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Abstract

Project Code : MRG5980255

Project Title : Analysis of baryon properties in combined chiral and 1/Nc expansions
Investigator : Dr. Daris Samart

E-mail Address : jod_daris@yahoo.com

Project Period : 2 years

In this project, we studied the N*(1875)(3/2") resonance with a coupled channel unitary
scheme, considering the ATC and Z*K, with their interaction extracted from SU(3) chiral
Lagrangians, and then added two more channels, the N*(1535)TT and NGO, which proceed
via triangle diagrams involving the 2K and AT respectively in the intermediate states.

The triangle diagram in the N*(1535)TT case develops a singularity at the same energy as

the resonance mass of the N*(1875)(3/2") state.

On the other hand, 1/Nc expansion is very useful tool to study octet-octet baryon
potential in SU(3) flavor symmetry. By constructing octet-octet baryon potential in
framework of the 1/Nc expansion, we obtain the Nc scale of coupling constants from chiral
Lagrangian for contact term interactions up to next-to-next-to leading order (NNLO). The
application of large-Nc sum rules to the hyperon-nucleon (YN) potential at leading order
(LO) of the chiral expansion reduces the model parameters to 3 from 5 at the LO of 1/Nc

expansion.

Keywords : Chiral SU(3) lagrangian, triangle singularity, coupled channel unitary scheme,

1/Nc expansion, SU(3) flavor symmetry, baryon-baryon interactions
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YK =YK Ar — YK N*(1535)m — ¥*K No — 'K
YK — Am Am — A N*(1535)r - Ar No — Axw

YK — N*(1535)r Am — N*(1535)w 0 0
Y*K = No Am — No 0 0

(24)

danhweundgaildrdunsizenaosiua V a1naunis p asluaunis E HANSANUILTIFIAY
mmsmmmﬂumﬂuiﬂm H H WAy H sazdanaldinivesduiizen OF K — o K 1luted
wﬂmﬂmmﬁauwaﬂuiﬂLmusuaqaumﬂ N*(1875) g1

N UUEITIINT AT UAT AN A AU VB UFaE Yo UFATE1 N3N Se iR i U Auan
wa 1 o A ¥ (Y a =) % 1% 1 A
andAseg MiNeasiunsnseiliavsonsaaedivesounia N<(1875) s lngaasiigaiuain
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Figure 4: @1 |Th|? Mluilsiduremasnulunsoudedemudnatsuia (/s) dmiuaesgufiisen

(Ar, *K) @nuguiisen (Ar, $*K, N*r)

(x10°%
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Figure 5: @1 |Tho)? Mduilsrduvemdsnulunseusediquinansuia (/s) dmsuufisends
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Figure 6: @1 [T3o)? Mluileiduvemdsnulunseusediagudnancuda (/s) dmsuufisends
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(X]_O_S) T T T T T

2
T,

2L i

Onnnn P
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2000
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Figure 7: 1 |Tho|? Mluiliiduresndsnulunseudiedagudnaaua (v/s) dmsuufisends
N1 X*K — No

miﬂizL%qLLUUgﬁm‘%ﬂg‘jﬁ%mﬁjmummmﬁwmulﬁmﬂ T;; Tuaunng Himaﬁ i,j=Am Y*K,N*t, No
LAZIS 1AM ANNIALAEANUNINVBINTAUNDIINANUIVDIIAGIGAVRINTAUN D ILAZAIAIY
nslunsiavyesguizen el

9i 9j
T, = —. (25)
Vs — Mp +it2

W Mz hay Tr ADAIAILALSLIALALAIINNINVDINITEAYHIVEINITAUNDINUAINU WAL
aliresUfisen ©F K v3e i, 5 = 2 uresufjisensnsdeismaluil

T _ % 2 -]?1% T
22’peak = Tpo 92 = 15" A2
2

(26)
i

peak

Tumsiisazli g, Tevinnseauilduazisnanunsarmaiiigaiu g vedeaufisenduqlaain
aunnsneanadl
g9 _ 1L

— (27)
g2 T

peak

dlowlirmasiigriuveatesguiisenrionun sfausavianuniuesnsaatediluusias
¥o3UfAze1l9a1n

1 My,
= =22 g, (28)
= 2n M 9il"pi,

g7 Mp ADUIaUDILLUSeDU

_ ANP(ME, MR, ME)
pi = o

e M, wavesugauludastesisen Ar, XK, N*r, No
AAsAAIUYeYeIU e adleldaunis @ ey @ fiAndsiolull

JR>*K = 1.72 — 070@, 9R,Am = 0.34 + 0592,
gr.N+x = —0.29 + 0.172, gr,No = 0.22 — 0.01s. (30)
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‘ﬂ']ﬂﬂ’]'i/liﬂ6’1\‘1ﬂa'}’Jll’TLlﬂ'}?N‘Vlﬂﬂiﬁﬁﬂﬂ@’)ﬂﬂ’m’ﬁﬂ%ﬂﬂﬁ]’m I, = ‘2])2, LlIE] M; ADINIAVDY

27r M
LLU?E]E’J‘HIUGUEN 1 W p; ﬂaimuummamu Lﬁ']ﬂ']ll'ﬁﬂ‘ﬁ']ﬂ']ﬁﬂﬂﬂ'ﬁﬁa']EJG]'JEJE]EJI@@Q‘L!

Ta, = 25.2 MeV, Isex = 13.1 MeV,
Tyer = 4.2 MeV, Tny = 2.3 MeV. (31)

daneldirasInresiAinsaatefges Aty 44.8 Mev Fatloand1A1 Iy = 71.2 MeV
miﬁmimmﬂiuﬁw H ag13lsfimugneonves N*(1875) in1snszanediilotninuiaves X+ 1 7

1A1AUnIN Ty = 36 MeV [4] Asfuisndsdeainismeatneuhigduresdesnsaanadieasi
FE*K

~ 1 Mp+2lp Ms«+205s
PZ*K — —/ dMR / sz*

Nr Jarp—ory My —2T s
X SR(MR) SE* (sz«) Fz*K(MR,ME*,mK), (32)

510 Sp(My) (W0 Sy (M) fio flsiduainniavesoynia N*(1875) (W3 £*) uay

MR+2FR 5 MZ*+2F2* B _ _
NR:/ dMR/ dME*SR(MR) SE*(Mg*)7

Mp—2Tg My —2D534

1 a Y 1 1 aaa A 1 Y 1 Y 1 A
ﬂ’]ﬂ\‘]‘ﬂﬂ’ﬁﬂﬁ’]EJG]’JEJ’E]EJ‘YJEN“UENUQ‘H?EJ’] YK ‘VlNWUﬂ’]ﬁW’]ﬂ'm’EJUI'JQSZIu‘UEN%ENﬂ’]iﬁﬁ?ﬂ@]’)ﬂ@ﬂﬂ@

- - 1 Ms.
Psvg (Mg, M+, mp) = 27‘(‘]\; QJQQZ*K D, (33)
R
L s
A2(ME, ME., m3)
D = ! 9 M —M * — TN
p VA (Mg — My, K)-

KAZAINNITAUIULALNITENUAIFLAVVDILAAZIILUTINN [4] 92le7n

s e = 33.2 MeV. (34)

W91 A7 19 A3 a2 TU 1 wa 590 999 A AN NS dae A0 698 309 13 UNATE Navun 9z L iy
64.9 MeV Fadlalnaegaanis1baain Tg = 71.2 MeV

LwaLﬂumimmamamimmmmaqwﬂmamﬂaaqﬂumamimaaﬂuamﬂmLimvl,aaﬂslumi
Anwnsaanssnees N*(1875) fiaanesluidu rtr p Iuamuuamma maﬂuwmaamamm

LUUIUIGWIQWJ@IWQﬂLLﬂﬁﬁiﬂugﬂw E dlefiansannansruveavmsuduatunaslelvatuudas
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™ (p1) 7 (p2)
N*+(1875) /
P (p3)
AU
(a)
™ (p1) 7 (po)
N**+(1875) /
P (p3)

N*O
(c)

™ (p2) ™ (p1)
N*+(1875) /
p(ps)
A+
(b)
7r+(P1)
N**(1875) ™ (r)
p(p3)
(d)

Figure 8: uwnunwlrletuuudmiunisaanefivesnisduiios N*(1875) Wd 7A [(@) wag (b)),

aN* [(0)] wag op [(d)].

ASZUIUNITARYAILANTIAL AN

—UER+ S+ AO—rta—p

_ZtR+—>7r—A++—>7r—7r+p =

_ZtR+—>7r+N*O—>7r+7r*p

—it g+ —op—mta—p

1 1
V3

1 g . —»fﬂ'NA

9RmA (—

Y

Myg — Ma + iFTA b2 My

1 —
(—=1S - 7
2( )S P

1 f?TNA

9R,xA

= glR,ﬂ'A(

, (35)
Mz — Ma +it2 my,

2 2. =
g)(_\/;)s'pl

1

; gN* 7N,
Moz — My + 2=

/ 2 o —
gR,aN(_\/;)S‘ (p1 +

1

p2)(=1)

; Yo,
ME —m2 + im,T -

Wo M2 = (pi+pj)%i,j=1,23dmurt, 77, p

Tunsannailisazlda gy- v = 0.70 910 [19] waz

/
gRJrN*

= —gR,N*,
P

, V3
N ’gR,Up'

9Rop = 75 S
foop D1 + Do

(36)

anauilisniouiaz Weuleundavmuadmiumsaaeilunssuiuns RY — otrp 90

WA TUFUR H 91l

— 1ot

(B+C+D)S-
A'S-py+B'S-p,

—

_‘1+(A—|—D)§-p2

(37)
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Figure 9: mamﬁmmmmimumamLﬁmmaﬂuauma VORI 1=, g3 Waw gi— dmdU
13

nsaaefs N*(1875) — mrp e 1,2,3 WIUAIEOUNTIA 7, 7~ kAT p wazkduUTEALAILTIY
fenasNnsHAngouMA TA udenat A uay B luaums @), uaziduUssAhRuumusig
HAIINNITNENRBUNIA TA Uag TN* (ﬁuﬁawaﬁ A, B uag C luaunis @z duduUssdaunu
mamamﬂmimamﬂaumﬂ A, TN* and o N (uuﬂa‘ww A, B, C'kag D tuaun1g @), Uy
ATeafonsdiifinnsanddulszavdamnuinduauvesinne g, ..
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Tnefi
A = 1 IR A 'fﬂNA 1
- TA
3vV2  mx My — Ma+it2
B — 1 9R,xA 'fTrNA 1
- T T = T A
V2 My Mz — Ma +i=9
2 AN+ © ON* 1
C — % Y9RxN* " gN* 7N (38)
\/§ D1 M23—MN*
gRUN ga7r7r 1
D =2 ,
P14 p2|  ME —m2 +im, I,
A= B+C+ D, B'=A+D.

miﬂismaé’hL%amgﬁuéﬂuaamammmmléfafm [4]

d2r AMyMp~—~
t 4M M. 39
dMad M s (27r 1 3203 ZZ tot 12Ma3, (39)
LAZLIIAZINUIN
— 2
YN Jte| = [|A’\2 1| B%52 + 2Re(A'B)py - ) (40)
dlo 7, - 7 ansaeuliegluglves My, fsil

Y3 El, E2 a@

M2 + m? — M2 M2 —+ m2 — M?
El — R 1 237 EQ — R 2 13 (42)
2Mp 2Mp
Tuprsve S9 - 1518uiinsnauns (B9 s My wazvauavestulagnivualilu PDG [4).
T o Limaqmi Mg, Mz, Myy WiTusiuuds dauds My anansadeulvieglugy
My = Mg +mi +m3 +mi — M}, — M3, (43)

NNHaMIAMABITIaYIeINMIN ST EITnalugUT H WNUIANINTTNBVRINIAAY G
o @i My, Husziiamsduiiesiufinssfussdundsnuvosunaouma o dumneanuinduns
AenvesUfitendmuiives No tufaruddguniidieshliaanuniavesmsaaiesden
asefufURanIsnaaesdmsy N*(1875) uasiliduddnlunswannisduieifndulunseuds
nsginsUisendmiuanaaeg

4

2. NMSAATILRANG 2B AN KUS dau denau e lg35 N15N15N S8 dUNdULAY AU ANE
lungufAdn

Tuhtatisnazsusumelada SU3) a1ns)teudmsusunsnsenu090aamnLUIoudodioui
Anfuniidusunisnszarelasansuduwsnisu (LO, Leading Order) dalyifloumiususingluainsng
W@y [20]

I';B) ><32 iB),) (a4)
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log?l 1 uar 2 unuaun1AluNTEUIUNIINIINILIRY uae B Aeeeawmnuusosuiiagluguming
YoIngu SU(3) Beazeglugy

2 A +
L8 st _EOE .7
FXNB S| E T Fag ] @

(Y

wazdydnwaliudu (- - > Aonsunstlumvsng 3x3 LLavuaéuaalasﬁsuaqLuw'%ﬂeﬁsuamﬂaﬁuﬂﬁa

(A% \D) = 25 ypnanildgns T; Aeausnvosiivadia Clifford dusuatuiues st

Q.l

I''=1,Te=" Ts=0", Ty=v"y, I's =i . (46)

Lﬁ??ﬂiﬂimfi’]ﬁﬂ‘cﬂﬂ’]ﬁﬂiuL’iN"UENEJEJﬂLG]‘V]LLUiEJEJUlﬁﬁ@‘EJVI"IG\’]iJ')ﬁﬂ'ﬁIu [21] mamimwmamm
Iﬂ’]?lﬁ&l‘u%L‘ZN?!ZJWVIﬁJ’]']‘IN@ﬂVNL@ﬂaﬂ‘i‘:}mLLUU Fierz wag Claley-Hamilton Lﬂﬂﬂl“le‘WE]ﬂWﬁ]ﬂ(ﬂ'JLuu

msfisndoudnie Taofmuald H = — £ dndn1anszidevesosnmmuuioouiegludusumsn
sengvadlumuiNduduansaunsadeulalvieglusy

VD = (Ya,d; x1. e H W a, x5 b, x2)
_ {l sedgba 4 1 (dcde it (d + Z-feba)} a7)
X {Cs Os + cT OT + (c(l)pQ_ + cé”pi) O51x1050xs + (cél)pz; + cfll)pi) 04 - Oy
+ (1)2(‘71+02) (P x p- )+C((a)( aﬁ(ﬁ,-@)—i—c&”(gﬁ'5’1)(ﬁ+-52)},
ol

? o o - -
OS = 5)21)(15)22)(2 + m (p+ X p—) : (Ul - (72)7

(P4 x p-) - (61 — 02), (48)

~ 1
Or = &1:02— ——
T 1"%2 7 5y
WaE 03 = Oy, o i = 1,2 mju a(c), b(d), x1 (Y1) 48z x2 (Y2) Ao Waneslazalureslus
aauqum(wqaaﬂ)mmamw 1 wag 2 MUAINY @ M ﬂamacumLLUiaauaaﬂmeiumWQWﬂm
AuNITLUU SU(3) mmummmmu AV @ fenauIniBadurasdnd o saseluil

NONNOIS + . c(Tl):Cél)—Cf),

O g (0ch). o ).

§ o e, g (e -ot)

= 2M2 (e - 3cf” - 3cf” - i),

= 4]\142 (e + e+ e + V), c;”:—ﬁ (e ). @9

Hrydn walvosluausaluhdedanusadenaldsd

— 1 — — —
Py = §(p’+15>, Py =D Py
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p- = P
P

n o= pxp =pyxp_, (50)

'
a

loed p(p") Aeluwuduauianwawn (Weeen) lunseuaudnanauia wazReuluAiainves

7
Tuususasausadeulaeail

mesnsieaiusamnsamndnduuseauvesmaigaiu C uaz C¥ Il

V(2) = <>_<27d7 )217C|H(2) | a, X1 b’ X2>
1 1
_ {_ 6ca5bd 4 - (dcae + ifcae) (dedb + Z'fedb)} (52)
9 {CS Os + CT Oy + (6(2)p2_ n C§2)pi> 0131 O5ars + (c:())?)pz_ + c?pi) Gy - Py

bG8 (X P+ A B 5) + D8 5) )

V(3) = <>_<27d7 )217C|H(3) | @, X15 b’ X2>
_ 5ca56d (53)
x {05+ 0r + (2 + &1 S b + (5792 + 702 ) 51 -
/l: . . . . 5 o — = — —
+ 023)5(01 +32) - (B X 7-) + ¢ (7 - ) (B - G2) + &7 (B - 31) (7 - F) } ’

Tnefidnasfigaau o> Tuaunis (@) e (@) AonasaBaduresAnai ¢ Wuientuiu

nsdves M

%’u&iaiﬂLiwyﬁﬂmia%ﬁdﬁﬂél,w%aauaaﬂLm‘wéf’méhGﬁ’%ﬁumﬂuﬁﬁmiﬂmmaéauﬂé’wm
Lasumaumua (1/N,) weilalniouresdnduuioouainaunis 13 mesanidunistiuannis 14 9

SusuusniBuvesnisnszane 1/N, Gmmmiawauimsﬂuiﬂ
Ho = UP(p*) 11 - 1o+ UP(p* ) Th - T 4+ UsP(p* ) Gi - Go + U (p?) (pi_pjf)(Q) : (Gi’“Gé’“Xéﬂ)

WeN Ty - Ty = TOTS way Gy - Gy = GY*GY* dw U (p?) ﬂaﬂmﬂju’l,mdﬁ'ﬁuaauiﬁ’uﬁumi the
P2 uagdunasidu NO

U BUSUANAINANNKINEY (Next-to-Next-to-leading order, NNLO) n15n5ea18 1/N, U8
alewfleuazlain

I
2
=z
2
O

pili -1+ U0 (p2)
piTI T +UNNLO(p%>
) +

F]NNLO ( 2_)
»*)

U2 )i (4 x p-) - (Ji + Jo) +
)
(»*)

J" NNLO( )J J2T1 T2
b G1 Gz

U2 ) (e x ) - (TG + GRTY)
i (e x po) - (S + o) Ty - Ty + UYNO(p2) (plp e (J1B)e)
PP - (i) Ty T + Ui (0%) (0,1 ) ) - (GY°GE) 2f55)

+ o+ 4+ o+
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agnuiliiusiialadouvetseeamniuIosuniegluduiuinainusnisy (Next-to-leading or-
der, NLO) Tun1snszaie 1/N, 4 nsadun1svesdianidunisuuaniugiuioouaiunsamla
fiatl [13]

1|a7X) - 3|a7i>7
L @)

Ji|a7X) - EJ)ZX |CL7X),

Tb,x) = if*e,x),
o /1 7
Grlbx) = o (a5 1) lex). (56
wazAnduusoauaIusaunlalae
v:(Xg,d;X1,C|ﬁ’a,X1;b,X2), (57)

AeuyhNsInIeiAnduuIsaumefIniun1sn1snsea1y 1/N, 151387n1sinungusuuYed
Hendulag UL and UNNEO Teglugy

U2w) =g, UINEO(p2) = . (58)
91A5IENN15H @ Tuannsi E\I uay @ ANGUUTOOUNIINTTY 1/ N, Ndudu LO Ao

Vio = 9a¢ 5)’(1)(1 5)’(2)(2 §4o* + 92 2 fee fbde 5)21X16>22X2
+ s 6_»1 . 6_»2 (% dace 4 % face) (% dbde + % fbde)
+ 9 (0Ll (0103) ) (54 + 5 1) (3" + 5 /)., (59)

Lagfdudu NNLO agaglugy

1 1
Vino = 951 p20g, i Oxaxs 0940 + I 5edghd 4 I §2 face fhde
h4 p2+ ?:2 face fbde 5)21)(15)22)(2 + h5 p2+ 531 . 632 (% dace + % face) (% dbde T % fbde)
3 = = c
—zhﬁ( P X o) - (G + Fp) 5°46™
ih7 (p+ % ﬁ,) . |:6_»1 (% dace + %face) ifbde + &Qiface (% dbde 4 % fbde)]
3. — — = — \ 2 pace e 1 i J i J c
Elhs (P x ) - (61 + Ga)i% fooe frde 4 1 ho (P17 )(2) - (0103)(2) 6°%6™
1 i, ] i g . ace e
1 hio (pfpj_)@) - (0103)2) i foce fh
hll (p:.pi)@) (0_10_2) ( dace %face) (% dbde + % fbde) (60)

+ o+ o+

+

desvinsSeudisulassadisadu sWaL’Ja%suaqﬁ’ﬂsj‘ﬁiﬁmﬂlﬂ%’ammwLﬁsuﬁuﬁaﬁ?%ﬁ,u
13 1/N, Tuaunsd IGE MUAWIU 15192 EUNTOMNANU AT WS VRIA1ATE

AU aumummr’ﬂw o 1/N2 lmmu

oV =0 =30 —20? ~60?, cV=cf =30 20 ~6C
oV =0 =300+ cP +3c?, cV=cf, oV =c=-3c (61)
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Cléo Ciso Ciéi Cisi Cisi
EG | —0.04795(151) —0.07546(81) —0.01727(124) 0.36367(30310) 0.01271(471)
HB —0.03894(1) —0.07657(1)  —0.01629(13)  0.20029(14050) —0.00176(304)

Table 4: A laannsilisuisuiunanIsnaaesaInngn sz slaeseutuiand oo udn
s-wave (lumigves 10* Gev—2) NiFmaen A = 600 MeV 199¥1435 EG wag HB [22]

aruee LSz inan s IATziAnd uuToaumen1snsz e 1/N, Tunsnszidsees

lawospulazihndeounguauknizulunisnszaeuuulaiagediuiuvemisiwesdasylunuy
d1aesiliiey 6 dnwialuil [20]

o, o, ¥, oV, P, P (62)

bbEYS 0(1’2’3 by 0(1’2’3) ?1’1&]’]5@]L‘UBHI%BHGLUiﬂGU@QNa‘S’JNLGNLﬁuiﬂ’]ﬂiﬂiaa’]ﬂiﬁx‘iL?OEJUIUﬁZLIﬂ']SV]

Cé1,2,3) _ C£1,2,3) + 051,2,3)’ 0;1,2,3) — C§1,2,3) o 021,2,3) (63)
Lﬁ@lﬁﬁmmé’mﬁuﬁmmmmﬁﬁjmusl,uaumiﬁ' 1519¢l9n
s =cy oW =0P = 30 (64)

NANISAILIUNITNIZAEAAULDY U s-wave Andan1Tnsziitlaasauiuiinndssuanuisn
Weulaan [20, 22

AN
Vigo = 4m

o -a0) 3 (€ - a0f) 2 (08 - ac)]
T ; Oé1)+0;1)> N (C§2)+C§2)> +2<0é3)+0§3))}7
v = an 208 -30P) 2 (0 -scP?)].
Vi = a2 (00 o) 2 (o + )],

3
VAS — 4n —5(C§1)+C§1)>+<C§2)+C§2)>1 (65)

= U cal Yo 1 < 1 oA A o 14
Luaﬁ‘ﬂﬂﬂﬁﬂﬂﬁ/ﬂ@@ﬂﬂa’]’lLUUV"IWWQVILW’E]?’]’N?,JE?%@’JﬂLi']‘ﬂ%ﬂ’m‘lms[fVI

AA AA
ClSO 1SO CSSl 331 ClSO ‘/150 ) C(35'1 ‘/351 ) C"351 ‘/351 7( )

Wiethanuduiusainaunisi @ wiuAtuauns b liaglinnuduiiusanvnevos i es
dasglun1sfnwinisnsviiswesiaeseuiuiiindeaulai

ClSO ClSO CSSl C3Sl ) CSSI C3Sl C(351 <67>

ez iuladnlunuu Sasemsn sz Rsveslaw ess uiuhed seuainngef auu diuala Sad
Wslweidaszed 5 i [20] Welinsieseinisnsgany 1/N, aghbisaunsaanglany
daszvaamsiwasiuwuuinasallawmdaiies 3 AUy
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[

LﬁaL“fJumwmaaUmmgﬂéfawaamimzma 1/N, \519E9@0UNANAUNTT 67 AUNANT
mﬁwmﬁ&jmuﬁmﬁaLamﬁumamswmaaqmﬂ 22] InenauideanananilayiniIsmARsLauann

wuudnaedly [20] FedFslumsmaaessuuuae 35nsianBeuideduivean (EG) wagisnis
wuseaumin (HB) Fawanlagnuanalilumisned

LAZNASNYALAANNNITUNUAIAILATIINANT NN @ TumazIsN1aLlAn

Créo.ec = —0.06327, O3 o6 = 0.1271,
Clsoss = —0.04333, O3 g = —0.0176 (68)

nagiulAIRaIINMTIRTIERmenINTEe 1/N, agiulaine O way CZ2 gzl
TnaLAseiuds EG 11nni175 HB



22

A7UuarINTalNanIsNAaes

[

unazuuazinnsainanisaiiulasinsidelanaunsawusliduaesiidondn fadl
1. NsAnwInsduieaas N*(1875) 3MnA1IzlengIuaviagunleisn1seinisugisenaaiy

MsAnnsduTiesuatoynia N*(1875) fiavmeuduilieadondu JP = 3/2-, T = 1/2
uay S = 0 feFBnsginuiitedaulefinsanusunwlietsmiuuaumdsawuin ns
duioswosoymadsnaniinananzionguamumdeslute fisevesgeynia ©* K 1undn
wazdpaUnseanandalidunsnsendniuiu A r, N*(1535) m uag N o dmsudesuiseman
flo 2 K MildAnmsduiiosnes N*(1875) dafinalnnisintudsifedooyna v+ aaesly
Ju A7 uay aynia A ’leﬂiwmﬂ‘uaumﬂ K audnifusynin N*(1535) Tnelusmduaii
¥osayMA B¢ A way K Sawinduinadavesiimnifuies muamlﬁuaﬂw QERNPHERHEE
mwmmmwﬁuaamiamamﬂuszjaqmiamamaaaﬁuawgﬂsmﬂmuluwaﬂ‘umamﬂmsmamLua
finsantdeandn o K iilssegafeudveslfidomdniinaseriuniivesnsaaesfetes
UiR3e N o Heaunsavhnisasaadeuldlasiansanmsaaisdives N*(1875) Wilu prt «
FodunaluiinenszaefiBanares © r udaziiuldiifngageaniidumisueua
ouMA o NeRtuUALARIIEURTATENgMILTRs N o TdwusonshlAnnsduiieaues N*(1875)
Tules ,

2. Bsnsnedunduiavaieuiidlungelfdiimudidyednddumsfinenisnsvidwe
100AMY-BDALANLUTROY

fawdngufawiudinalafats Uszaumnudidalunmsfneinisnszfeihaieouiuilang
poutluegennn uallothunlddnwdunisnszidslaweseutuiiindosundununilteneuds
PNilwesdasznlasaainslsuiiwesifuluiosndeyanisnaaeiiegldunnuaz
f9g1991uNMLn INTIATILYENIN 2 1/N, e liinnisanslvesiiuiu
wwawﬁma%@aiu Felunsfnwilisnanisaaninuiunsfivesdassveslaiaainsnadeuaiain
15 wde 9 o Sudunsudled 0(1/N2) LLauLM@U’llﬂﬂﬁvﬁlﬂﬁﬂUﬂ’]SﬂiuLﬁ]ﬂlaLUEﬁE]uﬂU‘u’ma
@@‘LA‘VIEJ‘L!@‘Umiﬂ‘juf\]’lﬁl‘lﬂia%@uﬂULLiﬂLilI Li’]ﬁ’lﬂﬂiﬂaﬂf\]’MUUW’]i’lﬂJLmai@ﬁiﬂumiﬂiyﬁl’mﬂau
gouil s-wave l9ide 3 1970 5 uaﬂmmuwwﬂmmmamaaumLsmmt,aﬁum'ﬁamﬂﬁuaammu

WISHLRBSAIBNITNTEINE l/N EN‘UQSU’J’] ’Jﬁﬂ’]iﬂ?ﬂ’)&lﬂ’]iﬂiwL%Qi@LU@i@UﬂU‘U’Jﬂﬁ@@u&]’m’)ﬁ
ﬂ’ﬁiﬂ’ﬂLiEJiJV]L“U\‘IﬁﬂJWV]ﬁﬂ']W&Jﬂ’J’WﬂJL‘U’m‘u‘lﬂﬂ‘Uﬂ’]iﬂi”?ﬂ’WEJ 1/N 1INNTTBNITUUT DO UNTN DN
e

JoLauaULAINSUIUIRY TuauIAN

1. TusuAnsulnatlmntnlasin1TI89zyIINITAIUIUAINIARITINEINTUNITNT2RIE TR Y
fluaunia N*(1875) wisdnwidenalnnneiengiuaumadsunazaunsavliiinanugnseau
Y990UN1A N* Niludauaziavareudualungadulavialy

2. Fmihlassnsidefiunuiiazliisn1snseane 1/ N, WeveeveuwnnsAnesunsisenssuiy

SOLERAIGR)IE 1/2)ﬂU®ﬂULa‘Vl(ﬁU‘u 3/2)LLU3E)E)'L!LL@°’®?’]ULa‘Vlﬂ‘U(ﬂﬂ‘ULa‘VlLLUiaE]‘HLWE)ﬁiNﬂiE)Uﬂﬂi
E]ﬁU'lEJLLU'ﬁE]E]ﬁJ‘VIﬁJLa“Uﬂ'JE]UG\JJﬂUU‘I/IﬂQ“UUIméﬂG]EJI“Uﬂ'ﬁE]U‘I/lE]'l:-}QL@S?ﬂ?ﬁl?ﬁﬂ?iﬂiuﬁﬂ&] 1/N



Bibliography

[1] J. A. Oller and E. Oset, Nucl. Phys. A 620, 438 (1997) Erratum: [Nucl. Phys. A 652, 407
(1999)].

[2] E. Oset and A. Ramos, Nucl. Phys. A 635, 99 (1998).
[3] J. A. Oller, E. Oset and A. Ramos, Prog. Part. Nucl. Phys. 45, 157 (2000).
[4] C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016).

[5] S. Sarkar, E. Oset and M. J. Vicente Vacas, Nucl. Phys. A 750, 294 (2005) Erratum: [Nucl.
Phys. A 780, 90 (2006)].

[6] L. D. Landau, Nucl. Phys. 13, 181 (1959).
[7] S. Coleman and R. E. Norton, Nuovo Cim. 38, 438 (1965).
[8] M. Bayar, F. Aceti, F. K. Guo and E. Oset, Phys. Rev. D 94 no.7, 074039 (2016).
[9] G. 't Hooft, Nucl. Phys. B 72, 461 (1974).
[10] E. Witten, Nucl. Phys. B 160, 57 (1979).
[11] R. F. Dashen and A. V. Manohar, Phys. Lett. B 315, 425 (1993)
[12] E. E. Jenkins, Ann. Rev. Nucl. Part. Sci. 48, 81 (1998)
[13] M. F. M. Lutz and A. Semke, Phys. Rev. D 83, 034008 (2011)
[14] M. A. Luty and J. March-Russell, Nucl. Phys. B 426, 71 (1994).

[15] R. F. Dashen, E. E. Jenkins and A. V. Manohar, Phys. Rev. D 49, 4713 (1994) [Phys. Rev.
D 51, 2489 (1995)].

[16] R. F. Dashen, E. E. Jenkins and A. V. Manohar, Phys. Rev. D 51, 3697 (1995).

[17] D. B. Kaplan and M. J. Savage, Phys. Lett. B 365, 244 (1996) .

[18] D. B. Kaplan and A. V. Manohar, Phys. Rev. C 56, 76 (1997) .

[19] T. Inoue, E. Oset and M. J. Vicente Vacas, Phys. Rev. C 65, 035204 (2002).

[20] H. Polinder, J. Haidenbauer and U. G. Meissner, Nucl. Phys. A 779, 244 (2006).
[21] L. Girlanda, S. Pastore, R. Schiavilla and M. Viviani, Phys. Rev. C 81, 034005 (2010).

[22] K. W. Li, X. L. Ren, L. S. Geng and B. Long, Phys. Rev. D 94, no. 1, 014029 (2016).

23



LINEITUUURNLAY 3

Output NlATINTIENIFTUNUIIN dn7.
1. HAUANIWIL1TETIVINTUIUIYTRA (S2ydaduds YalTae ¥a5a1s U wdud 1aan

o = = o
waznin) wianasumuiiaaliludygilasinis

1. Daris Samart, Wei-Hong Liang and Eulogio Oset,
“Triangle mechanisms in the buildup and decay of the N*(1875),”
Physical Review C 96, 035202 (2017), Impact factor (2016) 3.820

2. Xuyang Liu, Phongpichit Channuie, Daris Samart,
“Cosmological dynamics of magnetic Bianchi | in viable f(R) models of
gravity,” Physics of the Dark Universe 17, 52-62 (2017),
Impact factor (2016) 5.425

3. Xuyang Liu, Viroj Limkaisang, Daris Samart and Yupeng Yan,

“Large-Nc operator analysis of hyperon-nucleon interactions in SU(3) chiral
effective field theory,” arXiv:1603.01788 [hep-ph]: submitted and under minor
revision in Physics Letters B, Impact factor (2016) 4.807

2. msiwanuIeiulduselevd
a a = o = v U oa v 1]
- @935 @Ensnmunnisiseunsaaw/a3en e Tud)

a g

L] = 9 v = ° a o ¢a a o =
Wudauntlslinisieunisndedesidnd vee urIne1desivuenadany

3. Buq (Wu waswAnulusasivinslulssma nstauenanuluiivssyguivinig
niisde N15nansUng)

- usseneunianlueu The Seventh Asia-Pacific Conference on Few-Body
Problems in Physics (APFB 2017), August 25 - 30, 2017, Guilin, China: Oral
presentation wag International Workshop on Hadron Nuclear Physics 2017.
December 18-22, 2017, Riken, Wako, Japan“luﬁ’at’%laq “Large-Nc operator
analysis of hyperon-nucleon interactions in SU(3) chiral effective field

theory”



PHYSICAL REVIEW C 96, 035202 (2017)
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We studied the N*(1875)(3/27) resonance with a multichannel unitary scheme, considering the Aw and £*K,
with their interaction extracted from chiral Lagrangians, and then added two more channels, the N*(1535)r and
No, which proceed via triangle diagrams involving the ¥£*K and Am respectively in the intermediate states.
The triangle diagram in the N*(1535)7r case develops a singularity at the same energy as the resonance mass.
We determined the couplings of the resonance to the different channels and the partial decay widths. We found
a very large decay width to £*K, and also observed that, due to interference with other terms, the No channel
has an important role in the w7 mass distributions at low invariant masses, leading to an apparently large No
decay width. We discuss justifying the convenience of an experimental reanalysis of this resonance, in light of
the findings of the paper, using multichannel unitary schemes.

DOI: 10.1103/PhysRevC.96.035202

I. INTRODUCTION

The N*(1875)(3/27) is relatively new in the Review of
Particle Physics by the Particle Data Group (PDG) [1]. Quoting
from the latest PDG edition, “Before the 2012 Review, all
evidence for a J¥ = 3/27 state with a mass above 1800 MeV
was filed under a two-star N(2080). There is now evidence
from Ref. [2] for two 3/27 states in this region, so we have
split the older data (according to mass) between a three-star
N(1875) and a two-star N(2120).” The mass according to the
PDG is 1820-1920 MeV (1875 MeV PDG estimate) and the
width 250 £ 70 MeV. Quoting directly from Ref. [2], the mass
is 1880 &+ 20 MeV and the width 200 £ 70 MeV. A more recent
experiment [3] agrees with these values, with 1875 £ 20 MeV
for the mass and 200 25 MeV for the width. The most
important decay modes are Nw (15-25%), A(1232)7 (10—
35%), mostly in the s wave, and No [N f,(500)] (30-60%).

It is interesting to recall that, prior to its acceptance as a
new resonance, a peak in the amplitudes was observed around
1875 MeV from the study of the pseudoscalar meson-baryon
decuplet interaction in Ref. [4]. For the case of strangeness
S =0 and isospin [ = %, the coupled channels Ax and
>*K were used, and the interaction was obtained from the
meson-baryon Lagrangians of Ref. [5]. The peak appears
at the £*K threshold and it was identified as a threshold
effect, not a genuine resonance. One should note that the
identification of threshold effects with resonances is quite
common, and one has a good example with the a((980) which
is catalogued as a resonance, but it shows both theoretically
[6] and experimentally [7] as a cusp effect with no clear pole
associated with it.

“daris.sa@rmuti.ac.th
fliangwh@gxnu.edu.cn
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In the present paper we take the work of Ref. [4] and include
triangle mechanisms associated with the main building chan-
nels Awr and £*K, which lead to new channels N*(1535)x
and N fy(500). The first channel has not been measured yet,
but the second channel has, together with Az the main decay
channel of the resonance. An effective transition potential is
constructed from the Amx, £*K channels to the N*(1535)x
and N f((500), and a four-channel problem is then solved with
a unitary coupled channel scheme, leading to a resonant peak
around 1875 MeV in the amplitudes, from which we extract the
coupling of the N*(1875) resonance to the different channels
and the partial decay widths to these channels.

Triangle diagrams have long been part of hadron physics,
but of particular interest are those that lead to singularities in
the amplitudes, known as triangle singularities. The concept
and detailed study was introduced by Landau [8], but now,
after much information on the hadron spectrum and reactions
has been accumulated, many examples of triangle singularities
have appeared [9]. A triangle diagram stems from a particle A
decayinginto 1 4+ 2, particle 2 decaying to B + 3, and particles
1 4+ 3 merging into another particle C. In some cases, when the
process can occur at the classical level, a singularity appears in
the corresponding Feynman diagram, per the Coleman-Norton
theorem [10], and the field-theoretical amplitude becomes
infinity if the intermediate particles are stable. In practice,
some of these particles have a finite width and the infinity
becomes a peak, with important experimental consequences.

An alternative formulation to the standard method to deal
with the triangle singularities is done in Ref. [11], with a
different method to perform the integrals and an easy and
intuitive rule to determine where the singularities appear.

Recent examples of processes where the triangle singu-
larities are relevant can be seen in n(1405) — 7 a(980) and
n(1405) — m f,(980) [12—14]. The latter process is isospin
forbidden and its results are largely enhanced due to a
triangle singularity involving 1n(1405) — K*K followed by

©2017 American Physical Society
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K* — K 7 and fusion of K K to give the f;(980). A more
recent example can be seen work by in the COMPASS
Collaboration [15], associated with a new resonance, a; (1420),
which, as hinted in Ref. [9] and proved in Refs. [16,17],
comes from the 7 f,(980) decay of the a;(1260) via a triangle
singularity proceeding through a; — K*K, K* — K, and
KK — f5(980). Related to this is the recent interpretation of
the f1(1420) resonance as a decay mode of the f;(1285) into
7ag(980) and K*K [18]. Another interesting example is the
role played by a triangle singularity in the yp — K™ A(1405)
reaction [19]. The process yp — K*%, K* - K, ¥m —
A(1405) leads to a peak in the cross section around /s =
2120 MeV that solved a standing problem in that reaction.

Similarly, the f>(1810) is also explained as a consequence
of the £,(1650) - K*K*, K* — 7K, and KK* merging
into the a;(1260) [20]. Other examples can be found in
Refs. [21-25]. Renewed interest in the triangular singularities
came from the suggestion that the narrow peak of the J/v p
invariant mass at 4450 MeV seen by the LHCb Collaboration
[26,27], and interpreted there as a pentaquark state, could
be due to a triangle singularity with A, — A(1890)x.1,
A(1890) — K p, pxe1 — J/¥p [28,29]. However, as shown
in Ref. [11], for the preferred experimental quantum numbers
of this peak, 3/27,5/2", the x.1p — J/¥p proceeds with
Xc1p inthe p wave or d wave and the . p threshold is exactly
4450 MeV, hence this amplitude vanishes there on shell and
the suggested process cannot be responsible for the observed
peak.

In the present work we will show that the process
N*(1875) —» ¥*K, ¥* —- w A, AK — N*(1535) develops
a triangle singularity precisely at the same mass of resonance
and reinforces it. The other interesting finding of this work
is that there can also be triangle mechanisms, which, without
developing a singularity, can be very important. This is actually
the case with N*(1875) - An, A — N, iwr — f,(500).
We shall see that, because of the large strengths of all the
couplings involved, this process becomes even more important
than the N*(1875) — w N*(1535) and leads to a sizable partial
decay width of N*(1875) — Na(fp(500)).

II. FORMALISM

A. Brief review of the pseudoscalar meson-baryon decuplet
interaction

Following Ref. [4], the sector with § = 0, [ = % is reached
with the channels Axr, X* K. In the s wave the interaction leads

to J¥ = 3/27 states. The interaction is given by

Vi = —Cyy —— k° + k) (1)

ij — ij 4 f2 P
where k°,k”° are energies of the initial and final mesons
respectively and the coefficients C;; are given in Table 1. The
scattering matrix is given via the Bethe-Salpeter equation in

matrix form by
T=[1-VG]'V, )

where G is the ordinary meson-baryon loop function.
The Am — Am amplitude develops a strong peak around

PHYSICAL REVIEW C 96, 035202 (2017)

TABLE L. The C;; coefficients of Eq. (1).

Am XK
Am 5 2
XK 2 2

1500 MeV that was associated in Ref. [4] with the N*(1520)
resonance. By contrast, this amplitude is very small around
1875 MeV, as a consequence of interference of terms, and it
is the ¥*K — ¥*K amplitude that shows up as a clear peak
around 1875 MeV. In the next subsection we shall include the
N*(1535)7 and N f,(500) channels.

B. The N*(1535)x channel

We shall look into the diagram of Fig. 1, where the state i
stands for A and ¥*K. Since we are looking into the states
with isospin / = %, we must consider in detail the different
charge combinations that enter the evaluation of Fig. 1. This
is shown in Figs. 2 and 3, where the state i is Aw or ¥*K,
respectively.

We must project all of them into 7 =% and sum the
diagrams. This is done in Appendix A, and the full contribution
of the loop is given by

— itAg N = Vé’féizé g3+ A gv- k(S - k) 2M\2M.
d*q i
Qr)* (P —q)* — M2, + i€
i i
(P —q—kP— M ticq:—m +ic

= Vg;gf,i gxenn gne k(S - k)2MA2Ms. 7,
(3
where the last line defines the triangle integral ¢7. The factors
2My,2Msy- are consequence of using the Mandl and Shaw
normalization for the Fermion fields [30]. This integral is
performed by doing analytically the ¢° integration, and we
obtain [11,31]
[ dq 1 1 1
o (27‘[)3 8(,()KE):*EA kO—EA—EE* P0+wK+EA—kO
1 1
X
Po—a)K—EA—kO—i—ie PO—Ez* —a)K—i—ie
x 2P + 2k Ep — 2(wx +Ep) @k +Ep+Ex+)},

“

Ir

——— 7(k)

AP —q—k)

FIG. 1. The triangle diagram for the i (Am, ¥*K) — N*(1535)7
transition. The momenta of the lines are in parentheses.
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Z*O

K+

FIG. 2. Different diagrams leading to Awr — N*w (I = 1, I; = 1).

where
- ~, , iIss
wg =\/my +3%, Ex =M + 3+ —
> s+m2 — M3,
Er= M} +(@q+k? K=— I
A rt(g+k) 27
|]-<»| )L%(s,mi,Mlz\,*)
= NG ,
Mx,y,2) = x* 4+ y? + 22 — 2xy — 2yz — 2xz. (5)

We must note that originally the S -k operator appeared for
the £* — 7 A transition (see Appendix A), but upon summing
the intermediate X* spin components it becomes now in Eq. (3)
the spin transition operator from A to N* because the s-wave
potentials Vi;:)l:/*zlg and V(Elf,é/ 2.« are independent of the A
and X* spins.

Neglecting the width of the ¥* in Eq. (4), the integrand in
tr will have poles when

PPk —wx —E,=0 and P°— Ex: —wg = 0.
(6)

In principle, the integral will give rise to imaginary parts and
principal values, via the ie. However, the cancellations in the
principal values will not occur when we are at the extremes of
cos @ (k - ¢) when cos § = =1. Then a singularity can appear in
the integral, triangle singularity (which, occurs for cos 6 = —1
[11]), which, however, is rendered finite when the width of the
¥* is explicitly considered [11]. The integral in 77 is then
convergent, but we perform a cutoff in ¢ in the rest mass of
the N*, when the chiral unitary approach is taken, and we use
on = 1000 MeV, suited to the results of Ref. [32].

Let us elaborate further on the singularities. The second of
Eqgs. (6) has a solution (keeping the i€ of the propagators and
neglecting the £* width) go, + i€ (see Eq. (13) of Ref. [11];
the negative solution is irrelevant). The first of the Eqgs. (6)
for cos® = —1 has solution g, + i€, g,— — i€ (see Eq. (15)
of Ref. [11]) and, for cos 0 = +1, qp+ + i€, gp— — i€ (gp— 1S
negative and irrelevant). With this pole structure it is clear
that we have an unavoidable singularity when ¢, = g, or
gon = qa—, since in both cases in the ¢ integration we must
pass between the two poles and we cannot deform the path

e ]\7*0

A +

integral in the complex plane to avoid them. In the first case
we have a threshold singularity (¢,+ = ¢,—) and in the second
case we have a triangle singularity (gon = ga—)-

We should note that the singularity arises from placing all
intermediated particles of the loop on shell plus having cos 6 =
—1, and these conditions lead to the Coleman-Norton theorem
[10] as discussed in Ref. [11]. In order to see if a triangle
diagram develops a triangle singularity, we then search for a
value of /s at which the following relationship is fulfilled:

Gon+ — qga— = 0. 7

One must check Eq. (7) for a mass of the N*(1535) bigger
than m 4+ mg. At a mass about 1615 MeV, which is in the
range of the N*(1535) mass considering the width (150 MeV),
Eq. (7) shows a solution at 1878 MeV. But a peak in the
amplitude develops for smaller N* masses within the range
of the N*(1535) spectral function, which we shall take into
account in the evaluation of the diagram of Fig. 1.

We would like to include now the 7w N* in the coupled
channels, together with Amw and £*K. However, we can see
that while the interaction between Am and X*K proceeds
via the s wave, the transition Aw — 7w N* proceeds via the
p wave with the S - k operator. This is a consequence from
the transition of a A(3/2%) to N*(1/27) which requires
change of parity. Yet, it is possible to mix the channels via
an effective s-wave potential, as done in Refs. [33-36]. In
order to define this effective potential we look at the diagram
of Fig. 4, which makes transitions An(X*K) - An(X*K)
via an intermediate w N* state. We can write for the transition
amplitude

—itij = —ili zN+ IGpn« (—Dlznx - (®

In the chiral unitary approach the transition potentials are
evaluated for the external lines on shell and we wish to do
the same with the new channel 7 N*. For this purpose, we
take the imaginary part of G,y+ in Eq. (8), which places
wN* on shell. Considering that in the tN* — An(X*K)
transition the pion momentum is ingoing instead of outgoing
asin Ar(X*K) — 7 N*, we have

Imt; ; = =V sk Visk(gsnn gv ka 2MpA2 M)
x (=)(ST k) (S - k) t7 £ 1m Gy

E*

E*O
2K ) =503 A
K e j\[*Jr

FIG. 3. Different diagrams leading to X*K — N*m (I = %, I; = %).
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* ™ *
A Y 5 AY
i A A J
n, K K m, K
N*

FIG. 4. Transition diagram from An(¥*K) - An(X*K) via
the intermediate N*r.

Now we have!

> (M'|ST - klm)(m|S - k| M)

m

1- 1 3 3
= k% 8yy — =G NAxC( = 2=, M, M—M'
3n oMM TR VAT <2 2 )
X Yo y—m(§), 9

which indicates that we can have transitions in the s and d
waves. But we are only interested in the s wave and hence we
keep the %kzé um factor in Eq. (9). Thus, effectively we can
take

Im7; ; = Visk Visk (s na gve ka 2MA2M5)?

X lTl‘;(- %]}'2 Im G;-[N* (10)
with
1
1 My~ - - M(s,mi,M,%,*)
ImG,ny» = —— k|, |k|=——FF—=. (11
mGyy o ﬁl [, k] NG (11)

However, since the triangle singularity is sensitive to the
external masses and the N* has a width of 150 MeV, we make
a convolution of Eq. (10) with the spectral function of the N*,
such that

Im7; ; = Vi sk Visk (s na gveka 2MA2Ms:)?

X

1.
/ it SRS () Im G- (5.0t (5,0 P
Ny+ 3

(12)
where Im G, y+(s,71), k, and f; are obtained substituting
My~ — i in Egs. (11) and (4). The spectral function of the
N* is given by

y 1 1
Sy+(it) = —— Im

_— 13
T — My + it )

and the factor Ny« in Eq. (12) is normalized:
Ny« = / Sy+(r)dm. (14)

The limits of 7 in Egs. (12) and (14) are taken from My~ —
ol N+« to My+ + oI n+ with @ around 1 or 2. The 7 dependence
in Eq. (12) does not affect V; 5« V; -k, hence we can define

o1 1.
Im7 = Nfd'h §k2SN*(n”1)ImGnN*(s,ni)UT(s,nﬁ)lz (15)

'Note the order of S’ and S and the sum over m, the spin of the 1/2
baryon.
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and a function V such that
Im7=VInGyV. (16)
Then we can construct an effective s-wave transition potential
Vian: = Vi(,;::»«}(/z) g rn N kA 2MA2Ms: V  (17)
such that
Vians Im Gy (My+) Vi oy = Im 7. (18)

This means that, using \7,»,7, ny+ in coupled channels with
the extra w N* channel we can effectively incorporate the
mechanism of Fig. 4, and when the resonance shows up
in the amplitudes we can evaluate the coupling of the
resonance to the w N* channel and then the partial decay
width into this channel. We will have now a new V matrix,
containing the An(X*K) - An(X*K) of Eq. (1) plus the
A (X*K) — mw N* transition of Eq. (17). We do not include
a direct 7 N* — x N* transition, assuming such transition
would occur via the Am(X*K) intermediate states involving
the Awr(X*K) — m N* transition which contains the triangle
diagram.

In order to take into account the A and X* widths in the
G functions of Eq. (2) we also do a convolution, as done in
Ref. [4], with the spectral function of the baryons S s(M):

G—G= %/dM G(M)Sg(M). (19)

C. The N f,(500)(0)) channel

We can now consider a triangle diagram which involves
A instead of £* K in the intermediate states. This is depicted
in Fig. 5. The states Axr, ¥*K can now make transition to
the Am, the A decays into 7w N, and then the two pions fuse
to give the fy(500)(c). The first thing one must check is if
this diagram can develop a singularity at some energy ./s.
Application of Eq. (7) immediately tells us that this is not
the case, and gon+ — q4— does not vanish for any energy of
the original system. However, we have now other elements to
make this mechanism particularly relevant. First, we can have
now Ar — A transitions that have a weight of a factor 5 (see
Table I) instead of 2, as we had before. Second, the A — 7 N
coupling is very large and so is the coupling of the 77 to the 0.
The evaluation of the A7 (X*K) — No transition proceeds in
a way analogous to that in the previous subsection. First, in
analogy to Figs. 2 and 3 we have now Figs. 6 and 7. The details
are given in Appendix B. The new potentials \7[,,, N+ and \7, No
are incorporated into the full 7 matrix for scattering between
the Amr, ¥*K, N*r, and No channels using Eq. (2).

A, 3¢

7 T

o[ fo(500)]

m, K &

FIG. 5. Triangle diagram for the transition of i (Ax, ¥*K) to No.
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FIG. 6. Diagrams for the |Aw, I = 1, I; = }) transition to po.

D. Couplings and partial decay widths

In order to obtain the couplings, we look at the amplitudes
Tij in Eq. (2), withi,j = An,X*K,N*m,No, and plot |]}j|2.
We define the mass and width of the resonance, the position of
the peak, and the width of the |7;;|? distribution as a function
of /s close to the peak. In that region we have

8i 8j
T = —>2 20
iy ﬁ _ MR + lr—zR ( )
We take the X*K channel as reference and then have
2
T2 lpeak = ﬁ, g = i— Ty, 21
15 2 peak

2
This defines g, up to an arbitrary sign, but then the rest of the
couplings are defined relative to this via

& _ T

_ 12 22)
g Tn

peak
Once we have the coupling, the partial decay widths are
given by

1 Mg 2
M= ——2\a*p;.
= o My 1gi1” pi
where Mp is the mass of the final baryon and M the mass of
the resonance, and

(23)

m?

2Mp

with M,, the mass of the final meson in the channels
An,X*K,N*n,No.

The width of all channels is well defined except for the
Y*K, since the resonance is close to threshold and both
theoretically and experimentally the determination of X*K
in width is uncertain. With this caveat, we shall check that
the sum of all partial decay widths is close to the total width
determined from the shape of |T;; 2.

M2 (Mz ML M)

pi = (24)

III. RESULTS

In Fig. 8 we show results for tr for the loop function
of Figs. 2 and 3 neglecting the width of X*. Actually the
evaluation is done by taking I's< /2 = 1 MeV. The evaluation
is done for different masses of the N*(1535), 1515, 1565,

E*
‘E*K>I:%.13:1 T

FIG. 7. Diagrams for the |2*K, I =

1615, 1665 MeV, in order to span the masses of the N*(1535)
given by its spectral function with a N* width of 150 MeV.
It is interesting to see how we get a narrow peak in all cases
in the real part of 7. The modulus square |¢7|* is similar to
Re(#7) and peaks at the same energy. It is worth noting the fact
that for My~ = 1615 MeV the peak becomes sharper. This is
because now this energy is very close to the AK threshold
1608 MeV, such that, as discussed in Sec. II B, the triangle
singularity and the threshold singularity superpose, leading to
this sharp peak. The figure also shows how the peak of the
singularity changes with the mass of the N*(1535). When the
¥* width is considered, the sharp peaks become finite broader
peaks, as we show below. We can see that Re(#) peaks at
lower energies for the lower My~ masses, but in all the span
of 150 MeV for My- the position of the peak varies only by
about 10 MeV.

In Fig. 9, we show the results for f7 as a function of /s
for My« >~ 1535 MeV when the £* width is considered. We
can see that Re(f7) has a peak structure with a peak around
1885 MeV. The imaginary part has a different behavior, and
does not show any peak. Actually, —it;y would resemble a
Breit-Wigner amplitude with a constant magnitude added to
the real part, which does not go through zero. The peak
observed in Re(#r) is tied to the triangle singularity that one
would have in the case where I's« — 0.

In Fig. 10 we show V ,y./ V4= }/? from Eq. (17). This
magnitude provides the relative strength of the effective
transition potential i — 7 N*, with respect to i - X*K.
We observe that the effective potential rises rapidly up to
A/s = 1900 MeV and stabilizes there. The relative strength
withrespect to V}’;}f) is of the order of 0.22 at the peak, which
anticipates a moderate effect of this channel. However, the
added strength around 1880 MeV helps stabilize the molecule
that builds up around this energy from the interaction of the
A and £*K channels.

Next we show in Fig. 11 the results for ¢, of Sec. II C for
Fig. 5 (see Appendix B). The convolution of Eq. (B11) over the
o mass is done between the masses 2m, and 800 MeV, and in
Fig. 11 we plot #. in the middle of the range at /i, = 540 MeV.
We can see that now we do not have any peak, as anticipated,
since Eq. (7), which shows when there is a triangle singularity,
is not fulfilled in this case. Yet we see that Re(¢}) is of the same
order of magnitude as Re(z7) at the peak. However, since the
effective transition potential contains different couplings now,

p >* AD

+ ‘Z*I(> [:%.13:%

%, L = %) transition to po.
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FIG. 8. Re(t7), Im(¢7) for Figs. 2 and 3 as a function of /s for different values of My-.

its strength becomes bigger than the one of the £*K in the

loop, as we show below.

In Fig. 12 we plot \Z,qN/\/iflAil/z). We can see that this

magnitude is relatively constant, and from 1800 to 2100 MeV
it changes from 0.73 to 0.69. However, we can see now that

-9
x10
( )14 T T T T T
I 0.24
12 -~ 0.22
10 i 0.20
= L
= 0.18
E 8 8 |
[Se=)
.t 0.16
= 6 . -
R 0.14
o i -
R4 . 0.12
2t ] 0.10
rd L
L -
e - 0.08
0 YR T ST SR (N ST TN TN T [N YN N SO SN [N WY S SO S ST ST ST S S N1 PR L
1800 1850 1900 1950 2000 2050 2100 0.06
1800

Js  (MeV)

FIG. 9. Real and imaginary parts of #7 of the triangle diagram,

Eq. (4), with £*K intermediate state.
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-
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FIG. 11. Real and imaginary parts of ;. corresponding to the
triangle diagram of Fig. 5.

1950 2000 2050 2100

-16

the strength is bigger than the one obtained from the ¥*K
loop at its peak (~0.22), in spite of the fact that we do not
have a singularity now. As mentioned before, the different
couplings in the mechanism are responsible for this relatively
large strength. We see that the strength of V;,y is of the

same order of magnitude as the Vi“;,l/ ?) transitions, and one
anticipates an important role for this channel.

Next we turn to the amplitudes obtained with the coupled
channels problem.

In Fig. 13 we show the modulus square of amplitude 7;;
(with the order of the channels being Ax,X*K,N*7,No)
with just the Amr and £*K channels, both omitting the width
of the A and X*, and taking it into account. The results are
similar to those obtained in Ref. [4], though in Ref. [4] complex
energies were used instead of the convolution in the evaluation
of the G function of Eq. (2). We can see a clear peak around
1880 MeV and that the consideration of the width of the A and
> * leads to a wider structure which has about 72 MeV, short

0.73 |- B

0.72 - B

0.69 - B

PR S SR [ SR N S S I ST SR S T [ SR T SR S [ T N SN S NN SN S H'Y
1800 1850 1900 1950 2000 2050 2100

Js (MeV)

FIG. 12. Vi n/ V,-f’f,;/ % as a function of the energy corresponding
to Eq. (B9).
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0.05 . . : .
—An
~~~~~ K
0.04 | o ]
---=- Am (with width)
i - - —$*K(with width)
003l | i
o~ !
< ;
= :
002f | : .
001 | < .
RN
. S
0.00 el O SOy i 1 —— —

1800.
\/E (MeV)

1400 1600

FIG. 13. |T;;|? for the Az and ©*K channels alone as a function
of the energy. The wider curve corresponds to considering the width
of A and ¥*.

of the experimental central value of about 200 MeV, which,
however, has large uncertainties. Note that the peak around
1880 MeV comes from the Az and £*K channels alone and
it is not linked to the triangle singularity.

In Fig. 14 we show again the modulus square of am-
plitude T, with two channels (Ax,%X*K), three channels
(Am,X*K,N*m), and four channels (Ax,X*K,N*n,No). We
can see that the introduction of the N*m channel widens the
peak a bit. The introduction of the No channel has not much
effect on the width, but we shall see later that it has an important
repercussion in the 77 77 invariant mass distribution. From | T, |>
with four channels we can get the mass and width of the
N*(1875) resonance: Mp = 1881.7 MeV, I'p = 71.2 MeV.

Next we look at the transition amplitudes from where we
determine the couplings, via Egs. (21) and (22). We show |T122|
in Fig. 15, |T322| in Fig. 16, and |T422| in Fig. 17, all of them
evaluated with the four channels.

10 | ——2 channels| 4
- - -3 channels
—-—- 4 channels
o 8 B
N
=

2

—

PRI S S NS S S PRI SRS N S S S PR
1800 1850 1900 1950 2000

. 2056 - é100
Js (MeV)

FIG. 14. |T»|*> with two channels (Am,X*K), three channels
(Am,X*K,N*m), and four channels (A, X*K,N*n,No).
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FIG. 15. |T},|? as a function of the energy, for the Ar — Z*K
transition.

The couplings that we get using Egs. (21) and (22) are

gr.xx = 1.72 —0.70i,
8R,N*m = —0.29 + 017[,

gr.ax = 0.34 4059,
grNoe =022 —0.01i.  (25)
With these values and using I'; =

the baryon mass for the final chann
we obtain the partial decay widths

M -
3i-18i1° pi, where M; is

€1
ZJT . .
el i and p; its momentum,

Cpp =252 MeV, TDsix = 13.1 MeV,
Tyew = 42MeV, Ty, =23 MeV. (26)

We can see that I o, is quite large, but I y+, and "y, are much
smaller.

The sum of I'; is 44.8 MeV, much smaller than the total
width 'x = 71.2 MeV. Yet, since the peak of the N*(1875)
has a mass distribution and the ¥* has a width I's» = 36 MeV
[1], we should do a double convolution for the partial decay

=107

30

25

1800 1850

PRRUN (U S SR SR [ SR U SN SR [N SR T SR S [ SN S St
1900 1950 2000 2050 2100

Vs (Mev)

FIG. 16. |T3,|*> as a function of energy for the £*K — N*m
transition.
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ST

2
|T42|

0....I....I.... PR
1800 1850 1900 1950

.200(3 - .2056 - .2100
Vs (MeV)

FIG. 17. |T4|* as a function of energy for the ©*K — No
transition.

width I's«g. This is done in Appendix C, and then we get
[sx = 33.2 MeV. (27)

Then the sum of partial decay widths is 64.9 MeV, compatible
with the total width.

For I' -, the prediction is new and should be observed in the
N mode since N*(1535) decays into n/N with a branching
fraction of 32-52%, and it would be a better channel than
the w N that could be mixed with the Am decay. Regarding
¥* K, which is also not measured, there are certainly problems
when one is close to threshold. However, a proper unitary
multichannel analysis, as done in Ref. [37-39], should show
the relevance of this channel. One similar case where this
has been done is in the N*(1700)(3/27) resonance, which in
Ref. [40] is shown to appear from the interaction of a vector
baryon, mostly from poN, which is at threshold there. This
case has been revised in Ref. [41] to include the Axw channel,
associated with another triangle singularity. The p N channel
being around threshold is not an obstacle to obtain a (38 &= 6)%
branching ratio for p N in the analysis of Ref. [37].

IV. MASS DISTRIBUTIONS

Now we wish to get the mass distributions for pairs
of particles. We choose to study the m+z~p final state.
We will have the contributions of Fig. 18. The first thing
to observe is that the 7"z~ p channel does not exhaust
all the width. Indeed, in the case of mA decay we have
three more cases: Rt — 7t A° > 7nt7n%, Rt - 7%A+T —
7% *n,and R — 7°A* — 7%7°p, with R standing for the
resonance N*(1875). Using the coefficients for the weights
of the different 7 A components in Eq. (Al) and those for
A — 7N in Eq. (B3), we find that the 77~ p mechanisms
of Fig. 18 account for g of the = A width, while the channels not

considered account for g of the width. Similarly, for the # N*

we are missing R — 7t N* — 7t7%, RT — n'N*+ —
7%r+n, and Rt — 7°N** — 7% %p. Taking into account
the coefficients of Eq. (A1), we find again that with the 7t~ p

final state we take into account g of the 7 N* width and
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7 (p1) 7 (p2)

N*+(1875) /
p(p3)

AO

(a)
™ (1) 7 (p2)

N*+(1875) /
p(p3)

N*O
(c)
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™ (p2) 7 (py)
N*+(1875) /
p(ps)
A+
(b)
/ T (p1)
N=(1875) e
p(p3)

(d)

FIG. 18. Diagrams for the decay of the N*(1875) resonance into 7 A [(a) and (b)], 7 N* (¢), and o p (d).

the missing channels account for of it. Regarding the spin
dependence of the diagrams of Flg. 18, the R*(; ) coupling

to w A goes as a constant, and the A — N as S Dr. The
N* — N also goes as a constant but the R — 7 N* goes

as S - Pr. On the other hand the R*(3") coupling to op also

goes as S Dx [see Eq. (B3)]. Then considering Egs. (A1)
and (B3) and the isospin decomposition of the N** — 7N

decay, [IN*, 7N, I=1 L= f|n n) f|n p),

we have

. 1 1
- ltR+*>JT+A0*>JT+JT7p = 8RaA\ — 8 5

1 -
X S-p
My — Mp + i My

. 1 3 =
_ltRJf—nT*A**—)n*n*p = gR,nA\/;(_I)S *P1

1 anA
x — ,
M13—MA+17A my

. , 2 2\2 -
—URt g+ N0 gtg—p = 8R.7A 5 - 5 S pi
1
X N*,7N>»
Mzs—MN*-l-lFN*g 7

. , 2\ . -
TURtsopstnp = gR,aN( - \/;> S-(p1+ p2)(=1)

1

X X 8o,
M3}, — m2 +imy Ty

(28)

where Ml.zj =pi+p)% i,j=123 for nt, 77, p. In
the last equation we have considered that |zmw, I=0) =
—\%(nﬂt‘ + 7 7t +7%%0. The coupling of the o to
wt7~ has a (—\%) coefficient, and likewise for the 7~ ™,

but considering the integrated 77~ and 7~ 7" width one is

counting twice the contribution. All this is solved by taking
the coefficient ( — \/g). The extra minus sign in the last of
Egs. (28) is because p, = —pi — p».

We take gy+ v = 0.70 from Ref. [32]. In Eq. (28), we
have used the couplings g} . y. and g, instead of gg ;n-

and gg,n. This is because the factors S .-k were already
taken into account when we evaluated the effective transition
potentials [see Eq. (9) and Egs. (10) and (B11)], which already
incorporate the factor 5122 coming from this operator in the
sum over m N* and op intermediate states. To take this into
account it is sufficient to write

/ V3 / V3

8RN = EgR,nN*s 8Rop = = |gR op- (29

|p1+ p

After this discussion, we can write the full amplitude for RT —
777~ p from the diagrams of Fig. 18 as
—itet=(B+C+D)S-p1+(A+ D)S - p>
=A'S-pi+B'S- p, (30)
where
1 graa- fana 1
3\/5 my M23—MA—|—I'FTA7
1 gran - fana 1
V2 My Mz — Mp + i%
2 8RaN* - EN*, 7N 1
C=——
V3 D1 M>3 — My~

8R,oN * 8o 1
\/_
|I’1+P2| M122_m127+imara’

AA=B+C+D, B =A+D. 31

The differential mass distribution is give by [1]

d’r AM My~
to|24M 2 Mo,
dM2,dM>; (271)3 32M3 ZZ|t0t| 12M»>3

(32)
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where, using Eq. (9), we find

DO ltal?
1 . o ..
= §[|A’|2pl2 + B2 5} +2Re(A'B*)p1 - p»],  (33)

where p; - pp can be written in terms of M, as

2p1 - pp =mi +m3 +2E Ey — M}, (34)
and Eq, E; as
gl MiamioMh L MiewdoMh o
2MR 2IWR
To obtain ddTF, we integrate Eq. (32) over M»3, and the limits

are given by]%he PDG [1]. In t,; we need My,, M3, M3 as
variables. To evaluate Eq. (32), we need M3, which is given
in terms of the other variables as

My = My +mt+m3 +mi — M}, — M3,.  (36)
If we wish to obtain %, we integrate Eq. (32) over M1,. The
limits for M»3 can be obtained from those for M1, by permuting

the indices 123 — 321. Similarly we can obtain ﬁ as
in Eq. (32), substituting the factor 2M,3 by 2M;3. Then we
get % by integrating over M), and hte limits for M, are
obtained from the standard formula of the PDG, permuting the

indices 123 — 312.

V. RESULTS FOR THE MASS DISTRIBUTIONS

In the limit of the small widths for the A, N*, and o,
the different terms in Eq. (28) do not interfere since they
correspond to different final states 7 A, w N*, o N. However, if
we look at 77~ p production and consider the widths, there
can be interference. In particular there should be interference
between 7~ ATt and op [B and D terms in Egs. (31)]. Note
that the B term is three times larger in strength than term A).
The fact that these two terms have the same spin structure
(S - p1) helps for the interference.

In Fig. 19, we plot the ‘ﬁu—rn, d‘i;ﬁ, and [ﬁw—rﬂ mass
distributions for the N**(1875) — 77~ p decay with 1,2,3
denoting 7t, 7~, and p. Let us first look at the mass
distributions considering only 7 A production (red dashed lines
in Fig. 19). We see that for M13(m ™ p) there is a large signal
of the AT"(1232) coming from term B. The A(1232) is also
seen in the M3 mass distribution (7~ p) coming from term
A. Removing a small background below the A® peak in the
M, distribution, we can see that the strength for A™ in
the M5 distribution is about nine times the one of the A°,
as it corresponds to the coefficients in the terms A and B,
squaring them. The rest of the strength in the M>3 distribution
peaks around M3 = 1500 MeV, as a consequence of the phase
space and the weight of the term B being nonresonant in this
channel. The M ,(;r 7t ) mass distribution does not show any
resonance and follows the phase space, weighted by the terms
A and B.

Next we consider the 7 N* term, including in addition the
C term in Eq. (30). The results are shown in Fig. 19 as the
blue dash-dotted lines. We do not see much change except

PHYSICAL REVIEW C 96, 035202 (2017)
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FIG. 19. The ddTr d‘j; and ddTr mass distributions for the
12 13 23

N*t(1875) — n 7~ p decay with 1,2,3 denoting =+, 7~, and p,
with the red dashed lines indicating the case considering only 7w A
production [i.e., A and B terms in Eq. (30)], the blue dash-dotted
lines the case considering 7 A and 7 N* production [i.e., A, B, and C
terms in Eq. (30)], the black solid lines the case considering 7 A, w N*,
and o N production [i.e., all the A, B, C, and D terms in Eq. (30)],
and the green dotted lines the case of changing the sign of g, ., in
Eq. (B7). The purple dash-dot-dotted line in the ﬁ distribution
corresponds to the case considering only o N production [i.e., the D
term in Eq. (30)] fitted approximately to the M, distribution at low

masses.
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for an enhancement of the peak in the M»3 distribution (7~ p)
corresponding to the N* excitation by the C term. However,
the change is not large. Yet, here we see a possible reason why
the the w N* channel has not been claimed experimentally.
Indeed, the m A mechanism alone already creates a peak in the
M3 distribution in the region of 1500 MeV, which cannot be
associated with = N* production. Any 7 N* production can
be easily attributed to the A production in the M3(w™ p)
channel. This has also a consequence in terms of a message:
To determine the 7 N* production one should better look at
N production.

We show the results including all the production terms,
A+ B+ C+ D, in Fig. 19 as the black solid lines. This
includes op production in addition to the former channels.
The results are interesting. Apart from the basic features that
we have observed in the former cases, now the M (w7 ™)
mass distribution contains a large bump in the region of low
invariant 7 masses corresponding to the o production. A
smooth extrapolation of the low energy M), distribution with
a wide o shape would tell us that about % of the width could
be attributed to o N production. To quantify this we have
used the D term of Eq. (31) alone, and roughly adjusted its
strength to the low mass region of the M1, distribution. This
is telling us that an analysis of the mass distributions, due
to interference of terms, would provide an apparently larger
strength for the op channel than one would induce from the
coupling of the resonance to the different channels, as done in
Egs. (26). Actually, since we are only considering (53 of the T A
production in these figures, taking into account the results of
Eq. (26), we would be extracting a width of around 7 MeV from
this analysis, which would turn into % x 7~ 11 MeV if one
considers the 0 — 797 decay also. This is bigger than the
2.3 MeV that we obtained in Eq. (26), and would correspond
to a branching fraction of about 15%.

There is another issue worth considering. In the determi-
nation of the couplings there is always a global sign which
is arbitrary. The result of the couplings in a coupled channel
problem have the relative phase well determined with respect
to this one. But the 77 channel is not coupled to 7 N or T A.
We would like to see what happens if we change the sign
of the g, . in Eq. (B7). The results are shown in Fig. 19
as the green dotted lines, and we see that the effects are
moderate. One should note that it is precisely in observables
that involve interference of the terms that the signs of couplings
relative to other signs of, in principle, unrelated couplings can
be determined.

VI. CONCLUSIONS

In this work we have complemented the developments of
Ref. [4] in which a 3/27 resonance appears around 1875 MeV
from the interaction of the £*K and A channels. In a first
step we introduced the N*(1535)m channel, which is produced
via a triangle singularity in which £*K is produced, then the
¥* decays to Am and finally the AK merge to produce the
N*(1535). The interesting observation is that the singularity
appears at the same energy as the resonance, and then it shows
at the same peak and helps stabilize the resonance in the sense
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that even with a weaker £* K interaction the singularity always
appears at the same energy. The other decay channel that
we introduced is the No channel. We also used a triangle
diagram to take it into account, taking the Ax intermediate
state, letting the A decay to Nx and then merging the two
pions into a o meson. Then we take the scheme of [4] adding
the two new channels to the original £*K and Am ones, and
with the four coupled channels we study again the resonance,
the couplings to the different channels, and its decay into
these channels. We observe that the partial decay widths of
the resonance to N*(1535)7 and No are not large but are
measurable. In particular, we observed that the No channel
was much smaller than what is determined experimentally
from some experiments. Yet, since channel separation is done
from mass distributions, we showed that due to interference
with other terms the 7 mass distribution showed an important
enhancement at low invariant masses, from which one could
extract an appreciably larger fraction of No than one gets from
the couplings yet smaller than the experimental claims.

An important part of the work was the study of the ¥*K
decay channel. This channel is not easy to separate in an
analysis because the resonance has its mass at the threshold of
the channel. In fact no experiment has made claims about this
channel. However, we see that the channel is very important in
the building of the resonance, and that taking into account the
width of the resonance and the width of the X* we obtained a
branching fraction of about 45%. It is clear that if this channel
is omitted in the analysis, its strength can easily be attributed
to another channel. So, in view of the unavoidable large
strength of this channel, we suggest that modern multichannel
analyses implementing unitarity in coupled channels are used
to revise this resonance. There is a clear example in a related
case, where the multichannel analysis provides also a sizable
contribution of a threshold channel—the Np in the case of the
N*(1700)(3/27) [37]—where other analyses [2] neglect it.

The determination of the N*(1535)m channel is also
relevant since it will evidence the role of a triangle singularity
peaking at the resonance position. Yet, the discussion of the
mass distributions in the 777~ p final state showed that the
mass distribution for N*(1535)7+, N*(1535) — 7~ p had the
same signature in the 7~ p mass distribution as that coming
from the A*T 7~ excitation mechanisms, where the 7~ p is
not forming the A. This is why if one wishes to determine this
channel, the ideal final state should be 7nN not rw N.

The thorough work conducted here on the building up of
the resonance, its decay channels, and the mass distributions in
the w7t N channel, together with the discussion above, clearly
indicate that a reanalysis of this resonance to the light of the
present findings should be most welcome.
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APPENDIX A: EVALUATION OF THE AMPLITUDES OF
FIGS. 2 AND 3.
We follow the sign convention of Ref. [4], |z T) = —|1,1),

of isospin. Hence we have

1 1
A, l== L=~
2 2

1 1 1
= \/;|A++n‘> - \Ewn% - fgmon*),
1

1
‘N*(1535)7T, I = 5, ]3 = —>

2
2 1
— = N*() + \/jN*+ 0 ,
\/; )+ 3| )
1 1 2 /1
K, ==, L==)=,/2|2*FK" — /= |=*°K ™).
2 2 3 3

(AD)

We need the £* — Am coupling and the KA — N*(1535)
coupling. The first one is of the type

—itgenn = gxrnaS - K, (A2)

where § is the spin transition operator from 3/2 to 1/2. The
width for ¥* — 7 A is given by (k = p,)

2M2Ms- 1 = -
r=="—"-—- It 12 |k, (A3)
8 Mé* ZZ
with
S e
1 ,
= 185ean D D _mISIM)(MIS]Im)kik;
M m
1, 2 ,.
= 185 aa Z<m|§5ij — 3€iji01lm)kik;
1 2 72
=385k (A4)
Hence,
1 M, 1
N o (A5)

= 27 My 385 7
and using the experimental value for the £* — m A width we
obtain

gs+na = 0.0090 MeV ™. (A6)
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The coupling of N* to K A we get from Ref. [32], where the
chiral unitary approach has been used to obtain 7 N scattering
in the region of the N*(1535). One has

EN* KA = —1.28. (A7)

With these ingredients we can already evaluate the triangle
diagrams of Figs. 2 and 3. Considering the isospin coefficients,
the sum of the diagrams in Fig. 2, for [ = % I; = %, up to the
propagators, is given by

N , 2

(—i)y/ 3 Vil (=Dgsenn (—)gn-xa 3
1 _ . 1
+<—i><—1>\@ VA2 gxean (—D)gNe kA \@

_ yu=12)

Am,x*K 8T 7 A EN* KA» (A8)

where ngé/zlz is given by Eq. (1) and Table 1.
The case of the transition ¥*K — N*m in Fig. 3 proceeds
in an identical way, and the only difference with respect to

the results of Eq. (3) is that we must substitute Vi o)

AT, T K
(1=1/2)
by Vg 5ok -

APPENDIX B: EVALUATION OF THE AMPLITUDES OF
FIGS. 6 AND 7.

We need now the state

1
nn, ] =0)=——@n +7 7" +72%2%  BD
V3
and the A — N coupling, similar to Eq. (A2):
. Janaz - .
—it = S - p.C(), (B2)

with C(i) the corresponding isospin Clebsch-Gordan coeffi-
cient,
—1 for

Ci) = % for

1
3

ATt — prT,
At — prO, (B3)

for A’ — pm—.

The coupling frnya, taken to obtain the A width, is given by
Jana =22 (B4)

corresponding to f2, /47w = 0.38, very close to standard
value used in pion physics, 0.36 [42]. The isospin combination
of vertices corresponding to Eq. (A8) for Fig. 6 is now given,
taking into account Eq. (A1), by

1 anA
2 m

_ 1 /2 f. 1

i Virn (—)fg \/g ris () Dgaan
_ 1 /17, 1

—i Véln_i/j) (_)\/g\/; meA (_)% (_l)g(f.ﬂﬂ

_ 2 ya=12 fana
=~ 5 Am, A ey 8o,nm-

1 .
(_)ﬁ (_l)ga,nn

(B5)
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For the coupling of the o to w7 obtained from the unitary
matrix, and unitary normalization (% extra in the wave

function of w7 as identical particles), we take

=3.6GeV, (B6)

8o

where we have taken an average between the results of the
chiral unitary approach [43] and different results using an
analysis of data implementing Roy’s equations [44,45] (see
Table 4 of Ref. [46]). With the good normalization to be used
in Eq. (B5), we have

2 x 3.6 GeV. (B7)

8o, =

Following the argumentation of Eq. (3), we obtain now

2
—itarne = —Viamad A/ = Jra N2 g an (S-K)2Ma 1),
3 mg
(B8)

with k the nucleon momentum, where 7. is obtained from
Eq. (4) by simply changing the masses of the intermediate
particles, ¥* — A K — 7, A — 7, and multiplying the

integrand by (1 + %£%). The reason for this latter factor is that

IkI7
before in Eq. (3) the factor (S k) was factorized outside the
integral. Here we have S. DPr=S-(—q— k) and

3 se e e — K- 3 qk
[qa=k [ aa Tt

since ¢ is an integration variable and k is the only vector in the
integrand which is not integrated.
For the transition of ¥*K — No, we will have the same
expression as in Eq. (B8), changing VAIN inz ) to V)(ZI K. M
Finally, in analogy to Eq. (17) we will now have the effective
transition potential

. 2 £y -
Vine = V,’A;/Z\ﬁ JNA o AMs V(). (BO)
3 my,

where \7](,5 is defined such that

Im7'(s) = Vi, () Im Gy (s,my) Vi (5), (B10)
with

. 1 1.

Im7'(s) = ~ /dmg gk2 Im G o (8,7) Sy (12) [t7(s, 1701,

(B11)
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with the o spectral function,

) 1 I
S\ () =~ Im[ﬁﬂ - FJ’

N, = /s(,(rnf,)dmi,
1 My
A s
A5, My m3)

25

and Im Gy, (s,71,), l%(s,rhg) given by the same expressions,
changing m, to r,. For m, and I', we take values from
Ref. [46]:

Im G o (s,my) = k(s,mg),

k(s,my) = (B12)

my, = 445 MeV, F—; =275 MeV.

Now 17, ~no of Eq. (B9) provides transitions from Az (X K)
to No. As before, we introduce the No channel into the
coupled channels and have now a4 x 4 matrix for V, allowing
the Am — No, ¥*K — No transitions and neglecting direct
transitions No — No and No — N*m. For cutoff in the
integral of d°q in 1. we take NOW gmax = 700 MeV, suited
for the study of the w7 interaction [6,47].

APPENDIX C: DOUBLE CONVOLUTION TO OBTAIN THE
DECAY WIDTH IN THE X*K CHANNEL.

We perform the double convolution with the spectral
functions of X* and the resonance N*(1875). The convolution
width is given by

B 1 Mp+20g 5 Myx+2 g% 5
INseg = — / dMpg / dMs
NR Mgr—2Tg Mygx—2T s

x Sg(MR) Ss+«(Ms+) Ts«x (Mg, Mx+,mg), (C1)

where Sg(Mp) [or Ss-(Ms.)] is the spectral function of
N*(1875) (or ¥*), taking the same form as Eq. (13) with
proper mass and width for the resonance; and

Mp+2Tp Mg 42Tgs ~ _
NR :/ dMR/ dMZ*SR(MR)SZ*(MZ*)!

Mgr—2Tg Myx—2gx
Fok (W iy ) = 22 ©)
* . *, M = T = * B
sk (Mg, Mx K 27 My 8Rr,z*k P
with
A2(R12 M2, m2 5 y
p= ( R > k) O(Mg — Mx+ —mg).
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1. Introduction

An alternative way of explaining the accelerating expansion of
the universe [1,2] or the Dark Energy (DE) problem [3] (for review
see [4]) is to modify the Einstein’s theory of gravity (General Rel-
ativity (GR)) as the source of accelerating behavior of the universe
(for review see [5]). The simple versions of such modification,
i.e. f(R) gravity, were purposed by Capozziello et al. [6] and Carroll
et al. [7]. The main idea of modified gravity is that, on the one
hand, one considers gravitational Lagrangian as a function of the
Ricci scalar, i.e. £ = /—gf(R) [8]. On the other hand, the inverse
power of the Ricci scalar (1/R) is placed into the Einstein-Hilbert
action which gives a deviation from GR at small curvature and
causes the present acceleration of the universe at very large scale.
This happens either with de Sitter and anti-de Sitter solutions in
the vacuum case which provides a purely gravitation driving the
acceleration universe. The modified f(R) gravity gives good expla-
nation for the cosmic acceleration without introducing the dark
energy component that implies from the cosmological data [9]. In
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and Liberal arts, Rajamangala University of Technology Isan, Nakhon Ratchasima,
30000, Thailand.
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addition, the modified f(R) gravity also has been shown that it can
be derived from string/M-theory [10]. However, f(R) gravity en-
counters a number of problems, for example, the unstable problem
of the scalar degree of freedom, especially in the 1/R model, [11]:
incompatible with the constraints of local gravity [11,12]: the
instability of cosmological perturbations in the large scale struc-
ture [13] and the wrong sequence of the universe’s evolution [ 14].
The necessary conditions in both of local gravity and cosmological
observations for viable f(R) and its detailed implications are ex-
plicitly demonstrated and given in Refs. [15-19] and see Ref. [5]
for review.

The dynamics of anisotropic models with f(R) gravity have been
less studied compared with their isotropic Freidmann-Lemaitre-
Robertson-Walker (FLRW) counterparts. As a result, it is not
known how the behavior of the shear is modified in these theories
of gravity. The dynamical systems methods for analyzing the qual-
itative properties of cosmological models have proven very useful.
It has been successfully used to study and to understand a number
of cosmological models such as the standard GR cosmology [20],
the scalar fields models of dark energy [21], the scalar-tensor the-
ories of gravity [22] and the brane-world models [23]. Moreover,
the cosmological dynamics of f(R) gravity was extensively studied
in [7,24-29] by using the dynamical system analysis frameworks
in homogeneous and isotropic universe (a.k.a. the FLRW model)
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and in the less anisotropic counterpart (Bianchi types and the
others) [30-33]. However, a huge number of f(R) models in the
FLRW universe is ruled out by the corrected cosmological expan-
sion sequences [ 16]. A few models survives from both cosmological
and local gravity constraints. Those models are called viable f(R)
models of gravity. The interesting models among them are f(R) =
R — aR" and f(R) = (R® — A)° where they were purposed by
Refs. [16] and [17] respectively. An extensive analysis of these vi-
able f(R) models in the anisotropic universe should be a very worth
study to quantify some interesting features in this scenario of the
f(R) theories. Therefore, we will perform the dynamical system
study for the cosmological solutions of f(R) gravity in anisotropic
Bianchi I universe with the existence of the uniform magnetic fields
in this work.

The cosmological magnetic field is one of yet unsolved problems
in cosmology. The magnetic fields seem observationally emerge
at large scale of the universe [34]. There are many theoretical
explanations to disentangle the origin of primordial cosmological
magnetic field. One of the compelling explanations is that the
cosmological magnetic field has a primordial origin and this idea
was purposed by Ref. [35]. The explanation is that it has been
created from the Big Bang like all matters populating the uni-
verse. From this assumption, we therefore include the primordial
magnetic fields into the energy-momentum tensor in the RHS of
the Einstein field equation directly. This idea inspired us trying to
understand its evolution by finding the exact solutions [36-38] in
the wide classes of the Bianchi universe and its existences via the
cosmological perturbation theory approach (see for the Bianchi I
background [39] and for a review [40]). The cosmological magnetic
fields will naturally appear in the universe when the anisotropic
cosmological models are taken into account. More importantly, the
(primordial) cosmological magnetic fields also might play some
roles on the cosmic microwave background (CMB) radiation and
might be relics of the existence of the magnetic fields from the early
universe.

Previously, the cosmological magnetic fields have been studied
in the homogeneous anisotropic universe (Bianchi models) con-
text. It was mentioned in Refs. [36] that a universe with a primor-
dial magnetic field is necessary anisotropy . The exact solutions
of magnetic fields in many classes of the Bianchi models were
discovered [36-38]. The first significant study of cosmological
magnetism in the dynamical system approach was performed by
the authors of Ref. [41]. The authors of [42] was systematically
performed the standard technique of dynamical system of the
magnetic fields evolutions with the perfect fluids in the Bianchi IV,
with the orthogonal frame formalisms and Hubble normalization
variables. Later, there were many works on the dynamical system
approach to study the magnetic fields in several classes of the
Bianchi models [43-45] (see also reference therein) with the GR
and the brane-world cosmology [46].

In this work, we will perform the standard dynamical system
analysis on the dynamics of the Orthogonally Spatially Homoge-
neous (OSH) Bianchi I model in f(R) = R — «aR" and f(R) =
(R® — A)° models of gravity with the existence of the primordial
magnetic fields and the standard barotropic perfect fluid matter
(pm = wpm) for w = 1. The two selected viable f(R) models in
this work have advantages in both local gravity constraints and
cosmological viabilities which are demonstrated in Refs. [ 16,17] for
the FLRW case. The Bianchi I is reasonable to be examined because
such models are anisotropic generalization of the flat FLRW model
and its mathematical simplicity as well. The geometrical property
of the spacetime in the Bianchi I, in this work, is assumed to exhibit
a property of “Locally Rotational Symmetry”(LRS) [31]. The LRS
is rotational symmetry with a preferred spatial direction of the
space-like hypersurface. Physical quantities and also observations
are rotationally invariant about this direction [47-49]. Here the x-
direction is chosen to be the axis of this symmetry. Therefore, we

impose the uniform magnetic field aligned along the axis of the LRS
(in the x-direction). The aim of this work is also to study the cosmo-
logical dynamics of anisotropic universe with the magnetic fields
inf(R) gravity via the dynamical system technique. The f(R) gravity
might have some interesting features on the anisotropies in the
shear evolutions of the early universe till the present observed uni-
verse. The results from this study might help to understand more
about the alternative effects of the viable f(R) gravity DE models on
the small anisotropic effect and contributions of magnetic fields in
CMB and its evolution epoch of the universe. In addition, this work
is the first systematic dynamical system analysis of the magnetic
Bianchi I in f(R) models of gravity which has never been studied.

We outline this work as follows: In Section 2 we set up the
evolution equations of the f(R) gravity in OSH 1 + 3 covariant
approach. In the next section, the dynamical system analysis of the
magnetic Bianchi I in the in f(R) = R — «R" and f(R) = (R — A)°
models is investigated. In Section 4, we discuss the cosmological
implications stemming from our study. In the last section, we give
the conclusion in this work. Unless otherwise specified, we will use
natural units (c = 87G = h = 1) and all conventions used in the
present work are adopted from Refs. [30-32].

2. Evolution equations of f(R) gravity in 1+3 covariant for-
malisms

In this section, we will briefly give a crucial setup for the f(R)
gravity in terms of the 1+3 covariant formalisms. We mainly follow
the notations and conventions from Refs. [31,50] and its detailed
formalisms there in.

2.1. The Einstein field equation in f(R) gravity

We begin at the gravitational action of f(R) gravity in the fol-
lowing form

S = / V=gf(R)yd*x + / Lnd*x (1)

where £, is matter fields Lagrangian density. Varying above action
with respect to metric g%, we obtain the Einstein field equation of

f(R)as
F(R)Rqp — %f(R)gab + 8 Ve VEF(R) — Vo VuF(R) = Tgp. (2)

where F = 8f/dR and Ty, = (2//—£)8Lm/5g® and the Latin
indices run from a, b, c = 0, ..., 3. After some manipulations,
the Ricci tensor takes form [31,50],

1/1
Rop = F <§gabf - (gabng - gggﬁ)scd + Tab) (3)

where Sy, = V,V,F. The energy-momentum tensor T, is defined
by

Tap = pugtiy + phap + qallp + qplig + Tap. (4)

Here hgy, = gap + ugqUp is induce metric which associated with
spatial hypersurface and u® = (1, 0, 0, 0) is four-velocity which
orthogonal to hg, (hgpu® = 0), q4 is the energy flux (q,u® = 0) and
7qp is the symmetric trace-free anisotropic pressure, all relative to
u (ng = 0, mgpu® = 0), [31]. The energy-momentum tensor in
this work can be decomposed into two parts as

Ty = Tk +TEM (5)

where T‘fbf is the energy-momentum tensor of the perfect fluid,
given by

TCI,J;: = PmUqlp + pmhab~ (6)
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T‘f{,"’ is the energy-momentum tensor of Maxwell field, given by
1
Tap' = FacFy = 4 8apFeaF™ (7)
the field strength Fy is also defined by
1
Fop = 5 uggEp + UabcclHCud (8)

where E,; and H, are electric and magnetic fields respectively. We
will consider the energy-momentum tensor of Maxwell field in
the pure magnetic case. The uniform magnetic fields are aligned
in x-direction. This means the magnetic fields have component as
H, = (0, H, 0, 0) [42]. One can write the energy-momentum
tensor of the Maxwell fields analogous with the perfect fluid as [46]

TE" = pemtatp + Pemhab + 7ab (9)

where pgy = 1H?, pey = tH? and my is given by
1.2
Tabp = gH hay — HqHp, (10)

where H2 = H,H® = H? is the magnitude of magnetic fields.

One notes that the energy-momentum tensor of Maxwell field
is also trace-free (g®TEM = TEM = 0). Then the energy density
p and pressure p can be decomposed to the fluid matter and the
magnetic parts as

1 -
pem = 5 H?,

: (11)
P = DPpr +Pem, PpF = DPm, DEm = gHz-

P = ppr + PEM>  PPF = Pm,

Here we consider the energy-momentum tensor of matter part as
a standard perfect fluid (the equation of states for perfect fluid and
EM parts take form w = py,,/pom and wgy = 1/3 respectively).

2.2. Propagation equations of kinematical quantities in f(R) gravity

In the next step, we will set up the propagation equations for
f(R) gravity in OSH 1 + 3 covariant formalism. The OSH formalism
is used to describe the fluid velocity time-like vector fields which
orthogonalize to the spatial vector (triad) fields. Having assumed
the LRS of the spacetime, here the spatial vector fields span on
the space-like hypersurface with one preferred spatial direction
and they are invariant under the rotation of the preferred spatial
axis (the x-direction) [47-49]. The main results have been done
by [31,50,51]. Using Eq. (3), we can split Ry, in the following forms
as [31,50]

R=F T +2f —35) (12)
Rgpu®ul = F1 <Tabuaub - %f + habSab) (13)
Rapu®h? = F~'(Sqpu®h? — qc) (14)
Raphthh = F~! <ncd - (p + %f + 5) hea + Sabh?h2> : (15)
and for the Sy,

S = —F(R+ ©R) — F'R? (16)
Sapu’u’ = F'R+ F'R? (17)

Sawh® = —F'OR. (18)

According to Refs. [31] and [30], they were explicitly demonstrated
the 1 4+ 3 covariant analysis of Bianchi I universe in the f(R)

gravities, the Raychaudhuri equation is written by
e+ Lo2 +20% + 1 (p - 1f + h“bsa,,)
3 F 2
.1, , 1 1 S

and the Friedmann equation (the first integral of the above equa-
tion) is given by

%@2 . % (p+3p+f — 35 + 2h™Sy)
=1@2—a2—1<p+1(FR—f)—F/@R)=o (20)
3 F 2
The shear propagation equation is given by
Oap + Oogy = % (7rab — F/Raab) , (21)
where ® = ©4h® is the rate of volume expansion parameter

(Hubble parameter), 0 = 10,0 is magnitude of the shear ten-

SOr 0ap (0ap = Oy — 3hap®, 0 = 0and ogpu® = 0). The tetrad field
is decomposed into the orthonormal frame [49]. We restrict that
the magnetic field is aligned along the shear eigenvector as were
done in [42,43], then the shear tensor simultaneously diagonalize
as!

ogp = diag( o011, 032, 033) = diag( oy, 02, 03). (22)

Therefore the shear propagation can be written in the following
form

1 )
G4+ oy = F (na—F’Roa), (23)

where 7, = 7y and 7y, is the diagonal elements of 7, tensor. By
using the conservation of energy-momentum tensor with source-
free of Maxwell field in the Bianchi I scenario, the propagation of
matter parts is given by [42]

pm = —(14+ w)pm®, (24)
< 2 - ~ 2 - -

H=—g@H—i—a]]H:—§®H—2(az+a3)H. (25)
We close this section by introducing another helpful equation.
With help of the Raychaudhuri and Freidmann equations, we come

up with the following crucial relation:

.4 ,
R=20 + 6% +20°. (26)

2.3. The autonomous system

According to Ref. [16], we introduce new dimensionless vari-
ables as follows:

_30’2-‘1-0’3 M= 39
T2 e “Vore’
3 F'R 3 f
XN =—-——— X =—2 ,
! O F 2 2 FO?
3 R 3 pom
X = —-—, = ———":. 27
P 22 02 F 27

—_

Alternatively, by using the LRS Bianchi I line element, ds®> = —dt? + X(t)*dx* +

Y(t?*(dy? + dz?), one can show that 617 = Oy — h;;® = 2 (;—( - %) oy =

3 3
6 = ¥7+2¥,@11 = );(-@22 =
o =01 = —(02 +03).

On —h20 = — (§ - 1) and oy = O35 — h30 = —1 (¥~ ) where

<<

and @33 = % From such results, we obtain
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One notes that’ ¥? = (3 “23”3) — 392 The constraint equation

written in terms of the new variables of)eys
1-3%2—x1—x,—x3—z—M?*=0. (28)

Using the time propagation equations of the kinematical quantities
in the previous section, then the equations of autonomous system
are given

s ,
d—:x12—32+2(2—x3+2)
T
+2(1-22—x—x—x3—2),
dx
d71:xf—3x1—4x2—2x3—(1—3w)z+x1(2—x3+22),
T
dx: X1X
=2 =i+ + 20 (2 X3 + 22),
dt m
dX3 X1X3 2
IS o (2 xs 4 5Y),
dz m + 25 s+ )
dz
d—:x1z—3(1+w)z+22(2—x3+22), (29)
T

where m is the parameter which is very useful to study viable
models of f(R) gravity and it is defined by [16]
RF’ 30

m= - (30)
We note that the derivatlve with respect to the logarithm time
scale is defined by 57 = o dt In addition, one observes that by
ignoring the X and M variables, the autonomous system will be
identical to the FLRW case that have been done in [16]. For the
general case of the evolution phase of the universe, one can be
described by the sign of the rate of volume expansion ¢ = =1,
where ¢ = |©|/0. ¢ = 1 for the expanding phase and ¢ = —1
for the collapsing phase, more detail discussion in this issue see
[26,30,32]. In this work, we have focused our study in the future
evolution of the expanding phase (¢ = 1) of the universe only. The
auxiliary of the autonomous system (evolution of magnetic term)
is
dM x1M 2
e T—ZM—22M+M(2—X3+2). (31)
The matter density and curvature density parameters of the uni-
verse are defined by £2,, = z and 2. = x; + X + X3, respectively.
In this work we consider 2. as dark energy density parameter.

This section we note that “prime"denotes derivatives with re-
spect to the logarithm time scale as 57 = 0 dt In the general case
of the evolution phase of the universe, it can be described by the
sign of the rate of volume expansion ¢ = +1, wheree = |®|/6.
e = 1 for the expanding phase and ¢ = —1 for the collapsing
phase, more detailed discussion in this issue see [26,30,32]. We also
introduce the effective equation of state [16],

®

-1- 2@, (32)
which is a useful parameter in this study. Using the definitions in
Eq. (27), one rewrites the effective equation of states in terms of
the dimensionless variables as

Weff =

2
weff=—1—§(x3—>:2—2). (33)

More importantly, the associated solutions for each fixed points
can be obtained by using Eqs. (26) and (27) to yield

. 5 62
O = (x30)— X3 —2) R (34)
2 3 az+03 _ q0? 3 0j+03+07
We can demonstrate that (3 ) = 3(_)—2 322 is valid by using

>I=- |

the relation o7 = 2 (;—( - —) and oy = 03 =

G-

w\—~

where X3 ; and X; are the associated “i” fixed points. Performing
the integration, one gets solutions of the scale factor for the asso-
ciated fixed points

a(t) = ao(t — to)”,

1
B =

=—Q0 (35)
2+ E(z) X3,(i)

In order to see dynamical features of the anisotropic universe,
one should consider the shear evolution in the model. With help of
Egs.(23)and (27), we obtain the shear evolution equation in terms
of the dimensionless variables as

S 0 Ly zM“) X (36)
o no, n= 3 0 10 -

Contrary to previous studies on the R" gravity in Ref. [31], our
parameter n depends on the magnetic field, M. This means has
the magnetic fields play important role on the shear evolution.
Integrating out Eq. (36), we find

o =0oa " = apay " (t — to)F". (37)

The exact solution of the shear evolution is very useful for un-
derstanding the behavior of the anisotropic effect in the universe.
As discussed in Ref. [31], from the above equation the shear evo-
lution for all points in the phase space that lie on the line n =
(3+2M§/Zw +x1) /3 = 11is the same as in the GR case. In
order to deviate from the standard GR, the shear will dissipate
faster than that in GR when 6 /0 < —@, that is all points that
lie in the region (3 + 2M},/ Z(;) + x1,) /3 > 1. This is called the
fast shear dissipation (FSD) regime [31]. When ¢ /o > —® and for
all points in the region (3 + ZM(zi)/Z‘(i) +x1,m) /3 < 1, the shear
will dissipate slower than that in GR. This is named the slow shear
dissipation (SSD) regime [31]. Notice that, however, the higher
order terms of the f(R) gravity models, e.g. see Refs. [52], can play
the same role as of the magnetic field investigated in this work.

In addition, exact solution of the magnetic fields are also ob-
tained in terms of dimensionless variables. Using Eqs. (25) and (27),
one gets,
H =Hpa ™" = Hoaa’(([‘ — to)_/g’(’ = % (1 + 22(1')) . (38)
In order to see how the shear parameter and magnetic fields evolve
in cosmic time, we will substitute non-zero shear fixed points into
the exact solutions of the shear and the magnetic fields evolutions,
Egs. (37) and (38). After outlining the autonomous system of the
magnetic Bianchi I universe with the generic f(R) gravity and exact
solutions in terms of dimensionless variables, we will consider
such system of differential equations by using the standard dynam-
ical system approach in next section.

3. Dynamics of magnetic Bianchi I universe in f(R) models of
gravity

This section is devoted to provide the dynamical system analy-
sis for the f(R) models of gravity. We will define the dimensionless
variables from the Friedmann equation given in Eq. (20) in the
previous section and use these variables to set up an autonomous
system of first-order non-linear differential equations. Next we
will determine all fixed points of the autonomous system and
analyze their stabilities for each of them. At the end of this section,
the cosmological implications of the magnetic Bianchi I in f(R)
models will be discussed in accord with the fixed points and its
stabilities.
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3.1. Dynamical system of the f(R) = R — «R" gravity

We start with the f(R) = R — «R" gravity. This model has
been studied extensively in several aspects. and it was shown that
the model will be the viable f(R)DEif« > 0and 0 < n <
1 [16]. Especially, the standard dynamical system method is used
to analyze in the FLRW counterpart [27]. For the anisotropic cases,
it was studied in the Kantowski-Sach metric [29]. Here we will
consider this model in the Bianchi [ universe with the existence of
the primordial magnetic fields. The f(R) = R — «R™ model has the
m function which can be practically written in terms of a variable
ras
m— n(l—i—r)’ (39)

r
where r = x3/x,. Substituting the m function into the autonomous
system in Eq. (29), one obtains explicit dynamical system for the
f(R) = R — «R" gravity. The dynamical system of this model is
given as follows:

s ,
d—:x12—32+2(2—X3+2)
T

+2(1-22—x—x—x3—2),
d
%:xf—3x1—4x2—2x3—z+x1(2—x3+22),
T
dx, X1X3 ,
S = XX+ ——— + 2% (2 —x3+ X?),
R 2 (2—x35+2?%)
dxs X1X3 5
— = ——— 4+ 2x3(2—X X)),
dt n(x2+x3)+ 3( s+ )
dz
d—=x12—3z+22(2—x3+22). (40)
T

We will separately study the fixed points, their stabilities, the
shear and the magnetic evolutions below.

3.1.1. Fixed points and their stabilities

In what follows, we will consider the properties of each point
in turn. There are 4 physical fixed points from the autonomous
system of the f(R) = R — «R" gravity. We will classify into
two cases: isotropic and anisotropic solutions, and the physically
associated fixed points of this model are given below.

Isotropic solutions

o (1) Pi”: de-Sitter fixed point In this case, we obtain the fixed

point:
X =0, x=0 x=-1,x=2,z=0. (41)
Since wef = —1, the point PE” corresponds to de-Sitter

solutions (® = 0) and has eigenvalues

4 3 3 —3n — /nv/—32 +25n
9 9 9 zn 9
—3n+ /nv/—=32 + 25n }
2n '

Hence PEU isstablewhen0 < n < 2 and saddle forn > 2.
In this case, it is trivial to verify that,

a(t) = exp(At), A = arbitrary constant, M? = 0.

° Pé”: standard matter-liked epoch fixed point.
In this case, we obtain the fixed point:

3 3—4n
Y=0,x1=3——-,%=—>",
n 2n? (42)
3 (13 —8n)n—3
X3=2——,2=~——"——.
2n 2n?

Employing Eqs. (33)-(35), we obtain in this case
1 n
3

Weff = —1+ —, a(t) = ao(t —tp)3, M?=0.
n

This point Pél) corresponds to saddle solutions and has
eigenvalues

{_1’ _i, ?’(_]dl—n)’N’I\ﬁ} ’
2n n
where
NE
_ 3n—3n* £ n+/81—498n + 1025n2 — 864n3 + 256n*
B 4(—n? +n3) '

The solutions are a saddle point for (13 —J73) <n<
3/4. We note that this fixed point becomes the standard
matter epoch ifn = 1.
Pél): curvature dominated fixed point.

In this case, we obtain the fixed point:

3 6 1

Y = O7 X — ‘1, X = _—
T on-1 S T
3 1 (43)
X3 = ——+2,z=0.
=i tioat
Employing Eqs. (33)-(35), we obtain in this case
14 —10n%> +13n—1
Weff = — —_—,
eff 6n2 — 9n + 3
_ (n=1)@2n-1) )
a(t) = ap(t — tg) n—2 , M°=0.

This point P}" has eigenvalues

—14+n" —-14n" —-1+2n" 1—-3n+2n?
—3+13n—8n?
1—3n+ 2n?

Regarding the above values, we find for unstable fixed
points

i5—4n 5—4n  2(—2+n) 2(2—8n+5n?)

5
l<n=<-, (44)
4
and for stable ones
1
n<ﬁ<13—«/73>vn>2. (45)
Anisotropic solutions

Pfll):Jacob magnetic-like (non-zero magnetic field with mat-
ter solution: the Jacobs magnetic field model in Bianchi
1[37]) with curvature fixed point.
In this case, we obtain the fixed point:
2(n(5n — 8) +2) 12(n —2)(n—1)
n(7n — 10)+ 4"’ n(7n — 10)+ 4"’
v = 18(n — 1)(n(11n — 20) + 8)
2T (n(7n — 10) + 42
18(n — 1)n(n(11n — 20) 4 8
x5 = ( n(n( )+ ),z=0. (46)
(n(7n — 10) + 4)2
Employing Eqs. (33)-(35), we obtain in this case
N —245n* 4 1616n> — 492n* + 464n + 16
3(7n2 + 10n + 4)°

(7n2+10n+4)2
3 2
aolt — t0)6(193n +24n2+72n+8) i

Y = 1=

Wefr = —1

)

a(t)
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3 (55n* — 188n° + 222n? — 104n + 16)
(7n2 — 10n + 4)*

The existence of magnetic fields in this case satisfies
1

§<4—x/6><n<]2—1(5—\/§)v%(5+ﬁ)

M2

1
<n<§(4+\/§). (47)
This point Pil) has eigenvalues (see
12(2-3n+n% 3(8—20n+ 11n?)
4 — 10n + 7n?

4—-10n+7n2 "’

3(4—18n+ 11n?) Q}

4 — 10n + 7n?
where
_ 3(32— 160n + 300n* — 250n* + 77n* + B)
- 2(4 — 10n + 7n2)°
and

3 (—32 + 160n — 300n2 4 250n° — 77n + B)
2(4 — 10n + 7n2)°

with

B= \/(4 — 100 + 7n2)” (320 — 1984n + 412812 — 3448n3 + 1001n).

Before going further to the next subsection, we will give some
discussion towards these fixed points of the f(R) = R — «R" model.
we find from this model of gravity that there are 4 fixed points
for the isotropic and for the anisotropic cases. Interestingly, there
is no Kasner fixed point contrary to that of the usual GR gravity.
According to the fixed points in this model, it means no anisotropic
singularity in this scenario. We classify the physical fixed points
by considering the magnitude square of the magnetic fields which
must be positive.

3.1.2. The shear and magnetic fields evolutions

We turn to consider the shear and magnetic fields evolutions
for the f(R) = R — «R" model. According to the existence of the
4 physical fixed points above. There is only one fixed point with
non-zero shear and magnetic solution. To see how the shear and
magnetic fields dissipate, we recall the exact solution of the shear
evolution from Eq. (37) and substitute the anisotropic fixed point
in the solution to yield

( 2n—4 )
7n2—10n+4

1
o = 0'0(1_'7 = 0pd, ([ — fo)_i,
_ 4-on (48)
T2 ton+a

In the above results from the shear evolution, we find the shear

dissipation scale in cosmic time as o ~ t~ 3. The n parameter can
be classified into FSD and SSD as

4 —2n FSD

—>1, > 0<n<—,
7n2 — 10n + 4 7

4 —2n 8
m<], SiE n<0\/1‘l>;. (49)

The exact solution of the magnetic fields is given by,
H = Hpa™" =H0a0 (t —to)
26n% —44n+ 8
T2 —30n+ 12

’ (50)

We will see the numeric results of the shear and the magnetic fields
evolutions in the Section 4.

3.2. Dynamical system of the f(R) = (R® — A) gravity

Next, we will consider another viable f(R) DE model. The f(R) =
(R — A)C was proposed by Ref. [17]. This model has original idea
from a generalized ACDM model by parameterizing the power of
the Ricci scalar and a whole term of the power of the Ricci scalar
with the cosmological constant. This model is viable for the f(R)
DE. The model was studied by using the dynamical system method
and constrained by data from local gravity and cosmology in the
FLRW case [17]. More importantly, this model will be the viable
f(R) DE with the conditions ¢ > 1 and bc & 1 [17]. Therefore, it
is interesting to extend the study of this model to the anisotropic
universe counterpart. The m function of the model can be written
in the following form

m:(l_cc)r—i-b—l. (51)

The dynamical system of this model is given as follows:

dx )
— =X -32+5(2-x3+ 2%

dr
+2(1=22—x1 =X —x3—2),

dx
T]:x?—Bxl—4x2—2x3—z+x1(2—x3+22),

T
dx, C X1X2X3 2
— = X1X 2% (2 — x X)),
P e Ty e s ] CRE R
dx3 C X1X2X3 2
—_— = — 2x3 (2 — x X4),

i it e ] CRE Rl

dz

d—:xlz—3z+22(2—x3+22). (52)
T

We will discuss the fixed points, their stabilities, the shear and the
magnetic evolutions below.

3.2.1. Fixed points and their stabilities

As of the study in previous subsection, we will consider the
properties of each point in turn. There are 4 physical fixed points
in this model. We will organize by two cases: isotropic and
anisotropic solutions, and the associated fixed points of this model
are given below.

Isotropic solutions

° sz): de-Sitter fixed point.
In this case, we obtain the fixed point:

Y=0,x=0x%=-—1x=22=0. (53)

Since wegg = —1, the point PEZ) corresponds to de-Sitter

solutions (® = 0) and has eigenvalues
—6+3(1+b)c+A 6—3(1+b)c+A
2(—=2+4+c+bc) T 2(=24c+bc) |

{—4, -3, -3,

where A = \/100 — 4(17 + 25b)c + (9 + 34b + 25b2) 2.
In this case, it can verify that,

a(t) = exp(At), M? =o0.

Notice that the stability conditions of the fixed points satisfy

9 50 2
b<—-——8& <c< -
25 9+425b b

9 50

V| ib=—-—&c<——

25 9

9 2 50
V{——<b<0& [|[c<—-VCc> ,  (54)
25 b 9+ 25b

A = arbitrary constant,
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50 50 2
V| b=0&c>—)VIb>0& —— <c< - ).
9 9+ 25b b

° Pf): standard matter-like epoch fixed point.
In this case, we obtain the fixed point:

50 % =3 3 X_3—4bc
= U, &1 — bC’ 2 = 2b2C2,
I 3 Z_bc(13—8bc)—3
> 2bc” " 2b2¢? ’
bt 1 1
:>EZO,X]ZO,XZZ—*,)Q:*,ZZI. (55)
2 2
Employing Eqs. (33)-(35), we obtain in this case
1 c
Wef = — 1+ —, a(t) = ao(t — to) 3", M2 =0,
bc
This point Pf) has eigenvalues
3 3 —3+3bc+B 3—-3bc+8B
2bc’ ¢’ 7 4bc(—1+bc)’  4bc —4b%c? |’

where B = +/81 — 498bc + 1025b%c2 — 864b3c3 + 256b%c4.

This fixed point is always saddle.
° sz): curvature dominate fixed point.
In this case, we obtain the fixed point:

3 .- 6 1
T 1 2 bc—1"

1

= — _— 2, :07
T—bc " 2bc—1 177

X3

1
=° ¥ =0, x; = 2, x; = undefined,
x3 = undefined, z = 0. (56)

Employing Eqs. (33)-(35), we obtain in this case

1+ 4 — 2bc
Weff = — P ——
eff 3 — 9bc + 6b2c2
(= 14be)(—1+2bc) 5
a(t) = ap(t — to) —2+bc , M“=0.

This point Péz) has eigenvalues
2b(—2 + bc) 5—4bc 5 —4bc
(=14 bc)(—1+2bc)’ —1+bc’ —1+bc’
2(2 —8bc +5b*c?)  —3 + 13bc — 8b%c?
(=14 bc)(—1+2bc)’ 1—3bc + 2b2c2

Regarding the above values, we find for unstable fixed points

1 5
b>0&(5<c<5), (57)

and for stable ones

2 1 /73 13 1 /73
b<0& |-<c<——,/—+ Ve > +

b 16V b2 ' 16b 16V b2
13 vib=og 1 1 v 2
—_— > — << - c> — .
16b 2b b b
Anisotropic solutions

° Pf) : Jacob magnetic-like (non-zero magnetic field with mat-
ter solution: the Jacobs magnetic field model in Bianchi
[ [37]) with curvature fixed point.

In this case, we obtain the fixed point:

2bc(5bc — 8) + 2) 12(bc — 2)(bc — 1)

= he(Tbc —10)+4 "' T " be(7bc — 10)+ 4
18(bc — 1)(be(11bc — 20) + 8)

B (bc(7bc — 10) + 4)? ’

_ 18bc(bc — 1)(bc(11bc — 20) + 8)

= ,z2=0,
s (bc(7bc — 10) + 4)2 z

Xy =

b1
= ¥Y=2,%x=0x=0 x3=0,z=0. (58)
Employing Egs. (33)-(35), we obtain in this case

4 + 6bc — 7b%c?
4 — 10bc + 7b2c?’

4-10bc+7b%c2
12—6bc

Weff = a(t) = ag(t — to)

3(16 — 104bc + 222b*c? — 188b%c? 4 55b*c*)

M?=—
(4 — 10bc + 7b2c?)?

The existence of the magnetic fields is given by
b <0 4 1/6 c 10 2 /3\/
< — = =5 << — — —.] =
5b 5V b? 11b 11V b2

12 3 n 10 1/6 n 4

Ve "1 - T 5V T s
vlb=o0n 4 1/6 c 10 2 /3\/

> — = =5 << —— — —.] =
5b 5V b? 11b 11V b2

12 3 n 10 1/6 n 4

Ve "1 - T sV s ) )

This point Pf) has eigenvalues given in Box I.

We turn to discuss the physical fixed points from the autonomous
system in the f(R) = (R” — A) model. First of all, it is interesting
to see all of fixed points in the limits of c > 1and b — 1/c due
to the cosmological viability that pointed out in the literature. At
the point P, there is an existence of the standard matter epochin
this model at the limits of c > 1 and bc ~ 1 but the point sz) isan
undefined point in this limit. We do keep the general form of the
parameters in this model because the autonomous system suffers
from the singularity when the fixed points have x, = —x3 in the
function 1/m at the limits of c > 1and b — 1/c. We also classify
the physical fixed points by considering the magnitude square of
the magnetic fields which must be positive.

3.2.2. The shear and magnetic fields evolutions
Here we will see behaviors of the shear and magnetic fields
evolutions for the f(R) = (R®— A)° model. In this model, we find the
4 physical fixed points. Pf) has non-zero shear and magnetic fixed
point. Substituting the anisotropic fixed point to the exact solution
of the shear evolution from Eq. (37), we find,
- (752554 -
o = opd 1= oodg, ¢ ot (f — f())
4 — 2bc
~ 7b%c2 — 10bc + 4’

Surprisingly, the shear dissipation in this model has the same
cosmic time scale as the f(R) = R — «aR" gravity i.e. 0 ~ t~3.
The conditions for the FSD and SSD regions from the 5 parameter

W=

)

(59)
U
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3 (8 — 20bc + 11b%c?)

[_ 12b(~2+bc) sp- gp+ _3(4—18bc+ 11b262)}
4 —10bc + 7b*c>’  4—10bc+7b%c> '~ 7 " 4—10bc + 7b%c?
where
pF = (128 — 1088bc + 3984b*c* — 8144b°c® + 10028b*c* — 7428b°¢c® + 3059b°¢c® — 539b7c’ ¥ Q)
(2(—1 +be)(4 — 10bc + 7b2c2)3)
and

Q= \/(—1 +bc)(4 — 10bc + 7b2¢?)" (320 — 1984bc + 4128b2c? — 3448b3¢3 + 1001b%c?).

Box 1.

are given by
4 — 2bc FSD 8
— > 1, b<O0OA—<c<0
7622 — 10bc +4 ( DRSAE TR )

8
Vib>0A0<c< —|,
7b

4 — 2be L2 (peon(c<Bveso
—_—— < < < — >
7b%c2 — 10bc + 4 7b

8
\/<b>0/\(C<OVC>%>). (60)

The magnetic fields evolution has the exact solution in terms of
cosmic time in the following form:

. _ _2(]_Abc(5bc—8)+2) 1322 —22bc+4
= H()a_K _ Hoao 3( bc(7bc—10)+4 )(t . to)( 18—9hc )
2 (1 4(bc(5bc — 8) + 2))

3 bc(7bc — 10) + 4

As the same procedure in the previous f(R) model, the numeric
results of the shear and the magnetic fields evolutions will be
given in the section IV. Noting that the invariant submanifold
issues in the phase space of the dynamical system have been so far
discussed in details in Ref. [26]. Regarding our chosen (physical)
fixed points, they do not admit any singularity or even generate
invariant submanifolds.

©(61)

4. Cosmological implications

In this section, we will discuss some relevant cosmological
implications of our models. The cosmological implications of mag-
netic Bianchi I in viable f(R) models of gravity in this present in-
vestigation are of great interest to be highlighted. In the following
two subsections we discuss the two models: f(R) = R — «R" and
f(R) = (R® — A)", separately.

4.1. The f(R) = R — aR" gravity

In this model, we study the f(R) = R — «R" model of gravity
in the presence of a uniform magnetic field. We investigate the
influence of the primordial magnetic field on the dynamics of the
Bianchi I universe. The physical fixed points from the autonomous
system in this model provide physical interest. The general condi-
tions for a successful f(R) = R — «R" model can be summarized as
follows:

e The point Pgl) is a stable fixed point when 0 < n < 2.1t
behaves like a de-Sitter fixed point featuring a late-time de-
sitter acceleration. It can also be the saddle if n > 2. At late

time, the universe in this model can be described by the de-
Sitter acceleration solution given by
M? =0. (62)

a(t) = exp(At), A = arbitrary constant,

e The fixed point Pél) is always saddle point. The standard
matter-dominated epoch with the non existence of the mag-
netic field might be represented by this fixed point. It is
controlled by the following parameters:

Weit = —1 4 % a(t) = aot — to)3, M2 =o.

We note that this fixed point becomes the standard matter
epochifn = 1.

e For the fixed point Pgl) in the f(R) = R — «R" model,
this fixed point might be presented as the beginning of
the universe with the curvature-dominated epoch if it is
unstable node with the condition in Eq. (44). In this epoch,
the curvature may drive cosmic inflation. However, the fixed
point is stable if it is satisfied the condition in Eq. (45).

e The fixed point Pfl]) is called the Jacobs magnetic-like (with
curvature) fixed point stemming from the fact that it has the
analogous solution to the Jacobs magnetic field solution in
Bianchi I in GR theory [37]. This fixed point is always saddle
point. Here at this stage the universe is anisotropic with the
existence of the magnetic field. Its existence satisfies the
condition given in Eq. (47). Interestingly, this would also be
compelling since the universe with a primordial magnetic
field is necessary anisotropic.

Previously, we have already discussed about the shear evolution
for all points in the phase space. The conditions of these points to
fall whether into the SSD or FSD regions are given in Eq. (49). With
the given number n = 1.25 of the parameter in this model, the
shear evolution falls into SSD regime when n > 8/7. We will end
this subsection by examining how shear and magnetic field in this
model evolve with time. We find that the shear and the magnetic
field will be diluted as illustrated in Fig.1. Moreover, by comparing
the magnetic field decays a bit faster than the shear.

4.2. The f(R) = (R® — A) gravity

In this model, we study the f(R) = (R” — A)° model of gravity
in the presence of a uniform magnetic field. We investigate the
influence of the magnetic field on the dynamics of the Bianchi I
universe. The physical fixed points from the autonomous system in
this model provide physical interest. The general conditions for a
successful f(R) = (R” — A)° model can be summarized as follows:

e The sz) point can be the late-time de-Sitter acceleration
if it is stable fixed point. Its stable condition of this point
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Fig. 1. The plot shows the parameter evolution of the f(R) = R — «R" model. The dashed line shows how shear evolves with the cosmic-time scale; whilst the solid line
represents how the magnetic field evolves with the cosmic-time scale for oy = ag = Ho = 1.

is shown in Eq. (54). On the other hand, this fixed point
might be represented as the early epoch of the universe
with the condition in Eq. (54). The saddle point condition
is otherwise. The universe at late time can be described by
the de-Sitter acceleration parametrized by

a(t) = exp(it), M2 =0.

A = arbitrary constant, (63)

The fixed point sz) is always saddle point. The standard
matter-dominated epoch with the non existence of the mag-
netic field might be represented by this fixed point. It is
controlled by the following parameters:

_ 1 _ (%) 2 _
weff_—l—i-E, a(t) = ap(t — to) , M =0. (64)
Note that this fixed point exactly becomes the standard
matter epoch if bc = 1.

For the fixed point P{") in the f(R) = (R® — 4)° model,
this fixed point might be presented as the beginning of
the universe with the curvature-dominated epoch if it is
unstable node with the condition in Eq. (57). Note that in this
epoch the curvature drives cosmic inflation in agreement
with the Starobinski model of inflation. To be more concrete,
in the following discussion, we will use the specific values
of b and c such that bc — 1 with ¢ > 1. These special
values are given by the local-gravity constraints of the viable
f(R) DE model for the standard flat-FLRW spacetime (with
an isotropic universe) [ 17]. For example, using b ~ 0.50, we
obtain 2.0 < ¢ < 2.5. For our purpose, we select b ~ 0.50
and ¢ ~ 2.33. Using these values, we come up with only
15% deviation from bc — 1. However, there are many other
choices for their values.

The fixed point Pflz) is called the Jacobs magnetic-like (with
curvature) fixed point, i.e. it has the analogous solution to
the Jacobs magnetic field solution in Bianchi I in GR the-
ory [37]. This fixed point is always saddle point. Here at
this stage the universe is anisotropic with the existence of
the magnetic field. Its existence satisfies the condition given
in Eq. (59). As of the preceding model, this would also be
compelling since the universe with a primordial magnetic
field is necessary anisotropic.

As we already discussed about the shear evolution for all points
in the phase space, we then obtain the conditions in which these
points fall either into the SSD or FSD regions given in Eq. (60).
In contrast to the previous f(R) model, the shear evolution of the
present model falls into FSD regime with the given number of
the parameters b = 0.5 and ¢ = 2.33. Here we will furnish
this subsection by examining how shear and magnetic field in this
model evolve with time. We find that the shear and the magnetic
field will be diluted as illustrated in Fig.2. Similarly to the preceding
model, the magnetic field also decays a bit faster than the shear.

It was noticed that the class of f(R) gravity models based on
the isotropic manner which have a viable cosmological expansion
chronology, i.e. a matter dominated epoch followed by a late-
time acceleration, was classified in Ref. [17]. Here they provided
a common value of the parameters of the model for which one can
assume the presence of a relevant cosmological orbit. However,
in the present investigation, we extended the selected models of
f(R) gravity by considering the anisotropic counterpart of flat FLRW
metric. Hence, the value of the parameters for the presence of the
chronology of a cosmological orbit in our work may deviate from
those present in Ref. [17].

5. Conclusions

In this work, we study the cosmological dynamics of the mag-
netic Bianchi I with viable f(R) model of gravity. The dynamical
system analysis are utilized to examine the viable f(R) = R — aR"
and (R? — A)° models. In summary, we can highlight our study into
2 distinct cases:

e For the f(R) = R — «R" model, we found 4 physical fixed
points. There are 3 isotropic solutions and 1 anisotropic
case with the presence of primordial cosmological magnetic
fields. Based on the viable cosmological sequence, by taking
n = 1.25, the universe starts with the isotropic space-
time with curvature-dominated epoch (Pé”) and it devel-
ops to the anisotropic universe with the presence of the
primordial cosmological magnetic fields (Pfl”). After that,
the universe isotropizes with the standard matter epoch
(Pé”) and evolves to the de-Sitter late-time acceleration
scenario (Psl)). Even though, the given number n = 1.25
violates the local gravity and cosmological constraints but
its constraint is viable only in the FLRW counterpart. Our
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Fig. 2. The plot shows the parameter evolution of the f(R) = (R” — A)C model. The dashed line shows how shear evolves with the cosmic-time scale; whilst the solid line

represents how the magnetic field evolves with the cosmic-time scale for oy = ag = I:Io =1

numerical value, n = 1.25, might be correct in the magnetic
Bianchi I background. The shear evolution of this model has
the scale in the cosmic-time as 3 which is slower than the
standard GR. The magnetic fields play an important role on
the shear dissipation as shown in Eq. (37). The primordial
cosmological magnetic fields decay a little bit faster than the
shear with almost the same scale.

e The f(R) = (R® — A)° gravity has 4 physical fixed points
obtained from the autonomous system. It has the same cos-
mological chronology as the previous model. The sequence
of the universe is sz) — Pf) — Péz) — sz) which
gives the reasonable evolution of the universe history with
the parameters b = 0.5 and ¢ = 2.33. In addition, these
parameter values are compatible with the conditions of the
viable f(R) DE of this model, i.e. ¢ > 1and bc ~ 1.
Surprisingly, the f(R) = (R® — A)° model has the same
cosmic-time scale of the shear evolution as the previous
model, a.k.a. t’%.

One notes that these 2 models fall into the class Al of the
f(R) model, i.e. they have the de-Sitter stable point at late-time.
The explicit treatment of these two models have been carried
out in Ref. [17] on the FLRW background. Our present study is
extended to the anisotropic counterpart of flat FLRW metric. We
found that the presence of the anisotropic geometry with LSR from
Bianchi I background and the cosmological magnetic fields give an
additional fixed point before the emergence of the standard matter
epoch. This fixed point shows the existence of the primordial mag-
netic fields and the anisotropy of spacetime before the universe
expands to become the isotropic geometry. The shear evolution
modifies dissipative behavior by the primordial cosmological mag-
netic fields significantly as o ~ 73 (in both of two f(R) models).
While for the absence of the magnetic fields case, it gives o ~ t~1.
In addition, the shear dissipation of the f(R) = R— «aR" gravity is in
the SSD regime with the given number n = 1.25; whilst the shear
evolution in the f(R) = (R® — A)° model is in the FSD regime with
b=0.5andc = 2.33.

Based on the viable f(R) DE models, moreover, the reasonable
evolution of the universe history for the f(R) = (R® — A)° gravity
with b = 0.5 and ¢ = 2.33 is more compatible with the viable
conditions (¢ > 1and bc ~ 1) than the f(R) = R— «R" model with
n = 1.25(the viableoneis 0 < n < 1).Itis worth noting that more
complicated versions of viable f(R) models (e.g. Starobinski [18]

and Hu-Sawicki [ 19] models) have no close forms of the m function
written in terms of the variable r = x3/x; by using the standard
dynamical system approach. However, the authors of Refs. [53]
proposed a new approach of the dynamical system to handle the
problem. Our forthcoming work is to use such the new approach
to tackle the Starobinski and Hu-Sawicki f(R) models.
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We study octet-octet baryon (J¥ = %Jr) contact interactions in SU(3) chiral effective field theory
by using large-N. operator analysis. Applying the 1/N. expansion of the Hartee Hamiltonian,
we find 15 operators in the octet-octet baryon potential where 4 operators for leading order (LO)
and 11 for and net-to-next-to-leading order (NNLO). The large-N. operator analysis of octet-octet
baryon matrix elements reduces the number of free parameters from 15 to 6 at LO of the 1/N,
expansion. The application of large-N. sum rules to the Jilich model of hyperon-nucleon (YN)
interactions at the LO of the chiral expansion reduces the model parameters to 3 from 5 at the LO
of 1/N. expansion. We find that the values of LECs fitted to YN scattering data in Ref. [20] in
the relativistic covariant ChEFT (EG) approach is more consistent with the predictions of large-N.
than in the heavy baryon (HB) formalism approach.

PACS numbers:

I. INTRODUCTION

Chiral effective field theory (ChEFT) ﬂ, E], based on the approximately and spontaneously broken chiral symmetry
of QCD, allows for a systematic way of calculating low-energy hadronic observables. It is very efficient and convenient
to use hadrons as basic degrees of freedom rather than quarks and gluons in the ChEFT. Chiral Lagrangian is required
to include all possible interactions between hadrons which are constructed in terms of the relevant symmetries of QCD
B] A number of low-energy properties in the strong interaction is very successfully described by using the ChEFT.
The ChEFT is also utilized to shed light on the study of nuclear forces (see [4, 5] for reviews). It was demonstrated
by Weinberg’s seminal works ﬂa, B] that one can calculate the nuclear forces systematically by using appropriate
power counting scheme. Therefore, loop-corrections and higher order terms can be included for the accuracy of
the calculations. Nucleon-nucleon (NN) forces derived in the ChEFT successfully described a huge number of NN
experimental data. The NN potentials are composed of the long and short range interactions, where the long range
NN force is mainly contributed by the pion exchange while the short range part is encoded by contact term NN
interactions with unknown low-energy constants (LECs) to be fitted to experimental data. The higher order contact
terms of the NN potentials have been constructed in Refs. [§,[d] at next-to leading order (NLO) and in Refs. [1d, [11]
for next-to-next-to-next-to leading order (N3LO) in terms of chiral expansions.

On the other hand, hyperon-nucleon (YN) and hyperon-hyperon (YY) forces have been less studied compared with
the NN forces. YN interactions are keys for understanding hyper-nuclei and neutron stars m, @] The contact and
meson exchange terms of the YN interactions in the ChEFT were constructed by using the SU(3) flavor symmetry
in Ref. [14] at leading order (LO) and extended to NLO in Ref. [15]. The most general SU(3) chiral Largrangians of
the octet-octet baryon contact term interactions have been worked out in Ref. [16]. The study of the YY interactions
was performed in Refs. [17-19). At the LO of the YN interactions [14, [20], the SU(3) chiral Lagrangian has 15 free
parameters (LECs) and the partial-wave expansion analysis leads to 5 LECs which are fixed with YN data. In this
work, we will use the large- N, operator analysis to explore the IV, scales and reduce the number of the unknow LECs
in the SU(3) chiral Largrangians and in the LO YN potential [14, [2(].
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Large-N, is an approximate framework of QCD and very useful in the study of hadrons at low-energies. The basic
idea is that one can consider the number of colors (N;) to be large and expand it in power of 1/N, [21,22). By using
this framework, a number of simplifications of QCD occurs in the large- N, limit (see Refs. . for reviews). The
1/N. expansion of QCD for the baryon M] has been applied to the NN potential in W 30] and three-nucleon
potential in ﬂﬂ Moreover, the 1/N, expansion is used to study parity-violating NN potentials in @ @ as well
as time-reversal violating NN potentials ﬂﬂ] The study of the large-NN. analysis in the NN system provides the
understanding of the N, scales of the LECs in the NN forces. In addition, the 1/N, expansion also helps us to reduce
the independent number of the LECs [33]. However, the octet-octet baryon interactions in SU(3) flavor symmetry have
not been investigated in the large-N, approach. In this work, we will extend the large- N, operator analysis in Refs.
@ @ to the SU(3) chiral Lagrangian in Refs. ﬂﬂ . The large- N, octet-octet baryon potential is constructed up
to NNLO in terms of the 1/N, expansion. We will apply large- N, sum rules to YN interactions at LO which has been
recently investigated in Ref. m Moreover, the results can be applied to the YN at NLO and Y'Y sector.

We outline this work as follows: In section 2 we will setup the matrix elements of the octet-octet baryon potential
from the SU(3) chiral Lagrangian. In the next section, the potential of the 1/N, expansion is constructed up to NNLO
and large- N, sum rules for LECs are implied. In section 4, we apply results of the large- N, sum rules to the LO YN
potential. In the last section, we give the conclusion in this work.

II. THE POTENTIAL OF THE SU(3) OCTET-OCTET BARYON CONTACT TERM INTERACTIONS

We start with the SU(3) chiral Largrangian of the octet-octet baryon interactions and it was proposed by Ref.
[14]. The SU(3)-flavor symmetry is imposed and the chiral Lagrangian is Hermitian and invariant under Lorentz
transformations and the CPT discrete symmetry is implied. The minimal SU(3) invariant chiral Lagrangian with
non-derivative is given by,

£ = Cl(l) (B1B (I;B), (IiB),)
r@ — 01(2) <B1 (I;B), Bs (FiB)2> ,
£ = 0¥ (By (1:B),) (B2 (1iB),) . W
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Here 1 and 2 denote the label of the particles in the scattering process, the B is the usual irreducible octet represen-
tation of SU(3) given by

=04 A +
B = —Y \B®= =4+ 4 g , (2)
\/gazl = ﬁEO Vo _2A
- - V6

where the (---) brackets denote taking the trace in the three-dimensional flavor space and the normalization of
Gell-Mann matrices (A\* A\*) = 259 is used. The I'; are the usual elements of the Clifford algebra

Iy=1,Ta=" Ty3=0",Ty=9"y, [5=1i7 . (3)

By using the chiral power counting in Ref. ﬂﬂ it has been shown that we have 15 LO non-derivative terms of
the chiral Lagrangian. It has also been demonstrated in Ref. ﬂﬂ that the above Lagrangians are the minimal set
of the contact interaction terms in terms of flavor and spin structures by using Cayley-Hamilton identity and Fierz
transformation.

To obtain the potentials, we follow approach in Refs. m @ ] by i 1mposmg relativistic covariant constraints. Letting
‘H = — L and taking the approach of the relativistic constraints in ﬂﬁ | into account, one obtains the potential of
the octet-octet baryon contact interactions up to the second order of the small momenta of the baryons and it reads,

v = (xa,d; >_(170|7{(1)|a X1; b, x2)
1
— {gacd5ba (dCde—F’Ldee) deba+lfeba }

X {cg)és + c OT + ( (1)p + 02 p+) Og1x10xaxs + (cgl)p2 + cfll) 2 ) 01 - 0o

+ VL@ 8 (e x )+ GG )+ A)E ) | @)



where

~ v - - o o

Os = 5>zl><15>22><2 + 902 (P+ X p—) : (01 - 02),

Or = 61+ 62— 3o By x 7-) - (61— 2). (5)
and &; = Gyg,y; with ¢ = 1,2. The indices a(c), b(d), x1 (x1) and x2 (X2) are flavor and spin indices of incoming
(outgoing) baryon number 1 and 2 respectively and M is the octet baryon mass in the SU(3) flavor symmetry limit.
We note that the octet-octet baryon potentials agree with the heavy baryons formulation of ChEFT in @, ] for the
spin structures. By using the partial integrations and the baryon equation of motion to eliminate time derivative as
shown in Refs. ﬂﬁ, @], the potential in Eq. (@) is the minimal set of linearly independent operators and it consists

of 2 LO and 7 NLO operators (see appendix [A] for the detail derivation of the potential). The LECs, cl(-l) are linear
combinations of the couplings Ci(l) as,

1 1 1 1 1 1 1 1 1 1 1 1) 1
e e S e e I R (el o) I L (e )
1 (1) (1) 1 _ (1) (1) 1) _ 1 (1) (1) (1) (1)

) = 2(0 +cfV), A= 2(0 —c), ) = (o —acf) — 0l - o),

1 1 1 1 1 (1 1 1) (1
&) = o (O e v o 1), A= (o v o). (6)

In addition, it is worth to discuss about the chiral power counting (Q/M) where a @ is typical three momentum of
the baryon. If we impose M ~ A where A is a chiral symmetry breakmg scale. Therefore, our power counting rule in
this work adopts Q/M ~ (Q/A)” which has been used in Refs. [d, [10] for the NN potent1als The notations of the
momentum in this work are defined below

L1 L I
Pr=50"+p), PL=Py P, P-=P =p-po,  A=pxp =P xp-, (7)

where p'(p”) is incoming (outgoing) three-momentum in the c.m. frame and the on-shell condition of the external
momenta is given by

PPl =0. (8)
With the same manner, the octet-octet baryon potentials for C’Z-(Q) and Ci(3) are written by
Ve = (x2,d; >_<1aC|7'l(2) | a,x13 b, X2)
1
_ {gécaébd (dcae+ fcae) dedb+ fedb }
X {cg)és+cT2)OT+ ( (2) 2 Csy p+)5 Ogays + ( (2)p +c§2)p+) - Oy
@ 2) 5 3 4 D (Fe 3N - & 9
teg 5 (01 +02) - (P x p- )+e (3 Ga) + (B 3Ty ) b (9)
and

VO = (xo,d; x1,¢| HO | a, x5 b, xo)

+C(3)2(U1+Uz) (D' Xﬁ)—FCé)( -01)(P- 52)+C;3)(ﬁ+'51)(ﬁ+'&2)}’ (10)

where the LECs in Eqgs. (@) and ([I0]) are the linear combinations of the couplings as in Eq. (@) by replacing cl(-l) — c§2’3)

and Ci(l) — Ci(z,s) . By using relativistic reductions as in [37, 38], we obtain the minimal set of the SU(3) octet-octet
baryon potentials and there are 27 operators totally. Moreover, Fierz identities for the Gell-mann matrices (A*) are
also taken into account for the calculations of the potentials in Eqs. @), @) and ([I0). We found that there is no the
redundant terms of the SU(3) flavor structures. We obtain 6 and 21 operators at LO and NLO of the small momentum

scale expansion (Q/M). At the LO, the operators from the couplings Cflzzggi enter to contribute the potential but
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the couplings Cé1,2,3) start at NLO. We will reduce the independent number of the LECs of the SU(3) octet-octet
baryon interactions in the ChEFT by using the large-IN. operator analysis in the next section.

IIT. THE 1/N. OPERATOR PRODUCT EXPANSION ANALYSIS OF THE TWO-BARYON MATRIX
ELEMENTS

A. The 1/N. expansion octet-octet baryon ansatz

In this section, we are going to study the 1/N. expansion for the octet-octet baryon matrix elements. According
to Witten’s conjecture @g], the matrix elements of baryon-baryon scattering should scale like V., i.e. @, ] ,

N.(B1| 0% | Bi)(By| O} | By), (11)

where @i and (55/ operators are the i- and i’-quark current operators on the first and the second baryon. It has proven
in the Ref. [27] that the matrix elements for one baryon in SU(3) flavor symmetry has the N, scaling as,

(B; |0} B;) S N, (12)
with j =1, 2. This holds for the matrix elements of the second baryon as well. One can expand the matrix elements
in terms of effective quark operator and effective spin-flavor baryon states in 1/N, expansion as m, @],

10'18) =3 (2 18). (13)
s ' NC

where c&i) is a function which contains dynamical properties of the system and |B) is an effective baryon state

composed of spin and flavor structures only @, ] The O" are the r-body operators which comprises of the effective

quark operators m, @],
o\ I\ [T\ [G\" :
(E) _<ﬁc) (E) (E) , with l4+m+n=r. (14)

The operators J, T' and G are spin, flavor and spin-flavor operators, respectively and they are defined by @, @],

1=q'(1®1)q, Ji=d'(F o1,
A o A
a_ T( _a) a_ T(_Z _a)
T =q' (105 )q, Gi=q'(5®5)q. (15)

where ¢ and ¢' are quark annihilation and creation operators respectively. According to the fully antisymmetry and
Fermi statistics of the SU(N,.) color group, the spin and flavor of baryonic ground state of the N. quarks have to be
completely symmetric representation. Therefore one can consider quark operators ¢ and ¢ as bosonic operators with

the commutation relation [q, qT] = 1. The N, scaling of the r-body operator O" and the the coefficient c&i) scale like

24, 24,
(B|O"|B) S NI, D~ ND. (16)

In addition, The one-baryon matrix elements of the operators J, T" and G in SU(3) flavor symmetry framework have
N, scaling in the following way [26]

(B|J*|B) ~N?, (B|1|B)~N., (B|T*|B)<N., (B|G'*|B)<N.. (17)

In contrast to the SU(2) flavor symmetry, there is only one operator that can suppress rising of the N, for one-baryon
matrix elements i.e. the J whereas all the rest of the effective operators rises the N, factor. However, the symbol, < is
used for saturating the maximum of the N, scaling for the (B|T®|B) and (B|G'®|B) because the matrix elements
of the T® operator scales like N for a = 1,2,3, but as v/N. when a = 4,5,6,7 and as N, when a = 8. On the other
hand, the matrix elements of the G*® scales like N, for a = 1,2, 3, as /N, when a = 4,5,6,7 and as N when a = 8
[26]. These are the differences of the effective operators between SU(2) and SU(3) flavor symmetries. Moreover, it is



worth to discuss about the N, scaling of the external momentum variables. Here we consider all momentum in c.m.
frame as we discussed in the previous section. One recalls the N, scaling of the momentum variables in Eq. (), it
reads [29],

p+N1/NC7 ﬁ*NNco (18)

In a meson exchange picture, the p.y can only appear in the baryon-baryon potential as a relativistic correction (i.e., a
velocity dependent term). Therefore, the p; always come with the factor 1/M . Since M ~ N, this gives py ~ 1/N,
(for more detail discussions see @ . The baryon-baryon potential in terms of 1/N, expansion can be written
in the Hartee Hamiltonian m @] It takes the following form,

an T8 (3) (7) (%) oo

where again the ¢, ;,,, coefficient function has scale N? . It is well know that, at the large-N, limit, the spin-1/2 and

3/2 baryons are degeneracy states. In this work, we project the Hamiltonian H to the octet (spin-1/2) baryon sector
only. This has been discussed extensively in m We will construct the Hamiltonian in order of 1/N, expansion.
Then the leading-order (LO) is given by

Hyo = UP°(p®) 11 - 1o+ UzP(p2 ) T - To + Us©(p2 ) G1 - Go + Ur®(p2) (0 07 )2y - (GYGH%) 2 (20)

where Ty - Ty = T¢TS and Gy - Gy = GY*GE* . UFO(p?) is arbitrary function of the p? and it has N? scale. Here we
also introduce the notation,

(A'B) o) = % <AiBj + A'B' — gzsijA : B) : (21)
and then
o L 1
(PLrh) ) - (0103) ) = (P - Ul)(l’i'tfz)—gpiffl'az- (22)

In this work, we terminate the 1/N,. expansion at the 1/N2 order. Then, the octet-octet baryon Hamiltonian at
NNLO takes the following form,

HxnpLo =

= (P2) 21y - 1y + UNNEO(p2) Ty - Jo + UNNEO(p2) J) - Jo Ty - Ty 4 URNNYO(p2 ) p2T - Ty

+ U OR) pAGL - G+ U (pL) i (B x o) - (i + ) + U0 (02) i (s x p-) - (T{ G + GYTy)
+ UNNEO 2 )i (e x o) - (J1 + 1) Ty Ta + UgNC (02) (007 )2 - (J13) 2

+ U002 (0 0 ) @) - (J1T) ) Th - To + U0 (02) (007 ) 2) - (GYGEY) 2 (23)

Here the 1/N, scale factor is implied on each effective operators, 1, J, T and G implicitly. The functions U} (p?)

and UNNFO(p2 ) have N? scale. Noting that there are no p2.Jy - J; and (p’.p’,)(2) - (J1J3)(2) structures because these
operators have a further suppression in order 1/NZ.

Let’s us discuss comparisons between the octet-octet baryon potential and the nucleon-nucleon potential in the 1/N,
expansion. In the case of the SU(3) flavor symmetry, we find addition operator T7 - T at LO instead of NNLO because
T8T®/N. ~ N, while there is no such operator in nucleon-nucleon potential. Superficially, the two-body operator,
T*G**/N. should scale like N, by using the N. scale counting rules in Eq. (I7). But if we consider the operator
more carefully then we find T*G*¢/N, ~ N? because T123G!1:23 /N, ~ T4>67Gi45.67 /N, ~ T8GI8 /N, ~ N?.
Surprisingly, the SU(3) octet-octet potential has the same structures as the nucleon-nucleon potential in SU(2) flavor
symmetry i.e. there is no NLO term in the 1/N, expansion. The extension of the flavor symmetry from SU(2) to
SU(3) does not change the profile of the 1/N, potential. Before closing this section, we would like to summarize the
1/N. expansion octet-octet baryon Hamiltonian. There are 4 LO operators. At the NNLO of 1/N, expansion, we
obtain 11 operators. We totally have 15 operators of 1/N. expansion for octet-octet baryon potential.



B. Matching the octet-octet baryon potential of the SU(3) chiral Lagrangian with the 1/N. operator
product expansion

We will evaluate, in this section, the octet-octet baryon potential from the Hartee Hamiltonian in Egs. (20) and
[@3). The 1/N, potential is given by

V:()_(27d;)_(170|f{|a7X1;b7X2)7 (24)

where a (¢), b(d), x1(x1) and x2 (X2) are flavor and spin indices of incoming (outgoing) baryon number 1 and 2
respectively. After that we will do matching the octet-octet baryon potential and 1/N,. operator product expansion
to correlate the LECs from the chiral Lagrangian in Eq. (). First of all, we recall the action of the effective operators
on the effective baryon states at V. = 3 as m],

3la, x),

)

Jlax) = 5o lex),
)
)

T, x) = if**|e,x),
a i 1 ca Z ca =
where - -+ stands for a relevant structure of spin—% baryons @] but we do not consider the spin-% baryons degree of

freedom in this work. Before matching operators, we make ansazt for the arbitrary functions UL and UNNLO that
they are,

Urowt)=gi,  UMEOWL) = hi. (26)

Using Eq. @8) in Egs. 20) and 23]), the potential in terms of the large- N, operators at the LO is given by,

Vio = 9g1 5)21)(1 5)22)(2 6Cd6bd + o i2 face fbde 6)21)(1 5)22)(2 + g3 &1 - Go (% dece 4+ % face) (% dbde + % fbde)
+ 91 (0LpL)) - (0103)) (34 + 5 £*) (30" + 5 /). (27)

and at the NNLO of the 1/N, expansion takes form,
1 = =g C 1 g = ace € N ace €
Vanpo = 9k pi5)21X16>22X2 §edgb 4 4 ha Gy - G20 60+ 4 hs &1 - 72 i? / fbd + ha pﬁ' i f fbd 5>21X15>22X2
= = ace i pace e i e 3 - = = = P c
+ hsp} 61 0o (3% 4+ 5 ) (3.4 + 5 f) + 5 ihe (B x L) - (51 + F2) %8

+ ihy (ﬁ+ X ﬁ—) . [51 (% deee + %'face)ifbde + Eziface (%dbde + % fbde)}

3. — — - R ace e 1 i ] i J c
+ 5 ihs (Py x P) - (61 + G2) % f2° f2% + 1 hg (p_pj_)@) : (0'10%)(2) §etob
1 i, i J . ace e i, ] i _J ace i pace e i e
+ hio (007 ) (2) - (0103)(2) 8% £ f2% + hay (D', 0% ) (2) - (0109) (2) (3 d™C + & f2) (5 d" + £ f9).(28)

We note that the N, scales of the above potentials are V1,0 ~ N. and VNnLO ~ NC’1 .
By using Eqs. @), @), (I0), 27) and 28]), the N. scaling relations of the LECs can be extracted,

1 2 3 1 2 3 -
Ci3 ~Cf3 ~Ci3 ~Ney  Cilis ~Cilg ~ Clls ~ NI, (29)

where A ~ N? m, @, @] is impled. Note that the couplings Cf,lZ),B , 05?2)137415 , C%),B are LO of order N, while the
N, scaling of the 03(71215 , 03(72215 and Oéizb are further suppressed by order 1/N2. We found that there is no NLO of
the LECs in the 1/N, expansion.

Matching the spin and flavor structures between the octet-octet baryon potential of the SU(3) chiral Lagrangian

and the 1/N, expansion up to NNLO, the large-N, operator analysis leads to the relations between the LECs of the
SU(3) baryon contact interaction and we find the following results,

O = Y 4 g —4hy A2,



O = Y 4 go+ 4y A2,

cP = 03(1)—%gg+%h3—4h4A2+2h+A2,
c® = cj}’—%gz—gh3—4h4A2+2h+A2,
cl? = Cél)+£h3+4h4A2—4h+A2+2h10A2,
O = 2O 4 g~ 20— 18 A7 S he A2,
cP = —%02(1)4-%91_%92+18h1A2_§h4A27
c® = —%Cél)—%gl—l—%gg—lShl/ﬁ—l—l—lth—§h3+§h4A2+gh6A2—§h+A2,
c® = —%Cﬁl)—%gl—i-%gg—18h1A2—%hg—i—éh3+§h4A2+gh6A2—§h+A2,
i = —%c§1>+18h1/\2+éh2—11—2h3—§h4A2—3h6A2+h9A2+§h+A2—ghw/\?, (30)
where hy = 2h7/3 + 3 hg. Note that the Jacobi identities for the f and d symbols,
fabe fecd+fbce fead+fcae febd:(),
dobe feed | gbee fpead | geae pebd _ ) (31)

have been used in the matching procedure.

To the LO contributions of the 1/N, expansion, one can reduce the number of the free parameters with (9(1 /Nf)
= h; corrections. 9 sum rules of the LECs of the SU(3) octet-octet baryon contact interactions in the ChEFT are
derived

cV=c® =3¢ —20P -6c, cV=cP=-3c-20P-6C?,
oV =cP =3¢+ cP +30?, cV=cP, V=0 =-30". (32)
We find that there are 6 free parameters of the SU(3) octet-octet baryon contact interactions in the ChEFT from the

large- N.. operator analysis. At N, = 3, these sum rules are held up to corrections of the 1/N? ~ 10% approximately.
In order to see the application of the 9 large-N, sum rules, we will apply our results to YN interactions in next section.

IV. APPLICATION OF THE LARGE-N, SUM RULES TO THE JULICH HYPERON-NUCLEON
CONTACT INTERACTIONS AT THE LO

In this section, we will apply the large-IV, sum rules to the Jiilich hyperon-nucleon contact interactions at LO ﬂﬂ]
The LO contact terms of the chiral Lagrangians in Eq. () with the large component of the baryon spinors have 6
free parameters. They read, M],

cl, ¢, c¥, PV, ¥, c¥. (33)
The C’gﬁ ) are linear combinations of the coupling constants in Eq. () as

021,2,3) _ O§1,273) + 051,2,3) 7 0;1,2,3) _ O§1,273) _ 021,2,3) ] (34)

The operator from the couplings, C’él’2’3) does not contribute to the YN potentials at the LO of the chiral expansion.
Applying the large-N, sum rules in Eq. (32)), we find 3 sum rules i.e.,

c =0, o =cP=-30Y. (35)
Above sum rules give only 3 free parameters and the N, scalings of those parameters are given by

CUP9 LN, o Nt (36)



OISO OISO C(351 C(351 C3S1
EG [—0.04795(151) —0.07546(81) —0.01727(124) 0.36367(30310) 0.01271(471)
HB | —0.03894(1) —0.07657(1) —0.01629(13) 0.20029(14050) —0.00176(304)

TABLE I: Best-fitted values of YN s-wave LECs (in units of 10* GeV~2) for cut-off, A = 600 MeV in the EG and
HB approaches [20].

It is interesting to note that NN, scalings of the C’gﬁ ) in Eq. (B8) agree with the NN case @, @] The sum rules in
Eq. (33) are useful for calculating the partial wave potentials at the LO in the chiral expansion of the hyperon-nucleon
scattering. The hyperon-nucleon partial wave potentials at LO have been constructed and studied in Ref. ﬂﬂ] and
also re-investigated in [20]. According to the SU(3) flavor symmetry, the authors of the Ref. [14] find that there are
only 5 parameters (potentials) which are used to fit the experimental data of the hyperon-nucleon scattering. The
parameters are read

AN AA AN AA )3) D EE )3) D EE A AE
C115’0 - 1507 C3S1 351 ) ClSO - SO ’ C(351 Sl ’ C(351 351 ) (37)

where the Jilich model of the LO hyperon-nucleon potentials are written in terms of the couplings Cng2 ) in the
following forms [14],

VAL = 4n % (e —3ci)) + g (¢ —3cf) +2(cf - 3c§3>)] ,

VAN = 4n g (e + )+ (c& + @) +2(cf + Of)ﬂ :
VI = dn 2 (e —3c@) +2(cf -3cf)]

Vi = ar[-2(c + o) +2(cf + )],

VAS = 4 _—g (Cgl) + CC(F”) + (O?) + O:(ﬁ))} . (38)

Using the sum rules in Eq. ([B8) to the 5 free parameters in Eq. (37), one finds at LO of the 1/N, expansion,
Clso = ClSO C3S1 C3s1 ; C3g1 = O3 + 9035, - (39)

Note that all of the LECs has the same N, scaling as N.. The large-1/N, analysis of the LO YN potentials predicts
that there are 3 free parameters at the LO of 1/N, expansion with (9(1 /N 2 corrections. With the same manner of
the large- N, analysis of the LO YN potentials, one can apply the sum-rules in Eq. |él%?lﬁgor the partial-wave analysis
in the YN potentials at NLO in Ref. [15] as well as for the YY sector in Refs. [15,

Next we will compare the prediction of the large-N, sum rules in Eq. (B83) with the best fitted values of the LECs
from YN scattering data in Ref. @ This reference has performed the partial wave analysis of the YN s-wave
scattering by using the same chiral Lagrangian as in our work. Authors in Ref. @ have used two approaches to
solve scattering amplitudes via Kadyshevsky equation with the relativistic covariant ChEFT (referred as EG) and
Lippmann-Schwinger equation with the heavy-baryon formalisms (referred as HB). The relativistic covariant ChEFT
(EG) approach is also used to study NN interactions in [41]. The best fitted values of the LECs are shown in Tab. [
We will use the LECs, 01 50, 03 g1 and 0351 as input values in Eq. (89) and the large-N, sum rules predict that

O?S% s = —0.06327, 0351 G = 0.1271,

Comparing the LECs, Cizé% and 032521 from the large-N.’s predictions with the best fitted values in Tab. [, we found
that C33 and C3&; from large-N. are in the same order as the best fitted values and with the same relative sign in
EG approach. On the other hand, for the HB formalisms, the C}g; is also in the same order as the large-N. value
and with the same relative sign. But for the 03%21 value in HB approach, it is different in order of magnitude of 1
with the large-N. prediction and with different relative sign. One notes that the LECs best fitted values from EG
and HB approaches have statistical uncertainties at 68 % (one sigma) level. While Ref. m] concluded that there is



not much difference between two approaches. But the large-N, sum rules in this work can show that the LECs from
EG approach is more consistent with the predictions of large- N, than the HB formalism.

V. CONCLUSIONS

In this work, we studied the large- N, operator analysis of the octet-octet baryon potential from the SU(3) ChEFT.
The minimal set of the octet-octet baryon potential is derived by using the relativistic constraints as suggestion in
Refs. ﬂﬁ, @] as well as the Claley-Hamilton identity and Fierz rearrangement to eliminate the redundant operators
as shown in Ref. M] Up to NLO of Q/A expansion, we found 27 operators for the octet-octet baryon potential in
SU(3) flavor symmetry, 6 in LO and 21 in NLO of the small momentum scale.

The octet-octet baryon potential in the at LO in The 1/N, expansion is of order N, and there are 4 operators
while he NNLO potential is of order 1/N, and we found 11 operators. The LECs of the ChEFT have two NN, scalings,
namely N. and 1/N, orders as shown in Eq. (29). Interestingly, the extension of the flavor symmetry from SU(2) to
SU(3) in the large-N. operator analysis does not change the profile of the potential in terms of the 1/N,. expansion.
There is no NLO for the SU(3) octet-octet baryon potential as for the NN potential [29, [31].

The matching between the octet-octet baryon potential and the 1/N, operator expansion leads to 6 free parameters
of the LECs from the SU(3) chiral Lagrangian at the LO of the 1/N, expansion with O(1/NZ2) ~ 10% correction.
The application of the sum rules in Eqs. ([32) from the lareg-N. constraint to the partial-wave potential of the YN
interactions at LO of the chiral expansion reduces the LECs of the YN optential to 3 from 5.

The comparison of the large- N, predictions of the LECs with the best fitted values from the YN s-wave scattering
reveals that the large- N, prediction of the LECs is more consistent with the EG results than the HB formalisms. Noted
that The theoretical results from the EG and HB approaches in Ref. @] are quantitatively similar in describing the
YN scattering experimental data.

The large-N. sum rules in this work can also be applied to the NLO of the YN interactions and extended to
the ChEFT potential of the YY sector. In addition, we expect that future lattice QCD calculations may check the
hierarchy of the N, scalings of the LECs and the large- N, sum rules predicted in this work.
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Appendix A: The non-relativistic reductions of the chiral Lagrangian

In this appendix, we derive the non-relativistic reductions of the chiral Lagrangian in Eq. (II). Here we follow
the derivation from Ref. [37, 8] and focus for the spin (Dirac) structures of the chiral Lagrangian only. The chiral
Lagrangian can be re-written in terms of operator as

O\ = (BB)(BB),

(22 = (By.B)(By"B),

O3 = (Bo..,B)(Bd""B),

Os = (B B)(By"5B)

Os = (ByB)(BysB). (A1)

The relativistic fermion field B(z) can be expanded to the positive energy components ¢p(x) in the following from



Os (ehen)(ehen)

Or (¢hovs) - (phovs)

01 (ol 3%3)2 +h.c.

0s (b om) - (¢ 0n)

Os|  (ehen)},V2ep) +ho

Oq4 i(wjgéiﬂB . (<Pj3$ x opp) +hc
Os i(sﬁEwB)(wfgg .o % Vp)
O | ilehoes) (wfg;<€ x Vir)
O7 (wga-?%)(%a -_>¢B)+hc
Os (w%ngzws)(wkakw%) +he
o w%ffjvjsos)(sokajvjw) +he
Ow| (oo @B)(@Ez' ovp)
On| (ko ijs)(%y_jff%)
O12 (ﬂgajﬁsﬁls)(ﬂgvkgh%)
O13 (@TB o Vj@%(@TBUj‘PB> + h.c.
O 2(05V07 - Vop)(eholon)
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TABLE II: Operators of the LO and NLO contact term interactions [9], the left (right) arrow on V indicates that

the gradient operates on the left (right) field. Normal-ordering of the field operator products is implied.

oo

37, 34,

S 2M

(09V> + 8]\142 (V()2 )] p(z) +0(Q%),

(A2)

where M and @ are baryon mass in SU(3) flavor symmetry limit and small momentum scale respectively. Up to order
Q?, the non-relativistic reductions of the operators in Eq. (ATl are given by

~ NR 1
0O ~ Os-‘rm(
~ NR 1
O2 = Os+
~ NR

Os = Ort o
0, = —0r -

4M?

where we took the above results from Refs. [37, 38] and the operators O; (i = 1,...,14) are listed in Tab. [l

4M2(
1
05 ~ —— (07 4+2010),

O1+202+203+205),
—402—2O5+406+O7—Og+2010—2012),
(=01 =202 =405 +206+ 07 =205 + 2019 — 4012 — 2013)

—206+07—09 —2010—2012+20:13 —2014),

(A3)

By using partial integrations, Ref. @] has been shown that there are only 12 operators are independent with the

following constraints,

07420190 =08+201; and O4+ O5 =0g.

(A4)

Next step, one re-writes the non-relativistic reductions in Eq. (A3) in terms of the basis in Eqs. @QIIQ) as [37],

As

Ar

Ay
Ay

Or =Or —

. 1
Os =05+ —— (01 + O3 + O5 + Og) ,

403

403

(O5+ 0 —O7 + Og + 2012 + O14) ,

pz 5)21)(15)22)(2 =01+202,
pi 6)21)(1 6)22)(2 =202+ 03,
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As P &1 - Go =0 + 2012,
Ay = pl &y Go=0y+0Ony4,

A5 = Z(ﬁJr Xﬁ,)~(51+52)/2205—06,
As = (- -1)(p- - 72) = 07 +2010,
A7 = (P4 - 61)(P4 - 02) = 07+ Os +2013. (A5)

By using above relations, we obtain the non-relativistic reductions of the chiral Lagrangian in Eq. () in terms of the
operators A; as,

O 2A5+4—]\142(A2—A5),

Oy ~ As—4—A1/[2(A1+A2+A3—3A5—A6)7

Os =~ Ar — o0 (A1 + Ag + Ag — Ay = 345 — Ag + Ar),

Oy ~ _AT+ﬁ(A4+A5+A6_A7)a

R (46)
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