บทคัดย่อ

รหัสโครงการ : MRG6080010

ชื่อโครงการ: การตัดซิลิกอนด้วยเลเซอร์ในระดับจุลภาคภายใต้ชั้นน้ำแข็ง

ชื่อนักวิจัย: วิบุญ ตั้งวโรดมนุกูล มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

E-mail Address: viboon.tan@kmutt.ac.th

ระยะเวลาโครงการ : 2 ปี

ความเสียหายทางความร้อนถือเป็นข้อเสียหนึ่งของกระบวนการตัดวัสดุในระดับจุลภาค ด้วยด้วยเลเซอร์ ในปัจจุบันได้มีหลากหลายวิธีการที่ถูกคิดค้นและพัฒนาขึ้นมาเพื่อควบคุมและ จำกัดปริมาณความร้อนที่เกิดขึ้นในการตัดด้วยเลเซอร์ โครงการวิจัยนี้ได้นำเสนอวิธีการตัดแบบ ใหม่ซึ่งเป็นการตัดวัสดุในระดับจุลภาคด้วยเลเซอร์ในน้ำแข็ง โดยการตัดเกิดขึ้นในขณะที่ชิ้นงาน ถูกทำให้เย็นตัวภายในชั้นน้ำแข็ง วิธีการนี้สามารถช่วยลดปริมาณความร้อนส่วนเกินที่แพร่เข้าสู่ เนื้อวัสดุงานได้เป็นอย่างดี อีกทั้งยังช่วยปกป้องผิวชิ้นงานจากการเกาะติดของเศษวัสดุที่เกิด จากการตัดที่มักพบได้ในการตัดด้วยเลเซอร์แบบแห้งทั่วไป วัสดุชิ้นงานที่เลือกนำมาตัดใน งานวิจัยนี้คือแผ่นซิลิกอน งานวิจัยนี้ได้ทำการทดลองเพื่อศึกษาผลกระทบของค่าอุณหภูมิ ้น้ำแข็ง ความหนาของชั้นน้ำแข็ง และระดับกำลังเลเซอร์ที่ใช้ในการตัด ต่อขนาดมิติของรอยตัดที่ ได้ อีกทั้งยังได้สร้างตัวแบบทางคณิตศาสตร์สำหรับใช้ในการทำนายขนาดความกว้างและความ ลึกของรอยตัดที่ได้โดยอาศัยทฤษฎีสมดุลพลังงาน แม้ว่าการเปลี่ยนสถานะของน้ำแข็งเป็นน้ำ และไอน้ำที่เกิดขึ้นในระหว่างการตัดก่อให้เกิดการรบกวนลำแสงเลเซอร์และลดขนาดความลึก ของรอยตัดที่ได้ลง ผิวงานตัดที่ได้จากการตัดแบบใต้ชั้นน้ำแข็งกลับพบว่ามีความสะอาดและได้ ร่องตัดที่มีขนาดเล็กอีกทั้งยังมีมุมเอียงของร่องตัดที่น้อย ผลลัพธ์ที่ได้นี้ชี้ให้เห็นว่ากระบวนการ ตัดแบบจุลภาคด้วยเลเซอร์ภายใต้ชั้นน้ำแข็งเป็นวิธีการหนึ่งที่สามารถช่วยลดความเสียหายทาง ความร้อนที่เกิดขึ้นในการตัดแผ่นซิลิกอนด้วยเลเซอร์ได้ นอกจากนี้ วิธีการที่พัฒนาขึ้นใหม่ใน งานวิจัยนี้ยังน่าจะสามารถนำไปประยุกต์ใช้ในการตัดหรือแปรรูปวัสดุที่ไวต่อการเปลี่ยนแปลง ทางความร้อนอื่นๆ ได้อีกด้วย

คำหลัก : เลเซอร์; การตัดในระดับจุลภาค; ซิลิกอน; น้ำแข็ง; ความเสียหาย

Abstract

Project Code: MRG6080010

Project Title: Laser Micromachining of Silicon under an Ice Layer

Investigator: Viboon Tangwarodomnukun King Mongkut's University of Technology Thonburi

E-mail Address: viboon.tan@kmutt.ac.th

Project Period: 2 Years

Thermal damage is an important drawback of laser micromachining process, and several techniques have been developed to control and limit heat induced by laser ablation. A novel method presented in this project is to perform the laser micromachining in ice, where the ablation take places while a workpiece is cooled in a thin ice layer. This technique is able to limit the excessive heat conducting toward the work material and also to prevent the cut debris depositing in the workpiece surface as usually found in the dry laser ablation. Silicon wafer was used as a sample to be cut in this study. The effects of ice temperature, ice layer thickness and average laser power on cut dimensions were experimentally investigated, and the predictive models for cut width and depth based on energy balance theorem were also formulated in this study. Although some optical disturbances due to ice-water-vapor transitions limited the machined depth obtained, a clean and narrow cut with small taper angle was achievable when silicon was ablated in the ice layer. According to the findings of this study, the iceassisted laser micromachining process could be a promising method for minimizing thermal damage in the laser ablation of silicon. In addition, this technique could also be of high potential for processing other heat-sensitive materials for micro-manufacturing applications.

Keywords: Laser; Micromachining; Silicon; Ice; Damage