Abstract

Project Code: MRG6080004

Project Title: Production of ethylene or butanol from bioethanol by acid-base properties

of lepidocrocite titanate

Investigator: Tosapol Maluangnont, College of Nanotechnology, King Mongkut's

Institute of Technology Ladkrabang

E-mail Address: tosapol.ma@kmitl.ac.th

Project Period: 3 April 2017 to 2 October 2019

The low return on investment for bioethanol fuel has led to its transformation to more valuable chemicals such as ethylene or butanol. While acid sites are required for ethylene production, the protonic titanates typically possess low thermal stability (< 100 ^oC). On the other hand, titanate-based catalysts with basic sites for butanol production have not been reported. In this work, cesium lepidocrocite titanate microcrystals Cs_xTi₂₋ $_{v}M_{v}O_{4}$ (x = 0.67, 0.70; M = \square , Zn) were prepared and tested for ethanol conversion at 380 °C. These catalysts were characterized regarding the long range- and localstructure, thermal stability, morphology, elemental compositional distribution, and acidicbasic properties. Relevant materials such as protonic lepidocrocite titanate, anatase-type TiO₂, zeolite HZSM-5 and MgO were also compared. The observed ethylene clearly indicates the active acid sites, while butanol (which requires the basic sites) was minimally produced. Therefore, cesium lepidocrocite titanates explored herein are the rare examples of acidic cesium-containing material. The low ethanol conversion can be increased by ball milling, which decreases the particle sizes and therefore increases a surface area. Moreover, these titanates were structurally stable in a harsh environment at least up to 800 $^{\circ}$ C under dry NH $_{3}$, and 380 $^{\circ}$ C under the mixture of ethanol feed and water by-product. This temperature range is significantly higher than that at 100 °C normally employed for protonic titanate, opening up a possibility in other highertemperature applications catalyzed by acid sites.

Keywords: bioethanol, ethylene, lepidocrocite titanate, acid strength and acidity

บทคัดย่อ

หมายเลขโครงการ: MRG6080004

ชื่อโครงการ: การผลิตเอทิลีนหรือบิวทานอลจากเอทานอลชีวภาพด้วยสมบัติกรดเบสของ

เลพิโดโครไซท์ไททาเนท

Investigator: ทศพล เมลืองนนท์, วิทยาลัยนาโนเทคโนโลยีพระจอมเกล้าลาดกระบัง, สถาบัน

เทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

อีเมลล์: tosapol.ma@kmitl.ac.th

ระยะเวลาดำเนินการวิจัย: 3 เมษายน 2560 ถึง 2 ตุลาคม 2562

ผลตอบแทนต่ำจากการลงทุนเพื่อผลิตเชื้อเพลิงเอทานอลชีวภาพ ได้นำไปสู่การศึกษาเพื่อ เปลี่ยนเป็นสารเคมีอื่นที่มีราคาสูงขึ้นเช่นเอทิลีนหรือบิวทานอล การผลิตเอทิลีนต้องการตำแหน่ง กรด แต่ไททาเนทที่มีโปรตอนมักมีความเสถียรทางความร้อนต่ำ (น้อยกว่า 100 °C) ในทาง กลับกันยังไม่มีรายงานเกี่ยวกับตัวเร่งปฏิกิริยาไททาเนทที่มีตำแหน่งเบส สำหรับการผลิตบิวทา-งานวิจัยนี้ได้เตรียมผลึกระดับไมโครเมตรของซีเซียมเลพิโดโครไซท์ไททาเนท Cs_xTi₂₋ _vM_vO₄ (x = 0.67, 0.70; M = □, Zn) และทดสอบการเปลี่ยนเอทานอลที่ 380 °C ตัวเร่ง ปฏิกิริยาเหล่านี้ได้รับการพิสูจน์ลักษณะทั้งโครงสร้างในระยะไกลและระยะใกล้ ความเสถียรทาง ความร้อน สัณฐาน การกระจายตัวขององค์ประกอบธาตุ และสมบัติกรด-เบส วัสดุที่เกี่ยวข้อง เช่น ไททาเนทที่มีโปรตอน ไททาเนียมไดออกไซด์แบบนาเทส ซีโอไลต์ ZSM-5 และแมกนีเซียม เอทิลีนที่ถูกตรวจพบแสดงให้เห็นชัดเจนว่ามีตำแหน่งกรด ออกไซด์ได้รับการทดสอบเช่นกัน ในขณะที่บิวทานอล(ซึ่งต้องการตำแหน่งเบส)ถูกผลิตขึ้นในปริมาณน้อย ดังนั้นซีเซียมเลพิโดโคร ไซท์ไททาเนทซึ่งได้รับการสำรวจในงานนี้ เป็นตัวอย่างที่หาได้ยากของวัสดุที่มีซีเซียมและเป็น กรด พบว่าการเปลี่ยนเอทานอลที่ต่ำนั้นอาจเพิ่มขึ้นได้โดยการบดย่อยด้วยลูกบอล ซึ่งลดขนาด อนุภาคลงและดังนั้นจึงเพิ่มพื้นที่ผิวขึ้น นอกจากนี้ ไททาเนทเหล่านี้เสถียรทางโครงสร้างใน ัสภาพแวดล้อมที่รุนแรงคือ ที่อุณหภูมิไม่น้อยกว่า 800 °C ภายใต้ก๊าซแอมโมเนียที่แห้ง และไม่ น้อยกว่า 380 °C ภายใต้ของผสมของเอทานอลที่เป็นสารตั้งต้นและน้ำที่เป็นผลิตภัณฑ์พลอย ได้ ช่วงอุณหภูมินี้สูงขึ้นอย่างมีนัยสำคัญกว่าอุณหภูมิ 100 °C ที่มักใช้กันทั่วไปในไททาเนทที่มี โปรตอน และได้เปิดโอกาสในการประยุกต์ใช้อื่นที่ต้องการตำแหน่งกรดและที่อุณหภูมิสูง

คำสำคัญ: เอทานอลชีวภาพ, เอทิลีน, เลพิโดโครไซท์ไททาเนท, ความแรงของกรดและความ เป็นกรด