยเหตุนี้ เราจึง
พิจารณาแอมพลิจูดของแผนภาพสามเหลี่ยมดังกลŠาวในสŠวนที่เปŨนคŠาจินตภาพตามทฤษฎีบทออพทิตอล
ในทฤษฎีสนามควอนตัมเพื่อนำไปใชšในการสรšางอันตรกิริยาเคอรŤเนล (V ) สำหรับการคำนวณในสมการ
Bethe-Salpeter ของปฏิกิริยาคูŠควบ จากแอมพลิจูดในสมการ 6 เราจะไดšวŠา

Imt̃i,j = Vj,Σ∗K Vi,Σ∗K

(
gΣ∗,πΛ gN∗,KΛ 2MΛ2MΣ∗

)2
× 1

NN∗

∫
dm̃ 1

3
k⃗ 2 SN∗(m̃) ImGπN∗(s, m̃) |tT (s, m̃)|2, (18)

เมื่อ

ImGπN∗ = − 1

4π

MN∗
√
s
|⃗k|, |⃗k| = λ

1
2 (s,m2

π,M
2
N∗)

2
√
s

, (19)
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SN∗(m̃) = − 1

π
Im 1

m̃−MN∗ + iΓN∗
2

, (20)

และ

NN∗ =

∫
SN∗(m̃)dm̃. (21)

โดยเราจะทำการอินทิเกรตทั่วทั้งการกระจายตัวของมวล m̃ ตั้งแตŠ 1535 ± 150 MeV ในที่สุดอันตรกิริยา
เคอรŤเนลสำหรับปฏิกิริยาคูŠควบ (V ) สามารถหาไดšจาก

Ṽi,πN∗ = V
(I=1/2)
i,Σ∗K gΣ∗,πΛ gN∗,KΛ 2MΛ2MΣ∗ Ṽ (22)

โดยที่

Ṽ =

√
Imt̃

ImGπN∗
(23)

จากนั้นเราจะทำการคำนวณแอมพลิจูดดšวยวิธีการยูนิทารีปฏิกิริยาคูŠควบโดยพิจารณาคูŠปฏิกริยาทั้งหมด

1 8 0 0 1 8 5 0 1 9 0 0 1 9 5 0 2 0 0 0 2 0 5 0 2 1 0 00

2

4

6

8

1 0

1 2

1 4( ×10−9
 )

 s ( M e V )

 

 

Re
(t T),  

Im
(t T)  R e ( t T )

 I m ( t T )    

Figure 3: สŠวนจริงและจินตภาพของอแมพลิจูด tT ของแผนภาพสามเหลี่ยมตามสมการที่ 6 ที่มีคูŠอนุภาค
Σ∗K เปŨนสถานะสŠงผŠาน

สี่คูŠนั่นคือ ∆ π, Σ∗K , N∗(1535)π และ N σ ซึ่งสามารถเขียนใหšอยูŠในรูปเมทริกซŤไดšดังนี้
Σ∗K → Σ∗K ∆π → Σ∗K N∗(1535)π → Σ∗K Nσ → Σ∗K
Σ∗K → ∆π ∆π → ∆π N∗(1535)π → ∆π Nσ → ∆π

Σ∗K → N∗(1535)π ∆π → N∗(1535)π 0 0
Σ∗K → Nσ ∆π → Nσ 0 0

 (24)

เมื่อเรานำแอมพลิจูดที่ใสŠคŠาอันตรกิริยาเคอรŤเนล V จากสมการ 22 ลงในสมการ 2 ผลการคำนวนเชิงตัวเลข
สามารถแสดงใหšเห็นในรูปที่ 4, 5, 6 และ 7 เราจะสังเกตไดšวŠาที่ชŠองคูŠปฏิกิริยา Σ∗K → Σ∗K เปŨนชŠองที่
ทำใหšเกิดการสั่นพšองในรูปแบบของอนุภาค N∗(1875) ไดš

จากนั้นเราจะทำการคำนวนคŠาคŠงที่คูŠควบของแตŠละชŠองปฏิกิริยาการกระเจิงเพื่อนำไปคำนวณหา
สมบัติตŠางๆที่เกี่ยวขšองกับการกระเจิงหรือการสลายตัวของอนุภาค N∗(1875) ไดš โดยคŠาคงที่คูŠควบจาก
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Figure 4: คŠา |T22|2 ที่เปŨนฟŦงกŤชั่นของพลังงานในกรอบอšางอิงศูนยŤกลางมวล (√s) สำหรับสองคูŠปฏิกิริยา
(∆π,Σ∗K) สามคูŠปฏิกิริยา (∆π,Σ∗K,N∗π) และสี่คูŠปฏิกิริยา (∆π,Σ∗K,N∗π,Nσ)

1 8 0 0 1 8 5 0 1 9 0 0 1 9 5 0 2 0 0 0 2 0 5 0 2 1 0 0
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Figure 5: คŠา |T12|2 ที่เปŨนฟŦงกŤชั่นของพลังงานในกรอบอšางอิงศูนยŤกลางมวล (√s) สำหรับปฏิกิริยาสŠง
ผŠาน ∆π → Σ∗K
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|T 32
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Figure 6: คŠา |T32|2 ที่เปŨนฟŦงกŤชั่นของพลังงานในกรอบอšางอิงศูนยŤกลางมวล (√s) สำหรับปฏิกิริยาสŠง
ผŠาน Σ∗K → N∗π
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Figure 7: คŠา |T42|2 ที่เปŨนฟŦงกŤชั่นของพลังงานในกรอบอšางอิงศูนยŤกลางมวล (√s) สำหรับปฏิกิริยาสŠง
ผŠาน Σ∗K → Nσ

การกระเจิงแบบยูนิทารีปฏิกิริยาคูŠควบสามารถคำนวนไดšจาก Tij ในสมการ 2 โดยที่ i, j = ∆π,Σ∗K,N∗π,Nσ

และเราจะหาคŠามวลและความกวšางของการสั่นพšองจากตำแหนŠงของจุดสูงสุดของการสั่นพšองและคŠาความ
กวšางในแตŠละชŠองคูŠปฏิกิริยา เราจะไดšวŠา

Tij =
gi gj√

s−MR + iΓR

2

. (25)

เมื่อ MR และ ΓR คือคŠาตำแหนŠงมวลและความกวšางของการสลายตัวของการสั่นพšองตามลำดับ และเรา
จะใหšชŠองปฏิกิริยา Σ∗K หรือ i, j = 2 เปŨนชŠองปฏิกิริยาอšางอิงดังตŠอไปนี้

T22|peak =
g22
iΓR

2

, g22 = i
ΓR

2
T22

∣∣∣∣
peak

(26)

ในการนี้เราจะใหš g2 มีคŠาบวกหรือลบก็ไดšและเราสามารถคŠาคงที่คูŠควบ gi ของŠองปฏิกิริยาอื่นๆไดšจาก
สมการขšางลŠางนี้

gi
g2

=
Ti2

T22

∣∣∣∣
peak

. (27)

เมื่อเราไดšคŠาคงที่คูŠควบของชŠองคูŠปฏิกิริยาทั้งหมด เราก็สามารถหาคŠาความกวšางของการสลายตัวในแตŠละ
ชŠองปฏิกิริยาไดšจาก

Γi =
1

2π

MB

MR

|gi|2pi, (28)

โดยที่ MB คือมวลของแบริออน

pi =
λ1/2(M2

R,M
2
m,M

2
B)

2MR

(29)

เมื่อ Mm มวลของเมซอนในแตŠละชŠองปฏิกิริยา ∆π,Σ∗K,N∗π,Nσ

คŠาคงที่คูŠควบของชŠองปฏิกิริยาทั้งเมื่อใชšสมการ 26 และ 27 มีคŠาดังตŠอไปนี้
gR,Σ∗K = 1.72− 0.70i, gR,∆π = 0.34 + 0.59i,

gR,N∗π = −0.29 + 0.17i, gR,Nσ = 0.22− 0.01i. (30)
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จากคŠาที่ไดšดังกลŠาวมานี้คŠาคงที่การสลายตัวก็สามารถหาไดšจาก Γi =
1
2π

Mi

MR
|gi|2pi, เมื่อ Mi คือมวลของ

แบริออนในชŠอง i และ pi คือโมเมนตัมของมัน เราสามารถหาคŠาคงที่การสลายตัวยŠอยไดšดังนี้

Γ∆π = 25.2 MeV, ΓΣ∗K = 13.1 MeV,
ΓN∗π = 4.2 MeV, ΓNσ = 2.3 MeV. (31)

เราสังเกตไดšวŠาผลรวมของคŠาคŠงที่การสลายตัวยŠอยมีคŠาเทŠากับ 44.8 MeV ซึงนšอยกวŠาคŠา ΓR = 71.2 MeV
ที่เราหาไดšจากในรูปที่ 4 อยŠางไรก็ตามจุดยอดของ N∗(1875) มีการกระจายตัวเนื่องจากมวลของ Σ∗ ที่
มีคŠาความกวšาง ΓΣ∗ = 36 MeV [4] ดังนั้นเราจึงตšองทำการหาคŠาคอนโวลูชั่นของชŠองการสลายตัวยŠอยที่
ΓΣ∗K

Γ̃Σ∗K =
1

NR

∫ MR+2ΓR

MR−2ΓR

dM̃R

∫ MΣ∗+2ΓΣ∗

MΣ∗−2ΓΣ∗

dM̃Σ∗

× SR(M̃R) SΣ∗(M̃Σ∗) ΓΣ∗K(M̃R, M̃Σ∗ ,mK), (32)

เมื่อ SR(M̃R) (หรือ SΣ∗(M̃Σ∗)) คือ ฟŦงกŤชั่นสเปกทรัลของอนุภาค N∗(1875) (หรือ Σ∗) และ

NR=

∫ MR+2ΓR

MR−2ΓR

dM̃R

∫ MΣ∗+2ΓΣ∗

MΣ∗−2ΓΣ∗

dM̃Σ∗SR(M̃R)SΣ∗(M̃Σ∗),

คŠาคงที่การสลายตัวยŠอยของชŠองปฏิกิริยา Σ∗K ที่ผŠานการหาคŠาคอนโวลูชั่นของชŠองการสลายตัวยŠอยคือ

ΓΣ∗K(M̃R, M̃Σ∗ ,mK) =
1

2π

M̃Σ∗

M̃R

g2R,Σ∗K p̃, (33)

และ

p̃ =
λ1/2(M̃2

R, M̃
2
Σ∗ ,m2

K)

2M̃R

θ(M̃R − M̃Σ∗ −mK).

และจากการคำนวณโดยการแทนคŠาตัวเลขของแตŠละตัวแปรจาก [4] จะไดšวŠา

Γ̃Σ∗K = 33.2 MeV. (34)

เมื่อนำคŠาที่ ไดšดังกลŠาวไปหาผลรวมของคŠาคงที่การสลายตัวยŠอยของชŠองปฏิกิริยาทั้งหมดจะไดš เทŠากับ
64.9 MeV ซึ่งมีคŠาใกลšเคียงคŠาที่เราไดšจาก ΓR = 71.2 MeV

เพื่อเปŨนการทำนายผลการคำนวณของเราใหšสอดคลšองกับผลการทดลองในอนาคตเราจะเลือกในการ
ศึกษาการสลายตัวของ N∗(1875) ที่สลายตัวไปเปŨน π+π−p ในสถานะสุดทšาย ซึ่งรูปแบบการสลายตัวที่
เปŨนไปไดšทั้งหมดไดšถูกแสดงไวšในรูปที่ 8 เมื่อพิจารณาผลการรวมของเลขควอนตัมสปŗนและไอโซสปŗนแตŠละ
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Figure 8: แผนภาพไฟยนŤแมนสำหรับการสลายตัวของการสั่นพšอง N∗(1875) ไปสูŠ π∆ [(a) และ (b)],
πN∗ [(c)] และ σp [(d)].

กระบวนการสลายตัวแลšวเราจะไดšวŠา

−itR+→π+∆0→π+π−p = gR,π∆(−
√

1

6
)

√
1

3

× 1

M23 −M∆ + iΓ∆

2

S⃗ · p⃗2
fπN∆

mπ

,

−itR+→π−∆++→π−π+p = gR,π∆

√
1

2
(−1)S⃗ · p⃗1

× 1

M13 −M∆ + iΓ∆

2

fπN∆

mπ

, (35)

−itR+→π+N∗0→π+π−p = g′R,π∆(

√
2

3
)(−

√
2

3
)S⃗ · p⃗1

× 1

M23 −MN∗ + iΓN∗
2

gN∗,πN ,

−itR+→σp→π+π−p = g′R,σN(−
√

2

3
)S⃗ · (p⃗1 + p⃗2)(−1)

× 1

M2
12 −m2

σ + imσΓN∗
gσ,ππ,

เมื่อ M2
ij = (pi + pj)

2; i, j = 1, 2, 3 สำหรับ π+, π−, p

ในการคำนวณนี้เราจะใชšคŠา gN∗,πN = 0.70 จาก [19] และ

g′R,πN∗ =

√
3

p1
gR,πN∗ , g′R,σp =

√
3

|p⃗1 + p⃗2|
gR,σp. (36)

ณตอนนี้เราพรšอมที่จะเขียนแอมพลิจูดทั้งหมดสำหรับการสลายตัวในกระบวนการ R+ → π+π−p จาก
แผนภาพทั้งหมดในรูปที่ 8 ดังนี้

−ittot = (B + C +D)S⃗ · p⃗1 + (A+D)S⃗ · p⃗2
= A′ S⃗ · p⃗1 +B′ S⃗ · p⃗2, (37)
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Figure 9: ผลการคำนวณการกระจายตัวเชิงมวลของแตŠละชŠองปฏิกิริยา dΓ
dM12

, dΓ
dM13

และ dΓ
dM23

สำหรับ
การสลายตัว N∗+(1875) → π+π−p เมื่อ 1,2,3 แทนดšวยอนุภาค π+, π− และ p และเสšนประสีแดงแทน
ดšวยผลจากการผลิตคูŠอนุภาค π∆ (นั่นคือพจนŤ A และ B ในสมการ 37), และเสšนประสีน้ำเงินแทนดšวย
ผลจากการผลิตคูŠอนุภาค π∆ และ πN∗ (นั่นคือพจนŤ A, B และ C ในสมการ 37) สŠวนเสšนประสีดำแทน
ดšวยผลจากการผลิตคูŠอนุภาค π∆, πN∗ and σN (นั่นคือพจนŤ A, B, C และ D ในสมการ 37), เสšนประ
สีเขียวคือกรณีที่พิจารณาคŠาสัมประสิทธิ์จากบวกเปŨนลบของคŠาคงที่ gσ,ππ
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โดยที่

A = − 1

3
√
2

gR,π∆ · fπN∆

mπ

1

M23 −M∆ + iΓ∆

2

,

B = − 1√
2

gR,π∆ · fπN∆

mπ

1

M13 −M∆ + iΓ∆

2

,

C = − 2√
3

gR,πN∗ · gN∗,πN

p1

1

M23 −MN∗ + iΓN∗
2

, (38)

D =
√
2
gR,σN · gσ,ππ
|p⃗1 + p⃗2|

1

M2
12 −m2

σ + imσΓσ

,

A′ = B + C +D, B′ = A+D.

การกระจายตัวเชิงอนุพันธŤของมวลสามารถหาไดšจาก [4]
d2Γ

dM12dM23

=
1

(2π)3
4MpMR

32M3
R

∑∑∣∣∣ttot∣∣∣24M12M23, (39)

และเราจะพบวŠา∑∑∣∣∣ttot∣∣∣2 = 1

3

[
|A′|2p⃗ 2

1 + |B′|2p⃗ 2
2 + 2Re(A′B′∗)p⃗1 · p⃗2

]
, (40)

เมื่อ p⃗1 · p⃗2 สามารถเขียนใหšอยูŠในรูปของ M12 ดังนี้
2p⃗1 · p⃗2 = m2

1 +m2
2 + 2E1E2 −M2

12 (41)
และ E1, E2 คือ

E1 =
M2

R +m2
1 −M2

23

2MR

, E2 =
M2

R +m2
2 −M2

13

2MR

(42)

ในการหาคŠา dΓ
dM12

เราอินทิเกรตสมการ (39) ทั่วทั้ง M23 และขอบเขตของมันไดšถูกกำหนดไวšใน PDG [4].
ใน ttot เราตšองการ M12, M13, M23 ใหšเปŨนตัวแปร ตัวแปร M13 สามารถเขียนใหšอยูŠในรูป

M2
13 = M2

R +m2
1 +m2

2 +m2
3 −M2

12 −M2
23 (43)

จากผลการคำนวณเชิงตัวเลขของการกระจายเชิงมวลในรูปที่ 9 จะพบวŠาที่การกระจายของการสลายตัว
ππ ที่ M12 นั้นจะเกิดการสั่นพšองขึ้นที่ตรงกับระดับพลังงานของมวลอนุภาค σ นั่นหมายความวŠาอันตร
กิริยาของปฏิกิริยาคูŠควบที่ชŠอง Nσ นั้นมีความสำคัญมากที่ชŠวยทำใหšคŠาความกวšางของการสลายตัวมีคŠา
ตรงกันกับผลการทดลองสำหรับ N∗(1875) และมีสŠวนสำคัญในการผลิตการสั่นพšองที่เกิดขึ้นในกรอบวิธี
การยูนิทารีปฏิกิริยาคูŠควบอีกดšวย

2. การวิเคราะหŤศักยŤออคเตทแบริออนสองกšอนโดยใชšวิธีการการกระจายสŠวนกลับเลขควอนตัมสี
ในทฤษฎีคิวซีดี
ในหัวขšอนี้เราจะเริ่มตšนดšวยไครัล SU(3) ลากรางเจียนสำหรับอันตรกิริยาของออคเตทแบริออนสองกšอนที่
ติดกันที่มีอันดับการกระจายไครัลที่อันดับแรกเริ่ม (LO, Leading Order) ซึ่งไมŠมีอนุพันธŤปรากฏในลากราง
เจียน [20]

L(1) = C
(1)
i

⟨
B̄1B̄2 (ΓiB)2 (ΓiB)1

⟩
,

L(2) = C
(2)
i

⟨
B̄1 (ΓiB)1 B̄2 (ΓiB)2

⟩
,

L(3) = C
(3)
i

⟨
B̄1 (ΓiB)1

⟩ ⟨
B̄2 (ΓiB)2

⟩
, (44)
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โดยที่ 1 และ 2 แทนอนุภาคในกระบวนการการกระเจิง และ B คือออคเตทแบริออนที่อยูŠในรูปเมทริกซŤ
ของกลุŠม SU(3) ซึ่งจะอยูŠในรูป

B =
1√
2

8∑
a=1

λaBa =


Σ0
√
2
+ Λ√

6
Σ+ p

Σ− −Σ0
√
2
+ Λ√

6
n

−Ξ− Ξ0 − 2Λ√
6

 , (45)

และสัญลักษณŤวงเล็บ ⟨· · · ⟩ คือการแทรซในเมทริกซŤ 3×3 และนอรŤมอลไลซŤของเมทริกซŤของแกลมันนŤคือ
⟨λa λb⟩ = 2 δab นอกจากนี้สัญกร Γi คือสมาชกของพีชคณิต Clifford สำหรับสปŗนเนอรŤ ดังนี้

Γ1 = 1 , Γ2 = γµ , Γ3 = σµν , Γ4 = γµγ5 , Γ5 = i γ5 . (46)
เราสามารถหาศักยŤการกระเจิงของออคเตทแบริออนไดšโดยทำตามวิธีการใน [21] ดšวยการกำหนดสมบัติ
โควาเรียนทŤเชิงสัมพัทธภาพอีกทั้งเอกลักษณŤแบบ Fierz และ Claley-Hamilton ไดšถูกใชšเพื่อกำจัดตัวเนิน
การที่ซ้ำซšอนอีกดšวย โดยกำหนดใหš H = −L ศักยŤการกระเจิงของออคเตทแบริออนที่อยูŠในอันดับการก
ระจายของโมเมนตัมอันดับสองสามารถเขียนไดšใหšอยูŠในรูป

V (1) = ⟨χ̄2, d ; χ̄1, c |H(1)| a, χ1 ; b, χ2⟩

=

{
1

3
δcdδba +

1

2

(
dcde + if cde

)(
deba + if eba

)} (47)

×
{
c
(1)
S ÕS + c

(1)
T ÕT +

(
c
(1)
1 p2− + c

(1)
2 p2+

)
δχ̄1χ1δχ̄2χ2 +

(
c
(1)
3 p2− + c

(1)
4 p2+

)
σ⃗1 · σ⃗2

+ c
(1)
5

i

2
(σ⃗1 + σ⃗2) · (p⃗+ × p⃗−) + c

(1)
6 (p⃗− · σ⃗1)(p⃗− · σ⃗2) + c

(1)
7 (p⃗+ · σ⃗1)(p⃗+ · σ⃗2)

}
,

โดยที่

ÕS = δχ̄1χ1δχ̄2χ2 +
i

2M2
(p⃗+ × p⃗−) · (σ⃗1 − σ⃗2) ,

ÕT = σ⃗1 · σ⃗2 −
i

2M2
(p⃗+ × p⃗−) · (σ⃗1 − σ⃗2) , (48)

และ σ⃗i ≡ σ⃗χ̄iχi
เมื่อ i = 1, 2 ดัชนี a (c), b (d), χ1 (χ̄1) และ χ2 (χ̄2) คือ เฟลเวอรŤและสปŗนของแบริ

ออนที่พุŠงเขšา(พุŠงออก)หมายเลขที่ 1 และ 2 ตามลำดับ สŠวน M คือมวลของแบริออนออคเตทในขีดจำกัด
สมมาตรแบบ SU(3) สำหรับคŠาคงที่คูŠควบ c

(1)
i คือผลบวกเชิงเสšนของคŠาคงที่ C(1)

i ดังตŠอไปนี้

c
(1)
S = C

(1)
1 + C

(1)
2 , c

(1)
T = C

(1)
3 − C

(1)
4 ,

c
(1)
1 = − 1

4M2

(
C

(1)
2 + C

(1)
3

)
, c

(1)
2 = − 1

2M2

(
C

(1)
1 − C

(1)
2

)
,

c
(1)
3 = − 1

4M2

(
C

(1)
2 + C

(1)
3

)
, c

(1)
4 =

1

4M2

(
C

(1)
3 − C

(1)
4

)
,

c
(1)
5 = − 1

2M2

(
C

(1)
1 − 3C

(1)
2 − 3C

(1)
3 − C

(1)
4

)
,

c
(1)
6 =

1

4M2

(
C

(1)
2 + C

(1)
3 + C

(1)
4 + C

(1)
5

)
, c

(1)
7 = − 1

4M2

(
C

(1)
3 + C

(1)
4

)
. (49)

สัญลักษณŤของโมเมนตัมในหัวขšอนี้สามารถนิยามไดšดังนี้

p⃗+ =
1

2
(p⃗ ′ + p⃗) , p2+ = p⃗+ · p⃗+ ,
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p⃗− = p⃗ ′ − p⃗ , p2− = p⃗− · p⃗− ,

n⃗ = p⃗× p⃗ ′ = p⃗+ × p⃗− , (50)

โดยที่ p⃗ (p⃗ ′ ) คือโมเมนตัมสามมิติที่พุŠง เขšา (พุŠงออก) ในกรอบศูนยŤกลางมวล และเงื่อนไขตั้งฉากของ
โมเมนตัมทั้งสองสามารถนิยามไดšดังนี้

p⃗+ · p⃗− = 0 . (51)

ดšวยวิธีการเดียวกันเราสามารถหาศักยŤแบริออนของคŠาคงที่คูŠควบ C
(2)
i และ C

(3)
i ไดšดังนี้

V (2) = ⟨χ̄2, d ; χ̄1, c |H(2) | a, χ1 ; b, χ2⟩

=

{
1

3
δcaδbd +

1

2

(
dcae + if cae

)(
dedb + if edb

)} (52)

×
{
c
(2)
S ÕS + c

(2)
T ÕT +

(
c
(2)
1 p2− + c

(2)
2 p2+

)
δχ̄1χ1δχ̄2χ2 +

(
c
(2)
3 p2− + c

(2)
4 p2+

)
σ⃗1 · σ⃗2

+ c
(2)
5

i

2
(σ⃗1 + σ⃗2) · (p⃗+ × p⃗−) + c

(2)
6 (p⃗− · σ⃗1)(p⃗− · σ⃗2) + c

(2)
7 (p⃗+ · σ⃗1)(p⃗+ · σ⃗2)

}
,

และ

V (3) = ⟨χ̄2, d ; χ̄1, c |H(3) | a, χ1 ; b, χ2⟩
= δcaδbd (53)
×

{
c
(3)
S ÕS + c

(3)
T ÕT +

(
c
(3)
1 p2− + c

(3)
2 p2+

)
δχ̄1χ1δχ̄2χ2 +

(
c
(3)
3 p2− + c

(3)
4 p2+

)
σ⃗1 · σ⃗2

+ c
(3)
5

i

2
(σ⃗1 + σ⃗2) · (p⃗+ × p⃗−) + c

(3)
6 (p⃗− · σ⃗1)(p⃗− · σ⃗2) + c

(3)
7 (p⃗+ · σ⃗1)(p⃗+ · σ⃗2)

}
,

โดยที่คŠาคงที่คูŠควบ c
(2,3)
i ในสมการ (52) และ (53) คือผลรวมเชิงเสšนของคŠาคงที่ C(2,3)

i เชŠนเดียวกันกับ
กรณีของ c(1)i

ขั้นตŠอไปเราจะทำการสรšางศักยŤแบริออนออคเตทดšวยตัวดำเนินการในวิธีการกระจายสŠวนกลับของ
เลขควอนตัมสี (1/Nc) แฮมิลโทเนียนของศักยŤแบริออนจากสมการ 13 ดšวยตัวดำเนินการในสมการ 14 ที่
อันดับแรกเริ่มของการกระจาย 1/Nc ซึ่งสามารถเขียนใหšอยูŠในรูป

ĤLO = U LO
1 (p2−) 11 · 12 + U LO

2 (p2−)T1 · T2 + U LO
3 (p2−)G1 ·G2 + U LO

4 (p2−) (p
i
−p

j
−)(2) · (G

i,a
1 Gj,a

2 )(2) ,(54)

โดยที่ T1 · T2 = T a
1 T

a
2 และ G1 ·G2 = Gi,a

1 Gi,a
2 สŠวน U LO

i (p2−) คือฟŦงกŤชั่นใดๆที่ขึ้นอยูŠกับตัวแปร the
p2− และมีมาตรเปŨน N0

c

ณ อันดับถัดจากถัดจากแรกเริ่ม (Next-to-Next-to-leading order, NNLO) การกระจาย 1/Nc แฮ
มิลโตเนียนจะไดšวŠา

ĤNNLO = UNNLO
1 (p2−) p

2
+11 · 12 + UNNLO

2 (p2−) J⃗1 · J⃗2 + UNNLO
3 (p2−) J⃗1 · J⃗2 T1 · T2

+ UNNLO
4 (p2−) p

2
+T1 · T2 + UNNLO

5 (p2−) p
2
+G1 ·G2

+ UNNLO
6 (p2−) i (p⃗+ × p⃗−) · (J⃗1 + J⃗2) + UNNLO

7 (p2−) i (p⃗+ × p⃗−) · (T a
1 G⃗

a
2 + G⃗a

1T
a
2 )

+ UNNLO
8 (p2−) i (p⃗+ × p⃗−) · (J⃗1 + J⃗2)T1 · T2 + UNNLO

9 (p2−) (p
i
−p

j
−)(2) · (J i

1J
j
2)(2)

+ UNNLO
10 (p2−) (p

i
−p

j
−)(2) · (J i

1J
j
2)(2) T1 · T2 + UNNLO

11 (p2−) (p
i
+p

j
+)(2) · (G

i,a
1 Gj,a

2 )(2)(55)
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เราจะพบวŠาไมŠมีแฮมิลโตเนียนของออคเตทแบริออนที่อยูŠในอันดับถัดจากแรกเริ่ม (Next-to-leading or-
der, NLO) ในการกระจาย 1/Nc นี้ การดำเนินการของตัวดำเนินการบนสถานะแบริออนสามารถหาไดš
ดังนี้ [13]

1 |a, χ) = 3 |a, χ̄) ,

Ji |a, χ) =
1

2
σ
(i)
χ̄χ |a, χ̄) ,

T a |b, χ) = i f bca |c, χ) ,

Ga
i |b, χ) = σ

(i)
χ̄χ

(1
2
dbca +

i

3
f bca

)
|c, χ̄) , (56)

และศักยŤแบริออนสามารถหาไดšโดย
V =

(
χ̄2, d ; χ̄1, c | Ĥ | a, χ1 ; b, χ2

)
, (57)

กŠอนทำการวิเคราะหŤศักยŤแบริออนดšวยตัวดำเนินการการกระจาย 1/Nc เราจะทำการกำหนดรูปแบบของ
ฟŦงกŤชั่นใดๆ ULO

i and UNNLO
i ใหšอยูŠในรูป

ULO
i (p2−) = gi , UNNLO

i (p2−) = hi . (58)

จากการใชšสมการที่ 56 ในสมการที่ 54 และ 55 ศํกยŤแบริออนการกระจาย 1/Nc ที่อันดับ LO คือ
VLO = 9 g1 δχ̄1χ1δχ̄2χ2 δ

cdδbd + g2 i
2 face f bde δχ̄1χ1δχ̄2χ2

+ g3 σ⃗1 · σ⃗2

(
1
2
dace + i

3
face

)(
1
2
dbde + i

3
f bde

)
+ g4 (p

i
−p

j
−)(2) · (σi

1σ
j
2)(2)

(
1
2
dace + i

3
face

)(
1
2
dbde + i

3
f bde

)
, (59)

และที่อันดับ NNLO จะอยูŠในรูป

VNNLO = 9h1 p
2
+δχ̄1χ1δχ̄2χ2 δ

cdδbd +
1

4
h2 σ⃗1 · σ⃗2 δ

cdδbd +
1

4
h3 σ⃗1 · σ⃗2 i

2 face f bde

+ h4 p
2
+ i2 face f bde δχ̄1χ1δχ̄2χ2 + h5 p

2
+ σ⃗1 · σ⃗2

(
1
2
dace + i

3
face

)(
1
2
dbde + i

3
f bde

)
+

3

2
i h6 (p⃗+ × p⃗−) · (σ⃗1 + σ⃗2) δ

cdδbd

+ i h7 (p⃗+ × p⃗−) ·
[
σ⃗1

(
1
2
dace + i

3
face

)
i f bde + σ⃗2 i f

ace
(
1
2
dbde + i

3
f bde

)]
+

3

2
i h8 (p⃗+ × p⃗−) · (σ⃗1 + σ⃗2) i

2 face f bde +
1

4
h9 (p

i
−p

j
−)(2) · (σi

1σ
j
2)(2) δ

cdδbd

+
1

4
h10 (p

i
−p

j
−)(2) · (σi

1σ
j
2)(2) i

2 face f bde

+ h11 (p
i
+p

j
+)(2) · (σi

1σ
j
2)(2)

(
1
2
dace + i

3
face

)(
1
2
dbde + i

3
f bde

) (60)

เมื่อเราทำการเปรียบเทียบโครงสรšางสปŗนและเฟลเวอรŤของศักยŤที่ไดšจากไครัลลากรางเจียนกับตัวดำเนิน
การ 1/Nc ในสมการที่ 47, 52, 53 และ 59,60 ตามลำดับ เราจะสามารถหาความสัมพันธŤของคŠาคงที่คูŠ
ควบ ณ อันดับการแกšไขที่ O(

1/N2
c

) ไดšดังนี้

C
(1)
1 = C

(2)
1 = −3C

(3)
1 − 2C

(2)
4 − 6C

(3)
4 , C

(1)
2 = C

(2)
2 = −3C

(3)
2 − 2C

(2)
4 − 6C

(3)
4 ,

C
(1)
3 = C

(2)
3 = −3C

(3)
3 + C

(2)
4 + 3C

(3)
4 , C

(1)
4 = C

(2)
4 , C

(1)
5 = C

(2)
5 = −3C

(3)
5 (61)



20

CΛΛ
1S0 CΣΣ

1S0 CΛΛ
3S1 CΣΣ

3S1 CΛΣ
3S1

EG −0.04795(151) −0.07546(81) −0.01727(124) 0.36367(30310) 0.01271(471)
HB −0.03894(1) −0.07657(1) −0.01629(13) 0.20029(14050) −0.00176(304)

Table 4: คŠาที่หาไดšจากการเปรียบเทียบกับผลการทดลองจากการกระเจิงไฮเปอรอนกับนิวคลีออนที่
s-wave (ในหนŠวยของ 104 GeV−2) ที่คัทออฟ Λ = 600 MeV ของทั้งวิธี EG และ HB [22]

ลำดับตŠอไปเราจะนำผลจากการวิเคราะหŤศักยŤแบริออนดšวยการกระจาย 1/Nc ในการกระเจิงของ
ไฮเปอรอนและนิวคลีออนที่อันดับแรกเริ่มในการกระจายแบบไครัลซึ่งจำนวนของพารามิเตอรŤอิสระในแบบ
จำลองนี้มีอยูŠ 6 ตัวดังตŠอไปนี้ [20]

C
(1)
S , C

(2)
S , C

(3)
S , C

(1)
T , C

(2)
T , C

(3)
T (62)

และ C
(1,2,3)
S และ C

(1,2,3)
T สามารถเขียนใหšอยูŠในรูปของผลรวมเชิงเสšนจากไครัลลากรางเจียนในสมการที่

44 ไดšวŠา

C
(1,2,3)
S = C

(1,2,3)
1 + C

(1,2,3)
2 , C

(1,2,3)
T = C

(1,2,3)
3 − C

(1,2,3)
4 (63)

เมื่อใชšความสัมพันธŤของคŠาคงที่คูŠควบในสมการที่ 61 เราจะไดšวŠา

C
(1)
S = C

(2)
S , C

(1)
T = C

(2)
T = −3C

(3)
T (64)

ผลการคำนวณการกระจายคลื่นยŠอย ณ s-wave ศักยŤของการกระเจิงไฮเปอรอนกับนิวคลีออนสามารถ
เขียนไดšวŠา [20, 22]

V ΛΛ
1S0 = 4π

[
1

6

(
C

(1)
S − 3C

(1)
T

)
+

5

3

(
C

(2)
S − 3C

(2)
T

)
+ 2

(
C

(3)
S − 3C

(3)
T

)]
,

V ΛΛ
3S1 = 4π

[
3

2

(
C

(1)
S + C

(1)
T

)
+
(
C

(2)
S + C

(2)
T

)
+ 2

(
C

(3)
S + C

(3)
T

)]
,

V ΣΣ
1S0 = 4π

[
2
(
C

(2)
S − 3C

(2)
T

)
+ 2

(
C

(3)
S − 3C

(3)
T

)]
,

V ΣΣ
3S1 = 4π

[
−2

(
C

(2)
S + C

(2)
T

)
+ 2

(
C

(3)
S + C

(3)
T

)]
,

V ΛΣ
3S1 = 4π

[
−3

2

(
C

(1)
S + C

(1)
T

)
+
(
C

(2)
S + C

(2)
T

)]
(65)

เนื่องจากศักยŤที่ไดšดังกลŠาวเปŨนคŠาคŠงที่เพื่อความสะดวกเราจะกำหนดใหš

CΛΛ
1S0 ≡ V ΛΛ

1S0 , CΛΛ
3S1 ≡ V ΛΛ

3S1 , CΣΣ
1S0 ≡ V ΣΣ

1S0 , CΣΣ
3S1 ≡ V ΣΣ

3S1 , CΛΣ
3S1 ≡ V ΛΣ

3S1 , (66)

เมื่อนำความสัมพันธŤจากสมการที่ 64 แทนคŠาในสมการ 66 เราจะไดšความสัมพันธŤสุดทšายของคŠาพารามิเตอรŤ
อิสระในการศึกษาการกระเจิงของไฮเปอรอนกับนิวคลีออนไดšวŠา

CΣΣ
1S0 =

8

7
CΛΛ

1S0 −
1

7
CΛΛ

3S1 −
11

21
CΛΣ

3S1 , CΣΣ
3S1 = CΛΛ

3S1 + 9CΛΣ
3S1 . (67)

เราจะเห็นไดšวŠา ในแบบจำลองการกระเจิงของไฮเปอรอนกับนิวคลีออนจากทฤษฎีสนามยังผลไครัลมี
พารามิเตอรŤอิสระอยูŠ 5 ตัว [20] เมื่อใหšการวิเคราะหŤการกระจาย 1/Nc จะทำใหšเราสามารถลดรูปความ
อิสระของพารามิเตอรŤในแบบจำลองนี้ไดšเหลือเพียง 3 ตัวเทŠานั้น
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เพื่อเปŨนการทดสอบความถูกตšองของการกระจาย 1/Nc เราจะทดสอบผลจากสมการ 67 กับผลการ
หาคŠาคงที่คูŠควบเชิงตัวเลขกับผลการทดลองจาก [22] โดยที่งานวิจัยดังกลŠาวไดšทำการหาคŠาเชิงตัวเลขจาก
แบบจำลองใน [20] ซึ่งมีวิธีในการหาคŠาสองแบบคือ วิธีการโควาเรียนทŤเชิงสัมพัทธภาพ (EG) และวิธีการ
แบริออนหนัก (HB) ซึ่งผลที่ไดšถูกแสดงไวšในตารางที่ 4
และผลลัพทŤที่ไดšจากการแทนคŠาตัวเลขจากตารางที่ 4 ในแตŠละวิธีการจะไดšวŠา

CΣΣ
1S0,EG = −0.06327 , CΣΣ

3S1,EG = 0.1271 ,

CΣΣ
1S0,HB = −0.04333 , CΣΣ

3S1,HB = −0.0176 (68)

เราจะเห็นไดšวŠาผลจากการวิเคราะหŤดšวยการกระจาย 1/Nc จะเห็นไดšวŠาคŠา CΣΣ
1S0 และ CΣΣ

3S1 จะมีความ
ใกลšเคียงกับวิธี EG มากกวŠาวิธี HB
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สรุปและวิจารณŤผลการทดลอง

บทสรุปและวิจารณŤผลการดำเนินโครงการวิจัยนี้สามารถแบŠงไดšเปŨนสองหัวขšอหลัก ดังนี้
1. การศึกษาการสั่นพšองของ N∗(1875) จากภาวะเอกฐานสามเหลี่ยมดšวยวิธีการยูนิทารีปฏิกิริยาคูŠควบ

การเกิดการสั่นพšองของอนุภาค N∗(1875) ที่มีเลขควอนตัมที่เกี่ยวขšองเปŨน JP = 3/2−, I = 1/2

และ S = 0 ดšวยวิธีการยูนิทารีปฏิกิริยาคูŠควบโดยพิจารณาแผนภาพไฟยนŤแมนแบบสามเหลี่ยมพบวŠา การ
สั่นพšองของอนุภาคดังกลŠาวเกิดจากภาวะเอกฐานสามเหลี่ยมในชŠองปฏิกิริยาของคูŠอนุภาค Σ∗K เปŨนหลัก
และชŠองปฏิกิริยาดังกลŠาวยังมีอันตรกิริยาคูŠควบกับ∆π, N∗(1535)π และ N σ สำหรับชŠองปฏิกิริยาหลัก
คือ Σ∗K ที่ทำใหšเกิดการสั่นพšองของ N∗(1875) ซึ่งมีกลไกการเกิดขึ้นดังนี้คือเมื่ออนุภาค Σ∗ สลายตัวไป
เปŨน Λ π และ อนุภาค Λ วิ่งเขšาไปรวมตัวกับอนุภาค K จนเกิดเปŨนอนุภาค N∗(1535) โดยโมเมนตัมสี่มิติ
ของอนุภาค Σ∗ Λ และ K มีคŠาเทŠากับมวลนิ่งของตัวพวกมันเอง ดังแสดงไวšในรูปที่ 1 อยŠางไรก็ตามคŠา
คงที่ความกวšางของการสลายตัวในชŠองการสลายตัวยŠอยของปฏิกิริยาคูŠควบไมŠพอกับผลจากการทดลองเมื่อ
พิจารณาชŠองหลัก Σ∗K เพียงอยŠางเดียวแตŠชŠองปฏิกิริยาหลักที่ผลตŠอความกวšางของการสลายตัวคือชŠอง
ปฏิกิริยา N σ ซึ่งสามารถทำการตรวจสอบไดšโดยพิจารณาการสลายตัวของ N∗(1875) ไปเปŨน p π+ π−

เมื่อเราสังเกตไปที่การกระจายตัวเชิงมวลของ π+ π− แลšวจะเห็นไดšวŠาเกิดจุดสูงสุดที่ตำแหนŠงของมวล
อนุภาค σ พอดีนั่นก็แสดงวŠาอันตรกิริยาคูŠควบของ N σ มีสŠวนตŠอการทำใหšเกิดการสั่นพšองของ N∗(1875)
นั่นเอง
2. วิธีการกระจายสŠวนกลับเลขควอนตัมสีในทฤษฎีคิวซีดีมีความสำคัญอยŠางยิ่งในการศึกษาการกระเจิงขอ
งออคเตท-ออคเตทแบริออน

ถึงแมšวŠาทฤษฎีสนามยังผลไครัลจะประสบความสำเร็จในการศึกษาการกระเจิงนิวคลีออนกับนิวคลี
ออนเปŨนอยŠางมาก แตŠเมื่อนำมาใชšศึกษากับการกระเจิงไฮเปอรอนกับนิวคลีออนกลับพบวŠามีขšอดšอยคือ
จำนวนพารามิเตอรŤอิสระจากไครัลลากรางเจียนมีเยอะเกินไปเนื่องจากขšอมูลการทดลองที่อยูŠไมŠมากและ
มีอยŠางจำนวนจำกัดดšวยเหตุนี้การวิเคราะหŤดšวยการกระจาย 1/Nc จะชŠวยใหšเกิดการลดรูปของจำนวน
พารามิเตอรŤอิสระ ซึ่งในการศึกษานี้เราสามารถลดจำนวนพารามิเตอรŤอิสระของไครัลลากรางเจียนลงจาก
15 เหลือ 9 ณ อันดับการแกšไขที่ O(

1/N2
c

) และเมื่อนำไปประยุกตŤกับการกระเจิงไฮเปอรอนกับนิวคลี
ออนที่อันดับการกระจายไครัลที่อันดับแรกเริ่ม เราสามารถลดจำนวนพารามิเตอรŤอิสระในการกระจายคลื่น
ยŠอยที่ s-wave ไดšเหลือ 3 ตัวจาก 5 นอกจากนั้นเรายังไดšทำการทดสอบคŠาเชิงตัวเลขการลดรูปของจำนวน
พารามิเตอรŤดšวยการกระจาย 1/Nc ยังบŠงชี้วŠา วิธีการคำนวณการกระเจิงไฮเปอรอนกับนิวคลีออนดšวยวิธี
การโควาเรียนทŤเชิงสัมพัทธภาพมีความเขšากันไดšกับการกระจาย 1/Nc มากกวŠาวิธีการแบริออนหนักอีก
ดšวย

ขšอเสนอแนะสำหรับงานวิจัยในอนาคต
1. ในอนาคตอันใกลšนี้หัวหนšาโครงการวิจัยจะทำการคำนวณคŠาภาคตัวขวางสำหรับการกระเจิงดšวยโฟตอน
กับอนุภาค N∗(1875) เพื่อศึกษาถึงกลไกภาวะเอกฐานสามเหลี่ยมที่จะสามารถทำใหšเกิดสถานะกระตุšน
ของอนุภาค N∗ ที่มีมวลและเลขควอนตัมสปŗนที่สูงขึ้นไดšหรือไมŠ
2. หัวหนšาโครงการวิจัยมีแผนที่จะใชšวิธีการกระจาย 1/Nc เพื่อขยายขอบเขตการศึกษาอันตรกิริยาระหวŠา
งออคเตท(สปŗน-1/2)กับดีคับเลท(สปŗน-3/2)แบริออนและดีคับเลทกับดีคับเลทแบริออนเพื่อสรšางกรอบการ
อธิบายแบริออมที่มีเลขควอนตัมสปŗนที่สูงขึ้นใหšไดšโดยใชšกรอบทฤษฎีเดียวดšวยวิธีการกระจาย 1/Nc
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We studied the N∗(1875)(3/2−) resonance with a multichannel unitary scheme, considering the �π and �∗K ,
with their interaction extracted from chiral Lagrangians, and then added two more channels, the N∗(1535)π and
Nσ , which proceed via triangle diagrams involving the �∗K and �π respectively in the intermediate states.
The triangle diagram in the N∗(1535)π case develops a singularity at the same energy as the resonance mass.
We determined the couplings of the resonance to the different channels and the partial decay widths. We found
a very large decay width to �∗K , and also observed that, due to interference with other terms, the Nσ channel
has an important role in the ππ mass distributions at low invariant masses, leading to an apparently large Nσ

decay width. We discuss justifying the convenience of an experimental reanalysis of this resonance, in light of
the findings of the paper, using multichannel unitary schemes.

DOI: 10.1103/PhysRevC.96.035202

I. INTRODUCTION

The N∗(1875)(3/2−) is relatively new in the Review of
Particle Physics by the Particle Data Group (PDG) [1]. Quoting
from the latest PDG edition, “Before the 2012 Review, all
evidence for a JP = 3/2− state with a mass above 1800 MeV
was filed under a two-star N (2080). There is now evidence
from Ref. [2] for two 3/2− states in this region, so we have
split the older data (according to mass) between a three-star
N (1875) and a two-star N (2120).” The mass according to the
PDG is 1820–1920 MeV (1875 MeV PDG estimate) and the
width 250 ± 70 MeV. Quoting directly from Ref. [2], the mass
is 1880 ± 20 MeV and the width 200 ± 70 MeV. A more recent
experiment [3] agrees with these values, with 1875 ± 20 MeV
for the mass and 200 ± 25 MeV for the width. The most
important decay modes are Nω (15–25%), �(1232)π (10–
35%), mostly in the s wave, and Nσ [Nf0(500)] (30–60%).

It is interesting to recall that, prior to its acceptance as a
new resonance, a peak in the amplitudes was observed around
1875 MeV from the study of the pseudoscalar meson-baryon
decuplet interaction in Ref. [4]. For the case of strangeness
S = 0 and isospin I = 1

2 , the coupled channels �π and
�∗K were used, and the interaction was obtained from the
meson-baryon Lagrangians of Ref. [5]. The peak appears
at the �∗K threshold and it was identified as a threshold
effect, not a genuine resonance. One should note that the
identification of threshold effects with resonances is quite
common, and one has a good example with the a0(980) which
is catalogued as a resonance, but it shows both theoretically
[6] and experimentally [7] as a cusp effect with no clear pole
associated with it.

*daris.sa@rmuti.ac.th
†liangwh@gxnu.edu.cn
‡oset@ific.uv.es

In the present paper we take the work of Ref. [4] and include
triangle mechanisms associated with the main building chan-
nels �π and �∗K , which lead to new channels N∗(1535)π
and Nf0(500). The first channel has not been measured yet,
but the second channel has, together with �π the main decay
channel of the resonance. An effective transition potential is
constructed from the �π,�∗K channels to the N∗(1535)π
and Nf0(500), and a four-channel problem is then solved with
a unitary coupled channel scheme, leading to a resonant peak
around 1875 MeV in the amplitudes, from which we extract the
coupling of the N∗(1875) resonance to the different channels
and the partial decay widths to these channels.

Triangle diagrams have long been part of hadron physics,
but of particular interest are those that lead to singularities in
the amplitudes, known as triangle singularities. The concept
and detailed study was introduced by Landau [8], but now,
after much information on the hadron spectrum and reactions
has been accumulated, many examples of triangle singularities
have appeared [9]. A triangle diagram stems from a particle A
decaying into 1 + 2, particle 2 decaying to B + 3, and particles
1 + 3 merging into another particle C. In some cases, when the
process can occur at the classical level, a singularity appears in
the corresponding Feynman diagram, per the Coleman-Norton
theorem [10], and the field-theoretical amplitude becomes
infinity if the intermediate particles are stable. In practice,
some of these particles have a finite width and the infinity
becomes a peak, with important experimental consequences.

An alternative formulation to the standard method to deal
with the triangle singularities is done in Ref. [11], with a
different method to perform the integrals and an easy and
intuitive rule to determine where the singularities appear.

Recent examples of processes where the triangle singu-
larities are relevant can be seen in η(1405) → π a0(980) and
η(1405) → π f0(980) [12–14]. The latter process is isospin
forbidden and its results are largely enhanced due to a
triangle singularity involving η(1405) → K∗K̄ followed by

2469-9985/2017/96(3)/035202(14) 035202-1 ©2017 American Physical Society
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K∗ → K π and fusion of K K̄ to give the f0(980). A more
recent example can be seen work by in the COMPASS
Collaboration [15], associated with a new resonance, a1(1420),
which, as hinted in Ref. [9] and proved in Refs. [16,17],
comes from the πf0(980) decay of the a1(1260) via a triangle
singularity proceeding through a1 → K∗K̄ , K∗ → Kπ , and
KK̄ → f0(980). Related to this is the recent interpretation of
the f1(1420) resonance as a decay mode of the f1(1285) into
πa0(980) and K∗K̄ [18]. Another interesting example is the
role played by a triangle singularity in the γp → K+	(1405)
reaction [19]. The process γp → K∗�, K∗ → Kπ , �π →
	(1405) leads to a peak in the cross section around

√
s =

2120 MeV that solved a standing problem in that reaction.
Similarly, the f2(1810) is also explained as a consequence

of the f2(1650) → K∗K̄∗, K∗ → πK , and KK̄∗ merging
into the a1(1260) [20]. Other examples can be found in
Refs. [21–25]. Renewed interest in the triangular singularities
came from the suggestion that the narrow peak of the J/ψ p
invariant mass at 4450 MeV seen by the LHCb Collaboration
[26,27], and interpreted there as a pentaquark state, could
be due to a triangle singularity with 	b → 	(1890)χc1,
	(1890) → K̄p, pχc1 → J/ψp [28,29]. However, as shown
in Ref. [11], for the preferred experimental quantum numbers
of this peak, 3/2−, 5/2+, the χc1p → J/ψp proceeds with
χc1p in the p wave or d wave and the χc1p threshold is exactly
4450 MeV, hence this amplitude vanishes there on shell and
the suggested process cannot be responsible for the observed
peak.

In the present work we will show that the process
N∗(1875) → �∗K , �∗ → π	, 	K → N∗(1535) develops
a triangle singularity precisely at the same mass of resonance
and reinforces it. The other interesting finding of this work
is that there can also be triangle mechanisms, which, without
developing a singularity, can be very important. This is actually
the case with N∗(1875) → �π , � → πN , ππ → f0(500).
We shall see that, because of the large strengths of all the
couplings involved, this process becomes even more important
than the N∗(1875) → πN∗(1535) and leads to a sizable partial
decay width of N∗(1875) → Nσ (f0(500)).

II. FORMALISM

A. Brief review of the pseudoscalar meson-baryon decuplet
interaction

Following Ref. [4], the sector with S = 0, I = 1
2 is reached

with the channels �π,�∗K . In the s wave the interaction leads
to JP = 3/2− states. The interaction is given by

Vij = −Cij

1

4f 2
(k0 + k′0), (1)

where k0,k′0 are energies of the initial and final mesons
respectively and the coefficients Cij are given in Table I. The
scattering matrix is given via the Bethe-Salpeter equation in
matrix form by

T = [1 − V G]−1V, (2)

where G is the ordinary meson-baryon loop function.
The �π → �π amplitude develops a strong peak around

TABLE I. The Cij coefficients of Eq. (1).

�π �∗K

�π 5 2
�∗K 2 2

1500 MeV that was associated in Ref. [4] with the N∗(1520)
resonance. By contrast, this amplitude is very small around
1875 MeV, as a consequence of interference of terms, and it
is the �∗K → �∗K amplitude that shows up as a clear peak
around 1875 MeV. In the next subsection we shall include the
N∗(1535)π and Nf0(500) channels.

B. The N∗(1535)π channel

We shall look into the diagram of Fig. 1, where the state i
stands for �π and �∗K . Since we are looking into the states
with isospin I = 1

2 , we must consider in detail the different
charge combinations that enter the evaluation of Fig. 1. This
is shown in Figs. 2 and 3, where the state i is �π or �∗K ,
respectively.

We must project all of them into I = 1
2 and sum the

diagrams. This is done in Appendix A, and the full contribution
of the loop is given by

− it�π,πN∗ = V
(I=1/2)
�π,�∗K g�∗,π	 gN∗,K	(�S · �k) 2M	2M�∗

×
∫

d4q

(2π )4

i

(P − q)2 − M2
�∗ + iε

× i

(P − q − k)2 − M2
	 + iε

i

q2 − m2
K + iε

≡ V
(I=1/2)
�π,�∗K g�∗,π	 gN∗,K	(�S · �k) 2M	2M�∗ tT ,

(3)

where the last line defines the triangle integral tT . The factors
2M	, 2M�∗ are consequence of using the Mandl and Shaw
normalization for the Fermion fields [30]. This integral is
performed by doing analytically the q0 integration, and we
obtain [11,31]

tT =
∫

d3q

(2π )3

1

8ωKE�∗E	

1

k0−E	−E�∗

1

P 0+ωK+E	−k0

× 1

P 0 − ωK − E	 − k0 + iε

1

P 0 − E�∗ − ωK + iε

×{2P 0ωK + 2k0E	 − 2(ωK+E	)(ωK+E	+E�∗ )},
(4)

i (P )

Σ∗(P − q)

K(q)

Λ(P − q − k)

π(k)

N∗(1535)

FIG. 1. The triangle diagram for the i(�π,�∗K) → N∗(1535)π
transition. The momenta of the lines are in parentheses.
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Σ∗+

K0

Λ

π+

N∗0

Δ

π

|Δπ I= 1
2
,I3= 1

2 +

Σ∗0

K+

Λ

π0

N∗+

Δ

π

|Δπ I= 1
2
,I3= 1

2

FIG. 2. Different diagrams leading to �π → N∗π (I = 1
2 , I3 = 1

2 ).

where

ωK =
√

m2
K + �q2, E�∗ =

√
M2

�∗ + �q2 + i
�∗

2
,

E	 =
√

M2
	 + (�q + �k)2, k0 = s + m2

π − M2
N∗

2
√

s
,

|�k| = λ
1
2
(
s,m2

π ,M2
N∗

)
2
√

s
,

λ(x,y,z) = x2 + y2 + z2 − 2xy − 2yz − 2xz. (5)

We must note that originally the �S · �k operator appeared for
the �∗ → π	 transition (see Appendix A), but upon summing
the intermediate �∗ spin components it becomes now in Eq. (3)
the spin transition operator from � to N∗ because the s-wave
potentials V

(I=1/2)
�π,�∗K and V

(I=1/2)
,�∗K,�∗K are independent of the �

and �∗ spins.
Neglecting the width of the �∗ in Eq. (4), the integrand in

tT will have poles when

P 0 − k0 − ωK − E	 = 0 and P 0 − E�∗ − ωK = 0.

(6)

In principle, the integral will give rise to imaginary parts and
principal values, via the iε. However, the cancellations in the
principal values will not occur when we are at the extremes of
cos θ (k̂ · q̂) when cos θ = ±1. Then a singularity can appear in
the integral, triangle singularity (which, occurs for cos θ = −1
[11]), which, however, is rendered finite when the width of the
�∗ is explicitly considered [11]. The integral in tT is then
convergent, but we perform a cutoff in q in the rest mass of
the N∗, when the chiral unitary approach is taken, and we use
qcm

max ≡ 1000 MeV, suited to the results of Ref. [32].
Let us elaborate further on the singularities. The second of

Eqs. (6) has a solution (keeping the iε of the propagators and
neglecting the �∗ width) qon + iε (see Eq. (13) of Ref. [11];
the negative solution is irrelevant). The first of the Eqs. (6)
for cos θ = −1 has solution qa+ + iε, qa− − iε (see Eq. (15)
of Ref. [11]) and, for cos θ = +1, qb+ + iε, qb− − iε (qb− is
negative and irrelevant). With this pole structure it is clear
that we have an unavoidable singularity when qa+ = qa− or
qon = qa−, since in both cases in the q integration we must
pass between the two poles and we cannot deform the path

integral in the complex plane to avoid them. In the first case
we have a threshold singularity (qa+ = qa−) and in the second
case we have a triangle singularity (qon = qa−).

We should note that the singularity arises from placing all
intermediated particles of the loop on shell plus having cos θ =
−1, and these conditions lead to the Coleman-Norton theorem
[10] as discussed in Ref. [11]. In order to see if a triangle
diagram develops a triangle singularity, we then search for a
value of

√
s at which the following relationship is fulfilled:

qon+ − qa− = 0 . (7)

One must check Eq. (7) for a mass of the N∗(1535) bigger
than m	 + mK . At a mass about 1615 MeV, which is in the
range of the N∗(1535) mass considering the width (150 MeV),
Eq. (7) shows a solution at 1878 MeV. But a peak in the
amplitude develops for smaller N∗ masses within the range
of the N∗(1535) spectral function, which we shall take into
account in the evaluation of the diagram of Fig. 1.

We would like to include now the πN∗ in the coupled
channels, together with �π and �∗K . However, we can see
that while the interaction between �π and �∗K proceeds
via the s wave, the transition �π → πN∗ proceeds via the
p wave with the �S · �k operator. This is a consequence from
the transition of a �(3/2+) to N∗(1/2−) which requires
change of parity. Yet, it is possible to mix the channels via
an effective s-wave potential, as done in Refs. [33–36]. In
order to define this effective potential we look at the diagram
of Fig. 4, which makes transitions �π (�∗K) → �π (�∗K)
via an intermediate πN∗ state. We can write for the transition
amplitude

−itij = −iti,πN∗ iGπN∗ (−i)tπN∗,j . (8)

In the chiral unitary approach the transition potentials are
evaluated for the external lines on shell and we wish to do
the same with the new channel πN∗. For this purpose, we
take the imaginary part of GπN∗ in Eq. (8), which places
πN∗ on shell. Considering that in the πN∗ → �π (�∗K)
transition the pion momentum is ingoing instead of outgoing
as in �π (�∗K) → πN∗, we have

Im ti,j = −Vj,�∗K Vi,�∗K (g�∗,π	 gN∗,K	 2M	2M�∗ )2

× (−)(�S† · �k) (�S · �k) tT t∗T Im GπN∗ .

Σ∗+

K0

Λ

π+

N∗0

Σ∗

K

|Σ∗K I= 1
2 ,I3= 1

2 +

Σ∗0

K+

Λ

π0

N∗+

Σ∗

K

|Σ∗K I= 1
2 ,I3= 1

2

FIG. 3. Different diagrams leading to �∗K → N∗π (I = 1
2 , I3 = 1

2 ).
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Δ, Σ∗

π,K

Σ∗

K

Λ

π

N∗

Δ, Σ∗

π, K

ji Λ

FIG. 4. Transition diagram from �π (�∗K) → �π (�∗K) via
the intermediate N∗π .

Now we have1∑
m

〈M ′| �S† · �k|m〉〈m| �S · �k|M〉

= 1

3
�k2δMM ′ − 1

3
�q 2

√
4πC

(
3

2
2

3

2
; M ′,M−M ′

)

×Y2,M−M ′(q̂), (9)

which indicates that we can have transitions in the s and d
waves. But we are only interested in the s wave and hence we
keep the 1

3
�k2δMM ′ factor in Eq. (9). Thus, effectively we can

take

Im t̃i,j = Vj,�∗K Vi,�∗K (g�∗,π	 gN∗,K	 2M	2M�∗ )2

× tT t∗T
1
3
�k2 Im GπN∗ (10)

with

Im GπN∗ = − 1

4π

MN∗√
s

|�k|, |�k| = λ
1
2
(
s,m2

π ,M2
N∗

)
2
√

s
. (11)

However, since the triangle singularity is sensitive to the
external masses and the N∗ has a width of 150 MeV, we make
a convolution of Eq. (10) with the spectral function of the N∗,
such that

Im t̃i,j = Vj,�∗K Vi,�∗K (g�∗,π	 gN∗,K	 2M	2M�∗ )2

× 1

NN∗

∫
dm̃

1

3
k̃2SN∗ (m̃) Im GπN∗ (s,m̃)|tT (s,m̃)|2,

(12)

where Im GπN∗ (s,m̃), k̃, and tT are obtained substituting
MN∗ → m̃ in Eqs. (11) and (4). The spectral function of the
N∗ is given by

SN∗ (m̃) = − 1

π
Im

1

m̃ − MN∗ + i 
N∗
2

, (13)

and the factor NN∗ in Eq. (12) is normalized:

NN∗ =
∫

SN∗ (m̃)dm̃. (14)

The limits of m̃ in Eqs. (12) and (14) are taken from MN∗ −
α
N∗ to MN∗ + α
N∗ with α around 1 or 2. The m̃ dependence
in Eq. (12) does not affect Vj,�∗KVi,�∗K , hence we can define

Im t̃ = 1

N

∫
dm̃

1

3
k̃2SN∗ (m̃) Im GπN∗ (s,m̃)|tT (s,m̃)|2 (15)

1Note the order of �S† and �S and the sum over m, the spin of the 1/2
baryon.

and a function Ṽ such that

Im t̃ = Ṽ Im GπN∗ Ṽ . (16)

Then we can construct an effective s-wave transition potential

Ṽi,πN∗ = V
(I=1/2)
i,�∗K g�∗,π	 gN∗,K	 2M	2M�∗ Ṽ (17)

such that

Ṽi,πN∗ Im GπN∗ (MN∗ ) Ṽj,πN∗ = Im t̃ij . (18)

This means that, using Ṽi,πN∗ in coupled channels with
the extra πN∗ channel we can effectively incorporate the
mechanism of Fig. 4, and when the resonance shows up
in the amplitudes we can evaluate the coupling of the
resonance to the πN∗ channel and then the partial decay
width into this channel. We will have now a new V matrix,
containing the �π (�∗K) → �π (�∗K) of Eq. (1) plus the
�π (�∗K) → πN∗ transition of Eq. (17). We do not include
a direct πN∗ → πN∗ transition, assuming such transition
would occur via the �π (�∗K) intermediate states involving
the �π (�∗K) → πN∗ transition which contains the triangle
diagram.

In order to take into account the � and �∗ widths in the
G functions of Eq. (2) we also do a convolution, as done in
Ref. [4], with the spectral function of the baryons SB(M̃):

G → G̃ = 1

N

∫
dM̃ G(M̃)SB(M̃). (19)

C. The N f0(500)(σ ) channel

We can now consider a triangle diagram which involves
�π instead of �∗K in the intermediate states. This is depicted
in Fig. 5. The states �π,�∗K can now make transition to
the �π , the � decays into πN , and then the two pions fuse
to give the f0(500)(σ ). The first thing one must check is if
this diagram can develop a singularity at some energy

√
s.

Application of Eq. (7) immediately tells us that this is not
the case, and qon+ − qa− does not vanish for any energy of
the original system. However, we have now other elements to
make this mechanism particularly relevant. First, we can have
now �π → �π transitions that have a weight of a factor 5 (see
Table I) instead of 2, as we had before. Second, the � → πN
coupling is very large and so is the coupling of the ππ to the σ .
The evaluation of the �π (�∗K) → Nσ transition proceeds in
a way analogous to that in the previous subsection. First, in
analogy to Figs. 2 and 3 we have now Figs. 6 and 7. The details
are given in Appendix B. The new potentials Ṽi,πN∗ and Ṽi,Nσ

are incorporated into the full T matrix for scattering between
the �π , �∗K , N∗π , and Nσ channels using Eq. (2).

i

Δ

π

π

N

σ[f0(500)]

Δ, Σ∗

π, K

FIG. 5. Triangle diagram for the transition of i(�π,�∗K) to Nσ .
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Δ++

π−
π+

p

σ

Δ

π

|Δπ I=1
2 ,I3=

1
2

+
Δ+

π0

π0

p

σ

Δ

π

|Δπ I=1
2 ,I3=

1
2

+
Δ0

π−

p

σ

Δ

π

|Δπ I=1
2 ,I3=

1
2

π+

FIG. 6. Diagrams for the |�π, I = 1
2 , I3 = 1

2 〉 transition to pσ .

D. Couplings and partial decay widths

In order to obtain the couplings, we look at the amplitudes
Tij in Eq. (2), with i,j = �π,�∗K,N∗π,Nσ , and plot |Tij |2.
We define the mass and width of the resonance, the position of
the peak, and the width of the |Tij |2 distribution as a function
of

√
s close to the peak. In that region we have

Tij = gi gj√
s − MR + i 
R

2

. (20)

We take the �∗K channel as reference and then have

T22|peak = g2
2

i 
R

2

, g2
2 = i


R

2
T22

∣∣∣∣
peak

. (21)

This defines g2 up to an arbitrary sign, but then the rest of the
couplings are defined relative to this via

gi

g2
= Ti2

T22

∣∣∣∣
peak

. (22)

Once we have the coupling, the partial decay widths are
given by


i = 1

2π

MB

MR

|gi |2pi, (23)

where MB is the mass of the final baryon and MR the mass of
the resonance, and

pi = λ1/2
(
M2

R,M2
m,M2

B

)
2MR

(24)

with Mm the mass of the final meson in the channels
�π,�∗K,N∗π,Nσ .

The width of all channels is well defined except for the
�∗K , since the resonance is close to threshold and both
theoretically and experimentally the determination of �∗K
in width is uncertain. With this caveat, we shall check that
the sum of all partial decay widths is close to the total width
determined from the shape of |Tij |2.

III. RESULTS

In Fig. 8 we show results for tT for the loop function
of Figs. 2 and 3 neglecting the width of �∗. Actually the
evaluation is done by taking 
�∗/2 = 1 MeV. The evaluation
is done for different masses of the N∗(1535), 1515, 1565,

1615, 1665 MeV, in order to span the masses of the N∗(1535)
given by its spectral function with a N∗ width of 150 MeV.
It is interesting to see how we get a narrow peak in all cases
in the real part of tT . The modulus square |tT |2 is similar to
Re(tT ) and peaks at the same energy. It is worth noting the fact
that for MN∗ = 1615 MeV the peak becomes sharper. This is
because now this energy is very close to the 	K threshold
1608 MeV, such that, as discussed in Sec. II B, the triangle
singularity and the threshold singularity superpose, leading to
this sharp peak. The figure also shows how the peak of the
singularity changes with the mass of the N∗(1535). When the
�∗ width is considered, the sharp peaks become finite broader
peaks, as we show below. We can see that Re(tT ) peaks at
lower energies for the lower MN∗ masses, but in all the span
of 150 MeV for MN∗ the position of the peak varies only by
about 10 MeV.

In Fig. 9, we show the results for tT as a function of
√

s
for MN∗ 
 1535 MeV when the �∗ width is considered. We
can see that Re(tT ) has a peak structure with a peak around
1885 MeV. The imaginary part has a different behavior, and
does not show any peak. Actually, −itT would resemble a
Breit-Wigner amplitude with a constant magnitude added to
the real part, which does not go through zero. The peak
observed in Re(tT ) is tied to the triangle singularity that one
would have in the case where 
�∗ → 0.

In Fig. 10 we show Ṽi,πN∗/V
(I=1/2)
i,�∗K from Eq. (17). This

magnitude provides the relative strength of the effective
transition potential i → πN∗, with respect to i → �∗K .
We observe that the effective potential rises rapidly up to√

s = 1900 MeV and stabilizes there. The relative strength
with respect to V

(I=1/2)
i,�∗K is of the order of 0.22 at the peak, which

anticipates a moderate effect of this channel. However, the
added strength around 1880 MeV helps stabilize the molecule
that builds up around this energy from the interaction of the
�π and �∗K channels.

Next we show in Fig. 11 the results for t ′T of Sec. II C for
Fig. 5 (see Appendix B). The convolution of Eq. (B11) over the
σ mass is done between the masses 2mπ and 800 MeV, and in
Fig. 11 we plot t ′T in the middle of the range at m̃σ = 540 MeV.
We can see that now we do not have any peak, as anticipated,
since Eq. (7), which shows when there is a triangle singularity,
is not fulfilled in this case. Yet we see that Re(t ′T ) is of the same
order of magnitude as Re(tT ) at the peak. However, since the
effective transition potential contains different couplings now,

Δ++

π−
π+

p

σ

Σ∗

K

Σ∗K I=1
2 ,I3=

1
2

+
Δ+

π0

π0

p

σ

Σ∗

K

|| Σ∗K I=1
2 ,I3=

1
2

+
Δ0

π−

p

σ

Σ∗

K

|Σ∗K I=1
2 ,I3=

1
2

π+

FIG. 7. Diagrams for the |�∗K, I = 1
2 , I3 = 1

2 〉 transition to pσ .
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FIG. 8. Re(tT ), Im(tT ) for Figs. 2 and 3 as a function of
√

s for different values of MN∗ .

its strength becomes bigger than the one of the �∗K in the
loop, as we show below.
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12

14(×10−9 )
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R
e(

t T
), 

 Im
(t

T
)  Re(t

T
)

 Im(t
T
)  

FIG. 9. Real and imaginary parts of tT of the triangle diagram,
Eq. (4), with �∗K intermediate state.

In Fig. 12 we plot Ṽi,σN/V
(I=1/2)
i,�π . We can see that this

magnitude is relatively constant, and from 1800 to 2100 MeV
it changes from 0.73 to 0.69. However, we can see now that

1800 1850 1900 1950 2000 2050 2100
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

s (MeV)

FIG. 10. Ṽi,πN∗/V
(I=1/2)
i,�∗K of Eq. (17).
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FIG. 11. Real and imaginary parts of t ′
T corresponding to the

triangle diagram of Fig. 5.

the strength is bigger than the one obtained from the �∗K
loop at its peak (∼0.22), in spite of the fact that we do not
have a singularity now. As mentioned before, the different
couplings in the mechanism are responsible for this relatively
large strength. We see that the strength of Ṽi,σN is of the
same order of magnitude as the V

(I=1/2)
i,�π transitions, and one

anticipates an important role for this channel.
Next we turn to the amplitudes obtained with the coupled

channels problem.
In Fig. 13 we show the modulus square of amplitude Tii

(with the order of the channels being �π,�∗K,N∗π,Nσ )
with just the �π and �∗K channels, both omitting the width
of the � and �∗, and taking it into account. The results are
similar to those obtained in Ref. [4], though in Ref. [4] complex
energies were used instead of the convolution in the evaluation
of the G function of Eq. (2). We can see a clear peak around
1880 MeV and that the consideration of the width of the � and
�∗ leads to a wider structure which has about 72 MeV, short

1800 1850 1900 1950 2000 2050 2100

0.69

0.70

0.71

0.72

0.73

(MeV)s

FIG. 12. Ṽi,σN/V
(I=1/2)
i,�π as a function of the energy corresponding

to Eq. (B9).

1400 1600 1800 2000
0.00

0.01

0.02

0.03

0.04

0.05

s

|T
|^

2

(MeV)

Δπ
Σ*K
Δπ (with width)
Σ*K(with width)

FIG. 13. |Tii |2 for the �π and �∗K channels alone as a function
of the energy. The wider curve corresponds to considering the width
of � and �∗.

of the experimental central value of about 200 MeV, which,
however, has large uncertainties. Note that the peak around
1880 MeV comes from the �π and �∗K channels alone and
it is not linked to the triangle singularity.

In Fig. 14 we show again the modulus square of am-
plitude T22 with two channels (�π,�∗K), three channels
(�π,�∗K,N∗π ), and four channels (�π,�∗K,N∗π,Nσ ). We
can see that the introduction of the N∗π channel widens the
peak a bit. The introduction of the Nσ channel has not much
effect on the width, but we shall see later that it has an important
repercussion in the ππ invariant mass distribution. From |T22|2
with four channels we can get the mass and width of the
N∗(1875) resonance: MR = 1881.7 MeV, 
R = 71.2 MeV.

Next we look at the transition amplitudes from where we
determine the couplings, via Eqs. (21) and (22). We show |T 2

12|
in Fig. 15, |T 2

32| in Fig. 16, and |T 2
42| in Fig. 17, all of them

evaluated with the four channels.
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FIG. 14. |T22|2 with two channels (�π,�∗K), three channels
(�π,�∗K,N∗π ), and four channels (�π,�∗K,N∗π,Nσ ).
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FIG. 15. |T12|2 as a function of the energy, for the �π → �∗K
transition.

The couplings that we get using Eqs. (21) and (22) are

gR,�∗K = 1.72 − 0.70i, gR,�π = 0.34 + 0.59i,

gR,N∗π = −0.29 + 0.17i, gR,Nσ = 0.22 − 0.01i. (25)

With these values and using 
i = 1
2π

Mi

MR
|gi |2pi , where Mi is

the baryon mass for the final channel i and pi its momentum,
we obtain the partial decay widths


�π = 25.2 MeV, 
�∗K = 13.1 MeV,


N∗π = 4.2 MeV, 
Nσ = 2.3 MeV. (26)

We can see that 
�π is quite large, but 
N∗π and 
Nσ are much
smaller.

The sum of 
i is 44.8 MeV, much smaller than the total
width 
R = 71.2 MeV. Yet, since the peak of the N∗(1875)
has a mass distribution and the �∗ has a width 
�∗ = 36 MeV
[1], we should do a double convolution for the partial decay

1800 1850 1900 1950 2000 2050 2100
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15

20

25

30

(×10−5)

|T
32
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FIG. 16. |T32|2 as a function of energy for the �∗K → N∗π
transition.
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42

|2

FIG. 17. |T42|2 as a function of energy for the �∗K → Nσ

transition.

width 
�∗K . This is done in Appendix C, and then we get


̃�∗K = 33.2 MeV. (27)

Then the sum of partial decay widths is 64.9 MeV, compatible
with the total width.

For 
N∗π the prediction is new and should be observed in the
πηN mode since N∗(1535) decays into ηN with a branching
fraction of 32–52%, and it would be a better channel than
the πN that could be mixed with the �π decay. Regarding
�∗K , which is also not measured, there are certainly problems
when one is close to threshold. However, a proper unitary
multichannel analysis, as done in Ref. [37–39], should show
the relevance of this channel. One similar case where this
has been done is in the N∗(1700)(3/2−) resonance, which in
Ref. [40] is shown to appear from the interaction of a vector
baryon, mostly from ρN , which is at threshold there. This
case has been revised in Ref. [41] to include the �π channel,
associated with another triangle singularity. The ρN channel
being around threshold is not an obstacle to obtain a (38 ± 6)%
branching ratio for ρN in the analysis of Ref. [37].

IV. MASS DISTRIBUTIONS

Now we wish to get the mass distributions for pairs
of particles. We choose to study the π+π−p final state.
We will have the contributions of Fig. 18. The first thing
to observe is that the π+π−p channel does not exhaust
all the width. Indeed, in the case of π� decay we have
three more cases: R+ → π+�0 → π+π0n, R+ → π0�+ →
π0π+n, and R+ → π0�+ → π0π0p, with R standing for the
resonance N∗(1875). Using the coefficients for the weights
of the different π� components in Eq. (A1) and those for
� → πN in Eq. (B3), we find that the π+π−p mechanisms
of Fig. 18 account for 5

9 of the π� width, while the channels not
considered account for 4

9 of the width. Similarly, for the πN∗

we are missing R+ → π+N∗0 → π+π0n, R+ → π0N∗+ →
π0π+n, and R+ → π0N∗+ → π0π0p. Taking into account
the coefficients of Eq. (A1), we find again that with the π+π−p
final state we take into account 4

9 of the πN∗ width and
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FIG. 18. Diagrams for the decay of the N∗(1875) resonance into π� [(a) and (b)], πN∗ (c), and σp (d).

the missing channels account for 5
9 of it. Regarding the spin

dependence of the diagrams of Fig. 18, the R+( 3
2

−
) coupling

to π� goes as a constant, and the � → πN as �S · �pπ . The
N∗ → πN also goes as a constant but the R → πN∗ goes
as �S · �pπ . On the other hand the R+( 3

2
−

) coupling to σp also
goes as �S · �pπ [see Eq. (B3)]. Then considering Eqs. (A1)
and (B3) and the isospin decomposition of the N∗0 → πN

decay, |N∗0, πN, I= 1
2 , I3 = − 1

2 〉 =
√

1
3 |π0n〉 −

√
2
3 |π−p〉,

we have

− itR+→π+�0→π+π−p = gR,π�

(
−

√
1

6

)√
1

3

× 1

M23 − M� + i 
�

2

�S · �p2
fπN�

mπ

,

−itR+→π−�++→π−π+p = gR,π�

√
1

2
(−1)�S · �p1

× 1

M13 − M� + i 
�

2

fπN�

mπ

,

−itR+→π+N∗0→π+π−p = g′
R,π�

(√
2

3

)(
−

√
2

3

)
�S · �p1

× 1

M23 − MN∗ + i 
N∗
2

gN∗,πN ,

−itR+→σp→π+π−p = g′
R,σN

(
−

√
2

3

)
�S · ( �p1 + �p2)(−1)

× 1

M2
12 − m2

σ + imσ
N∗
gσ,ππ ,

(28)

where M2
ij = (pi + pj )2; i,j = 1,2,3 for π+, π−, p. In

the last equation we have considered that |ππ, I= 0〉 =
− 1√

3
(π+π− + π−π+ + π0π0). The coupling of the σ to

π+π− has a (− 1√
3
) coefficient, and likewise for the π−π+,

but considering the integrated π+π− and π−π+ width one is

counting twice the contribution. All this is solved by taking

the coefficient ( −
√

2
3 ). The extra minus sign in the last of

Eqs. (28) is because pp = − �p1 − �p2.
We take gN∗,πN = 0.70 from Ref. [32]. In Eq. (28), we

have used the couplings g′
R,πN∗ and g′

R,σN instead of gR,πN∗

and gR,σN . This is because the factors �S · �k were already
taken into account when we evaluated the effective transition
potentials [see Eq. (9) and Eqs. (10) and (B11)], which already
incorporate the factor 1

3
�k 2 coming from this operator in the

sum over πN∗ and σp intermediate states. To take this into
account it is sufficient to write

g′
R,πN∗ =

√
3

p1
gR,πN∗ , g′

R,σp =
√

3

| �p1 + �p2|gR,σp. (29)

After this discussion, we can write the full amplitude for R+ →
π+π−p from the diagrams of Fig. 18 as

− ittot = (B + C + D)�S · �p1 + (A + D)�S · �p2

= A′ �S · �p1 + B ′ �S · �p2, (30)

where

A = − 1

3
√

2

gR,π� · fπN�

mπ

1

M23 − M� + i 
�

2

,

B = − 1√
2

gR,π� · fπN�

mπ

1

M13 − M� + i 
�

2

,

C = − 2√
3

gR,πN∗ · gN∗,πN

p1

1

M23 − MN∗ + i 
N∗
2

,

D =
√

2
gR,σN · gσ,ππ

| �p1 + �p2|
1

M2
12 − m2

σ + imσ
σ

,

A′ = B + C + D, B ′ = A + D. (31)

The differential mass distribution is give by [1]

d2


dM12dM23
= 1

(2π )3

4MpMR

32M3
R

∑ ∑
|ttot|24M12M23,

(32)
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where, using Eq. (9), we find
∑∑

|ttot|2

= 1

3

[|A′|2 �p 2
1 + |B ′|2 �p 2

2 + 2 Re(A′B ′∗) �p1 · �p2
]
, (33)

where �p1 · �p2 can be written in terms of M12 as

2 �p1 · �p2 = m2
1 + m2

2 + 2E1E2 − M2
12 (34)

and E1, E2 as

E1 = M2
R + m2

1 − M2
23

2MR

, E2 = M2
R + m2

2 − M2
13

2MR

. (35)

To obtain d

dM12

, we integrate Eq. (32) over M23, and the limits
are given by the PDG [1]. In ttot we need M12,M13,M23 as
variables. To evaluate Eq. (32), we need M13, which is given
in terms of the other variables as

M2
13 = M2

R + m2
1 + m2

2 + m2
3 − M2

12 − M2
23. (36)

If we wish to obtain d

dM23

, we integrate Eq. (32) over M12. The
limits for M23 can be obtained from those for M12 by permuting
the indices 123 → 321. Similarly we can obtain d2


dM12dM13
as

in Eq. (32), substituting the factor 2M23 by 2M13. Then we
get d


dM13
by integrating over M12, and hte limits for M12 are

obtained from the standard formula of the PDG, permuting the
indices 123 → 312.

V. RESULTS FOR THE MASS DISTRIBUTIONS

In the limit of the small widths for the �, N∗, and σ ,
the different terms in Eq. (28) do not interfere since they
correspond to different final states π�,πN∗, σN . However, if
we look at π+π−p production and consider the widths, there
can be interference. In particular there should be interference
between π−�++ and σp [B and D terms in Eqs. (31)]. Note
that the B term is three times larger in strength than term A).
The fact that these two terms have the same spin structure
(�S · �p1) helps for the interference.

In Fig. 19, we plot the d

dM12

, d

dM13

, and d

dM23

mass
distributions for the N∗+(1875) → π+π−p decay with 1,2,3
denoting π+, π−, and p. Let us first look at the mass
distributions considering only π� production (red dashed lines
in Fig. 19). We see that for M13(π+p) there is a large signal
of the �++(1232) coming from term B. The �(1232) is also
seen in the M23 mass distribution (π−p) coming from term
A. Removing a small background below the �0 peak in the
M23 distribution, we can see that the strength for �++ in
the M13 distribution is about nine times the one of the �0,
as it corresponds to the coefficients in the terms A and B,
squaring them. The rest of the strength in the M23 distribution
peaks around M23 = 1500 MeV, as a consequence of the phase
space and the weight of the term B being nonresonant in this
channel. The M12(π+π−) mass distribution does not show any
resonance and follows the phase space, weighted by the terms
A and B.

Next we consider the πN∗ term, including in addition the
C term in Eq. (30). The results are shown in Fig. 19 as the
blue dash-dotted lines. We do not see much change except

300 400 500 600 700 800 900
0.00

0.01

0.02

0.03

0.04

0.05

0.06
  A,B terms
  A,B,C terms
  A,B,C,D terms
  D term

,g−

dΓ
/ d

M
12

M12 (MeV)

1100 1200 1300 1400 1500 1600 1700
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
  A,B terms
  A,B,C terms
  A,B,C,D terms

,g−

dΓ
/d

M
13

M13 (MeV)

1100 1200 1300 1400 1500 1600 1700
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
  A,B terms
  A,B,C terms
  A,B,C,D terms

,g−

dΓ
/d

M
23

M23 (MeV)

FIG. 19. The d

dM12

, d

dM13

and d

dM23

mass distributions for the
N∗+(1875) → π+π−p decay with 1,2,3 denoting π+, π−, and p,
with the red dashed lines indicating the case considering only π�

production [i.e., A and B terms in Eq. (30)], the blue dash-dotted
lines the case considering π� and πN∗ production [i.e., A, B, and C

terms in Eq. (30)], the black solid lines the case considering π�, πN∗,
and σN production [i.e., all the A, B, C, and D terms in Eq. (30)],
and the green dotted lines the case of changing the sign of gσ,ππ in
Eq. (B7). The purple dash-dot-dotted line in the d


dM12
distribution

corresponds to the case considering only σN production [i.e., the D

term in Eq. (30)] fitted approximately to the M12 distribution at low
masses.
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for an enhancement of the peak in the M23 distribution (π−p)
corresponding to the N∗ excitation by the C term. However,
the change is not large. Yet, here we see a possible reason why
the the πN∗ channel has not been claimed experimentally.
Indeed, the π� mechanism alone already creates a peak in the
M23 distribution in the region of 1500 MeV, which cannot be
associated with πN∗ production. Any πN∗ production can
be easily attributed to the � production in the M13(π+p)
channel. This has also a consequence in terms of a message:
To determine the πN∗ production one should better look at
πηN production.

We show the results including all the production terms,
A + B + C + D, in Fig. 19 as the black solid lines. This
includes σp production in addition to the former channels.
The results are interesting. Apart from the basic features that
we have observed in the former cases, now the M12(π+π−)
mass distribution contains a large bump in the region of low
invariant ππ masses corresponding to the σ production. A
smooth extrapolation of the low energy M12 distribution with
a wide σ shape would tell us that about 1

2 of the width could
be attributed to σN production. To quantify this we have
used the D term of Eq. (31) alone, and roughly adjusted its
strength to the low mass region of the M12 distribution. This
is telling us that an analysis of the mass distributions, due
to interference of terms, would provide an apparently larger
strength for the σp channel than one would induce from the
coupling of the resonance to the different channels, as done in
Eqs. (26). Actually, since we are only considering 5

9 of the π�

production in these figures, taking into account the results of
Eq. (26), we would be extracting a width of around 7 MeV from
this analysis, which would turn into 3

2 × 7 ∼ 11 MeV if one
considers the σ → π0π0 decay also. This is bigger than the
2.3 MeV that we obtained in Eq. (26), and would correspond
to a branching fraction of about 15%.

There is another issue worth considering. In the determi-
nation of the couplings there is always a global sign which
is arbitrary. The result of the couplings in a coupled channel
problem have the relative phase well determined with respect
to this one. But the ππ channel is not coupled to πN or π�.
We would like to see what happens if we change the sign
of the gσ,ππ in Eq. (B7). The results are shown in Fig. 19
as the green dotted lines, and we see that the effects are
moderate. One should note that it is precisely in observables
that involve interference of the terms that the signs of couplings
relative to other signs of, in principle, unrelated couplings can
be determined.

VI. CONCLUSIONS

In this work we have complemented the developments of
Ref. [4] in which a 3/2− resonance appears around 1875 MeV
from the interaction of the �∗K and �π channels. In a first
step we introduced the N∗(1535)π channel, which is produced
via a triangle singularity in which �∗K is produced, then the
�∗ decays to 	π and finally the 	K merge to produce the
N∗(1535). The interesting observation is that the singularity
appears at the same energy as the resonance, and then it shows
at the same peak and helps stabilize the resonance in the sense

that even with a weaker �∗K interaction the singularity always
appears at the same energy. The other decay channel that
we introduced is the Nσ channel. We also used a triangle
diagram to take it into account, taking the �π intermediate
state, letting the � decay to Nπ and then merging the two
pions into a σ meson. Then we take the scheme of [4] adding
the two new channels to the original �∗K and �π ones, and
with the four coupled channels we study again the resonance,
the couplings to the different channels, and its decay into
these channels. We observe that the partial decay widths of
the resonance to N∗(1535)π and Nσ are not large but are
measurable. In particular, we observed that the Nσ channel
was much smaller than what is determined experimentally
from some experiments. Yet, since channel separation is done
from mass distributions, we showed that due to interference
with other terms the ππ mass distribution showed an important
enhancement at low invariant masses, from which one could
extract an appreciably larger fraction of Nσ than one gets from
the couplings yet smaller than the experimental claims.

An important part of the work was the study of the �∗K
decay channel. This channel is not easy to separate in an
analysis because the resonance has its mass at the threshold of
the channel. In fact no experiment has made claims about this
channel. However, we see that the channel is very important in
the building of the resonance, and that taking into account the
width of the resonance and the width of the �∗ we obtained a
branching fraction of about 45%. It is clear that if this channel
is omitted in the analysis, its strength can easily be attributed
to another channel. So, in view of the unavoidable large
strength of this channel, we suggest that modern multichannel
analyses implementing unitarity in coupled channels are used
to revise this resonance. There is a clear example in a related
case, where the multichannel analysis provides also a sizable
contribution of a threshold channel—the Nρ in the case of the
N∗(1700)(3/2−) [37]—where other analyses [2] neglect it.

The determination of the N∗(1535)π channel is also
relevant since it will evidence the role of a triangle singularity
peaking at the resonance position. Yet, the discussion of the
mass distributions in the π+π−p final state showed that the
mass distribution for N∗(1535)π+, N∗(1535) → π−p had the
same signature in the π−p mass distribution as that coming
from the �++π− excitation mechanisms, where the π−p is
not forming the �. This is why if one wishes to determine this
channel, the ideal final state should be πηN not ππN .

The thorough work conducted here on the building up of
the resonance, its decay channels, and the mass distributions in
the ππN channel, together with the discussion above, clearly
indicate that a reanalysis of this resonance to the light of the
present findings should be most welcome.
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APPENDIX A: EVALUATION OF THE AMPLITUDES OF
FIGS. 2 AND 3.

We follow the sign convention of Ref. [4], |π+〉 = −|1,1〉,
of isospin. Hence we have∣∣∣∣�π, I = 1

2
, I3 = 1

2

〉

=
√

1

2
|�++π−〉 −

√
1

3
|�+π0〉 −

√
1

6
|�0π+〉,

∣∣∣∣N∗(1535)π, I = 1

2
, I3 = 1

2

〉

=
√

2

3
|N∗ 0π+〉 +

√
1

3
|N∗+π0〉,

∣∣∣∣�∗K, I = 1

2
, I3 = 1

2

〉
=

√
2

3
|�∗+K0〉 −

√
1

3
|�∗ 0K+〉.

(A1)

We need the �∗ → 	π coupling and the K	 → N∗(1535)
coupling. The first one is of the type

− it�∗,π	 = g�∗,π	
�S · �k, (A2)

where �S is the spin transition operator from 3/2 to 1/2. The
width for �∗ → π	 is given by (�k ≡ �pπ )


 = 2M	2M�∗

8π

1

M2
�∗

∑∑
|t |2 |�k|, (A3)

with ∑ ∑
|t |2

= 1

4
g2

�∗,π	

∑
M

∑
m

〈m|Si |M〉〈M|S†
j |m〉kikj

= 1

4
g2

�∗,π	

∑
m

〈m|2

3
δij − i

3εij lσl|m〉kikj

= 1

3
g2

�∗,π	
�k2. (A4)

Hence,


 = 1

2π

M	

M�∗

1

3
g2

�∗,π	 k3, (A5)

and using the experimental value for the �∗ → π	 width we
obtain

g�∗,π	 = 0.0090 MeV−1. (A6)

The coupling of N∗ to K	 we get from Ref. [32], where the
chiral unitary approach has been used to obtain πN scattering
in the region of the N∗(1535). One has

gN∗,K	 = −1.28. (A7)

With these ingredients we can already evaluate the triangle
diagrams of Figs. 2 and 3. Considering the isospin coefficients,
the sum of the diagrams in Fig. 2, for I = 1

2 , I3 = 1
2 , up to the

propagators, is given by

(−i)

√
2

3
V

(I=1/2)
�π,�∗K (−1)g�∗,π	 (−i)gN∗,K	

√
2

3

+(−i)(−1)

√
1

3
V

(I=1/2)
�π,�∗K g�∗,π	 (−i)gN∗,K	

√
1

3

= V
(I=1/2)
�π,�∗K g�∗,π	 gN∗,K	, (A8)

where V
(I=1/2)
�π,�∗K is given by Eq. (1) and Table I.

The case of the transition �∗K → N∗π in Fig. 3 proceeds
in an identical way, and the only difference with respect to
the results of Eq. (3) is that we must substitute V

(I=1/2)
�π,�∗K

by V
(I=1/2)
�∗K,�∗K .

APPENDIX B: EVALUATION OF THE AMPLITUDES OF
FIGS. 6 AND 7.

We need now the state

|ππ,I = 0〉 = − 1√
3

(π+π− + π−π+ + π0π0) (B1)

and the � → Nπ coupling, similar to Eq. (A2):

−it = fπN�

mπ

�S · �pπC(i), (B2)

with C(i) the corresponding isospin Clebsch-Gordan coeffi-
cient,

C(i) =

⎧⎪⎪⎨
⎪⎪⎩

−1 for �++ → pπ+,√
2
3 for �+ → pπ0,√
1
3 for �0 → pπ−.

(B3)

The coupling fπN�, taken to obtain the � width, is given by

fπN� = 2.2 (B4)

corresponding to f 2
πNN/4π = 0.38, very close to standard

value used in pion physics, 0.36 [42]. The isospin combination
of vertices corresponding to Eq. (A8) for Fig. 6 is now given,
taking into account Eq. (A1), by

−i V
(I=1/2)
�π,�π (−)

√
1

2

fπN�

mπ

(−)
1√
3

(−i)gσ,ππ

−i V
(I=1/2)
�π,�π (−)

√
1

3

√
2

3

fπN�

mπ

(−)
1√
3

(−i)gσ,ππ

−i V
(I=1/2)
�π,�π (−)

√
1

6

√
1

3

fπN�

mπ

(−)
1√
3

(−i)gσ,ππ

= −
√

2

3
V

(I=1/2)
�π,�π

fπN�

mπ

gσ,ππ . (B5)

035202-12



TRIANGLE MECHANISMS IN THE BUILD UP AND DECAY . . . PHYSICAL REVIEW C 96, 035202 (2017)

For the coupling of the σ to ππ obtained from the unitary
matrix, and unitary normalization ( 1√

2
extra in the wave

function of ππ as identical particles), we take

g′
σ,ππ = 3.6 GeV, (B6)

where we have taken an average between the results of the
chiral unitary approach [43] and different results using an
analysis of data implementing Roy’s equations [44,45] (see
Table 4 of Ref. [46]). With the good normalization to be used
in Eq. (B5), we have

gσ,ππ =
√

2 × 3.6 GeV. (B7)

Following the argumentation of Eq. (3), we obtain now

− it�π,Nσ = −V
(I=1/2)
�π,�π

√
2

3

fπN�

mπ

gσ,ππ (�S · �k) 2M� t ′T ,

(B8)

with �k the nucleon momentum, where t ′T is obtained from
Eq. (4) by simply changing the masses of the intermediate
particles, �∗ → �,K → π,	 → π , and multiplying the

integrand by (1 + �q·�k
|�k|2 ). The reason for this latter factor is that

before in Eq. (3) the factor (�S · �k) was factorized outside the
integral. Here we have �S · �pπ ≡ �S · (−�q − �k) and

∫
d3q qi · · · ≡ ki

∫
d3q

�q · �k
�k2

,

since �q is an integration variable and �k is the only vector in the
integrand which is not integrated.

For the transition of �∗K → Nσ , we will have the same
expression as in Eq. (B8), changing V

(I=1/2)
�π,�π to V

(I=1/2)
�∗K,�π .

Finally, in analogy to Eq. (17) we will now have the effective
transition potential

Ṽi,Nσ = V
I=1/2
i,�π

√
2

3

fπN�

mπ

gσ,ππ 2M� Ṽ ′
Nσ (s), (B9)

where Ṽ ′
Nσ is defined such that

Im t̃ ′(s) = Ṽ ′
Nσ (s) Im GNσ (s,mσ ) Ṽ ′

Nσ (s), (B10)

with

Im t̃ ′(s) = 1

Nσ

∫
dm̃2

σ

1

3
k̃2 Im GNσ (s,m̃σ ) Sσ

(
m̃2

σ

) |t ′T (s,m̃σ )|2,
(B11)

with the σ spectral function,

Sσ

(
m̃2

σ

) = − 1

π
Im

[
1

m̃2
σ − m2

σ + imσ
σ

]
,

Nσ =
∫

Sσ

(
m̃2

σ

)
dm̃2

σ ,

Im GNσ (s,mσ ) = − 1

4π

MN√
s

k(s,mσ ),

k(s,mσ ) = λ1/2(s,M2
N,m2

σ )

2
√

s
, (B12)

and Im GNσ (s,m̃σ ), k̃(s,m̃σ ) given by the same expressions,
changing mσ to m̃σ . For mσ and 
σ we take values from
Ref. [46]:

mσ = 445 MeV,

σ

2
= 275 MeV.

Now Ṽi,Nσ of Eq. (B9) provides transitions from �π (�K)
to Nσ . As before, we introduce the Nσ channel into the
coupled channels and have now a 4 × 4 matrix for V , allowing
the �π → Nσ , �∗K → Nσ transitions and neglecting direct
transitions Nσ → Nσ and Nσ → N∗π . For cutoff in the
integral of d3q in t ′T we take now qmax = 700 MeV, suited
for the study of the ππ interaction [6,47].

APPENDIX C: DOUBLE CONVOLUTION TO OBTAIN THE
DECAY WIDTH IN THE �∗ K CHANNEL.

We perform the double convolution with the spectral
functions of �∗ and the resonance N∗(1875). The convolution
width is given by


̃�∗K = 1

NR

∫ MR+2
R

MR−2
R

dM̃R

∫ M�∗ +2
�∗

M�∗ −2
�∗
dM̃�∗

× SR(M̃R) S�∗ (M̃�∗ ) 
�∗K (M̃R,M̃�∗ ,mK ), (C1)

where SR(M̃R) [or S�∗ (M̃�∗ )] is the spectral function of
N∗(1875) (or �∗), taking the same form as Eq. (13) with
proper mass and width for the resonance; and

NR =
∫ MR+2
R

MR−2
R

dM̃R

∫ M�∗ +2
�∗

M�∗ −2
�∗
dM̃�∗SR(M̃R) S�∗ (M̃�∗),


�∗K (M̃R,M̃�∗ ,mK ) = 1

2π

M̃�∗

M̃R

g2
R,�∗K p̃, (C2)

with

p̃ = λ1/2
(
M̃2

R,M̃2
�∗ ,m2

K

)
2M̃R

θ (M̃R − M̃�∗ − mK ).
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a b s t r a c t

Standard dynamical system analysis of Einstein–Maxwell equation in f (R) theories is considered in this
work. We investigate cosmological dynamics of a uniform magnetic field in the Orthogonal Spatially
Homogeneous (OSH) Bianchi I universewith viable f (R)models of gravity. In this work, the f (R) = R−αRn

and f (R) =
(
Rb

− Λ
)c models are examined by using our dynamical system analysis. Our results show

that both of two f (R) models have a viable cosmological consequence identical to the analysis present in
Amendola and Tsujikawa (2008) for the FLRW background. Contrary to Amendola and Tsujikawa (2008),
we discover in our models that there is an additional anisotropic and non-zero cosmological magnetic
fields fixed point emerging before the present of the standardmatter epoch. This means that the universe
has initially isotropic stage with the intermediated epoch as the anisotropic background and it ends up
with the isotropic late-time acceleration. The primordial magnetic fields play a crucial role of the shear
evolutions obtained from these two models which have the same scaling of the cosmic time as σ ∼ t−

1
3 ,

instead of σ ∼ t−1 for the absence of the primordial magnetic cases.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

An alternative way of explaining the accelerating expansion of
the universe [1,2] or the Dark Energy (DE) problem [3] (for review
see [4]) is to modify the Einstein’s theory of gravity (General Rel-
ativity (GR)) as the source of accelerating behavior of the universe
(for review see [5]). The simple versions of such modification,
i.e. f (R) gravity, were purposed by Capozziello et al. [6] and Carroll
et al. [7]. The main idea of modified gravity is that, on the one
hand, one considers gravitational Lagrangian as a function of the
Ricci scalar, i.e. L =

√
−gf (R) [8]. On the other hand, the inverse

power of the Ricci scalar (1/R) is placed into the Einstein–Hilbert
action which gives a deviation from GR at small curvature and
causes the present acceleration of the universe at very large scale.
This happens either with de Sitter and anti-de Sitter solutions in
the vacuum case which provides a purely gravitation driving the
acceleration universe. The modified f (R) gravity gives good expla-
nation for the cosmic acceleration without introducing the dark
energy component that implies from the cosmological data [9]. In

* Corresponding author at: Department of Applied Physics, Faculty of Sciences
and Liberal arts, Rajamangala University of Technology Isan, Nakhon Ratchasima,
30000, Thailand.

E-mail address: daris.sa@rmuti.ac.th (D. Samart).

addition, the modified f (R) gravity also has been shown that it can
be derived from string/M-theory [10]. However, f (R) gravity en-
counters a number of problems, for example, the unstable problem
of the scalar degree of freedom, especially in the 1/R model, [11]:
incompatible with the constraints of local gravity [11,12]: the
instability of cosmological perturbations in the large scale struc-
ture [13] and the wrong sequence of the universe’s evolution [14].
The necessary conditions in both of local gravity and cosmological
observations for viable f (R) and its detailed implications are ex-
plicitly demonstrated and given in Refs. [15–19] and see Ref. [5]
for review.

The dynamics of anisotropicmodelswith f (R) gravity have been
less studied compared with their isotropic Freidmann–Lemaitre–
Robertson–Walker (FLRW) counterparts. As a result, it is not
known how the behavior of the shear is modified in these theories
of gravity. The dynamical systems methods for analyzing the qual-
itative properties of cosmological models have proven very useful.
It has been successfully used to study and to understand a number
of cosmological models such as the standard GR cosmology [20],
the scalar fields models of dark energy [21], the scalar–tensor the-
ories of gravity [22] and the brane-world models [23]. Moreover,
the cosmological dynamics of f (R) gravity was extensively studied
in [7,24–29] by using the dynamical system analysis frameworks
in homogeneous and isotropic universe (a.k.a. the FLRW model)

http://dx.doi.org/10.1016/j.dark.2017.08.001
2212-6864/© 2017 Elsevier B.V. All rights reserved.
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and in the less anisotropic counterpart (Bianchi types and the
others) [30–33]. However, a huge number of f (R) models in the
FLRW universe is ruled out by the corrected cosmological expan-
sion sequences [16]. A fewmodels survives fromboth cosmological
and local gravity constraints. Those models are called viable f (R)
models of gravity. The interesting models among them are f (R) =

R − αRn and f (R) = (Rb
− Λ)c where they were purposed by

Refs. [16] and [17] respectively. An extensive analysis of these vi-
able f (R)models in the anisotropic universe should be a veryworth
study to quantify some interesting features in this scenario of the
f (R) theories. Therefore, we will perform the dynamical system
study for the cosmological solutions of f (R) gravity in anisotropic
Bianchi I universewith the existence of the uniformmagnetic fields
in this work.

The cosmologicalmagnetic field is one of yet unsolvedproblems
in cosmology. The magnetic fields seem observationally emerge
at large scale of the universe [34]. There are many theoretical
explanations to disentangle the origin of primordial cosmological
magnetic field. One of the compelling explanations is that the
cosmological magnetic field has a primordial origin and this idea
was purposed by Ref. [35]. The explanation is that it has been
created from the Big Bang like all matters populating the uni-
verse. From this assumption, we therefore include the primordial
magnetic fields into the energy–momentum tensor in the RHS of
the Einstein field equation directly. This idea inspired us trying to
understand its evolution by finding the exact solutions [36–38] in
the wide classes of the Bianchi universe and its existences via the
cosmological perturbation theory approach (see for the Bianchi I
background [39] and for a review [40]). The cosmological magnetic
fields will naturally appear in the universe when the anisotropic
cosmologicalmodels are taken into account.More importantly, the
(primordial) cosmological magnetic fields also might play some
roles on the cosmic microwave background (CMB) radiation and
might be relics of the existence of themagnetic fields from the early
universe.

Previously, the cosmological magnetic fields have been studied
in the homogeneous anisotropic universe (Bianchi models) con-
text. It was mentioned in Refs. [36] that a universe with a primor-
dial magnetic field is necessary anisotropy . The exact solutions
of magnetic fields in many classes of the Bianchi models were
discovered [36–38]. The first significant study of cosmological
magnetism in the dynamical system approach was performed by
the authors of Ref. [41]. The authors of [42] was systematically
performed the standard technique of dynamical system of the
magnetic fields evolutionswith the perfect fluids in the Bianchi IV0
with the orthogonal frame formalisms and Hubble normalization
variables. Later, there were many works on the dynamical system
approach to study the magnetic fields in several classes of the
Bianchi models [43–45] (see also reference therein) with the GR
and the brane-world cosmology [46].

In this work, we will perform the standard dynamical system
analysis on the dynamics of the Orthogonally Spatially Homoge-
neous (OSH) Bianchi I model in f (R) = R − αRn and f (R) =

(Rb
− Λ)c models of gravity with the existence of the primordial

magnetic fields and the standard barotropic perfect fluid matter
(pm = wρm) for w = 1. The two selected viable f (R) models in
this work have advantages in both local gravity constraints and
cosmological viabilitieswhich are demonstrated in Refs. [16,17] for
the FLRW case. The Bianchi I is reasonable to be examined because
such models are anisotropic generalization of the flat FLRWmodel
and its mathematical simplicity as well. The geometrical property
of the spacetime in the Bianchi I, in this work, is assumed to exhibit
a property of ‘‘Locally Rotational Symmetry’’(LRS) [31]. The LRS
is rotational symmetry with a preferred spatial direction of the
space-like hypersurface. Physical quantities and also observations
are rotationally invariant about this direction [47–49]. Here the x-
direction is chosen to be the axis of this symmetry. Therefore, we

impose the uniformmagnetic field aligned along the axis of the LRS
(in the x-direction). The aim of thiswork is also to study the cosmo-
logical dynamics of anisotropic universe with the magnetic fields
in f (R) gravity via the dynamical system technique. The f (R) gravity
might have some interesting features on the anisotropies in the
shear evolutions of the early universe till the present observed uni-
verse. The results from this study might help to understand more
about the alternative effects of the viable f (R) gravity DEmodels on
the small anisotropic effect and contributions of magnetic fields in
CMB and its evolution epoch of the universe. In addition, this work
is the first systematic dynamical system analysis of the magnetic
Bianchi I in f (R) models of gravity which has never been studied.

We outline this work as follows: In Section 2 we set up the
evolution equations of the f (R) gravity in OSH 1 + 3 covariant
approach. In the next section, the dynamical system analysis of the
magnetic Bianchi I in the in f (R) = R − αRn and f (R) = (Rb

− Λ)c
models is investigated. In Section 4, we discuss the cosmological
implications stemming from our study. In the last section, we give
the conclusion in thiswork. Unless otherwise specified, wewill use
natural units (c = 8πG = h̄ = 1) and all conventions used in the
present work are adopted from Refs. [30–32].

2. Evolution equations of f (R) gravity in 1+3 covariant for-
malisms

In this section, we will briefly give a crucial setup for the f (R)
gravity in terms of the 1+3 covariant formalisms.Wemainly follow
the notations and conventions from Refs. [31,50] and its detailed
formalisms there in.

2.1. The Einstein field equation in f (R) gravity

We begin at the gravitational action of f (R) gravity in the fol-
lowing form

S =

∫
√

−gf (R)d4x +

∫
Lmd4x (1)

whereLm is matter fields Lagrangian density. Varying above action
with respect to metric gab, we obtain the Einstein field equation of
f (R) as

F (R)Rab −
1
2
f (R)gab + gab∇c∇

cF (R) − ∇a∇bF (R) = Tab. (2)

where F ≡ ∂ f /∂R and Tab ≡ (2/
√

−g)δLm/δgab and the Latin
indices run from a, b, c = 0, . . . , 3. After some manipulations,
the Ricci tensor takes form [31,50],

Rab =
1
F

(
1
2
gabf − (gabgcd

− gc
ag

d
b )Scd + Tab

)
(3)

where Sab = ∇a∇bF . The energy–momentum tensor Tab is defined
by

Tab = ρuaub + phab + qaub + qbua + πab. (4)

Here hab = gab + uaub is induce metric which associated with
spatial hypersurface and ua

= ( 1, 0, 0, 0 ) is four-velocity which
orthogonal to hab (habua

= 0), qa is the energy flux (qaua
= 0) and

πab is the symmetric trace-free anisotropic pressure, all relative to
ua (π a

a = 0, πabua
= 0), [31]. The energy–momentum tensor in

this work can be decomposed into two parts as

Tab = T PF
ab + T EM

ab (5)

where T PF
ab is the energy–momentum tensor of the perfect fluid,

given by

T PF
ab = ρmuaub + pmhab. (6)
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T EM
ab is the energy–momentum tensor of Maxwell field, given by

T EM
ab = FacF c

b −
1
4
gabFcdF cd (7)

the field strength Fab is also defined by

Fab =
1
2
u[aEb] + ηabcdHcud (8)

where Ea and Ha are electric and magnetic fields respectively. We
will consider the energy–momentum tensor of Maxwell field in
the pure magnetic case. The uniform magnetic fields are aligned
in x-direction. This means the magnetic fields have component as
Ha = ( 0, H̃, 0, 0 ) [42]. One can write the energy–momentum
tensor of theMaxwell fields analogouswith the perfect fluid as [46]

T EM
ab = ρEMuaub + pEMhab + πab (9)

where ρEM =
1
2 H̃

2, pEM =
1
6 H̃

2 and πab is given by

πab =
1
3
H2hab − HaHb, (10)

where H2
≡ HaHa

= H̃2 is the magnitude of magnetic fields.
One notes that the energy–momentum tensor of Maxwell field

is also trace-free (gabT EM
ab = T EM

= 0). Then the energy density
ρ and pressure p can be decomposed to the fluid matter and the
magnetic parts as

ρ = ρPF + ρEM , ρPF = ρm, ρEM =
1
2
H̃2,

p = pPF + pEM , pPF = pm, pEM =
1
6
H̃2.

(11)

Here we consider the energy–momentum tensor of matter part as
a standard perfect fluid (the equation of states for perfect fluid and
EM parts take form w = pm/ρm and wEM = 1/3 respectively).

2.2. Propagation equations of kinematical quantities in f (R) gravity

In the next step, we will set up the propagation equations for
f (R) gravity in OSH 1 + 3 covariant formalism. The OSH formalism
is used to describe the fluid velocity time-like vector fields which
orthogonalize to the spatial vector (triad) fields. Having assumed
the LRS of the spacetime, here the spatial vector fields span on
the space-like hypersurface with one preferred spatial direction
and they are invariant under the rotation of the preferred spatial
axis (the x-direction) [47–49]. The main results have been done
by [31,50,51]. Using Eq. (3), we can split Rab in the following forms
as [31,50]

R = F−1(T + 2f − 3S) (12)

Rabuaub
= F−1

(
Tabuaub

−
1
2
f + habSab

)
(13)

Rabuahb
c = F−1(Sabuahb

c − qc) (14)

Rabha
ch

b
d = F−1

(
πcd −

(
p +

1
2
f + S

)
hcd + Sabha

ch
b
d

)
, (15)

and for the Sab,

S = −F ′(R̈ + Θ Ṙ) − F ′′Ṙ2 (16)

Sabuaub
= F ′R̈ + F ′′Ṙ2 (17)

Sabhab
= −F ′Θ Ṙ. (18)

According to Refs. [31] and [30], theywere explicitly demonstrated
the 1 + 3 covariant analysis of Bianchi I universe in the f (R)

gravities, the Raychaudhuri equation is written by

Θ̇ +
1
3
Θ2

+ 2σ 2
+

1
F

(
ρ −

1
2
f + habSab

)
= Θ̇ +

1
3
Θ2

+ 2σ 2
+

1
F

(
ρ −

1
2
f − F ′Θ Ṙ

)
= 0, (19)

and the Friedmann equation (the first integral of the above equa-
tion) is given by
1
3
Θ2

− σ 2
−

1
F

(
ρ + 3p + f − 3S + 2habSab

)
=

1
3
Θ2

− σ 2
−

1
F

(
ρ +

1
2
(FR − f ) − F ′Θ Ṙ

)
= 0 (20)

The shear propagation equation is given by

σ̇ab + Θσab =
1
F

(
πab − F ′Ṙ σab

)
, (21)

where Θ ≡ Θabhab is the rate of volume expansion parameter
(Hubble parameter), σ 2

≡
1
2σabσ

ab is magnitude of the shear ten-
sor σab (σab = Θab−

1
3habΘ , σ a

a = 0 and σabua
= 0). The tetrad field

is decomposed into the orthonormal frame [49]. We restrict that
the magnetic field is aligned along the shear eigenvector as were
done in [42,43], then the shear tensor simultaneously diagonalize
as1

σab = diag( σ11, σ22, σ33 ) ≡ diag( σ1, σ2, σ3 ). (22)

Therefore the shear propagation can be written in the following
form

σ̇a + Θσa =
1
F

(
πa − F ′Ṙ σa

)
, (23)

where πa ≡ πaa and πaa is the diagonal elements of πab tensor. By
using the conservation of energy–momentum tensor with source-
free of Maxwell field in the Bianchi I scenario, the propagation of
matter parts is given by [42]

ρ̇m = −(1 + w)ρmΘ, (24)

˙̃H = −
2
3
ΘH̃ + σ11H̃ = −

2
3
ΘH̃ − 2(σ2 + σ3)H̃. (25)

We close this section by introducing another helpful equation.
With help of the Raychaudhuri and Freidmann equations, we come
up with the following crucial relation:

R = 2Θ̇ +
4
3
Θ2

+ 2σ 2. (26)

2.3. The autonomous system

According to Ref. [16], we introduce new dimensionless vari-
ables as follows:

Σ =
3
2

σ2 + σ3

Θ
, M =

√
3
2F

H̃
Θ

,

x1 = −
3
Θ

F ′Ṙ
F

, x2 = −
3
2

f
FΘ2 ,

x3 =
3
2

R
Θ2 , z =

3
Θ2

ρm

F
. (27)

1 Alternatively, by using the LRS Bianchi I line element, ds2 = −dt2 +X(t)2dx2 +

Y (t)2
(
dy2 + dz2

)
, one can show that σ11 = Θ11 − h11Θ =

2
3

(
Ẋ
X −

Ẏ
Y

)
, σ22 =

Θ22 − h22Θ = −
1
3

(
Ẋ
X −

Ẏ
Y

)
and σ33 = Θ33 − h33Θ = −

1
3

(
Ẋ
X −

Ẏ
Y

)
where

Θ =
Ẋ
X + 2 Ẏ

Y , Θ11 =
Ẋ
X , Θ22 =

Ẏ
Y and Θ33 =

Ẏ
Y . From such results, we obtain

σ11 = σ1 = −(σ2 + σ3).
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One notes that2 Σ2
=
( 3
2

σ2+σ3
Θ

)2
= 3 σ2

Θ2 . The constraint equation
written in terms of the new variables obeys

1 − Σ2
− x1 − x2 − x3 − z − M2

= 0. (28)

Using the time propagation equations of the kinematical quantities
in the previous section, then the equations of autonomous system
are given
dΣ
dτ

= x1Σ − 3Σ + Σ
(
2 − x3 + Σ2)

+ 2
(
1 − Σ2

− x1 − x2 − x3 − z
)
,

dx1
dτ

= x21 − 3x1 − 4x2 − 2x3 − (1 − 3w)z + x1
(
2 − x3 + Σ2) ,

dx2
dτ

= x1x2 +
x1x3
m

+ 2x2
(
2 − x3 + Σ2) ,

dx3
dτ

= −
x1x3
m

+ 2x3
(
2 − x3 + Σ2) ,

dz
dτ

= x1z − 3(1 + w)z + 2z
(
2 − x3 + Σ2) , (29)

where m is the parameter which is very useful to study viable
models of f (R) gravity and it is defined by [16]

m =
RF ′

F
. (30)

We note that the derivative with respect to the logarithm time
scale is defined by d

dτ =
3
Θ

d
dt . In addition, one observes that by

ignoring the Σ and M variables, the autonomous system will be
identical to the FLRW case that have been done in [16]. For the
general case of the evolution phase of the universe, one can be
described by the sign of the rate of volume expansion ϵ = ±1,
where ϵ ≡ |Θ|/Θ . ϵ = 1 for the expanding phase and ϵ = −1
for the collapsing phase, more detail discussion in this issue see
[26,30,32]. In this work, we have focused our study in the future
evolution of the expanding phase (ϵ = 1) of the universe only. The
auxiliary of the autonomous system (evolution of magnetic term)
is
dM
dτ

=
x1M
2

− 2M − 2ΣM + M
(
2 − x3 + Σ2) . (31)

The matter density and curvature density parameters of the uni-
verse are defined by Ωm ≡ z and Ωc ≡ x1 + x2 + x3, respectively.
In this work we consider Ωc as dark energy density parameter.

This section we note that ‘‘prime’’denotes derivatives with re-
spect to the logarithm time scale as d

dτ =
3
Θ

d
dt . In the general case

of the evolution phase of the universe, it can be described by the
sign of the rate of volume expansion ϵ = ±1, where ϵ ≡ |Θ|/Θ .
ϵ = 1 for the expanding phase and ϵ = −1 for the collapsing
phase,moredetailed discussion in this issue see [26,30,32].Wealso
introduce the effective equation of state [16],

weff = −1 − 2
Θ̇

Θ2 , (32)

which is a useful parameter in this study. Using the definitions in
Eq. (27), one rewrites the effective equation of states in terms of
the dimensionless variables as

weff = −1 −
2
3

(
x3 − Σ2

− 2
)
. (33)

More importantly, the associated solutions for each fixed points
can be obtained by using Eqs. (26) and (27) to yield

Θ̇ =
(
x3,(i) − Σ2

(i) − 2
) Θ2

3
, (34)

2 We can demonstrate that
( 3
2

σ2+σ3
Θ

)2
= 3 σ2

Θ2 =
3
2

σ2
1 +σ2

2 +σ2
3

Θ2 is valid by using

the relation σ1 =
2
3

(
Ẋ
X −

Ẏ
Y

)
and σ2 = σ3 = −

1
3

(
Ẋ
X −

Ẏ
Y

)
.

where x3,(i) and Σ(i) are the associated ‘‘i ’’ fixed points. Performing
the integration, one gets solutions of the scale factor for the asso-
ciated fixed points

a(t) = a0(t − t0)β ,

β =
1

2 + Σ2
(i) − x3,(i)

. (35)

In order to see dynamical features of the anisotropic universe,
one should consider the shear evolution in themodel. With help of
Eqs. (23) and (27), we obtain the shear evolution equation in terms
of the dimensionless variables as

σ̇

σ
= −ηΘ, η =

1
3

(
3 − 2

M2
(i)

Σ(i)
− x1,(i)

)
. (36)

Contrary to previous studies on the Rn gravity in Ref. [31], our
parameter η depends on the magnetic field, M . This means has
the magnetic fields play important role on the shear evolution.
Integrating out Eq. (36), we find

σ = σ0a−η
= σ0a

−η

0 (t − t0)−βη. (37)

The exact solution of the shear evolution is very useful for un-
derstanding the behavior of the anisotropic effect in the universe.
As discussed in Ref. [31], from the above equation the shear evo-
lution for all points in the phase space that lie on the line η ≡(
3 + 2M2

(i)/Σ(i) + x1,(i)
)
/3 = 1 is the same as in the GR case. In

order to deviate from the standard GR, the shear will dissipate
faster than that in GR when σ̇ /σ < −Θ , that is all points that
lie in the region

(
3 + 2M2

(i)/Σ(i) + x1,(i)
)
/3 > 1. This is called the

fast shear dissipation (FSD) regime [31]. When σ̇ /σ > −Θ and for
all points in the region

(
3 + 2M2

(i)/Σ(i) + x1,(i)
)
/3 < 1, the shear

will dissipate slower than that in GR. This is named the slow shear
dissipation (SSD) regime [31]. Notice that, however, the higher
order terms of the f (R) gravity models, e.g. see Refs. [52], can play
the same role as of the magnetic field investigated in this work.

In addition, exact solution of the magnetic fields are also ob-
tained in terms of dimensionless variables. Using Eqs. (25) and (27),
one gets,

H̃ = H̃0a−κ
= H̃0a−κ

0 (t − t0)−βκ , κ =
2
3

(
1 + 2Σ(i)

)
. (38)

In order to see how the shear parameter andmagnetic fields evolve
in cosmic time, we will substitute non-zero shear fixed points into
the exact solutions of the shear and themagnetic fields evolutions,
Eqs. (37) and (38). After outlining the autonomous system of the
magnetic Bianchi I universe with the generic f (R) gravity and exact
solutions in terms of dimensionless variables, we will consider
such systemof differential equations by using the standard dynam-
ical system approach in next section.

3. Dynamics of magnetic Bianchi I universe in f (R) models of
gravity

This section is devoted to provide the dynamical system analy-
sis for the f (R) models of gravity. Wewill define the dimensionless
variables from the Friedmann equation given in Eq. (20) in the
previous section and use these variables to set up an autonomous
system of first-order non-linear differential equations. Next we
will determine all fixed points of the autonomous system and
analyze their stabilities for each of them. At the end of this section,
the cosmological implications of the magnetic Bianchi I in f (R)
models will be discussed in accord with the fixed points and its
stabilities.
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3.1. Dynamical system of the f (R) = R − αRn gravity

We start with the f (R) = R − αRn gravity. This model has
been studied extensively in several aspects. and it was shown that
the model will be the viable f (R) DE if α > 0 and 0 < n <

1 [16]. Especially, the standard dynamical system method is used
to analyze in the FLRW counterpart [27]. For the anisotropic cases,
it was studied in the Kantowski–Sach metric [29]. Here we will
consider this model in the Bianchi I universe with the existence of
the primordial magnetic fields. The f (R) = R − αRn model has the
m function which can be practically written in terms of a variable
r as

m =
n(1 + r)

r
, (39)

where r ≡ x3/x2. Substituting them function into the autonomous
system in Eq. (29), one obtains explicit dynamical system for the
f (R) = R − αRn gravity. The dynamical system of this model is
given as follows:
dΣ
dτ

= x1Σ − 3Σ + Σ
(
2 − x3 + Σ2)

+ 2
(
1 − Σ2

− x1 − x2 − x3 − z
)
,

dx1
dτ

= x21 − 3x1 − 4x2 − 2x3 − z + x1
(
2 − x3 + Σ2) ,

dx2
dτ

= x1x2 +
x1x23

n(x2 + x3)
+ 2x2

(
2 − x3 + Σ2) ,

dx3
dτ

= −
x1x23

n(x2 + x3)
+ 2x3

(
2 − x3 + Σ2) ,

dz
dτ

= x1z − 3z + 2z
(
2 − x3 + Σ2) . (40)

We will separately study the fixed points, their stabilities, the
shear and the magnetic evolutions below.

3.1.1. Fixed points and their stabilities
In what follows, we will consider the properties of each point

in turn. There are 4 physical fixed points from the autonomous
system of the f (R) = R − αRn gravity. We will classify into
two cases: isotropic and anisotropic solutions, and the physically
associated fixed points of this model are given below.

Isotropic solutions

• (1) P (1)
1 : de-Sitter fixed point In this case, we obtain the fixed

point:

Σ = 0, x1 = 0, x2 = −1, x3 = 2, z = 0. (41)

Since weff = −1, the point P (1)
1 corresponds to de-Sitter

solutions (Θ̇ = 0) and has eigenvalues{
−4, −3, −3,

−3n −
√
n
√

−32 + 25n
2n

,

−3n +
√
n
√

−32 + 25n
2n

}
.

Hence P (1)
1 is stablewhen 0 ≤ n < 2 and saddle for n > 2.

In this case, it is trivial to verify that,

a(t) = exp(λt), λ = arbitrary constant, M2
= 0.

• P (1)
2 : standard matter-liked epoch fixed point.
In this case, we obtain the fixed point:

Σ = 0, x1 = 3 −
3
n
, x2 =

3 − 4n
2n2 ,

x3 = 2 −
3
2n

, z =
(13 − 8n)n − 3

2n2 .

(42)

Employing Eqs. (33)–(35), we obtain in this case

weff = −1 +
1
n
, a(t) = a0(t − t0)

2n
3 , M2

= 0.

This point P (1)
2 corresponds to saddle solutions and has

eigenvalues{
−1, −

3
2n

,
3(−1 + n)

n
,N−,N+

}
,

where

N±

≡
3n − 3n2

± n
√
81 − 498n + 1025n2 − 864n3 + 256n4

4
(
−n2 + n3

) .

The solutions are a saddle point for 1
16

(
13 −

√
73
)

< n <

3/4. We note that this fixed point becomes the standard
matter epoch if n = 1.

• P (1)
3 : curvature dominated fixed point.
In this case, we obtain the fixed point:

Σ = 0, x1 =
3

2n − 1
− 1, x2 =

6
1 − 2n

+
1

n − 1
,

x3 =
3

2n − 1
+

1
1 − n

+ 2, z = 0.
(43)

Employing Eqs. (33)–(35), we obtain in this case

weff = −1 +
−10n2

+ 13n − 1
6n2 − 9n + 3

,

a(t) = a0(t − t0)−
(n−1)(2n−1)

n−2 , M2
= 0.

This point P (1)
3 has eigenvalues{

5 − 4n
−1 + n

,
5 − 4n
−1 + n

, −
2(−2 + n)
−1 + 2n

, −
2
(
2 − 8n + 5n2

)
1 − 3n + 2n2 ,

−3 + 13n − 8n2

1 − 3n + 2n2

}
.

Regarding the above values, we find for unstable fixed
points

1 < n ≤
5
4
, (44)

and for stable ones

n <
1
16

(
13 −

√
73
)

∨ n > 2. (45)

Anisotropic solutions
• P (1)

4 : Jacobmagnetic-like (non-zeromagnetic fieldwithmat-
ter solution: the Jacobs magnetic field model in Bianchi
I [37]) with curvature fixed point.

In this case, we obtain the fixed point:

Σ = −
2(n(5n − 8) + 2)
n(7n − 10) + 4

, x1 = −
12(n − 2)(n − 1)
n(7n − 10) + 4

,

x2 = −
18(n − 1)(n(11n − 20) + 8)

(n(7n − 10) + 4)2
,

x3 =
18(n − 1)n(n(11n − 20) + 8)

(n(7n − 10) + 4)2
, z = 0. (46)

Employing Eqs. (33)–(35), we obtain in this case

weff = −1 +
−245n4

+ 1616n3
− 492n2

+ 464n + 16

3
(
7n2 + 10n + 4

)2 ,

a(t) = a0(t − t0)
(7n2+10n+4)

2

6(193n3+24n2+72n+8) ,
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M2
= −

3
(
55n4

− 188n3
+ 222n2

− 104n + 16
)(

7n2 − 10n + 4
)2 .

The existence of magnetic fields in this case satisfies
1
5

(
4 −

√
6
)

< n <
2
11

(
5 −

√
3
)

∨
2
11

(
5 +

√
3
)

< n <
1
5

(
4 +

√
6
)

. (47)

This point P (1)
4 has eigenvalues (see{

−
12
(
2 − 3n + n2

)
4 − 10n + 7n2 , −

3
(
8 − 20n + 11n2

)
4 − 10n + 7n2 ,

−
3
(
4 − 18n + 11n2

)
4 − 10n + 7n2 , P,Q

}
where

P ≡ −
3
(
32 − 160n + 300n2

− 250n3
+ 77n4

+ B
)

2
(
4 − 10n + 7n2

)2
and

Q ≡
3
(
−32 + 160n − 300n2

+ 250n3
− 77n4

+ B
)

2
(
4 − 10n + 7n2

)2
with

B =

√(
4 − 10n + 7n2

)2 (320 − 1984n + 4128n2 − 3448n3 + 1001n4
)
.

Before going further to the next subsection, we will give some
discussion towards these fixed points of the f (R) = R−αRn model.
we find from this model of gravity that there are 4 fixed points
for the isotropic and for the anisotropic cases. Interestingly, there
is no Kasner fixed point contrary to that of the usual GR gravity.
According to the fixed points in thismodel, it means no anisotropic
singularity in this scenario. We classify the physical fixed points
by considering the magnitude square of the magnetic fields which
must be positive.

3.1.2. The shear and magnetic fields evolutions
We turn to consider the shear and magnetic fields evolutions

for the f (R) = R − αRn model. According to the existence of the
4 physical fixed points above. There is only one fixed point with
non-zero shear and magnetic solution. To see how the shear and
magnetic fields dissipate, we recall the exact solution of the shear
evolution from Eq. (37) and substitute the anisotropic fixed point
in the solution to yield

σ = σ0a−η
= σ0a

(
2n−4

7n2−10n+4

)
0 (t − t0)−

1
3 ,

η =
4 − 2n

7n2 − 10n + 4
.

(48)

In the above results from the shear evolution, we find the shear
dissipation scale in cosmic time as σ ∼ t−

1
3 . The η parameter can

be classified into FSD and SSD as
4 − 2n

7n2 − 10n + 4
> 1,

FSD
→ 0 < n <

8
7
,

4 − 2n
7n2 − 10n + 4

< 1,
SSD
→ n < 0 ∨ n >

8
7
. (49)

The exact solution of the magnetic fields is given by,

H̃ = H̃0a−κ
= H̃0a

(
26n2−44n+8
21n2−30n+12

)
0 (t − t0)

(
13n2−22n+4

18−9n

)
,

κ = −
26n2

− 44n + 8
21n2 − 30n + 12

.

(50)

Wewill see the numeric results of the shear and themagnetic fields
evolutions in the Section 4.

3.2. Dynamical system of the f (R) =
(
Rb

− Λ
)c gravity

Next, wewill consider another viable f (R) DEmodel. The f (R) =(
Rb

− Λ
)c was proposed by Ref. [17]. This model has original idea

from a generalized ΛCDM model by parameterizing the power of
the Ricci scalar and a whole term of the power of the Ricci scalar
with the cosmological constant. This model is viable for the f (R)
DE. Themodel was studied by using the dynamical systemmethod
and constrained by data from local gravity and cosmology in the
FLRW case [17]. More importantly, this model will be the viable
f (R) DE with the conditions c ≥ 1 and bc ≈ 1 [17]. Therefore, it
is interesting to extend the study of this model to the anisotropic
universe counterpart. The m function of the model can be written
in the following form

m =
(1 − c)r

c
+ b − 1. (51)

The dynamical system of this model is given as follows:
dΣ
dτ

= x1Σ − 3Σ + Σ
(
2 − x3 + Σ2)

+ 2
(
1 − Σ2

− x1 − x2 − x3 − z
)
,

dx1
dτ

= x21 − 3x1 − 4x2 − 2x3 − z + x1
(
2 − x3 + Σ2) ,

dx2
dτ

= x1x2 +
c x1x2x3

c(b − 1)x2 + (1 − c)x3
+ 2x2

(
2 − x3 + Σ2) ,

dx3
dτ

= −
c x1x2x3

c(b − 1)x2 + (1 − c)x3
+ 2x3

(
2 − x3 + Σ2) ,

dz
dτ

= x1z − 3z + 2z
(
2 − x3 + Σ2) . (52)

We will discuss the fixed points, their stabilities, the shear and the
magnetic evolutions below.

3.2.1. Fixed points and their stabilities
As of the study in previous subsection, we will consider the

properties of each point in turn. There are 4 physical fixed points
in this model. We will organize by two cases: isotropic and
anisotropic solutions, and the associated fixed points of this model
are given below.

Isotropic solutions

• P (2)
1 : de-Sitter fixed point.
In this case, we obtain the fixed point:

Σ = 0, x1 = 0, x2 = −1, x3 = 2, z = 0. (53)

Since weff = −1, the point P (2)
1 corresponds to de-Sitter

solutions (Θ̇ = 0) and has eigenvalues{
−4, −3, −3, −

−6 + 3(1 + b)c + A
2(−2 + c + bc)

,
6 − 3(1 + b)c + A
2(−2 + c + bc)

}
.

where A ≡

√
100 − 4(17 + 25b)c +

(
9 + 34b + 25b2

)
c2.

In this case, it can verify that,

a(t) = exp(λt), λ = arbitrary constant, M2
= 0.

Notice that the stability conditions of the fixed points satisfy(
b < −

9
25

&
50

9 + 25b
≤ c <

2
b

)
∨

(
b = −

9
25

& c < −
50
9

)
∨

(
−

9
25

< b < 0 &
(
c <

2
b

∨ c ≥
50

9 + 25b

))
, (54)
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∨

(
b = 0 & c ≥

50
9

)
∨

(
b > 0 &

50
9 + 25b

≤ c <
2
b

)
.

• P (2)
2 : standard matter-like epoch fixed point.
In this case, we obtain the fixed point:

Σ = 0, x1 = 3 −
3
bc

, x2 =
3 − 4bc
2b2c2

,

x3 = 2 −
3

2bc
, z =

bc(13 − 8bc) − 3
2b2c2

,

b→ 1
c

⇒ Σ = 0, x1 = 0, x2 = −
1
2
, x3 =

1
2
, z = 1. (55)

Employing Eqs. (33)–(35), we obtain in this case

weff = −1 +
1
bc

, a(t) = a0(t − t0)
2bc
3 , M2

= 0.

This point P (2)
2 has eigenvalues{

−
3

2bc
,
3
c
, −1, −

−3 + 3bc + B
4bc(−1 + bc)

, −
3 − 3bc + B
4bc − 4b2c2

}
.

whereB ≡
√
81 − 498bc + 1025b2c2 − 864b3c3 + 256b4c4.

This fixed point is always saddle.
• P (2)

3 : curvature dominate fixed point.
In this case, we obtain the fixed point:

Σ = 0, x1 =
3

2bc − 1
− 1, x2 =

6
1 − 2bc

+
1

bc − 1
,

x3 =
1

1 − bc
+

3
2bc − 1

+ 2, z = 0,

b→ 1
c

⇒ Σ = 0, x1 = 2, x2 = undefined,

x3 = undefined, z = 0. (56)

Employing Eqs. (33)–(35), we obtain in this case

weff = −1 +
4 − 2bc

3 − 9bc + 6b2c2
,

a(t) = a0(t − t0)−
(−1+bc)(−1+2bc)

−2+bc , M2
= 0.

This point P (2)
3 has eigenvalues{

−
2b(−2 + bc)

(−1 + bc)(−1 + 2bc)
,
5 − 4bc
−1 + bc

,
5 − 4bc
−1 + bc

,

−
2
(
2 − 8bc + 5b2c2

)
(−1 + bc)(−1 + 2bc)

,
−3 + 13bc − 8b2c2

1 − 3bc + 2b2c2

}
.

Regarding the above values,we find for unstable fixedpoints

b > 0 &
(
1
b

< c <
5
4b

)
, (57)

and for stable ones(
b < 0 &

(
2
b

< c < −
1
16

√
73
b2

+
13
16b

∨ c >
1
16

√
73
b2

+

13
16b

))
∨

(
b > 0 &

(
1
2b

< c <
1
b

∨ c >
2
b

))
.

Anisotropic solutions
• P (2)

4 : Jacobmagnetic-like (non-zeromagnetic fieldwithmat-
ter solution: the Jacobs magnetic field model in Bianchi
I [37]) with curvature fixed point.

In this case, we obtain the fixed point:

Σ = −
2(bc(5bc − 8) + 2)
bc(7bc − 10) + 4

, x1 = −
12(bc − 2)(bc − 1)
bc(7bc − 10) + 4

,

x2 = −
18(bc − 1)(bc(11bc − 20) + 8)

(bc(7bc − 10) + 4)2
,

x3 =
18bc(bc − 1)(bc(11bc − 20) + 8)

(bc(7bc − 10) + 4)2
, z = 0,

b→ 1
c

⇒ Σ = 2, x1 = 0, x2 = 0, x3 = 0, z = 0. (58)

Employing Eqs. (33)–(35), we obtain in this case

weff =
4 + 6bc − 7b2c2

4 − 10bc + 7b2c2
, a(t) = a0(t − t0)

4−10bc+7b2c2
12−6bc ,

M2
= −

3
(
16 − 104bc + 222b2c2 − 188b3c3 + 55b4c4

)(
4 − 10bc + 7b2c2

)2 .

The existence of the magnetic fields is given by(
b < 0 ∧

(
4
5b

−
1
5

√
6
b2

< c <
10
11b

−
2
11

√
3
b2

∨

1
11

2

√
3
b2

+
10
11b

< c <
1
5

√
6
b2

+
4
5b

))

∨

(
b > 0 ∧

(
4
5b

−
1
5

√
6
b2

< c <
10
11b

−
2
11

√
3
b2

∨

1
11

2

√
3
b2

+
10
11b

< c <
1
5

√
6
b2

+
4
5b

))
.

This point P (2)
4 has eigenvalues given in Box I.

We turn to discuss the physical fixed points from the autonomous
system in the f (R) =

(
Rb

− Λ
)c model. First of all, it is interesting

to see all of fixed points in the limits of c ≥ 1 and b → 1/c due
to the cosmological viability that pointed out in the literature. At
the point P (2)

2 , there is an existence of the standardmatter epoch in
this model at the limits of c ≥ 1 and bc ≈ 1 but the point P (2)

3 is an
undefined point in this limit. We do keep the general form of the
parameters in this model because the autonomous system suffers
from the singularity when the fixed points have x2 = −x3 in the
function 1/m at the limits of c ≥ 1 and b → 1/c. We also classify
the physical fixed points by considering the magnitude square of
the magnetic fields which must be positive.

3.2.2. The shear and magnetic fields evolutions
Here we will see behaviors of the shear and magnetic fields

evolutions for the f (R) = (Rb
−Λ)c model. In thismodel,we find the

4 physical fixed points. P (2)
4 has non-zero shear and magnetic fixed

point. Substituting the anisotropic fixed point to the exact solution
of the shear evolution from Eq. (37), we find,

σ = σ0a−η
= σ0a

(
2bc−4

7b2c2−10bc+4

)
0 (t − t0)−

1
3 ,

η =
4 − 2bc

7b2c2 − 10bc + 4
.

(59)

Surprisingly, the shear dissipation in this model has the same
cosmic time scale as the f (R) = R − αRn gravity i.e. σ ∼ t−

1
3 .

The conditions for the FSD and SSD regions from the η parameter
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{
−

12b(−2 + bc)
4 − 10bc + 7b2c2

, −
3
(
8 − 20bc + 11b2c2

)
4 − 10bc + 7b2c2

, 3P−, 3P+, −
3
(
4 − 18bc + 11b2c2

)
4 − 10bc + 7b2c2

}
.

where

P∓
≡

(
128 − 1088bc + 3984b2c2 − 8144b3c3 + 10028b4c4 − 7428b5c5 + 3059b6c6 − 539b7c7 ∓ Q

)(
2(−1 + bc)

(
4 − 10bc + 7b2c2

)3)
and

Q ≡

√
(−1 + bc)2

(
4 − 10bc + 7b2c2

)4 (320 − 1984bc + 4128b2c2 − 3448b3c3 + 1001b4c4
)
.

Box I.

are given by

4 − 2bc
7b2c2 − 10bc + 4

> 1,
FSD
→

(
b < 0 ∧

8
7b

< c < 0
)

∨

(
b > 0 ∧ 0 < c <

8
7b

)
,

4 − 2bc
7b2c2 − 10bc + 4

< 1,
SSD
→

(
b < 0 ∧

(
c <

8
7b

∨ c > 0
))

∨

(
b > 0 ∧

(
c < 0 ∨ c >

8
7b

))
. (60)

The magnetic fields evolution has the exact solution in terms of
cosmic time in the following form:

H̃ = H̃0a−κ
= H̃0a

−
2
3

(
1− 4(bc(5bc−8)+2)

bc(7bc−10)+4

)
0 (t − t0)

(
13b2c2−22bc+4

18−9bc

)
,

κ =
2
3

(
1 −

4(bc(5bc − 8) + 2)
bc(7bc − 10) + 4

)
.

(61)

As the same procedure in the previous f (R) model, the numeric
results of the shear and the magnetic fields evolutions will be
given in the section IV. Noting that the invariant submanifold
issues in the phase space of the dynamical system have been so far
discussed in details in Ref. [26]. Regarding our chosen (physical)
fixed points, they do not admit any singularity or even generate
invariant submanifolds.

4. Cosmological implications

In this section, we will discuss some relevant cosmological
implications of our models. The cosmological implications of mag-
netic Bianchi I in viable f (R) models of gravity in this present in-
vestigation are of great interest to be highlighted. In the following
two subsections we discuss the two models: f (R) = R − αRn and
f (R) =

(
Rb

− Λ
)c , separately.

4.1. The f (R) = R − αRn gravity

In this model, we study the f (R) = R − αRn model of gravity
in the presence of a uniform magnetic field. We investigate the
influence of the primordial magnetic field on the dynamics of the
Bianchi I universe. The physical fixed points from the autonomous
system in this model provide physical interest. The general condi-
tions for a successful f (R) = R − αRn model can be summarized as
follows:

• The point P (1)
1 is a stable fixed point when 0 ≤ n < 2. It

behaves like a de-Sitter fixed point featuring a late-time de-
sitter acceleration. It can also be the saddle if n > 2. At late

time, the universe in this model can be described by the de-
Sitter acceleration solution given by

a(t) = exp(λt), λ = arbitrary constant, M2
= 0. (62)

• The fixed point P (1)
2 is always saddle point. The standard

matter-dominated epochwith the non existence of themag-
netic field might be represented by this fixed point. It is
controlled by the following parameters:

weff = −1 +
1
n
, a(t) = a0(t − t0)

2n
3 , M2

= 0.

We note that this fixed point becomes the standard matter
epoch if n = 1.

• For the fixed point P (1)
3 in the f (R) = R − αRn model,

this fixed point might be presented as the beginning of
the universe with the curvature-dominated epoch if it is
unstable node with the condition in Eq. (44). In this epoch,
the curvaturemaydrive cosmic inflation. However, the fixed
point is stable if it is satisfied the condition in Eq. (45).

• The fixed point P (1)
4 is called the Jacobs magnetic-like (with

curvature) fixed point stemming from the fact that it has the
analogous solution to the Jacobs magnetic field solution in
Bianchi I in GR theory [37]. This fixed point is always saddle
point. Here at this stage the universe is anisotropic with the
existence of the magnetic field. Its existence satisfies the
condition given in Eq. (47). Interestingly, this would also be
compelling since the universe with a primordial magnetic
field is necessary anisotropic.

Previously,wehave alreadydiscussed about the shear evolution
for all points in the phase space. The conditions of these points to
fall whether into the SSD or FSD regions are given in Eq. (49). With
the given number n = 1.25 of the parameter in this model, the
shear evolution falls into SSD regime when n > 8/7. We will end
this subsection by examining how shear and magnetic field in this
model evolve with time. We find that the shear and the magnetic
field will be diluted as illustrated in Fig.1. Moreover, by comparing
the magnetic field decays a bit faster than the shear.

4.2. The f (R) =
(
Rb

− Λ
)c gravity

In this model, we study the f (R) =
(
Rb

− Λ
)c model of gravity

in the presence of a uniform magnetic field. We investigate the
influence of the magnetic field on the dynamics of the Bianchi I
universe. The physical fixed points from the autonomous system in
this model provide physical interest. The general conditions for a
successful f (R) =

(
Rb

− Λ
)c model can be summarized as follows:

• The P (2)
1 point can be the late-time de-Sitter acceleration

if it is stable fixed point. Its stable condition of this point
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Fig. 1. The plot shows the parameter evolution of the f (R) = R − αRn model. The dashed line shows how shear evolves with the cosmic-time scale; whilst the solid line
represents how the magnetic field evolves with the cosmic-time scale for σ0 = a0 = H̃0 = 1.

is shown in Eq. (54). On the other hand, this fixed point
might be represented as the early epoch of the universe
with the condition in Eq. (54). The saddle point condition
is otherwise. The universe at late time can be described by
the de-Sitter acceleration parametrized by

a(t) = exp(λt), λ = arbitrary constant, M2
= 0. (63)

• The fixed point P (2)
2 is always saddle point. The standard

matter-dominated epochwith the non existence of themag-
netic field might be represented by this fixed point. It is
controlled by the following parameters:

weff = −1 +
1
bc

, a(t) = a0(t − t0)
(
2bc
3

)
, M2

= 0. (64)

Note that this fixed point exactly becomes the standard
matter epoch if bc = 1.

• For the fixed point P (2)
3 in the f (R) =

(
Rb

− Λ
)c model,

this fixed point might be presented as the beginning of
the universe with the curvature-dominated epoch if it is
unstable nodewith the condition in Eq. (57). Note that in this
epoch the curvature drives cosmic inflation in agreement
with the Starobinskimodel of inflation. To bemore concrete,
in the following discussion, we will use the specific values
of b and c such that bc → 1 with c ≥ 1. These special
values are given by the local-gravity constraints of the viable
f (R) DE model for the standard flat-FLRW spacetime (with
an isotropic universe) [17]. For example, using b ∼ 0.50, we
obtain 2.0 < c < 2.5. For our purpose, we select b ∼ 0.50
and c ∼ 2.33. Using these values, we come up with only
15% deviation from bc → 1. However, there are many other
choices for their values.

• The fixed point P (2)
4 is called the Jacobs magnetic-like (with

curvature) fixed point, i.e. it has the analogous solution to
the Jacobs magnetic field solution in Bianchi I in GR the-
ory [37]. This fixed point is always saddle point. Here at
this stage the universe is anisotropic with the existence of
themagnetic field. Its existence satisfies the condition given
in Eq. (59). As of the preceding model, this would also be
compelling since the universe with a primordial magnetic
field is necessary anisotropic.

As we already discussed about the shear evolution for all points
in the phase space, we then obtain the conditions in which these
points fall either into the SSD or FSD regions given in Eq. (60).
In contrast to the previous f (R) model, the shear evolution of the
present model falls into FSD regime with the given number of
the parameters b = 0.5 and c = 2.33. Here we will furnish
this subsection by examining how shear and magnetic field in this
model evolve with time. We find that the shear and the magnetic
fieldwill be diluted as illustrated in Fig.2. Similarly to the preceding
model, the magnetic field also decays a bit faster than the shear.

It was noticed that the class of f (R) gravity models based on
the isotropic manner which have a viable cosmological expansion
chronology, i.e. a matter dominated epoch followed by a late-
time acceleration, was classified in Ref. [17]. Here they provided
a common value of the parameters of the model for which one can
assume the presence of a relevant cosmological orbit. However,
in the present investigation, we extended the selected models of
f (R) gravity by considering the anisotropic counterpart of flat FLRW
metric. Hence, the value of the parameters for the presence of the
chronology of a cosmological orbit in our work may deviate from
those present in Ref. [17].

5. Conclusions

In this work, we study the cosmological dynamics of the mag-
netic Bianchi I with viable f (R) model of gravity. The dynamical
system analysis are utilized to examine the viable f (R) = R − αRn

and (Rb
−Λ)c models. In summary, we can highlight our study into

2 distinct cases:

• For the f (R) = R − αRn model, we found 4 physical fixed
points. There are 3 isotropic solutions and 1 anisotropic
case with the presence of primordial cosmological magnetic
fields. Based on the viable cosmological sequence, by taking
n = 1.25, the universe starts with the isotropic space-
time with curvature-dominated epoch (P (1)

3 ) and it devel-
ops to the anisotropic universe with the presence of the
primordial cosmological magnetic fields (P (1)

4 ). After that,
the universe isotropizes with the standard matter epoch
(P (1)

2 ) and evolves to the de-Sitter late-time acceleration
scenario (P (1)

1 ). Even though, the given number n = 1.25
violates the local gravity and cosmological constraints but
its constraint is viable only in the FLRW counterpart. Our
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Fig. 2. The plot shows the parameter evolution of the f (R) =
(
Rb

− Λ
)c model. The dashed line shows how shear evolves with the cosmic-time scale; whilst the solid line

represents how the magnetic field evolves with the cosmic-time scale for σ0 = a0 = H̃0 = 1.

numerical value, n = 1.25, might be correct in the magnetic
Bianchi I background. The shear evolution of this model has
the scale in the cosmic-time as t−

1
3 which is slower than the

standard GR. The magnetic fields play an important role on
the shear dissipation as shown in Eq. (37). The primordial
cosmologicalmagnetic fields decay a little bit faster than the
shear with almost the same scale.

• The f (R) = (Rb
− Λ)c gravity has 4 physical fixed points

obtained from the autonomous system. It has the same cos-
mological chronology as the previous model. The sequence
of the universe is P (2)

3 → P (2)
4 → P (2)

2 → P (2)
1 which

gives the reasonable evolution of the universe history with
the parameters b = 0.5 and c = 2.33. In addition, these
parameter values are compatible with the conditions of the
viable f (R) DE of this model, i.e. c ≥ 1 and bc ≈ 1.
Surprisingly, the f (R) = (Rb

− Λ)c model has the same
cosmic-time scale of the shear evolution as the previous
model, a.k.a. t−

1
3 .

One notes that these 2 models fall into the class A1 of the
f (R) model, i.e. they have the de-Sitter stable point at late-time.
The explicit treatment of these two models have been carried
out in Ref. [17] on the FLRW background. Our present study is
extended to the anisotropic counterpart of flat FLRW metric. We
found that the presence of the anisotropic geometry with LSR from
Bianchi I background and the cosmological magnetic fields give an
additional fixed point before the emergence of the standardmatter
epoch. This fixed point shows the existence of the primordial mag-
netic fields and the anisotropy of spacetime before the universe
expands to become the isotropic geometry. The shear evolution
modifies dissipative behavior by the primordial cosmologicalmag-
netic fields significantly as σ ∼ t−

1
3 (in both of two f (R) models).

While for the absence of the magnetic fields case, it gives σ ∼ t−1.
In addition, the shear dissipation of the f (R) = R−αRn gravity is in
the SSD regime with the given number n = 1.25; whilst the shear
evolution in the f (R) = (Rb

− Λ)c model is in the FSD regime with
b = 0.5 and c = 2.33.

Based on the viable f (R) DE models, moreover, the reasonable
evolution of the universe history for the f (R) = (Rb

− Λ)c gravity
with b = 0.5 and c = 2.33 is more compatible with the viable
conditions (c ≥ 1 and bc ≈ 1) than the f (R) = R−αRn model with
n = 1.25 (the viable one is 0 < n < 1). It is worth noting thatmore
complicated versions of viable f (R) models (e.g. Starobinski [18]

andHu–Sawicki [19]models) have no close forms of them function
written in terms of the variable r = x3/x2 by using the standard
dynamical system approach. However, the authors of Refs. [53]
proposed a new approach of the dynamical system to handle the
problem. Our forthcoming work is to use such the new approach
to tackle the Starobinski and Hu–Sawicki f (R) models.
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We study octet-octet baryon (JP = 1

2

+
) contact interactions in SU(3) chiral effective field theory

by using large-Nc operator analysis. Applying the 1/Nc expansion of the Hartee Hamiltonian,
we find 15 operators in the octet-octet baryon potential where 4 operators for leading order (LO)
and 11 for and net-to-next-to-leading order (NNLO). The large-Nc operator analysis of octet-octet
baryon matrix elements reduces the number of free parameters from 15 to 6 at LO of the 1/Nc

expansion. The application of large-Nc sum rules to the Jülich model of hyperon-nucleon (YN)
interactions at the LO of the chiral expansion reduces the model parameters to 3 from 5 at the LO
of 1/Nc expansion. We find that the values of LECs fitted to YN scattering data in Ref. [20] in
the relativistic covariant ChEFT (EG) approach is more consistent with the predictions of large-Nc

than in the heavy baryon (HB) formalism approach.

PACS numbers:

I. INTRODUCTION

Chiral effective field theory (ChEFT) [1, 2], based on the approximately and spontaneously broken chiral symmetry
of QCD, allows for a systematic way of calculating low-energy hadronic observables. It is very efficient and convenient
to use hadrons as basic degrees of freedom rather than quarks and gluons in the ChEFT. Chiral Lagrangian is required
to include all possible interactions between hadrons which are constructed in terms of the relevant symmetries of QCD
[3]. A number of low-energy properties in the strong interaction is very successfully described by using the ChEFT.
The ChEFT is also utilized to shed light on the study of nuclear forces (see [4, 5] for reviews). It was demonstrated
by Weinberg’s seminal works [6, 7] that one can calculate the nuclear forces systematically by using appropriate
power counting scheme. Therefore, loop-corrections and higher order terms can be included for the accuracy of
the calculations. Nucleon-nucleon (NN) forces derived in the ChEFT successfully described a huge number of NN
experimental data. The NN potentials are composed of the long and short range interactions, where the long range
NN force is mainly contributed by the pion exchange while the short range part is encoded by contact term NN
interactions with unknown low-energy constants (LECs) to be fitted to experimental data. The higher order contact
terms of the NN potentials have been constructed in Refs. [8, 9] at next-to leading order (NLO) and in Refs. [10, 11]
for next-to-next-to-next-to leading order (N3LO) in terms of chiral expansions.
On the other hand, hyperon-nucleon (YN) and hyperon-hyperon (YY) forces have been less studied compared with

the NN forces. YN interactions are keys for understanding hyper-nuclei and neutron stars [12, 13]. The contact and
meson exchange terms of the YN interactions in the ChEFT were constructed by using the SU(3) flavor symmetry
in Ref. [14] at leading order (LO) and extended to NLO in Ref. [15]. The most general SU(3) chiral Largrangians of
the octet-octet baryon contact term interactions have been worked out in Ref. [16]. The study of the YY interactions
was performed in Refs. [17–19]. At the LO of the YN interactions [14, 20], the SU(3) chiral Lagrangian has 15 free
parameters (LECs) and the partial-wave expansion analysis leads to 5 LECs which are fixed with YN data. In this
work, we will use the large-Nc operator analysis to explore the Nc scales and reduce the number of the unknow LECs
in the SU(3) chiral Largrangians and in the LO YN potential [14, 20].

∗Electronic address: daris.sa@rmuti.ac.th
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Large-Nc is an approximate framework of QCD and very useful in the study of hadrons at low-energies. The basic
idea is that one can consider the number of colors (Nc) to be large and expand it in power of 1/Nc [21, 22]. By using
this framework, a number of simplifications of QCD occurs in the large-Nc limit (see Refs. [23, 24] for reviews). The
1/Nc expansion of QCD for the baryon [25–27] has been applied to the NN potential in [28–30] and three-nucleon
potential in [31]. Moreover, the 1/Nc expansion is used to study parity-violating NN potentials in [32, 33] as well
as time-reversal violating NN potentials [34]. The study of the large-Nc analysis in the NN system provides the
understanding of the Nc scales of the LECs in the NN forces. In addition, the 1/Nc expansion also helps us to reduce
the independent number of the LECs [33]. However, the octet-octet baryon interactions in SU(3) flavor symmetry have
not been investigated in the large-Nc approach. In this work, we will extend the large-Nc operator analysis in Refs.
[29, 31] to the SU(3) chiral Lagrangian in Refs. [14, 20]. The large-Nc octet-octet baryon potential is constructed up
to NNLO in terms of the 1/Nc expansion. We will apply large-Nc sum rules to YN interactions at LO which has been
recently investigated in Ref. [20]. Moreover, the results can be applied to the YN at NLO and YY sector.
We outline this work as follows: In section 2 we will setup the matrix elements of the octet-octet baryon potential

from the SU(3) chiral Lagrangian. In the next section, the potential of the 1/Nc expansion is constructed up to NNLO
and large-Nc sum rules for LECs are implied. In section 4, we apply results of the large-Nc sum rules to the LO YN
potential. In the last section, we give the conclusion in this work.

II. THE POTENTIAL OF THE SU(3) OCTET-OCTET BARYON CONTACT TERM INTERACTIONS

We start with the SU(3) chiral Largrangian of the octet-octet baryon interactions and it was proposed by Ref.
[14]. The SU(3)-flavor symmetry is imposed and the chiral Lagrangian is Hermitian and invariant under Lorentz
transformations and the CPT discrete symmetry is implied. The minimal SU(3) invariant chiral Lagrangian with
non-derivative is given by,

L

(1) = C
(1)
i

〈
B̄1B̄2 (ΓiB)2 (ΓiB)1

〉
,

L

(2) = C
(2)
i

〈
B̄1 (ΓiB)1 B̄2 (ΓiB)2

〉
,

L

(3) = C
(3)
i

〈
B̄1 (ΓiB)1

〉 〈
B̄2 (ΓiB)2

〉
. (1)

Here 1 and 2 denote the label of the particles in the scattering process, the B is the usual irreducible octet represen-
tation of SU(3) given by

B =
1
√

2

8∑

a=1

λaBa =




Σ0

√
2
+ Λ√

6
Σ+ p

Σ− −Σ0

√
2

+ Λ√
6

n

−Ξ− Ξ0
−

2Λ√
6


 , (2)

where the 〈· · · 〉 brackets denote taking the trace in the three-dimensional flavor space and the normalization of
Gell-Mann matrices 〈λa λb

〉 = 2 δab is used. The Γi are the usual elements of the Clifford algebra

Γ1 = 1 , Γ2 = γµ , Γ3 = σµν , Γ4 = γµγ5 , Γ5 = i γ5 . (3)

By using the chiral power counting in Ref. [14], it has been shown that we have 15 LO non-derivative terms of
the chiral Lagrangian. It has also been demonstrated in Ref. [14] that the above Lagrangians are the minimal set
of the contact interaction terms in terms of flavor and spin structures by using Cayley-Hamilton identity and Fierz
transformation.
To obtain the potentials, we follow approach in Refs. [37, 38] by imposing relativistic covariant constraints. Letting
H = −L and taking the approach of the relativistic constraints in [37, 38] into account, one obtains the potential of
the octet-octet baryon contact interactions up to the second order of the small momenta of the baryons and it reads,

V (1) = 〈χ̄2, d ; χ̄1, c | H
(1)
| a, χ1 ; b, χ2〉

=

{
1

3
δcdδba +

1

2

(
dcde + if cde

)(
deba + ifeba

)}

×

{
c
(1)
S ÕS + c

(1)
T ÕT +

(
c
(1)
1 p2− + c

(1)
2 p2+

)
δχ̄1χ1

δχ̄2χ2
+
(
c
(1)
3 p2− + c

(1)
4 p2+

)
~σ1 · ~σ2

+ c
(1)
5

i

2
(~σ1 + ~σ2) · (~p+ × ~p−) + c

(1)
6 (~p− · ~σ1)(~p− · ~σ2) + c

(1)
7 (~p+ · ~σ1)(~p+ · ~σ2)

}
, (4)
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where

ÕS = δχ̄1χ1
δχ̄2χ2

+
i

2M2
(~p+ × ~p−) · (~σ1 − ~σ2) ,

ÕT = ~σ1 · ~σ2 −
i

2M2
(~p+ × ~p−) · (~σ1 − ~σ2) , (5)

and ~σi ≡ ~σχ̄iχi
with i = 1, 2. The indices a (c), b (d), χ1 (χ̄1) and χ2 (χ̄2) are flavor and spin indices of incoming

(outgoing) baryon number 1 and 2 respectively and M is the octet baryon mass in the SU(3) flavor symmetry limit.
We note that the octet-octet baryon potentials agree with the heavy baryons formulation of ChEFT in [39, 40] for the
spin structures. By using the partial integrations and the baryon equation of motion to eliminate time derivative as
shown in Refs. [37, 38], the potential in Eq. (4) is the minimal set of linearly independent operators and it consists

of 2 LO and 7 NLO operators (see appendix A for the detail derivation of the potential). The LECs, c
(1)
i are linear

combinations of the couplings C
(1)
i as,

c
(1)
S = C

(1)
1 + C

(1)
2 , c

(1)
T = C

(1)
3 − C

(1)
4 , c

(1)
1 = −

1

4M2

(
C

(1)
2 + C

(1)
3

)
, c

(1)
2 = −

1

2M2

(
C

(1)
1 − C

(1)
2

)
,

c
(1)
3 = −

1

4M2

(
C

(1)
2 + C

(1)
3

)
, c

(1)
4 =

1

4M2

(
C

(1)
3 − C

(1)
4

)
, c

(1)
5 = −

1

2M2

(
C

(1)
1 − 3C

(1)
2 − 3C

(1)
3 − C

(1)
4

)
,

c
(1)
6 =

1

4M2

(
C

(1)
2 + C

(1)
3 + C

(1)
4 + C

(1)
5

)
, c

(1)
7 = −

1

4M2

(
C

(1)
3 + C

(1)
4

)
. (6)

In addition, it is worth to discuss about the chiral power counting (Q/M) where a Q is typical three momentum of
the baryon. If we impose M ∼ Λ where Λ is a chiral symmetry breaking scale. Therefore, our power counting rule in
this work adopts Q/M ∼ (Q/Λ)

2
which has been used in Refs. [9, 10] for the NN potentials. The notations of the

momentum in this work are defined below

~p+ =
1

2
(~p ′ + ~p) , p2+ = ~p+ · ~p+ , ~p− = ~p ′

− ~p , p2− = ~p− · ~p− , ~n = ~p× ~p ′ = ~p+ × ~p− , (7)

where ~p (~p ′ ) is incoming (outgoing) three-momentum in the c.m. frame and the on-shell condition of the external
momenta is given by

~p+ · ~p− = 0 . (8)

With the same manner, the octet-octet baryon potentials for C
(2)
i and C

(3)
i are written by

V (2) = 〈χ̄2, d ; χ̄1, c | H
(2)
| a, χ1 ; b, χ2〉

=

{
1

3
δcaδbd +

1

2

(
dcae + if cae

)(
dedb + ifedb

)}

×

{
c
(2)
S ÕS + c

(2)
T ÕT +

(
c
(2)
1 p2− + c

(2)
2 p2+

)
δχ̄1χ1

δχ̄2χ2
+
(
c
(2)
3 p2− + c

(2)
4 p2+

)
~σ1 · ~σ2

+ c
(2)
5

i

2
(~σ1 + ~σ2) · (~p+ × ~p−) + c

(2)
6 (~p− · ~σ1)(~p− · ~σ2) + c

(2)
7 (~p+ · ~σ1)(~p+ · ~σ2)

}
, (9)

and

V (3) = 〈χ̄2, d ; χ̄1, c | H
(3)
| a, χ1 ; b, χ2〉

= δcaδbd
{
c
(3)
S ÕS + c

(3)
T ÕT +

(
c
(3)
1 p2− + c

(3)
2 p2+

)
δχ̄1χ1

δχ̄2χ2
+
(
c
(3)
3 p2− + c

(3)
4 p2+

)
~σ1 · ~σ2

+ c
(3)
5

i

2
(~σ1 + ~σ2) · (~p+ × ~p−) + c

(3)
6 (~p− · ~σ1)(~p− · ~σ2) + c

(3)
7 (~p+ · ~σ1)(~p+ · ~σ2)

}
, (10)

where the LECs in Eqs. (9) and (10) are the linear combinations of the couplings as in Eq. (6) by replacing c
(1)
i → c

(2,3)
i

and C
(1)
i → C

(2,3)
i . By using relativistic reductions as in [37, 38], we obtain the minimal set of the SU(3) octet-octet

baryon potentials and there are 27 operators totally. Moreover, Fierz identities for the Gell-mann matrices (λa) are
also taken into account for the calculations of the potentials in Eqs. (4), (9) and (10). We found that there is no the
redundant terms of the SU(3) flavor structures. We obtain 6 and 21 operators at LO and NLO of the small momentum

scale expansion (Q/M). At the LO, the operators from the couplings C
(1,2,3)
1,2,3,4 enter to contribute the potential but
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the couplings C
(1,2,3)
5 start at NLO. We will reduce the independent number of the LECs of the SU(3) octet-octet

baryon interactions in the ChEFT by using the large-Nc operator analysis in the next section.

III. THE 1/Nc OPERATOR PRODUCT EXPANSION ANALYSIS OF THE TWO-BARYON MATRIX
ELEMENTS

A. The 1/Nc expansion octet-octet baryon ansatz

In this section, we are going to study the 1/Nc expansion for the octet-octet baryon matrix elements. According
to Witten’s conjecture [22], the matrix elements of baryon-baryon scattering should scale like Nc, i.e. [28, 29] ,

Nc

〈
B1 | Ô

i
1 |B1

〉〈
B2 | Ô

i′

2 |B2

〉
, (11)

where Ôi
1 and Ôi′

2 operators are the i- and i′-quark current operators on the first and the second baryon. It has proven
in the Ref. [27] that the matrix elements for one baryon in SU(3) flavor symmetry has the Nc scaling as,

〈
Bj | Ô

i
j |Bj

〉
. N0

c , (12)

with j = 1, 2 . This holds for the matrix elements of the second baryon as well. One can expand the matrix elements
in terms of effective quark operator and effective spin-flavor baryon states in 1/Nc expansion as [26, 27],

〈
B | Ôi

|B
〉
=
(
B |

∑

r

c(i)r

(
O

Nc

)r

|B
)
, (13)

where c
(i)
r is a function which contains dynamical properties of the system and |B

)
is an effective baryon state

composed of spin and flavor structures only [26, 27]. The Or are the r-body operators which comprises of the effective
quark operators [28, 29],

(
O

Nc

)r

=

(
J

Nc

)l (
T

Nc

)m (
G

Nc

)n

, with l +m+ n = r . (14)

The operators J , T and G are spin, flavor and spin-flavor operators, respectively and they are defined by [26, 35],

1 = q†(1⊗ 1) q , Ji = q†
(σi

2
⊗ 1) q ,

T a = q†
(
1⊗

λa

2

)
q , Ga

i = q†
(σi

2
⊗

λa

2

)
q , (15)

where q and q† are quark annihilation and creation operators respectively. According to the fully antisymmetry and
Fermi statistics of the SU(Nc) color group, the spin and flavor of baryonic ground state of the Nc quarks have to be
completely symmetric representation. Therefore one can consider quark operators q and q† as bosonic operators with

the commutation relation
[
q , q†

]
= 1 . The Nc scaling of the r-body operator Or and the the coefficient c

(i)
r scale like

[28, 29],

(
B | Or

|B
)
. N r

c , c(i)r ∼ N0
c . (16)

In addition, The one-baryon matrix elements of the operators J , T and G in SU(3) flavor symmetry framework have
Nc scaling in the following way [26]

(
B | J i

|B
)
∼ N0

c ,
(
B | 1 |B

)
∼ Nc ,

(
B |T a

|B
)
. Nc ,

(
B |Gi a

|B
)
. Nc . (17)

In contrast to the SU(2) flavor symmetry, there is only one operator that can suppress rising of the Nc for one-baryon
matrix elements i.e. the J whereas all the rest of the effective operators rises the Nc factor. However, the symbol, . is
used for saturating the maximum of the Nc scaling for the

(
B |T a

|B
)
and

(
B |Gi a

|B
)
because the matrix elements

of the T a operator scales like N0
c for a = 1, 2, 3, but as

√

Nc when a = 4, 5, 6, 7 and as Nc when a = 8 . On the other
hand, the matrix elements of the Gi a scales like Nc for a = 1, 2, 3, as

√

Nc when a = 4, 5, 6, 7 and as N0
c when a = 8

[26]. These are the differences of the effective operators between SU(2) and SU(3) flavor symmetries. Moreover, it is
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worth to discuss about the Nc scaling of the external momentum variables. Here we consider all momentum in c.m.
frame as we discussed in the previous section. One recalls the Nc scaling of the momentum variables in Eq. (7), it
reads [29],

~p+ ∼ 1/Nc , ~p− ∼ N0
c . (18)

In a meson exchange picture, the ~p+ can only appear in the baryon-baryon potential as a relativistic correction (i.e., a
velocity dependent term). Therefore, the ~p+ always come with the factor 1/M . Since M ∼ Nc, this gives ~p+ ∼ 1/Nc

(for more detail discussions see [29, 31, 33]). The baryon-baryon potential in terms of 1/Nc expansion can be written
in the Hartee Hamiltonian [29, 31, 33]. It takes the following form,

Ĥ = Nc

∑

r

∑

lm

cr,lm

(
J

Nc

)l(
T

Nc

)m(
G

Nc

)r−l−m

, (19)

where again the cr,lm coefficient function has scale N0
c . It is well know that, at the large-Nc limit, the spin-1/2 and

3/2 baryons are degeneracy states. In this work, we project the Hamiltonian Ĥ to the octet (spin-1/2) baryon sector
only. This has been discussed extensively in [29]. We will construct the Hamiltonian in order of 1/Nc expansion.
Then the leading-order (LO) is given by

ĤLO = ULO
1 (p2−)11 · 12 + ULO

2 (p2−)T1 · T2 + ULO
3 (p2−)G1 ·G2 + ULO

4 (p2−) (p
i
−p

j
−)(2) · (G

i,a
1 Gj,a

2 )(2) , (20)

where T1 · T2 = T a
1 T

a
2 and G1 ·G2 = Gi,a

1 Gi,a
2 . ULO

i (p2−) is arbitrary function of the p2− and it has N0
c scale. Here we

also introduce the notation,

(AiBj)(2) ≡
1

2

(
AiBj +AjBi

−

2

3
δijA ·B

)
, (21)

and then

(pi±p
j
±)(2) · (σ

i
1σ

j
2)(2) = (~p± · ~σ1)(~p± · ~σ2)−

1

3
p2±σ1 · σ2 . (22)

In this work, we terminate the 1/Nc expansion at the 1/N2
c order. Then, the octet-octet baryon Hamiltonian at

NNLO takes the following form,

ĤNNLO = UNNLO
1 (p2−) p

2
+11 · 12 + UNNLO

2 (p2−) ~J1 · ~J2 + UNNLO
3 (p2−) ~J1 · ~J2 T1 · T2 + UNNLO

4 (p2−) p
2
+T1 · T2

+ UNNLO
5 (p2−) p

2
+G1 ·G2 + UNNLO

6 (p2−) i (~p+ × ~p−) · ( ~J1 + ~J2) + UNNLO
7 (p2−) i (~p+ × ~p−) · (T

a
1
~Ga
2 + ~Ga

1T
a
2 )

+ UNNLO
8 (p2−) i (~p+ × ~p−) · ( ~J1 + ~J2)T1 · T2 + UNNLO

9 (p2−) (p
i
−p

j
−)(2) · (J

i
1J

j
2 )(2)

+ UNNLO
10 (p2−) (p

i
−p

j
−)(2) · (J

i
1J

j
2 )(2) T1 · T2 + UNNLO

11 (p2−) (p
i
+p

j
+)(2) · (G

i,a
1 Gj,a

2 )(2) . (23)

Here the 1/Nc scale factor is implied on each effective operators, 1, J , T and G implicitly. The functions ULO
i (p2−)

and UNNLO
i (p2−) have N0

c scale. Noting that there are no p2+J1 · J2 and (pi+p
j
+)(2) · (J

i
1J

j
2 )(2) structures because these

operators have a further suppression in order 1/N4
c .

Let’s us discuss comparisons between the octet-octet baryon potential and the nucleon-nucleon potential in the 1/Nc

expansion. In the case of the SU(3) flavor symmetry, we find addition operator T1 ·T2 at LO instead of NNLO because
T 8 T 8/Nc ∼ Nc while there is no such operator in nucleon-nucleon potential. Superficially, the two-body operator,
T aGi a/Nc should scale like Nc by using the Nc scale counting rules in Eq. (17). But if we consider the operator
more carefully then we find T aGi a/Nc ∼ N0

c because T 1,2,3Gi 1,2,3/Nc ∼ T 4,5,6,7Gi 4,5,6,7/Nc ∼ T 8Gi 8/Nc ∼ N0
c .

Surprisingly, the SU(3) octet-octet potential has the same structures as the nucleon-nucleon potential in SU(2) flavor
symmetry i.e. there is no NLO term in the 1/Nc expansion. The extension of the flavor symmetry from SU(2) to
SU(3) does not change the profile of the 1/Nc potential. Before closing this section, we would like to summarize the
1/Nc expansion octet-octet baryon Hamiltonian. There are 4 LO operators. At the NNLO of 1/Nc expansion, we
obtain 11 operators. We totally have 15 operators of 1/Nc expansion for octet-octet baryon potential.
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B. Matching the octet-octet baryon potential of the SU(3) chiral Lagrangian with the 1/Nc operator
product expansion

We will evaluate, in this section, the octet-octet baryon potential from the Hartee Hamiltonian in Eqs. (20) and
(23). The 1/Nc potential is given by

V =
(
χ̄2, d ; χ̄1, c | Ĥ | a, χ1 ; b, χ2

)
, (24)

where a (c), b (d), χ1 (χ̄1) and χ2 (χ̄2) are flavor and spin indices of incoming (outgoing) baryon number 1 and 2
respectively. After that we will do matching the octet-octet baryon potential and 1/Nc operator product expansion
to correlate the LECs from the chiral Lagrangian in Eq. (1). First of all, we recall the action of the effective operators
on the effective baryon states at Nc = 3 as [35],

1 |a, χ) = 3 |a, χ̄) ,

Ji |a, χ) =
1

2
σ
(i)
χ̄χ |a, χ̄) ,

T a
|b, χ) = i f bca

|c, χ) ,

Ga
i |b, χ) = σ

(i)
χ̄χ

(1
2
dbca +

i

3
f bca

)
|c, χ̄) + · · · , (25)

where · · · stands for a relevant structure of spin- 32 baryons [35] but we do not consider the spin- 32 baryons degree of

freedom in this work. Before matching operators, we make ansazt for the arbitrary functions ULO
i and UNNLO

i that
they are,

ULO
i (p2−) = gi , UNNLO

i (p2−) = hi . (26)

Using Eq. (25) in Eqs. (20) and (23), the potential in terms of the large-Nc operators at the LO is given by,

VLO = 9 g1 δχ̄1χ1
δχ̄2χ2

δcdδbd + g2 i
2 face f bde δχ̄1χ1

δχ̄2χ2
+ g3 ~σ1 · ~σ2

(
1
2 d

ace + i
3 f

ace
)(

1
2 d

bde + i
3 f

bde
)

+ g4 (p
i
−p

j
−)(2) · (σ

i
1σ

j
2)(2)

(
1
2 d

ace + i
3 f

ace
)(

1
2 d

bde + i
3 f

bde
)
, (27)

and at the NNLO of the 1/Nc expansion takes form,

VNNLO = 9 h1 p
2
+δχ̄1χ1

δχ̄2χ2
δcdδbd +

1

4
h2 ~σ1 · ~σ2 δ

cdδbd +
1

4
h3 ~σ1 · ~σ2 i

2 face f bde + h4 p
2
+ i2 face f bde δχ̄1χ1

δχ̄2χ2

+ h5 p
2
+ ~σ1 · ~σ2

(
1
2 d

ace + i
3 f

ace
)(

1
2 d

bde + i
3 f

bde
)
+

3

2
i h6 (~p+ × ~p−) · (~σ1 + ~σ2) δ

cdδbd

+ i h7 (~p+ × ~p−) ·
[
~σ1

(
1
2 d

ace + i
3 f

ace
)
i f bde + ~σ2 i f

ace
(
1
2 d

bde + i
3 f

bde
)]

+
3

2
i h8 (~p+ × ~p−) · (~σ1 + ~σ2) i

2 face f bde +
1

4
h9 (p

i
−p

j
−)(2) · (σ

i
1σ

j
2)(2) δ

cdδbd

+
1

4
h10 (p

i
−p

j
−)(2) · (σ

i
1σ

j
2)(2) i

2 face f bde + h11 (p
i
+p

j
+)(2) · (σ

i
1σ

j
2)(2)

(
1
2 d

ace + i
3 f

ace
)(

1
2 d

bde + i
3 f

bde
)
.(28)

We note that the Nc scales of the above potentials are VLO ∼ Nc and VNNLO ∼ N−1
c .

By using Eqs. (4), (9), (10), (27) and (28), the Nc scaling relations of the LECs can be extracted,

C
(1)
1,2 ∼ C

(2)
1,2 ∼ C

(3)
1,2 ∼ Nc , C

(1)
3,4,5 ∼ C

(2)
3,4,5 ∼ C

(3)
3,4,5 ∼ N−1

c , (29)

where Λ ∼ N0
c [29, 32, 33] is impled. Note that the couplings C

(1)
1,2,3 , C

(2)
1,2,3,4,5 , C

(3)
1,2,3 are LO of order Nc while the

Nc scaling of the C
(1)
3,4,5 , C

(2)
3,4,5 and C

(3)
3,4,5 are further suppressed by order 1/N2

c . We found that there is no NLO of

the LECs in the 1/Nc expansion.
Matching the spin and flavor structures between the octet-octet baryon potential of the SU(3) chiral Lagrangian

and the 1/Nc expansion up to NNLO, the large-Nc operator analysis leads to the relations between the LECs of the
SU(3) baryon contact interaction and we find the following results,

C
(2)
1 = C

(1)
1 + g2 − 4 h4Λ

2 ,
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C
(2)
2 = C

(1)
2 + g2 + 4 h4Λ

2 ,

C
(2)
3 = C

(1)
3 −

1

2
g2 +

1

8
h3 − 4 h4Λ

2 + 2 h+Λ2 ,

C
(2)
4 = C

(1)
4 −

1

2
g2 −

3

8
h3 − 4 h4Λ

2 + 2 h+Λ2 ,

C
(2)
5 = C

(1)
5 +

1

4
h3 + 4 h4Λ

2
− 4 h+Λ2 + 2 h10Λ

2 ,

C
(3)
1 = −

1

3
C

(1)
1 +

9

2
g1 −

1

3
g2 − 18 h1Λ

2 +
4

3
h4 Λ

2 ,

C
(3)
2 = −

1

3
C

(1)
2 +

9

2
g1 −

1

3
g2 + 18 h1Λ

2
−

4

3
h4 Λ

2 ,

C
(3)
3 = −

1

3
C

(1)
3 −

9

4
g1 +

1

6
g2 − 18 h1Λ

2 +
1

16
h2 −

1

24
h3 +

4

3
h4 Λ

2 +
3

2
h6 Λ

2
−

2

3
h+ Λ2 ,

C
(3)
4 = −

1

3
C

(1)
4 −

9

4
g1 +

1

6
g2 − 18 h1Λ

2
−

3

16
h2 +

1

8
h3 +

4

3
h4 Λ

2 +
3

2
h6 Λ

2
−

2

3
h+ Λ2 ,

C
(3)
5 = −

1

3
C

(1)
5 + 18 h1Λ

2 +
1

8
h2 −

1

12
h3 −

4

3
h4 Λ

2
− 3 h6 Λ

2 + h9 Λ
2 +

4

3
h+Λ2

−

2

3
h10 Λ

2 , (30)

where h+ = 2 h7/3 + 3 h8 . Note that the Jacobi identities for the f and d symbols,

fabe fecd + f bce fead + f cae febd = 0 ,

dabe fecd + dbce fead + dcae febd = 0 (31)

have been used in the matching procedure.
To the LO contributions of the 1/Nc expansion, one can reduce the number of the free parameters with O

(
1/N2

c

)

≡ hi corrections. 9 sum rules of the LECs of the SU(3) octet-octet baryon contact interactions in the ChEFT are
derived

C
(1)
1 = C

(2)
1 = −3C

(3)
1 − 2C

(2)
4 − 6C

(3)
4 , C

(1)
2 = C

(2)
2 = −3C

(3)
2 − 2C

(2)
4 − 6C

(3)
4 ,

C
(1)
3 = C

(2)
3 = −3C

(3)
3 + C

(2)
4 + 3C

(3)
4 , C

(1)
4 = C

(2)
4 , C

(1)
5 = C

(2)
5 = −3C

(3)
5 . (32)

We find that there are 6 free parameters of the SU(3) octet-octet baryon contact interactions in the ChEFT from the
large-Nc operator analysis. At Nc = 3, these sum rules are held up to corrections of the 1/N2

c ≈ 10% approximately.
In order to see the application of the 9 large-Nc sum rules, we will apply our results to YN interactions in next section.

IV. APPLICATION OF THE LARGE-Nc SUM RULES TO THE JÜLICH HYPERON-NUCLEON
CONTACT INTERACTIONS AT THE LO

In this section, we will apply the large-Nc sum rules to the Jülich hyperon-nucleon contact interactions at LO [14].
The LO contact terms of the chiral Lagrangians in Eq. (1) with the large component of the baryon spinors have 6
free parameters. They read, [14],

C
(1)
S , C

(2)
S , C

(3)
S , C

(1)
T , C

(2)
T , C

(3)
T . (33)

The C
(1,2,3)
S,T are linear combinations of the coupling constants in Eq. (1) as

C
(1,2,3)
S = C

(1,2,3)
1 + C

(1,2,3)
2 , C

(1,2,3)
T = C

(1,2,3)
3 − C

(1,2,3)
4 . (34)

The operator from the couplings, C
(1,2,3)
5 does not contribute to the YN potentials at the LO of the chiral expansion.

Applying the large-Nc sum rules in Eq. (32), we find 3 sum rules i.e.,

C
(1)
S = C

(2)
S , C

(1)
T = C

(2)
T = −3C

(3)
T . (35)

Above sum rules give only 3 free parameters and the Nc scalings of those parameters are given by

C
(1,2,3)
S ∼ Nc , C

(1,2,3)
T ∼ N−1

c . (36)
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CΛΛ
1S0 CΣΣ

1S0 CΛΛ
3S1 CΣΣ

3S1 CΛΣ
3S1

EG −0.04795(151) −0.07546(81) −0.01727(124) 0.36367(30310) 0.01271(471)

HB −0.03894(1) −0.07657(1) −0.01629(13) 0.20029(14050) −0.00176(304)

TABLE I: Best-fitted values of Y N s-wave LECs (in units of 104 GeV−2) for cut-off, Λ = 600 MeV in the EG and
HB approaches [20].

It is interesting to note that Nc scalings of the C
(1,2,3)
S,T in Eq. (36) agree with the NN case [29, 31]. The sum rules in

Eq. (35) are useful for calculating the partial wave potentials at the LO in the chiral expansion of the hyperon-nucleon
scattering. The hyperon-nucleon partial wave potentials at LO have been constructed and studied in Ref. [14] and
also re-investigated in [20]. According to the SU(3) flavor symmetry, the authors of the Ref. [14] find that there are
only 5 parameters (potentials) which are used to fit the experimental data of the hyperon-nucleon scattering. The
parameters are read

CΛΛ
1S0 ≡ V ΛΛ

1S0 , CΛΛ
3S1 ≡ V ΛΛ

3S1 , CΣΣ
1S0 ≡ V ΣΣ

1S0 , CΣΣ
3S1 ≡ V ΣΣ

3S1 , CΛΣ
3S1 ≡ V ΛΣ

3S1 , (37)

where the Jülich model of the LO hyperon-nucleon potentials are written in terms of the couplings C
(1,2,3)
S,T in the

following forms [14],

V ΛΛ
1S0 = 4π

[
1

6

(
C

(1)
S − 3C

(1)
T

)
+

5

3

(
C

(2)
S − 3C

(2)
T

)
+ 2

(
C

(3)
S − 3C

(3)
T

)]
,

V ΛΛ
3S1 = 4π

[
3

2

(
C

(1)
S + C

(1)
T

)
+
(
C

(2)
S + C

(2)
T

)
+ 2

(
C

(3)
S + C

(3)
T

)]
,

V ΣΣ
1S0 = 4π

[
2
(
C

(2)
S − 3C

(2)
T

)
+ 2

(
C

(3)
S − 3C

(3)
T

)]
,

V ΣΣ
3S1 = 4π

[
−2
(
C

(2)
S + C

(2)
T

)
+ 2

(
C

(3)
S + C

(3)
T

)]
,

V ΛΣ
3S1 = 4π

[
−

3

2

(
C

(1)
S + C

(1)
T

)
+
(
C

(2)
S + C

(2)
T

)]
. (38)

Using the sum rules in Eq. (35) to the 5 free parameters in Eq. (37), one finds at LO of the 1/Nc expansion,

CΣΣ
1S0 =

8

7
CΛΛ

1S0 −
1

7
CΛΛ

3S1 −
11

21
CΛΣ

3S1 , CΣΣ
3S1 = CΛΛ

3S1 + 9CΛΣ
3S1 . (39)

Note that all of the LECs has the same Nc scaling as Nc. The large-1/Nc analysis of the LO YN potentials predicts
that there are 3 free parameters at the LO of 1/Nc expansion with O

(
1/N2

c

)
corrections. With the same manner of

the large-Nc analysis of the LO YN potentials, one can apply the sum-rules in Eq. (32) for the partial-wave analysis
in the YN potentials at NLO in Ref. [15] as well as for the YY sector in Refs. [15, 17, 18].
Next we will compare the prediction of the large-Nc sum rules in Eq. (39) with the best fitted values of the LECs

from YN scattering data in Ref. [20]. This reference has performed the partial wave analysis of the YN s-wave
scattering by using the same chiral Lagrangian as in our work. Authors in Ref. [20] have used two approaches to
solve scattering amplitudes via Kadyshevsky equation with the relativistic covariant ChEFT (referred as EG) and
Lippmann-Schwinger equation with the heavy-baryon formalisms (referred as HB). The relativistic covariant ChEFT
(EG) approach is also used to study NN interactions in [41]. The best fitted values of the LECs are shown in Tab. I.
We will use the LECs, CΛΛ

1S0, C
ΛΛ
3S1 and CΛΣ

3S1 as input values in Eq. (39) and the large-Nc sum rules predict that

CΣΣ
1S0,EG = −0.06327 , CΣΣ

3S1,EG = 0.1271 ,

CΣΣ
1S0,HB = −0.04333 , CΣΣ

3S1,HB = −0.0176 . (40)

Comparing the LECs, CΣΣ
1S0 and CΣΣ

3S1 from the large-Nc’s predictions with the best fitted values in Tab. I, we found
that CΣΣ

1S0 and CΣΣ
3S1 from large-Nc are in the same order as the best fitted values and with the same relative sign in

EG approach. On the other hand, for the HB formalisms, the CΣΣ
1S0 is also in the same order as the large-Nc value

and with the same relative sign. But for the CΣΣ
3S1 value in HB approach, it is different in order of magnitude of 1

with the large-Nc prediction and with different relative sign. One notes that the LECs best fitted values from EG
and HB approaches have statistical uncertainties at 68 % (one sigma) level. While Ref. [20] concluded that there is
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not much difference between two approaches. But the large-Nc sum rules in this work can show that the LECs from
EG approach is more consistent with the predictions of large-Nc than the HB formalism.

V. CONCLUSIONS

In this work, we studied the large-Nc operator analysis of the octet-octet baryon potential from the SU(3) ChEFT.
The minimal set of the octet-octet baryon potential is derived by using the relativistic constraints as suggestion in
Refs. [37, 38] as well as the Claley-Hamilton identity and Fierz rearrangement to eliminate the redundant operators
as shown in Ref. [14]. Up to NLO of Q/Λ expansion, we found 27 operators for the octet-octet baryon potential in
SU(3) flavor symmetry, 6 in LO and 21 in NLO of the small momentum scale.
The octet-octet baryon potential in the at LO in The 1/Nc expansion is of order Nc and there are 4 operators

while he NNLO potential is of order 1/Nc and we found 11 operators. The LECs of the ChEFT have two Nc scalings,
namely Nc and 1/Nc orders as shown in Eq. (29). Interestingly, the extension of the flavor symmetry from SU(2) to
SU(3) in the large-Nc operator analysis does not change the profile of the potential in terms of the 1/Nc expansion.
There is no NLO for the SU(3) octet-octet baryon potential as for the NN potential [29, 31].
The matching between the octet-octet baryon potential and the 1/Nc operator expansion leads to 6 free parameters

of the LECs from the SU(3) chiral Lagrangian at the LO of the 1/Nc expansion with O
(
1/N2

c

)
≈ 10% correction.

The application of the sum rules in Eqs. (32) from the lareg-Nc constraint to the partial-wave potential of the YN
interactions at LO of the chiral expansion reduces the LECs of the YN optential to 3 from 5.
The comparison of the large-Nc predictions of the LECs with the best fitted values from the YN s-wave scattering

reveals that the large-Nc prediction of the LECs is more consistent with the EG results than the HB formalisms. Noted
that The theoretical results from the EG and HB approaches in Ref. [20] are quantitatively similar in describing the
YN scattering experimental data.
The large-Nc sum rules in this work can also be applied to the NLO of the YN interactions and extended to

the ChEFT potential of the YY sector. In addition, we expect that future lattice QCD calculations may check the
hierarchy of the Nc scalings of the LECs and the large-Nc sum rules predicted in this work.
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Appendix A: The non-relativistic reductions of the chiral Lagrangian

In this appendix, we derive the non-relativistic reductions of the chiral Lagrangian in Eq. (1). Here we follow
the derivation from Ref. [37, 38] and focus for the spin (Dirac) structures of the chiral Lagrangian only. The chiral
Lagrangian can be re-written in terms of operator as

Õ1 ≡ (B̄B)(B̄B) ,

Õ2 ≡ (B̄γµB)(B̄γµB) ,

Õ3 ≡ (B̄σµνB)(B̄σµνB) ,

Õ4 ≡ (B̄γµγ5B)(B̄γµγ5B) ,

Õ5 ≡ (B̄γ5B)(B̄γ5B) . (A1)

The relativistic fermion field B(x) can be expanded to the positive energy components ϕB(x) in the following from
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OS (ϕ†
BϕB)(ϕ

†
BϕB)

OT (ϕ†
BσϕB) · (ϕ

†
BσϕB)

O1 (ϕ†
B

−→

∇ϕB)
2 + h.c.

O2 (ϕ†
B

−→

∇ϕB) · (ϕ
†
B

←−

∇ϕB)

O3 (ϕ†
BϕB)(ϕ

†
B

−→

∇
2ϕB) + h.c.

O4 i (ϕ†
B

−→

∇ϕB) · (ϕ
†
B

←−

∇ × σϕB) + h.c.

O5 i (ϕ†
BϕB)(ϕ

†
B

←−

∇ · σ ×
−→

∇ϕB)

O6 i (ϕ†
BσϕB) · (ϕ

†
B

←−

∇ ×
−→

∇ϕB)

O7 (ϕ†
Bσ ·

−→

∇ϕB)(ϕ
†
Bσ ·

−→

∇ϕB) + h.c.

O8 (ϕ†
Bσ

j
−→

∇

kϕB)(ϕ
†
Bσ

k
−→

∇

jϕB) + h.c.

O9 (ϕ†
Bσ

j
−→

∇

kϕB)(ϕ
†
Bσ

j
−→

∇

kϕB) + h.c.

O10 (ϕ†
Bσ ·

−→

∇ϕB)(ϕ
†
B

←−

∇ · σϕB)

O11 (ϕ†
Bσ

j
−→

∇

kϕB)(ϕ
†
B

←−

∇

jσkϕB)

O12 (ϕ†
Bσ

j
−→

∇

kϕB)(ϕ
†
B

←−

∇

kσjϕB)

O13 (ϕ†
B

←−

∇ · σ
−→

∇

jϕB)(ϕ
†
Bσ

jϕB) + h.c.

O14 2 (ϕ†
B

←−

∇σj
·

−→

∇ϕB)(ϕ
†
Bσ

jϕB)

TABLE II: Operators of the LO and NLO contact term interactions [9], the left (right) arrow on ∇ indicates that
the gradient operates on the left (right) field. Normal-ordering of the field operator products is implied.

[37, 38],

B(x) =

[(
1

0

)
−

i

2M

(
0

σ ·∇

)
+

1

8M2

(
∇

2

0

)]
ϕB(x) +O

(
Q3
)
, (A2)

where M and Q are baryon mass in SU(3) flavor symmetry limit and small momentum scale respectively. Up to order
Q2, the non-relativistic reductions of the operators in Eq. (A1) are given by

Õ1
NR
≃ OS +

1

4M2
(O1 + 2O2 + 2O3 + 2O5) ,

Õ2
NR
≃ OS +

1

4M2
(−4O2 − 2O5 + 4O6 +O7 −O9 + 2O10 − 2O12) ,

Õ3
NR
≃ OT +

1

4M2
(−O1 − 2O2 − 4O5 + 2O6 +O7 − 2O8 + 2O10 − 4O12 − 2O13) ,

Õ4
NR
≃ −OT −

1

4M2
(−2O6 +O7 −O9 − 2O10 − 2O12 + 2O13 − 2O14) ,

Õ5
NR
≃

1

4M2
(O7 + 2O10) , (A3)

where we took the above results from Refs. [37, 38] and the operators Oi (i = 1, ..., 14) are listed in Tab. II.
By using partial integrations, Ref. [39] has been shown that there are only 12 operators are independent with the

following constraints,

O7 + 2O10 = O8 + 2O11 and O4 +O5 = O6 . (A4)

Next step, one re-writes the non-relativistic reductions in Eq. (A3) in terms of the basis in Eqs. (4,9,10) as [37],

AS ≡ ÕS = OS +
1

4M2
(O1 +O3 +O5 +O6) ,

AT ≡ ÕT = OT −
1

4M2
(O5 +O6 −O7 +O8 + 2O12 +O14) ,

A1 ≡ p2− δχ̄1χ1
δχ̄2χ2

= O1 + 2O2 ,

A2 ≡ p2+ δχ̄1χ1
δχ̄2χ2

= 2O2 +O3 ,
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A3 ≡ p2− ~σ1 · ~σ2 = O9 + 2O12 ,

A4 ≡ p2+ ~σ1 · ~σ2 = O9 +O14 ,

A5 ≡ i (~p+ × ~p−) · (~σ1 + ~σ2)/2 = O5 −O6 ,

A6 ≡ (~p− · ~σ1)(~p− · ~σ2) = O7 + 2O10 ,

A7 ≡ (~p+ · ~σ1)(~p+ · ~σ2) = O7 +O8 + 2O13 . (A5)

By using above relations, we obtain the non-relativistic reductions of the chiral Lagrangian in Eq. (1) in terms of the
operators Ai as,

Õ1 ≃ AS +
1

4M2
(A2 −A5) ,

Õ2 ≃ AS −
1

4M2
(A1 +A2 +A3 − 3A5 −A6) ,

Õ3 ≃ AT −
1

4M2
(A1 +A2 +A3 −A4 − 3A5 −A6 +A7) ,

Õ4 ≃ −AT +
1

4M2
(A4 +A5 +A6 −A7) ,

Õ5 ≃
1

4M2
A6 . (A6)

[1] S. Weinberg, Physica A 96, 327 (1979).
[2] J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984),

J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).
[3] S. Scherer and M. R. Schindler, Lect. Notes Phys. 830, pp.1 (2012).

S. Scherer, Adv. Nucl. Phys. 27, 277 (2003) [hep-ph/0210398].
[4] E. Epelbaum, H. W. Hammer and U. G. Meissner, Rev. Mod. Phys. 81, 1773 (2009) [arXiv:0811.1338 [nucl-th]].
[5] R. Machleidt and D. R. Entem, Phys. Rept. 503 (2011) 1 [arXiv:1105.2919 [nucl-th]].
[6] S. Weinberg, Phys. Lett. B 251, 288 (1990).
[7] S. Weinberg, Nucl. Phys. B 363, 3 (1991).
[8] C. Ordonez, L. Ray and U. van Kolck, Phys. Rev. Lett. 72, 1982 (1994).
[9] C. Ordonez, L. Ray and U. van Kolck, Phys. Rev. C 53, 2086 (1996) [hep-ph/9511380].

[10] E. Epelbaum, W. Glockle and U. G. Meissner, Nucl. Phys. A 747, 362 (2005) [nucl-th/0405048].
[11] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003) [nucl-th/0304018].
[12] A. Nogga, H. Kamada and W. Gloeckle, Phys. Rev. Lett. 88, 172501 (2002) [nucl-th/0112060].
[13] D. Lonardoni, A. Lovato, S. Gandolfi and F. Pederiva, Phys. Rev. Lett. 114, no. 9, 092301 (2015) [arXiv:1407.4448

[nucl-th]].
[14] H. Polinder, J. Haidenbauer and U. G. Meissner, Nucl. Phys. A 779, 244 (2006) [nucl-th/0605050].
[15] J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meissner, A. Nogga and W. Weise, Nucl. Phys. A 915, 24 (2013)

[arXiv:1304.5339 [nucl-th]].
[16] S. Petschauer and N. Kaiser, Nucl. Phys. A 916, 1 (2013) [arXiv:1305.3427 [nucl-th]].
[17] H. Polinder, J. Haidenbauer and U.-G. Meissner, Phys. Lett. B 653, 29 (2007) [arXiv:0705.3753 [nucl-th]].
[18] J. Haidenbauer, U. G. Meiner and S. Petschauer, Nucl. Phys. A 954, 273 (2016) [arXiv:1511.05859 [nucl-th]].
[19] J. Haidenbauer and U.-G. Meissner, Phys. Lett. B 684, 275 (2010) [arXiv:0907.1395 [nucl-th]].
[20] K. W. Li, X. L. Ren, L. S. Geng and B. Long, Phys. Rev. D 94, no. 1, 014029 (2016) [arXiv:1603.07802 [hep-ph]].
[21] G. ’t Hooft, Nucl. Phys. B 72, 461 (1974).
[22] E. Witten, Nucl. Phys. B 160, 57 (1979).
[23] E. E. Jenkins, Ann. Rev. Nucl. Part. Sci. 48, 81 (1998)
[24] N. Matagne and F. Stancu, Rev. Mod. Phys. 87, 211 (2015)
[25] R. F. Dashen, E. E. Jenkins and A. V. Manohar, Phys. Rev. D 49, 4713 (1994) Erratum: [Phys. Rev. D 51, 2489 (1995)]

[hep-ph/9310379].
[26] R. F. Dashen, E. E. Jenkins and A. V. Manohar, Phys. Rev. D 51, 3697 (1995) [hep-ph/9411234].
[27] M. A. Luty and J. March-Russell, Nucl. Phys. B 426, 71 (1994) [hep-ph/9310369].
[28] D. B. Kaplan and M. J. Savage, Phys. Lett. B 365, 244 (1996) [hep-ph/9509371].
[29] D. B. Kaplan and A. V. Manohar, Phys. Rev. C 56, 76 (1997) [nucl-th/9612021].
[30] M. K. Banerjee, T. D. Cohen and B. A. Gelman, Phys. Rev. C 65, 034011 (2002) [hep-ph/0109274].
[31] D. R. Phillips and C. Schat, Phys. Rev. C 88, no. 3, 034002 (2013) [arXiv:1307.6274 [nucl-th]].
[32] D. R. Phillips, D. Samart and C. Schat, Phys. Rev. Lett. 114, no. 6, 062301 (2015) [arXiv:1410.1157 [nucl-th]].

http://arxiv.org/abs/hep-ph/0210398
http://arxiv.org/abs/0811.1338
http://arxiv.org/abs/1105.2919
http://arxiv.org/abs/hep-ph/9511380
http://arxiv.org/abs/nucl-th/0405048
http://arxiv.org/abs/nucl-th/0304018
http://arxiv.org/abs/nucl-th/0112060
http://arxiv.org/abs/1407.4448
http://arxiv.org/abs/nucl-th/0605050
http://arxiv.org/abs/1304.5339
http://arxiv.org/abs/1305.3427
http://arxiv.org/abs/0705.3753
http://arxiv.org/abs/1511.05859
http://arxiv.org/abs/0907.1395
http://arxiv.org/abs/1603.07802
http://arxiv.org/abs/hep-ph/9310379
http://arxiv.org/abs/hep-ph/9411234
http://arxiv.org/abs/hep-ph/9310369
http://arxiv.org/abs/hep-ph/9509371
http://arxiv.org/abs/nucl-th/9612021
http://arxiv.org/abs/hep-ph/0109274
http://arxiv.org/abs/1307.6274
http://arxiv.org/abs/1410.1157


12

[33] M. R. Schindler, R. P. Springer and J. Vanasse, Phys. Rev. C 93, no. 2, 025502 (2016) [arXiv:1510.07598 [nucl-th]].
[34] D. Samart, C. Schat, M. R. Schindler and D. R. Phillips, Phys. Rev. C 94, no. 2, 024001 (2016) [arXiv:1604.01437 [nucl-th]].
[35] M. F. M. Lutz and A. Semke, Phys. Rev. D 83, 034008 (2011) [arXiv:1012.4365 [hep-ph]];
[36] M. F. M. Lutz, D. Samart and A. Semke, Phys. Rev. D 84, 096015 (2011) [arXiv:1107.1324 [hep-ph]].
[37] L. Girlanda, S. Pastore, R. Schiavilla and M. Viviani, Phys. Rev. C 81, 034005 (2010) [arXiv:1001.3676 [nucl-th]].
[38] L. Girlanda and M. Viviani, Few Body Syst. 49, 51 (2011).
[39] S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani and R. B. Wiringa, Phys. Rev. C 80, 034004 (2009) [arXiv:0906.1800

[nucl-th]].
[40] E. Epelbaum, W. Gloeckle and U. G. Meissner, Nucl. Phys. A 637, 107 (1998) [nucl-th/9801064].
[41] X. L. Ren, K. W. Li, L. S. Geng, B. W. Long, P. Ring and J. Meng, arXiv:1611.08475 [nucl-th].

http://arxiv.org/abs/1510.07598
http://arxiv.org/abs/1604.01437
http://arxiv.org/abs/1012.4365
http://arxiv.org/abs/1107.1324
http://arxiv.org/abs/1001.3676
http://arxiv.org/abs/0906.1800
http://arxiv.org/abs/nucl-th/9801064
http://arxiv.org/abs/1611.08475

	PhysDarkUniv.17.52_Cosmological dynamics of magnetic Bianchi I in viable f(R) models of gravity .pdf
	Cosmological dynamics of magnetic Bianchi I in viable f(R) models of gravity 
	Introduction
	Evolution equations of f(R) gravity in 1+3 covariant formalisms
	The Einstein field equation in f(R) gravity
	Propagation equations of kinematical quantities in f(R) gravity
	The autonomous system

	Dynamics of magnetic Bianchi I universe in f(R) models of gravity
	Dynamical system of the f(R)=R-αRn gravity
	Fixed points and their stabilities
	The shear and magnetic fields evolutions

	Dynamical system of the f(R)= ( Rb-Λ) c gravity
	Fixed points and their stabilities
	The shear and magnetic fields evolutions


	Cosmological implications
	The f(R)=R-αRn gravity
	The f(R)= ( Rb-Λ) c gravity

	Conclusions
	Acknowledgments
	References


	1710.10068.pdf
	I Introduction
	II The potential of the SU(3) octet-octet baryon contact term interactions
	III The 1/Nc operator product expansion analysis of the two-baryon matrix elements
	A The 1/Nc expansion octet-octet baryon ansatz
	B Matching the octet-octet baryon potential of the SU(3) chiral Lagrangian with the 1/Nc operator product expansion

	IV Application of the large-Nc sum rules to the Jülich hyperon-nucleon contact interactions at the LO
	V Conclusions
	 Acknowledgments
	A The non-relativistic reductions of the chiral Lagrangian
	 References




