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Abstract

Project Code: MRG6080004

Project Title: Production of ethylene or butanol from bioethanol by acid-base properties
of lepidocrocite titanate

Investigator: Tosapol Maluangnont, College of Nanotechnology, King Mongkut's
Institute of Technology Ladkrabang

E-mail Address: tosapol.ma@kmitl.ac.th

Project Period: 3 April 2017 to 2 October 2019

The low return on investment for bioethanol fuel has led to its transformation to more
valuable chemicals such as ethylene or butanol. While acid sites are required for
ethylene production, the protonic titanates typically possess low thermal stability (< 100
oC). On the other hand, titanate-based catalysts with basic sites for butanol production
have not been reported. In this work, cesium lepidocrocite titanate microcrystals Cs,Tis.
M,0, (x = 0.67, 0.70; M = [, Zn) were prepared and tested for ethanol conversion at
380 °C. These catalysts were characterized regarding the long range- and local-
structure, thermal stability, morphology, elemental compositional distribution, and acidic-
basic properties. Relevant materials such as protonic lepidocrocite titanate, anatase-type
TiO,, zeolite HZSM-5 and MgO were also compared. The observed ethylene clearly
indicates the active acid sites, while butanol (which requires the basic sites) was
minimally produced. Therefore, cesium lepidocrocite titanates explored herein are the
rare examples of acidic cesium-containing material. The low ethanol conversion can be
increased by ball milling, which decreases the particle sizes and therefore increases a
surface area. Moreover, these titanates were structurally stable in a harsh environment

at least up to 800 °C under dry NH;, and 380 °C under the mixture of ethanol feed and

water by-product. This temperature range is significantly higher than that at 100 °c
normally employed for protonic titanate, opening up a possibility in other higher-

temperature applications catalyzed by acid sites.

Keywords: bioethanol, ethylene, lepidocrocite titanate, acid strength and acidity
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Executive Summary
The conversion of ethanol to more valuable chemicals such as ethylene or butanol is of
interest nowadays. Common acidic materials catalyzing the ethanol-to-ethylene

transformation include protonic titanate which unfortunately has low thermal stability (<

100 OC). On the other hand, titanate-based materials with basic sites for ethanol-to-
butanol conversion are not well known. This project reported the cesium lepidocrocite
titanates Cs,Ti, M0, (x = 0.67, 0.70; M = [, Zn) as the rare examples of acidic
cesium-containing titanium oxides, since Cs is generally believed to promote the basic
character. The ethanol-to-ethylene conversion clearly indicates the active acid sites,
while butanol (requiring basic sites) was minimally produced. The low ethanol

conversion can be improved by ball milling. Importantly, the cesium lepidocrocite
titanates were stable in several types of harsh environment (380-800 C)C), significantly

higher than 100 °c normally employed for protonic titanate.
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1. Objectives

1.1) To synthesized selected compositions of alkali lepidocrocite titanate via a traditional
solid state synthesis method. The compositions studied include CsXTiz_x/4|:|X/4O4 (x =
0.70 and 0.67), Cs,Zn,;Tisy 04 (x = 0.70) and K,.Zny,Tio,»04 (x = 0.80). These
compositions vary in the number of negative charge per formula unit (x, 0.7 vs 0.8),
the content and electronegativity of the metal component (Ti vs Zn), the presence of
Ti vacancy D and lastly the type of the interlayered alkali ions (K+ VS Cs+).

1.2) To characterize the prepared materials in several aspects including structural
chemistry at both local- and long-range, thermal stability, morphology, compositional
distribution, and acidic-basic properties. Techniques utilized included X-ray
diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-
ray fluorescence spectrometry (XRF), energy-dispersive X-ray spectroscopy (EDX),
scanning electron microscopy (SEM), thermogravimetric analysis (TGA), N,
adsorption/desorption, NH; and CO,-temperature programmed desorption (TPD),
and infrared (IR) spectroscopy of sorbed pyridine; and to compare the acidic
properties (amount and strength) with more widely-studied materials such as
protonic titanate, TiO,, zeolite HZSM-5, and MgO.

1.3) To evaluate the catalytic activity of the synthesized materials in ethanol conversion,
in relation to some of the common metal oxides; and to correlate the ethanol
conversion and product selectivity to the characterized physicochemical properties

including the acidic-basic properties.



2. Introduction

The low return on investment for bioethanol fuel has recently challenged its
economic profitabili’ty.1'2 So, the chemical conversion of bioethanol into more valuable
chemicals is under intense investigation.3 The transformation of the relatively
inexpensive bioethanol (i.e., derived from sugar and starch based crops) to value-added
chemicals could contribute to the economic growth and sustainable social welfare of
Thailand. The chemistry involved is mainly the dehydration of ethanol to ethylene which
is catalyzed by acid sites. On the other hand, other reactions require the basic sites4
such as the ethanol-to-butanol conversion.

This report summarized the production of ethylene from bioethanol via the acid
property of a class of materials called lepidocrocite titanate. Recently, layered-type
potassium lepidocrocite titanate has emerged as a new basic catalyst in the conversion
of fatty acid into renewable fuel. This transformation had been previously supported by
TRG5780160 to the current investigator, and the resultss’6 can be found in the literature.
Lepidocrocite titanate is a layered metal oxide of the general composition AXMyTiz_yO4.7
The metals M reported in the literature are of different valency such as +1 (Li),8 +2 (Mg,
Co, Ni, Cu, Zn),g'm'11 +3 (Sc, Al Fe, Mn),12 +5 (Nb),13 or even the titanium vacancy
(denoted by the symbol |:|).14 Such aliovalent substitution of M for Ti4+ gives rise to the
negative charge in the sheets. To preserve charge neutrality, the alkali cations A situate
in the interlayer space. There was a linear correlation6 between the yield of the liquid
hydrocarbons vs the calculated negative charges of the oxygen atom (acting as the
basic site) in K,M,Ti,,O,4, providing a solid evidence that the internal basic sites are

essential in such transformation. Building from this knowledge, it was first expected that



the cesium lepidocrocite titanate would be basic, catalyzing the ethanol-to-butanol
conversion. Actually, it is reported herein the rather unusual acidic property of some
compositions of the cesium lepidocrocite titanate; such property can be adequately
rationalized based on its solid state and surface chemistry, including the electronegativity
of the metal component, the morphology (i.e., surface area), and also the activation
temperature prior to the measurements.

Acidic materials either of Brgnsted- (proton-donating) or Lewis-type (electron-
accepting) are of paramount importance in industrial hydrocarbon chemistry,15 biomass

. X . . 16,17,18 . .
conversion and fine chemicals synthesis. Recently, protonic layered metal oxides
(e.g., titanates, niobates) have received increasing attention due to their compositional,

. ... 19,20,21 - .

structural, and microstructural tunability. The Bronsted acidic properties rely on the
two-dimensional (2D) nature, where protons from the medium exchange with the
interlayer cations and are incorporated at the gallery. On the other hand, the Lewis
acidic properties originated from the electron-deficient species, either at the interlayer or
at the sheets, have been much less explored.

To prepare 2D materials with Brgnsted acid sites accessible to probe molecules

. . . . .\ 22,23

or reactants, proton exchange of such solids is typically followed by pillaring,
delamination,24 and restacking;19 or the synthesis is conducted in the presence of a
structure directing agent.25 Otherwise, they typically exhibit low acidity as a result of
relatively large particles often in the form of microcrystals. In addition, the low thermal

stability of the layered structure containing Bregnsted sites limits the application window

to a relatively mild reaction temperatures, mostly <100°¢. %" %% por example,

Sasaki et al reported31 that the lepidocrocite-type HXTiz_X,4|:|X,4O4'H20 (x = 0.7, O =i



vacancy; Hy7TO) layered crystals transformed to anatase at 450 °C with an extensive

mass loss of ~15 wt%. If the protonic form was pillared with aluminum polyoxocations,

the layered structure was stable up to 500 oC, at which Brgnsted acid sites
disappeared while Lewis acid sites remained.22 Similar decomposition and layered
collapse was also observed30 in the structurally-related H,Ti;O; nanotubes.

These shortcomings in protonic layered titanates prompt the exploration of
developing a proton-free, Lewis acidic material. It is well known that lepidocrocite-type

alkali titanate' > s structurally robust, and that the 2D layered structure is

preserved even when heated ~100 °C above the synthetic temperature.34 Lepidocrocite
titanate has the general composition A,Ti,.,M,O; (i.e., xA+-[Ti2_yMyO4]r), where x = y(4-n)
is the nominal charge per formula unit; n < 4 is the oxidation state of M, and n = 0 for
M= L. In this structure, the corrugated double edge-shared (Ti,M)Og octahedra join
into negatively-charged sheets, extend through the ac (basal) plane, and stack along
the b-direction. The sheets are staggered such that b = 2xd,,,, with A ions situated at
the interlayer space, see Figure 1. The Ti,M atoms potentially serves as the Lewis acid

sites especially if they are on the accessible surfaces.
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Figure 1. (Left) crystal structure of A,Ti,.,M,O,4 (drawn with VESTA35) shown as the
polyhedra representation on the ab plane; (right) a representative SEM image of

Csq7TO with the scale bar indicating the distance of 100 nm.

At the beginning of this project, it was assumed that the acidic nature of a
proton-free lepidocrocite titanate could be tuned by the inductive effect of both M at the
sheets and the interlayer A cations. If so, a Lewis acidic material (i.e., relative to the
pristine, unmodified composition) capable of withstanding high temperature (relative to
the protonic form) might be obtained. Reports on such modifications, however, are
rather limited. Relevant examples include the ion exchange of Hy;TO with aqueous
solution of the metal ions,36 or the deposition of metal nanoparticles onto the surfaces of
H,TisO, nanotubes.37 Yet, the enhanced acidic nature has not been fully demonstrated.

Quite unexpectedly, it was found that the cesium titanate CsXTiz_x,4|:|X,4O4 (x =
0.67, 0.70; M = |:|; Cs,TO) and Cs,Tiy»Zn,04 (x = 0.70; Csg,ZnTO), directly
obtained right after the solid state synthesis, was unusually acidic without the need for
proton/ion exchange, pillaring, delamination, or restacking. These results provide an

interesting example contrasting the general view that soft/polarizable cesium ions



suppress acidic- while promoting basic-characters.38’39’40’41 Acidity and acidic nature of

the microcrystals of these compositions was evaluated by NH3; and isopropylamine-TPD,
FTIR of adsorbed pyridine, and XPS. Effects of the Ti vacancy sites and activation
temperature on acidity, including the stability of the cesium titanate, were also
investigated. Consistent with the observed acid function, catalytic activity of the cesium

titanate CsxTiz_X,4DX,4O4 toward conversion of ethanol was highlighted.



3. Methodology
3.1)Synthesis

The samples were prepared following the reported procedure,m’?’z'33 by first
calcining the stoichiometric mixture of A,CO; (A = K or Cs), anatase-type TiO,, and ZnO
(when necessary) at 800 °C for 1 h for decarbonation. Next, the mixture was ground
and subjected to two cycles of calcination (20 h each) at 800 °C (Cso_7Ti1_825D0_17504,
Cs07T0),” 900 °C (KosZnoaTirgOs KoeZnTO),” or 950 °C (Csq:ZngzsTisesOs
Cso_7ZnTO),33 all with intermediate grinding. These were hereafter called “as made” and
they were used for characterization and catalytic activity testing.

Proton exchange of Csy,TO to H0,7Ti1,825|:|0,17504-H20 (Ho7TO) was done three
times at room temperature with 1 M HCI, following the reported method31 with the acid
renewed everyday. The solid-to-solution was fixed at 1 g-to-100 mL. The solid was
washed with deionized water until it was free from excess acids. The resulting material
was dried overnight at RT.

To study the effect of the particle size on acidity, two additional samples were
prepared. For Csy,;TO-BM (BM for ball-milled), ~8.0 g of Csy;TO was mixed with
zirconia balls in a 500 mL bottle such that the volume of the balls is 2/3 of the bottle.
Ethanol was filled until it completely covered the powder. The milling was continuously
performed at 6,500 rpm for 18 h. After that, the powder was separated from the balls,
washed, and dried overnight at 120 °C. In another sample, the Cso_67Ti1_8325|:|0_1675O4
(Csp67TO) was directly prepared via solid state synthesis (as for Csy;TO) but using the

)42

nanosized P25 TiO, (Degussa, 99.70%) as the Ti source instead of anatase, to

increase the specific surface area.



3.2)Characterization

X-ray diffraction (XRD) measurements were performed on a Rigaku, DMAX
2200/Ultima+ diffractometer (Cu K radiation, 40 kV, 30 mA). Unit cell parameters were
refined using the program CeIICaIc:.48 The specific surface area S,., was measured by
an Autosorb-1C instrument (Quantachrome). Bulk elemental composition was analyzed
using either a Rigaku ZSX Primus IV wavelength dispersive X-ray fluorescence (WD-
XRF) spectrometer, or an Oxford X-MaxN 20 Energy-dispersive X-ray (EDX) analyzer
inside a Zeiss EVO MA10 scanning electron microscope. The latter was also used for
scanning electron microscopic (SEM) investigation. XPS measurements were conducted
at the SUT-NANOTEC-SLRI XPS workstation (PHI 5000 VersaProbe I,
monochromatized Al K« radiation at 1486.6 eV), with the binding energies calibrated to
C1s at 284.8 eV. The analysis area is 300 x 300 ,umz. Thermogravimetric (TG) analysis
was performed under the flow of N, gas (20 mL:min") from RT to 700 °C (10 °C:min’)
using a Perkin-Elmer, Pyris-1 instrument. The IR spectra were directly acquired from the
powder in the attenuated total reflectance (ATR) mode using a PerkinElmer, Spectrum 2
instrument with the resolution 4 cm_1. To investigate the nature of the acid sites, liquid
pyridine was absorbed onto Cs;;TO and Cs;7ZnTO in a closed vial, followed by drying
at 50 °C overnight prior to acquiring the spectrum in ATR mode. Raman spectra were
recorded using a DXR Smart Raman (Thermoscientific) at the laser wavelength of 532

nm and the laser power of 5 mW.



3.3) Temperature-programmed desorption

For NH; TPD, ~0.2 g of the sample was loaded into the center of a quartz tube
reactor and covered with quartz wool. The sample was activated at 7, = 300, 400 or
500 °C for 2 h, cooled down to ~30 °C (both under flowing air of 10 °C-min'1), followed
by the adsorption of 1% NHs/He (50 mL-min_1) for 1 h. Then, physisorbed NH; was
purged with helium (30 mL-min_1) until the baseline as detected by the thermal
conductivity detector was flat, commonly for an hour. The profile was next collected from
50 to 700 °C (10 °C-min-1) under a flow of helium.

The acidity is expressed as umol NH3-g'1 of the solid which was quantified by
comparison to H-ZSM-5 (PZ-2/1000H, Zeochem; nominal Si/Al = 500). Considering the
experimental (by XRF) Si/Al of 422 and the general chemical composition43 H, Al Sige.
n0192'H,0, the value n = 0.227 was obtained, giving the formula weight of the zeolite
5786.07 g-mol . So, the theoretical acidity equals (0.227x10°/5786.07) or 39.2 zmol-g .
From the peak area at the NH; desorption temperature >400 °C characteristics of the
Brognsted sites, the acidity of 33.2 ymol-g;{1 was obtained. This result indicates a
reasonable agreement in experimental vs theoretical acidity, with the difference of (39.2-
33.2)x100%/39.2, or ~15%, which will not affect the discussion. In addition, the
theoretical acidity of 39.2 ,umol-g_1 is in excellent agreement with 40.3 ,umol-g-1
determined in a separate isopropylamine (IPA)-TPD experiment (later).

The isopropylamine (IPA)-TPD, which is specific to Brgnsted acid sites44’45 only,
was performed as follows. An aliquot of 1 4L of IPA was repeatedly injected at RT, onto
0.1 g of Csy;TO (activated at 400 °C under air) as a representative sample under the

flow of He (30 mL/min). The total amount of injected IPA was 10 pL. Then, the purging
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and temperature-programmed desorption was conducted as described above for NH;
TPD. Propylene, which is the decomposition product of IPA over Brgnsted acid sites,
was detected by a flame ionization detector. Similar experiment was performed with H-
ZSM-5.

The temperature-programmed desorption of CO, (CO, TPD) measurements
were performed similar to the NH; TPD, but with the single T, = 450 °C for 2 h and
under N,. CO, gas (99.99%) was then fed to the sample at a flow rate 30 mL-min-1 for
an hour, followed by flushing with He (30 mL-min'1, 1 h). The temperature was then
raised from 50 °C to 600 °C (5 °C-min'1) under He. Basicity is expressed as umol
COz-g_1 which was quantified by comparison with a known mass of calcium oxalate

which convert to CO, stoichiometrically.

3.4)Catalytic activity testing

The catalyst (pressed and sieved to the fraction 600-850 xm) was packed into a
vertical glass tube reactor, and covered with glass wool and glass bead. Prior to activity
testing, it was heated from RT to 400 °C (10 °C min'1), hold for 2 h, and cool down to
380 °C (all under flowing air, 30 mL-min_1). Then, 99.99% absolute ethanol (Carlo Erba)
was fed into the reactor by a syringe pump at 1 mL-h_1. N, was used as a carrier gas at
60 mL-min-1, corresponding to the contact time (W/F) of 58 g-h-mol'1. The catalytic
testing was conducted for a total time on stream of 6 h. The products were periodically
analyzed using an online BUCK Scientific 910 gas chromatograph (GC) equipped with
the FID and the FFAP column (30mx0.25mmx0.25um), by comparison with the

retention time and peak area of the standard of known concentration.
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4. Results and Discussion

4.1)Structural characteristics

All cesium titanate samples are white, plate-like microcrystals with the particle size
of ~0.5 um as shown on the right of Figure 1 for Cs,;TO as a representative. Figure 2
shows the XRD patterns of the investigated samples which are all characteristics of the
lepidocrocite-type cesium titanate (Immm). The 011 reflection (x in Figure 2) typically
overlaps with the 060 reflection in the D-containing sample Cs,TO (x = 0.70, 0.67),
which is in agreement with the report14 by Grey et al. Upon substituting Zn for Ti in the
Csg7ZnTO, these two peaks are clearly separated; this finding is also consistent with
the calculated XRD pattern33 by Gao et al. Table 1 lists the corresponding unit cell
parameters, which agree reasonably with reported31’33’46’47 values. (The differences might
be due to small variations in stoichiometry from different laboratories.) Taking Csq,;TO
as an example, the unit cell parameters as determined by CellCalc” are: a = 3.815(4),
b = 17.46(2) and ¢ = 2.961(6) A, with the interlayer spacing dyy (= bI2) ~8.6 A. This
distance in Csy;TO is larger than 7.8 A in the potassium analog Ko_anTO,32’34’5 but is

2 49
smaller than 9.4 A in the related structure e.g., Cs,TisO4.
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Intensity/ arb. unit

5 10 15 20 25 30 35 40 45 50
2¢¥ degree
Figure 2. XRD patterns of the cesium titanate samples investigated in this work,

including the respective hkl indexes shown atop the peak. Crossmark (x) is the 011
reflection which overlap or separate from the nearby 060 reflection, depending on the

. 14,33
composition.
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Table 1. Unit cell parameters of the samples.
Sample al A bl A c A Ref.

Cs07TO (Cso7Ti1 s25L0.17504) 3.815(4) 17.46(2) 2.961(6) This work
3.837(1) 17.198(3) | 2.960(1) 31

C07TO-NH, (Cso7TO after N, 3.819(5) 17.54(5) 2.957(3) This work

TPD)

CS0.67TO (CSo.67Tir 325 J 0 167504) 3.803(4) 17.38(2) 2.939(7) This work
3.823 17.215 2.955 46,47

CS07ZNg35TO (CS.7ZN0 35Ti1 6504) 3.7949(8) | 17.12(6) 2.974(1) This work
3.8143(1) | 17.0205(4) | 2.9837(1) %

KosZnTO (Ko §ZN04Ti1604) 3.809(3) 15.67(1) 2.981(2) 5,6

Ho7TO (Ho 70Tis 82511 17504°H,0) 3.790(3) 18.43(3) 2.953(5) This work
3.783(2) 18.735(8) | 2.978(2) 31
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4.2)Thermal stability

Figure 2 also compares the XRD patterns of Csy,TO vs Csy,TO-NH; (i.e., after the
NH; TPD measurement where the temperature up to 700 °C was reached). Importantly,
the similarity in these two patterns suggests the preservation of the lepidocrocite-type
structure. The unit cell parameters between the two are also similar, Table 1. Using the
full width at half maximum of the 020 peak and the Scherrer equation, an almost
identical crystallite size D was obtained (42 nm for Csy,TO; 38 nm for Csy;TO-NH5),
also indicating minimal structural changes.

In addition, the Raman spectra of the two samples shown in Figure 3a are
generally similar and show bands characteristicsm’13 of the lepidocrocite-type cesium
titanate. These bands are typically assigned to the stretching vibration of the Ti-O of the
Iayers,.w'13 In particular, the preservation of the peak at 914-917 cm'1 due to Cs-O
stretchingw'13 suggests that Cs' ions persist in a similar local environment, either prior

to or after the NH; TPD measurement.
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Csy,,TO a
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Figure 3. Raman spectra of (a) Csy;TO and (b) Hy,TO, either (i) prior to or (ii)

after the NH; TPD measurement where the temperature up to 700 °C was reached.

For comparison, the protonic form Hy,TO (ie., H0,70Ti1,825|:|0,17504-H20) was
prepared via repeated equilibration31 of Csy;TO with HCI. The XRD pattern of Hy;TO
and the corresponding unit cell parameters shown in Figure 4a and Table 1,
respectively, agree with the Iiterature.31 This material with the expanded interlayer
separation (d,,, = b/2 ~ 9.2 A) contains the interlayer Brgnsted acid sites and the water

26,27,28,29,30,31 ..
molecule. However, after the NH; TPD measurement, the characteristic
Raman vibrationsSO'51 of the protonic lepidocrocite (Hy7TO) was completely disappeared

as shown in Figure 3b. Instead several peaks indicative of anatase-type Ti0252 are

visible, confirming the lepidocrocite-to-anatase transformation.
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Figure 4. XRD patterns of (a) Hy7TO, and (b) KqgZnTO.

Such limited thermal stability of Hy;TO can also be deduced from the massive
mass loss (~15 wt%, Figure 5) upon heating to 700 °C under N, in a separate
thermogravimetric analysis. This mass loss has been ascribed31 to dehydration and
dehydroxylation, accompanied by the subsequent collapse of the lepidocrocite-type
layers and the condensation to anatase. On the other hand, the tested compositions of
the cesium titanate show a limited loss (~2.5-5.0 wt%), ascribed to the liberation of
water on the external surfaces. Altogether, these results highlight the superior thermal

stability of the cesium analog with respect to the protonic form.
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Figure 5. The mass loss curve of several samples recorded under N,. The dash bar at

300-500 °C indicates the activation temperature T, where the NH; TPD measurements

were carried out.
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4.3)Acid strength and acidity

The acid strength and acidity of the titanate was first investigated by NH; TPD after
activation of the samples at 400 °C, where the contribution from surface water can be
excluded (Figure 5). The variation in maximum peak temperature T, was within 10 °C,
while the accuracy in acidity was ~15%.

As shown in Figure 6, the Csy,TO with Ti vacancy |:| desorbs NH; in two
ranges at 100-300 °C (low-temperature, LT) and above 400 °C (high temperature, HT).
The respective T is at ~145, 470 °C. Similar behavior was observed in other
compositions tested but with a higher T, , including Csys,TO (also with |:|) and
Cs07ZnTO (where the [ sites were filled with Zn, later). While it is well known™" ">
that T is sensitive to several parameters, the NH; desorption from the cesium titanate
samples at >400 °C strongly suggests the presence of strong acid sites. The increased
acidic strength of Cs,;ZnTO (i.e., a higher T especially at the HT-range) might be
explained by the electron withdrawing effect of Zn, as inferred from Sanderson’s
elec:tronega’[ivity%'57 (2.223 for Zn, 1.50 for Ti). Considering that the intercalated NH; in

2+ 36
M -exchanged H,;TO was earlier released at <300 °C, our results demonstrate the

remarkable acidic nature in the cesium titanate.
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Figure 6. NH; TPD profiles from the samples activated at 400 °C. The profiles
were normalized so that the LT-peak is of the same height. Dash lines at HT-range

were magnified by a factor of 5.

The acidic strength of these cesium titanates appears to be higher than that
observed in relevant samples. It was found that anatase-type TiO, desorbs NH; only at
the LT (7, ~130 °C) without any HT peak. Even for HZSM-5 (Si/Al = 500), its LT- and
HT-desorption occur at the temperature slightly lower than that from the cesium titanate
samples. For the protonic Hy;TO with Brgnsted acid sites, the layer collapse and
structural transformation31 as described above certainly contributes to the desorption
profile, including that reported58 previously. So, the acidic nature of Hy;TO will not be

discussed further.
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Table 2 summarizes the total acidity, which is a combination of LT- and HT-
acidity. At the activation temperature of 400 °C, the acidity of Csy,TO (~280 umol g_1) is
~5 times larger than that of TiO, with similar S,.,. The low specific surface area S,.,
(here ~5-6 m2 g-1) is rather common for the samples prepared via a traditional, high-
temperature solid state synthesis with the micron-sized TiO, as the reactant. It indicates
that the microcrystals are essentially regarded as non-porous materials, and that the N,
adsorption/desorption would mostly occur at the external surfaces. Therefore, the large
acidity observed for Cs,;TO despite of a low S,_; suggests the NH; adsorption at the

internal surfaces (i.e., intercalation), requiring in situ XRD for further characterizations.
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Table 2. Summary of specific surface area S, acidity at low- and high-

temperature (LT and HT), including the maximum peak temperature T _, and the total

acidity as determined by NH; TPD.

Entry Sample’ Sger/ LT acidity/ HT acidity/ Total acidity/
1a | Csy7T0O-300 5 347 (143) 64 (418) 410
1b | Csp,TO-400 5 264 (145) 15 (470) 279
1c Csy ;TO-500 5 252 (133) Not detected 252
2 Csp67T0-400 15 397 (152) 60 (557) 458
3a | Csy7ZnTO-300 6 100 (139) 108 (421) 206
3b | Cs¢7ZnT0O-400 6 74 (148) 61 (566) 135
3c | Csp7ZnTO-500 6 66 (145) 6 (586) 72
4 Ko.sZnTO-400 3 N.D. N.D. N.D.
5a | TiO,-400 6 60 (126) N.D. 60
5b | TiO,-700 6 56 (132) N.D. 56
6 | Ho,TO-400 N.A. 133 (121) 178 (512) 311
7 HZSM-5-400 350 361 (150) 30 (400) 392

aCSXTO (CSXTiz_X/4DX/4O4; x = 0.67, 070), Cso_7ZnTO (C30.7Zn0.35Ti1_65O4), Ko_gznTO
(K0_82n0_4Ti1_604), and H0_7TO (H0_7Ti1_825D0_175O4'H20). The number after the name
indicates the activation temperature T, (in °C) prior to NH; adsorption. N.A. = not

available; N.D. = not detected.
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It is also found that acidity of the D-containing Cso7TO is increased with the
decrease in the activation temperature T, reaching ~410 umol g_1 at T, = 300 °C as
summarized in Table 2 (Entry 1a-c). This behavior is in sharp contrast to TiO, exhibiting
relatively constant (but low) acidity at T, = 400, 700 °C (Entry 5a,b). (The acidity of
TiO, reported here is within the literature values, Table 3). Different HT-desorption
pattern for Csy,TO activated at different temperature (Figure 7a), suggests a complex
alteration of surface functionals (e.g., Ti vacancy D) or surface re-arrangement.34'59'60
In-situ surface analyses will be required to test these hypotheses. The acidity increased

in part with the increase in S, as demonstrated for Cs,¢;TO prepared from the nano-

sized"” P25 TiO, (Table 2, Entry 2).
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Figure 7. Temperature profiles of NH; desorption of from (a) Csy,TO, and (b)

Csy.7ZnTO activated at T, = 300, 400, and 500 °C. Each profile was normalized by the

mass of the sample.

When the Ti vacancy sites (|:|) were filled by Zn,33 the total acidity of
Csy7ZnTO is reduced to half that of Cs,;TO at similar S, (Table 2). For example at
the activation temperatures T, = 300 °C, the LT acidity/HT acidity is 100/108 ,umol-g'1 for
Cs7ZnTO, but it is 347/64 ,umol-g'1 for Csy7TO. This behavior was observed at all T,
studied as also shown in Figure 7b and in Table 2 (Entry 3a-c). In fact, the drop in total
acidity upon Zn substitution is due to a notable decrease in LT-acidity, which is
accompanied by the moderate increase in HT-acidity. This result suggests that Ti atoms
at the proximity of the vacancy sites could be specifically responsible for NH; LT-
desorption. (The formation of hydroxylated groups due to water adsorption around the
[ sites is energetically favorable;m’71 however the adsorption of NH; has not been

reported to the best of our knowledge.) Importantly, the observed acidity increase at the
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HT-desorption in Cs(;ZnTO indicates the presence of another sort of acid sites, which

are not associated with the [ sites (see also XPS results, below).

The acidic nature of the cesium titanate microcrystals reported here suggests
novel bifunctional property of these materials, since only the basic nature of the lattice
oxygen has been reporteds'6 so far for lepidocrocite-type KM,Ti, ,O,. The CO, TPD
measurements were performed and the results are summarized in Figure 8 and Table

4.

180

MgO
90

Ko sZNTO
112
/ . Csy7ZnTO
157

115
170

Intensity/ arb. unit

TiO,

50 1560 250 350 450
T/ °C
Figure 8. Temperature profiles of CO, desorption from selected samples. Data for
MgO and K;gZnTO are from the previous work.5'6 (The desorption from MgO at 450-

650 °C due to the decomposition of bulk MgCO5; produced in situ is not shown. There

are no desorption peaks in this range for other samples.)
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Table 4. Summary of the CO, TPD results.
Sample S, /m-g ® | TJ°C Basicity/ zmol-g"
TiO, 6 115 68
Cso7TO (CSO.7OTi1.825DO.17504) S 157 175
Cs(.7ZnTO (CSO.7OTi1.825D 0.17504) 6 112 47
5,6

KosZNTO 3 90 39
MgO 63 180 314

? from N, adsorption isotherm

Although Cs,;TO exhibits typical basicity, the ratio of (desorbed NH,)/(desorbed
CO,) which approximately represents the contribution of acid-to-basic sites is 1.6. This
ratio as determined in a similar manner from Csy,Zn0O is 2.9. Clearly, these numbers
are significantly higher than TiO, (0.9). Again, this result emphasizes the unusually
acidic nature of the lepidocrocite-type cesium titanate, contrasting the basic site-

dominating surfaces in other titanates such as the ATiO; (A = Sr, Ba) perovskite.72

The essential influence of polarizable Cs' ions toward the acidic properties is
further emphasized by comparing the [-free  but Zn-containing Csg;ZnTO
(Csp.7ZNng.35Ti1 6504, Space group Immm,33 Sger =6 mz-g'1) to KpgZnTO (KogZng4Tiy 04,
space group Cm201,32 Sger = 3 mz-g'1, Figure 4b). It was found out that, while
Csp7ZnTO shows

considerable NH; adsorption/desorption, the NH;

adsorption/desorption from KqsZnTO was completely diminished resulting in a flat TPD
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profile (not shown). This point will be discussed below regarding the nature of the acid

sites.

Altogether, while the S, of the cesium titanate is rather low and has not yet

. . L . . ., 437374
been optimized, their acidity is comparable to that of typical acid zeolites or some
high-acidity protonic titanate samples with much larger S,., (Table 3). This is rather
exceptional since the samples are in the form of microcrystals—without the need for
lengthy protonation/ion exchange, pillaring, delamination or restacking—and virtually have

no porosity.
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4.4)Possible nature of acid sites

Figure 9a shows the IR spectra of pyridine-sorbed Csq;TO and Csy,ZnTO. The
strong peak at ~1440 cm'1 typical of pyridine bound to Lewis acid sitesm'75 is clearly
observed. On the contrary, the signal characteristics of pyridine bound to Brgnsted acid
sites is absent in these two samples. For K,ZnTO, only vibrations due to the titanate
itself was observed but without any signal due to sorbed-pyridine (not shown). This
result is in good agreement with the flat NH; TPD profile mentioned previously. In
addition, the TPD experiment with isopropylamine which is specific to Brgnsted acid
sitesM"45 also showed virtually zero adsorption/desorption (not shown). Accordingly one
can deduce that Csy;TO and Csy;ZnTO are the Lewis acid as anticipated. Since the
interlayer Cs’ ions cannot be the Lewis acid center, it is most likely that the Ti4+,Mn+
ions on the accessible surfaces of the sheets (i.e. basal plane or edges) are the acid

sites.
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Figure 9. (a) ATR spectra of pyridine-sorbed Csy;TO and Csy,;ZnTO with the

vibrations characteristics of pyridine adsorbed on Lewis (L), Brensted (B), or the

combination of these two sites (L+B) indicated; (b) the ATR spectrum of Csy,oTO.

In line with this view, the sorption of atmospheric water by Cs,,TO microcrystals
(the ~2.5wt% water, Figure 5), despite of small S, and essentially no porosity,
suggests the interaction between the electron-rich oxygen atom in water molecules (i.e.,
the Lewis base) and the under-coordinated, electron-poor Ti4+ ions on the surfaces (i.e.,
the Lewis acid). The acidic Csy7ZnTO also showed a mass loss due to water sorption of

~5 wt% despite of a similar S,.; to Csy;TO. The presence of surface hydroxyls, arising
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from adsorbed water,5 can also be inferred from the stretching/bending vibration at
~3300/1660 cm_1 shown in Figure 9b. The hydroxyl group attached to the Iayers5 was
found at 911 cm'1. Small peaks at 1384 and 1543 cm_1 are due to vibrations from
surface carbonate or bic:arbonates.5 Lastly, the lattice vibration of TiOg octahedra5
appears at 639 and 866 cm'1. However, the attempt to detect the surface Ti species by
diffuse reflectance ultraviolet-visible (DRUV) spectroscopy was unsuccessful, likely due
to the low S, of the samples and consequently the small amount of such species. A
careful surface-sensitive analysis will be further required, which will provide not only the
information on the local structure, but also the possible correlation (if any) with catalytic
activities in the future contribution.

Accordingly, the Ti2p XPS spectra of some samples were recorded and
compared in Figure 10. Note that the Ti2p signals are the average of all surface Ti
species probed (analysis area 300 X 300 ,umz), including Ti at the proximity of L] (and
Zn), and Ti that is away from it. In all cases the binding energy indicates the presence

s34087007 Specifically, the D-containing Csp.7TO shows the peaks

of Ti as anticipated.
at 459.3 eV (Ti2ps,) and 465.0 eV (Ti2p4,) which are more positive by ~1 eV than the
corresponding signals in TiO, (458.4 and 464.1 eV). In the Zn-substituted Cs(,ZnTO,
the Ti2p signals at similar binding energies (459.3, 465.1 eV) to Csy;TO were observed.
(The presence of another component at 457.8, 463.5 eV might as well suggest another
sort of acid sites.) Such electropositive nature of surface Ti atoms in Csy;TO and
Cs7ZnTO in relation to TiO, agrees qualitatively with the results from NH; TPD (Figure

6). For KO_BZnTO,34 the majority of the Ti2p peak (458.1 eV, Ti2ps»; and 463.8 eV,

Ti2p4p) is close to that in TiO,. Clearly, the surface Ti species in KygZnTO are not as
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electropositive as that in Csy;TO and Csy7ZnTO. It is worth noting that Csy;TO with 0.7
positive-charge per formula unit (x) is more acidic than the potassium analog with 0.8
positive-charge per formula unit. So, the interlayer cation seems to have a stronger
effect toward acidic character. A better understanding might be obtained by studying the
compositions with mixed interlayer alkali ions (i.e., Csp7.KZNg35Ti16504 VS

Cs0.7Zn0 35 Ti1.6504).

i asg.1ev Ti2p3/2
Ti2p Ti2p112 _ 3/

463.8 eV /&
465.5 eV 459.30y |

e £ % K ZnTO
459.3 eV
=}

465.1 eV LY
| 463.5eV /o gsT8ev
_...'-K/a' ’.\r“}?‘-w \‘“\ csu}znTo
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=
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P / \ Cs,,TO

Intensity (a.u.)

458.4 eV

A
464.1 eV
"‘/‘-\\\5_4 I\'\ Tloz
" | " | i " — | "
468 464 460 456 452
Binding energy (eV)

Figure 10. Ti2p XPS spectra of anatase-type TiO,, Csy;TO, Csy7ZnTO and

Ko_anTO.

The relative distribution of Ti4+ might be indirectly inferred from the compositional
analyses of the Csy;TO microcrystals (i.e., Cso,7Ti1,SZSDO_175O4) where the nominal
Ti/Cs equals 2.60. The surface Ti/Cs (as determined by XPS) was 4.1+0.5, larger than
that in the bulk (2.94+0.02 for XRF, 2.9+0.2 for EDX). That is, Ti-termination and/or

surface Ti enrichment was observed in Cs,;TO, potentially rendering the acidic
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character. For Csy7ZnTO (Csg7ZNg35Ti16504), the (Ti+Zn)/Cs ratios obtained from
different techniques were similar: 2.86 (nominal value), 2.90 (XRF), 2.95 (EDX), and
2.30 (XPS). This result suggests a more homogeneous distribution of elements on the
surface and in the bulk of Csy7Zn0.

Similar analyses were conducted on the Ky,gZnTO but it was found that the
surface of this material is deficient of the Ti and Zn. This statement was deduced from
the surface (Ti+Zn)/K which is as low as 1.50,34 compared to the nominal value of 2.5
for Ko gZng 4Ti1604.

The small concentration of surface Ti (and Zn) in the non-acidic Ky gZnTO
contrasts the large concentration of surface Ti in Csy;TO, or the homogeneous
distribution of elements in Csy7ZnTO. This result hints at the essential role of the
large and polarizable Cs' ions at interlayer space toward surface relaxation, in
combination with the presence of the Ti vacancy sites [[] and or the substituted
atom. Note that this is the surface characteristics only, since XRD/Raman
spectroscopy has already confirmed the preservation of the lepidocrocite structure

at the long/short range, respectively.
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4.5) Catalytic activity

The ethanol conversion was performed over selected compositions, to further
illustrate the dominating acid character in the lepidocrocite-type cesium titanate; acid
sites convert ethanol to ethylene and diethyl ether,78'3 while acid-base pairs couple two
molecules of ethanol into butanol (i.e., Guebert reaction). 379 The acidic cesium titanates
(as made Cs(,;TO, or after ball milling Csy;TO-BM) were chosen as a representative
sample, in comparison to MgO which is well known to predominantly exhibit the basic
character. Ethanol conversion and product yields as a function of time on stream in a
flow reactor at 380 °C are shown in Figure 11.

The initial conversion is 7.1% (Csy7TO) vs 30.0% (MgO), which can be
accounted for by the difference in S,.; (5, vs 63 mz-g_1 respectively), suggesting that the
observed catalytic activity is contributed mainly from the external surfaces. Moreover,
the ethylene conversion was increased to 13.1% over ball-milled cesium titanate
Csy7TO-BM where the was increased to 28 m2-g4. In fact, the difference in ethanol
conversion over Csy;TO-BM and MgO (30%/13% = 2.3) is the same as that in S,
(63/28 = 2.3). Simply put, these samples are equally active per surface area. Future
work could focus on the preparation of high-surface area cesium lepidocrocite titanates
while retaining this unusually acidic surface character. (Potential synthetic methods
include solid state synthesis at low temperature,80 solid state combustion,81 or

hydrothermal synthesis.)82
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Turning to product distribution, it is important to note that the major product over
Csp7TO and Csy;TO-BM is ethylene, which could be formed over acid sites. On the
other hand, butanol which is collectively formed over acid-basic pairs is the major
product over MgO. (The yield of butanol is ~0.1-0.2% over Csy;TO and Cs,;TO-BM.)
Clearly, the relative abundance of acid-to-basic sites dictates the product distribution.

It is of interest to see if one can tune the acidic-basic property in this material
which is characteristics of the Ti4+,Mn+ and the 02_ sites respectively. If so, a reaction
requiring the presence of two types of active sites could be selectively catalyzed. One
possible approach is to tune the compos,ition8'9'10’11’12’13'14 (as demonstrated here for

Csg7TO vs Csy7Zn0). This will benefit the transformation of more complex chemicals

into value targets for e.g., functionalized monomers, pharmaceutical chemicals.
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Figure 12 also compares the XRD patterns of the Csy,;TO before and after use
(“Cso7TO-Spent”) as a catalyst in this reaction. The layer structure is still retained
despite of a halo and the slight peak broadening/a reduction in crystallite size (D = 26
nm). This is presumably due to the partial desegregation of some microcrystal layers by
water (i.e., steaming) produced in situ via ethanol dehydration. Yet, the possibility to use
Csy,TO at the reaction temperature as high as 380 °C greatly expands the temperature

limit from that typically employed in the protonic form (< 100 °C).26'27'28'29'30

Csy;TO-Spent

N

5 15 25 45 55 65

Intensity/ arb. unit

35
26/ degree

Figure 12. XRD patterns of Csy;TO and Csy,;TO-Spent, i.e., after use as a catalyst

in the ethanol conversion at 380 °C for 6 h.
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5. Conclusion and suggestions

This report showed as an example that Cs,Ti,.,M,O, (x = 0.67, 0.70; M = |:|,
Zn) microcrystals were unusually acidic as compared to common metal oxides. This is
exceptional for layered metal oxides since (i) protonation/ion exchange, pillaring,
delamination, restacking or lengthy synthetic procedures are not required; (ii) cesium
ions which are typically regarded as the promoter for basic- indeed enhance acidic-
characters; and (iii) the microcrystals have low S,.,. The Lewis acidic nature was
confirmed by IR of sorbed pyridine, and very likely relate to the distribution of Ti4+,Mn+
species on the surface as suggested by XPS. Meanwhile, the acidity depends on
several factors including the presence of Ti vacancy |:| the inductive effect of M (i.e.,

Zn), S..., and the activation temperature. The soft and polarizable cesium ions (but not

BET’
the potassium analog) were found to be essential in this unusually acidic nature.

At 380 °C at W/F = 58 g-h-mol_1, the ethanol conversion was 7-13% over the
cesium titanates. While this was rather low, the conversion can be improved by ball
milling which reduced the particle sizes and therefore increased the S,.,. The
production of ethylene from ethanol over Cs,;TO supports the presence of active acid
sites. Therefore, the prepared materials can operate as the catalyst for ethanol-to-
ethylene conversion in a manner similar to e.g., TiOz,83 AI203,84 although this was at first

rather unexpected considering the presence of Cs  ions. No other cesium-containing

oxides exhibit the acidic property to the best of the author’'s knowledge. Importantly, the
lepidocrocite-type layered structure is preserved after 700 OC, contrasting the

conversion to anatase at the early temperature of 450 °C in the protonic analog.

The following points were suggested for further investigations:
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1. The influence of the composition8’9’10'11'12'13'14 could be studied in depth

including the variation in the metal component (and the corresponding electronegativity)
at the layers and also between the layers.

2. The alkali lepidocrocite titanates reported here had quite low specific

. . 80,81,82 . . .
surface area. The alternative synthesis method to yield high surface area materials
will suite the catalytic applications. Once these high surface area lepidocrocite titanates
are available, it will be interesting to fully optimize the reaction conditions for selectively
producing ethanol, butanol, or even complexed chemicals with several functional
groups. Such conditions include temperature, contact time, stability, and so on.
. . 37,66,67 . .

3. It is of interest whether related structures of the cesium titanate
(i.e., with variations in the number of repeating edge-shared octahedral such as
Cs,Tis044, Cs,Tib05) or with completely different structure but similar component (such
as the hollandite” Cs; 35570 667 Tiz a53016) Will exhibit this unusually acidic property,

including the rationale behind such behavior.
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ABSTRACT: Proton-free, alkali-containing layered metal
oxides are thermally stable compared to their protonic
counterparts, potentially allowing catalysis by Lewis acid
sites at elevated temperatures. However, the Lewis acidic
nature of these materials has not been well explored, as alkali
ions are generally considered to promote basic but to suppress
acidic character. Here, we report a rare example of an
unusually acidic cesium-containing oxide Cs,Ti, ,M,0, (x =

¥
0.67 or 0.70; M = Ti vacancy [] or Zn). These lepidocrocite-
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type microcrystals desorbed NH; at >400 °C with a total acidity of <410 umol g™" at a specific surface area of only S m* g”',
without the need for lengthy proton—ion exchange, pillaring, delamination, or restacking. The soft and easily polarized Cs* ion
essentially drives the formation of the Lewis acidic site on the surfaces as suggested by IR of sorbed pyridine. The two-
dimensional layered structure was preserved after the oxide was employed in the ethanol conversion at 380 °C, the temperature
at which the protonic form could have converted to anatase. The structure was also retained after the NH; temperature-
programmed desorption measurement up to 700 °C. The production of ethylene from ethanol, well-known to occur over acid
sites, unambiguously confirmed the acidic nature of this cesium titanate.

B INTRODUCTION

Acidic materials of the Bronsted (proton-donating) or Lewis
type (electron-accepting) are of paramount importance in
industrial hydrocarbon chemistry,1 biomass conversion, and
synthesis of fine chemicals.””* Recently, protonated layered
metal oxides (e.g, titanates and niobates) have received an
increasing amount of attention due to their compositional,
structural, and microstructural tunability.”~” The Bronsted
acidic properties depend on their two-dimensional (2D)
nature, where protons from the medium exchange with the
interlayer cations and are incorporated in the gallery. On the
other hand, the Lewis acidic properties that originated from
the electron-deficient species, either at the interlayer or at the
sheets, have been explored much less.

To prepare 2D materials with Brensted acid sites accessible
to probe molecules or reactants, proton exchange of such
solids is typically followed by pillaring,’ delamination,"’ and
restacking or the synthesis is conducted in the presence of a
structure-directing agent.'' Otherwise, they typically exhibit
low acidity as a result of relatively large particles often in the
form of microcrystals. In addition, the low thermal stability of
the layered structure containing Brensted sites limits the

-4 ACS Publications  © 2019 American Chemical Society

6885

application window to relatively mild reaction temperatures,
mostly <100 °C.">~'° For example, Sasaki et al.'” reported that
the lepidocrocite-type H,Ti, /[ 1,/404H,0 (x = 0.7, and []
= Ti vacancy; Hy,TO) layered crystals transformed to anatase
at 450 °C with an extensive mass loss of ~15 wt %. If the
protonic form was pillared with aluminum polyoxocations, the
layered structure was stable up to 500 °C, at which point
Bronsted acid sites disappeared while Lewis acid sites
remained.® A similar decomposition and layered collapse was
also observed'® in the structurally related H,Ti;O, nanotubes.

These shortcomings in protonic layered titanates prompt us
to investigate the possibility of developing a proton-free, Lewis
acidic material. It is well-known that lepidocrocite-type alkali
titanate'®~>' is structurally robust and that the 2D layered
structure is preserved even upon being heated ~100 °C above
the synthetic temperature.”” Lepidocrocite titanate has a
general composition of A,Ti,_ M, O, (i.e., xA*
[Tiz_yMyO4]x_), where x = y(4 — n) is the nominal charge
per formula unit; n < 4 is the oxidation state of M, and n = 0
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for M = [J. In this structure, the corrugated double-edge-
shared (TiM)O;4 octahedra join with negatively charged
sheets, extend through the a—c (basal) plane, and stack
along the b-direction. The sheets are staggered such that b =
2dyy, with A" ions situated in the interlayer space (see Figure
la,b). The Ti/M atoms potentially serve as the Lewis acid
sites, especially if they are on the accessible surfaces.

Figure 1. Crystal structure of A, Ti,_ M0, shown (a) as a polyhedral
representation on the a—b plane and (b) as a ball-and-stick model on
the a—c plane. Crystal structures were drawn with VESTA.”® (c)
Representative scanning electron microscopy image of Cs,,TO.

Our design principle is that the acidic nature of a proton-free
lepidocrocite titanate could be tuned by the inductive effect of
both M at the sheets and the interlayer A cations. If so, a Lewis
acidic material (i.e., relative to the pristine, unmodified
composition) capable of withstanding high temperatures
(relative to the protonic form) might be obtained. Reports
of such modifications, however, are rather limited. Relevant
examples include the jon exchange of Hy,TO with an aqueous
solution of the metal ions®* or the deposition of metal
nanoparticles onto the surfaces of H,Ti;O, nanotubes,” yet
the enhanced acidic nature has not been fully demonstrated.

Quite unexpectedly, we found in this work that the cesium
titanates Cs,Ti,_,/4[ 1,404 (x = 0.67 or 0.70; M = []; Cs, TO)
and Cs,Ti,_,/,Zn,;,0, (x = 0.70; Csy,ZnTO), directly
obtained right after solid state synthesis, were unusually acidic
without the need for proton—ion exchange, pillaring,
delamination, or restacking. These results provide an
interesting example contrasting the general view that soft/
polarizable cesium ions suppress acidic while promoting basic
character.”°™*’ Acidity and the acidic nature of the micro-
crystals of these compositions were evaluated by NH; and
isopropylamine temperature-programmed desorption (TPD),
Fourier transform infrared spectroscopy of adsorbed pyridine,
and X-ray photoelectron spectroscopy (XPS). Effects of the Ti
vacancy sites and activation temperature on acidity, including
the stability of the cesium titanate, were also investigated.
Consistent with the observed acid function, the -catalytic
activity of the cesium titanate Cs,Ti, ,/,[],/,0, toward
conversion of ethanol is highlighted.

B EXPERIMENTAL SECTION

Synthesis. The samples were prepared following the reported
procedure,'”'**" by first calcining the stoichiometric mixture of
A,CO; (A =K or Cs), anatase-type TiO,, and ZnO (when necessary)
at 800 °C for 1 h for decarbonation. Next, the mixture was ground
and subjected to two cycles of calcination (20 h each) at 800 °C
(Cso.7Tiy 525017504 CSOJTO);” 900 °C (KgsZng,Ti; 604
KosZnTO),"” or 950 °C (Csy,Zng3sTi; 4504 Cso-,ZnTO),”" all with
intermediate grinding. For Csy¢;Ti;g305[ 0167504 (Cso6,TO), nano-
sized P25 TiO,* (Degussa, 99.70%) was used as the Ti source
instead of anatase to increase the specific surface area. Proton
exchange of Cs,,TO to Hy;Ti; 5[ 117504 H,O (Hy;TO) was done
three times at room temperature (RT) with 1 M HC], following the
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reported method'” with the acid renewed each day. The resulting
material was dried overnight at room temperature. All materials
synthesized in this work were characterized as described in detail in
the Supporting Information.

Temperature-Programmed Desorption. For NH; TPD, ~0.2
g of the sample was loaded into the center of a quartz tube reactor and
covered with quartz wool. The sample was activated at T, values of
300, 400, and 500 °C for 2 h and cooled to ~30 °C (both under air
flowing at a rate of 10 °C min™"), followed by the adsorption of 1%
NH;/He (50 mL min™") for 1 h. Then, physisorbed NH; was purged
with helium (30 mL min™") until the baseline as detected by the
thermal conductivity detector was flat, usually for 1 h. The profile was
next collected from 50 to 700 °C (10 °C min™') under a flow of
helium. The acidity is expressed as micromoles of NH; per gram of
the solid, which was quantified by comparison to H-ZSM-5 (PZ-2/
1000H, Zeochem; nominal Si/Al 500). See the Supporting
Information for details.

Isopropylamine (IPA) TPD, which is specific to only Bronsted acid
sites,”>> was performed as follows. An aliquot of 1 uL of IPA was
repeatedly injected, at RT, onto 0.1 g of Csy,TO (activated at 400 °C
under air) under the flow of He (30 mL min™"). The total amount of
injected IPA was 10 pL. Then, the purging and temperature-
programmed desorption was conducted as described above for NH;
TPD. Propylene, which is the decomposition product of IPA over
Bronsted acid sites, was detected by a flame ionization detector
(FID). A similar experiment was performed with H-ZSM-S.

Catalytic Activity Testing. The sample (pressed and sieved to
the 600—850 um fraction) was packed into a vertical glass tube
reactor and covered with glass wool and glass beads. Prior to activity
testing, the sample was heated from RT to 400 °C (10 °C min™'),
held for 2 h, and cooled to 380 °C (all under air flowing at a rate of 30
mL min™'). Then, 99.99% absolute ethanol (Carlo Erba) was fed into
the reactor by a syringe pump at a rate of I mL h™". N, was used as a
carrier gas at a rate of 60 mL min_l, corresponding to a contact time
(W/F) of 58 g h mol™". The catalytic testing was conducted for a total
time on stream of 6 h. The products were periodically analyzed using
an online BUCK Scientific 910 gas chromatograph equipped with the
FID and the FFAP column (30 m X 025 mm X 025 um), by
comparison with the retention time and peak area of the standard at a
known concentration.

B RESULTS AND DISCUSSION

Structural Characteristics. The samples are white,
platelike microcrystals with a particle size of ~0.5 ym as
shown in Figure Ic for Csy,TO as a representative. Figure 2
shows the X-ray diffraction (XRD) patterns of the investigated

130

P:E:

g 020 040 200
>

"é leo_7ZnTO

£ Cs6:TO

Csy7TO-NH,
5 10 15 20 25 30 35 40 45 50
24 degree

Figure 2. XRD patterns of the cesium titanate samples investigated in
this work, including the respective hkl indices shown atop the peak.
The times signs denote the 011 reflections that overlap or separate
from the nearby 060 reflection, depending on the composition.'®*!
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Table 1. Unit Cell Parameters of the Samples

a (&)
Cs0,TO (Cso7Tiys2500.17504) 3.815(4)
3.837(1)
Csy,TO-NH; (after NH; TPD) 3.819(5)
Cso67TO (Cso67Ti 8325 Jo.167504) 3.803(4)
3.823
Cs07Zn035TO (Csg7Zng 35T 6504) 3.7949(8)
3.8143(1)
KosZnTO (KoZn,Ti; 60,4) 3.809(3)
Hy,TO (Hp7Ti; g25[Jo.17504'H,0) 3.790(3)
3.783(2)

b (A) ¢ (A) ref
17.46(2) 2.961(6) this work
17.198(3) 2.960(1) 17
17.54(5) 2.957(3) this work
17.38(2) 2.939(7) this work
17.215 2.955 33,34
17.12(6) 2.974(1) this work
17.0205(4) 2.9837(1) 21
15.67(1) 2.981(2) 36, 38
18.43(3) 2.953(5) this work
18.735(8) 2.978(2) 17

samples that are all characteristics of the lepidocrocite-type
cesium titanate (Immm). The 011 reflection (X in Figure 2)
typically overlaps with the 060 reflection in the [J-containing
sample Cs,TO (x = 0.70 or 0.67), which is in agreement with
the report'® by Grey et al. Upon substitution of Zn for Ti in
Csg,ZnTO, these two peaks are clearly separated; this finding
is also consistent with the calculated XRD pattern reported by
Gao et al”' Table 1 lists the corresponding unit cell
parameters, which agree reasonably with the reported
values.'”*"3*** (The differences might be due to small
variations in stoichiometries from different laboratories.)
Taking Csy,TO as an example, we used CellCalc® to
determine the following unit cell parameters: a = 3.815(4)
A, b =1746(2) A, and ¢ = 2.961(6) A, with an interlayer
spacing dg,o (=b/2) of ~8.6 A. This distance in Cs,,TO is >7.8
A in the potassium analogue KsZnTO'”?*% but is <9.4 A in
the related structure, e.g,, Cs,TisO;;.”

Thermal Stability. Figure 2 also compares the XRD
patterns of Cs;,;TO to those of Csy,TO-NH; (i.e., after the
NH; TPD measurement where a temperature of <700 °C was
reached). Importantly, the similarity in these two patterns
suggests the preservation of the lepidocrocite-type structure.
Using the full width at half-maximum of the 020 peak and the
Scherrer equation, an almost identical crystallite size D was
obtained (42 nm for Csy,TO and 38 nm for Cs,,TO-NH;),
also indicating minimal structural changes. In addition, the
Raman spectra of the two samples shown in Figure 3a are
generally similar and show bands characteristic’”*’ of the
lepidocrocite-type cesium titanate. These bands are typically
assigned to the Ti—O stretching vibration of the layers.’”*
The preservation of the peak at 914—917 cm™" due to Cs—O

stretching®”*” in particular suggests that Cs* ions persist in a
Csp,TO 2 "Ho,TO" b
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Figure 3. Raman spectra of (a) Csy,;TO and (b) Hy,TO, either (i)
prior to or (ii) after the NH; TPD measurement where a temperature
of <700 °C was reached.
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similar local environment, either prior to or after the NH; TPD
measurement.

For comparison, the protonic form H,,TO (i.e.,
Hy 701825 Jo.17s04-H,O) was prepared via repeated equilibra-
tion'” of Cs,,TO with HCL. The XRD pattern of H,,TO and
the corresponding unit cell parameters shown in Figure Sla
and Table 1, respectively, agree with the literature.'” This
material with the expanded interlayer separation (dg,, = b/2 ~
9.2 A) contains the interlayer Bronsted acid sites and the water
molecule."*™'>'” However, after the NH; TPD measurement,
the characteristic Raman vibrations*"** of the protonic
lepidocrocite (H,,TO) completely disappeared as shown in
Figure 3b. Instead, several peaks indicative of anatase-type
TiO,* are visible, confirming the lepidocrocite-to-anatase
transformation.

Such a limited thermal stability of Hy,TO can also be
deduced from the massive mass loss [~1S5 wt % (Figure 4)]

T I T
Cs(7ZnTO | ! ]
100 - Sop ™ i i TiO,
| |
o 95 1 T 1
2 R
a HZSM-5 ! !
90 (Si/Al = 500) 3 ;I
| I
I I
o . wwo
| | i
80 t t

0 100 200 300 400 500 600 700
T/ °C

Figure 4. Mass loss curve of several samples recorded under N,. The
dashed lines at 300, 400, and 500 °C indicate the activation
temperature T, where the NH; TPD measurements were carried out.

upon heating to 700 °C in a separate thermogravimetric
analysis. This mass loss has been ascribed'” to dehydration and
dehydroxylation, accompanied by the subsequent collapse of
the lepidocrocite-type layers and the condensation to anatase.
On the other hand, several compositions of the cesium titanate
show a limited loss (~2.5—5.0 wt %), which is ascribed to the
liberation of water on the external surfaces. Altogether, these
results highlight the superior thermal stability of the cesium
analogue with respect to the protonic form.

Acid Strength and Acidity. The acid strength and acidity
of the titanate were first investigated by NH; TPD after
activation of the samples at 400 °C, where the contribution
from surface water can be excluded (Figure 4). The variation
in maximum peak temperature T, was within 10 °C, while the
accuracy in acidity was ~15% (see the Supporting Information

for details).
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As shown in Figure S, the Csy,TO with Ti vacancy []
desorbs NH; in two ranges at 100—300 °C (low-temperature,

Ho70TO

TiOz[ '\
2 x5‘_ I NN, A PN
Cs¢7ZnTO

————

Normalized intensity

0 400

T/ °C

Figure 5. NH; TPD profiles from the samples activated at 400 °C.
The profiles were normalized so that the LT peak is of the same
height. Dashed lines in the HT range are magnified by a factor of S.

LT) and >400 °C (high-temperature, HT). The respective T,
values are ~145 and 470 °C. Similar behavior was observed in
other compositions tested but with a higher T, including
Csys,TO (also with []) and Cs,,ZnTO [where the [] sites
were filled with Zn (see below)]. While it is well-known**~*°
that T, is sensitive to several parameters, the desorption of
NH; from the cesium titanate samples at >400 °C strongly
suggests the presence of strong acid sites. The increased acidic
strength of Csy,ZnTO (i.e., a higher T,, especially in the HT
range) might be explained by the electron-withdrawing effect
of Zn, as inferred from Sanderson’s electronegativity*”**
(2.223 for Zn and 1.50 for Ti). Considering that the
intercalated NH; in Co**-exchanged H,,TO was earlier
released at <300 °C,** our results demonstrate the remarkable
acidic nature of the cesium titanate.

The acidic strength of these cesium titanates appears to be

higher than that observed in relevant samples. It was found

that anatase-type TiO, desorbs NH; only at the LT (T, ~ 130
°C) without any HT peak. Even for HZSM-S (Si/Al = 500), its
LT desorption and HT desorption occur at a temperature
slightly lower than that from the cesium titanate samples. For
the protonic H,,TO with Brensted acid sites, the layer collapse
and structural transformation'” (as deduced from the mass loss
curve in Figure 4) certainly contribute to the desorption
profile, including that reported previously.49 Therefore, the
acidic nature of Hy,TO will not be discussed further.

Table 2 summarizes the total acidity, which is a combination
of LT and HT acidity. At an activation temperature of 400 °C,
the acidity of Cs,,TO (~280 umol g™') is ~S times larger than
that of TiO, with a similar Sggr. The small specific surface area
Sger (here ~5—6 m?* g™') is rather common for the samples
prepared via a traditional, high-temperature solid state
synthesis with the micrometer-sized TiO, as the reactant. It
indicates that the microcrystals are essentially regarded as
nonporous materials and that N, adsorption/desorption would
mostly occur at the external surfaces. Therefore, the high
acidity observed for Cs,,TO despite a low Sggr suggests NH;
adsorption at the internal surfaces (i.e., intercalation),
requiring in situ XRD for further characterization.

The acidity of the [J-containing Cs,,TO is also found to
increase with a decrease in activation temperature T, reaching
~410 pmol g™ at T, = 300 °C as summarized in Table 2
(entries la—1c). This behavior is in sharp contrast to TiO,
exhibiting a relatively constant (but low) acidity at T, values of
400 and 700 °C (entries Sa and Sb). [The acidity of TiO,
reported here is within the range of literature values (Table
S1).] A different HT desorption pattern for Cs,,TO activated
at different temperature (Figure 6a) suggests a complex
alteration of surface functionals (e.g., Ti vacancy []) or surface
rearrangement.””*”*" In situ surface analyses will be required
to test these hypotheses. The acidity increased in part with an
increase in Sppr, as demonstrated for Cs, 4, TO prepared from
the nanosized®® P25 TiO, (Table 2, entry 2).

When the Ti vacancy sites ([]) were filled by Zn,”" the total
acidity of Csy,ZnTO is decreased to half of that of Cs,,TO at
a similar Sgpy (Table 2). For example at an activation
temperature of 300 °C, the LT acidity and HT acidity are 100
and 108 yumol g~', respectively, for Cs,,ZnTO but 347 and 64
umol g~', respectively, for Csy,TO. This behavior was
observed at all T, values studied as also shown in Figure 6b

Table 2. Summary of Specific Surface Areas (Sggr), Acidities at Low (LT) and High Temperatures (HT), Including the
Maximum Peak Temperature T, and Total Acidities As Determined by NH; TPD

entry sample” Sger (m* g7') LT acidity (umol g") [T,, (°C)] HT acidity (umol g™*) [T, (°C)] total acidity (umol g~")
la Cs0,TO-300 5 347 [143] 64 [418] 410

1b Cs0,TO-400 5 264 [145] 15 [470] 279

1c Csy,TO-500 S 252 [133] not detected 252

2 Cs.6,TO-400 15 397 [152] 60 [557] 458

3a Cs0,ZnTO-300 6 100 [139] 108 [421] 206

3b Cs0,ZnTO-400 6 74 [148] 61 [566) 135

3¢ Cs0,ZnTO-500 6 66 [145] 6 [586] 72

4 K, 5ZnTO-400 3 not detected not detected not detected
Sa TiO,-400 6 60 [126] not detected 60

Sb Ti0,-700 6 56 [132] not detected 56

6 H,,TO-400 not available 133 [121] 178 [512] 311

7 HZSM-5—400 350 361 [150] 30 [400] 392

“Cs, TO (Cs,Tiy_y/a[ 1,404 where x

0.67 and 0.70), Csg,ZnTO (Csg;Zng3sTi;450,), KosZnTO (KysZng,Ti;0,), and Hy,TO

(Ho7Tiy 8250017504 H,0). The number after the name indicates the activation temperature T, (in degrees Celsius) prior to NH; adsorption.
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Figure 6. Temperature profiles of desorption of NH; from (a)
Cso-,TO and (b) Csy,ZnTO activated at T, values of 300, 400, and
500 °C. Each profile was normalized by the mass of the sample.

and in Table 2 (entries 3a—3c). In fact, the decrease in total
acidity upon Zn substitution is due to a notable decrease in LT
acidity, which is accompanied by a moderate increase in HT
acidity. This result suggests that Ti atoms at the proximity of
the vacancy sites could be specifically responsible for NH; LT
desorption. (The formation of hydroxylated groups due to
water adsorption around the [] sites is energetically
favorable;*>** however, the adsorption of NH; has not been
reported to the best of our knowledge.) Importantly, the
observed increase in acidity upon HT desorption in
Csp,ZnTO indicates the presence of other types of acid
sites, which are not associated with the [] sites (also see the
XPS results below).

The acidic nature of the cesium titanate microcrystals
reported here suggests the novel bifunctional property of these
materials, because only the basic nature of the lattice oxygen
has been reported so far for lepidocrocite-type
KxMyTiz_yO4.3 % The CO, TPD measurements were
performed, and the results are summarized in Figure S2 and
Table S2. Although Csy,TO exhibits a typical basicity, the
(desorbed NH,)/(desorbed CO,) ratio that approximately
represents the contribution of acidic to basic sites is 1.6. This
ratio as determined in a similar manner for Csy,ZnO is 2.9.
Clearly, these numbers are significantly higher than that of
TiO, (0.9). Again, this result emphasizes the unusually acidic
nature of the lepidocrocite-type cesium titanate, contrasting
the basic site-dominating surfaces in other titanates such as the
ATiO; (A = Sr or Ba) perovskite.”

The essential influence of polarizable Cs* ions toward the
acidic properties is further emphasized by comparing the
[J-free Csy,ZnTO (Csy,Zng35Ti; 65045 space group Immm;*!
Sger = 6 m>g™") to KosZnTO [KygZny,Ti; 4O,; space group
Cm2c,;" Sgpr = 3 m? ¢! (Figure S1b)]. It is clear that, while
Csy,ZnTO shows considerable NH; adsorption/desorption,
the NH; adsorption/desorption from K,¢ZnTO was com-
pletely diminished, resulting in a flat TPD profile (not shown).
This point will be discussed below with regard to the nature of
the acid sites.

Altogether, while the Sgpr of the cesium titanate is rather
low and has not yet been optimized, their acidity is comparable
to that of typical acid zeolites®> ™’ or some high-acidity
protonic titanate samples”""'* with a much larger Sggr. This is
rather exceptional because our samples are in the form of
microcrystals—without the need for lengthy protonation/ion
exchange, pillaring, delamination, or restacking—and have
virtually no porosity. Additional examples comparing the acidic
strength and acidity in our samples versus those reported in the
literature can be found in Table S1.
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Possible Nature of Acid Sites. Figure 7 shows the IR
spectra of pyridine-sorbed Cs,,TO and Cs,,ZnTO. The
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Figure 7. ATR spectra of pyridine-sorbed Csy,TO and Csy,ZnTO

with the vibrations characteristic of pyridine adsorbed on Lewis (L),

Bronsted (B), or the combination of these two sites (L+B) indicated.

strong peak at ~1440 cm™" typical of pyridine bound to Lewis
acid sites'™® is clearly observed. On the contrary, the signal
characteristics of pyridine bound to Brensted acid sites is
absent in these two samples. For K,3ZnTO, we can observe
only vibrations due to the titanate itself, without any signal due
to sorbed pyridine. This result is in good agreement with the
flat NH; TPD profile mentioned previously. In addition, the
TPD experiment with isopropylamine that is specific to
Bronsted acid sites’’” also showed virtually zero adsorp-
tion/desorption (not shown). Accordingly, one can deduce
that Csy,TO and Cs,,ZnTO are the Lewis acids. Because the
interlayer Cs* ions cannot be the Lewis acid center, it is most
likely that the Ti*/M"* ions on the accessible surfaces of the
sheets (i.e., basal plane or edges) are the acid sites. However,
our attempt to detect the surface Ti species by DRUV was
unsuccessful, likely due to the small Sgpp of the samples and
consequently the small amount of such species. A careful
surface-sensitive analysis will be further required, which will
provide not only the information about the local structure but
also the possible correlation (if any) with catalytic activities in
the future contribution.

Accordingly, the Ti 2p XPS spectra of some samples were
recorded and are compared in Figure 8. Note that the Ti 2p
signals are the average of all surface Ti species probed (analysis
area of 300 ym X 300 ym), including Ti at the proximity of []
(and Zn) and Ti that is away from it. In all cases, the bindin%
energy indicates the presence of Ti** as anticipated.”"*>**>*¢
Specifically, the [J-containing Cs,,TO shows the peaks at
459.3 eV (Ti 2p;,,) and 465.0 eV (Ti 2p,/,), which are more
positive by ~1 eV than the corresponding signals in TiO,
(458.4 and 464.1 eV, respectively). In the Zn-substituted
Csy,ZnTO, the Ti 2p signals at binding energies (459.3 and
465.1 eV) similar to those of Cs,,TO were observed. (The
presence of another component at 457.8 and 463.5 eV might
also suggest other sorts of acid sites.) The electropositive
nature of surface Ti atoms in Csy,TO and Csy,ZnTO in
relation to TiO, agrees qualitatively with the results from NH;
TPD (Figure S). For KosZnTO,** the majority of the Ti 2p
peak (458.1 eV, Ti 2p,,,; 463.8 eV, Ti 2p, ;) is close to that in
TiO,. Clearly, the surface Ti species in KygZnTO are not as
electropositive as those in Csy;TO and Cs,,ZnTO. The
notable difference in the binding energies of Ti 2p in
Cs¢7ZnTO and K,sZnTO might be related to the type of
interlayer cation, composition, and also space group. (The
latter can be seen from the XRD pattern in Figure 2 vs Figure

DOI: 10.1021/acs.inorgchem.9b00369
Inorg. Chem. 2019, 58, 6885—6892


http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.9b00369/suppl_file/ic9b00369_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.9b00369/suppl_file/ic9b00369_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.9b00369/suppl_file/ic9b00369_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.9b00369/suppl_file/ic9b00369_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.9b00369/suppl_file/ic9b00369_si_001.pdf
http://dx.doi.org/10.1021/acs.inorgchem.9b00369

Inorganic Chemistry

T|2p 4s8.1ev Ti2p3/2
Ti2pq2
463.8 eV
465.5 eV
(WO
. 465.1 eV 7%
S 4635V J @578V
A . C5,,ZnTO
5 459.3 eV
c H
: \
[=
= 465.0 eV / \
- AN N o
458.4 eV
464.1eV [\
S / \_ Tio,
— —~
1 L 1 1
468 464 460 456 452

Binding energy (eV)

Figure 8. Ti 2p XPS spectra of anatase-type TiO,, Cs,,TO,
Csy,ZnTO, and K(¢ZnTO.

S1b, where the peak with the highest intensity is from the
different hk! index.) A better understanding might be obtained
by studying the compositions with mixed interlayer alkali ions
(ie, Cspr_oKZngssTipesOq vs CsorZngssTiiesO0y); this is
being investigated.

The relative distribution of Ti*" might be indirectly inferred
from the compositional analyses of the Cs,,TO microcrystals
(ie., Cso-Ti;grs[1o17504) where the nominal Ti/Cs ratio
equals 2.60. The surface Ti/Cs ratio (as determined by XPS)
was 4.1 £ 0.5, larger than that in the bulk (2.94 + 0.02 for XRF
and 2.9 + 0.2 for EDX). That is, Ti termination and/or surface
Ti enrichment was observed in Cs,,TO, potentially rendering
the acidic character. For Cs,,ZnTO (Csy-Zng3sTi; ¢s0,4), the
(Ti+Zn)/Cs ratios obtained from different techniques were
similar: 2.86 (nominal value), 2.90 (XREF), 2.95 (EDX), and
2.30 (XPS). This result suggests a more homogeneous
distribution of elements on the surface and in the bulk of
Csy7ZnO0.

Similar analyses were conducted on the K;3ZnTO, but it
was found that the surface of this material lacks Ti and Zn.
This statement was deduced from the surface (Ti+Zn)/K ratio
that is as low as 1.50,% compared to the nominal value of 2.5
for Ko sZng 4Ti; O,

The low concentration of surface Ti (and Zn) in the non-
acidic K,4gZnTO contrasts with the high concentration of
surface Ti in Csy,TO or the homogeneous distribution of
elements in Csy,ZnTO. This result hints at the essential role of
the large and polarizable Cs* ions in the interlayer space
toward surface relaxation, in combination with the presence of
the Ti vacancy sites [ ] and/or the substituted atom. Note that
this is the surface characteristic only, because XRD and Raman
spectroscopy have already confirmed the preservation of the
lepidocrocite structure at long and short range, respectively.

Catalytic Activity. Ethanol was employed as another probe
molecule to further illustrate the dominating acid character in
the lepidocrocite-type cesium titanate; acid sites convert
ethanol to ethylene and diethyl ether,®"®* while acid—base
pairs couple two molecules of ethanol into butanol (ie.
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Guebert reaction).**** The acidic Cs,,TO was chosen as a
representative sample, in comparison to MgO, which is well-
known to predominantly exhibit a basic character. Ethanol
conversion and product yields as a function of time on stream
in a flow reactor at 380 °C are shown in Figure 9.

35 35
Csy;,TO MgO
30 1 X Conversion 301 x
. W Ethylene %
S 25 4 OAcetaldehyde 2 25 1 x X X
E AButanol 3
> © Diethyl eth: 2 1
= 20 iethyl ether < 20
z °
8 15 § 15 1
A
10 0] a4 a 4 A
X X
X x x X [}
51 mm o o am 51 s 2 88
© %000 © o o © o o
0 A—b—h—h—h—& 0 r T v
0 120 240 360 480 0 120 240 360 480

Time on stream/ min Time on stream/ min

Figure 9. Conversion of ethanol and the percent yield of products
over Csy,TO (left) and MgO (right). Reaction conditions: activation
in air at 400 °C for 2 h, reaction temperature of 380 °C, contact time
of 58 g h mol™', atmospheric pressure, and flow rate of carrier gas
(N,) of 60 mL min™".

The initial conversion is 7.1% (Csy,TO) versus 30.0%
(MgO), which can be ascribed to the difference in Sggr (S m?
g™ vs 63 m* g7'), suggesting that the observed catalytic
activity is contributed mainly by the external surfaces. Notably,
the major product over Cs,,TO is ethylene, which could be
formed over acid sites. On the other hand, butanol, which is
collectively formed over acid—base pairs, is the major product
over MgO. (The yield of butanol is ~0.1% over Csy,TO.)
Clearly, the relative abundance of acidic to basic sites dictates
the product distribution. A full account of catalytic activity
measurements will be reported elsewhere.

Figure Slc compares the XRD patterns of the Csy,TO
before and after use (“Cs,,TO-Spent”) as a catalyst in this
reaction. The layer structure is retained despite a halo and the
slight peak broadening and/or a reduction in crystallite size (D
= 26 nm). This is presumably due to the partial desegregation
of some microcrystal layers by water (i.e., steaming) produced
in situ via ethanol dehydration, yet the possibility of using
Cs,TO at a reaction temperature as high as 380 °C greatly
expands the temperature limit from that typically em-
ployed'*~'® in the protonic form (<100 °C).

B CONCLUSION

In conclusion, we showed that Cs,Ti,_M,0, (x = 0.67 or
0.70; M = [] or Zn) microcrystals were unusually acidic as
compared to common metal oxides. This is exceptional for
layered metal oxides because (i) protonation/ion exchange,
pillaring, delamination, restacking, or lengthy synthetic
procedures are not required, (ii) cesium ions that are typically
regarded as the promoter for basic character indeed enhance
acidic character, and (iii) the microcrystals have a small Sgpr.
The Lewis acidic nature was confirmed by IR of sorbed
pyridine and very likely is related to the distribution of Ti**/
M"™ species on the surface as suggested by XPS. Meanwhile,
the acidity depends on several factors, including the presence
of Ti vacancy [], the inductive effect of M (i.e., Zn), Sggr, and
the activation temperature. The soft and polarizable cesium
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ions (but not the potassium analogue) were found to be
essential in this unusually acidic nature. The production of
ethylene from ethanol over Cs,,TO supports the presence of
active acid sites. Importantly, the lepidocrocite-type layered
structure is preserved after 700 °C, contrasting the conversion
to anatase at the early temperature of 450 °C in the protonic
analogue. The question of whether related structures®” %>
(i.e., with variations in the number of repeating edge-shared
octahedra) will exhibit this unusually acidic property, including
the rationale behind such behavior, is interesting.
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The conversion of ethanol to value-added chemicals such as ethylene or butanol is of interest. Common acidic materials
catalyzing the ethanol-to-ethylene transformation include thermally unstable (<100 °C) protonic titanate. Meanwhile, titanate-
based materials with basic sites for ethanol-to-butanol conversion are not well known. This project reported the cesium
lepidocrocite titanates as the rare examples of acidic cesium-containing titanium oxides, capable of catalyzing the ethanol-to-
ethylene transformation. This project is an exploration (but to different directions) from the previous TRG5780160 on the basic

properties of potassium lepidocrocite titanate, for the production of diesel-like hydrocarbons from fatty acids.

Jandszasazalasens

1. To synthesized selected compositions of alkali lepidocrocite titanate CsXTiz_x,4DX,4O4 (x =0.70 and 0.67), Cs,Zn,;,Ti,.
204 (x = 0.70) and K, Zn,,,Ti,,,,04 (x = 0.80).

2. To characterize the prepared materials, i.e., local- and long-range structure, thermal stability, morphology,
compositional distribution, and acidic-basic properties; and to compare the acidic properties with more widely-studied
materials.

3. To evaluate the catalytic activity of the synthesized materials in ethanol conversion; and to make a correlation to the

characterized physicochemical properties

WAaN13I98

The unusually acidic nature of the title compounds is exceptional considering the ease of synthesis and the presence of Cs+,
typically believed to promote basic character. No other cesium-containing oxides exhibit the acidic property to the best of the
author's knowledge. The ethylene production from ethanol at 380 °C further confirms the acidic character. The rather low
ethanol conversion (7-13%) can be improved by ball milling. Importantly, the lepidocrocite-type layered structure is preserved

under harsh environment, opening up the possibility for other high-temperature application.
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